WorldWideScience

Sample records for cooled fast reactor

  1. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  2. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki

    1982-07-01

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  3. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Gatley, J.A.

    1979-01-01

    Breeder fuel sub-assemblies with electromagnetic brakes and fluidic valves for liquid metal cooled fast breeder reactors are described. The electromagnetic brakes are of relatively small proportions and the valves are of the controlled vortex type. The outlet coolant temperature of at least some of the breeder sub-assemblies are maintained by these means substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (UK)

  4. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Thatcher, G.; Mitchell, A.J.

    1981-01-01

    Fuel sub-assemblies for liquid metal-cooled fast breeder reactors are described which each incorporate a fluid flow control valve for regulating the rate of flow through the sub-assembly. These small electro-magnetic valves seek to maintain the outlet coolant temperature of at least some of the breeder sub-assemblies substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (U.K.)

  5. Liquid metal cooled fast breeder nuclear reactor

    International Nuclear Information System (INIS)

    Scott, D.

    1979-01-01

    A liquid metal cooled fast breeder nuclear reactor has a core comprising a plurality of fuel assemblies supported on a diagrid and submerged in a pool of liquid metal coolant within a containment vessel, the diagrid being of triple component construction and formed of a short cylindrical plenum mounted on a conical undershell and loosely embraced by a fuel store carrier. The plenum merely distributes coolant through the fuel assemblies, the load of the assemblies being carried by the undershell by means of struts which penetrate the plenum. The reactor core, fuel store carrier and undershell provide secondary containment for the plenum. (UK)

  6. A resting bottom sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Costes, D.

    2012-01-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  7. Gas cooled fast reactor research in Europe

    International Nuclear Information System (INIS)

    Stainsby, Richard; Peers, Karen; Mitchell, Colin; Poette, Christian; Mikityuk, Konstantin; Somers, Joe

    2011-01-01

    Research on the gas-cooled fast reactor system is directed towards fulfilling the ambitious long term goals of Generation IV (Gen IV), i.e., to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. In common with other fast reactors, gas-cooled fast reactors (GFRs) have exceptional potential as sustainable energy sources, for both the utilisation of fissile material and minimisation of nuclear waste through transmutation of minor actinides. The primary goal of GFR research is to develop the system primarily to be a reliable and economic electricity generator, with good safety and sustainability characteristics. However, for the longer term, GFR retains the potential for hydrogen production and other process heat applications facilitated through a high core outlet temperature which, in this case, is not limited by the characteristics of the coolant. In this respect, GFR can inherit the non-electricity applications of the thermal HTRs in a sustainable manner in a future in which natural uranium becomes scarce. GFR research within Europe is performed directly by those states who have signed the 'System Arrangement' document within the Generation IV International Forum (the GIF), specifically France and Switzerland and Euratom. Importantly, Euratom provides a route by which researchers in other European states, and other non-European affiliates, can contribute to the work of the GIF, even when these states are not signatories to the GFR System Arrangement in their own right. This paper is written from the perspective of Euratom's involvement in research on the GFR system, starting with the 5th Framework Programme (FP5) GCFR project in 2000, through the FP6 project between 2005 and 2009 and looking ahead to the proposed activities within the current 7th Framework Programme (FP7). The evolution of the GFR concept from the 1960s onwards is discussed briefly, followed by the current perceived role, objectives and progress with

  8. Fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwatari, Yuki; Mukouhara, Tami; Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Lab., Tokai, Ibaraki (Japan)

    2001-09-01

    This report introduces the result of a feasibility study of a fast reactor cooled by supercritical light water (SCFR) with once-through cooling system. It is characterized by (1) no need of steam separator, recirculation system, or steam generator, (2) 1/7 of core flow rate compared with BWR or PWR, (3) high temperature and high pressure permits small turbine and high efficiency exceeding 44%, (4) structure and operation of major components are already experienced by LWRs or thermal power plants. Modification such as reducing blanket fuels and increasing seed fuels are made to achieve highly economic utilization of Pu and high power (2 GWe). The following restrictions were satisfied. (1) Maximum linear heat rate 39 kW/m, (2) Maximum surface temperature of Inconel cladding 620degC, (3) Negative void reactivity coefficient, (4) Fast neutron irradiation rate at the inner surface of pressure vessel less than 2.0x10{sup 19} n/cm{sup 2}. Thus the high power density of 167 MW/m{sup 3} including blanket is thought to contributes economy. The high conversion is attained to be 0.99 Pu fission residual rate by the outer radius of fuel rod of 0.88 mm. The breeding of 1.034 by Pu fission residual rate can be achieved by using briquette (tube-in-shell) type fuel structure. (K. Tsuchihashi)

  9. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Duncombe, E.; Thatcher, G.

    1979-01-01

    The invention described relates to a liquid metal cooled fast breeder nuclear reactor in which the fuel assembly has an inner zone comprised mainly of fissile material and a surrounding outer zone comprised mainly of breeder material. According to the invention the sub-assemblies in the outer zone include electro-magnetic braking devices (magnets, pole pieces and armature) for regulating the flow of coolant through the sub-assemblies. The magnetic fields of the electro-magnetic breaking devices are temperature sensitive so that as the power output of the breeder sub-assemblies increases the electro-magnetic resistance to coolant flow is reduced thereby maintaining the temperature of the coolant outlets from the sub-assemblies substantially constant. (UK)

  10. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1976-01-01

    Reference is made to liquid metal cooled fast breeder reactors of the 'pool' kind. In this type of reactor the irradiated fuel is lowered into a transfer rotor for removal to storage facilities, this rotor normally having provision for the temporary storage of 20 irradiated fuel assemblies, each within a stainless steel bucket. For insertion or withdrawal of a fuel assembly the rotor is rotated to bring the fuel assembly to a loading or discharging station. The irradiated fuel assembly is withdrawn from the rotor within its bucket and the total weight is approximately 1000 kg, which is lifted about 27 m. In the event of malfunction the combination falls back into the rotor with considerable force. In order to prevent damage to the rotor fracture pins are provided, and to prevent damage to the reactor vessel and other parts of the reactor structure deformable energy absorbing devices are provided. After a malfunction the fractured pins and the energy absorbing devices must be replaced by remote control means operated from outside the reactor vault - a complex operation. The object of the arrangement described is to provide improved energy absorbing means for fuel assemblies falling into a fuel transfer rotor. The fuel assemblies are supported in the rotor by elastic means during transfer to storage and a hydraulic dash pot is provided in at least one position below the rotor for absorbing the energy of a falling fuel assembly. It is preferable to provide dash pots immediately below a receiving station for irradiated fuel assemblies and immediately below a discharge station. Each bucket is carried in a container that is elastically supported in the transfer rotor on a helical coil compression spring, so that, in the event of a malfunction the container and bucket are returned to their normal operating position after the force of the falling load has been absorbed by the dash pot. The transfer rotor may also be provided with recoil springs to absorb the recoil energy

  11. Unconventional liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.

    1989-06-01

    This report describes the rationale for, design of and analytical studies on an unconventional sodium-cooled power reactor, called the Trench Reactor. It derives its name from the long, narrow sodium pool in which the reactor is placed. Unconventional features include: pool shape; reactor shape (also long and narrow); reflector control; low power density; hot-leg primary pumping; absence of a cold sodium pool; large core boxes rather than a large number of subassemblies; large diameter metal fuel; vessel suspension from cables; and vessel cooling by natural circulation of building atmosphere (nitrogen) at all times. These features all seem feasible. They result in a system that is capable of at least a ten year reload interval and shows good safety through direct physical response to loss-of-heat-sink, loss-of-flow and limited-reactivity nuclear transients. 43 figs., 43 tabs

  12. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  13. Liquid metal cooled experimental fast reactor simulator

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine; Braz Filho, Francisco; Borges, Eduardo M.; Rosa, Mauricio A.P.; Rocamora, Francisco; Hirdes, Viviane R.

    1997-01-01

    This paper is a continuation of the work that has been done in the area of fast reactor component dynamic analysis, as part of the REARA project at the IEAv/CTA-Brazil. A couple of preceding papers, presented in other meetings, introduced major concept design components of the REARA reactor. The components are set together in order to represent a full model of the power plant. Full model transient results will be presented, together with several parameters to help us to better establish the REARA experimental plant concept. (author). 8 refs., 6 figs., 3 tabs

  14. Status of liquid metal cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants Refs, figs, tabs

  15. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  16. Containment atmosphere cooling system for experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Sasaki, Mikio; Hoshi, Akio; Sato, Morihiko; Takeuchi, Kaoru

    1979-01-01

    The experimental fast reactor ''JOYO'', the first sodium-cooled fast reactor in Japan, achieved the initially licensed full power operation (50 MW) in July 1978 and is now under steady operation. Toshiba has participated in the construction of this reactor as a leading manufacturer and supplied various systems. This article outlines the design philosophy, system concepts and the operating experience of the containment atmosphere cooling system which has many design interfaces throughout the whole plant and requires especially high reliability. The successful performance of this system during the reactor full-power operation owes to the spot cooling design philosophy and to the preoperational adjustment of heat load during the preheating period of reactor cooling system peculiar to FBR. (author)

  17. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective ...

  18. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    Markoczy, G.; Hudina, M.; Richmond, R.; Wydler, P.; Stratton, R.W.; Burgsmueller, P.

    1980-03-01

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1979 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  19. Uranium utilization of light water cooled reactors and fast breeders

    International Nuclear Information System (INIS)

    Stojadinovic, Timm

    1991-08-01

    The better uranium utilization of fast breeder reactors as compared with water cooled reactors is one argument in favour of the breeder introduction. This report tries to quantify this difference. It gives a generally valid formalism for the uranium utilization as a function of the fuel burnup, the conversion rate, fuel cycle losses and the fuel enrichment. On the basis of realistic assumptions, the ratio between the utilizations of breeder reactors to that of light water cooled reactors (LWR) amounts to 180 for the open LWR cycle and 100 in case of plutonium recycling in LWRs

  20. Design considerations for economically competitive sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Zhang, Hongbin; Zhao, Haihua; Mousseau, Vincent; Szilard, Ronaldo

    2009-01-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phenix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design. (author)

  1. Safety Design Criteria of Indian Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Pillai, P.; Chellapandi, P.; Chetal, S.C.; Vasudeva Rao, P.R.

    2013-01-01

    • Important feedback has been gained through the design and safety review of PFBR. • The safety criteria document prepared by AERB and IGCAR would provide important input to prepare the dedicated document for the Sodium cooled Fast Reactors at the national and international level. • A common approach with regard to safety, among countries pursuing fast reactor program, is desirable. • Sharing knowledge and experimental facilities on collaborative basis. • Evolution of strong safety criteria – fundamental to assure safety

  2. Gas-cooled fast reactor safety

    International Nuclear Information System (INIS)

    Rickard, C.L.; Simon, R.H.; Buttemer, D.R.

    1977-01-01

    Initial conceptual design work on the GCFR began in the USA in the early 1960s and since the later 1960s has proceeded with considerable international cooperation. A 300 MWe GCFR demonstration plant employing three main cooling loops is currently being developed at General Atomic. A major preapplication licensing review of this demonstration plant was initiated in 1971 leading in 1974 to publication of a Safety Evaluation Report by the USAEC Directorate of Licensing. The preapplication review is continuing by addressing areas of concern identified in this report such that a major part of the work necessary to support the actual licensing of a GCFR demonstration plant has been established. The safety performance of the GCFR demonstration plant is based upon its inherent safety characteristics among which are the single phase and chemically inert coolant which is not activated and has a low reactivity worth, the negative core power and temperature reactivity coefficients and the small and negative steam reactivity worth. Recent studies of larger core designs indicate that as the reactor size increases central fuel, clad and coolant reactivity worths decrease and the Doppler coefficient becomes more negative. These inherent safety characteristics are complemented by safety design features such as enclosing the entire primary coolant system within a prestressed concrete pressure vessel (PCRV), providing two independent and diverse shutdown systems and residual heat removal (RHR) systems, limiting the worth of control rods to less than $1, employing pressure-equalized fuel rods, a core supported rigidly at its upper end and otherwise unrestrained and coolant downflow within the core to enhance debris removal should local melting occur. The structurally redundant PCRV design allows the potential depressurization leak area to be controlled and, since the PCRV is located within a containment building, coolant is present even after a depressurization accident and each RHR

  3. Proceedings of 'workshop on Pb-alloy cooled fast reactor'

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Kim, Yong Hee; Hong, Ser Gi

    2003-06-01

    The objective of 'Workshop on Pb-Alloy Cooled Fast Reactor', held in Taejeon, Korea on May 6, 2003, is to enhance the basic knowledge in this area by facilitating the exchange of information and discussions about problematic area of design aspects. There were five presentations from three different countries and about 25 participants gathered during the workshop. The topics covered in the workshop include benefits and drawbacks of Pb-alloy and Sodium coolant, two Pb-alloy cooled 900 MWt reactor designs using both B4C rods and NSTs, BREST-300 breakeven reactor and transmutation effectiveness of LLFPs in the typical thermal/fast neutron systems. The generic conclusion for the Pb-alloy cooled fast reactor from this workshop is as follows: 1) It has a potential to satisfy the goals established for the Generation-IV reactor concepts, so it has a bright future. 2) As a fast neutron system with a moderate breeding or a conversion, it is flexible in its roles and has superior safety characteristics over sodium coolant because of Pb-alloy's chemical inertness with water/air and high boiling temperature

  4. Lead- or Lead-bismuth-cooled fast reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Courouau, J.L.; Dufour, P.; Guidez, J.; Latge, C.; Martinelli, L.; Renault, C.; Rimpault, G.

    2014-01-01

    Lead-cooled fast reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. So far no lead-cooled reactors have existed in the world except lead-bismuth-cooled reactors in soviet submarines. Some problems linked to the use of the lead-bismuth eutectic appeared but were satisfactorily solved by a more rigorous monitoring of the chemistry of the lead-bismuth coolant. Lead presents various advantages as a coolant: no reactivity with water and the air,a high boiling temperature and low contamination when irradiated. The main asset of the lead-bismuth alloy is the drop of the fusion temperature from 327 C degrees to 125 C degrees. The main drawback of using lead (or lead-bismuth) is its high corrosiveness with metals like iron, chromium and nickel. The high corrosiveness of the coolant implies low flow velocities which means a bigger core and consequently a bigger reactor containment. Different research programs in the world (in Europe, Russia and the USA) are reviewed in the article but it appears that the development of this type of reactor requires technological breakthroughs concerning materials and the resistance to corrosion. Furthermore the concept of lead-cooled reactors seems to be associated to a range of low output power because of the compromise between the size of the reactor and its resistance to earthquakes. (A.C.)

  5. Fuel Development For Gas-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  6. Gas Cooled Fast Reactors: Recent advances and prospects

    International Nuclear Information System (INIS)

    Poette, C.; Guedeney, P.; Stainsby, R.; Mikityuk, K.; Knol, S.

    2013-01-01

    Gas Cooled Fast Reactors: Conclusion - GFR: an attractive longer term option allowing to combine Fast spectrum & Helium coolant benefits; • Innovative SiC fuel cladding solutions were found; • A first design confirming the encouraging potential of the reactor system Design improvements are nevertheless recommended and interesting tracks have been identified (core & system design, DHR system); • The GFR requires large R&D needs to confirm its potential (fuel & core materials, specific Helium technology); • ALLEGRO prototype studies are the first step and are drawing the R&D priorities

  7. Capital cost: gas cooled fast reactor plant

    International Nuclear Information System (INIS)

    1977-09-01

    The results of an investment cost study for a 900 MW(e) GCFR central station power plant are presented. The capital cost estimate arrived at is based on 1976 prices and a conceptual design only, not a mature reactor design

  8. Core Seismic Tests for a Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H

    2007-01-15

    This report describes the results of the comparison of the core seismic responses between the test and the analysis for the reduced core mock-up of a sodium-cooled fast reactor to verify the FAMD (Fluid Added Mass and Damping) code and SAC-CORE (Seismic Analysis Code for CORE) code, which implement the application algorithm of a consistent fluid added mass matrix including the coupling terms. It was verified that the narrow fluid gaps between the duct assemblies significantly affect the dynamic characteristics of the core duct assemblies and it becomes stronger as a number of duct increases within a certain level. As conclusion, from the comparison of the results between the tests and the analyses, it is verified that the FAMD code and the SAC-CORE code can give an accurate prediction of a complex core seismic behavior of the sodium-cooled fast reactor.

  9. Linear Dynamics Model for Steam Cooled Fast Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-04-15

    A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.

  10. SSTAR: The US lead-cooled fast reactor (LFR)

    International Nuclear Information System (INIS)

    Smith, Craig F.; Halsey, William G.; Brown, Neil W.; Sienicki, James J.; Moisseytsev, Anton; Wade, David C.

    2008-01-01

    It is widely recognized that the developing world is the next area for major energy demand growth, including demand for new and advanced nuclear energy systems. With limited existing industrial and grid infrastructures, there will be an important need for future nuclear energy systems that can provide small or moderate increments of electric power (10-700 MWe) on small or immature grids in developing nations. Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. It is a system designed to provide energy security to developing nations while incorporating features to achieve nonproliferation goals, anticipating GNEP objectives. This paper presents the motivation for development of internationally deployable nuclear energy systems as well as a summary of one such system, SSTAR, which is the US Generation IV lead-cooled fast reactor system

  11. Design and selection of materials for sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Chetal, S.C.

    2011-01-01

    Sodium cooled fast reactors are currently in operation, under construction or under design by a number of countries. The design of sodium cooled fast reactor is covered by French RCC - MR code and ASME code NH. The codes cover rules as regards to materials, design and construction. These codes do not cover the effect of irradiation and environment. Elevated temperature design criteria in nuclear codes are much stringent in comparison to non nuclear codes. Sodium corrosion is not an issue in selection of materials provided oxygen impurity in sodium is controlled for which excellent reactor operating experience is available. Austenitic stainless steels have remained the choice for the permanent structures of primary sodium system. Stabilized austenitic stainless steel are rejected because of poor operating experience and non inclusion in the design codes. Route for improved creep behaviour lies in compositional modifications in 316 class steel. However, the weldability needs to be ensured. For cold leg component is non creep regime, SS 304 class steel is favoured from overall economics. Enhanced fuel burn up can be realized by the use of 9-12%Cr 1%Mo class steel for the wrapper of MOX fuel design, and cladding and wrapper for metal fuel reactors. Minor compositional modifications of 20% cold worked 15Cr-15Ni class austenitic stainless steel will be a strong candidate for the cladding of MOX fuel design in the short term. Long term objective for the cladding will be to develop oxide dispersion strengthened steel. 9%Cr 1%Mo class steel (Gr 91) is an ideal choice for integrated once through sodium heated steam generators. One needs to incorporate operating experience from reactors and thermal power stations, industrial capability and R and D feedback in preparing the technical specifications for procurement of wrought products and welding consumables to ensure reliable operation of the components and systems over the design life. The paper highlights the design approach

  12. Delayed gamma power measurement for sodium-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R., E-mail: romain.coulon@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Normand, S., E-mail: stephane.normand@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Ban, G., E-mail: ban@lpccaen.in2p3.f [ENSICAEN, 6 Boulevard Marechal Juin, F-14050 Caen Cedex 4 (France); Barat, E.; Montagu, T.; Dautremer, T. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Brau, H.-P. [ICSM, Centre de Marcoule, BP 17171 F-30207 Bagnols sur Ceze (France); Dumarcher, V. [AREVA NP, SET, F-84500 Bollene (France); Michel, M.; Barbot, L.; Domenech, T.; Boudergui, K.; Bourbotte, J.-M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Jousset, P. [CEA, LIST, Departement des Capteurs, du Signal et de l' Information, F-91191 Gif-sur-Yvette (France); Barouch, G.; Ravaux, S.; Carrel, F. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Saurel, N. [CEA, DAM, Laboratoire Mesure de Dechets et Expertise, F-21120 Is-sur-Tille (France); Frelin-Labalme, A.-M.; Hamrita, H. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France)

    2011-01-15

    Graphical abstract: Display Omitted Research highlights: {sup 20}F and {sup 23}Ne tagging agents are produced by fast neutron flux. {sup 20}F signal has been measured at the SFR Phenix prototype. A random error of only 3% for an integration time of 2 s could be achieved. {sup 20}F and {sup 23}Ne power measurement has a reduced temperature influence. Burn-up impact could be limited by simultaneous {sup 20}F and {sup 23}Ne measurement. - Abstract: Previous works on pressurized water reactors show that the nitrogen 16 activation product can be used to measure thermal power. Power monitoring using a more stable indicator than ex-core neutron measurements is required for operational sodium-cooled fast reactors, in order to improve their economic efficiency at the nominal operating point. The fluorine 20 and neon 23 produced by (n,{alpha}) and (n,p) capture in the sodium coolant have this type of convenient characteristic, suitable for power measurements with low build-up effects and a potentially limited temperature, flow rate, burn-up and breeding dependence. This method was tested for the first time during the final tests program of the French Phenix sodium-cooled fast reactor at CEA Marcoule, using the ADONIS gamma pulse analyzer. Despite a non-optimal experimental configuration for this application, the delayed gamma power measurement was pre-validated, and found to provide promising results.

  13. Analysis of the formation of local cooling disturbances in sodium-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Schultheiss, G.F.

    1976-09-01

    The aim of this analysis of the formation of local cooling disturbances in sodium-cooled fast breeder reactors is to get results on the possible extent of blockages and the time necessary for growth which may be used for a safety evaluation. After an introduction where the thermohydraulic and physical/chemical aspects of the problems are considered, the causes for the local cooling disturbances and the phenomena arising with it are freated in more detail. (orig./TK) [de

  14. Gas cooled fast breeder reactors using mixed carbide fuel

    International Nuclear Information System (INIS)

    Kypreos, S.

    1976-09-01

    The fast reactors being developed at the present time use mixed oxide fuel, stainless-steel cladding and liquid sodium as coolant (LMFBR). Theoretical and experimental designing work has also been done in the field of gas-cooled fast breeder reactors. The more advanced carbide fuel offers greater potential for developing fuel systems with doubling times in the range of ten years. The thermohydraulic and physics performance of a GCFR utilising this fuel is assessed. One question to be answered is whether helium is an efficient coolant to be coupled with the carbide fuel while preserving its superior neutronic performance. Also, an assessment of the fuel cycle cost in comparison to oxide fuel is presented. (Auth.)

  15. Physical and technical aspects of lead cooled fast reactors safety

    International Nuclear Information System (INIS)

    Orlov, V.V.; Smirnov, V.S.; Filin, A.I.

    2001-01-01

    The safety analysis of lead-cooled fast reactors has been performed for the well-developed concept of BREST-OD-300 reactor. The most severe accidents have been considered. An ultimate design-basis accident has been defined as an event resulting from an external impact and involving a loss of leak-tightness of the lead circuit, loss of forced circulation of lead and loss of heat sink to the secondary circuit, failure of controls and of reactor scram with resultant insertion of total reactivity margin, etc. It was assumed in accident analysis that the protective feature available for accident mitigation was only reactivity feedback on the changes in the temperatures of the reactor core elements and coolant flow rate, and in some cases also actuation of passive protections of threshold action in response to low flow rate and high coolant temperature at the core outlet. It should be noted that the majority of the analyzed accidents could be overcame even without initiation of the above protections. It has been demonstrated that a combination of inherent properties of lead coolant, nitride fuel, physical and design features of fast reactors will ensure natural safety of BREST and are instrumental for avoiding by a deterministic approach the accidents associated with a significant release of radioactivity and requiring evacuation of people in any credible initiating event and a combination of events. (author)

  16. Refueling system for the gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Hawke, B.C.

    1980-05-01

    Criteria specifically related to the handling of Gas-Cooled Fast Breeder Reactor (GCFR) fuel are briefly reviewed, and the most significant requirements with which the refueling system must comply are discussed. Each component of the refueling system is identified, and a functional description of the fuel handling machine is presented. An illustrated operating sequence describing the various functions involved in a typical refueling cycle is presented. The design status of components and subsystems selected for conceptual development is reviewed, and anticipated refueling time frames are given

  17. Methods for the sodium cooled fast reactor fire safety provisions

    International Nuclear Information System (INIS)

    Gryaznov, B.V.; Dergachev, N.P.

    1983-01-01

    Problems of fire safety provision on NPPs with sodium cooled fast reactor are under discussion. Methods of sodium leak localization, measures eliminating sodium flaring up during leaks and main means of sodium fire extinguishing are considered. An extinguishing of sodium flaring up is performed by means of sodium temperatUre decrease and by limitation of hydrogen access to the flaring up surface. A conclusion is made that the most effective methods of extinguishing are the following: self-extinguishing (due to hydrogen burning out in a limiting volume); extinguishing by a gas mixture of nitrogen and carbonic acid (initial filling and blowing of rooms during sodium flaring up); extinguishing by special powders

  18. Shape optimization of a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Schmitt, D.; Allaire, G.; Pantz, O.; Pozin, N.

    2013-01-01

    Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth. Usual optimization methods for core conception are based on a parametric description of a given core design. New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints. First studies show that these methods could be applied to sodium cooled core conception. In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a given realistic core layout. Its characteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas. (authors)

  19. Gas cooled fast reactor background, facilities, industries and programmes

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1980-05-01

    This report was prepared at the request of the OECD-NEA Coordinating Group on Gas Cooled Fast Reactor Development and it represents a contribution (Vol.II) to the jointly sponsored Vol.I (GCFR Status Report). After a chapter on background with a brief description of the early studies and the activities in the various countries involved in the collaborative programme (Austria, Belgium, France, Germany, Japan, Sweden, Switzerland, United Kingdom and United States), the report describes the facilities available in those countries and at the Gas Breeder Reactor Association and the industrial capabilities relevant to the GCFR. Finally the programmes are described briefly with programme charts, conclusions and recommendations are given. (orig.) [de

  20. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  1. Proposal of a fast gas-cooled reactor using transuranics

    International Nuclear Information System (INIS)

    Macedo, Anderson Altair Pinheiro de

    2016-01-01

    In the last two decades, nations that have invested in research and energy generation through nuclear source have devoted part of their efforts in developing new technologies for nuclear reactors. Part of this investment focuses on new material testing, particularly regarding new fuels. In a world view that breaths sustainability, the reprocess and reuse of spent fuel from conventional reactors comes alive in nuclear technology, presenting itself as a real alternative of energy source for the latest generation of reactors. Different concepts of fourth generation reactors have been proposed and must meet some basic requirements, such as: extended burnup, improvement of passive safety, better radioactive waste management, possibility to use reprocessed fuel and proliferation resistance. In this context, the GFR (Gas-cooled Fast Reactor) is one of the future promises, presenting satisfactory neutronic results on the use of type of fuel (U, Pu) C. In the present work, the fuel of a traditional GFR reactor that uses (U, Pu)C was sub was replaced by a transuranic reprocessed fuel (TRU), obtained by non-proliferation reprocessing technology. The UO 2 fuel initially enriched by 3.1% was burned in a standard PWR, with full burn of 33,000 MWd/T. Afterward it was left in a pool for 5 years and finally reprocessed by UREX + method. Two fuels were studied and evaluated, one diluted with depleted uranium (U, TRU)C, and the other diluted in thorium (Th, TRU)C. Assessments were done in steady state and as well as during burning and were compared with results obtained using the standard fuel, (U, Pu) C. The outcome shows that the use of TRU as a fuel, in GFR type reactors, is a real possibility. The research was done using the SCALE 6.0 code modules. (author)

  2. High temperature helium-cooled fast reactor (HTHFR)

    International Nuclear Information System (INIS)

    Karam, R.A.; Blaylock, Dwayne; Burgett, Eric; Mostafa Ghiaasiaan, S.; Hertel, Nolan

    2006-01-01

    Scoping calculations have been performed for a very high temperature (1000 o C) helium-cooled fast reactor involving two distinct options: (1) using graphite foam into which UC (12% enrichment) is embedded into a matrix comprising UC and graphite foam molded into hexagonal building blocks and encapsulated with a SiC shell covering all surfaces, and (2) using UC only (also 12% enrichment) molded into the same shape and size as the foam-UC matrix in option 1. Both options use the same basic hexagonal fuel matrix blocks to form the core and reflector. The reflector contains natural uranium only. Both options use 50 μm SiC as a containment shell for fission product retention within each hexagonal block. The calculations show that the option using foam (option 1) would produce a reactor that can operate continuously for at least 25 years without ever adding or removing any fuel from the reactor. The calculations show further that the UC only option (option 2) can operate continually for 50 years without ever adding or removing fuel from the reactor. Doppler and loss of coolant reactivity coefficients were calculated. The Doppler coefficient is negative and much larger than the loss of coolant coefficient, which was very small and positive. Additional progress on and development of the two concepts are continuing

  3. Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-04-20

    The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treated separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s

  4. Analysis of a sustainable gas cooled fast breeder reactor concept

    International Nuclear Information System (INIS)

    Kumar, Akansha; Chirayath, Sunil S.; Tsvetkov, Pavel V.

    2014-01-01

    Highlights: • A Thorium-GFBR breeder for actinide recycling ability, and thorium fuel feasibility. • A mixture of 232 Th and 233 U is used as fuel and LWR used fuel is used. • Detailed neutronics, fuel cycle, and thermal-hydraulics analysis has been presented. • Run this TGFBR for 20 years with breeding of 239 Pu and 233 U. • Neutronics analysis using MCNP and Brayton cycle for energy conversion are used. - Abstract: Analysis of a thorium fuelled gas cooled fast breeder reactor (TGFBR) concept has been done to demonstrate the self-sustainability, breeding capability, actinide recycling ability, and thorium fuel feasibility. Simultaneous use of 232 Th and used fuel from light water reactor in the core has been considered. Results obtained confirm the core neutron spectrum dominates in an intermediate energy range (peak at 100 keV) similar to that seen in a fast breeder reactor. The conceptual design achieves a breeding ratio of 1.034 and an average fuel burnup of 74.5 (GWd)/(MTHM) . TGFBR concept is to address the eventual shortage of 235 U and nuclear waste management issues. A mixture of thorium and uranium ( 232 Th + 233 U) is used as fuel and light water reactor used fuel is utilized as blanket, for the breeding of 239 Pu. Initial feed of 233 U has to be obtained from thorium based reactors; even though there are no thorium breeders to breed 233 U a theoretical evaluation has been used to derive the data for the source of 233 U. Reactor calculations have been performed with Monte Carlo radiation transport code, MCNP/MCNPX. It is determined that this reactor has to be fuelled once every 5 years assuming the design thermal power output as 445 MW. Detailed analysis of control rod worth has been performed and different reactivity coefficients have been evaluated as part of the safety analysis. The TGFBR concept demonstrates the sustainability of thorium, viability of 233 U as an alternate to 235 U and an alternate use for light water reactor used fuel as a

  5. Control rod homogenization in heterogeneous sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Andersson, Mikael

    2016-01-01

    The sodium-cooled fast reactor is one of the candidates for a sustainable nuclear reactor system. In particular, the French ASTRID project employs an axially heterogeneous design, proposed in the so-called CFV (low sodium effect) core, to enhance the inherent safety features of the reactor. This thesis focuses on the accurate modeling of the control rods, through the homogenization method. The control rods in a sodium-cooled fast reactor are used for reactivity compensation during the cycle, power shaping, and to shutdown the reactor. In previous control rod homogenization procedures, only a radial description of the geometry was implemented, hence the axially heterogeneous features of the CFV core could not be taken into account. This thesis investigates the different axial variations the control rod experiences in a CFV core, to determine the impact that these axial environments have on the control rod modeling. The methodology used in this work is based on previous homogenization procedures, the so-called equivalence procedure. The procedure was newly implemented in the PARIS code system in order to be able to use 3D geometries, and thereby be take axial effects into account. The thesis is divided into three parts. The first part investigates the impact of different neutron spectra on the homogeneous control-rod cross sections. The second part investigates the cases where the traditional radial control-rod homogenization procedure is no longer applicable in the CFV core, which was found to be 5-10 cm away from any material interface. In the third part, based on the results from the second part, a 3D model of the control rod is used to calculate homogenized control-rod cross sections. In a full core model, a study is made to investigate the impact these axial effects have on control rod-related core parameters, such as the control rod worth, the capture rates in the control rod, and the power in the adjacent fuel assemblies. All results were compared to a Monte

  6. Development Status on Innovative Sodium-Cooled Fast Reactor (JSFR)

    International Nuclear Information System (INIS)

    Yanagisawa, Tsutomu; Sato, Kazujiro

    2006-01-01

    The first step in Japan's nuclear fuel cycle policy is to introduce MOX recycle in light water reactors (LWRs) and the final step is to establish multiple TRU recycle in fast reactors (FRs), with the goal of realizing a stable supply, effective use of nuclear fuel resources, and the environmentally friendly production of energy. Therefore, a feasibility study on commercialized FR cycle systems has been launched since July 1999 by a Japanese joint project team of Japan Atomic Energy Agency (JAEA) and the Japan Atomic Power Company (JAPC: the representative of the electric utilities) in cooperation with Central Research Institute of Electric Power Industry (CRIEPI) and vendors. In the period from July 1999 to March 2001, the feasibility study phase-I was conducted to screen out representative FR cycle concepts. In the feasibility study phase-II (April 2001 - March 2006), investigations in to the representative FR concepts were carried out to clarify the most promising concept for commercial deployment. This paper describes an innovative sodium-cooled FR, which is named as the JAEA Sodium-cooled FR (JSFR), as the most promising FR concept that meets the Generation-IV performance target. The JSFR employs several advanced technologies, such as an oxide dispersion strengthened (ODS) cladding for higher burn-up, a short-piping configuration with less elbows by adopting high chromium steel, a large scale integrated intermediate heat exchanger with a primary circulation pump, etc. Based on the design, construction and operation experiences of JOYO and MONJU, there are extensive technology bases for sodium-cooled FRs. Nevertheless, several innovative technologies implemented into the JSFR have to be developed in order to realize higher economic competitiveness by reducing construction costs and improving plant availability

  7. New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Evgeny [Ecole Polytechnique Federale de Lausanne (Switzerland); Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany); Fridman, Emil; Bilodid, Yuri; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany)

    2017-07-15

    The reactor dynamics code DYN3D being developed at the Helmholtz-Zentrum Dresden-Rossendorf is currently under extension for Sodium cooled Fast Reactor analyses. This paper provides an overview on the new version of DYN3D to be used for SFR core calculations. The current article shortly describes the newly implemented thermal mechanical models, which can account for thermal expansion effects of the reactor core. Furthermore, the methodology used in Sodium cooled Fast Reactor analyses to generate homogenized few-group cross sections is summarized. The conducted and planned verification and validation studies are briefly presented. Related publications containing more detailed descriptions are outlined for the completeness of this overview.

  8. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    International Nuclear Information System (INIS)

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05)

  9. Gas-Cooled Fast Reactor (GFR) FY04 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. C. Totemeier; D. E. Clark; E. E. Feldman; E. A. Hoffman; R. B. Vilim; T. Y. C. Wei; J. Gan; M. K. Meyer; W. F. Gale; M. J. Driscoll; M. Golay; G. Apostolakis; K. Czerwinski

    2004-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  10. Unsteady thermal analysis of gas-cooled fast reactor core

    International Nuclear Information System (INIS)

    Lakkis, I.A.

    1993-01-01

    This thesis presents numerical analysis of transient heat transfer in an equivalent coolant-fuel rod cell of a typical gas cooled, fast nuclear reactor core. The transient performance is assumed to follow a complete sudden loss of coolant starting from steady state operation. Steady state conditions are obtained from solving a conduction problem in the fuel rod and a parabolic turbutent convection problem in the coolant section. The coupling between the two problems is accomplished by ensuring continuity of the thermal conditions at the interface between the fuel rod and the coolant. to model turbulence, the mixing tenght theory is used. Various fuel rod configurations have been tested for optimal transient performance. Actually, the loss of coolant accident occurs gradually at an exponential rate. Moreover, a time delay before shutting down the reactor by insertion of control rods usually exists. It is required to minimize maximum steady state cladding temperature so that the time required to reach its limiting value during transient state is maximum. This will prevent the escape of radioactive gases that endanger the environment and the public. However, the case considered here is a limiting case representing what could actually happen in the worst probable accident. So, the resutls in this thesis are very indicative regarding selection of the fuel rode configuration for better transient performance in case of accidents in which complete loss of collant occurs instantaneously

  11. Study on plant concept for gas cooled fast reactor

    International Nuclear Information System (INIS)

    Moribe, Takeshi; Kubo, Shigenobu; Saigusa, Toshiie; Konomura, Mamoru

    2003-05-01

    In 'Feasibility Study on Commercialized Fast Reactor Cycle System', technological options including various coolant (sodium, heavy metal, gas, water, etc.), fuel type (MOX, metal, nitride) and output power are considered and classified, and commercialized FBR that have economical cost equal to LWR are pursued. In conceptual study on gas cooled FBR in FY 2002, to identify the prospect of the technical materialization of the helium cooled FBR using coated particle fuel which is an attractive concept extracted in the year of FY2001, the preliminary conceptual design of the core and entire plant was performed. This report summarizes the results of the plant design study in FY2002. The results of study is as follows. 1) For the passive core shutdown equipment, the curie point magnet type self-actuated device was selected and the device concept was set up. 2) For the reactor block, the concept of the core supporting structure, insulators and liners was set up. For the material of the heat resistant structure, SiC was selected as a candidate. 3) For the seismic design of the plant, it was identified that a design concept with three-dimensional base isolation could be feasible taking the severe seismic condition into account. 4) For the core catcher, an estimation of possible event sequences under severe core damage condition was made. A core catcher concept which may suit the estimation was proposed. 5) The construction cost was roughly estimated based on the amount of materials and its dependency on the plant output power was evaluated. The value for a small sized plant exceeds the target construction cost about 20%. (author)

  12. Gas-Cooled Fast Reactor (GFR) FY05 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. Marshall; T. Totemeier; J. Gan; E.E. Feldman; E.A Hoffman; R.F. Kulak; I.U. Therios; C. P. Tzanos; T.Y.C. Wei; L-Y. Cheng; H. Ludewig; J. Jo; R. Nanstad; W. Corwin; V. G. Krishnardula; W. F. Gale; J. W. Fergus; P. Sabharwall; T. Allen

    2005-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection. Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in

  13. Comparison of fuel assemblies in lead cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G., E-mail: alejandria.peval@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2016-09-15

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  14. Comparison of fuel assemblies in lead cooled fast reactors

    International Nuclear Information System (INIS)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G.

    2016-09-01

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  15. Detection of coolant void in lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Wolniewicz, Peter; Håkansson, Ane; Jansson, Peter

    2015-01-01

    Highlights: • We model the ALFRED LFR using different Monte-Carlo codes. • We study the impact on coolant void on the fission cross section in fission chambers. • We develop a methodology to detect coolant void. • We study the impact of detector fissile coating burn-up. • We conclude that the developed methodology may be an attractive complement to LFR monitoring. - Abstract: Previous work (Wolniewicz et al., 2013) has indicated that using fission chambers coated with 242 Pu and 235 U, respectively, can provide the means of detecting changes in the neutron flux that are connected to coolant density changes in a small lead-cooled fast reactor. Such density changes may be due to leakages of gas into the coolant, which, over time, may coalesce to large bubbles implying a high risk of causing severe damage of the core. By using the ratio of the information provided by the two types of detectors a quantity is obtained that is sensitive to these density changes and, to the first order approximation, independent of the power level of the reactor. In this work we continue the investigation of this proposed methodology by applying it to the Advanced LFR European Demonstrator (ALFRED) and using realistic modelling of the neutron detectors. The results show that the methodology may be used to detect density changes indicating the initial stages of a coalescence process that may result in a large bubble. Also, it is shown that under certain circumstances, large bubbles passing through the core could be detected with this methodology

  16. 04 - Sodium cooled fast breeder fourth-generation reactors - The experimental reactor ALLEGRO, the other ways for fast breeder fourth-generation reactors

    International Nuclear Information System (INIS)

    2012-12-01

    The authors first present the technology of gas-cooled fast breeder reactors (basic principles, specific innovations, feasibility studies, fuel element, safety) and notably the ALLEGRO project (design options and expected performances, preliminary safety demonstration). Then, they present the lead-cooled fast-breeder reactor technology: interests and obstacles, return on experience, the issue of lead density, neutron assessment, transmutation potential, dosimetry, safety chemical properties and compatibility with the fuel, water, air and steels. The next part addresses the technology of molten-salt fast-breeder reactors: choice of the liquid fuel and geometry, reactor concept (difficulties, lack of past R and D), demonstration and demonstrators, international context

  17. Approaches to measurement of thermal-hydraulic parameters in liquid-metal-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1983-01-01

    This lecture considers instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, and sodium purity. It is divided into three major parts: (1) measurement requirements for sodium cooled reactor systems, (2) in-core and out-of-core measurements in liquid metal systems, and (3) performance measurements of water steam generators

  18. Lead-cooled flexible conversion ratio fast reactor

    International Nuclear Information System (INIS)

    Nikiforova, Anna; Hejzlar, Pavel; Todreas, Neil E.

    2009-01-01

    Lead-cooled reactor systems capable of accepting either zero or unity conversion ratio cores depending on the need to burn actinides or operate in a sustained cycle are presented. This flexible conversion ratio reactor is a pool-type 2400 MWt reactor coupled to four 600 MWt supercritical CO 2 (S-CO 2 ) power conversion system (PCS) trains through intermediate heat exchangers. The cores which achieve a power density of 112 kW/l adopt transuranic metallic fuel and reactivity feedbacks to achieve inherent shutdown in anticipated transients without scram, and lead coolant in a pool vessel arrangement. Decay heat removal is accomplished using a reactor vessel auxiliary cooling system (RVACS) complemented by a passive secondary auxiliary cooling system (PSACS). The transient simulation of station blackout (SBO) using the RELAP5-3D/ATHENA code shows that inherent shutdown without scram can be accommodated within the cladding temperature limit by the enhanced RVACS and a minimum (two) number of PSACS trains. The design of the passive safety systems also prevents coolant freezing in case all four of the PSACS trains are in operation. Both cores are also shown able to accommodate unprotected loss of flow (ULOF) and unprotected transient overpower (UTOP) accidents using the S-CO 2 PCS.

  19. Emergency core cooling system for a fast reactor

    International Nuclear Information System (INIS)

    Johnson, H.G.; Madsen, R.N.

    1976-01-01

    The main heat transport system for a liquid-metal-cooled nuclear reactor is constructed with elevated piping and guard vessels or pipes around all components of the system below the elevation of the elevated piping so the head developed by the pumps at emergency motor speed will be unsufficient to lift the liquid-metal-coolant over the top of the guard tanks or pipes or out of the elevated piping in the event of a loss-of-coolant accident. In addition, inlet downcomers to the reactor vessel are contained within guard standpipes having a clearance volume as small as practicable. 4 claims, 2 drawing figures

  20. Status of liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This document represents a compilation of the information on the status of fast breeder reactor development. It is intended to provide complete and authoritative information for academic, energy, industrial and planning organizations in the IAEA Member States. The Report also provides extended reference and bibliography lists. A summarized overview of the national programmes of LMFBR development is given in Chapter II. Chapter III on LMFBR experience provides a brief description and purpose of all fast reactors - experimental, demonstration and commercial size - that have been or are planned for construction and operation. Fast reactor physics is dealt with in Chapter IV. Besides the basic facts and definitions of neutronics and the compilation and measurement of nuclear data, a broad range of the calculation methods, codes, and the state of the art is described. In Chapter V, fuels and materials are described. The emphasis is on the design and development experience gained with mixed oxide fuel pins and subassemblies. Structural materials, blanket elements and absorber materials are also discussed. Chaper VI presents a broad overview of the technical and engineering aspects of LMFBR power plants. LMFBR core design is described in detail, followed by the components of the main heat transport system, the refuelling equipment, and auxiliary systems. Chapter VII on safety is a compilation of the current safety design concepts of LMFBRs and new trends in safety criteria and safety goals. The chapter concludes with risk analyses of LMFBR technology. In Chapter VIII, the systems approach has been emphasized in the consideration of the whole LMFBR fuel cycle. Special emphasis is placed on safeguards aspects and the environmental impact of the LMFBR fuel cycle. Chapter IX describes deployment considerations of LMFBRs. Special emphasis is placed on economic aspects of the LMFBR power plant and its related fuel cycle. Finally, Chapter X provides an overall summary and a

  1. CALIOP: a multichannel design code for gas-cooled fast reactors. Code description and user's guide

    International Nuclear Information System (INIS)

    Thompson, W.I.

    1980-10-01

    CALIOP is a design code for fluid-cooled reactors composed of parallel fuel tubes in hexagonal or cylindrical ducts. It may be used with gaseous or liquid coolants. It has been used chiefly for design of a helium-cooled fast breeder reactor and has built-in cross section information to permit calculations of fuel loading, breeding ratio, and doubling time. Optional cross-section input allows the code to be used with moderated cores and with other fuels

  2. Overview of environmental control aspects for the gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Nolan, A.M.

    1981-05-01

    Environmental control aspects relating to release of radionuclides have been analyzed for the Gas-Cooled Fast Reactor (GCFR). Information on environmental control systems was obtained for the most recent GCFR designs, and was used to evaluate the adequacy of these systems. The GCFR has been designed by the General Atomic Company as an alternative to other fast breeder reactor designs, such as the Liquid Metal Fast Breeder Reactor (LMFBR). The GCFR design includes mixed oxide fuel and helium coolant. The environmental impact of expected radionuclide releases from normal operation of the GCFR was evaluated using estimated collective dose equivalent commitments resulting from 1 year of plant operation. The results were compared to equivalent estimates for the Light Water Reactor (LWR) and High-Temperature Gas-Cooled Reactor (HTGR). A discussion of uncertainties in system performances, tritium production rates, and radiation quality factors for tritium is included

  3. Reprocessing technology of liquid metal cooled fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Broothaerts, J.; Heylen, P.R.; Eschrich, H.; Geel, J. van

    1974-11-01

    All the important aspects of LMFBR fuel reprocessing are critically reviewed in this report. Storage and transportation techniques using sodium, inert gas, lead, molten salts and organic coolants are comparatively discussed in connection with cooling time and de-activation techniques. Decladding and fuel disaggregation of UO 2 -PuO 2 fuel are reviewed according to the present state of R and D in the main nuclear powers. Strong emphasis is put on on voloxidation, mechanical pulverization and molten salt disaggregation in connection with volatilization of gaseous fission products. Release of fission gases and the resulting off-gas treatment are discussed in connection with cooling time, burn up and dissagregation techniques. The review is limited to tritium, iodine xenon-krypton and radioactive airborne particulates. Dissolution, solvent extraction and plutonium purification problems specifically connected to LMFBR fuel are reviewed with emphasis on the differences between LWR and fast fuel reprocessing. Finally the categories of wastes produced by reprocessing are analysed according to their origin in the plant and their alpha emitters content. The suitable waste treatment techniques are discussed in connection with the nature of the wastes and the ultimate disposal technique. (author)

  4. IAEA Workshop (Training Course) on Codes and Standards for Sodium Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2010-01-01

    The training course consisted of lectures and Q&A sessions. The lectures dealt with the history of the development of Design Codes and Standards for Sodium Cooled Fast Reactors (SFRs) in the respective country, the detailed description of the current design Codes and Standards for SFRs and their application to ongoing Fast Reactor design projects, as well as the ongoing development work and plans for the future in this area. Annex 1 contains the detailed Workshop program

  5. Decontamination before dismantling a fast breeder reactor primary cooling system

    International Nuclear Information System (INIS)

    Costes, J.R.; Antoine, P.; Gauchon, J.P.

    1997-01-01

    The large-scale decontamination of FBR sodium loops is a novel task, as only a limited number of laboratory-scale results are available to date. The principal objective of this work is to develop a suitable decontamination procedure for application to the primary loops of the RAPSODIE fast breeder reactor as part of decommissioning to Stage 2. After disconnecting the piping from the main vessel, the pipes were treated by circulating chemical solutions and the vessels by spraying. The dose rate in the areas to be dismantled was divided by ten. A decontamination factor of about 300 was obtained, and should allow austenitic steel parts to be melted in special furnaces for unrestricted release. (author)

  6. Development of a Neutron Flux Monitoring System for Sodium-cooled Fast Reactors

    OpenAIRE

    Verma, Vasudha

    2017-01-01

    Safety and reliability are one of the key objectives for future Generation IV nuclear energy systems. The neutron flux monitoring system forms an integral part of the safety design of a nuclear reactor and must be able to detect any irregularities during all states of reactor operation. The work in this thesis mainly concerns the detection of in-core perturbations arising from unwanted movements of control rods with in-vessel neutron detectors in a sodium-cooled fast reactor. Feasibility stud...

  7. A design study of high electric power for fast reactor cooled by supercritical light water

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2000-03-01

    In order to evaluate the possibility to achieve high electric power by a fast reactor with supercritical light water, the design study was carried out on a large fast reactor core with high coolant outlet temperature (SCFR-H). Since the reactor coolant circuit uses once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure, it is possible to design much simpler and more compact reactor systems and to achieve higher thermal efficiency than those of current light water reactors. The once-through direct cycle system is employed in current fossil-fired power plants. In the present study, three types of core were designed. The first is SCFR-H with blankets cooled by ascending flow, the second is SCFR-H with blankets cooled by descending flow and the third is SCFR-H with high thermal power. Every core was designed to achieve the thermal efficiency over 43%, positive coolant density reactivity coefficient and electric power over 1600 MW. Core characteristics of SCFR-Hs were compared with those of SCLWR-H (electric power: 1212 MW), which is a thermal neutron spectrum reactor cooled and moderated by supercritical light water, with the same diameter of the reactor pressure vessel. It was shown that SCFR-H could increase the electric power about 1.7 times maximally. From the standpoint of the increase of a reactor thermal power, a fast reactor has advantages as compared with a thermal neutron reactor, because it can increase the power density by adopting tight fuel lattices and eliminating the moderator region. Thus, it was concluded that a reactor cooled by supercritical light water could further improve the cost competitiveness by using a fast neutron spectrum and achieving a higher thermal power. (author)

  8. Neutronic design for a 100MWth Small modular natural circulation lead or lead-alloy cooled fast reactors core

    International Nuclear Information System (INIS)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q.

    2015-01-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW th natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  9. Economic performance of liquid-metal fast breeder reactor and gas-cooled fast reactor radial blankets

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.; Jankhah, M.H.

    1979-01-01

    The economic performance of the radial blanket of a liquid-metal fast breeder reactor (LMFBR) and a gas-cooled fast reactor (GCFR) has been studied based on the calculation of the net financial gain as well as the value of the levelized fuel cost. The necessary reactor physics calculations have been performed using the code CITATION, and the economic analysis has been carried out with the code ECOBLAN, which has been written for that purpose. The residence time of fuel in the blanket is the main variable of the economic analysis. Other parameters that affect the results and that have been considered are the value of plutonium, the price of heat, the effective cost of money, and the holdup time of the spent fuel before reprocessing. The results show that the radial blanket of both reactors is a producer of net positive income for a broad range of values of the parameters mentioned above. The position of the fuel in the blanket and the fuel management scheme applied affect the monetary gain. There is no significant difference between the economic performance of the blanket of an LMFBR and a GCFR

  10. Performance comparison of metallic, actinide burning fuel in lead-bismuth and sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Weaver, K.D.; Herring, J.S.; Macdonald, P.E.

    2001-01-01

    Various methods have been proposed to ''incinerate'' or ''transmute'' the current inventory of transuranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years. (author)

  11. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    Administrator

    puter simulation and modeling, manufacturing, repair and in-service inspection. ... production of fuel for nuclear reactors. ... reactor design are being carefully analysed with the aim ...... vanced NDE techniques for assessment of manufactured.

  12. Preliminary design of the cooling system for a gas-cooled, high-fluence fast pulsed reactor (HFFPR)

    International Nuclear Information System (INIS)

    Monteith, H.C.

    1978-10-01

    The High-Fluence Fast Pulsed Reactor (HFFPR) is a research reactor concept currently being evaluated as a source for weapon effects experimentation and advanced reactor safety experiments. One of the designs under consideration is a gas-cooled design for testing large-scale weapon hardware or large bundles of full-length, fast reactor fuel pins. This report describes a conceptual cooling system design for such a reactor. The primary coolant would be helium and the secondary coolant would be water. The size of the helium-to-water heat exchanger and the water-to-water heat exchanger will be on the order of 0.9 metre (3 feet) in diameter and 3 metres (10 feet) in length. Analysis indicates that the entire cooling system will easily fit into the existing Sandia Engineering Reactor Facility (SERF) building. The alloy Incoloy 800H appears to be the best candidate for the tube material in the helium-to-water heat exchanger. Type 316 stainless steel has been recommended for the shell of this heat exchanger. Estimates place the cost of the helium-to-water heat exchanger at approximately $100,000, the water-to-water heat exchanger at approximately $25,000, and the helium pump at approximately $450,000. The overall cost of the cooling system will approach $2 million

  13. CFD Analysis of the Primary Cooling System for the Small Modular Natural Circulation Lead Cooled Fast Reactor SNRLFR-100

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhao

    2016-01-01

    Full Text Available Small modular reactor (SMR has drawn wide attention in the past decades, and Lead cooled fast reactor (LFR is one of the most promising advanced reactors which are able to meet the safety economic goals of Gen-IV nuclear energy systems. A small modular natural circulation lead cooled fast reactor-100 MWth (SNRLFR-100 is being developed by University of Science and Technology of China (USTC. In the present work, a 3D CFD model, primary heat exchanger model, fuel pin model, and point kinetic model were established based on some reasonable simplifications and assumptions, the steady-state natural circulation characteristics of SNCLFR-100 primary cooling system were discussed and illustrated, and some reasonable suggestions were proposed for the reactor’s thermal-hydraulic and structural design. Moreover, in order to have a first evaluation of the system behavior in accident conditions, an unprotected loss of heat sink (ULOHS transient simulation at beginning of the reactor cycle (BOC has been analyzed and discussed based on the steady-state simulation results. The key temperatures of the reactor core are all under the safety limits at transient state; the reactor has excellent thermal-hydraulic performance.

  14. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  15. Thermal hydraulics of sodium-cooled fast reactors - key issues and highlights

    International Nuclear Information System (INIS)

    Ninokata, H.; Kamide, H.

    2011-01-01

    In this paper key issues and highlighted topics in thermal hydraulics are discussed in connection to the current Japan's sodium-cooled fast reactor development efforts. In particular, design study and related researches of the Japan Sodium-cooled Fast Reactor (JSFR) are focused. Several innovative technologies, e.g., compact reactor vessel, two-loop system, fully natural circulation decay heat removal, and recriticality free core, have been investigated in order to reduce construction cost and to achieve higher level of reactor safety. Preliminary evaluations of innovative technologies to be applied to JSFR are on-going. Here, progress of design study is introduced. Then, research and development activities on the thermal hydraulics related to the innovative technologies are briefly reviewed. (author)

  16. Development of the IAEA’s Knowledge Preservation Portals for Fast Reactors and Gas-Cooled Reactors Knowledge Preservation

    International Nuclear Information System (INIS)

    Batra, C.; Menahem, D. Beraha; Kriventsev, V.; Monti, S.; Reitsma, F.; Grosbois, J. de; Khoroshev, M.; Gladyshev, M.

    2016-01-01

    Full text: The IAEA has been carrying out a dedicated initiative on fast reactor knowledge preservation since 2003. The main objectives of the Fast Reactor Knowledge Portal (FRKP) initiative are to, a) halt the on-going loss of information related to fast reactors (FR), and b) collect, retrieve, preserve and make accessible existing data and information on FR. This portal will help in knowledge sharing, development, search and discovery, collaboration and communication of fast reactor related information. On similar lines a Gas Cooled Fast Reactor Knowledge Preservation portal project also started in 2013. Knowledge portals are capable to control and manage both publicly available as well as controlled information. The portals will not only incorporate existing set of knowledge and information, but will also provide a systemic platform for further preservation of new developments. It will include fast reactor and gas cooled reactor document repositories, project workspaces for the IAEA’s Coordinated Research Projects (CRPs), Technical Meetings (TMs), forums for discussion, etc. The portal will also integrate a taxonomy based search tool, which will help using new semantic search capabilities for improved conceptual retrieve of documents. The taxonomy complies with international web standards as defined by the W3C (World Wide Web Consortium). (author

  17. Materials Options of Steam Generator for Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Fu Xiaogang; Long Bin; Han Liqing; Qin Bo; Zhang Jinquan; Wang Shuxing

    2013-01-01

    Overview of the material options of steam generator for sodium-cooled fast reactors, the method to calculate the service life, the thinning of wall thickness and the sodium corrosion rate, the degradation of mechanical properties (thermal aging and decarburization) and the calculation results of theoretical models

  18. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies

  19. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure

  20. Fuel cycles and advanced core designs for the Gas-Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Simon, R.H.; Hamilton, C.J.; Hunter, R.S.

    1982-01-01

    Studies indicate that a 1200 MW(e) Gas-Cooled Fast Breeder Reactor could achieve compound system doubling times of under ten years when using advanced oxide or carbide fuels. In addition, when thorium is used in the breeding blankets, enough U-233 can be generated in each GCFR to supply several advanced converter reactors with fissionable material and this symbiotic relationship could provide energy for the world for centuries. (author)

  1. Application of a bistable convection loop to LMFBR [liquid metal fast breeder reactor] emergency core cooling

    International Nuclear Information System (INIS)

    Anand, G.; Christensen, R.N.

    1990-01-01

    The concept of passive safety features for nuclear reactors has been developed in recent years and has gained wide acceptance. A literature survey of current reactors with passive features indicates that these reactors have some passive features but still do not fully meet the design objectives. Consider a current liquid-metal reactor design like PRISM. During normal operation, liquid sodium enters the reactor at ∼395 degree C and exits at ∼550 degree C. In the event of loss of secondary cooling with or without scram, the primary coolant (liquid sodium) initially acts as a heat sink and its temperature increases. For events without scram, the negative reactivity induced by the increase in temperature shuts the reactor down. When the average temperature of the sodium reaches ∼600 to 650 degree C, it overflows from the reactor vessel, activating the auxiliary cooling system. The auxiliary cooling system uses natural circulation of air around the reactor guard vessel. An alternative to the current design incorporates a bistable convection loop (BCL). The incorporation of the BCL concept remarkably improves the safety of the nuclear reactors. Application of the BCL concept to liquid-metal fast breeder reactors is described in this paper

  2. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  3. Study on enhancement of heat transfer of reactor vessel auxiliary cooling system of fast breeder reactor

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi; Ueda, Nobuyuki; Furuya, Masahiro

    1996-01-01

    A reactor vessel auxiliary cooling system (RVACS), which is one of the decay heat removal systems of the fast breeder reactor (FBR), has passive safety as well as high reliability. However, the heat removal capability is relatively small, because its heat exchange is dependent on the natural convection of the air. The objectives of this report are to propose a heat transfer medium to enhance the heat transfer and to confirm the heat transfer performance of this system by experimental and analytical studies. From these studies, the following main results were obtained. (1) A porous plate with 5 mm thickness, 5 mm pore diameter, 92% porosity, was found to have the highest enhancement of heat transfer. (2) The heat transfer enhancement was demonstrated by large scale heat transfer experiments. Also, the heat transfer correlations, which can be used in the plant transient analyses, were derived from the experimental results. (3) Analysing the transient conditions of conventional pool-type FBR by means of the system analysis code, the applicable range of this system was assumed from the capability of the RVACS with porous plates. As a result, this type of RVACS was found to be applicable to conventional pool-type FBRs with capacity of about 500 MWe or less. (author)

  4. Current liquid metal cooled fast reactor concepts: use of the dry reprocess fuel

    International Nuclear Information System (INIS)

    Park, Jee Won; Jeong, C. J.; Yang, M. S.

    2003-03-01

    Recent Liquid metal cooled Fast Reactor (LFR) concepts are reviewed for investigating the potential usability of the Dry Reprocess Fuel (DRF). The LFRs have been categorized into two different types: the sodium cooled and the lead cooled systems. In each category, overall design and engineering concepts are collected which includes those of S-PRISM, AFR300, STAR, ENHS and more. Specially, the nuclear fuel types which can be used in these LFRs, have been summarized and their thermal, physical and neutronic characteristics are tabulated. This study does not suggest the best-matching LFR for the DRF, but shows good possibility that the DRF fuel can be used in future LFRs

  5. Current liquid metal cooled fast reactor concepts: use of the dry reprocess fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Won; Jeong, C. J.; Yang, M. S

    2003-03-01

    Recent Liquid metal cooled Fast Reactor (LFR) concepts are reviewed for investigating the potential usability of the Dry Reprocess Fuel (DRF). The LFRs have been categorized into two different types: the sodium cooled and the lead cooled systems. In each category, overall design and engineering concepts are collected which includes those of S-PRISM, AFR300, STAR, ENHS and more. Specially, the nuclear fuel types which can be used in these LFRs, have been summarized and their thermal, physical and neutronic characteristics are tabulated. This study does not suggest the best-matching LFR for the DRF, but shows good possibility that the DRF fuel can be used in future LFRs.

  6. A preliminary safety analysis for the prototype Gen IV Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Lim; Ha, Kwi Seok; Jeong, Jae Ho; Choi, Chi Woong; Jeong, Tae Kyeong; Ahn, Sang June; Lee, Seung Won; Chang, Won Pyo; Kang, Seok Hun; Yoo, Jae Woon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the in-vessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents.

  7. Application of objective provision tree to development of standard review plan for sodium-cooled fast reactor nuclear design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Moo-Hoon; Suh, Namduk; Choi, Yongwon; Shin, Andong [Korea Institute of Nuclear Safety, Daejon (Korea, Republic of)

    2016-06-15

    A systematic methodology was developed for the standard review plan for sodium-cooled fast reactor nuclear design. The process is first to develop an objective provision tree of sodium-cooled fast reactor for the reactivity control safety function. The provision tree is generally developed by designer to confirm whether the design satisfies the defense-in-depth concept. Then applicability of the current standard review plan of nuclear design for light water reactor to sodium-cooled fast reactor was evaluated and complemented by the developed objective provision tree.

  8. Application of hafnium hydride control rod to large sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Moriwaki, Hiroyuki, E-mail: hiroyuki_moriwaki@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Ohkubo, Yoshiyuki, E-mail: yoshiyuki_okubo@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Iwasaki, Tomohiko, E-mail: tomohiko.iwasaki@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi-ken 980-8579 (Japan); Konashi, Kenji, E-mail: konashi@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Narita-cho, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki-ken 311-1313 (Japan)

    2014-10-15

    Highlights: • Application of hafnium hydride control rod to large sodium cooled fast breeder reactor. • This paper treats application of an innovative hafnium hydride control rod to a large sodium cooled fast breeder reactor. • Hydrogen absorption triples the reactivity worth by neutron spectrum shift at H/Hf ratio of 1.3. • Lifetime of the control rod quadruples because produced daughters of hafnium isotopes are absorbers. • Nuclear and thermal hydraulic characteristics of the reactor are as good as or better than B-10 enriched boron carbide. - Abstract: This study treats the feasibility of long-lived hafnium hydride control rod in a large sodium-cooled fast breeder reactor by nuclear and thermal analyses. According to the nuclear calculations, it is found that hydrogen absorption of hafnium triples the reactivity by the neutron spectrum shift at the H/Hf ratio of 1.3, and a hafnium transmutation mechanism that produced daughters are absorbers quadruples the lifetime due to a low incineration rate of absorbing nuclides under irradiation. That is to say, the control rod can function well for a long time because an irradiation of 2400 EFPD reduces the reactivity by only 4%. The calculation also reveals that the hafnium hydride control rod can apply to the reactor in that nuclear and thermal characteristics become as good as or better than 80% B-10 enriched boron carbide. For example, the maximum linear heat rate becomes 3% lower. Owing to the better power distribution, the required flow rate decreases approximately by 1%. Consequently, it is concluded on desk analyses that the long lived hafnium hydride control rod is feasible in the large sodium-cooled fast breeder reactor.

  9. The development of the gas cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Kernforschungszentrum Karlsruhe

    1975-01-01

    A survey of the present technological state is given on the basis of the developments made so far. Some milestones of development - e.g. the German gas breeder memorandum, the Gas Breeder Reactor Association the results of the BR-2 radiation experiments and of GfK-KWU design and safety studies - are described. The problems connected with a large store of plutonium are also discussed. (UA/AK) [de

  10. Lead-cooled fast-neutron reactor (BREST) (Approaches to the closed NFC) - 5435

    International Nuclear Information System (INIS)

    Dragunov, Y.G.; Lemekhov, V.V.; Moiseyev, A.V.; Smirnov, V.S.; Tocheny, L.V.; Umanskiy, A.A.

    2015-01-01

    The BREST-OD-300 reactor is under development in Russia. It is an intrinsically safe pilot demonstration lead-cooled fast reactor with uranium-plutonium nitride fuel. This reactor is based on a new concept of inherent safety whose basic principles are: -) the exclusion of severe accidents at the plant (reactivity type, loss of cooling, fires, explosions) that require the resettlement of the population; -) the closing of the nuclear fuel cycle through the burning of minor actinides; -) the environmental acceptability through the maximal reduction of the amount of high-level long-lived radioactive waste nuclides - nuclear fuel cycle products, sent for the final disposal; -) the technological strengthening of non-proliferation. Closed fuel cycle with reactors of BREST type burning minor actinides gives the opportunity to achieve the radiation equivalence between radioactive wastes and natural uranium during a time period about 300 years

  11. Systems design of direct-cycle supercritical-water-cooled fast reactors

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi; Jevremovic, Tatjana; Okano, Yashushi

    1995-01-01

    The system design of a direct-cycle supercritical-water-cooled fast reactor is presented. The supercritical water does not exhibit a change of phase. the recirculation system, steam separator, and dryer of a boiling water reactor (BWR) are unnecessary. Roughly speaking, the reactor pressure vessel and control rods are similar to those of a pressurized water reactor, the containment and emergency core cooling system are similar to a BWR, and the balance of plant is similar to a supercritical-pressure fossil-fired power plant (FPP). the electric power of the fast converter is 1,508 MW(electric). The number of coolant loops is only two because of the high coolant enthalpy. Containment volume is much reduced. The thermal efficiency is improved 24% over a BWR. The coolant void reactivity is negative by placing thin zirconium-hydride layers between seeds and blankets. The power costs would be much reduced compared with those of a light water reactor (LWR) and a liquid-metal fast breeder reactor. The concept is based on the huge amount of experience with the water coolant technology of LWRs and FPPs. The oxidation of stainless steel cladding is avoided by adopting a much lower coolant temperature than that of the FPP

  12. Liquid metal cooled fast breeder nuclear reactor constructions

    International Nuclear Information System (INIS)

    Chesworth, G.; Hind, J.R.; Hodgson, D.; Seed, G.

    1981-01-01

    In a nuclear reactor of the pool kind the primary vessel and fuel assembly are carried from the roof of the containment vault by tie straps. The primary vessel incorporates an annular yoke of 'k' cross-section the tie straps being attached to the upwardly directed vertical leg and the downwardly directed inclined leg. The upper and lower strakes of the primary vessel are extensions of the remaining legs. Load supporting welds therefore are of intermittent nature thereby limiting the effects of weld crack propagation

  13. Neutronic and thermal hydraulic assessment of fast reactor cooling by water of super critical parameters

    International Nuclear Information System (INIS)

    Baranaev, Yu. D.; Glebov, A. P.; Ukraintsev, V. F.; Kolesov, V. V.

    2007-01-01

    Necessity of essential improvement of competitiveness for reactors on light water determines development of new generation power reactors on water of super critical parameters. The main objective of these projects is reaching of high efficiency coefficients while decreasing of investment to NPP and simplification of thermal scheme and high safety level. International programme of IV generation in which super critical reactors present is already started. In the frame of this concept specific Super Critical Fast Reactor with tight lattice of pitch is developing by collaboration of the FEI and IATE. In present article neutronic and thermal hydraulic assessment of fast reactor with plutonium MOX fuel and a core with a double-path of super critical water cooling is presented (SCFR-2X). The scheme of double path of coolant via the core in which the core is divided by radius on central and periphery parts with approximately equal number of fuel assemblies is suggested. Periferia part is cooling while down coming coolant movement. At the down part of core into the mix chamber flows from the periphery assemblies joining and come to the inlet of the central part which is cooling by upcoming flow. Eight zone of different content of MOX fuel are used (4 in down coming and 4 in upcoming) sub zones. Calculation of fuel burn-up and approximate scheme of refueling is evaluated. Calculation results are presented and discussed

  14. Vented fuel experiment for gas-cooled fast reactor application

    International Nuclear Information System (INIS)

    Longest, A.W.; Gat, U.; Conlin, J.A.; Campana, R.J.

    1975-01-01

    A pressure-equalized and vented fuel rod is being irradiated in an instrumented capsule designated GB-10 to approximately 100 MWd/kg-heavy metal. The fuel is a sol-gel derived 88 atom-percent uranium (approximately 9 percent 235 U) 12 atom-percent plutonium oxide, and the cladding is 20 percent cold-worked 316 stainless steel. The capsule is being irradiated in the Oak Ridge Research Reactor (ORR) and has exceeded a burnup of 70 MWd/kg. The fuel has been operated at linear power rates of 39 and 44 kW/ m, and peak outer cladding temperature of 565 0 and 630 0 C respectively. A similar fuel rod in a previous capsule (GB-9) was subjected to 48 kW/m (685 0 C). 4 references. (auth)

  15. Plant Control Concept for the Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Kim, S. O.

    2010-12-01

    A power plant is designed for incorporation into a utility's grid system and follows the load demand through the steam generator, intermediate heat exchanger(IHX), from the nuclear core. During the load-following transients, various plant parameters must be controlled to protect the reactor core and other components in the plant. The purpose of this report is to review design considerations to establish SFR plant control and to design plant control concepts. The governing equations and solution procedure of the computer code to calculate plant temperature conditions during the part-load operation was reviewed and 4 types of plant operation concepts were designed, and the results of the calculations were compared

  16. Comparison of In-Vessel Shielding Design Concepts between Sodium-cooled Fast Burner Reactor and the Sodium-cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Yun, Sunghwan; Kim, Sang Ji

    2015-01-01

    In this study, quantities of in-vessel shields were derived and compared each other based on the replaceable shield assembly concept for both of the breeder and burner SFRs. Korean Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) like SFR was used as the reference reactor and calculation method reported in the reference was used for shielding analysis. In this paper, characteristics of in-vessel shielding design were studied for the burner SFR and breeder SFR based on the replaceable shield assembly concept. An in-vessel shield to prevent secondary sodium activation (SSA) in the intermediate heat exchangers (IHXs) is one of the most important structures for the pool type Sodium-cooled Fast Reactor (SFR). In our previous work, two in-vessel shielding design concepts were compared each other for the burner SFR. However, a number of SFRs have been designed and operated with the breeder concept, in which axial and radial blankets were loaded for fuel breeding, during the past several decades. Since axial and radial blanket plays a role of neutron shield, comparison of required in-vessel shield amount between the breeder and burner SFRs may be an interesting work for SFR designer. Due to the blanket, the breeder SFR showed better performance in axial neutron shielding. Hence, 10.1 m diameter reactor vessel satisfied the design limit of SSA at the IHXs. In case of the burner SFR, due to more significant axial fast neutron leakage, 10.6 m diameter reactor vessel was required to satisfy the design limit of SSA at the IHXs. Although more efficient axial shied such as a mixture of ZrH 2 and B 4 C can improve shielding performance of the burner SFR, additional fabrication difficulty may mitigate the advantage of improved shielding performance. Therefore, it can be concluded that the breeder SFR has better characteristic in invessel shielding design to prevent SSA at the IHXs than the burner SFR in the pool-type reactor

  17. Gas cooled fast reactor 2400 MWTh, status on the conceptual design studies and preliminary safety analysis

    International Nuclear Information System (INIS)

    Malo, J.Y.; Alpy, N.; Bentivoglio, F.

    2009-01-01

    The Gas cooled Fast Reactor (GFR) is considered by the French Commissariat a l'Energie Atomique as a promising concept, combining the benefits of fast spectrum and high temperature, using Helium as coolant. A status on the GFR preliminary viability was made at the end of 2007, ending the pre-conceptual design phase. A consistent overall systems arrangement was proposed and a preliminary safety analysis based on operating transient calculations and a simplified PSA had established a global confidence in the feasibility and safety of this baseline concept. Its potential for attractive performances had been pointed out. Compare to the more mature Sodium Fast Reactor technology, no demonstrator has ever been built and the feasibility demonstration will required a longer lead time. The next main project milestone is related to the GFR viability, scheduled in 2012. The current studies consist in revisiting the reactor reference design options as selected at the end of 2007. Most of them are being consolidated by going more in depth in the analysis. Some possible alternatives are assessed. The paper will give a status on the last studies performed on the core design and corresponding neutronics and cycle performance, the Decay Heat Removal strategy and preliminary safety analysis, systems design and balance of plant... This paper is complementary to the Icapp'09 papers 9062 dealing with the Gas cooled Fast Reactor Demonstrator ALLEGRO and 9378 related to GFR transients analysis. (author)

  18. Present status and future perspective of R and D on lead heavy metal-cooled fast reactors

    International Nuclear Information System (INIS)

    Takahashi, Minoru

    2007-01-01

    Since a lead heavy metal (lead-bismuth eutectic) is chemically inert and has higher boiling point compared to a sodium, a lead heavy metal-cooled fast reactor can be inherently safe and has good nuclear characteristics and is so suitable to a medium-small size of the reactor. R and D on corrosion of a lead heavy metal has been carried out in the world and this issue might be solved to choose specific corrosion resistant alloys for structural materials and fuel cans of a lead heavy metal-cooled reactor. This article reviews present status and future perspective on lead heavy metal-cooled fast reactors. (T. Tanaka)

  19. Measurements of thermal-hydraulic parameters in liquid-metal-cooled fast-breeder reactors

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1983-01-01

    This paper discusses instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, sodium purity, and leakage. The paper identifies the overall instrumentation requirements for LMFBR's and those aspects of instrumentation which are unique or of special concern to LMFBR systems. It also gives an overview of the status of instrument design and performance

  20. Vented fuel experiment for gas-cooled fast reactor application

    International Nuclear Information System (INIS)

    Longest, A.W.; Gat, U.; Conlin, J.A.; Campana, R.J.

    1976-01-01

    A pressure-equalized and vented fuel rod is being irradiated in an instrumented capsule designated GB-10 to approximately 100MWd/kg-heavy metal. The fuel is a sol-gel-derived 88 at.% uranium (approximately 9% 235 U) and 12 at.% plutonium oxide, and the cladding is 20% cold-worked 316 stainless steel. The capsule is being irradiated in the Oak Ridge Research Reactor (ORR) and has exceeded a burnup of 70MWd/kg. The fuel has been operated at linear power rates of 39 and 44kW/m, and peak outer cladding temperature of 565 and 630 0 C respectively. A similar fuel rod in a previous capsule (GB-9) was subjected to 48kW/m (685 0 C). Helium gas sweeps through any portion of the three regions of the fuel rod, namely: fuel, blanket, and charcoal trap. The charcoal trap is operated at about 300 0 C. An on-line Ge(Li) detector is used to analyse release rates of several gamma-emitting noble gas isotopes. Analyses are performed primarily on sweep gas flowing through the entire fuel rod, and for sweeps over the top of the charcoal trap. Sweep gas samples are analyzed for stable noble gas isotopes. Results in the form of ratios of release rate over birth rate (R/B) and venting rate over birth rate (V/B) are derived. R/B rates range from 10 -4 % to 30% while V/B ranges from 10 -6 % to 30%. Flow conductance in the capsule was monitored by recording the flow rate and pressure drop across the fuel rod and inlet sweep line. The flow conductance has been falling with increasing burnup, currently restricting the flow to about 20ml (s.t.p.)/min at a pressure difference of about 1.5MPa. Venting rates of the gaseous fission products as a function of gas pressure in the range 6.9 to 1.4MPa have also been measured. Planned future experiments include the monitoring of tritium release, venting and cladding permeation rates, and its molecular form. First measurements have been made. A simulated leak experiment will determine the mixture of fission gases as a function of flow rate and the most

  1. Investigation/evaluation of water cooled fast reactor in the feasibility study on commercialized fast reactor cycle systems. Intermediate evaluation of phase-II study

    International Nuclear Information System (INIS)

    Kotake, Syoji; Nishikawa, Akira

    2005-01-01

    Feasibility study on commercialized fast reactor cycle systems aims at investigation and evaluation of FBR design requirement's attainability, operation and maintenance, and technical feasibility of the candidate system. Development targets are 1) ensuring safety, 2) economic competitiveness, 3) efficient utilization of resources, 4) reduction of environmental load and 5) enhancement of nuclear non-proliferation. Based on the selection of the promising concepts in the first phase, conceptual design for the plant system has proceeded with the following plant system: a) sodium cooled reactors at large size and medium size module reactors, b) a lead-bismuth cooled medium size reactor, c) a helium gas cooled large size reactor and d) a BWR type large size FBR. Technical development and feasibility has been assessed and the study considers the need of respective key technology development for the confirmation of the feasibility study. (T. Tanaka)

  2. Safety of the liquid-metal cooled fast breeder reactor and aspects of its fuel cycle

    International Nuclear Information System (INIS)

    Kessler, G.; Papp, R.; Huebel, D.

    1977-01-01

    Design and construction of the sodium-cooled fast reactors KNK-II (20MW(e)) and SNR-300 (300MW(e)) determine the status of safety engineering and safety R and D of LMFBRs in the Federal Republic of Germany. Both prototype fast power reactors have to go through a civil licensing process similar to that applied to present LWRs. A multilevel safety - or defence in depth - approach is applied to the design and construction of fast power reactors. All design data of the fast reactor plant are confirmed by extensive experimental programmes. Design limits of the plant are thoroughly discussed during the licensing process. Important safety R and D programmes have been and are still being performed. A very conservative safety analysis for hypothetical core and other plant accidents is used for present prototype fast reactors. The paper reviews the future trend of development of theoretical methods for accident analysis and the application of experimental results, especially in view of large commercial-type LMFBRs. The safety approach applied to the LMFBR plant is safe operation under normal operating conditions and safe shutdown under off-normal conditions. The consequences of releases of radioactivity to the environment meet the given standards. No chemical reprocessing plant for fast breeder fuel is in operation in the FRG at present; however, R and D work on investigation of all aspects and problem areas of the fast breeder fuel cycle are under way. Systems studies on safety aspects of the fast breeder fuel cycle (transport, reprocessing, fuel fabrication) and its impact on the environment have been performed and the main consequences of these studies are presented in the paper. (author)

  3. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  4. Tentative design-philosophy for bellows in sodium cooled fast breeder reactors pipings

    Energy Technology Data Exchange (ETDEWEB)

    Scaller, K; Vrillon, B

    1980-02-01

    Expansion joints have proved to be reliable components, when properly designed and realized, in normal industrial equipment. But nevertheless bellows have not been employed widely in nuclear reactors and almost not in sodium cooled fast breeder reactors, where use of expansion-joints could considerably shorten the length of pipelines and, in consequence, lower the cost of the power plant. In the framework of its research and development program on fast reactors the French Atomic Energy.Commission, in cooperation with the industry, develops guidelines, backed up by experiments, to allow a safe design of pipe-lines and compensating-devices. The main points of these guidelines are discussed in this paper with the understanding, that they are tentative rules subject to changes. The guidelines are a complement to existing rules, like ASME - Code III, Code Case 1481, standards of the EJMA Preliminary Draft for Code Case Class I, Expansion Joints in Piping systems and suppliers' rules for the special case of application to sodium cooled fast breeder reactors. Relatively small diameters and easily accessible expansion joints, on control rods and valves for example, are not concerned. These guidelines do not apply to the bellows which are used as an integral part of a component.

  5. 4. generation sodium-cooled fast reactors. The ASTRID technological demonstrator

    International Nuclear Information System (INIS)

    2012-12-01

    The sodium-cooled fast reactor (SFR) concept is one of the four fast neutron concepts selected by the Generation IV International Forum (GIF). SFRs have favourable technical characteristics and they are the sole type of reactor for which significant industrial experience feedback is available. After a discussion of the past experience gained on fast breeder reactors in the world (benefits, difficulties and problematics), the authors discuss the main improvement domains and the associated R and D advances (reactor safety, prevention and mitigation of severe accidents, the sodium-water risk, detection of sodium leaks, increased availability, instrumentation and inspection, control and repairability, assembly handling and washing). Then, they describe the technical requirements and safety objectives of the ASTRID experimental project, notably with its reactivity management, cooling management, and radiological containment management functions. They describe and discuss requirements to be met and choices made for Astrid, and the design options for its various components (core and fuels, nuclear heater, energy conversion system, fuel assembly handling, instrumentation and in-service inspection, control and command). They present the installations which are associated with the ASTRID cycle, evoke the development and use of simulations and codes, describe the industrial organization and the international collaboration about the ASTRID project, present the planning and cost definition

  6. Tentative design-philosophy for bellows in sodium cooled fast breeder reactors pipings

    International Nuclear Information System (INIS)

    Scaller, K.; Vrillon, B.

    1980-01-01

    Expansion joints have proved to be reliable components, when properly designed and realized, in normal industrial equipment. But nevertheless bellows have not been employed widely in nuclear reactors and almost not in sodium cooled fast breeder reactors, where use of expansion-joints could considerably shorten the length of pipelines and, in consequence, lower the cost of the power plant. In the framework of its research and development program on fast reactors the French Atomic Energy.Commission, in cooperation with the industry, develops guidelines, backed up by experiments, to allow a safe design of pipe-lines and compensating-devices. The main points of these guidelines are discussed in this paper with the understanding, that they are tentative rules subject to changes. The guidelines are a complement to existing rules, like ASME - Code III, Code Case 1481, standards of the EJMA Preliminary Draft for Code Case Class I, Expansion Joints in Piping systems and suppliers' rules for the special case of application to sodium cooled fast breeder reactors. Relatively small diameters and easily accessible expansion joints, on control rods and valves for example, are not concerned. These guidelines do not apply to the bellows which are used as an integral part of a component

  7. The effect of steam cycle conditions upon the economics and design of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Philpott, E.F.; Pounder, F.; Willby, C.R.

    1978-01-01

    The paper studies the effect of variation of steam and feedwater conditions upon the economics, design and layout of a sodium-cooled fast reactor. The parameters investigated are steam temperature and pressure, feedwater temperature, and boiler recirculation ratio. The paper also includes an assessment of the effects of associating the fast reactor with saturated steam cycle conditions. (author)

  8. Basic concept of fuel safety design and assessment for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Baba, Toshikazu; Kamimura, Katsuichiro

    2013-03-01

    'Philosophy in Safety Evaluation of Fast Breeder Reactors' was published as a guideline for safety design and safety evaluation of Sodium-Cooled Fast Reactor in Japan. This guideline points out that cladding creep and swelling due to internal pressure should be taken into account since the fuel is used under high temperature and high burnup, and that fuel assembly deformation and the prevention from coolant channel blockage should be taken into account in viewpoints of nuclear and thermal hydraulic design. However, the requirements including their criteria and evaluation items are not described. Two other domestic guidelines related to core design are applied for fuel design of fast reactor, but the description is considered to not be enough to practically use. In addition, technical standard for nuclear fuel used in power reactors is also applied for fuel inspection. Therefore, the technical standard and guideline for fuel design and safety evaluation are considered to be very important issue for nuclear safety regulation. This document has been developed according to the following steps: The guidelines and the technical standards, which are prepared in foreign countries and international organization, were reviewed. The technical background concerning fuel design and safety evaluation for fast reactor was collected and summarized in the world wide scale. The basic concept of fuel safety design and assessment for sodium-cooled fast reactor was developed by considering a wide range of views of the specialists in Japan. In order to discuss the content with foreign specialists IAEA Consultancy Meetings have been held on January, 2011 and January, 2012. The participants of the meeting came from USA, UK, EC, India, China and South Korea. The specialists of IAEA and JNES were also joined. Although this document is prepared for application to 'Monju'(prototype LMFR), it may be applied to experimental, demonstration and commercial types of LMFR after revising it by taking

  9. Adaptation and implementation of the TRACE code for transient analysis in designs lead cooled fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2015-01-01

    Lead-Cooled Fast Reactor (LFR) has been identified as one of promising future reactor concepts in the technology road map of the Generation IVC International Forum (GIF)as well as in the Deployment Strategy of the European Sustainable Nuclear Industrial Initiative (ESNII), both aiming at improved sustainability, enhanced safety, economic competitiveness, and proliferation resistance. This new nuclear reactor concept requires the development of computational tools to be applied in design and safety assessments to confirm improved inherent and passive safety features of this design. One approach to this issue is to modify the current computational codes developed for the simulation of Light Water Reactors towards their applicability for the new designs. This paper reports on the performed modifications of the TRACE system code to make it applicable to LFR safety assessments. The capabilities of the modified code are demonstrated on series of benchmark exercises performed versus other safety analysis codes. (Author)

  10. Conceptual design of module fast reactor of ultimate safety cooled by lead-bismuth alloy

    International Nuclear Information System (INIS)

    Myasnikov, V.O.; Stekolnikov, V.V.; Stepanov, V.S.; Gorshkov, V.T.; Kulikov, M.L.; Shulyndin, V.A.; Gromov, B.F.; Kalashnikov, A.G.; Pashkin, Yu.G.

    1993-01-01

    During past time all basic problems arisen during working-out of NPP with lead-bismuth coolant were solved: physics and thermal physics of the cores, heat transfer and hydrodynamics, corrosion resistance of the structural materials and coolant technology, radiation and nuclear safety, investigations of emergency situations, development of fuel elements and absorbing elements of the reactor, equipment of the primary circuit and other circuits. A powerful experimental base equpped by unique rigs is made. A series of ship and test NPP has been constructed whereat repair of the plants and reactor refuelling are developed. Highly-skilled groups of investigators, designers and operation personnel capable of performing the development of the reactor plant with MFR within short terms have been formed. In this case MFR with lead-bismuth coolant may become the initial step in development of large-scale nuclear power engineering with fast reactors cooled by liquid lead

  11. FAST and SAFE Passive Safety Devices for Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chihyung; Kim, In-Hyung; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The major factor is the impact of the neutron spectral hardening. The second factor that affects the CVR is reduced capture by the coolant when the coolant voiding occurs. To improve the CVR, many ideas and concepts have been proposed, which include introduction of an internal blanket, spectrum softening, or increasing the neutron leakage. These ideas may reduce the CVR, but they deteriorate the neutron economy. Another potential solution is to adopt a passive safety injection device such as the ARC (autonomous reactivity control) system, which is still under development. In this paper, two new concepts of passive safety devices are proposed. The devices are called FAST (Floating Absorber for Safety at Transient) and SAFE (Static Absorber Feedback Equipment). Their purpose is to enhance the negative reactivity feedback originating from the coolant in fast reactors. SAFE is derived to balance the positive reactivity feedback due to sodium coolant temperature increases. It has been demonstrated that SAFE allows a low-leakage SFR to achieve a self-shutdown and self-controllability even though the generic coolant temperature coefficient is quite positive and the coolant void reactivity can be largely managed by the new FAST device. It is concluded that both FAST and SAFE devices will improve substantially the fast reactor safety and they deserve more detailed investigations.

  12. Progress Report on Sodium Cooled Fast Breeder Reactor Development in Japan, April 1975

    International Nuclear Information System (INIS)

    Tomabechi, K.

    1975-01-01

    The progress of the sodium cooled fast Breeder Reactor development in Japan in the past 12 months can be summarized as follows. Installation of all the components of the Experimental Fast Reactor, ''JOYO'', was completed in the end of the last year and various commissioning tests of the reactor began in January 1975. It is planned to charge sodium into the reactor in coming fall and the first criticality experiment is currently planned in the summer 1976. Most of the research and development works for ''JOYO'' are nearing completion. These include an endurance test of 3 prototype primary sodium pump for 12,000 hours. 86 core fuel subassemblies and 220 blanket subassemblies, a sufficient number for composing the initial core, have already been fabricated. Concerning the Prototype Fast Breeder Reactor, ''MONJU'', design activity as well as relevant research and development works are continued. A siting problem exists and it is hoped to be resolved soon. Of the research and development works, a significant achievement in the past 12 months can be a successful operation at full power of the 50 MW Steam Generator Test Facility. This facility was put into operation at full power in June 1974. No leak of water into sodium has been experienced with operation of the steam generator tested. The steam generator is being dismantled for a detailed inspection originally planned

  13. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    Science.gov (United States)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  14. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Lap-Yan, C.; Wie, T. Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  15. Preliminary Design of Compressor Impeller for innovative Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jekyoung; Cho, Seongkuk; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    For nuclear power plant application, applying S-CO{sub 2} Brayton cycle to Sodium cooled Fast Reactors and Small Modular Reactors are currently considered and active research is being performed by various research institutions and universities. As a part of research activities on the SCO{sub 2} Brayton cycle development for a nuclear power system, KAIST joint research team is currently working on an innovative Sodium cooled Fast Reactor (iSFR) development which utilizes S-CO{sub 2} Brayton cycle as its power conversion system. Various research subjects including reactor physics, thermo-hydraulics, material, cycle analysis and system integration are being considered as research issues currently. However, technical issues rising from dramatic change of thermodynamic property of CO{sub 2} near the critical point still remain as problems to be solved. As a result, 3D impeller model generation based on 1D mean stream line analysis results was successfully performed for non-airfoil blades. Since 3D model generation module works successfully, KAIST{sub T}MD can support 3D CFD analysis for internal flow structure in the designed impeller. Compressor loss mechanisms are complex phenomena and these are difficulties to be modeled while considering each loss mechanism separately.

  16. Study of thermophysical and thermohydraulic properties of sodium for fast sodium cooled reactors

    International Nuclear Information System (INIS)

    Vega R, A. K.; Espinosa P, G.; Gomez T, A. M.

    2016-09-01

    The importance of liquid sodium lies in its use as a coolant for fast reactors, but why should liquid metal be used as a coolant instead of water? Water is difficult to use as a coolant for a fast nuclear reactor because its acts as a neutron moderator, that is, stop the fast neutrons and converts them to thermal neutrons. Nuclear reactors such as the Pressurized Water Reactor or the Boiling Water Reactor are thermal reactors, which mean they need thermal neutrons for their operation. However, is necessary for fast reactors to conserve as much fast neutrons, so that the liquid metal coolants that do have this capability are implemented. Sodium does not need to be pressurized, its low melting point and its high boiling point, higher than the operating temperature of the reactor, make it an adequate coolant, also has a high thermal conductivity, which is necessary to transfer thermal energy and its viscosity is close to that of the water, which indicates that is an easily transportable liquid and does not corrode the steel parts of the reactor. This paper presents a brief state of the art of the rapid nuclear reactors that operated and currently operate, as well as projects in the door in some countries; types of nuclear reactors which are cooled by liquid sodium and their operation; the mathematical models for obtaining the properties of liquid sodium in a range of 393 to 1673 Kelvin degrees and a pressure atmosphere. Finally a program is presented in FORTRAN named Thermo-Sodium for the calculation of the properties, which requires as input data the Kelvin temperature in which the liquid sodium is found and provides at the user the thermo-physical and thermo-hydraulic properties for that data temperature. Additional to this the user is asked the Reynolds number and the hydraulic diameter in case of knowing them, and in this way the program will provide the value of the convective coefficient and that of the dimensionless numbers: Nusselt, Prandtl and Peclet. (Author)

  17. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    International Nuclear Information System (INIS)

    Weaver, K.D.; Sterbentz, J.; Meyer, M.; Lowden, R.; Hoffman, E.; Wei, T.Y.C.

    2004-01-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO 2 ) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  18. Core design of a high breeding fast reactor cooled by supercritical pressure light water

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Takayuki, E-mail: russell@ruri.waseda.jp; Yamaji, Akifumi

    2016-01-15

    Highlights: • Core design concept of supercritical light water cooled fast breeding reactor is developed. • Compound system doubling time (CSDT) is applied for considering an appropriate target of breeding performance. • Breeding performance is improved by reducing fuel rod diameter of the seed assembly. • Core pressure loss is reduced by enlarging the coolant channel area of the seed assembly. - Abstract: A high breeding fast reactor core concept, cooled by supercritical pressure light water has been developed with fully-coupled neutronics and thermal-hydraulics core calculations, which takes into account the influence of core pressure loss to the core neutronics characteristics. Design target of the breeding performance has been determined to be compound system doubling time (CSDT) of less than 50 years, by referring to the relationship of energy consumption and economic growth rate of advanced countries such as the G7 member countries. Based on the past design study of supercritical water cooled fast breeder reactor (Super FBR) with the concept of tightly packed fuel assembly (TPFA), further improvement of breeding performance and reduction of core pressure loss are investigated by considering different fuel rod diameters and coolant channel geometries. The sensitivities of CSDT and the core pressure loss with respect to major core design parameters have been clarified. The developed Super FBR design concept achieves fissile plutonium surviving ratio (FPSR) of 1.028, compound system doubling time (CSDT) of 38 years and pressure loss of 1.02 MPa with positive density reactivity (negative void reactivity). The short CSDT indicates high breeding performance, which may enable installation of the reactors at a rate comparable to energy growth rate of developed countries such as G7 member countries.

  19. Study on the LLFPs transmutation in a super-critical water-cooled fast reactor

    International Nuclear Information System (INIS)

    Lu Haoliang; Ishiwatari, Yuki; Oka, Yoshiaki

    2011-01-01

    Research highlights: → Transmutation of LLFPs with a super-criticial water cooled fast reactor. → Transmutation of iodine and cesium without the isotopic separation. → The transmuted isotope was mixed with UO 2 to reduce the effect of self-shielding. → A weak neutron moderator Al 2 O 3 was used to suppress the creation of 135 Cs from 133 Cs. - Abstract: The performance of the super-critical water-cooled fast reactor (Super FR) for the transmutation treatment of long-lived fission products (LLFPs) was evaluated. Two regions with the soft neutron spectrum, which is of great benefit to the LLFPs transmutation, can be utilized in the Super FR. First region is in the blanket assembly due to the ZrH 1.7 layer which was utilized to slow down the fast neutrons to achieve a negative void reactivity. Second region is in the reflector region of core like other metal-cooled fast reactors. The LLFPs selected in the transmutation analysis include 99 Tc, 129 I and 135 Cs discharged from LWR or fast reactor. Their isotopes, such as 127 I, 133 Cs, 134 Cs and 137 Cs were also considered to avoid the separation. By loading the isotopes ( 99 Tc or 127 I and 129 I) in the blanket assembly and the reflector region simultaneously, the transmutation rates of 5.36%/GWe year and 2.79%/GWe year can be obtained for 99 Tc and 129 I, respectively. The transmuted amounts of 99 Tc and 129 I are equal to the yields from 11.8 and 6.2 1000 MWe-class PWRs. Because of the very low capture cross section of 135 Cs and the effect of other cesium isotopes, 135 Cs was loaded with three rings of assemblies in the reflector region to make the transmuted amount be larger than the yields of two 1000 MWe-class PWRs. Based on these results, 99 Tc and 129 I can be transmuted conveniently and higher transmutation performance can be obtained in the Super FR. However, the transmutation of 135 Cs is very difficult and the transmuted amount is less than that produced by the Super FR. It turns out that the

  20. Development of components for the gas-cooled fast breeder reactor program

    International Nuclear Information System (INIS)

    Dee, J.B.; Macken, T.

    1977-01-01

    The gas-cooled fast breeder reactor (GCFR) component development program is based on an extension of high temperature gas-cooled reactor (HTGR) component technology; therefore, the GCFR development program is addressed primarily to components which differ in design and requirements from HTGR components. The principal differences in primary system components are due to the increase in helium coolant pressure level, which benefits system size and efficiency in the GCFR, and differences in the reactor internals and fuel handling systems due to the use of the compact metal-clad core. The purpose of this paper is to present an overview of the principal component design differences between the GCFR and HTGR and the consequent influences of these differences on GCFR component development programs. Development program plans are discussed and include those for the prestressed concrete reactor vessel (PCRV), the main helium circulator and its supporting systems, the steam generators, the reactor thermal shielding, and the fuel handling system. Facility requirements to support these development programs are also discussed. Studies to date show that GCFR component development continues to appear to be incremental in nature, and the required tests are adaptations of related HTGR test programs. (Auth.)

  1. Linear programming optimization of nuclear energy strategy with sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Lee, Je Whan; Jeong, Yong Hoon; Chang, Yoon Il; Chang, Soon Heung

    2011-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters

  2. BRENDA: a dynamic simulator for a sodium-cooled fast reactor power plant

    International Nuclear Information System (INIS)

    Hetrick, D.L.; Sowers, G.W.

    1978-06-01

    This report is a users' manual for one version of BRENDA (Breeder Reactor Nuclear Dynamic Analysis), which is a digital program for simulating the dynamic behavior of a sodium-cooled fast reactor power plant. This version, which contains 57 differential equations, represents a simplified model of the Clinch River Breeder Reactor Project (CRBRP). BRENDA is an input deck for DARE P (Differential Analyzer Replacement, Portable), which is a continuous-system simulation language developed at the University of Arizona. This report contains brief descriptions of DARE P and BRENDA, instructions for using BRENDA in conjunction with DARE P, and some sample output. A list of variable names and a listing for BRENDA are included as appendices

  3. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    International Nuclear Information System (INIS)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor

  4. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  5. ETDR, The European Union's Experimental Gas-Cooled Fast Reactor Project

    International Nuclear Information System (INIS)

    Poette, Christian; Brun-Magaud, Valerie; Morin, Franck; Dor, Isabelle; Pignatel, Jean-Francois; Bertrand, Frederic; Stainsby, Richard; Pelloni, Sandro; Every, Denis; Da Cruz, Dirceu

    2008-01-01

    In the Gas-Cooled Fast Reactor (GFR) development plan, the Experimental Technology Demonstration Reactor (ETDR) is the first necessary step towards the electricity generating prototype GFR. It is a low power (∼50 MWth) Helium cooled fast reactor. The pre-conceptual design of the ETDR is shared between European partners through the GCFR Specifically Targeted Research Project (STREP) within the European Commission's 6. R and D Framework Program. After recalling the place of ETDR in the GFR development plan, the main reactor objectives, the role of the European partners in the different design and safety tasks, the paper will give an overview of the current design with recent progresses in various areas like: - Sub-assembly technology for the starting core (pin bundle with MOX fuel and stainless steel cladding). - The design of experimental advanced ceramic GFR fuel sub-assemblies included in several locations of the starting core. - Starting Core reactivity management studies model including experimental GFR sub-assemblies. - Neutron and radiation shielding calculations using a specific MCNP model. The model allows evaluation of the neutron doses for the vessel and internals and radiation doses for maintenance operations. - System design and safety considerations, with a reactor architecture largely influenced by the Decay Heat Removal strategy (DHR) for de-pressurized accidents. The design of the reactor raises a number of issues in terms of fuel, neutronics, thermal-hydraulics codes qualification as well as critical components (blowers, IHX, thermal barriers) qualification. An overview of the R and D development on codes and technology qualification program is presented. Finally, the status of international collaborations and their perspectives for the ETDR are mentioned. (authors)

  6. The lead cooled fast reactor benchmark Brest-300: analysis with sensitivity method

    International Nuclear Information System (INIS)

    Smirnov, V.; Orlov, V.; Mourogov, A.; Lecarpentier, D.; Ivanova, T.

    2005-01-01

    Lead cooled fast neutrons reactor is one of the most interesting candidates for the development of atomic energy. BREST-300 is a 300 MWe lead cooled fast reactor developed by the NIKIET (Russia) with a deterministic safety approach which aims to exclude reactivity margins greater than the delayed neutron fraction. The development of innovative reactors (lead coolant, nitride fuel...) and fuel cycles with new constraints such as cycle closure or actinide burning, requires new technologies and new nuclear data. In this connection, the tool and neutron data used for the calculational analysis of reactor characteristics requires thorough validation. NIKIET developed a reactor benchmark fitting of design type calculational tools (including neutron data). In the frame of technical exchanges between NIKIET and EDF (France), results of this benchmark calculation concerning the principal parameters of fuel evolution and safety parameters has been inter-compared, in order to estimate the uncertainties and validate the codes for calculations of this new kind of reactors. Different codes and cross-sections data have been used, and sensitivity studies have been performed to understand and quantify the uncertainties sources.The comparison of results shows that the difference on k eff value between ERANOS code with ERALIB1 library and the reference is of the same order of magnitude than the delayed neutron fraction. On the other hand, the discrepancy is more than twice bigger if JEF2.2 library is used with ERANOS. Analysis of discrepancies in calculation results reveals that the main effect is provided by the difference of nuclear data, namely U 238 , Pu 239 fission and capture cross sections and lead inelastic cross sections

  7. Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Rooijen, W.F.G. van

    2006-01-01

    The Gas Cooled Fast Reactor (GCFR)is one of the Generation IV reactor concepts. This concept specifically targets sustainability of nuclear power generation. In nuclear reactors fertile material is converted to fissile fuel. If the neutrons inducing fission are highly energetic, the opportunity exists to convert more than one fertile nucleus per fission, thereby effectively breeding new nuclear fuel. Reactors operating on this principle are called ‘Fast Breeder Reactor’. Since natural uranium contains 99.3%of the fertile isotope 238 U, breeding increases the energy harvested from the nuclear fuel. If nuclear energy is to play an important role as a source of energy in the future, fast breeder reactors are essential for breeding nuclear fuel. Fast neutrons are also more efficient to destruct heavy (Minor Actinide, MA) isotopes, such as Np, Am and Cm isotopes, which dominate the long-term radioactivity of nuclear waste. So the waste life-time can be shortened if the MA nuclei are destroyed. An important prerequisite of sustainable nuclear energy is the closed fuel cycle, where only fission products are discharged to a final repository, and all Heavy Metal (HM) are recycled. The reactor should breed just enough fissile material to allow refueling of the same reactor, adding only fertile material to the recycled material. Other key design choices are highly efficient power conversion using a direct cycle gas turbine, and better safety through the use of helium, a chemically inert coolant which cannot have phase changes in the reactor core. Because the envisaged core temperatures and operating conditions are similar to thermal-spectrum High Temperature Reactor (HTR) concepts, the research for this thesis initially focused on a design based on existing HTR fuel technology: coated particle fuel, assembled into fuel assemblies. It was found that such a fuel concept could not meet the Generation IV criteria set for GCFR: self-breeding is difficult, the temperature

  8. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  9. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  10. Cooling system for the connecting rings of a fast neutron reactor vessel

    International Nuclear Information System (INIS)

    Martin, J.-P.; Malaval, Claude

    1974-01-01

    A description is given of a cooling system for the vessel connecting rings of a fast neutron nuclear reactor, particularly of a main vessel containing the core of the reactor and a volume of liquid metal coolant at high temperature and a safety vessel around the main vessel, both vessels being suspended to a rigid upper slab kept at a lower temperature. It is mounted in the annular space between the two vessels and includes a neutral gas circuit set up between the wall of the main vessel to be cooled and that of the safety vessel itself cooled from outer. The neutral gas system comprises a plurality of ventilators fitted in holes made through the thickness of the upper slab and opening on to the space between the two vessels. It also includes two envelopes lining the walls of these vessels, establishing with them small section channels for the circulation of the neutral gas cooled against the safety vessel and heated against the main vessel [fr

  11. Qualification of Simulation Software for Safety Assessment of Sodium Cooled Fast Reactors. Requirements and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sieger, Matt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moe, Wayne [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); HolbrookINL, Mark [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    The goal of this review is to enable application of codes or software packages for safety assessment of advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the authors have focused on two objectives. First, the authors have focused on identification of requirements for software QA that must be satisfied to enable the application of software to future safety analyses. Second, the authors have collected best practices applied by other code development teams to minimize cost and time of initial code qualification activities and to recommend a path to the stated goal.

  12. Dynamical analysis on carbon transfer in liquid metal cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Kataoka, Tadayuki; Matsumoto, Keishi

    1979-01-01

    The dynamical analysis was undertaken on the exchange of carbon taking place between the structural steels and sodium for the case of a bi-metallic secondary system constituted of type 304 stainless and 2 1/4Cr-1Mo steels, representing the secondary system of a liquid sodium cooled fast breeder reactor. The analysis brought to light the effects to be expected on the long terms carbon transfer behavior of: (a) the surface areas of structural steels in contact with flowing sodium, (b) the thickness of the sodium-boundary layer, (c) the initial carbon concentration in the sodium, and (d) the rate of carbon contamination of the sodium. (author)

  13. BN800: The advanced sodium cooled fast reactor plant based on close fuel cycle

    International Nuclear Information System (INIS)

    Wu Xingman

    2011-01-01

    As one of the advanced countries with actually fastest reactor technology, Russia has always taken a leading role in the forefront of the development of fast reactor technology. After successful operation of BN600 fast reactor nuclear power station with a capacity of six hundred thousand kilowatts of electric power for nearly 30 years, and after a few decades of several design optimization improved and completed on its basis, it is finally decided to build Unit 4 of Beloyarsk nuclear power station (BN800 fast reactor power station). The BN800 fast reactor nuclear power station is considered to be the project of the world's most advanced fast reactor nuclear power being put into implementation. The fast reactor technology in China has been developed for decades. With the Chinese pilot fast reactor to be put into operation soon, the Chinese model fast reactor power station has been put on the agenda. Meanwhile, the closed fuel cycle development strategy with fast reactor as key aspect has given rise to the concern of experts and decision-making level in relevant areas. Based on the experiences accumulated in many years in dealing the Sino-Russian cooperation in fast reactor technology, with reference to the latest Russian published and authoritative literatures regarding BN800 fast reactor nuclear power station, the author compiled this article into a comprehensive introduction for reference by leaders and experts dealing in the related fields of nuclear fuel cycle strategy and fast reactor technology development researches, etc. (authors)

  14. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Ha; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O{sub 2} and (U,TRU)O{sub 2} which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O{sub 2}, (Th,Pu)O{sub 2} and (Th,TRU)O{sub 2}, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  15. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Jin Ha; Kim, Myung Hyun

    2016-01-01

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O_2 and (U,TRU)O_2 which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O_2, (Th,Pu)O_2 and (Th,TRU)O_2, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  16. Minor actinides transmutation potential: state of art for GEN IV sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Buiron, Laurent

    2015-01-01

    In the frame of the R and D program relative to the 1991 French act on nuclear waste management, fast neutron systems have shown relevant characteristics that meet both requirements on sustainable resources management and waste minimization. They also offer flexibility by mean of burner or breeder configurations allowing mastering plutonium inventory without significant impact on core safety. From the technological point of view, sodium cooled fast reactor are considered in order to achieve mean term industrial deployment. The present document summaries the main results of R and D program on minor actinides transmutation in sodium fast reactor since 2006 following recommendation of the first part of the 1991 French act. Both homogeneous and heterogeneous management achievable performances are presented for 'evolutionary' SFR V2B core as well as low void worth CFV core for industrial scale configurations (1500 MWe). Minor actinides transmutation could be demonstrated in the ASTRID reactor with the following configurations: - a 2%vol Americium content for the homogeneous mode, - a 10%vol Americium content for the heterogeneous mode, without any substantial modification of the main core safety parameters and only limited impacts on the associated fuel cycle (manufacturing issues are not considered here). In order to achieve such goal, a wide range of experimental irradiations driven by transmutation scenarios have to be performed for both homogeneous and heterogeneous minor actinides management. (author) [fr

  17. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Yoon, K. H.; Lee, C. B.

    2014-01-01

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness

  18. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K. H.; Lee, C. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness.

  19. Assessment of the dry process fuel sodium-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2004-04-01

    The feasibility of using dry-processed oxide fuel in a Sodium-cooled Fast Reactor (SFR) was analyzed for the equilibrium fuel cycle of two reference cores: Hybrid BN-600 benchmark core with a enlarged lattice pitch and modified BN-600 core. The dry process technology assumed in this study based on the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was {approx}50% and most of the fission products were removed.

  20. Assessment of the dry process fuel sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2004-04-01

    The feasibility of using dry-processed oxide fuel in a Sodium-cooled Fast Reactor (SFR) was analyzed for the equilibrium fuel cycle of two reference cores: Hybrid BN-600 benchmark core with a enlarged lattice pitch and modified BN-600 core. The dry process technology assumed in this study based on the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed

  1. Effect of Reflector Material on the Neutronic Characteristics of the Small Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sung Hwan; Baek, Min Ho; Yoo, Jae Woon; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The sodium-cooled fast reactor (SFR) has been chosen as a candidate for the Gen-IV Nuclear Energy Systems Initiative due to the advantages in utilization of uranium resources and reduction of radioactive wastes. Recently, the uranium blanket concept is omitted for a purpose of the non-proliferation, hence the reflector material plays a more important role in reactor core design. Moreover, especially in the Korean prototype SFR, the initial core should startup with low-enriched uranium ({<=} 20 w/o) for 100 {approx} 150 MWe power. This restriction causes significant difficulties to achieve sufficient excess reactivity. Thus, in this paper, core characteristic studies of various reflector materials (HT9, BeO, MgO, and ZrH{sub 1.6}) are performed to enhance the initial core excess reactivity

  2. Overall system description and safety characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    International Nuclear Information System (INIS)

    Yoo, Jae Woon; Chang, Jin Wook; Lim, Jae Yong; Cheon, Jin Sik; Lee, Tae Ho; Kim, Sung Kyun; Lee, Kwi Lim; Joo, Hyung Kook

    2016-01-01

    The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper

  3. Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    Directory of Open Access Journals (Sweden)

    Jaewoon Yoo

    2016-10-01

    Full Text Available The Prototype Gen IV sodium cooled fast reactor (PGSFR has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.

  4. A fast track approach to commercializing the sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hui, Marvin; Carroll, Douglas

    1999-01-01

    As a result of more than 50 years of Liquid Metal Reactor design and development work the basic technology is well understood. However, commercialization of the Fast Breeder Reactor (FBR) has been delayed while various approaches to achieving competitive plant and fuel cycle costs are explored, developed, and demonstrated in prototype systems. Most designers have elected to take advantage of the economy of scale but are burdened by the cost and risk associated with the need for incremental scale up through the design, construction, and operation of multiple demonstration plants. An alternative commercialization path developed by GE would utilize a modular plant design to reduce the plant construction, R and D, and economic risk associated with the need to build multiple demonstration plants to reach a competitive size'. The key question is can a modular FBR compete with alternative electrical generation systems? Recently completed studies indicate that the answer to this question is yes if the modular plant designers keep the design simple by incorporating passive safety features and optimizing the manner in which supporting service systems are shared. (author)

  5. Adaptive polynomial chaos techniques for uncertainty quantification of a gas cooled fast reactor transient

    International Nuclear Information System (INIS)

    Perko, Z.; Gilli, L.; Lathouwers, D.; Kloosterman, J. L.

    2013-01-01

    Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used technique proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)

  6. Mapping of sodium void worth and doppler effect for sodium-cooled fast reactor - 15458

    International Nuclear Information System (INIS)

    Krepel, J.; Pelloni, S.; Bortot, S.; Panadero, A.L.; Mikityuk, K.

    2015-01-01

    The sodium-cooled fast reactor (SFR) represents the reference and the most technologically mastered system among the Generation-IV reactors. Nevertheless, the sodium void worth in the fuel regions of SFR is usually positive. To overcome this safety drawback, low-void sodium-cooled fast spectrum core (CFV) was proposed by CEA. Such a CFV core is used in the frame of WP6 'Core safety' of the FP7 Euratom ESNII+ project as a reference SFR design. The overall sodium void effect is negative for the CFV core. Nevertheless, locally it is positive in the fuel region and negative in the sodium plenum. Similarly, also the Doppler effect is spatially dependent and it varies between the inner and outer fuel regions and between the middle and lower blankets. Accordingly, knowledge of the local distributions or actually mappings of the two safety-related parameters will be necessary, before safety assessment and transient analysis can be done. In this study these maps have been produced using the deterministic code ERANOS. The obtained mapping shows strong local dependency of both safety-related effects. A sensitivity of the void effect to the sodium plenum modeling was also demonstrated. The results may serve as an input for the transient analysis of the CFV core or as a cross-check for the Monte Carlo method based maps. (authors)

  7. Gas cooled fast reactor materials: compatibility and reaction kinetics of fuel/matrices couples

    International Nuclear Information System (INIS)

    Lechelle, J.; Aufore, L.; Basini, V.; Belin, R.; Vaudez, S.

    2004-01-01

    Fourth Generation Gas cooled Fast Reactor concept implies a fast neutron spectrum and aims to lead to an iso-generation of minor actinides. Criteria have been defined for these fuels such as: high core filling factor, efficient fuel cooling, low operation temperature, i.e. 400-850 deg C, good fission product retention, burn-ups in the range of 5-8 atom%, Pu content in the range of 15-25%. Materials matching this demand are considered: mixed uranium - plutonium nitrides and carbides as fuels, whereas TiN, TiC, ZrN, ZrC, SiC are investigated as inert matrices. Thermo-chemical compatibility studies have been carried out, mostly for (U,Pu)N/SiC and (U,Pu)N/TiN couples. They have been associated to matching diffusional studies. For the first studies, accidental reactor conditions have been chosen (1600 deg C) so as to select a couple. Results are presented in terms of nature and quantity of resulting phases identified by XRD and SEM for thermodynamical equilibrium experiments. (authors)

  8. Conceptual core designs for a 1200 MWe sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Joo, H. K.; Lee, K. B.; Yoo, J. W.; Kim, Y. I.

    2008-01-01

    The conceptual core design for a 1200 MWe sodium cooled fast reactor is being developed under the framework of the Gen-IV SFR development program. To this end, three core concepts have been tested during the development of a core concept: a core with an enrichment split fuel, a core with a single-enrichment fuel with a region-wise varying clad thickness, and a core with a single-enrichment fuel with non-fuel rods. In order to optimize a conceptual core configuration which satisfies the design targets, a sensitivity study of the core design parameters has been performed. Two core concepts, the core with an enrichment-split fuel and the core with a single-enrichment fuel with a region-wise varying clad thickness, have been proposed as the candidates of the conceptual core for a 1200 MWe sodium cooled fast reactor. The detailed core neutronic, fuel behavior, thermal, and safety analyses will be performed for the proposed candidate core concepts to finalize the core design concept. (authors)

  9. Uncertainty analysis of infinite homogeneous lead and sodium cooled fast reactors at beginning of life

    International Nuclear Information System (INIS)

    Vanhanen, R.

    2015-01-01

    The objective of the present work is to estimate breeding ratio, radiation damage rate and minor actinide transmutation rate of infinite homogeneous lead and sodium cooled fast reactors. Uncertainty analysis is performed taking into account uncertainty in nuclear data and composition of the reactors. We use the recently released ENDF/B-VII.1 nuclear data library and restrict the work to the beginning of reactor life. We work under multigroup approximation. The Bondarenko method is used to acquire effective cross sections for the homogeneous reactor. Modeling error and numerical error are estimated. The adjoint sensitivity analysis is performed to calculate generalized adjoint fluxes for the responses. The generalized adjoint fluxes are used to calculate first order sensitivities of the responses to model parameters. The acquired sensitivities are used to propagate uncertainties in the input data to find out uncertainties in the responses. We show that the uncertainty in model parameters is the dominant source of uncertainty, followed by modeling error, input data precision and numerical error. The uncertainty due to composition of the reactor is low. We identify main sources of uncertainty and note that the low-fidelity evaluation of 16 O is problematic due to lack of correlation between total and elastic reactions

  10. Uncertainty analysis of infinite homogeneous lead and sodium cooled fast reactors at beginning of life

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, R., E-mail: risto.vanhanen@aalto.fi

    2015-03-15

    The objective of the present work is to estimate breeding ratio, radiation damage rate and minor actinide transmutation rate of infinite homogeneous lead and sodium cooled fast reactors. Uncertainty analysis is performed taking into account uncertainty in nuclear data and composition of the reactors. We use the recently released ENDF/B-VII.1 nuclear data library and restrict the work to the beginning of reactor life. We work under multigroup approximation. The Bondarenko method is used to acquire effective cross sections for the homogeneous reactor. Modeling error and numerical error are estimated. The adjoint sensitivity analysis is performed to calculate generalized adjoint fluxes for the responses. The generalized adjoint fluxes are used to calculate first order sensitivities of the responses to model parameters. The acquired sensitivities are used to propagate uncertainties in the input data to find out uncertainties in the responses. We show that the uncertainty in model parameters is the dominant source of uncertainty, followed by modeling error, input data precision and numerical error. The uncertainty due to composition of the reactor is low. We identify main sources of uncertainty and note that the low-fidelity evaluation of {sup 16}O is problematic due to lack of correlation between total and elastic reactions.

  11. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  12. Under-Sodium-Viewing as one technique for periodic inspections in sodium-cooled fast reactors-- possibilities and limits

    International Nuclear Information System (INIS)

    Weiss, H.

    1979-07-01

    Periodic inspections are gaining increasingly technical importance for fast sodium cooled reactors. Among others the reactor tank and its internals have to be inspected, whereby licensing experts partly are requesting the standards of Light Water Reactors. This leads to difficulties in sodium cooled reactors because of the non-transparent coolant sodium and their compact structure. In order to avoid the complete dumping of the sodium, the under sodium viewing shall be applied besides other inspection methods. Since this is a new method, which is still in its development phase, this report presents and discusses the technical and physical basis and outlines possibilities and limits [de

  13. Metal fuel development and verification for prototype generation- IV Sodium- Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Cheon, Jin Sik; Kim, Sung Ho; Park, Jeong Yong; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U -transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  14. Gas Cooled Fast Reactor Research and Development in the European Union

    Directory of Open Access Journals (Sweden)

    Richard Stainsby

    2009-01-01

    Full Text Available Gas-cooled fast reactor (GFR research is directed towards fulfilling the ambitious goals of Generation IV (Gen IV, that is, to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The research is directed towards developing the GFR as an economic electricity generator, with good safety and sustainability characteristics. Fast reactors maximise the usefulness of uranium resources by breeding plutonium and can contribute to minimising both the quantity and radiotoxicity nuclear waste by actinide transmutation in a closed fuel cycle. Transmutation is particularly effective in the GFR core owing to its inherently hard neutron spectrum. Further, GFR is suitable for hydrogen production and process heat applications through its high core outlet temperature. As such GFR can inherit the non-electricity applications that will be developed for thermal high temperature reactors in a sustainable manner. The Euratom organisation provides a route by which researchers in all European states, and other non-European affiliates, can contribute to the Gen IV GFR system. This paper summarises the achievements of Euratom's research into the GFR system, starting with the 5th Framework programme (FP5 GCFR project in 2000, through FP6 (2005 to 2009 and looking ahead to the proposed activities within the 7th Framework Programme (FP7.

  15. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Chan Bock Lee

    2016-10-01

    Full Text Available Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic–martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  16. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V., E-mail: vasudha.verma@physics.uu.se [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Barbot, L.; Filliatre, P. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Hellesen, C. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Jammes, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Svärd, S. Jacobsson [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2017-07-11

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment. - Highlights: • Studied possibility of using SPNDs as in-core detectors in SFRs. • Study done to detect local power profile changes when reactor is at nominal power. • SPND with a Pt-emitter gives measurable prompt current of the order of 600 nA/m. • Dominant proportion of prompt response is maintained throughout the operation. • Detector signal gives dynamic information on the power fluctuations.

  17. Gas cooled fast reactor benchmarks for JNC and Cea neutronic tools assessment

    International Nuclear Information System (INIS)

    Rimpault, G.; Sugino, K.; Hayashi, H.

    2005-01-01

    In order to verify the adequacy of JNC and Cea computational tools for the definition of GCFR (gas cooled fast reactor) core characteristics, GCFR neutronic benchmarks have been performed. The benchmarks have been carried out on two different cores: 1) a conventional Gas-Cooled fast Reactor (EGCR) core with pin-type fuel, and 2) an innovative He-cooled Coated-Particle Fuel (CPF) core. Core characteristics being studied include: -) Criticality (Effective multiplication factor or K-effective), -) Instantaneous breeding gain (BG), -) Core Doppler effect, and -) Coolant depressurization reactivity. K-effective and coolant depressurization reactivity at EOEC (End Of Equilibrium Cycle) state were calculated since these values are the most critical characteristics in the core design. In order to check the influence due to the difference of depletion calculation systems, a simple depletion calculation benchmark was performed. Values such as: -) burnup reactivity loss, -) mass balance of heavy metals and fission products (FP) were calculated. Results of the core design characteristics calculated by both JNC and Cea sides agree quite satisfactorily in terms of core conceptual design study. Potential features for improving the GCFR computational tools have been discovered during the course of this benchmark such as the way to calculate accurately the breeding gain. Different ways to improve the accuracy of the calculations have also been identified. In particular, investigation on nuclear data for steel is important for EGCR and for lumped fission products in both cores. The outcome of this benchmark is already satisfactory and will help to design more precisely GCFR cores. (authors)

  18. BREST-OD-300 Reactor as a prototype of the future commercial lead cooled fast reactor of natural safety

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, V.V.; Smirnov, V.S.; Filin, A.I.; Glazov, A.G. [N.A. Dollezhal Institute ' NIKIET' , PO Box 788, Moscow, 101000 (Russian Federation)

    2006-07-01

    This paper briefly describes the physical and design features of a demonstration 300 MWe fast reactor with uranium-plutonium nitride fuel and lead coolant, BREST-OD-300, under development in Russia. This reactor is regarded as a prototype of future commercial reactors, which may form a foundation for large-scale growth of nuclear power in this new century. It is demonstrated that the natural properties of the lead coolant and nitride fuel combined with the physical and design features specific to fast reactors ensure natural safety of BREST and, with any credible initiating events, allow deterministic exclusion of accidents with large radioactive releases requiring evacuation of local residents. The paper identifies the ways and means of attaining natural safety, which rule out prompt criticality excursion, loss of cooling and fuel failure through use of a small reactivity margin, commensurable with {beta}{sub eff}, low pressure in the circuit, large margins to temperature limits, high natural circulation, passive decay heat removal by air unlimited in time, high heat accumulating capability of lead-filled circuit, stabilizing temperature and coolant flow rate feedbacks, etc. (authors)

  19. BREST-OD-300 Reactor as a prototype of the future commercial lead cooled fast reactor of natural safety

    International Nuclear Information System (INIS)

    Orlov, V.V.; Smirnov, V.S.; Filin, A.I.; Glazov, A.G.

    2006-01-01

    This paper briefly describes the physical and design features of a demonstration 300 MWe fast reactor with uranium-plutonium nitride fuel and lead coolant, BREST-OD-300, under development in Russia. This reactor is regarded as a prototype of future commercial reactors, which may form a foundation for large-scale growth of nuclear power in this new century. It is demonstrated that the natural properties of the lead coolant and nitride fuel combined with the physical and design features specific to fast reactors ensure natural safety of BREST and, with any credible initiating events, allow deterministic exclusion of accidents with large radioactive releases requiring evacuation of local residents. The paper identifies the ways and means of attaining natural safety, which rule out prompt criticality excursion, loss of cooling and fuel failure through use of a small reactivity margin, commensurable with β eff , low pressure in the circuit, large margins to temperature limits, high natural circulation, passive decay heat removal by air unlimited in time, high heat accumulating capability of lead-filled circuit, stabilizing temperature and coolant flow rate feedbacks, etc. (authors)

  20. Reactor core design optimization of the 200 MWt Pb-Bi cooled fast reactor for hydrogen production

    International Nuclear Information System (INIS)

    Bahrum, Epung Saepul; Su'ud, Zaki; Waris, Abdul; Fitriyani, Dian; Wahjoedi, Bambang Ari

    2008-01-01

    In this study reactor core geometrical optimization of 200 MWt Pb-Bi cooled long life fast reactor for hydrogen production has been conducted. The reactor life time is 20 years and the fuel type is UN-PuN. Geometrical core configurations considered in this study are balance, pancake and tall cylindrical cores. For the hydrogen production unit we adopt steam membrane reforming hydrogen gas production. The optimum operating temperature for the catalytic reaction is 540degC. Fast reactor design optimization calculation was run by using FI-ITB-CHI software package. The design criteria were restricted by the multiplication factor that should be less than 1.002, the average outlet coolant temperature 550degC and the maximum coolant outlet temperature less than 700degC. By taking into account of the hydrogen production as well as corrosion resulting from Pb-Bi, the balance cylindrical geometrical core design with diameter and height of the active core of 157 cm each, the inlet coolant temperature of 350degC and the coolant flow rate of 7000 kg/s were preferred as the best design parameters. (author)

  1. Contributions to the neutronic analysis of a gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Reyes-Ramirez, Ricardo; Francois, Juan-Luis; Reinking-Cejudo, Arturo G.

    2011-01-01

    Highlights: → Differences on reactivity with MCNPX and TRIPOLI-4 are negligible. → Fuel lattice and core criticality calculations were done. → A higher Doppler coefficient than coolant density coefficient. → Zirconium carbide is a better reflector than silicon carbide. → Adequate active height, radial size and reflector thickness were obtained. - Abstract: In this work the Monte Carlo codes MCNPX and TRIPOLI-4 were used to perform the criticality calculations of the fuel assembly and the core configuration of a gas-cooled fast reactor (GFR) concept, currently in development. The objective is to make contributions to the neutronic analysis of a gas-cooled fast reactor. In this study the fuel assembly is based on a hexagonal lattice of fuel-pins. The materials used are uranium and plutonium carbide as fuel, silicon carbide as cladding, and helium gas as coolant. Criticality calculations were done for a fuel assembly where the axial reflector thickness was varied in order to find the optimal thickness. In order to determine the best material to be used as a reflector, in the reactor core with neutrons of high energy spectrum, criticality calculations were done for three reflector materials: zirconium carbide, silicon carbide and natural uranium. It was found that the zirconium carbide provides the best neutron reflection. Criticality calculations using different active heights were done to determine the optimal height, and the reflector thickness was adjusted. Core criticality calculations were performed with different radius sizes to determine the active radial dimension of the core. A negative temperature coefficient of reactivity was verified for the fuel. The effect on reactivity produced by changes in the coolant density was also evaluated. We present the main neutronic characteristics of a preliminary fuel and core designs for the GFR concept. ENDF-VI cross-sections libraries were used in both the MCNPX and TRIPOLI-4 codes, and we verified that the

  2. Recycling option search for a 600 MWE sodium-cooled transmutation fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Kyo; Kim, Myung Hyun [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2015-02-15

    Four recycling scenarios involving pyroprocessing of spent fuel (SF) have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR), KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU) SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro- SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. The sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC) decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs). If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE) isotopes. The RE isotope recovery factor should be lowered to 20% in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

  3. Recycling option search for a 600-MWe sodium-cooled transmutation fast reactor

    Directory of Open Access Journals (Sweden)

    Yong Kyo Lee

    2015-02-01

    Full Text Available Four recycling scenarios involving pyroprocessing of spent fuel (SF have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR, KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro-SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. The sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs. If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE isotopes. The RE isotope recovery factor should be lowered to ≤20% in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

  4. Neutronic design for a 100MW{sub th} Small modular natural circulation lead or lead-alloy cooled fast reactors core

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q., E-mail: shchshch@ustc.edu.cn, E-mail: hlchen1@ustc.edu.cn, E-mail: kulah@mail.ustc.edu.cn, E-mail: zchen214@mail.ustc.edu.cn, E-mail: zengqin@ustc.edu.cn [Univ. of Science and Technology of China, School of Nuclear Science and Technology, Hefei, Anhui (China)

    2015-07-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW{sub th} natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  5. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    Directory of Open Access Journals (Sweden)

    Guidez Joel

    2017-01-01

    In the case of sodium-cooled fast reactors (SFRs, the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction. From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  6. Minor actinide burning in dedicated lead-bismuth cooled fast reactors

    International Nuclear Information System (INIS)

    Hejzlar, P.; Driscoll, M.J.; Kazimi, M.S.; Todreas, N.E.

    2001-01-01

    The destruction of minor actinides (MA) in dedicated burners is of contemporary interest in Europe and Japan because it requires the deployment of smaller number of special transmutation facilities. A major fraction of Pu from spent LWR fuel can be then burned in PWRs (or fast reactors) using dedicated fertile-free fuel assemblies. However, the design of MA burning fast spectrum cores poses significant challenges because of deterioration of key safety parameters, in particular of the coolant void coefficient. This study proposes the concept of an lead-bismuth eutectic (LBE)-cooled dedicated MA burner having metallic fuel (MA-Pu-Zr) and streaming assemblies to attain acceptable coolant void worth performance. It is shown that a large 1800 MWth fertile-free core containing 37 wt% TRU with very high fraction of MA(59 wt%) from LWR spent fuel can be burned in a first cycle for 700 EFPDs with a very small reactivity swing: less than β eff . Moreover, the reactivity void worth is negative for a fully voided core when all surrounding coolant is kept at reference density. However, the core reactivity increases as coolant density falls from the reference value of 10.25 to 6 g/cm 3 . Because its coolant density coefficient value is less than that of a sodium cooled IFR, the concept provides good potential for the achievement of self-regulation characteristics in unprotected events, provided that small negative fuel temperature feedback can be maintained. (authors)

  7. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  8. A comparative study on recycling spent fuels in gas-cooled fast reactors

    International Nuclear Information System (INIS)

    Choi, Hangbok; Baxter, Alan

    2010-01-01

    This study evaluates advanced Gas-cooled Fast Reactor (GFR) fuel cycle scenarios which are based on recycling spent nuclear fuel for the sustainability of nuclear energy. A 600 MWth GFR was used for the fuel cycle analysis, and the equilibrium core was searched with different fuel-to-matrix volume ratios such as 70/30 and 60/40. Two fuel cycle scenarios, i.e., a one-tier case combining a Light Water Reactor (LWR) and a GFR, and a two-tier case using an LWR, a Very High Temperature Reactor (VHTR), and a GFR, were evaluated for mass flow and fuel cycle cost, and the results were compared to those of LWR once-through fuel cycle. The mass flow calculations showed that the natural uranium consumption can be reduced by more than 57% and 27% for the one-tier and two-tier cycles, respectively, when compared to the once-through fuel cycle. The transuranics (TRU) which pose a long-term problem in a high-level waste repository, can be significantly reduced in the multiple recycle operation of these options, resulting in more than 110 and 220 times reduction of TRU inventory to be geologically disposed for the one-tier and two-tier fuel cycles, respectively. The fuel cycle costs were estimated to be 9.4 and 8.6 USD/MWh for the one-tier fuel cycle when the GFR fuel-to-matrix volume ratio was 70/30 and 60/40, respectively. However the fuel cycle cost is reduced to 7.3 and 7.1 USD/MWh for the two-tier fuel cycle, which is even smaller than that of the once-through fuel cycle. In conclusion the GFR can provide alternative fuel cycle options to the once-through and other fast reactor fuel cycle options, by increasing the natural uranium utilization and reducing the fuel cycle cost.

  9. Design of a spherical fuel element for a gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Van Rooijen, W.F.G.; Kloosterman, J.L.; Van Dam, H.; Van der Hagen, T.H.J.J.

    2004-01-01

    A study is undertaken to develop a fuel cycle for a gas-cooled fast reactor (GCFR). The design goals are: highly efficient use of (depleted) uranium, application of Pu recycled from LWR discharge as fissile material, high temperature output and simplicity of design. The design focuses on spherical TRISO-like fuel elements, a homogeneous core at start-up, providing for easy fuel fabrication, and self-breeding capability with a flat k eff with burn-up. Nitride fuel ( 15 N > 99%) has been selected because of its favourable thermal conductivity, high heavy metal density and compatibility with PUREX reprocessing. Two core concepts have been studied: one with coated particles embedded inside fuel pebbles, and one with coated particles cooled directly by helium. The result is that a flat k eff can be achieved for a long period of time, using coated particles cooled directly, with a homogeneous core at, start-up, with a closed fuel cycle and a simple refuelling and reprocessing scheme. (author)

  10. Assessment of gas cooled fast reactor with indirect supercritical CO2 cycle

    International Nuclear Information System (INIS)

    Hejzlar, P.; Driscoll, M. J.; Dostal, V.; Dumaz, P.; Poullennec, G.; Alpy, N.

    2006-01-01

    Various indirect power cycle options for a helium cooled Gas cooled Fast Reactor (GFR) with particular focus on a supercritical CO 2 (SCO 2 ) indirect cycle are investigated as an alternative to a helium cooled direct cycle GFR. The Balance Of Plant (BOP) options include helium-nitrogen Brayton cycle, supercritical water Rankine cycle, and SCO 2 recompression Brayton power cycle in three versions: (1) basic design with turbine inlet temperature of 550 .deg. C, (2) advanced design with turbine inlet temperature of 650 .deg. C and (3) advanced design with the same turbine inlet temperature and reduced compressor inlet temperature. The indirect SCO 2 recompression cycle is found attractive since in addition to easier BOP maintenance it allows significant reduction of core outlet temperature, making design of the primary system easier while achieving very attractive efficiencies comparable to or slightly lower than, the efficiency of the reference GFR direct cycle design. In addition, the indirect cycle arrangement allows significant reduction of the GFR 'proximate-containment' and the BOP for the SCO 2 cycle is very compact. Both these factors will lead to reduced capital cost

  11. RBEC lead-bismuth cooled fast reactor: review of conceptual decisions

    International Nuclear Information System (INIS)

    Alekseev, P.; Fomichenko, P.; Mikityuk, K.; Nevinitsa, V.; Shchepetina, T.; Subbotin, S.; Vasiliev, A.

    2001-01-01

    A concept of the RBEC lead-bismuth fast reactor-breeder is a synthesis, on one hand, of more than 40-year experience in development and operation of fast sodium power reactors and reactors with Pb-Bi coolant for nuclear submarines, and, on the other hand, of large R and D activities on development of the core concept for modified fast sodium reactor. The report briefly presents main parameters of the RBEC reactor, as a candidate for commercial exploitation in structure of the future nuclear power. (author)

  12. Status of conceptual safety design study of Japanese sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Kurisaka, Kenichi; Niwa, Hajime; Shimakawa, Yoshio

    2005-01-01

    In this paper, the current conceptual safety design and related evaluation of Japanese Sodium-cooled Fast Reactor which is studied in the framework of the Feasibility Study (FS) on commercialized Fast Reactor Cycle Systems in Japan are described. The purpose of the safety design is to establish a feasible safety concept of FBR which aims at a sustainable energy source of the next generations. The safety targets and the safety design principle are set aiming at realizing worldwide acceptability of the safety level. The basic safety design concept, which can meet the safety targets, was formulated taking along with the defense-in-depth philosophy as the basic safety design principle. In order to cope with wide range of energy and resource demands, there are some various designs both of oxide and metal fuel for JSFR. Some analytical results of typical design basis events, design extension conditions and core damage frequency estimation show the feasibility of the safety design concept for them. (author)

  13. Development of gas-cooled fast reactor and its thermo-hydraulics

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi

    1977-10-01

    Development, thermo-hydraulics and safety of GCFR are reviewed. The Development of Gas-Cooled Fast Reactor (GCFR) utilizes helium technology of HTGR and fuel technology of LMFBR. The breeding ratio of GCFR will be larger than that of LMFBR by about 0.2. Features of GCFR are a fuel with roughened surface to raise the heat transfer and vent system for the pressure equalization in the fuel rod. Helium as coolant of GCFR is chemically stable and stays in the single phase. So, there is no fuel-coolant interaction unlike the case of LMFBR. Since the helium must be pressurized, possibility of a depressurization accident is not negligible. In the United States, a 300MWe demonstration plant program is about to start; the collaboration with European countries is now quite active in this field. Though the development of GCFR started behind that of LMFBR, GCFR is equally promising as a fast breeder reactor. When realized, it will present possibility of a choice between these two. (auth.)

  14. Heat transfer from the roughened surface of gas cooled fast breeder reactor fuel element

    International Nuclear Information System (INIS)

    Tang, I.M.

    1979-01-01

    The temperature distributions and the augmentation of heat transfer performance by artificial roughening of a gas cooled fast breeder reactor (GCFR) fuel rod cladding are studied. Numerical solutions are based on the axisymmetric assumption for a two-dimensional model for one rib pitch of axial distance. The local and axial clad temperature distributions are obtained for both the rectangular and ramp rib roughened surface geometries. The transformation of experimentally measured convective heat transfer coefficients, in terms of Stanton number, into GCFR values is studied. In addition, the heat transfer performance of a GCFR fuel rod cladding roughened surface design is evaluated. Approximate analytical solution for correlating an average Stanton number is also obtained and satisfactorily compared with the corresponding numerical result for a GCFR design. The analytical correlation is useful in assessing roughened surface heat transfer performance in scoping studies and conceptual design

  15. Impact of nuclear data on sodium-cooled fast reactor calculations

    International Nuclear Information System (INIS)

    Aures, A.; Bostelmann, F.; Zwermann, W.; Velkov, K.

    2016-01-01

    Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors. (authors)

  16. Sodium pool fire analysis of sodium-cooled fast reactor by calculation

    International Nuclear Information System (INIS)

    Yu Hong; Xu Mi; Jin Degui

    2002-01-01

    Theoretical models were established according to the characteristic of sodium pool fire, and the SPOOL code was created independently. Some transient processes in sodium pool fire were modeled, including chemical reaction of sodium and oxygen; sodium combustion heat transfer modes in several kids of media; production, deposition and discharge of sodium aerosol; mass and energy exchange between different media in different ventilating conditions. The important characteristic parameters were calculated, such as pressure and temperature of gas, temperature of building materials, mass concentration of sodium aerosol, and so on. The SPOOL code, which provided available safety analysis tool for sodium pool fire accidents in sodium-cooled fast reactor, was well demonstrated with experimental data

  17. Performance of the diffusion barrier in the metallic fuel in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kim, Jun Hwan; Ryu, Ho Jin; Yang, Seong Woo; Lee, Byoung Oon; Oh, Seok Jin; Lee, Chan Bock; Hahn, Dohee

    2009-01-01

    The objectives in this study are to propose several kinds of barrier materials and to evaluate their performance to prevent a fuel-clad interaction situation between the metallic fuel and the clad material in the Sodium-cooled Fast Reactor (SFR). Metallic foil made from refractory element, electrodeposition of the Cr on the clad surface, and the vapor deposition of the Zr were used as the barrier layers. The diffusion couple test was performed at the temperature of 800degC for 25 hour. The results showed that considerable amount of reaction occurred at the specimen without barrier, whereas excellent performance was observed in that neither reaction nor inter-diffusion occurred in the case of metallic foil made of Cr or V. Electrodeposition was revealed to be excellent provided that optimum deposition condition can be found. Similar to the electro-deposition result, excellent performance observed in the case of vapor deposition condition. (author)

  18. Development of the Sodium-cooled Fast Reactor R and D and Technology Monitoring System

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-01-01

    This study presents a R and D performance monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. The prime goal of this system is to furnish project manager with reliable and accurate information of status of progress, performance and resource allocation, and attain traceability and visibility of project implementation for effective project management. In this study, the work breakdown structure, the related schedule and the expected outputs were established to derive the interfaces between projects and the above parameters was loaded PCs. The R and D performance monitoring system is composed of about 750 R and D activities within 'Development of Basic Key Technologies for Gen IV SFR' project in 2007. The Microsoft Project Professional software was used to monitor the progress, evaluate the results and analyze the resource distribution to activities

  19. Development of the Sodium-cooled Fast Reactor R and D and Technology Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-01-15

    This study presents a R and D performance monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. The prime goal of this system is to furnish project manager with reliable and accurate information of status of progress, performance and resource allocation, and attain traceability and visibility of project implementation for effective project management. In this study, the work breakdown structure, the related schedule and the expected outputs were established to derive the interfaces between projects and the above parameters was loaded PCs. The R and D performance monitoring system is composed of about 750 R and D activities within 'Development of Basic Key Technologies for Gen IV SFR' project in 2007. The Microsoft Project Professional software was used to monitor the progress, evaluate the results and analyze the resource distribution to activities.

  20. Safety design of Pb-Bi-cooled direct contact boiling water fast reactor (PBWFR)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Uchida, Shoji; Yamada, Yumi; Koyama, Kazuya

    2008-01-01

    In Pb-Bi-cooled direct contact boiling water small fast reactor (PBWFR), steam is generated by direct contact of feedwater with primary Pb-Bi coolant above the core, and Pb-Bi coolant is circulated by steam lift pump in chimneys. Safety design has been developed to show safety features of PBWFR. Negative void reactivity is inserted even if whole of the core and upper plenum are voided hypothetically by steam intrusion from above. The control rod ejection due to coolant pressure is prevented using in-vessel type control rod driving mechanism. At coolant leak from reactor vessel and feedwater pipes, Pb-Bi coolant level in the reactor vessel required for decay heat removal is kept using closed guard vessel. Dual pipes for feedwater are employed to avoid leak of water. Although there is no concern of loss of flow accident due to primary pump trip, feedwater pump trip initiates loss of coolant flow (LOF). Injection of high pressure water slows down the flow coast down of feedwater at the LOF event. The unprotected loss of flow and heat sink (ATWS) has been evaluated, which shows that the fuel temperatures are kept lower than the safety limits. (author)

  1. Safety approach and R and D program for future french sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Beils, Stephane; Carluec, Bernard; Devictor, Nicolas; Fiorini, Gian Luigi; Sauvage, Jean Francois

    2011-01-01

    This paper presents briefly the safety approach as well as the R and D program that is underway to support the deployment of future French Sodium-Cooled fast Reactors (SFRs): A) Safety objectives and principles for future reactors. The content of the first section reflects the works of AREVA, CEA, and EDF concerning the safety orientations for the future reactors. The availability of such orientations and requirements for the SFRs has to allow introducing and managing the process that will lead to the detailed definition of the safety approach, to the selection of the corresponding safety options, and to the identification and motivation of the supporting R and D. B) Strategy and roadmap in support of the R and D for future SFRs. This section describes the R and D program led jointly by CEA, EDF, and AREVA, which has been developed with the objectives to be able to preliminarily define, by 2012, the safety orientations for the future SFRs, and to deduce from them the characteristics of the ASTRID prototype. (author)

  2. Temperature control characteristics analysis of lead-cooled fast reactor with natural circulation

    International Nuclear Information System (INIS)

    Yang, Minghan; Song, Yong; Wang, Jianye; Xu, Peng; Zhang, Guangyu

    2016-01-01

    Highlights: • The LFR temperature control system are analyzed with frequency domain method. • The temperature control compensator is designed according to the frequency analysis. • Dynamic simulation is performed by SIMULINK and RELAP5-HD. - Abstract: Lead-cooled Fast Reactor (LFR) with natural circulation in primary system is among the highlights in advance nuclear reactor research, due to its great superiority in reactor safety and reliability. In this work, a transfer function matrix describing coolant temperature dynamic process, obtained by Laplace transform of the one-dimensional system dynamic model is developed in order to investigate the temperature control characteristics of LFR. Based on the transfer function matrix, a close-loop coolant temperature control system without compensator is built. The frequency domain analysis indicates that the stability and steady-state of the temperature control system needs to be improved. Accordingly, a temperature compensator based on Proportion–Integration and feed-forward is designed. The dynamic simulation of the whole system with the temperature compensator for core power step change is performed with SIMULINK and RELAP5-HD. The result shows that the temperature compensator can provide superior coolant temperature control capabilities in LFR with natural circulation due to the efficiency of the frequency domain analysis method.

  3. Safety system consideration of a supercritical-water cooled fast reactor with simplified PSA

    International Nuclear Information System (INIS)

    Lee, J.H.; Oka, Y.; Koshizuka, S.

    1999-01-01

    The probabilistic safety of the supercritical-water cooled fast reactor (SCFR) is evaluated with the simplified probabilistic safety assessment (PSA) methodology. SCFR has a once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure. There are no recirculation loops in the once-through direct cycle system, which is the most important difference from the current light water reactor (LWR). The main objective of the present study is to assess the effect of this difference on the safety in the stage of conceptual design study. A safety system configuration similar to the advanced boiling water reactor (ABWR) is employed. At loss of flow events, no natural recirculation occurs. Thus, emergency core flow should be quickly supplied before the completion of the feedwater pump coastdown at a loss of flow accident. The motor-driven high pressure coolant injection (MD-HPCI) system cannot be used for the quick core cooling due to the delay of the emergency diesel generator (D/G) start-up. Accordingly, an MD-HPCI system in an ABWR is substituted by a turbine-driven (TD-) HPCI system for the SCFR. The calculated core damage frequency (CDF) is a little higher than that of the Japanese ABWR and a little lower than that of the Japanese BWR when Japanese data are employed for initiating event frequencies. Four alternatives to the safety system configurations are also examined as a sensitivity analysis. This shows that the balance of the safety systems designed here is adequate. Consequently, though the SCFR has a once-through coolant system, the CDF is not high due to the diversity of feedwater systems as the direct cycle characteristics

  4. Nuclear data uncertainty analysis for the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Pelloni, S.; Mikityuk, K.

    2012-01-01

    For the European 2400 MW Gas-cooled Fast Reactor (GoFastR), this paper summarizes a priori uncertainties, i.e. without any integral experiment assessment, of the main neutronic parameters which were obtained on the basis of the deterministic code system ERANOS (Edition 2.2-N). JEFF-3.1 cross-sections were used in conjunction with the newest ENDF/B-VII.0 based covariance library (COMMARA-2.0) resulting from a recent cooperation of the Brookhaven and Los Alamos National Laboratories within the Advanced Fuel Cycle Initiative. The basis for the analysis is the original GoFastR concept with carbide fuel pins and silicon-carbide ceramic cladding, which was developed and proposed in the first quarter of 2009 by the 'French alternative energies and Atomic Energy Commission', CEA. The main conclusions from the current study are that nuclear data uncertainties of neutronic parameters may still be too large for this Generation IV reactor, especially concerning the multiplication factor, despite the fact that the new covariance library is quite complete; These uncertainties, in relative terms, do not show the a priori expected increase with bum-up as a result of the minor actinide and fission product build-up. Indeed, they are found almost independent of the fuel depletion, since the uncertainty associated with 238 U inelastic scattering results largely dominating. This finding clearly supports the activities of Subgroup 33 of the Working Party on International Nuclear Data Evaluation Cooperation (WPEC), i.e. Methods and issues for the combined use of integral experiments and covariance data, attempting to reduce the present unbiased uncertainties on nuclear data through adjustments based on available experimental data. (authors)

  5. BN-800 as a new stage in development of fast neutron sodium cooled reactors

    International Nuclear Information System (INIS)

    Poplavskij, V.M.; Chebeskov, A.N.; Matveev, V.I.

    2004-01-01

    The role of fast reactors in the strategy of evolution of the nuclear power of Russia is discussed, BN-800 under construction, where unique technical and construction decisions are used, is viewed. Economical estimations of expenses with regard for all life cycle demonstrate that fast reactors may be no higher-priced than the most popular in the world water moderated reactors. Closing of nuclear fuel cycle of BN-800 makes possible decision of the problem of plutonium and actinide utilization, that makes the fast reactor more safety for the environment [ru

  6. Future work in the DeBeNeLux research centres on the sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Goedkoop, J.A.

    1976-01-01

    The general objectives as they now apply over the world in the further development of the sodium cooled fast reactor are to realize a reactor and the associated fuel cycle, that will ensure a good fuel utilization; secondly, as long as we live in a more or less free market economy, such a system will only be acceptable if it is competitive, which means that the difference in investment cost between the fast reactor and the presently used light water reactors has to be brought down; thirdly, to justify the investment the system should work reliably; finally the developments in reactor design should not be at the expense of reactor safety. The pursuit of these objectives during the coming years will require the DeBeNeLuX laboratories to do work in a number of fields. (Auth.)

  7. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  8. Technical meeting on 'Primary coolant pipe rupture event in liquid metal cooled fast reactors'. Working material

    International Nuclear Information System (INIS)

    2003-01-01

    In Liquid Metal cooled Fast Reactors (LMFR) or in accelerator driven sub-critical systems (ADS) with LMFR like sub-critical cores, the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). The primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on 'Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors' was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the Technical Meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the Technical Meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  9. Test facility for auxiliary cooling system (ACS) of fast breeder reactor for Power Reactor and Nuclear Fuel Development Corporation (PNC)

    International Nuclear Information System (INIS)

    1983-01-01

    In preparation of constructing ''Monju'', a prototype fast breeder reactor, PNC has been pushing forward its research and development projects and the ACS was constructed under these projects. The auxiliary cooling system is an important engineered safety feature, and is used for safe removal of heat from the reactor at the shutdown. The ACS serves as a means of testing and assessing the auxiliary cooling system for the ''Monju'' and is designed and manufactured to have one fifth capacity of the Monju. The air heat exchanger and the ACS system was designed to withstand higher temperature range of the conventional design code (MITI-501), and finned tubes were applied for effective heat removal. Preheating system was designed to heat up the whole system over 200 0 C within 20 hours to prevent sodium from freezing. Basic performance of ACS was verified satisfactorily by a series of performance tests, such as start up test, flow rate measurement and preheating test before delivery. The experience from designing and construction of ACS and data obtained by these tests will be very instructive for designing and construction of the ''Monju''. (author)

  10. Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor

    International Nuclear Information System (INIS)

    Vaiana, F.

    2009-11-01

    This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)

  11. EXCURS: a computing programme for analysis of core transient behaviour in a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Saito, Shinzo

    1977-09-01

    In the code EXCURS developed for core transient behaviour calculation of a sodium-cooled fast reactor, a one-channel model is used to represent thermal behaviour of the reactor core. Calculations are made for three different channels; i.e. average, hot and hottest. In the average channel the power density and coolant velocity are equal to the mean values of the whole core. In the hot channel, a maximum power density of the core and a specific coolant velocity are introduced. In the hottest channel, engineering hot channel factors are considered to the hot channel. A one-point neutron kinetics equation with six delayed neutron groups is used to calculate the time-dependent power behaviour. Externally introduced reactivity effect and control rod movement in the case of a scram are taken into account. In the feedback effects evaluated on the basis of the average channel temperatures are considered Doppler effect, fuel axial expansion, cladding expansion, coolant expansion and structure expansion. The decay heat after reactor scram is also considered. Heat balance is taken in each cross section, neglecting the axial heat transfer except for the coolant region. Temperature dependence of the physical properties of materials is considered by second-order polynomials approximation, and also the fuel melting process. Each channel can be divided into a maximum of 20 regions in both radially and axially. The reactor core transient behaviour due to reactivity insertion or loss-of-coolant flow can be studied by EXCURS. The calculated results are plotted optionally by connected code EXPLOT. (auth.)

  12. Review of aerosol problems and the theory of aerosol physics with particular reference to sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Williams, R.J.

    1978-01-01

    Processes that would govern the development, transport, and removal of aerosols, which are of interest in the study of hypothetical core disruptive situations in pool type sodium cooled fast reactors, are discussed. Theoretical descriptions of these processes are presented and known inadequacies indicated. The interpretation of experimental data and numeric solution of the governing equations is briefly considered. (author)

  13. Possibilities of achieving non-positive void reactivity effect in fast sodium-cooled reactors with increased self-protection

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Zverkov, Yu.A.; Morozov, A.G.; Orlov, V.V.; Slesarev, I.S.; Subbotin, S.A.

    1989-01-01

    The problems of self-protection inhancement for the liquid-metal cooled fast reactors with intra-assembly heterogeneity of the core are studied. Possible approaches to arrangement of such reactors with various powers characterized by high levels of coolant natural circulation, minimum reactivity changes during fuel burn-up and non-positive void effect of reactivity are found. 10 refs.; 11 figs

  14. Interim Status Report on the Design of the Gas-Cooled Fast Reactor (GFR)

    International Nuclear Information System (INIS)

    Weaver, K. D.

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report outlines the current design status of the GFR, and includes work done in the areas mentioned above

  15. Current design efforts for the gas-cooled fast reactor (GFR)

    International Nuclear Information System (INIS)

    Weaver, K.D.

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GCFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFC I) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GCFR: a helium-cooled, direct Brayton cycle power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GCFR. These are EURATOM (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, EURATOM (including the United Kingdom), France, Japan, and Switzerland have active research activities with respect to the GCFR. The research includes GCFR design and safety, and fuels/in-core materials/fuel cycle projects. This paper outlines the current design status of the GCFR, and includes work done in the areas mentioned above. (Author)

  16. Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ponciroli, R.; Passerini, S.; Vilim, R. B.

    2016-04-17

    In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based on the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.

  17. Sodium-cooled fast reactor core designs for transmutation of MHR spent fuel

    International Nuclear Information System (INIS)

    Hong, S. G.; Kim, Y. H.; Venneri, F.

    2010-01-01

    In this paper, the core design analyses of sodium cooled fast reactors (SFR) are performed for the effective transmutation of the DB (Deep Burn)-MHR (Modular Helium Reactor). In this concept, the spent fuels of DB-MHR are transmuted in SFRs with a closed fuel cycle after TRUs from LWR are first incinerated in a DB-MHR. We introduced two different type SFR core designs for this purpose, and evaluated their core performance parameters including the safety-related parameters. In particular, the cores are designed to have lower transmutation rate relatively to our previous work so as to make the fuel characteristics more feasible. The first type cores which consist of two enrichment regions are typical homogeneous annular cores and they rate 900 MWt power. On the other hand, the second type cores which consist of a central non-fuel region and a single enrichment fuel region rate relatively higher power of 1500 MWt. For these cores, the moderator rods (YH 1.8 ) are used to achieve less positive sodium void worth and the more negative Doppler coefficient because the loading of DB-MHR spent fuel leads to the degradation of these safety parameters. The analysis results show that these cores have low sodium void worth and negative reactivity coefficients except for the one related with the coolant expansion but the coolant expansion reactivity coefficient is within the typical range of the typical SFR cores. (authors)

  18. The continuous fuel cycle model and the gas cooled fast reactor

    International Nuclear Information System (INIS)

    Christie, Stuart; Lathouwers, Danny; Kloosterman, Jan Leen; Hagen, Tim van der

    2011-01-01

    The gas cooled fast reactor (GFR) is one of the generation IV designs currently being evaluated for future use. It is intended to behave as an isobreeder, producing the same amount of fuel as it consumes during operation. The actinides in the fuel will be recycled repeatedly in order to minimise the waste output to fission products only. Striking the balance of the fissioning of various actinides against transmutation and decay to achieve these goals is a complex problem. This is compounded by the time required for burn-up modelling, which can be considerable for a single cycle, and even longer for studies of fuel evolution over many cycles. The continuous fuel cycle model approximates the discrete steps of loading, operating and unloading a reactor as continuous processes. This simplifies the calculations involved in simulating the behaviour of the fuel, reducing the time needed to model the changes to the fuel composition over many cycles. This method is used to study the behaviour of GFR fuel over many cycles and compared to results obtained from direct calculations. The effects of varying fuel cycle properties such as feed material, recycling of additional actinides and reprocessing losses are also investigated. (author)

  19. Lead-Cooled Fast Reactor Systems and the Fuels and Materials Challenges

    Directory of Open Access Journals (Sweden)

    T. R. Allen

    2007-01-01

    Full Text Available Anticipated developments in the consumer energy market have led developers of nuclear energy concepts to consider how innovations in energy technology can be adapted to meet consumer needs. Properties of molten lead or lead-bismuth alloy coolants in lead-cooled fast reactor (LFR systems offer potential advantages for reactors with passive safety characteristics, modular deployment, and fuel cycle flexibility. In addition to realizing those engineering objectives, the feasibility of such systems will rest on development or selection of fuels and materials suitable for use with corrosive lead or lead-bismuth. Three proposed LFR systems, with varying levels of concept maturity, are described to illustrate their associated fuels and materials challenges. Nitride fuels are generally favored for LFR use over metal or oxide fuels due to their compatibility with molten lead and lead-bismuth, in addition to their high atomic density and thermal conductivity. Ferritic/martensitic stainless steels, perhaps with silicon and/or oxide-dispersion additions for enhanced coolant compatibility and improved high-temperature strength, might prove sufficient for low-to-moderate-temperature LFRs, but it appears that ceramics or refractory metal alloys will be necessary for higher-temperature LFR systems intended for production of hydrogen energy carriers.

  20. COUPLED SIMULATION OF GAS COOLED FAST REACTOR FUEL ASSEMBLY WITH NESTLE CODE SYSTEM

    Directory of Open Access Journals (Sweden)

    Filip Osusky

    2018-05-01

    Full Text Available The paper is focused on coupled calculation of the Gas Cooled Fast Reactor. The proper modelling of coupled neutronics and thermal-hydraulics is the corner stone for future safety assessment of the control and emergency systems. Nowadays, the system and channel thermal-hydraulic codes are accepted by the national regulatory authorities in European Union for license purposes, therefore the code NESTLE was used for the simulation. The NESTLE code is a coupled multigroup neutron diffusion code with thermal-hydraulic sub-channel code. In the paper, the validation of NESTLE code 5.2.1 installation is presented. The processing of fuel assembly homogeneous parametric cross-section library for NESTLE code simulation is made by the sequence TRITON of SCALE code package system. The simulated case in the NESTLE code is one fuel assembly of GFR2400 concept with reflective boundary condition in radial direction and zero flux boundary condition in axial direction. The results of coupled calculation are presented and are consistent with the GFR2400 study of the GoFastR project.

  1. Developments and application of neutron noise diagnostics of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Zylbersztejn, F.

    2013-01-01

    The Sodium cooled Fast Reactor (SFR) is one of the six reactor types selected by the Generation-IV international forum (GIF), and the building of an industrial prototype is planned in France. The safety standard of the future SFR has to be equivalent to the EPR's. The general improvement of the safety of the new reactor goes through the examination of all the potentially harmful scenarios and both the study and monitoring of early signs. The mechanical deformations of the core can have harmful consequences in sodium fast reactors, such as unexpected power variations due to the reactivity increase in case of core compaction, or the excessive deterioration of the mechanical structures. The monitoring of such phenomena and of their potential early signs is then needed. The monitoring of such phenomena can be done with neutron detectors placed inside and outside the tank. This PhD thesis deals with the study of the neutron noise generated by the periodic deformation of the SFR core, restricted to the so-called core compaction or core flowering phenomenon, a deformation consisting in the variation of the inter-assembly sodium width by a radial bending the assemblies (the assemblies in SFR are held by the base). The PhD thesis has been performed within collaboration between CEA (France) and Chalmers Institute of Technology (Sweden). The work realized during the thesis led to the publication of 3 articles as first author and another as second author. This work has embraced the following topics: A state of the art of the monitoring of the core deformation phenomenon by interpretation of the noise measurements in SFR has been done. The PHENIX reactor multi physics measurements database has been scrutinized to provide an interpretation of the neutron noise bringing out mechanical vibration phenomena. An important conclusion was that the lack of theoretical knowledge about the neutron noise induced by the vibration phenomenon and the ill positioning of the neutron detectors

  2. Control rod shadowing and anti-shadowing effects in a large gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Girardin, G.; Chawla, R.; Rimpault, G.; Coddington, P.

    2007-01-01

    An investigation of control rod shadowing and anti-shadowing (interaction) effects has been carried out in the context of a design study of the control rod pattern for the large 2400 MWth Generation IV Gas-cooled Fast Reactor (GFR). For the calculations, the deterministic code system ERANOS-2.0 has been used, in association with a full core model including a European Fast Reactor (EFR)-type pattern for the control rods. More specifically, the core contains a total of 33 control (CSD) and safety (DSD) rods implemented in three banks: -1) a first bank of 6 CSD rods, placed at 64 cm from core centre in the inner fuel zone (Pu content 16.3 % vol.), -2) a safety bank consisting of 9 DSD rods, at an average distance of 118 cm, and -3) a third bank with 18 CSD rods, placed at 171 cm, i.e. at the interface between the inner and outer (Pu content 19.2 % vol.) core regions. Each control rod has been modelled as a homogeneous material containing 90%-enriched B 4 C, steel and helium. Considerable shadowing effects have been observed between the first bank and the safety bank, as also between individual rods within the first bank. Large anti-shadowing effects take place in an even greater number of the studied rod configurations. The largest interaction is between the two CSD banks, the anti-shadowing value being 46% in this case, implying that the total rod worth is increased by a factor of almost 2 when compared to the sum of the individual bank values. Additional investigations have been performed, in particular the computation of the first order eigenvalue and the eigenvalue separation. The main finding is that the interactions are lower when one of the control rod banks is located at a radial position corresponding to half the core radius. (authors)

  3. Problems of creating fuel elements for fast gas-cooled reactors working on N2O4-dissociating coolant

    International Nuclear Information System (INIS)

    Nesterenko, V.B.; Zelensky, V.F.; Kolykhan, L.I.; Karpenko, G.V.; Krasnorutsky, V.S.; Isakov, V.P.; Ashikhmin, V.P.; Permyakov, L.N.

    1985-01-01

    A variant of fast gas-cooled reactors is one using dissociating N 2 O 4 nitrogen tetroxide as a coolant. This type of reactors is promising because of great thermal effects of dissociation reactions while heating and recombination while cooling; small latent heat of evaporation; high heat transfer coefficient owing to additional heat transfer in a chemical reaction; high N 2 O 4 density in a gas state at operation parameters. The mentioned advantages give possibility to create a small turbine, heat exchange apparatus and to get high heat production in the active zone. All this opens new ways to increase power plants effectiveness

  4. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    1983-02-01

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  5. Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Hidemasa, E-mail: yamano.hidemasa@jaea.go.jp; Nishino, Hiroyuki; Kurisaka, Kenichi

    2016-11-15

    Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.

  6. Development of electro-magnetic pump for the ASTRID Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Suzuki, Tetsu; Aizawa, Rie; Wakasaki, Shingo; Dechelette, Frank; Benoit, Fabrice

    2017-01-01

    In the framework of the SFR (Sodium-cooled Fast Reactor) prototype called ASTRID (Advance Sodium Technological Reactor for Industrial Demonstration), the large capacity Electro-Magnetic Pumps (EMP) as main circulating pumps on the intermediate sodium circuits has been considered instead of mechanical pumps by CEA. The use of EMP has several decisive technological merits compared with mechanical pump in the reactor design, operation and maintenance. Nevertheless, some theoretical and technological developments have to be carried out in order to validate the design tools which take Magneto Hydro Dynamic (MHD) phenomena into account and the applicability of the EMP to the steady state and transient operating conditions of ASTRID. To move forward to developments, a collaboration agreement between the CEA and TOSHIBA Corporation was made and entered into to carry out a joint work program on the EMP for ASTRID design and development. CEA performed the theoretical analysis, and the EMP experimental model is constructed by CEA to support these theoretical developments. This model consists of a middle-size annular EMP for the liquid metal sodium. The various testing program using this model has been started in 2016. TOSHIBA performed the examination of design specification for ASTRID, an electromagnetic design, a structural design and various analyses. The structure design has been examined the placement of the sodium boundary and the withstand pressure, etc. And, if the thicknesses of the structure increase for withstanding pressure, the pump efficiency falls because the loss of the electromagnetic force increases. Therefore the balance between withstanding pressure and the efficiency has been considered by an electromagnetism design. This paper presents the design studies and experimental activities for the EMP development in the framework of the CEA-TOSHIBA collaborations. (author)

  7. Safeguards Considerations for the Design of a Future Fast Neutron Sodium Cooled Reactor

    International Nuclear Information System (INIS)

    Cazalet, J.; Raymond, P.; Masson, M.; Saturnin, A.

    2015-01-01

    Incorporating safeguards at an early stage of a reactor design is a way to increase the effectiveness and efficiency of safeguards measures minimizing the possibilities of misuse of the plant or nuclear material diversion. It also reduces the impact on the construction and operation cost. At the preliminary phase, the design will integrate: confinement, containment, surveillance features and non-destructive assay equipment. Taking into account these requirements will help the operator in the approval of the plant at the design phase by national and international authorities in charge of Nuclear Material accounting and safeguards. A large amount of work has been made by the GEN IV International Forum to assess the proliferation resistance of nuclear systems. The IAEA has developed guidelines on ''Safeguards by design'' describing reference requirements for future nuclear facilities. Based on these studies, this communication details implementation of safeguards in the design of a sodium cooled fast neutron reactor (SFR) currently studied in France. Specificities are the use of MOX fuel with high concentration of plutonium and the potential capacity of breeding. A great attention should be paid to avoid diversion of nuclear material contained in fresh or irradiated fuel. Scenarios of reactor misuse are analyzed. The identification of diversion pathways and requirements for nuclear material accountancy, leads to an approach of safeguards, specific to SFR: Material Balance Areas (MBA) and some key measurement points (KMP) are characterized. Specific instrumentation assay helping in the identification and/or characterization of fuel elements and the inventory of nuclear material is described. As concerns the fuel cycle, the safeguards of the reprocessing unit will be progressively increased through the development of materials monitoring and the implementation of these measures at strategic locations of buildings, thus providing real-time information

  8. Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi

    2016-01-01

    Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10"−"6/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10"−"6/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.

  9. Breeding gains of sodium-cooled oxide-fueled fast reactors

    International Nuclear Information System (INIS)

    Mougniot, J.C.; Barre, J.Y.; Clauzon, P.; Ciacometti, C.; Neviere, G.; Ravier, J.; Sichard, B.

    Calculated values are presented for the breeding gains of French fast reactors, and the experimental uncertainties are discussed. The effect of various choices of planning on the breeding gains is next analyzed within the framework of classical concepts. In the final part, a new concept involving ''heterogeneous cores'' with a single enrichment zone is presented. This concept permits a significant improvement in the breeding gain and doubling time of fast reactors. (U.S.)

  10. Development of variable width ribbon heating elements for liquid metal and gas-cooled fast breeder reactor fuel rod simulators

    International Nuclear Information System (INIS)

    McCulloch, R.W.; Lovell, R.T.; Post, D.W.; Snyder, S.D.

    1980-01-01

    Variable width ribbon heating elements have been fabricated which provide a chopped cosine, variable heat flux profile for fuel rod simulators used in test loops by the Breeder Reactor Program Thermal Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor Core Flow Test Loop. Thermal, mechanical, and electrical design considerations result in the derivation of an analytical expression for the ribbon contours. From this, the ribbons are machined and wound on numerically controlled equipment. Postprocessing and inspection results in a wound, variable width ribbon with the precise dimensional, electrical, and mechanical properties needed for use in fuel pin simulators

  11. Integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics

  12. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  13. Status of sodium cooled fast reactors with closed fuel cycle in India

    International Nuclear Information System (INIS)

    Raj, B.

    2007-01-01

    Fast reactors form the second stage of India's 3-stage nuclear power programme. The seed for India's fast reactor programme was sown through the construction of the Fast Breeder Test Reactor (FBTR) at IGCAR, Kalpakkam, that was commissioned in 1985. FBTR has operated with an unique, indigenously developed plutonium rich mixed carbide fuel, which has reached a burn up as high as 155 GWd/t without any fuel failure in the core. The sodium systems in the reactor have performed excellently. The availability of the reactor has been as high as 92% in the recent campaigns. The fuel discharged from FBTR up to 100 GWd/t has been reprocessed successfully. The experience gained in the construction, commissioning and operation of FBTR has provided the necessary confidence to launch a Prototype FBR of 500 MWe capacity (PFBR). This reactor will be fuelled by uranium, plutonium mixed oxide. The reactor construction started in 2003 and the reactor is scheduled to be commissioned by 2010. The design of the reactor has incorporated the worldwide operating experience from the FBRs and has addressed various safety issues reported in literature, besides introducing a number of innovative features which have reduced the unit energy cost and contributed to its enhanced safety. Simultaneous with the construction of the reactor, the fuel cycle of the reactor has been addressed in a comprehensive manner and construction of a fuel cycle facility has been initiated. Subsequent to the PFBR, 4 more reactors with identical design are proposed to be constructed. Various elements of reactor design are being carefully analysed with the aim of introducing innovative features towards further reduction in unit energy cost and enhancing safety in these reactors

  14. Safety and core design of large liquid-metal cooled fast breeder reactors

    Science.gov (United States)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  15. Breeding characteristics analysis of a commercial fast reactor cooled with sodium liquid

    International Nuclear Information System (INIS)

    Kosaka, N.; Shigehiro, A.

    1982-01-01

    The fast reactor breeding characteristics and its safety is analysed. As reference, for a preliminar analysis, the specifications of Super-Phenix, reactor french of 1200 MWe, are used, varying some parameters after aiming to verify its effects on duplication time. (E.G.) [pt

  16. Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yu, Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-30

    The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The efforts in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the

  17. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    Science.gov (United States)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  18. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A. S.

    2010-09-01

    The majority of NPPs worldwide are currently light water reactors, using ordinary water as both coolant and moderator. (...) For the longer-term future, viz. beyond the year 2030, Research and Development is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Since the very beginning of the international cooperation on Generation IV, viz. the year 2000, the main research interest in Europe as regards the advanced fast-spectrum systems needed for achieving complete fuel cycle closure, has been for the Sodium-cooled Fast Reactor (SFR). However, the Gas-cooled Fast Reactor (GFR) is currently considered as the main back-up solution. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For depressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure conditions, need to be

  19. Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kang, Bongsuk; Yang, Huichang; Suh, Namduk

    2014-01-01

    The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement

  20. Materials Performance in Sodium-Cooled Fast Reactors: Past, Present, and Future

    International Nuclear Information System (INIS)

    Natesan, K.; Li Meimei

    2013-01-01

    • This paper gives an overview of the requirements, selection, and performance of materials for in-core and out-of-core components in SFRs. • Globally, sodium-cooled fast reactors have been designed, built, and operated in several countries. A substantial database exists for the existing materials on their functional and mechanical performance. • The 60-yr design life of the SFR presents a significant challenge to the development of database, extrapolation/prediction of long-term performance, and high-temperature design methodology for the structural components. • Licensing of SFR requires a valid assessment of the environmental effects (irradiation, thermal aging, and sodium) on materials performance. • Advanced materials such as, ODS alloys for cladding, Gr91 and 92 F/M steels, and austenitic alloys such as NF709 for structures can improve the economy, safety, and flexibility of SFRs. A substantial database is needed for all these materials and global effort is underway to develop the needed information through experimentation and modeling

  1. Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bongsuk; Yang, Huichang [TUEV Rheinland Korea Ltd., Seoul (Korea, Republic of); Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement.

  2. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    International Nuclear Information System (INIS)

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  3. Systems Analysis of a Fast Steam-Cooled Reactor of 1000 MW(E)

    Energy Technology Data Exchange (ETDEWEB)

    Smidt, D.; Frisch, W.; Hofmann, F.; Moers, H.; Schramm, K.; Spilker, H. [Institut fuer Reaktorentwicklung, Kernforschungszentrum, Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Kiefhaber, E. [Institut fuer Neutronenphysik und Reaktortechnik Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany)

    1968-05-15

    The Karlsruhe design of a steam-cooled fast reactor (Dl) has been the subject of a systems analysis. Here the dependence of fuel inventory, breeding ratio, rating, core geometry and plant efficiency on coolant pressure, and coolant temperature has been studied for two different rod powers. The effect of artificial surface roughness has been investigated. For some configurations the resulting fuel-cycle and capital costs have been determined and discussed. The main influence results from pressure. The lower pressure allows for higher breeding ratios, but lower efficiencies and vice versa. From this the fuel-cycle costs show an optimum at around 150 atm abs. The capital costs on the other side decrease with pressure. The over-all optimum of the power generating costs for the presently studied parameter range is at about 170 atm abs., a coolant outlet temperature of 540 Degree-Sign C and a rod power of 420 W/cm. Artificial roughness (boundary layer type) leads for a required system pressure and outlet temperature to a larger coolant volume fraction and, therefore, to reduced breeding ratios but higher efficiencies. As another part of the work some stability characteristics of the cores were studied. The dependence of the core stability on the varied parameters is shown. (author)

  4. Conceptual Design for BOP of the Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Yoo, Tae Geun; Kim, Seong O; Kim, Eui Kwang; Seong, Seung Hwan

    2010-01-01

    The heavy dependence on nuclear power eventually raise the issues of an efficient utilization of uranium resources, which Korea presently imports from abroad, end of a spent fuel storage. From the viewpoint that sodium-cooled fast Reactors (SFR s ) have the potential of an enhanced safety by utilizing inherent safety characteristics, trans-uranics (TRU) reduction and resolving the spent fuel storage problems through a proliferation-resistant actinide recycling. SFR s are sure to be most promising nuclear power operation. The Korea Atomic Energy Research Institute (KAERI) has been developing SFR design technologies since 1997. And nowadays, the preliminary heat balance of the demonstration SFR is calculated. However, in order to verify design condition of the NSSS, it is necessary to set the heat balance and the conceptual design for BOP of the SFR as a part of the SFR design technique development business. Moreover, in order to confirm whether the heat balance can actually appropriate via the turbine characteristic, it is required to carry out the performance analysis of the turbine cycle. For that, the main purposes of this study are; 1) to derivate the conceptual design for BOP, 2) to analyze the performance of the turbine cycle, 3) to derivate the main consideration for BOP design

  5. Demonstration of leak-before-break in Japan Sodium cooled Fast Reactor (JSFR) pipes

    International Nuclear Information System (INIS)

    Wakai, Takashi; Machida, Hideo; Yoshida, Shinji; Xu, Yang; Tsukimori, Kazuyuki

    2014-01-01

    This paper describes the leak-before-break (LBB) assessment procedure applicable to Japan Sodium cooled Fast Reactor (JSFR) pipes made of modified 9Cr–1Mo steel. For the sodium pipes of JSFR, the continuous leak monitoring will be adopted as an alternative to a volumetric test of the weld joints under conditions that satisfy LBB. Firstly, a LBB assessment flowchart eliminating uncertainty resulted from small scale leakage, such as self plugging phenomenon and influence of crack surface roughness on leak rate, was proposed. Secondly, a rational unstable fracture assessment technique, taking the compliance changing with crack extension into account, was also proposed. Thirdly, a crack opening displacement (COD) assessment technique was developed, because COD assessment method applicable to JSFR pipes – thin wall and small work hardening material – had not been proposed yet. In addition, fracture toughness tests were performed using compact tension (CT) specimens to obtain the fracture toughness, J IC , and the crack growth resistance (J–R) curve at elevated temperature. Finally, by using the flowchart, proposed techniques and collected data, LBB assessment for the primary sodium pipes of JSFR was conducted. As a result, LBB aspect was successfully demonstrated with sufficient margins

  6. Level-1 PSA to support the design of the KALIMER-600 Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Han, Sang Hoon; Kim, Tae-Woon; Jeong, Hae-Yong; Han, Seok Joong; Ahn, Kwang-Il; Yang, Joon-Eon

    2012-01-01

    A sodium-cooled fast reactor, KALIMER-600, is under development. Its fuel is the metal fuel of U-TRU-Zr and it uses sodium as a coolant. KALIMER-600 has passive safety features such as passive shutdown functions, passive pump coast-down features, and passive decay heat removal systems. It has inherent reactivity feedback effects. The probabilistic safety assessment (PSA) will be one of the initiating subjects for designing KALIMER-600 from the aspects of risk informed design. A preliminary level-1 internal full power PSA has been performed to evaluate the safety level and its applicability for the KALIMER-600 conceptual design. Various design alternatives are evaluated from the viewpoint of PSA in order to support the design of the KALIMER-600. Sensitivity studies are also performed to evaluate the assumptions made for the PSA. The applicability and weakness of the KALIMER-600 PSA are discussed. The technical issues to be solved in performing the PSA will be discussed. (authors)

  7. Development of extreme rainfall PRA methodology for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2016-01-01

    The objective of this study is to develop a probabilistic risk assessment (PRA) methodology for extreme rainfall with focusing on decay heat removal system of a sodium-cooled fast reactor. For the extreme rainfall, annual excess probability depending on the hazard intensity was statistically estimated based on meteorological data. To identify core damage sequence, event trees were developed by assuming scenarios that structures, systems and components (SSCs) important to safety are flooded with rainwater coming into the buildings through gaps in the doors and the SSCs fail when the level of rainwater on the ground or on the roof of the building becomes higher than thresholds of doors on first floor or on the roof during the rainfall. To estimate the failure probability of the SSCs, the level of water rise was estimated by comparing the difference between precipitation and drainage capacity. By combining annual excess probability and the failure probability of SSCs, the event trees led to quantification of core damage frequency, and therefore the PRA methodology for rainfall was developed. (author)

  8. Study of various Brayton cycle designs for small modular sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Lee, Jeong Ik

    2014-01-01

    Highlights: • Application of closed Brayton cycle for small and medium sized SFRs is reviewed. • S-CO 2 , helium and nitrogen cycle designs for small modular SFR applications are analyzed and compared in terms of cycle efficiency, component performance and physical size. • Several new layouts for each Brayton cycle are suggested to simplify the turbomachinery designs. • S-CO 2 cycle design shows the best efficiency and compact size compared to other Brayton cycles. - Abstract: Many previous sodium cooled fast reactors (SFRs) adopted steam Rankine cycle as the power conversion system. However, the concern of sodium water reaction has been one of the major design issues of a SFR system. As an alternative to the steam Rankine cycle, several closed Brayton cycles including supercritical CO 2 cycle, helium cycle and nitrogen cycle have been suggested recently. In this paper, these alternative gas Brayton cycles will be compared to each other in terms of cycle performance and physical size for small modular SFR application. Several new layouts are suggested for each fluid while considering the turbomachinery design and the total system volume

  9. Gas-cooled fast reactor fuel-cost assessment. Final report, October 1978-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.L.

    1979-01-01

    This program, contracted to provide a Gas Cooled Fast Reactor (GCFR) fuel assembly fabrication cost assessment, comprised the following basic activities: establish agreement on the ground rules for cost assessment, prepare a fuel factory flow sheet, and prepare a cost assessment for fuel assembly fabrication. Two factory sizes, 250 and 25 MTHM/year, were considered for fuel assembly fabrication cost assessment. The work on this program involved utilizing GE LMFBR cost assessment and fuel factory studies experience to provide a cost assessment of GCFR fuel assembly fabrication. The recent impact of highly sensitive safety and safeguards environment policies on fuel factory containment, safety, quality assurance and safeguards costs are significantly higher than might have been expected just a few years ago. Fuel assembly fabrication costs are significant because they represent an estimated 30 to 60% of the total fuel cycle costs. In light of the relative high cost of fabrication, changes in the core and assembly design may be necessary in order to enhance the overall fuel cycle economics. Fabrication costs are based on similar operations and experience used in other fuel cycle studies. Because of extrapolation of present technology (e.g., remote fuel fabrication versus present contact fabrication) and regulatory requirements, conservative cost estimates were made.

  10. Multiple lead seal assembly for a liquid-metal-cooled fast-breeder nuclear reactor

    International Nuclear Information System (INIS)

    Hutter, E.; Pardini, J.A.

    1977-01-01

    A reusable multiple lead seal assembly provides leak-free passage of stainless-steel-clad instrument leads through the cover on the primary tank of a liquid-metal-cooled fast-breeder nuclear reactor. The seal isolates radioactive argon cover gas and sodium vapor within the primary tank from the exterior atmosphere and permits reuse of the assembly and the stainless-steel-clad instrument leads. Leads are placed in flutes in a seal body, and a seal shell is then placed around the seal body. Circumferential channels in the body and inner surface of the shell are contiguous and together form a conduit which intersects each of the flutes, placing them in communication with a port through the wall of the seal shell. Liquid silicone rubber sealant is injected into the flutes through the port and conduit; the sealant fills the space in the flutes not occupied by the leads themselves and dries to a rubbery hardness. A nut, threaded onto a portion of the seal body not covered by the seal shell, jacks the body out of the shell and shears the sealant without damage to the body, shell, or leads. The leads may then be removed from the body. The sheared sealant is cleaned from the body, leads, and shell and the assembly may then be reused with the same or different leads. 3 claims, 6 figures

  11. Gas cooled fast reactor control rod drive mechanism deceleration unit. Test program

    International Nuclear Information System (INIS)

    Wagner, T.H.

    1981-10-01

    This report presents the results of the airtesting portion of the proof-of-principle testing of a Control Rod Scram Deceleration Device developed for use in the Gas Cooled Fast Reactor (GCFR). The device utilizes a grooved flywheel to decelerate the translating assembly (T/A). Two cam followers on the translating assembly travel in the flywheel grooves and transfer the energy of the T/A to the flywheel. The grooves in the flywheel are straight for most of the flywheel length. Near the bottom of the T/A stroke the grooves are spiraled in a decreasing slope helix so that the cam followers accelerate the flywheel as they transfer the energy of the falling T/A. To expedite proof-of-principle testing, some of the materials used in the fabrication of certain test article components were not prototypic. With these exceptions the concept appears to be acceptable. The initial test of 300 scrams was completed with only one failure and the failure was that of a non-prototypic cam follower outer sleeve material

  12. Numerical approach for quantification of self wastage phenomena in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Jang, Sung Hyun; Takata, Takashi; Yamaguchi, Akira; Uchbori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-01-01

    Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called 'self-wastage phenomena'. A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodium-water reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm)

  13. Numerical approach for quantification of self wastage phenomena in sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Hyun; Takata, Takashi [Graduate School of Engineering, Osaka University, Osaka (Japan); Yamaguchi, Akira [Graduate School of Engineering, The University of Tokyo, Ibaraki (Japan); Uchbori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki [Japan Atomic Energy Agency, Ibaraki (Japan)

    2015-10-15

    Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called 'self-wastage phenomena'. A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodium-water reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm)

  14. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2012-09-15

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  15. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    International Nuclear Information System (INIS)

    Sun, K.

    2012-09-01

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  16. Technical Meeting on Passive Shutdown Systems for Liquid Metal-Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2015-01-01

    A major focus of the design of modern fast reactor systems is on inherent and passive safety. Specific systems to improve reactor safety performance during accidental transients have been developed in nearly all fast reactor programs, and a large number of proposed systems have reached various stages of maturity. This Technical Meeting on Passive Shutdown Systems for Fast Reactors, which was recommended by the Technical Working Group on Fast Reactors (TWG-FR), addressed Member States’ expressed need for information exchange on projects and programs in the field, as well as for the identification of priorities based on the analysis of technology gaps to be covered through R&D activities. This meeting was limited to shutdown systems only, and did not include other passive features such as natural circulation decay heat removal systems etc.; however the meeting catered to passive shutdown safety devices applicable to all types of fast neutron systems. It was agreed to initiate a new study and produce a Nuclear Energy Series (NES) Technical Report to collect information about the existing operational systems as well as innovative concepts under development. This will be a useful source for member states interested in gaining technical expertise to develop passive shutdown systems as well as to highlight the importance and development in this area

  17. Role of small lead-cooled fast reactors for international deployment in worldwide sustainable nuclear energy supply

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Wade, D.C.; Moisseytsev, A.

    2008-01-01

    Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. Meeting future worldwide projected energy demands during this century (e.g., 1000 to 2000 GWe by 2050) in a sustainable manner while maintaining CO2 emissions at or below today's level will require massive deployments of nuclear reactors in non-fuel cycle states as well as fuel cycle states. The projected energy demands of non-fuel cycle states will not be met solely through the deployment of Light Water Reactors (LWRs) in those states without using up the world's resources of fissile material (e.g., known plus speculative virgin uranium resources = 15 million tonnes). The present U.S. policy is focused upon domestic deployment of large-scale LWRs and sodium-cooled fast spectrum Advanced Burner Reactors (ABRs) working in a symbiotic relationship that burns existing fissile material while destroying the actinides which are generated. Other major nuclear nations are carrying out the development and deployment of SFR breeders as witness the planning for SFR breeder deployments in France, Japan, China, India, and Russia. Small (less that 300 MWe) and medium (300 to 700 MWe) size reactors are better suited to the growing economies and infrastructures of many non-fuel cycle states and developing nations. For those deployments, fast reactor converters which are fissile self-sufficient by creating as much fissile material as they consume are preferred to breeders that create more fissile material than they consume. Thus

  18. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki [Nuclear Research Group, FMIPA, Bandung Institute of Technology Jl. Ganesha 10, Bandung 40132 (Indonesia); Miura, Ryosuke; Takaki, Naoyuki [Department of Nuclear Safety Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan); Sekimoto, H. [Emerritus Prof. of Research Laboratory for Nuclear Reactors, Tokyo Inst. of Technology (Japan)

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  19. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  20. Conceptual core design study for Japan sodium-cooled fast reactor: Review of sodium void reactivity worth evaluation

    International Nuclear Information System (INIS)

    Ohki, Shigeo

    2012-01-01

    The conceptual core design study for a large-scale Japan sodium-cooled fast reactor (JSFR) have been carried out in the framework of the FaCT project. The reference “High-internal conversion” core can satisfy the requirements for enhanced safety, as well as achieving economic competitiveness. In order to increase the design reliability, more rigorous uncertainty evaluation is important. Development of the verification and validation methodology of the core neutronic design method is currently underway. (author)

  1. Definition of breeding gain for the closed fuel cycle and application to a gas cooled fast reactor

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.; Kloosterman, J. L.; Van Der Hagen, T. H. J. J.; Van Dam, H.

    2006-01-01

    In this paper a definition is given for the Breeding Gain (BG) of a nuclear reactor, taking into account compositional changes of the fuel during irradiation, cool down and reprocessing. A definition is given for the reactivity weights required to calculate BG. To calculate the effects of changes in the initial fuel composition on BG, first order nuclide perturbation theory is used. The theory is applied to the fuel cycle of GFR600, a 600 MWth Generation IV Gas Cooled Fast Reactor. This reactor should have a closed fuel cycle, with a BG equal to zero, breeding just enough new fuel during irradiation to allow refueling by only adding fertile material. All Heavy Metal is recycled in the closed fuel cycle. The result is that a closed fuel cycle is possible if the reprocessing has low losses ( 238 U, 15% Pu, and low amounts of the Minor Actinides. (authors)

  2. Nuclear Power Station Kalkar, 300 MWe Prototype Nuclear Power Plant with Fast Sodium Cooled Reactor (SNR-300), Plant description

    International Nuclear Information System (INIS)

    1984-06-01

    The nuclear power station Kalkar (SNR-300) is a prototype with a sodium cooled fast reactor and a thermal power of 762 MW. The present plant description has been made available in parallel to the licensing procedure for the reactor plant and its core Mark-Ia as supplementary information for the public. The report gives a detailed description of the whole plant including the prevention measures against the impact of external and plant internal events. The radioactive materials within the reactor cooling system and the irradiation protection and surveillance measures are outlined. Finally, the operation of the plant is described with the start-up procedures, power operation, shutdown phases with decay heat removal and handling procedures

  3. Instrumentation and control of future sodium cooled fast reactors - Design improvements

    International Nuclear Information System (INIS)

    Madhusoodanan, K.; Sakthivel, M.; Chellapandi, P.

    2013-06-01

    India's fast reactor program started with the 40 MWt Fast Breeder Test Reactor. 500 MWe Prototype Fast Breeder Reactor (PFBR) is currently under construction at Kalpakkam. Safety of PFBR is enhanced by improved design features of I and C system. Since the design of Instrumentation and control (I and C) of PFBR, considerable improvements in terms of advancement in technology and indigenization has taken place. Further improvements in I and C is proposed for solving many of the difficulties faced during the design and construction phases of PFBR. Design improvements proposed are covered in this paper which will make the implementation and maintenance of I and C of future SFRs easier. (authors)

  4. Effects of fertile blanket on 600 MWth gas-cooled fast reactors: reactor and fuel cycle model

    International Nuclear Information System (INIS)

    Choi, Hang Bok

    2002-07-01

    A physics study has been performed to search for an optimum size of blanket for a 600 MWth gas-cooled fast reactor under fixed fuel and core specifications. The variables considered in this study are the reflector material, reflector thickness and blanket volume. The parametric calculations have shown that a positive breeding gain can be obtained by deploying 8 m 3 natural uranium blanket on the axial and radial boundaries of the core, surrounded by 40 cm Zr 3 Si 2 reflector. However the blanket core has disadvantages compared to the no-blanket core from the viewpoints of fuel fabrication cost and proliferation risk. On the other hand, the no-blanket core has large uncertainties in the possibility of achieving a positive breeding gain. Therefore further studies are recommended for the no-blanket option to improve the breeding gain and achieve a fissile self-sufficient fuel cycle, which is also proliferation-resistant. As an alternative, the blanket option can be considered, that ensures a positive breeding gain

  5. Neutronic/Thermal-hydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    International Nuclear Information System (INIS)

    Ragusa, Jean; Siegel, Andrew; Ruggieri, Jean-Michel

    2010-01-01

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  6. Neutronic/Thermalhydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jean Ragusa; Andrew Siegel; Jean-Michel Ruggieri

    2010-09-28

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  7. Development of Preliminary HT9 Cladding Tube for Sodium-cooled Fast Reactor (SFR)

    International Nuclear Information System (INIS)

    Kim, Jun Hwan; Baek, Jong Hyuk; Heo, Hyeong Min; Park, Sang Gyu; Kim, Sung Ho; Lee, Chan Bock

    2013-01-01

    To achieve manufacturing technology of the fuel cladding tube in order to keep pace with the predetermined schedule in developing SFR fuel, KAERI has launched in developing fuel cladding tube in cooperation with a domestic steelmaking company. After fabricating medium-sized 1.1 ton HT9 ingot, followed by the multiple processes of hot and cold working, preliminary samples of HT9 seamless cladding tube having 7.4mm in outer diameter, 0.56mm in thickness, and 3m in length were fabricated. The objective of this study is to summarize the brief development status of the HT9 cladding tubes. Mechanical properties like axial tension, biaxial burst, pressurized creep and sodium compatibility of the cladding tubes were carried out to set up the performance evaluation technology to test the prototype FMS cladding tube which is going to be manufactured in next stage. As a part of developing fuel cladding for the Sodium-cooled Fast Reactor (SFR), preliminary HT9 cladding tube was fabricated in cooperation with a domestic steelmaking company. Microstructure as well as mechanical tests like axial tensile test, biaxial burst test, and pressurized creep test of the fuel cladding were carried out. Performance of the domestic HT9 tube was revealed to be similar in the previously fabricated foreign HT9 tube. Further prototype FMS cladding tube is going to be manufactured in next year based on this experience. Various test items like mechanical test, sodium compatibility test, microstructural analysis, basic property, cladding performance under transient situation, and performance under ion and neutron irradiation are going be performed in the future to set up the relevant technology for the licensing of the SFR cladding tube

  8. Validation of CONTAIN-LMR code for accident analysis of sodium-cooled fast reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.; Hering, W.; Schikorr, M.; Stieglitz, R. [Inst. for Neutron Physic and Reactor Technology, Karlsruhe Inst. of Technology, Campus Nord (Germany)

    2012-07-01

    CONTAIN-LMR 1 is an analytical tool for the containment performance of sodium cooled fast reactors. In this code, the modelling for the sodium fire is included: the oxygen diffusion model for the sodium pool fire, and the liquid droplet model for the sodium spray fire. CONTAIN-LMR is also able to model the interaction of liquid sodium with concrete structure. It may be applicable to different concrete compositions. Testing and validation of these models will help to qualify the simulation results. Three experiments with sodium performed in the FAUNA facility at FZK have been used for the validation of CONTAIN-LMR. For pool fire tests, calculations have been performed with two models. The first model consists of one gas cell representing the volume of the burn compartment. The volume of the second model is subdivided into 32 coupled gas cells. The agreement between calculations and experimental data is acceptable. The detailed pool fire model shows less deviation from experiments. In the spray fire, the direct heating from the sodium burning in the media is dominant. Therefore, single cell modeling is enough to describe the phenomena. Calculation results have reasonable agreement with experimental data. Limitations of the implemented spray model can cause the overestimation of predicted pressure and temperature in the cell atmosphere. The ability of the CONTAIN-LMR to simulate the sodium pool fire accompanied by sodium-concrete reactions was tested using the experimental study of sodium-concrete interactions for construction concrete as well as for shielding concrete. The model provides a reasonably good representation of chemical processes during sodium-concrete interaction. The comparison of time-temperature profiles of sodium and concrete shows, that the model requires modifications for predictions of the test results. (authors)

  9. Thermal-hydraulic numerical simulation of fuel sub-assembly for Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Saxena, Aakanksha

    2014-01-01

    The thesis focuses on the numerical simulation of sodium flow in wire wrapped sub-assembly of Sodium-cooled Fast Reactor (SFR). First calculations were carried out by a time averaging approach called RANS (Reynolds- Averaged Navier-Stokes equations) using industrial code STAR-CCM+. This study gives a clear understanding of heat transfer between the fuel pin and sodium. The main variables of the macroscopic flow are in agreement with correlations used hitherto. However, to obtain a detailed description of temperature fluctuations around the spacer wire, more accurate approaches like LES (Large Eddy Simulation) and DNS (Direct Numerical Simulation) are clearly needed. For LES approach, the code TRIO U was used and for the DNS approach, a research code was used. These approaches require a considerable long calculation time which leads to the need of representative but simplified geometry. The DNS approach enables us to study the thermal hydraulics of sodium that has very low Prandtl number inducing a very different behavior of thermal field in comparison to the hydraulic field. The LES approach is used to study the local region of sub-assembly. This study shows that spacer wire generates the local hot spots (∼20 C) on the wake side of spacer wire with respect to the sodium flow at the region of contact with the fuel pin. Temperature fluctuations around the spacer wire are low (∼1 C-2 C). Under nominal operation, the spectral analysis shows the absence of any dominant peak for temperature oscillations at low frequency (2-10 Hz). The obtained spectra of temperature oscillations can be used as an input for further mechanical studies to determine its impact on the solid structures. (author) [fr

  10. Towards the Characterization of the Bubble Presence in Liquid Sodium of Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Cavaro, M.; Jeannot, J.P.; Payan, C.

    2013-06-01

    In a Sodium cooled Fast Reactors (SFR), different phenomena such as gas entrainment or nucleation can lead to gaseous micro-bubbles presence in the liquid sodium of the primary vessel. Although this free gas presence has no direct impact on the core neutronics, the French Atomic Energy and Alternative Energies Commission (CEA) currently works on its characterization to, among others, check the absence of risk of large gas pocket formation and to assess the induced modifications of the sodium acoustic properties. The main objective is to evaluate the void fraction values (volume fraction of free gas) and the radii histogram of the bubbles present in liquid sodium. Acoustics and electromagnetic techniques are currently developed at CEA: - The low-frequency speed of sound measurement, which allows us to link - thanks to Wood's model - the measured speed of sound to the actual void fraction. - The nonlinear mixing of two frequencies, based on the nonlinear resonance behavior of a bubble. This technique allows knowing the radius histogram associated to a bubble cloud. Two different mixing techniques are presented in this paper: the mixing of two high frequencies and the mixing of a high and a low frequency. - The Eddy-current flowmeter (ECFM), the output signal of which is perturbed by free gas presence and in consequence allows detecting bubbles. For each technique, initial results are presented. Some of them are really promising. So far, acoustic experiments have been led with an air-water experimental set-up. Micro-bubbles clouds are generated with a dissolved air flotation device and monitored by an optical device which provides reference measurements. Generated bubbles have radii range from few micrometers to several tens of micrometers. Present and future air/water experiments are presented. Furthermore, a development plan of in-sodium tests is presented in terms of a device set-up, instrumentation, modeling tools and experiments. (authors)

  11. SEALER: a very small lead cooled fast reactor for commercial energy production in off-grid communities

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J., E-mail: janne@leadcold.com [LeadCold Reactors, Dalgatan 3C, Marsta (Sweden); Bortot, S., E-mail: sara.bortot@psi.ch [Paul Scherrer Inst., Villigen (Switzerland)

    2014-07-01

    SEALER (Swedish Advanced Lead Reactor) is a small lead cooled fast reactor operating on 20% enriched UO{sub 2} fuel. It is designed for commercial production of electricity and heat in the Canadian arctic. In this paper, we present an updated set of reactivity coefficients for the SEALER core, used in simulations of un-protected transients such as control-rod withdrawal, and loss of flow. The analysis is carried out using the SAS4A/SASSYS-1 (SAS) system code developed by ANL and the BELLA multi-point dynamics code developed by KTH and PSI. (author)

  12. Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path

  13. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  14. Sodium tests on an integrated purification prototype for a sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Abramson, R.

    1984-04-01

    This paper describes sodium tests performed on the integrated primary sodium purification prototype of the Creys Malville Super Phenix 1 fast breeder reactor. These tests comprised: - hydrostatic test, - thermal tests, - handling tests. They enabled a number of new technological arrangements to be qualified and provided the necessary information for the design and construction of the Super Phenix 1 purification units

  15. Reliability analysis of 2400 MWth gas-cooled fast reactor natural circulation decay heat removal system

    International Nuclear Information System (INIS)

    Marques, M.; Bassi, C.; Bentivoglio, F.

    2012-01-01

    In support to a PSA (Probability Safety Assessment) performed at the design level on the 2400 MWth Gas-cooled Fast Reactor, the functional reliability of the decay heat removal system (DHR) working in natural circulation has been estimated in two transient situations corresponding to an 'aggravated' Loss of Flow Accident (LOFA) and a Loss of Coolant Accident (LOCA). The reliability analysis was based on the RMPS methodology. Reliability and global sensitivity analyses use uncertainty propagation by Monte Carlo techniques. The DHR system consists of 1) 3 dedicated DHR loops: the choice of 3 loops (3*100% redundancy) is made in assuming that one could be lost due to the accident initiating event (break for example) and that another one must be supposed unavailable (single failure criterion); 2) a metallic guard containment enclosing the primary system (referred as close containment), not pressurized in normal operation, having a free volume such as the fast primary helium expansion gives an equilibrium pressure of 1.0 MPa, in the first part of the transient (few hours). Each dedicated DHR loop designed to work in forced circulation with blowers or in natural circulation, is composed of 1) a primary loop (cross-duct connected to the core vessel), with a driving height of 10 meters between core and DHX mid-plan; 2) a secondary circuit filled with pressurized water at 1.0 MPa (driving height of 5 meters for natural circulation DHR); 3) a ternary pool, initially at 50 C. degrees, whose volume is determined to handle one day heat extraction (after this time delay, additional measures are foreseen to fill up the pool). The results obtained on the reliability of the DHR system and on the most important input parameters are very different from one scenario to the other showing the necessity for the PSA to perform specific reliability analysis of the passive system for each considered scenario. The analysis shows that the DHR system working in natural circulation is

  16. Physics and safety studies of a low conversion ratio sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Smith, M. A.; Hill, R. N.; Dunn, F. E.

    2004-01-01

    This paper explores the feasibility of a compact fast burner reactor that can achieve a low transuranic conversion ratio. The major design option considered is the reduction of fissile breeding by the removal of fertile material from the fast reactor system. Reductions in the fuel pin diameter and thus fuel loading were employed to remove fertile material. Reactor performance parameters and reactivity coefficients were evaluated for a compact core design with a targeted conversion ratio of 0.25. To assess the safety implications, a detailed transient analysis model was employed using the SAS4A/SASSYS-1 computer code. A series of calculations was performed to assess the behavior of the reactor and plant in an unprotected loss-of-flow accident (ULOF). A parametric study was also carried out using increasingly conservative modeling assumptions. The computational results show that for nominal, best-estimate analysis assumptions and input data, the low conversion ratio reactor design responds to the ULOF with a very high level of self-protection. Both short-term and long-term quasi-equilibrium reactor conditions predicted in the analysis indicate very large margins of safety. (authors)

  17. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1982-01-01

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  18. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    2016-04-17

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooled fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the

  19. Challenges and innovative technologies on fuel handling systems for future sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Chassignet, Mathieu; Dumas, Sebastien; Penigot, Christophe; Prele, Gerard; Capitaine, Alain; Rodriguez, Gilles; Sanseigne, Emmanuel; Beauchamp, Francois

    2011-01-01

    The reactor refuelling system provides the means of transporting, storing, and handling reactor core subassemblies. The system consists of the facilities and equipment needed to accomplish the scheduled refuelling operations. The choice of a FHS impacts directly on the general design of the reactor vessel (primary vessel, storage, and final cooling before going to reprocessing), its construction cost, and its availability factor. Fuel handling design must take into account various items and in particular operating strategies such as core design and management and core configuration. Moreover, the FHS will have to cope with safety assessments: a permanent cooling strategy to prevent fuel clad rupture, plus provisions to handle short-cooled fuel and criteria to ensure safety during handling. In addition, the handling and elimination of residual sodium must be investigated; it implies specific cleaning treatment to prevent chemical risks such as corrosion or excess hydrogen production. The objective of this study is to identify the challenges of a SFR fuel handling system. It will then present the range of technical options incorporating innovative technologies under development to answer the GENERATION IV SFR requirements. (author)

  20. Safety design/analysis and scenario for prevention of CDA with ECCS in lead-bismuth-cooled fast reactor

    International Nuclear Information System (INIS)

    Minoru, Takahashi; Vaclav, Dostal; Abu Khalid, Rivai; Novitrian; Yumi, Yamada

    2007-01-01

    Safety design has been developed to show safety feature of Pb-Bi-cooled direct contact boiling water small fast reactor (PBWFR). The core is designed to have negative void reactivity even if the entire core and upper plenum are voided by steam intrusion from above. In-vessel type control rod driving mechanisms are used to prevent control rods from accidental ejection due to high pressure in the reactor vessel. In cases of coolant leakage from reactor vessel and feed water pipes, Pb-Bi coolant level in the reactor vessel is kept at the required level for decay heat removal by means of closed type guard vessel. Dual pipes are adopted to avoid leak of water in the feedwater system. Pump trip in feedwater systems initiates loss of coolant flow (LOF) event, although there is no concern of loss of flow accident due to primary pump trip. Injection of high pressure water slows down the flow-coast-down of feedwater at the LOF event. It has been evaluated that the fuel temperature is kept lower than safety limits at the unprotected loss of flow and heat sink (ATWS). A scenario for prevention of the core disruptive accident (CDA) with the emergency core cooling system (ECCS) is examined. The reactor becomes super-critical when the reactor vessel is filled with water. It is necessary to use water with boric acid for the ECC system, and additional backup rods for sub-critical core in water injection. (authors)

  1. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  2. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  3. Preliminary design of a borax internal core-catcher for a gas cooled fast reactor

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schumacher, G.

    1976-09-01

    Preliminary thermal calculations show that a core-catcher appears to be feasible, which is able to cope with the complete meltdown of the core and blankets of a 1,000 MWe GCFR. This core-catcher is based on borax (Na 2 B 4 O 7 ) as dissolving material of the oxide fuel and of the fission products occuring in oxide form. The borax is contained in steel boxes forming a 2.1 meter thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel, just underneath the reactor core. The fission products are dispersed in the pool formed by the liquid borax. The heat power density in the pool is conveniently reduced and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system. (orig.) [de

  4. The R and D issues necessary to achieve the safety design of commercialized liquid-metal cooled fast reactors

    International Nuclear Information System (INIS)

    Shoji, Kotake; Koji, Dozaki; Shigenobu, Kubo; Yoshio, Shimakawa; Hajime, Niwa; Masakazu, Ichimiya

    2002-01-01

    Within the framework of the feasibility study on commercialized fast reactor cycle systems (hereafter described as F/S), the safety design principle is investigated and several kinds of design studies are now in progress. Among the designs for liquid-metal cooled fast reactor (LMR), the advanced loop type sodium cooled fast reactor (FR) is one of the promising candidate as future commercialized LMR. In this paper, the safety related research and development (R and D) issues necessary to achieve the safety design are described along the defence-in-depth principle, taking account of not only the system characteristics of the advanced loop concepts but also design studies and R and D experiences so far. Safety issues related to the hypothetical core disruptive accidents (CDA) are emphasized both from the prevention and mitigation. A re-criticality free core concept with a special fuel assembly is pursued by performing both analytical and experimental efforts, in order to realize the rational design and to establish easy-to-understand safety logic. Sodium related issues are also given to ensure plant availability and to enhance the acceptability to the public. (authors)

  5. Reanalysis of the gas-cooled fast reactor experiments at the zero power facility proteus - Spectral indices

    Energy Technology Data Exchange (ETDEWEB)

    Perret, G.; Pattupara, R. M. [Paul Scherrer Inst., 5232 Villigen (Switzerland); Girardin, G. [Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Chawla, R. [Paul Scherrer Inst., 5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

    2012-07-01

    The gas-cooled fast reactor (GCFR) concept was investigated experimentally in the PROTEUS zero power facility at the Paul Scherrer Inst. during the 1970's. The experimental program was aimed at neutronics studies specific to the GCFR and at the validation of nuclear data in fast spectra. A significant part of the program used thorium oxide and thorium metal fuel either distributed quasi-homogeneously in the reference PuO{sub 2}/UO{sub 2} lattice or introduced in the form of radial and axial blanket zones. Experimental results obtained at the time are still of high relevance in view of the current consideration of the Gas-cooled Fast Reactor (GFR) as a Generation-IV nuclear system, as also of the renewed interest in the thorium cycle. In this context, some of the experiments have been modeled with modern Monte Carlo codes to better account for the complex PROTEUS whole-reactor geometry and to allow validating recent continuous neutron cross-section libraries. As a first step, the MCNPX model was used to test the JEFF-3.1, JEFF-3.1.1, ENDF/B-VII.0 and JENDL-3.3 libraries against spectral indices, notably involving fission and capture of {sup 232}Th and {sup 237}Np, measured in GFR-like lattices. (authors)

  6. Proposals for in-service inspection and monitoring of selected components located within or part of the primary containment of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Bolt, P.R.

    1976-01-01

    Design and operational experience of CEGB gas cooled reactors and certain overseas reactor plant is reviewed in relation to in-service inspection and monitoring capabilities. Design guidelines and preliminary proposals are given for in-service inspection and monitoring of selected components located within or part of the primary containment of sodium cooled fast reactors. Specific comments are made on the items of further design and development work believed to be necessary

  7. Problems specific to the piping of sodium-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Vrillon, B.; Befre, J.; Schaller, K.

    1975-01-01

    A certain number of specific problems arising in connection with the sodium pipes in fast neutron reactors, especially those of large diameter, are presented. The supporting system must be designed to achieve the best compromise among stresses due to weight and various stresses of thermal origin. Large-scale experimental studies carried out on actual elements of the intermediate circuit of the Phenix reactor showed that the circuits can withstand considerable deformation collapse of the walls without danger of leakage. Protection studies against earthquakes are mentionned [fr

  8. Thermal and stability considerations for a supercritical water-cooled fast reactor during power-raising phase of plant startup

    International Nuclear Information System (INIS)

    Cai, Jiejin; Ishiwatari, Yuki; Oka, Yoshiaki; Ikejiri, Satoshi

    2009-01-01

    This paper describes thermal analyses and linear stability analyses of the Supercritical Water-cooled Fast Reactor with 'two-path' flow scheme during the power-raising phase of plant startup. For thermal consideration, the same criterion of the maximum cladding surface temperature (MCST) as applied to the normal operating condition is used. For thermal-hydraulic stability consideration, the decay ratio of 0.5 is applied, which is taken from BWRs. Firstly, we calculated the flow rate distribution among the parallel flow paths from the reactor vessel inlet nozzles to the mixing plenum below the core using a system analysis code. The parallel flow paths consist of the seed fuel assemblies cooled by downward flow, the blanket fuel assemblies cooled by downward flow and the downcomer. Then, the MCSTs are estimated for various reactor powers and feedwater flow rates with system analyses. The decay ratios are estimated with linear stability analyses. The available range of the reactor power and feedwater flow rate to satisfy the thermal and stability criteria is obtained. (author)

  9. Void reactivity decomposition for the Sodium-cooled Fast Reactor in equilibrium fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sun Kaichao, E-mail: kaichao.sun@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Krepel, Jiri; Mikityuk, Konstantin; Pelloni, Sandro [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2011-07-15

    Highlights: > We analyze the void reactivity effect for three ESFR core fuel cycle states. > The void reactivity effect is decomposed by neutron balance method. > Novelly, the normalization to the integral flux in the active core is applied. > The decomposition is compared with the perturbation theory based results. > The mechanism and the differences of the void reactivity effect are explained. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many advantages, but has one dominating neutronic drawback - a positive sodium void reactivity. The aim of this study is to develop and apply a methodology, which should help better understand the causes and consequences of the sodium void effect. It focuses not only on the beginning-of-life (BOL) state of the core, but also on the beginning of open and closed equilibrium (BOC and BEC, respectively) fuel cycle conditions. The deeper understanding of the principal phenomena involved may subsequently lead to appropriate optimization studies. Various voiding scenarios, corresponding to different spatial zones, e.g. node or assembly, have been analyzed, and the most conservative case - the voiding of both inner and outer fuel zones - has been selected as the reference scenario. On the basis of the neutron balance method, the corresponding SFR void reactivity has been decomposed reaction-, isotope-, and energy-group-wise. Complementary results, based on generalized perturbation theory and sensitivity analysis, are also presented. The numerical analysis for both neutron balance and perturbation theory methods has been carried out using appropriate modules of the ERANOS code system. A strong correlation between the flux worth, i.e. the product of flux and adjoint flux, and the void reactivity importance distributions has been found for the node- and assembly-wise voiding scenarios. The neutron balance based decomposition has shown that the void effect is caused mainly by the

  10. Void reactivity decomposition for the Sodium-cooled Fast Reactor in equilibrium fuel cycle

    International Nuclear Information System (INIS)

    Sun Kaichao; Krepel, Jiri; Mikityuk, Konstantin; Pelloni, Sandro; Chawla, Rakesh

    2011-01-01

    Highlights: → We analyze the void reactivity effect for three ESFR core fuel cycle states. → The void reactivity effect is decomposed by neutron balance method. → Novelly, the normalization to the integral flux in the active core is applied. → The decomposition is compared with the perturbation theory based results. → The mechanism and the differences of the void reactivity effect are explained. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many advantages, but has one dominating neutronic drawback - a positive sodium void reactivity. The aim of this study is to develop and apply a methodology, which should help better understand the causes and consequences of the sodium void effect. It focuses not only on the beginning-of-life (BOL) state of the core, but also on the beginning of open and closed equilibrium (BOC and BEC, respectively) fuel cycle conditions. The deeper understanding of the principal phenomena involved may subsequently lead to appropriate optimization studies. Various voiding scenarios, corresponding to different spatial zones, e.g. node or assembly, have been analyzed, and the most conservative case - the voiding of both inner and outer fuel zones - has been selected as the reference scenario. On the basis of the neutron balance method, the corresponding SFR void reactivity has been decomposed reaction-, isotope-, and energy-group-wise. Complementary results, based on generalized perturbation theory and sensitivity analysis, are also presented. The numerical analysis for both neutron balance and perturbation theory methods has been carried out using appropriate modules of the ERANOS code system. A strong correlation between the flux worth, i.e. the product of flux and adjoint flux, and the void reactivity importance distributions has been found for the node- and assembly-wise voiding scenarios. The neutron balance based decomposition has shown that the void effect is caused mainly

  11. Experience of secondary cooling system modification at fast breeder reactor MONJU

    International Nuclear Information System (INIS)

    Ito, Keisuke; Nakatsuji, M.; Matsuno, Hiroki; Matsui, K.; Tone, T.

    2007-01-01

    The prototype fast breeder reactor MONJU has been shut down since the secondary sodium leak accident which occurred in December 1995. After the accident, the investigation of its cause and the comprehensive review were performed and the various counter measures against the sodium leak were also discussed. The main modification works of MONJU started in September 2005. The work should adopt suitable methods to treat sodium, since MONJU uses chemically active sodium as a coolant. Considering the chemical activity of sodium, MONJU learned the modification methods from the experimental fast reactor JOYO and precedent plants of overseas and adopted plastic bags when the sodium boundary is opened, management of oxygen concentration in the plastic bags, a slightly positive control of the cover gas pressure, compress cut by the roll cutters to prevent the entry of the chips, etc.. Owing to introduction of these methods, the modification works have proceeded almost on schedule without troubles. (author)

  12. Experience of secondary cooling system modification at prototype fast breeder reactor MONJU (Translated document)

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Sakamoto, Yoshihiko

    2010-09-01

    The prototype fast breeder reactor MONJU has been shut down since the secondary sodium leak accident that occurred in December 1995. After the accident, an investigation into the cause and a comprehensive safety review of the plant were conducted, and various countermeasures for sodium leak were examined. Modification work commenced in September 2005. Since sodium, a chemically active material, is used as coolant in MONJU, the modification work required work methods suitable for the handling of sodium. From this perspective, the use of a plastic bag when opening the sodium boundary, oxygen concentration control in a plastic bag, slightly-positive pressure control of cover gas in the systems, pressing and cutting with a roller cutter to prevent the incorporation of metal fillings, etc. were adopted, with careful consideration given to experience and findings from previous modification work at the experimental fast reactor JOYO and plants abroad. Owing to these work methods, the modification work proceeded close to schedule without incident. (author)

  13. Calculation of the neutron noise induced by periodic deformations of a large sodium-cooled fast reactor core

    International Nuclear Information System (INIS)

    Zylbersztejn, F.; Tran, H.N.; Pazsit, I.; Filliatre, P.; Jammes, C.

    2014-01-01

    The subject of this paper is the calculation of the neutron noise induced by small-amplitude stationary radial variations of the core size (core expansion/compaction, also called core flowering) of a large sodium-cooled fast reactor. The calculations were performed on a realistic model of the European Sodium Fast Reactor (ESFR) core with a thermal output of 3600 MW(thermal), using a multigroup neutron noise simulator. The multigroup cross sections and their fluctuations that represent the core geometry changes for the neutron noise calculations were generated by the code ERANOS. The space and energy dependences of the noise source represented by the core expansion/compaction and the induced neutron noise are calculated and discussed. (authors)

  14. Minor Actinide Recycle in Sodium Cooled Fast Reactors Using Heterogeneous Targets

    International Nuclear Information System (INIS)

    Bays, Samuel; Medvedev, Pavel; Pope, Michael; Ferrer, Rodolfo; Forget, Benoit; Asgari, Mehdi

    2009-01-01

    This paper investigates the plausible design of transmutation target assemblies for minor actinides (MA) in Sodium Fast Reactors (SFR). A heterogeneous recycling strategy is investigated, whereby after each reactor pass, un-burned MAs from the targets are blended with MAs produced by the driver fuel and additional MAs from Spent Nuclear Fuel (SNF). A design iteration methodology was adopted for customizing the core design, target assembly design and matrix composition design. The overall design was constrained against allowable peak or maximum in-core performances. While respecting these criteria, the overall design was adjusted to reduce the total number of assemblies fabricated per refueling cycle. It was found that an inert metal-hydride MA-Zr-Hx target matrix gave the highest transmutation efficiency, thus allowing for the least number of targets to be fabricated per reactor cycle.

  15. Thermodynamic Data to Model the Interaction Between Coolant and Fuel in Gen IV Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Dinsdale, Alan; Gisby, John; Davies, Hugh; Konings, Rudy; Benes, Ondrej

    2013-06-01

    Understanding the behaviour of nuclear fuels in various environments is vital to the design and safe operation of nuclear reactors. While this is true if the reactor is operating within its design specification, it is even more so if accidents occur and the fuel is exposed to unexpected temperatures, pressures or chemical environments. It is clearly hazardous and costly to explore all such scenarios experimentally and therefore it is necessary to undertake modelling where possible using well-grounded theoretical approaches. This paper will show examples of where calculations of chemical and phase equilibria have been applied successfully to the long term storage of nuclear waste, phase formation during core meltdown and prediction of fission product release into the atmosphere. It will also highlight the development of thermodynamic data carried out during the European Metrology Research Project Metrofission required to model the potential interaction between the coolant, nuclear fuel, containment materials and atmosphere of a sodium cooled fast reactor. (authors)

  16. Fertile assembly for a fast neutron nuclear reactor cooled by liquid sodium, with regulation of the cooling rate

    International Nuclear Information System (INIS)

    Pradal, L.; Berte, M.; Chiarelli, C.

    1985-01-01

    The assembly has a casing in which are arranged the fertile elements, the liquid sodium flowing through the casing along these elements. It includes several apertured diaphragms transverse to the rods to regulate the liquid sodium flow rate. At least one diaphragm, in its central part around its aperture, of a material soluble in liquid sodium, such as copper. The invention applies, more particularly, to fast neutron nuclear reactor having a heterogeneous core. The coolant flow can increase with time to match the increased power generated by the fertile assembly along its life [fr

  17. Studies on plant dynamics of sodium-cooled fast breeder reactors - verification of a plant model

    International Nuclear Information System (INIS)

    Schubert, B.

    1988-01-01

    For the analysis of sodium-cooled FBR safety and dynamics theoretical models are used, which have to be verified. In this report the verification of the plant model SSC-L is conducted by the comparison of calculated data with measurements of the experimental reactors KNK II and RAPSODIE. For this the plant model is extended and adapted. In general only small differences between calculated and measured data are recognized. The results are used to improve and complete the plant model. The extensions of the plant model applicability are used for the calculation of a loss of heat sink transient with reactor scram, considering pipes as passive heat sinks. (orig./HP) With 69 figs., 10 tabs [de

  18. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  19. Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Martinez-Martinez, Sinuhe; Messai, Nadhir; Jeannot, Jean-Philippe; Nuzillard, Danielle

    2015-01-01

    The total instantaneous blockage (TIB) of an assembly in the core of a sodium-cooled fast reactor (SFR) is investigated. Such incident could appear as an abnormal rise in temperature on the assemblies neighbouring the blockage. Its detection relies on a dataset of temperature measurements of the assemblies making up the core of the French Phenix Nuclear Reactor. The data are provided by the French Commission of Atomic and Alternatives Energies (CEA). Here, two strategies are proposed depending on whether the sensor measurement of the suspected assembly is reliable or not. The proposed methodology implements a time-lagged feed-forward neural (TLFFN) Network in order to predict the one-step-ahead temperature of a given assembly. The incident is declared if the difference between the predicted process and the actual one exceeds a threshold. In these simulated conditions, the method is efficient to detect small gradients as expected in reality. - Highlights: • We study the total instantaneous blockage (TIB) of a sodium-cooled fast reactor. • The TIB symptom is simulated as an abrupt rise on temperature (0.1–1 °C/s). • The goal is to improve the early detection of the incident. • Two strategies laying on neural networks are proposed. • TIB is detected in 3 s for 1 °C/s and 18–21 s for 0.1 °C/s

  20. Study on neutronics performance of flower shape advanced supercritical water cooled fast reactor with different solid moderators

    International Nuclear Information System (INIS)

    Yu Tao; Li Zhifeng; Xie Jinsen; Peng Honghua

    2015-01-01

    The supercritical water cooled fast reactors worked at such harsh condition with high temperature and high pressure, huge hydrogen balance pressure and thermal shock can result in a great loss of hydrogen. The released hydrogen would be out of control under accident situations. K_e_f_f, conversion ratio, moderator temperature effect, Doppler effect and void effect of different material such as ZrH_1_._7, Bp, BeO, C and SiC are discussed. BeO and SiC hold better integrated performance among these materials. Besides, moderators have less effect on the Doppler effect of fuel. (authors)

  1. Adaptation and implementation of the TRACE code for transient analysis on designs of cooled lead fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2014-01-01

    The article describes the changes implemented in the TRACE code to include thermodynamic tables of liquid lead drawn from experimental results. He then explains the process for developing a thermohydraulic model for the prototype ALFRED and analysis of a selection of representative transient conducted within the framework of international research projects. The study demonstrates the applicability of TRACE code to simulate designs of cooled lead fast reactors and exposes the high safety margins are there in this technology to accommodate the most severe transients identified in their security study. (Author)

  2. A Review of PSA Technology Applications according to the Development of Sodium-cooled Fast Reactors in the World

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Lee, Yong Bum; Jung, Hae Yong; Kim, Sang Ji; Hahn, Do Hee; Yang, Joon Eon

    2008-12-01

    The international nuclear societies request to perform Probabilistic Safety Assessment (PSA) according to the development of Gen IV Sodium-cooled Fast Reactors (SFR). One of the major tasks of the PSA is to identify various sequences of events which could lead to the release of radioactivity. However, due to the limited operating and SFR PSA experiences, it will be difficult to derive and to quantify core damage frequency for SFR under development in Korea, so called KALIMER. Hence, in this report, the foreign PSA results, such as USA and Japan, are analyzed based on the obtained documents. Finally an approach on how to perform PSA for KALIMER is suggested

  3. Finite element modeling of fluid/thermal/structural interaction for a gas-cooled fast reactor core

    International Nuclear Information System (INIS)

    Bennett, J.G.; Ju, F.D.

    1980-01-01

    Two nonlinear finite element formulations for application to a series of experiments in the Gas-Cooled Fast Reactor (GCFR) development program are described. An efficient beam column element for moderately large deformations is combined with a finite element developed for an engineering description of a convecting fluid. Typical results from both elements are illustrated. A combined application for a problem typical of the GCFR loss-of-coolant experiments is illustrated. These problems are not the usual fluid structural interaction problems in that the inertia coupling is negligible while the thermal coupling is very important

  4. CFD modeling and thermal-hydraulic analysis for the passive decay heat removal of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Hung, T.C.; Dhir, V.K.; Chang, J.C.; Wang, S.K.

    2011-01-01

    Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: In this study, a pool-typed design similar to sodium-cooled fast reactor (SFR) of the fourth generation reactors has been modeled using CFD simulations to investigate the characteristics of a passive mechanism of Shutdown Heat Removal System (SHRS). The main aim is to refine the reactor pool design in terms of temperature safety margin of the sodium pool. Thus, an appropriate protection mechanism is maintained in order to ensure the safety and integrity of the reactor system during a shutdown mode without using any active heat removal system. The impacts on the pool temperature are evaluated based on the following considerations: (1) the aspect ratio of pool diameter to depth, (2) the values of thermal emissivity of the surface materials of reactor and guard vessels, and (3) innerpool liner and core periphery structures. The computational results show that an optimal pool design in geometry can reduce the maximum pool temperature down to ∼551 o C which is substantially lower than ∼627 o C as calculated for the reference case. It is also concluded that the passive Reactor Air Cooling System (RACS) is effective in removing decay heat after shutdown. Furthermore, thermal radiation from the surface of the reactor vessel is found to be important; and thus, the selection of the vessel surface materials with a high emissivity would be a

  5. A fast converging CFD model for thermal hydraulic analysis of gas cooled reactor cores

    International Nuclear Information System (INIS)

    Chen, Gary; Anghaie, Samim

    1999-01-01

    A computational fluid dynamics (CFD) approach to the solution of Navier-Stokes equations for the thermal and flow fields of gas cooled reactor cores is presented. An implicit-explicit MacCormack method based on finite volume discretization scheme, in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve axisymmetric, thin-layer Navier-Stokes equations. This numerical method requires only the inversion of block bidiagonal systems rather than block tridiagonal systems, thus yielding savings in computer time and storage requirements. A two-layer algebraic eddy viscosity turbulence model is used in this study. The effects of turbulence are simulated in terms of the eddy viscosity coefficient, which is calculated for an inner and an outer region separately. An enthalpy-rebalancing scheme is implemented to allow the convergence solutions to be obtained with the application of a wall heat flux. The detailed computational analysis developed in this work is used to evaluate many different Nusselt number equations, property corrections, and axial distance corrections. The calculation based on this CFD model is compared with other published results. The good agreement indicates the usefulness of the presented model for the prediction of flow and temperature distributions for gas cooled reactor cores. (author)

  6. JSFR design progress related to development of safety design criteria for Generation IV sodium-cooled fast reactors. (1) Overview

    International Nuclear Information System (INIS)

    Kamide, Hideki; Ando, Masato; Ito, Takaya

    2015-01-01

    JAEA, JAPC and MFBR have been conducting design study for the Japan Sodium-cooled Fast Reactor (JSFR), which is a design concept aiming at future commercial use as sustainable electric power source. As the result of the design study and R and D activity related the innovative technologies incorporated in the design in the Fast Reactor Cycle Technology Development (FaCT) project up to 2010, basic design concept of JSFR was established and its development process to the commercialization including construction and operation of a demonstration version of JSFR was outlined. JSFR is a looptype next generation sodium-cooled fast reactor (SFR), which is aiming at achieving development targets of Generation IV reactors concerning sustainability, safety and reliability, economics and proliferation resistance and physical protection by introducing the innovative technologies such as shortened high-chromium steel piping. The output power is assumed for the design study as 1,500 MWe for the commercial version and 750 MWe for the demonstration version. In FaCT phase I up to 2010, in order to evaluate feasibility to achieve the development targets, the design study has been conducted on the main components and systems. Since 2011, in order to contribute to the development of safety design criteria (SDC) and safety design guideline (SDG), which include the lessons learned from the TEPCO's Fukushima Dai-ichi nuclear power plants accident, in the frame work of Generation IV International Forum (GIF), the design study is focusing on the design measures against severe external events such as earthquake and tsunami. At the same time, the design study is going into detail and paying much attention to the maintenance and repair to make surer its feasibility. This paper summarizes the design concept of the demonstration version of JSFR in which progress of design work was incorporated for the safety issues on SDC and SDG of a SFR. (author)

  7. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco

    2016-01-01

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  8. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco, E-mail: gianfranco.caruso@uniroma1.it

    2016-08-15

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  9. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  10. Optimization of material and production to develop fluoroelastomer inflatable seals for sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.i [Indira Gandhi Centre for Atomic Research (IGCAR), Department of Atomic Energy (DAE), Kalpakkam, Tamilnadu 603102 (India); Raj, Baldev, E-mail: dir@igcar.gov.i [Indira Gandhi Centre for Atomic Research (IGCAR), Department of Atomic Energy (DAE), Kalpakkam, Tamilnadu 603102 (India)

    2011-03-15

    Research highlights: Production of thin fluoroelastomer profiles by cold feed extrusion and continuous cure involving microwave and hot air heating. Use of peroxide curing in air during production. Use of fluoroelastomers based on advanced polymer architecture (APA) for the production of profiles. Use of the profiles in inflatable seals for critical application of Prototype Fast Breeder Reactor. Tailoring of material formulation by synchronized optimization of material and production technologies to ensure that the produced seal ensures significant gains in terms of performance and safety in reactor under synergistic influences of temperature, radiation, air and sodium aerosol. - Abstract: The feasibility of producing thin-walled fluoroelastomer profiles under continuous, atmospheric-pressure vulcanization conditions in air has been demonstrated by successful manufacture of {approx}2 m diameter test inflatable seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) using a 50/50 blend formulation of Viton GBL-200S/600S based on advanced polymer architecture (APA). A commercial cold feed screw extruder with 90 mm diameter screw was used along with continuous cure by microwave (2.45 GHz) and hot air heating (190 {sup o}C) at a line speed of 1 m/min to produce the seals. The blend formulation promises significant improvement in the performance and safety of the seals. This article depicts the relevant characteristics of the original inflatable seal compound that was used as reference to achieve the objectives through synchronized optimization of material and production technologies. The production trials are outlined and the blend formulation used with minor factory modifications to produce the test seals is reported. Progressive refinements of the original, Viton A-401C based compound to the blend formulation is presented along with an assessment of potential performance gains. Possible uses of the reported formulation and production technique for other large

  11. Optimization of material and production to develop fluoroelastomer inflatable seals for sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Sinha, N.K.; Raj, Baldev

    2011-01-01

    Research highlights: → Production of thin fluoroelastomer profiles by cold feed extrusion and continuous cure involving microwave and hot air heating. → Use of peroxide curing in air during production. → Use of fluoroelastomers based on advanced polymer architecture (APA) for the production of profiles. → Use of the profiles in inflatable seals for critical application of Prototype Fast Breeder Reactor. → Tailoring of material formulation by synchronized optimization of material and production technologies to ensure that the produced seal ensures significant gains in terms of performance and safety in reactor under synergistic influences of temperature, radiation, air and sodium aerosol. - Abstract: The feasibility of producing thin-walled fluoroelastomer profiles under continuous, atmospheric-pressure vulcanization conditions in air has been demonstrated by successful manufacture of ∼2 m diameter test inflatable seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) using a 50/50 blend formulation of Viton GBL-200S/600S based on advanced polymer architecture (APA). A commercial cold feed screw extruder with 90 mm diameter screw was used along with continuous cure by microwave (2.45 GHz) and hot air heating (190 o C) at a line speed of 1 m/min to produce the seals. The blend formulation promises significant improvement in the performance and safety of the seals. This article depicts the relevant characteristics of the original inflatable seal compound that was used as reference to achieve the objectives through synchronized optimization of material and production technologies. The production trials are outlined and the blend formulation used with minor factory modifications to produce the test seals is reported. Progressive refinements of the original, Viton A-401C based compound to the blend formulation is presented along with an assessment of potential performance gains. Possible uses of the reported formulation and production technique for

  12. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Paolo [Westinghouse Electric Company LLC, Cranberry Township, PA (United States). Global Technology Development; Tatli, Emre [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Czerniak, Luke [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Yoichi, Momozaki [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-29

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO2 (sCO2) Brayton cycle power conversion system. In SFRs, Na2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test

  13. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  14. Sensitivity analysis of the kinetic behaviour of a Gas Cooled Fast Reactor to variations of the delayed neutron parameters

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.; Lathouwers, D.

    2007-01-01

    In advanced Generation IV (fast) reactors an integral fuel cycle is envisaged, where all Heavy Metal is recycled in the reactor. This leads to a nuclear fuel with a considerable content of Minor Actinides. For many of these isotopes the nuclear data is not very well known. In this paper the sensitivity of the kinetic behaviour of the reactor to the dynamic parameters λ k , β k and the delayed spectrum χ d,k is studied using first order perturbation theory. In the current study, feedback due to Doppler and/or thermohydraulic effects are not treated. The theoretical framework is applied to a Generation IV Gas Cooled Fast Reactor. The results indicate that the first-order approach is satisfactory for small variations of the data. Sensitivities to delayed neutron data are similar for increasing and decreasing transients. Sensitivities generally increase with reactivity for increasing transients. For decreasing transients, there are less clearly defined trends, although the sensitivity to the delayed neutron spectrum decreases with larger sub-criticality, as expected. For this research, an adjoint capable version of the time-dependent diffusion code DALTON is under development. (authors)

  15. Mathematical modelling of performance of safety rod and its drive mechanism in sodium cooled fast reactor during scram action

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Thanigaiyarasu, G.; Chellapandi, P.

    2014-01-01

    Highlights: • Mathematical modelling of dynamic behaviour of safety rod during scram action in fast reactor. • Effects of hydraulics, structural interaction and geometry on drop time of safety rod are understood. • Using simplified model, drop time can be assessed replacing detailed CFD analysis. • Sensitivities of the related parameters on drop time are understood. • Experimental validation qualifies the modelling and computer software developed. - Abstract: Performance of safety rod and its drive mechanism which are parts of shutdown systems in sodium cooled fast reactor (SFR) plays a major role in ensuring safe operation of the plant during all the design basis events. The safety rods are to be inserted into the core within a stipulated time during off-normal conditions of the reactor. Mathematical modelling of dynamic behaviour of a safety rod and its drive mechanism in a typical 500 MWe SFR during scram action is considered in the present study. A full-scale prototype system has undergone qualification tests in air, water and in sodium simulating the operating conditions in the reactor. In this paper, the salient features of the safety rod and its mechanism, details related to mathematical modelling and sensitivity of the parameters having influence on drop time are presented. The outcomes of the numerical analysis are compared with the experimental results. In this process, the mathematical model and the computer software developed are validated

  16. Fast breeder reactor research

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: The meeting was attended by 15 participants from seven countries and two international organizations. The Eighth Annual Meeting of the International Working Group on Fast Reactors (IWGFR) was attended by representatives from France, Fed. Rep. Germany, Italy, Japan, United Kingdom, Union of Soviet Socialist Republics and the United States of America - countries that have made significant progress in developing the technology and physics of sodium cooled fast reactors and have extensive national programmes in this field - as well as by representatives of the Commission of the European Communities and the IAEA. The design of fast-reactor power plants is a more difficult task than developing facilities with thermal reactors. Different reactor kinetics and dynamics, a hard neutron spectrum, larger integral doses of fuel and structural material irradiation, higher core temperatures, the use of an essentially novel coolant, and, as a result of all these factors, the additional reliability and safety requirements that are imposed on the planning and operation of sodium cooled fast reactors - all these factors pose problems that can be solved comprehensively only by countries with a high level of scientific and technical development. The exchange of experience between these countries and their combined efforts in solving the fundamental problems that arise in planning, constructing and operating fast reactors are promoting technical progress and reducing the relative expenditure required for various studies on developing and introducing commercial fast reactors. For this reason, the meeting concentrated on reviewing and discussing national fast reactor programmes. The situation with regard to planning, constructing and operating fast experimental and demonstration reactors in the countries concerned, the experience accumulated in operating them, the difficulties arising during operation and ways of over-coming them, the search for optimal designs for the power

  17. THE INVESTIGATION OF BURNUP CHARACTERISTICS USING THE SERPENT MONTE CARLO CODE FOR A SODIUM COOLED FAST REACTOR

    Directory of Open Access Journals (Sweden)

    MEHMET E. KORKMAZ

    2014-06-01

    Full Text Available In this research, we investigated the burnup characteristics and the conversion of fertile 232Th into fissile 233U in the core of a Sodium-Cooled Fast Reactor (SFR. The SFR fuel assemblies were designed for burning 232Th fuel (fuel pin 1 and 233U fuel (fuel pin 2 and include mixed minor actinide compositions. Monte Carlo simulations were performed using Serpent Code1.1.19 to compare with CRAM (Chebyshev Rational Approximation Method and TTA (Transmutation Trajectory Analysis method in the burnup calculation mode. The total heating power generated in the system was assumed to be 2000 MWth. During the reactor operation period of 600 days, the effective multiplication factor (keff was between 0.964 and 0.954 and peaking factor is 1.88867.

  18. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  19. Development of Core Heat Removal Objective Provision Trees for Sodium-Cooled Fast Reactor Defense-in-Depth Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huichang; Kang, Bongsuk; Lee, Youngho [TUEV Rheinland Korea Ltd., Seoul (Korea, Republic of); Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    Based on the definition of Defense-in-Depth levels and safety functions for KALIMER sodium-cooled fast reactor, suggested in the reference and, OPTs for level 1, 2, and 3 defense-in-depth and core heat removal safety function, were developed and suggested in this paper. The purpose of this OPT is first to assure the defensein-depth design during the licensing of Sodium-Cooled Fast Reactors (SFR), but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of PGSFR (Prototype Gen-IV SFR) is not mature yet, the OPT is developed for KALIMER design. Developed OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defensein-depth evaluation frame for the regulatory reviews for the licensing process. At this moment, the identified provisions have both aspects as requirements and design features already adopted in KALIMER design. In the next stage of this study, derived provisions to be adopted will be compared with the actual design features and findings can be suggested as recommendations for the safety improvement.

  20. Study and Evaluation of Innovative Fuel Handling Systems for Sodium-Cooled Fast Reactors: Fuel Handling Route Optimization

    Directory of Open Access Journals (Sweden)

    Franck Dechelette

    2014-01-01

    Full Text Available The research for technological improvement and innovation in sodium-cooled fast reactor is a matter of concern in fuel handling systems in a view to perform a better load factor of the reactor thanks to a quicker fuelling/defueling process. An optimized fuel handling route will also limit its investment cost. In that field, CEA has engaged some innovation study either of complete FHR or on the optimization of some specific components. This paper presents the study of three SFR fuel handling route fully described and compared to a reference FHR option. In those three FHR, two use a gas corridor to transfer spent and fresh fuel assembly and the third uses two casks with a sodium pot to evacuate and load an assembly in parallel. All of them are designed for the ASTRID reactor (1500 MWth but can be extrapolated to power reactors and are compatible with the mutualisation of one FHS coupled with two reactors. These three concepts are then intercompared and evaluated with the reference FHR according to four criteria: performances, risk assessment, investment cost, and qualification time. This analysis reveals that the “mixed way” FHR presents interesting solutions mainly in terms of design simplicity and time reduction. Therefore its study will be pursued for ASTRID as an alternative option.

  1. Study of core flow distribution for small modular natural circulation lead or lead-alloy cooled fast reactors

    International Nuclear Information System (INIS)

    Chen, Zhao; Zhao, Pengcheng; Zhou, Guangming; Chen, Hongli

    2014-01-01

    Highlights: • A core flow distribution calculation code for natural circulation LFRs was developed. • The comparison study between the channel method and the CFD method was conducted. • The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted. - Abstract: Small modular natural circulation lead or lead-alloy cooled fast reactor (LFR) is a potential candidate for LFR development. It has many attractive advantages such as reduced capital costs and inherent safety. The core flow distribution calculation is an important issue for nuclear reactor design, which will provide important input parameters to thermal-hydraulic analysis and safety analysis. The core flow distribution calculation of a natural circulation LFR is different from that of a forced circulation reactor. In a forced circulation reactor, the core flow distribution can be controlled and adjusted by the pump power and the flow distributor, while in a natural circulation reactor, the core flow distribution is automatically adjusted according to the relationship between the local power and the local resistance feature. In this paper, a non-uniform heated parallel channel flow distribution calculation code was developed and the comparison study between the channel method and the CFD method was carried out to assess the exactness of the developed code. The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted using the developed code. A core flow distribution optimization design scheme for a 10MW natural circulation LFR was proposed according to the optimization analysis results

  2. Analysis of the thorium inclusion in the fuel of a fast reactor cooled by lead

    International Nuclear Information System (INIS)

    Juarez M, L. C.; Francois L, J. L.

    2017-09-01

    In the present work, we first verified a model of the European reactor cooled with lead (ELFR). The calculations were made with the code Monte Carlo serpent 2.27 and the library of cross sections Jeff-3.1. For this verification, three neutron parameters were compared: the evolution of the neutron multiplication factor, the Doppler constant and the effect of the vacuum fraction of the refrigerant, obtaining a good approximation with the reference values. Subsequently, the inclusion of thorium as a fertile material within the fuel was analyzed and the same neutron parameters were compared with the original fuel. The evolution of criticality for the case of thorium fuel differs significantly with respect to that of the original fuel (without thorium); this is due mainly to the breeding of the fissile isotope 233 U. Therefore, is possible to have a longer fuel cycle, favoring the availability factor of the plant, without compromising the performance of the reactor since both the Doppler constant and the effect of the vacuum fraction of the refrigerant show a similar tendency to those of the original fuel, being negative in both cases. (Author)

  3. Coolant void effect investigation - case of a na-cooled fast reactor

    International Nuclear Information System (INIS)

    Glinatsis, G.; Gugiu, D.

    2013-01-01

    In the frame of the last EURATOM-FP7 Program, a large sized Sodium-cooled FR (SFR) has been studied. Mixed carbides fuel (U, Pu)C has been adopted for the backup core solution and important work has been also performed in order to obtain an ''optimised'' backup configuration ''close'' to the reference one, which is fueled by mixed oxides fuel (U, Pu)Ox. The peculiarity of both core designs (the reference configuration and the optimised backup configuration) is the adoption of a 60 cm Plenum zone in the upper part of each fuel assembly (FA), that is filled by coolant, in order to mitigate (when emptied) the core positive coolant void effect. This paper presents some results of a detailed study of the coolant void effect for the above SFR with mixed carbides core. Many aspects, like geometric heterogeneity, the burnup state, the operating conditions, etc., have been taken into consideration in order to obtain information about the ''propagation'' and the behaviour of the coolant void effect itself. The performed study investigates also the coolant void effect consequences on some reactivity coefficients, which are important for a safe behaviour of the reactor. The investigation consisted in the steady state simulations of the reactor on different operating conditions in Monte Carlo approach. (authors)

  4. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    Science.gov (United States)

    Guidez, Joel; Saturnin, Anne

    2017-11-01

    During the operation of a nuclear reactor, the external individual doses received by the personnel are measured and recorded, in conformity with the regulations in force. The sum of these measurements enables an evaluation of the annual collective dose expressed in man·Sv/year. This information is a useful tool when comparing the different design types and reactors. This article discusses the evolution of the collective dose for several types of reactors, mainly based on publications from the NEA and the IAEA. The spread of good practices (optimization of working conditions and of the organization, sharing of lessons learned, etc.) and ongoing improvements in reactor design have meant that over time, the doses of various origins received by the personnel have decreased. In the case of sodium-cooled fast reactors (SFRs), the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction). From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  5. Study of thermophysical and thermohydraulic properties of sodium for fast sodium cooled reactors; Estudio de las propiedades termofisicas y termohidraulicas del sodio para reactores rapidos enfriados por sodio

    Energy Technology Data Exchange (ETDEWEB)

    Vega R, A. K.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Gomez T, A. M., E-mail: a.karen.vr@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    The importance of liquid sodium lies in its use as a coolant for fast reactors, but why should liquid metal be used as a coolant instead of water? Water is difficult to use as a coolant for a fast nuclear reactor because its acts as a neutron moderator, that is, stop the fast neutrons and converts them to thermal neutrons. Nuclear reactors such as the Pressurized Water Reactor or the Boiling Water Reactor are thermal reactors, which mean they need thermal neutrons for their operation. However, is necessary for fast reactors to conserve as much fast neutrons, so that the liquid metal coolants that do have this capability are implemented. Sodium does not need to be pressurized, its low melting point and its high boiling point, higher than the operating temperature of the reactor, make it an adequate coolant, also has a high thermal conductivity, which is necessary to transfer thermal energy and its viscosity is close to that of the water, which indicates that is an easily transportable liquid and does not corrode the steel parts of the reactor. This paper presents a brief state of the art of the rapid nuclear reactors that operated and currently operate, as well as projects in the door in some countries; types of nuclear reactors which are cooled by liquid sodium and their operation; the mathematical models for obtaining the properties of liquid sodium in a range of 393 to 1673 Kelvin degrees and a pressure atmosphere. Finally a program is presented in FORTRAN named Thermo-Sodium for the calculation of the properties, which requires as input data the Kelvin temperature in which the liquid sodium is found and provides at the user the thermo-physical and thermo-hydraulic properties for that data temperature. Additional to this the user is asked the Reynolds number and the hydraulic diameter in case of knowing them, and in this way the program will provide the value of the convective coefficient and that of the dimensionless numbers: Nusselt, Prandtl and Peclet. (Author)

  6. Decay heat removal analyses in heavy-liquid-metal-cooled fast breeding reactors. Development of the thermal-hydraulic analysis method for lead-bismuth-cooled, natural-circulation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Takaaki; Enuma, Yasuhiro [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Iwasaki, Takashi [Nuclear Energy System Inc., Tokyo (Japan); Ohyama, Kazuhiro [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)

    2001-05-01

    The feasibility study on future commercial fast breeder reactors in Japan has been conducted at JNC, in which various plant design options with all the possible coolant and fuel types are investigated to determine the conditions for the future detailed study. Lead-bismuth eutectic coolant has been selected as one of the possible coolant options. During the phase-I activity of the feasibility study in FY1999 and FY2000, several plant concepts, which were cooled by the heavy liquid metal coolant, were examined to evaluate the feasibility mainly with respect to economical competitiveness with other coolant reactors. A medium-scale (300 - 550 MWe) plant, cooled by a lead-bismuth natural circulation flow in a pool type vessel, was selected as the most possible plant concept for the heavy liquid metal coolant. Thus, a conceptual design study for a lead-bismuth-cooled, natural-circulation reactor of 400 MWe has been performed at JNC to identify remaining difficulties in technological aspect and its construction cost evaluation. In this report, a thermal-hydraulic analysis method for lead-bismuth-cooled, natural-circulation reactors is described. A Multi-dimensional Steam Generator analysis code (MSG) was applied to evaluate the natural circulation plant by combination with a flow-network-type, plant dynamics code (Super-COPD). By using this combined multi-dimensional plant dynamics code, decay heat removals, ULOHS and UTOP accidents were evaluated for the 100 MWe STAR-LM concept designed by ANL. In addition, decay heat removal by the Primary Reactor Auxiliary Cooling System (PRACS) in the 400 MWe lead-bismuth-cooled, natural-circulation reactor, being studied at JNC, was analyzed. In conclusion, it becomes clear that the combined multi-dimensional plant dynamics code is suitably applicable to analyses of lead-bismuth-cooled, natural-circulation reactors to evaluate thermal-hydraulic phenomena during steady-state and transient conditions. (author)

  7. Study on integrated TRU multi-recycling in sodium cooled fast reactor CDFR

    International Nuclear Information System (INIS)

    Hu Yun; Xu Mi; Wang Kan

    2010-01-01

    In view of recently proposed closed fuel cycle strategy which would recycle the integrated transuranics (TRU) from PWR spent fuel in the fast reactors, the neutronics characteristics of TRU recycled in China Demonstration Fast Reactor (CDFR) are studied in this paper. The results show that loading integrated TRU to substitute pure Pu as driver fuel will mainly make the influence on sodium void worth and negligible effects on other parameters, and hence TRU recycling in CDFR is feasible from viewpoint of core neutronics. If TRU is multi-recycled, the variation of TRU composition depends on fuel types and the ratio of TRU and U when recycling. It is indicated that, when TRU is multi-recycled in CDFR with MOX fuel, the minor actinides (MA) fraction in TRU will firstly decrease to ∼7.24% (minimum) within 8 TRU recycle times and then slowly increase to ∼7.7% after 20 TRU recycle times; while when TRU is multi-recycled in CDFR with metal fuel (TRU-U-10Zr), the MA fraction in TRU will gradually approach to an equilibrium state with the MA fraction of ∼3.8%, demonstrating better MA transmutation effect in metal fuel core. No matter 7.7 or 3.8%, they are both lower than ∼10% in PWR spent fuel with burnup of 45 GWd/tU, which presents satisfying effect of MA amount controlling for TRU multi-recycling strategy. On the other hand, the corresponding recycling parameters such as TRU heat release and neutron emission rate are also much lower in metal fuel than those in MOX fuel. Moreover, TRU recycled in metal fuel will bring greater fissile Pu isotopes equilibrium fraction due to better breeding capability of metal fuel. Finally, it could be summarized that integrated TRU multi-recycling in fast reactor can make contributions to both breeding and transmutation, and such strategy is a prospective closed fuel cycle manner to achieve the object of effective control of cumulated MA amount and sustainable development of nuclear energy.

  8. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  9. An Assessment of Fission Product Scrubbing in Sodium Pools Following a Core Damage Event in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, M.; Farmer, M.; Grabaskas, D.

    2017-06-26

    The U.S. Nuclear Regulatory Commission has stated that mechanistic source term (MST) calculations are expected to be required as part of the advanced reactor licensing process. A recent study by Argonne National Laboratory has concluded that fission product scrubbing in sodium pools is an important aspect of an MST calculation for a sodium-cooled fast reactor (SFR). To model the phenomena associated with sodium pool scrubbing, a computational tool, developed as part of the Integral Fast Reactor (IFR) program, was utilized in an MST trial calculation. This tool was developed by applying classical theories of aerosol scrubbing to the decontamination of gases produced as a result of postulated fuel pin failures during an SFR accident scenario. The model currently considers aerosol capture by Brownian diffusion, inertial deposition, and gravitational sedimentation. The effects of sodium vapour condensation on aerosol scrubbing are also treated. This paper provides details of the individual scrubbing mechanisms utilized in the IFR code as well as results from a trial mechanistic source term assessment led by Argonne National Laboratory in 2016.

  10. A moderation layer to improve the safety behavior of sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merk, B.; Weiß, F.P., E-mail: b.merk@fzd.de [Forschungszentrum Dresden-Rossendorf, Institut für Sicherheitsforschung, Dresden (germany)

    2011-07-01

    The nature of the sodium void effect in an infinite lattice is discussed and for a reduction of the effect the insertion of moderating material is proposed. The effect of three different moderating layers on the sodium void defect and the feedback effects is investigated. Especially the uranium zirconium hydride UzrH layer causes a strong reduction of the sodium void effect. Additionally, this layer improves the fuel temperature effect and the coolant effect of the system significantly. All changes caused by the insertion of the UZrH layer lead to a significant increase in stability of the fast reactor system against transients. The moderating layers have only a small influence on the breeding effect and on the production of minor actinides. (author)

  11. A moderation layer to improve the safety behavior of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Merk, B.; Weiß, F.P.

    2011-01-01

    The nature of the sodium void effect in an infinite lattice is discussed and for a reduction of the effect the insertion of moderating material is proposed. The effect of three different moderating layers on the sodium void defect and the feedback effects is investigated. Especially the uranium zirconium hydride UzrH layer causes a strong reduction of the sodium void effect. Additionally, this layer improves the fuel temperature effect and the coolant effect of the system significantly. All changes caused by the insertion of the UZrH layer lead to a significant increase in stability of the fast reactor system against transients. The moderating layers have only a small influence on the breeding effect and on the production of minor actinides. (author)

  12. Power excursion models applied to the study of secundary excursion in sodium cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Messainguiral, Christiane.

    1980-06-01

    An evaluation of the energy that a secondary power excursion could release has been sought throughout the present work. A parametric study was therefore made by means of a power excursion code in fast reactors. The work submitted is therefore made up of the three following parts: Part 1. - (a), the secondary excursion is situated in the generally envisaged programmes and (b) the role of the principal parameters is studied in the calculation effected by the nuclear excursion code that was available at the start of the study. Part 2. - the results obtained for the power excursion calculations made are presented, Part 3. - the insufficient modelling of the reactivity present during the secondary power excursion is deduced from the parametric study just made. A definition is made of the characteristics of a model adapted to the calculation of this hypothetical accident and a new model as worked out within the scope of this work is submitted [fr

  13. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    Energy Technology Data Exchange (ETDEWEB)

    Riber Marklund, A. [CEA, Cadarache, DEN/DTN/STCP/LIET, Batiment 202, 13108 St Paul-lez-Durance, (France); Kishore, S. [Fast Reactor Technology Group of IGCAR, (India); Prakash, V. [Vibrations Diagnostics Division, Fast Reactor Technology Group of IGCAR, (India); Rajan, K.K. [Fast Reactor Technology Group and Engineering Services Group of IGCAR, (India)

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)

  14. Innovating analytical spectroscopies for the improvement of liquid sodium cooled fast neutron reactors safety

    International Nuclear Information System (INIS)

    Maury, C.

    2012-01-01

    In the context of the project of sodium fast reactor ASTRID, CEA is currently developing new analytical techniques to monitor the chemical purity of liquid sodium. Indeed, incidental situations occurring in the reactor, such as fuel clad failures, leakages in the steam generator or in the coolant pumps, and accelerated corrosion, might release several elements in the sodium. Analytical techniques based on laser ablation and emission spectroscopy are well suited for this application. They do not require any sample preparation, and can perform direct on-line analysis. Amongst them, Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation coupled to Laser-Induced Fluorescence (LA-LIF) have been selected for this study. The objective of this work was to characterize the sensitivity of those two techniques for the detection of impurities in liquid sodium. Their limits of detection were calculated for model analytes using calibration lines. Then results were theoretically extrapolated to other analytes of interest. This study shows the feasibility of the detection of steel corrosion products in liquid sodium. However, the LIBS technique is more robust and easier to implement, and would therefore be more suited to nuclear conditions. (author) [fr

  15. Studies of the reactivity effects of hydrogenous material in a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Ingram, D.; Sweet, D.W.

    1979-01-01

    The reactivity effects of hydrogenous substances, such as the oil used in the primary coolant pumps, which could enter the core of a fast reactor in a hypothetical accident, have been studied in a series of experiments and calculations. Measurements to study the influence of the density of the hydrogen and its location on reactivity were made in two assemblies in the zero power reactor ZEBRA. The first of these was similar in size to PFR and the second was the large BZB assembly of the BIZET programme. The results of this work have been compared with calculations using the FGL5 nuclear data library. Calculations for a 1200 MW (e) CFR have been made using three quantities of material (8, 40 and 160 Kg of hydrocarbon, equivalent to 10, 50 and 200 litres of oil). The calculations have used different geometrical models and hydrocarbon distributions and have explored the influence of core temperature, fuel burn-up and the presence of control rods to estimate the maximum reactivity changes that can be obtained. The results have been analysed in terms of components of the change in neutron balance produced by the material and uncertainties in these have been derived from the ZEBRA work. (author)

  16. The integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Marchaterre, J.F.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired. This paper gives a review of the IFR concept

  17. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  18. Simulation of radioactive corrosion product in primary cooling system of Japanese sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    2012-01-01

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54 Mn and 60 Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54 Mn was estimated to constitute approximately 20% and 60 Co approximately 40% in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO. (author)

  19. Drop performance test of conceptually designed control rod assembly for prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyu; Lee, Jae Han; Kim, Hoe Woong; KIm, Sung Kyun; Kim, Jong Bum [Sodium-cooled Fast Reactor NSSS Design Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The control rod assembly controls reactor power by adjusting its position during normal operation and shuts down chain reactions by its free drop under scram conditions. Therefore, the drop performance of the control rod assembly is important for the safety of a nuclear reactor. In this study, the drop performance of the conceptually designed control rod assembly for the prototype generation IV sodium-cooled fast reactor that is being developed at the Korea Atomic Energy Research Institute as a next-generation nuclear reactor was experimentally investigated. For the performance test, the test facility and test procedure were established first, and several free drop performance tests of the control rod assembly under different flow rate conditions were then carried out. Moreover, performance tests under several types and magnitudes of seismic loading conditions were also conducted to investigate the effects of seismic loading on the drop performance of the control rod assembly. The drop time of the conceptually designed control rod assembly for 0% of the tentatively designed flow rate was measured to be 1.527 seconds, and this agrees well with the analytically calculated drop time. It was also observed that the effect of seismic loading on the drop time was not significant.

  20. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-15

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted.

  1. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-01

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted

  2. Design study of an IHX support structure for a POOL-TYPE Sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2009-01-01

    The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity

  3. Inelastic Cyclic Deformation Behaviors of Type 316H Stainless Steel for Reactor Pressure Vessel of Sodium-Cooled Fast Reactor at Elevated Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji-Hyun; Hong, Seokmin; Koo, Gyeong-Hoi; Lee, Bong-Sang; Kim, Young-Chun

    2015-01-01

    Type 316H stainless steel is a primary candidate material for a reactor pressure vessel of a sodium-cooled fast (SFR) reactor which is under development in Korea. The reactor pressure vessel for a SFR is subjected to inelastic deformation induced by cyclic thermal stress. Fully reversed cyclic testing and ratcheting testing at elevated temperatures were performed to characterize the inelastic cyclic deformation behaviors of Type 316H stainless steel at the SFR operating temperature. It was found that cyclic hardening of Type 316H stainless steel was enhanced, and the accumulation of ratcheting deformation of Type 316H stainless steel was retarded at around the SFR operating temperature. The results of the tensile testing and the microstructural investigation for dislocated structures after the inelastic deformation testing showed that dynamic strain aging affected the inelastic cyclic deformation behavior of Type 316 stainless steel at around the SFR operating temperature.

  4. Strength analysis of fast gas cooled reactor fuel element in conditions of fuel-cladding interraction and non-uniform azimuthal heating

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Tverkovkin, B.E.

    1984-01-01

    The technique and the PRORT mathematical program in FORTRAN language for determining mechanical properties of a fuel element with motionless fuel-cladding interaction taking into account circular temperature non-uniformity in gas-cooled fast reactor conditions are proposed. The calculation results of the fuel element of dissociating gas cooled fast reactor are presented for seven cross-sections over the height of the core. The obtained data testify to appreciable swelling of Cr16Ni15Mo3Nb steel fuel cladding in the conditions of dissociating gas cooled fast reactor through the allowance for the effect of stresses on this essential parameter shows, that its value is lower in comparison with swelling, wherein stresses are not taken into account

  5. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  6. Transient Analysis of a Gas-cooled Fast Reactor for Single Control Assembly Withdrawal

    International Nuclear Information System (INIS)

    Choi, Hangbok

    2014-01-01

    The Energy Multiplier Module (EMZ) system response has been evaluated for control assembly withdrawal transients. Currently the EM2 core is equipped with six cylindrical drum-type control assemblies in the reflector zone for excess reactivity control and power maneuvering during the operating core life. This study investigates the system response to the control assembly withdrawal accident with various rotational speeds and reactivity worth to determine feasible control assembly design requirements from the physics viewpoint. The simulations have been conducted for single control assembly withdrawal transients without scram by a gas-cooled reactor plant simulator, which is based on a simplified plant nodal model, including the point reactor kinetics, single channel core thermal-fluid model, and a turbo-machinery performance model. Simulations were conducted for the middle-of- cycle core, when the excess reactivity of the core is the highest. Control assembly withdrawal times were varied from 1 (runaway) to 180 sec and reactivity worth was varied from 100 to 400 pcm. For a single control assembly withdrawal, the simulation has shown that the peak fuel temperature is expected to be ~1820°C when the assembly worth is 200 pcm and the runaway time is 1 sec per 180 degree rotation. The peak temperature could be reduced to ~1780°C if the assembly is rotated out in a moderate speed such as 1 degree/sec. These peak temperatures give a thermal margin of 22 to 24% to the melting point of uranium carbide fuel. The results also indicate that the current design with a single control assembly worth of 314 pcm may need adjustments in the future design. (author)

  7. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  8. Large electro-magnetic pump design for application in the ASTRID sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Laffont, Guy; Rey, Frédéric; Aizawa, Rie; Suziki, Tetsu

    2013-01-01

    Conclusion: • Use of a LEMP motivated by several advantages in terms of the reactor design, operation and maintenance. • Collaboration agreement between the CEA and TOSHIBA Corporation came into force in April 2012 to carry out a joint work program on the ASTRID EMP design and development. • Preliminary LEMP calculations carried out by the CEA and TOSHIBA are in good agreement and provide a good confidence in the feasibility of the annular LEMP for the ASTRID intermediate sodium loop. • Theoretical and experimental investigations are currently underway at the CEA with the aim to improve the numerical tools. • In parallel, the ASTRID EMP conceptual design studies are ongoing at TOSHIBA (thermal and thermo-mechanical analyses to demonstrate the LEMP self-cooling, structural analysis of the casing, the supporting legs and the mechanical interfaces, definition of the power supply unit, instrumentation and remote control procedure). • This program is aiming at consolidating the ASTRID EMP conceptual design report and to support the design option choice for the ASTRID basic design

  9. Characterization of a sodium-cooled fast reactor in an MHR-SFR synergy for TRU transmutation

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Kim, Yonghee; Venneri, Francesco

    2008-01-01

    In the task of destroying the light water reactor (LWR) transuranics (TRUs), we consider the concept of a synergistic combination of a deep-burn (DB) gas-cooled reactor followed by a sodium-cooled fast reactor (SFR), as an alternative way to the direct feeding of the LWR TRUs to the SFR. In the synergy concept, TRUs from LWR are first deeply incinerated in a graphite-moderated DB-MHR (modular helium reactor) and then the spent fuels of DB-MHR are recycled into the closed-cycle SFR. The DB-MHR core is 100% TRU-loaded and a deep-burning (50-65%) is achieved in a safe manner (as discussed in our previous work). In this analysis, the SFR fuel cycle is closed with a pyro-processing technology to minimize the waste stream to a final repository. Neutronic characteristics of the SFR core in the MHR-SFR synergy have been evaluated from the core physics point of view. Also, we have compared core characteristics of the synergy SFR with those of a stand-alone SFR transuranic burner. For a consistent comparison, the two SFRs are designed to have the same TRU consumption rate of ∼250 kg/GW EFPY that corresponds to the TRU discharge rate from three 600 MW DB-MHRs. The results of our work show that the synergy SFR, fed with TRUs from DB-MHR, has a much smaller burnup reactivity swing, a slightly greater delayed neutron fraction (both positive features) but also a higher sodium void worth and a less negative Doppler coefficients than the conventional SFR, fed with TRUs directly from the LWRs. In addition, several design measures have been considered to reduce the sodium void worth in the synergy SFR core

  10. Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P.; Ryu, H. J.; Kulesza, K. P.; Kim, S. J.; Halsey, W. G.; Smith, C. F.; Brown, N. W.; Greenspan, E.; de Caro, M.; Li, N.; Hosemann, P.; Zhang, J.; Yu, H.; Nuclear Engineering Division; LLNL; LANL; Massachusetts Inst. of Tech.; Ecole des Mines de Paris; Oregon State Univ.; Univ.of California at Berkley

    2008-06-23

    This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics

  11. Studies on natural circulation cooling enhancement in a spent fuel in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Isamu; Akamatsu, Mikio; Toda, Shinichi; Sato, Manabu [Kawasaki Heavy Industries Ltd., Kobe (Japan); Mayumi, Masami

    2001-01-01

    Fast breeder reactor (FBR) has some advantages such as effective application of plutonium, excellent capacity to fire minor-actinides (longer half-life nuclides such as Np, Am, Cm, and so on) contained in radioactive wastes in the reactor to convert their shorter half-life nuclides. However, fuels containing the minor-actinides have a characteristic with higher exotherm and radioactive intensity than those of conventional ones, it is essential at their actual stages to prepare some rational fuel handling systems on their transportation, storage and so forth. In addition, there are few examples on natural circulation heat transfer test of a liquid metal using long sized container. Then, in order to establish an evaluating method on decay-heat removing property of a spent fuel assembly in sodium canister and pot, some natural circulation tests on a long sized container including a quasi pin-bundle structure for a working fluid of lead-bismuth (Pb-Bi) mixture with easier handling than that of sodium was carried out. A specimen could be mounted at optional angles from horizontal to vertical positions so as to evaluate effects of inclined angles. In addition, in order to estimate temperature and flow rate distribution in a long sized container and understand thermal flowing phenomenon in specimen system, numerical analysis using multi-dimensional analysis code was carried out. As a result, it was found that in vertical arrangement system, natural circulation phenomenon is limited at upper portion of the exothermal portion, and its maximum temperature was tested at central portion of top pin-bundle of the exothermal portion. And, it was also found that at horizontal arrangement maximum temperature was 40 centigrade less than that of vertical arrangement, and so forth. (G.K.)

  12. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  13. Review of fast reactor activities

    International Nuclear Information System (INIS)

    Haeussermann, W.; Royen, J.

    1978-01-01

    Since 1971, when the Co-ordinating Group on Gas-Cooled Fast reactors Development was set up, the participating countries have maintained an interest in keeping this option as a back-up solution to the sodium cooled fast reactors. Two different concepts were investigated, one based on coated particle type fuel elements and the other on pin type fuel elements. The coated particles studies have been brought to an end, and resources were concentrated on the further development of the pin type concept. The work done in previous years covered design and safety investigations, heat transfer studies and irradiation experiments in thermal reactors

  14. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A.S.

    2010-01-01

    Gas cooling in nuclear power plants (NPPs) has a long history, the corresponding reactor types developed in France, the UK and the US having been thermal neutron spectrum systems using graphite as the moderator. The majority of NPPs worldwide, however, are currently light water reactors, using ordinary water as both coolant and moderator. These NPPs - of the so-called second generation - will soon need replacement, and a third generation is now being made available, offering increased safety while still based on light water technology. For the longer-term future, viz. beyond the year 2030, R and D is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For de-pressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure

  15. Fast reactor database

    International Nuclear Information System (INIS)

    1996-02-01

    This publication contains detailed data on liquid metal cooled fast reactors (LMFRs), specifically plant parameters and design details. Each LMFR power plant is characterized by about 400 parameters, by design data and by relevant materials. The report provides general and detailed design characteristics including structural materials, data on experimental, demonstration, prototype and commercial size LMFRs. The focus is on practical issues that are useful to engineers, scientists, managers and university students and professors. The report includes updated information contained in IAEA previous publications on LMFR plant parameters: IWGRF/51 (1985) and IWGFR/80 (1991) and reflects experience gained from two consultants meetings held in Vienna (1993,1994). This compilation of data was produced by members of the IAEA International Working Group on Fast Reactors (IWGFR)

  16. On the use of a moderation layer to improve the safety behavior in sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merk, Bruno, E-mail: b.merk@fzd.de [Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Fridman, Emil; Weiss, Frank-Peter [Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2011-05-15

    Research highlights: > Using a moderation layer can reduce the sodium void effect in a SFR. > Inserting the moderation layer improves the Doppler effect significantly. > The uniform layer distribution avoids effects on power and burnup distribution. > Hydride containing material like uranium-zirconium hydride is most efficient. - Abstract: This work shows the effect of the use of moderating layers on the sodium void effect in sodium cooled fast breeder reactors. The moderating layers consisting of either boron carbide B{sub 4}C or uranium-zirconium hydride UZrH cause a strong reduction of the sodium void effect. Additionally these layers improve the fuel temperature effect and the coolant effect of the system. The use of the UZrH is significantly more effective for the reduction of the sodium void effect as well as for the improvement of the fuel temperature and the coolant effect. All changes cause by the insertion of the UZrH layer cause a significantly increased stability of the fast reactor system against transients. The moderating layers have only a small influence on the breeding effect and on the production of minor actinides.

  17. Study on In-Service Inspection Program and Inspection Technologies for Commercialized Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Masato Ando; Shigenobu Kubo; Yoshio Kamishima; Toru Iitsuka

    2006-01-01

    The objective of in-service inspection of a nuclear power plant is to confirm integrity of function of components necessary to safety, and satisfy the needs to protect plant investment and to achieve high plant ability. The sodium-cooled fast reactor, which is designed in the feasibility study on commercialized fast reactor cycle systems in Japan, has two characteristics related to in-service inspection. The first is that all sodium coolant boundary structures have double-wall system. Continuous monitoring of the sodium coolant boundary structures are adopted for inspection. The second characteristic is the steam generator with double-wall-tubes. Volumetric testing is adopted to make sure that one of the tubes can maintain the boundary function in case of the other tube failure. A rational in-service inspection concept was developed taking these features into account. The inspection technologies were developed to implement in-service inspection plan. The under-sodium viewing system consisted of multi ultrasonic scanning transducers, which was used for imaging under-sodium structures. The under-sodium viewing system was mounted on the under-sodium vehicle and delivered to core internals. The prototype of under-sodium viewing system and vehicle were fabricated and performance tests were carried out under water. The laboratory experiments of volumetric testing for double-wall-tubes of steam generator, such as ultrasonic testing and remote-field eddy current testing, were performed and technical feasibility was assessed. (authors)

  18. Methodology for sodium fire vulnerability assessment of sodium cooled fast reactor based on the Monte-Carlo principle

    International Nuclear Information System (INIS)

    Song, Wei; Wu, Yuanyu; Hu, Wenjun; Zuo, Jiaxu

    2015-01-01

    Highlights: • Monte-Carlo principle coupling with fire dynamic code is adopted to perform sodium fire vulnerability assessment. • The method can be used to calculate the failure probability of sodium fire scenarios. • A calculation example and results are given to illustrate the feasibility of the methodology. • Some critical parameters and experience are shared. - Abstract: Sodium fire is a typical and distinctive hazard in sodium cooled fast reactors, which is significant for nuclear safety. In this paper, a method of sodium fire vulnerability assessment based on the Monte-Carlo principle was introduced, which could be used to calculate the probabilities of every failure mode in sodium fire scenarios. After that, the sodium fire scenario vulnerability assessment of primary cold trap room of China Experimental Fast Reactor was performed to illustrate the feasibility of the methodology. The calculation result of the example shows that the conditional failure probability of key cable is 23.6% in the sodium fire scenario which is caused by continuous sodium leakage because of the isolation device failure, but the wall temperature, the room pressure and the aerosol discharge mass are all lower than the safety limits.

  19. Methodology for sodium fire vulnerability assessment of sodium cooled fast reactor based on the Monte-Carlo principle

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wei [Nuclear and Radiation Safety Center, P. O. Box 8088, Beijing (China); Wu, Yuanyu [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint-Paul-lès-Durance (France); Hu, Wenjun [China Institute of Atomic Energy, P. O. Box 275(34), Beijing (China); Zuo, Jiaxu, E-mail: zuojiaxu@chinansc.cn [Nuclear and Radiation Safety Center, P. O. Box 8088, Beijing (China)

    2015-11-15

    Highlights: • Monte-Carlo principle coupling with fire dynamic code is adopted to perform sodium fire vulnerability assessment. • The method can be used to calculate the failure probability of sodium fire scenarios. • A calculation example and results are given to illustrate the feasibility of the methodology. • Some critical parameters and experience are shared. - Abstract: Sodium fire is a typical and distinctive hazard in sodium cooled fast reactors, which is significant for nuclear safety. In this paper, a method of sodium fire vulnerability assessment based on the Monte-Carlo principle was introduced, which could be used to calculate the probabilities of every failure mode in sodium fire scenarios. After that, the sodium fire scenario vulnerability assessment of primary cold trap room of China Experimental Fast Reactor was performed to illustrate the feasibility of the methodology. The calculation result of the example shows that the conditional failure probability of key cable is 23.6% in the sodium fire scenario which is caused by continuous sodium leakage because of the isolation device failure, but the wall temperature, the room pressure and the aerosol discharge mass are all lower than the safety limits.

  20. Sodium flow measurement in large pipelines of sodium cooled fast breeder reactors with bypass type flow meters

    International Nuclear Information System (INIS)

    Rajan, K.K.; Jayakumar, T.; Aggarwal, P.K.; Vinod, V.

    2016-01-01

    Highlights: • Bypass type permanent magnet flow meters are more suitable for sodium flow measurement. • A higher sodium velocity through the PMFM sensor will increase its sensitivity and resolution. • By modifying the geometry of bypass line, higher sodium velocity through sensor is achieved. • With optimized geometry the sensitivity of bypass flow meter system was increased by 70%. - Abstract: Liquid sodium flow through the pipelines of sodium cooled fast breeder reactor circuits are measured using electromagnetic flow meters. Bypass type flow meter with a permanent magnet flow meter as sensor in the bypass line is selected for the flow measurement in the 800 NB main secondary pipe line of 500 MWe Prototype Fast Breeder Reactor (PFBR), which is at the advanced stage of construction at Kalpakkam. For increasing the sensitivity of bypass flow meters in future SFRs, alternative bypass geometry was considered. The performance enhancement of the proposed geometry was evaluated by experimental and numerical methods using scaled down models. From the studies it is observed that the new configuration increases the sensitivity of bypass flow meter system by around 70%. Using experimentally validated numerical tools the volumetric flow ratio for the bypass configurations is established for the operating range of Reynolds numbers.

  1. Leakage limits for inflatable seals of sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.in; Raj, Baldev

    2014-01-15

    Highlights: • All possible types/modes of gas escape covered. • Limits include simultaneous contributions from bypass and permeation leakage modes. • Leakage of radioactive cover gas with fission products assumed. • Possibility of sodium frost deposition in sealed gap considered. • Cover gas activity decay during fuel handling and relative importance of types/modes of leakage considered for realistic results and simpler seal design. -- Abstract: Estimation and stipulation of allowable leakage for inflatable seals of 500 MWe Prototype Fast Breeder Reactor is depicted. Leakage limits are specified using a conservative approach, which assumes escape of radioactive cover gas with fission products across the seals in bypass and permeation modes and possibility of sodium frost deposition in sealed gaps because of permeation leakage of inflation gas. Procedures to arrive at the allowable leakages of argon cover gas (normal-operation/fuel-handling: 10{sup −3}/10{sup −2} scc/s/m length of seal) and argon inflation gas (10{sup −3} scc/s/m length of seal) is described.

  2. The low cycle fatigue factor in the construction of sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Petrequin, Pierre; Mottot, Michel; Valibus, Louis; Grattier, Georges

    1976-01-01

    The working conditions of fast neutron reactors are such that it is essential to know the resistance of the component steels to low cycle fatigue. The behavior of Z2CND17-13 type austenitic stainless steels and of welds was studied in three laboratories. The steels offer an excellent resistance to low cycle fatigue, in keeping with their good ductility and very strong aptitude for cyclic strain hardening. Increasing the testing temperature from 20 to 600 deg C reduces the resistance to some extent (about an order of magnitude on the number of cycles to failure). Steels possessing improved mechanical properties without loss of ductility show greater fatigue resistance. Welds characterized by an austenitic ferritic structure and a slightly cold-hardened state are less ductile than laminated steels. Their resistance to low cycle fatigue is lower at strong deformations. At high temperature (600 deg C) a reduced test frequency or a pause at each cycle leads to a considerable drop in the number of cycles to failure and the appearance of intergranular cracking [fr

  3. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  4. Monte Carlo transport correction of sodium reactivity worth spatial distribution in perspective Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Raskach, K.F.; Blyskavka, V; Kislitsyna, T.S.

    2011-01-01

    In this paper we apply Monte Carlo for calculating spatial distribution of sodium reactivity worth in the perspective Russian sodium-cooled fast reactor BN-1200. A special Monte Carlo technique applicable for calculating perturbations and derivatives of the effective multiplication factor is used. The numerical results obtained show that Monte Carlo has a good perspective to deal with such problems and to be used as a reference solution for engineering codes based on the diffusion approximation. They also allow to conclude that in the sodium blanket and in the neighboring region of the core the diffusion code used likely overestimates sodium reactivity worth. This conclusion has to be verified in future work. (author)

  5. Gas-cooled fast reactors. Motivation and presentation of the ENIGMA program in the MASURCA experimental critical facility

    International Nuclear Information System (INIS)

    Tommasi, Jean; Jacqmin, Robert; Mellier, Frederic

    2005-01-01

    This paper describes a new experimental physics program in support of gas cooled fast reactor (GCFR) design studies, called ENIGMA, to be performed in the MASURCA critical facility at CEA-Cadarache, France. The prospective GCFR design studies at CEA are presented, as well as the specific neutronics features needing an extension of the validation of calculation tools and nuclear data. The relevant existing experiments are briefly reviewed and the need for new experimental data is pointed out. The first phase of the proposed new experiments includes a reference core with a representative spectrum, and a series of central core substitutions involving spectrum shifts, streaming studies, low-grade Pu substitutions, innovative material (Si, Zr) substitutions. Reflector substitution zones will include elements foreseen for the reflectors (Si, Zr, C). Subsequent phases will involve larger amounts of low-grade Pu or innovative materials, and configurations representative of experimental and demonstration GCFRs. (author)

  6. Analysis of clad motion during a loss of flow (LOF) accident in a fast sodium cooled reactor

    International Nuclear Information System (INIS)

    Henkel, P.

    1985-10-01

    A new model describing clad motion during a Loss of Flow (LOF) accident in a Liquid Metal Cooled Fast (Breeder) Reactor (LMFBR) is presented. Its special features are Clad motion is treated within a fuel pin bundle. The bundle geometry is represented by an equivalent annular geometry which serves as the descriptional basis for the clad motion analysis; Several flow regimes are considered. These include a wave or film flow along the fuel pin surfaces as well as a drop flow within the coolant channels. A new entrainment criterion is successfully applied to describe the entrainment of molten cladding and the coolant flow is modelled as a two-dimensional, monstationary flow. Therefore, radial cross flows in a pin bundle can be calculated. Especially, thermal incoherency effects can be treated consistently. The analysis of clad motion in the two experiments STAR1 and STAR2 using the subsequently presented SANDCMOT model gives good agreement with the experimental data. (orig.) [de

  7. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, Seoung Woo, E-mail: swkuk@kaeri.re.kr [Next Generation Fuel Development Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock [Next Generation Fuel Development Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Youn, Young-Sang [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Kim, Jong-Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Radiochemistry & Nuclear Nonproliferation, University of Science & Technology, Gajeong-ro 217, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  8. Special power supply and control system for the gas-cooled fast reactor-core flow test loop

    International Nuclear Information System (INIS)

    Hudson, T.L.

    1981-09-01

    The test bundle in the Gas-Cooled Fast Reactor-Core Flow Test Loop (GCFR-CFTL) requires a source of electrical power that can be controlled accurately and reliably over a wide range of steady-state and transient power levels and skewed power distributions to simulate GCFR operating conditions. Both ac and dc power systems were studied, and only those employing silicon-controlled rectifiers (SCRs) could meet the requirements. This report summarizes the studies, tests, evaluations, and development work leading to the selection. it also presents the design, procurement, testing, and evaluation of the first 500-kVa LMPL supply. The results show that the LMPL can control 60-Hz sine wave power from 200 W to 500 kVA

  9. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-01

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean

  10. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-15

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean.

  11. Three-dimensional tsunami analysis for the plot plan of a sodium-cooled fast reactor plant

    International Nuclear Information System (INIS)

    Hayakawa, Satoshi; Watanabe, Osamu; Itoh, Kei; Yamamoto, Tomohiko

    2013-01-01

    As the practical evaluation method of the effect of tsunami on buildings, the formula of tsunami force has been used. However, it cannot be applied to complex geometry of buildings. In this study, to analyze the effect of tsunami on the buildings of sodium-cooled fast reactor plant more accurately, three-dimensional tsunami analysis was performed. In the analysis, VOF (Volume of Fluid) method was used to capture free surface of tsunami. At the beginning, it was confirmed that the tsunami experiment results was reproduced by VOF method accurately. Next, the three-dimensional tsunami analysis was performed with VOF method to evaluate the flow field around the buildings of the plant from the beginning of the tsunami until the backwash of that. (author)

  12. The concept of the sodium cooled small fast reactor 4S and the analyses of the loss of flow events

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Ueda, Nobuyuki; Koga, Tomonari; Matsumiya, Hisato

    2007-01-01

    CRIEPI has been developing the 4S reactor (Super Safe, Small and Simple reactor) for application in dispersed energy supply and multipurpose use, in conjunction with Toshiba Corporation. The 4S is sodium cooled fast reactor and their electrical output has two options of 10MWe and 50MWe. In this paper, 10MWe 4S (4S-10M) was proposed. 4S-10M has some unique features. It employs a burn-up control system with annular reflector in place of the control rod that requires the frequent maintenance service. The core life time of the 4S-10M is 30 years and the fuel transport is not required during core life time. All temperature feedback coefficients are negative during core life time. In the latest design for 4S-10M, a pool and tall type reactor design was selected to reduce the construction cost. Two types of decay heat removal system (Reactor Vessel Auxiliary Cooling System; RVACS, Intermediate Reactor Auxiliary Cooling System; IRACS) using natural convection power were adopted. It is necessary to confirm that these two heat removal system can operate appropriately. The transition analyses were executed by the CERES code to evaluate the design feasibility and the thermal hydraulic characteristics of the 4S-10M. CERES is a multi-dimensional plant dynamics simulation code for liquid metal reactors developed by the CRIEPI. CERES can perform simulations ranging from forced circulation (full/partial power operation) to natural circulation. Components (pumps, IHXs, SGs, pipings, etc.) of the reactor are modeled as one-dimensional. Multi-dimensional plena are connected to such components. Two loss-of-flow accident sequences are considered. In the first case, it is assumed that the primary and the secondary pump were stopped by the total station black out. The reactor shut down system was assumed to be success. This sequence is referred to as the protected loss-of-flow accident (PLOF). In the second case, it is assumed that the reactor shut down systems fail to operate and the

  13. Spatial neutronics modelling to evaluate the temperature reactivity feedbacks in a lead-cooled fast reactor - 15288

    International Nuclear Information System (INIS)

    Lorenzi, S.; Cammi, A.; Luzzi, L.

    2015-01-01

    The qualitative and quantitative assessment of the thermal reactivity feedbacks occurring in a nuclear reactor is a crucial issue for the time-dependent evolution of the system and, in turn, it has a great impact on the development and validation of advanced control techniques. In the present work, in order to overcome the limitations of the classic Point Kinetics adopted in the control simulators, a spatial neutronics model, representing the neutron flux as sum of a spatial basis weighted by time-dependent coefficients, has been considered. The reference reactor is ALFRED, the European demonstrator of the Lead-cooled Fast Reactor technology. Average cross-sections for each fuel assembly, calculated by means of a Monte Carlo code, have been used to solve the partial differential equations of the neutron diffusion, exploiting the capabilities of the COMSOL software. Once obtained the spatial functions, the set of equations for studying the reactivity effects has been implemented in the MATLAB environment. Among the several temperature reactivity feedbacks, specific attention has been paid to the Doppler effect in the fuel and to the lead density effect. Several spatial bases have been calculated and their capability of representing the reactivity variation have been assessed. (authors)

  14. Proposed method of the modeling and simulation of corrosion product behavior in the primary cooling system of fast breeder reactors

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    2011-01-01

    Radioactive corrosion products (CP) are main cause of personal radiation exposure during maintenance without fuel failure in FBR plants. In order to establish the techniques of radiation dose estimation for worker in radiation-controlled area, Program SYstem for Corrosion Hazard Evaluation code 'PSYCHE' has been developed. The PSYCHE is based on the Solution-Precipitation model. The CP transfer calculation using the Solution-Precipitation model needs a fitting factor for the calculation of the precipitation of CP. This fitting factor must be determined based on the measured values in reactors that have operating experience. For this reason, the inability to make accurate predictions for reactor without measured values is a major issue. In this study, in addition to existing Solution-Precipitation model in PSYCHE, a transfer-model of CP species in particle form was applied to calculations of CP behavior in the primary cooling system of fast breeder reactor MONJU. Based on the calculated results, we estimated the contribution of CP deposition in the particle-form. It was suggested that the improved model including transfer-model of CP species in particle-form could be used for evaluation of CP transfer and radiation-source distribution in place of conventional Solution-Precipitation model with fitting factor in the PSYCHE. Moreover, it was predicted that CP particles would tend to be deposited in region with high-flow rate of coolant. (author)

  15. The development of a realistic source term for sodium-cooled fast reactors : assessment of current status and future needs.

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, Jeffrey L.; Phillips, Jesse; Parma, Edward J., Jr.; Olivier, Tara Jean; Middleton, Bobby D.

    2011-06-01

    Sodium-cooled fast reactors (SFRs) continue to be proposed and designed throughout the United States and the world. Although the number of SFRs actually operating has declined substantially since the 1980s, a significant interest in advancing these types of reactor systems remains. Of the many issues associated with the development and deployment of SFRs, one of high regulatory importance is the source term to be used in the siting of the reactor. A substantial amount of modeling and experimental work has been performed over the past four decades on accident analysis, sodium coolant behavior, and radionuclide release for SFRs. The objective of this report is to aid in determining the gaps and issues related to the development of a realistic, mechanistically derived source term for SFRs. This report will allow the reader to become familiar with the severe accident source term concept and gain a broad understanding of the current status of the models and experimental work. Further, this report will allow insight into future work, in terms of both model development and experimental validation, which is necessary in order to develop a realistic source term for SFRs.

  16. The BN-1800 advanced sodium cooled fast reactor meeting requirements to nuclear power engineering of the XXI century

    International Nuclear Information System (INIS)

    Poplavskij, V.M.; Tsibulya, A.M.; Kamaev, A.A.

    2004-01-01

    Basic principles and direction of the elaboration of sodium fast reactor BN-1800 are discussed. The elaboration of the BN-1800 reactor is based on the scientific justified technical feasibilities of BN-350, BN-600 and BN-800 reactors. Descriptions of power blocks and reactor core of the elaborated reactor are presented. Characteristics of the BN-1800 steam generator are given. Safety of reactor unit is estimated, fundamental technical and economic indexes of BN-1800 are discussed. Economic indexes of the BN-1800 reactor are noted to be on the level of WWER-1000 and WWER-1500 reactors [ru

  17. A study of sodium-cooled fast breeder reactor with thorium blanket for supply of U-233 to high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Yoshida, H.; Nishimura, H.; Osugi, T.

    1978-08-01

    Symbiotic energy system between fast breeder reactor and thermal reactor would have a potential merit for nuclear proliferation problem. And when using HTGR as the thermal reactor in the system, the energy system appears to be promising as an energy system self-sufficient in fuels, which can generate both electricity and high temperature process heat. In the system the fast breeder reactor has to supply sufficient amount of fissile plutonium to keep the reactor going, and also produce U-233 necessary to the associated U-233 fuelled process heat production HTGR. Three types of LMFBR concepts with thorium blanket, conventional homogeneous core LMFBR, and axial and radial parfait heterogeneous core LMFBRs, have been investigated to find out suitable configurations of LMFBR for supply of U-233 to the HTGR with relatively high conversion ratio of 0.85, in the symbiotic energy system between LMFBR and HTGR. The investigation on LMFBR has been made on fuel sufficiency of the system, inherent safety such as sodium-void and Doppler coefficients, and fuel cycle cost. The followings were revealed; (1) Conventional homogeneous core LMFBR with thorium radial blanket well satisfies the condition of fuel sufficiency, if adequate radial blanket thickness is chosen. However, the sodium-void coefficient and fuel cycle cost are inferior to the other concepts. (2) Axial parfait heterogeneous core LMFBR can be regarded as one of the best LMFBR concepts installed in the symbiotic energy system, from the viewpoints of fuel sufficiency, inherent safety and fuel cycle cost. However, further investigations should be needed on reliability and operationability of the concept. (3) Radial parfait heterogeneous core LMFBR seems inadequate as the LMFBR in the system, because the configurations based on this concept does not satisfy plutonium and U-233 breedings, simultaneously. This LMFBR concept, however, has excellent breeding performance in the internal radial blanket. So further

  18. Introduction of the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Kawahara, Hirotaka; Aoyama, Takafumi

    2006-01-01

    The experimental fast reactor JOYO at O-arai Engineering Center of Japan Nuclear Cycle Development Institute is the first liquid metal cooled fast reactor in Japan. This paper describes the plant outline, experiences on the fast reactor technology and test results accumulated through twenty eight years successful operation of JOYO. (author)

  19. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  20. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models

    Science.gov (United States)

    Mosunova, N. A.

    2018-05-01

    The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.

  1. Fuel Fraction Analysis of 500 MWth Gas Cooled Fast Reactor with Nitride (UN-PuN) Fuel without Refueling

    Science.gov (United States)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-01-01

    Nuclear Power Plant (NPP) is one of candidates which can support electricity demand in the world. The Generation IV NPP has fourth main objective, i.e. sustainability, economics competitiveness, safety and reliability, and proliferation and physical protection. One of Gen-IV reactor type is Gas Cooled Fast Reactor (GFR). In this study, the analysis of fuel fraction in small GFR with nitride fuel has been done. The calculation was performed by SRAC code, both Pij and CITATION calculation. SRAC2002 system is a code system applicable to analyze the neutronics of variety reactor type. And for the data library used JENDL-3.2. The step of SRAC calculation is fuel pin calculated by Pij calculation until the data homogenized, after it homogenized we calculate core reactor. The variation of fuel fraction is 40% up to 65%. The optimum design of 500MWth GFR without refueling with 10 years burn up time reach when radius F1:F2:F3 = 50cm:30cm:30cm and height F1:F2:F3 = 50cm:40cm:30cm, variation percentage Plutonium in F1:F2:F3 = 7%:10%:13%. The optimum fuel fraction is 41% with addition 2% Plutonium weapon grade mix in the fuel. The excess reactivity value in this case 1.848% and the k-eff value is 1.01883. The high burn up reached when the fuel fraction is low. In this study 41% fuel fraction produce faster fissile fuel, so it has highest burn-up level than the other fuel fraction.

  2. A three-dimensional thermal and fluid dynamics analysis of a gas cooled subcritical fast reactor driven by a D-T fusion neutron source

    International Nuclear Information System (INIS)

    Angelo, G.; Andrade, D.A.; Angelo, E.; Carluccio, T.; Rossi, P.C.R.; Talamo, A.

    2011-01-01

    Highlights: → A thermal fluid dynamics numerical model was created for a gas cooled subcritical fast reactor. → Standard k-ε model, Eddy Viscosity Transport Equation model underestimates the fuel temperature. → For a conservative assumption, SSG Reynolds stress model was chosen. → Creep strength is the most important parameter in fuel design. - Abstract: The entire nuclear fuel cycle involves partitioning classification and transmutation recycling. The usage of a tokamak as neutron sources to burn spent fuel in a gas cooled subcritical fast reactor (GCSFR) reduces the amount of long-lived radionuclide, thus increasing the repository capacity. This paper presents numerical thermal and fluid dynamics analysis for a gas cooled subcritical fast reactor. The analysis aim to determine the operational flow condition for this reactor, and to compare three distinct turbulence models (Eddy Viscosity Transport Equation, standard k-ε and SSG Reynolds stress) for this application. The model results are presented and discussed. The methodology used in this paper was developed to predict the coolant mass flow rate. It can be applied to any other gas cooled reactor.

  3. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  4. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes

    International Nuclear Information System (INIS)

    Stauff, N.E.; Kim, T.K.; Taiwo, T.A.; Buiron, L.; Rimpault, G.; Brun, E.; Lee, Y.K.; Pataki, I.; Kereszturi, A.; Tota, A.; Parisi, C.; Fridman, E.; Guilliard, N.; Kugo, T.; Sugino, K.; Uematsu, M.M.; Ponomarev, A.; Messaoudi, N.; Lin Tan, R.; Kozlowski, T.; Bernnat, W.; Blanchet, D.; Brun, E.; Buiron, L.; Fridman, E.; Guilliard, N.; Kereszturi, A.; Kim, T.K.; Kozlowski, T.; Kugo, T.; Lee, Y.K.; Lin Tan, R.; Messaoudi, N.; Parisi, C.; Pataki, I.; Ponomarev, A.; Rimpault, G.; Stauff, N.E.; Sugino, K.; Taiwo, T.A.; Tota, A.; Uematsu, M.M.; Monti, S.; Yamaji, A.; Nakahara, Y.; Gulliford, J.

    2016-01-01

    One of the foremost Generation IV International Forum (GIF) objectives is to design nuclear reactor cores that can passively avoid damage of the reactor when control rods fail to scram in response to postulated accident initiators (e.g. inadvertent reactivity insertion or loss of coolant flow). The analysis of such unprotected transients depends primarily on the physical properties of the fuel and the reactivity feedback coefficients of the core. Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS), the Sodium Fast Reactor core Feed-back and Transient response (SFR-FT) Task Force was proposed to evaluate core performance characteristics of several Generation IV Sodium-cooled Fast Reactor (SFR) concepts. A set of four numerical benchmark cases was initially developed with different core sizes and fuel types in order to perform neutronic characterisation, evaluation of the feedback coefficients and transient calculations. Two 'large' SFR core designs were proposed by CEA: those generate 3 600 MW(th) and employ oxide and carbide fuel technologies. Two 'medium' SFR core designs proposed by ANL complete the set. These medium SFR cores generate 1 000 MW(th) and employ oxide and metallic fuel technologies. The present report summarises the results obtained by the WPRS for the neutronic characterisation benchmark exercise proposed. The benchmark definition is detailed in Chapter 2. Eleven institutions contributed to this benchmark: Argonne National Laboratory (ANL), Commissariat a l'energie atomique et aux energies alternatives (CEA of Cadarache), Commissariat a l'energie atomique et aux energies alternatives (CEA of Saclay), Centre for Energy Research (CER-EK), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Nuclear Technology and Energy Systems (IKE), Japan Atomic Energy Agency (JAEA), Karlsruhe Institute of Technology (KIT

  5. Experimental fast reactor JOYO MK-III functional test. Primary auxiliary cooling system test

    International Nuclear Information System (INIS)

    Karube, Koji; Akagi, Shinji; Terano, Toshihiro; Onuki, Osamu; Ito, Hideaki; Aoki, Hiroshi; Odo, Toshihiro

    2004-03-01

    This paper describes the results of primary auxiliary cooling system, which were done as a part of JOYO MK-III function test. The aim of the tests was to confirm the operational performance of primary auxiliary EMP and the protection system including siphon breaker of primary auxiliary cooling system. The items of the tests were: (Test No.): (Test item). 1) SKS-117: EMP start up test. 2) SKS-118-1: EMP start up test when pony motor running. 3) SKS-121: Function test of siphon breaker. The results of the tests satisfied the required performance, and demonstrated successful operation of primary auxiliary cooling system. (author)

  6. The fast reactor

    International Nuclear Information System (INIS)

    1980-02-01

    The subject is discussed as follows: brief description of fast reactors; advantage in conserving uranium resources; experience, in UK and elsewhere, in fast reactor design, construction and operation; safety; production of plutonium, security aspects; consideration of future UK fast reactor programme. (U.K.)

  7. Theoretical investigations of the meltoff and resolidification process of fuel claddings during accidents in liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Angerer, G.

    1978-08-01

    During loss-of-coolant-flow accidents in liquid metal cooled fast breeder reactors with failure to scram the fuel claddings will melt after boiling and evaporation of the coolant. The CMOT model presented here describes the subsequent process of relocation and resolidification of the molten claddings. The basic thermohydrodynamics equations of the two-phase flow of cladding material and sodium vapor are solved numerically by differential approximations in a Eulerian reference net. The results calculated by the model improved the insight into the dynamics of the cladding relocation process. Here are the main results: - Shortly after the onset of cladding relocation large waves of molten cladding material are generated. The motion of these waves contributes considerably to the material transport. - The dynamics of cladding relocation exhibits strong local incoherences. - The formation of cladding blockages observed at the ends of the fuel region is confirmed by the calculations. - In case of incoherent cladding meltoff less cladding material is transported upwards. - Cladding relocation strongly depends on the axial pressure drop and the underlying friction factor correlations. Recalculation of the R5 loss-of-coolant-flow experiment performed in the U.S. TREAT test reactor is in good agreement with the experimental data. (orig./HP) 891 HP [de

  8. Computer simulation of fuel behavior during loss-of-flow accidents in a gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Wehner, T.R.

    1980-01-01

    The sequence of events in a loss-of-flow accident without reactor shutdown in a gas-cooled fast breeder reactor is strongly influenced by the manner in which the fuel deforms. In order to predict the mode of initial gross fuel deformation, welling, melting or cracking, a thermomechanical computer simulation program was developed. Methods and techniques used make the simulation an economical, efficient, and flexible engineering tool. An innovative application of the enthalpy model within a finite difference scheme is used to caculate temperatures in the fuel rod. The method of successive elastic solutions is used to calculate the thermoelastic-creep response. Calculated stresses are compared with a brittle-fracture stress criterion. An independent computer code is used to calculate fission-gas-induced fuel swelling. Results obtained with the computer simulation indicate that swelling is not a mode of initial fuel deformation. Faster transients result in fuel melting, while slower transients result in fuel cracking. For investigated faster coolant flow coastdowns with time constants of 1 second and 10 seconds, compressive stresses in the outer radial portion of the fuel limit fuel swelling and inhibit fuel cracking. For a slower coolant flow coastdown with a 300 second time constant, tensile stresses in the outer radial portion of the fuel induce early fuel cracking before any melting or significant fuel swelling has occurred. Suggestions for further research are discussed. A derived noniterative solution for mechanics calculations may offer an order of magnitude decrease in computational effort

  9. Reliability Assessment of 2400 MWth Gas-Cooled Fast Reactor Natural Circulation Decay Heat Removal in Pressurized Situations

    Directory of Open Access Journals (Sweden)

    C. Bassi

    2008-01-01

    Full Text Available As the 2400 MWth gas-cooled fast reactor concept makes use of passive safety features in combination with active safety systems, the question of natural circulation decay heat removal (NCDHR reliability and performance assessment into the ongoing probabilistic safety assessment in support to the reactor design, named “probabilistic engineering assessment” (PEA, constitutes a challenge. Within the 5th Framework Program for Research and Development (FPRD of the European Community, a methodology has been developed to evaluate the reliability of passive systems characterized by a moving fluid and whose operation is based on physical principles, such as the natural circulation. This reliability method for passive systems (RMPSs is based on uncertainties propagation into thermal-hydraulic (T-H calculations. The aim of this exercise is finally to determine the performance reliability of the DHR system operating in a “passive” mode, taking into account the uncertainties of parameters retained for thermal-hydraulical calculations performed with the CATHARE 2 code. According to the PEA preliminary results, exhibiting the weight of pressurized scenarios (i.e., with intact primary circuit boundary for the core damage frequency (CDF, the RMPS exercise is first focusing on the NCDHR performance at these T-H conditions.

  10. Numerical Analysis on the Free Fall Motion of the Control Rod Assembly for the Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se-Hong; Choi, Choengryul; Son, Sung-Man [ELSOLTEC, Yongin (Korea, Republic of); Kim, Jae-Yong; Yoon, Kyung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    On receiving the scram signal, the control rod assemblies are released to fall into the reactor core by its weight. Thus drop time and falling velocity of the control rod assembly must be estimated for the safety evaluation. However, because of its complex shape, it is difficult to estimate the drop time by theoretical method. In this study, numerical analysis has been carried out in order to estimate drop time and falling velocity of the control rod assembly to provide the underlying data for the design optimization. Numerical analysis has been carried out to estimate the drop time and falling velocity of the control rod assembly for sodium-cooled fast reactor. Before performing the numerical analysis for the control rod assembly, sphere dropping experiment has been carried out for verification of the CFD methodology. The result of the numerical analysis for the method verification is almost same as the result of the experiment. Falling velocity and drag force increase rapidly in the beginning. And then it goes to the stable state. When the piston head of the control rod assembly is inserted into the damper, the drag force increases instantaneously and the falling velocity decreases quickly. The falling velocity is reduced about 14 % by damper. The total drop time of the control rod assembly is about 1.47s. In the next study, the experiment for the control rod assembly will be carried out, and its result is going to be compared with the CFD analysis result.

  11. Achievement of the level 1 PSA in support to the CEA 2400 MWth gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Balmain, M.; Bassi, C.; Azria, P.

    2012-01-01

    Within Generation IV International Forum, the CEA has developed since 2006 a Level 1 PSA to support the design of the 2400 MWth GFR (Gas-cooled Fast Reactor). A first period, with insights published in 2008, consisted in a model with few initiators representative of medium and high pressure situations, those used for the deterministic design of the Decay Heat Removal (DHR) dedicated loops. In a second period, an iterative work reached the probabilistic targets used for generation III reactors, with prior use of normal loops, and increase of DHR reliability in high pressure conditions. The PSA team covered all the internal initiators, and supported the design of components with instrumentation and control and electrical supplies, and the shutdown operating modes of secondary, tertiary circuits, with possible re-alignment to dedicated DHR loops. Besides, the completed PSA integrated more realistic success criteria than the preliminary model and than the deterministic approach, thanks to CATHARE2 code. In case of loss of Forced Convection, the probability of success of the Natural Convection DHR was assessed by a reliability method for passive systems. The paper underlines the PSA methodology knowledge from the EDF expertise, the improvements co-developed with CEA, and the iteration design-PSA-design. (authors)

  12. An evaluation of the fluid-elastic instability for Intermediate Heat Exchanger of Prototype Sodium-cooled fast Reactor

    International Nuclear Information System (INIS)

    Cho, Jaehun; Kim, Sungkyun; Koo, Gyeonghoi

    2014-01-01

    The sodium-cooled fast reactor (SFR) module consists of the vessel, containment vessel, head, rotating plug (RP), upper internal structure (UIS), intermediate heat exchanger (IHX), decay heat exchanger (DHX), primary pump, internal structure, internal components and reactor core. The IHXs transfer heat from the radioactive sodium coolant (primary sodium) in the primary heat transport system to the nonradioactive sodium coolant (secondary sodium) in the intermediate heat transport system. Each sodium flows like Fig. 1. Primary sodium flows inside of tube and secondary sodium flows outside. During transferring heat two sodium to sodium, the fluid-elastic instability is occurred among tube bundle by cross flow. Large amplitude vibration occurred by the fluid-elastic instability is caused such as crack and wear of tube. Thus it is important to decrease the fluid-elastic instability in terms of a safety. The purpose of this paper is to evaluate the fluid-elastic instability for tube bundle in the IHX following ASME code. This paper evaluated the fluid-elastic instability of tube bundle in the SFR IHX. According evaluation results, the fluid-elastic instability of IHX tube bundle is occurred. A installing an additional TSP under the upper tubesheet can decrease a probability of fluid-elastic instability. If a location of an additional TSP does not exceed tube length to become a 750 mm, tube bundle of IHX is safety from the fluid-elastic instability

  13. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  14. A safety design approach for sodium cooled fast reactor core toward commercialization in Japan

    International Nuclear Information System (INIS)

    Kubo, Shigenobu

    2012-01-01

    JAEA’s safety approach for SFR core design is based on defence‐in‐depth concept, which includes DBAs and DECs (prevention and mitigation): • The reactor core is designed to have inherent reactivity feedback characteristics with negative power coefficient. • Operation temperature range is set sufficiently below the coolant boiling temperature so as to avoid coolant boiling against anticipated operational occurrences and DBAs. • If the plant state deviates from operational states, the safe reactor shutdown is achieved by automatic insertion of control rods. 2 active reactor shutdown systems are provided. • Failure of active reactor shutdown is assumed in a design extension condition . Passive shutdown capability is provided by SASS under such condition. • As a design extension condition, core disruptive accident is assumed. In order to prevent severe mechanical energy release which might cause containment function failure, core sodium void worth is limited below 6 dollars and molten fuel discharge capability is utilized by FAIDUS. (author)

  15. Preliminary design of a Brayton cycle as a standalone Decay Heat Removal system for the Gas-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Epiney, A.; Mikityuk, K.; Chawla, R.; Alpy, N.; Haubensack, D.; Malo, J.Y.

    2009-01-01

    This paper reports a preliminary design study of a Brayton cycle which would be a dedicated, standalone Decay Heat Removal (DHR) loop of the Gas-cooled Fast Reactor (GFR). In comparison to the DHR reference strategy developed during the GFR pre-conceptual design phase (which was completed by the CEA at the end of 2007), the salient feature of this alternative device would be to combine the energetic autonomy of the natural convection process - which is foreseen for operation at high and medium pressures - to the efficiency of the forced convection process which is foreseen for operation down to very low pressures. An analytical model, the so-called 'Brayton scoping' model, is described in the paper. This is based on simplified thermodynamical and aerodynamical equations and was developed to highlight design choices. First simulations of the proposed device's performance during loss-of-coolant-accident (LOCA) transients have been performed using the CATHARE code, and these are also reported. Analysis of the simulation results are consistent with the first insights obtained from usage of the 'Brayton scoping' model, e.g. the turbomachine accelerates during the depressurization process to tend towards a steady rotational speed value which is inversely proportional to the pressure. For small break LOCA events, the device operates successfully as regards its safety function and delivers to the core a relatively unperturbed cooling mass flowrate as a function of pressure change. However, further studies are required for medium to large break sizes, since certain stability concerns have been met in such cases. For example, an unexpected turbomachine stoppage was induced during the transients, resulting in loss of the necessary core cooling mass flow. (author)

  16. Investigation of velocity distribution in an inner subchannel of wire wrapped fuel pin bundle of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Kamide, Hideki; Ohshima, Hiroyuki; Kobayashi, Jun; Sato, Hiroyuki

    2011-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up of core fuel in commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is important to obtain the detail of flow velocity distribution in a wire wrapped pin bundle. In this study, water experiments were carried out to investigate the detailed velocity distribution in a subchannel of nominal pin geometry as the first step. These basic data are not only useful for understanding of pin bundle thermal hydraulics but also a code validation. A wire-wrapped 3-pin bundle water model was applied to investigate the detailed velocity distribution in the subchannel which is surrounded by 3 pins with wrapping wire. The test section consists of an irregular hexagonal acrylic duct tube and three pins made of fluorinated resin pins which has nearly the same refractive index with that of water and a high light transmission rate. This enables to visualize the central subchannel through the pins. The velocity distribution in the central subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through a side wall of the duct tube. Typical flow velocity conditions in the pin bundle were 0.36m/s (Re=2,700) and 1.6m/s (Re=13,500). Influence of the wrapping wire on the velocity distributions in vertical and horizontal directions was confirmed. A clockwise swirl flow around the wire was found in subchannel. Significant differences were not recognized between the two cases of Re=2,700 and 13,500 concerning flow patterns. (author)

  17. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  18. Coolant-fuel interaction in Sodium-cooled Fast Reactors: Structural investigations of The Na-An-O (An = U, Np, Pu) systems

    International Nuclear Information System (INIS)

    Smith, A.L.; Raison, P.E.; Bykov, D.M.; Konings, R.J.; Caciuffo, R.; Cheetham, A.K.

    2014-01-01

    Nuclear energy has the potential to provide Europe with a secure and sustainable electricity supply at a competitive price and to make a significant contribution to the reduction of greenhouse gases emissions. The interest for Sodium-cooled-Fast-spectrum Reactors (SFRs), when compared to Pressurized Water Reactors (PWRs), lies in their more efficient management of plutonium and other actinides as well as their ability to use almost all of the energy in the natural uranium versus 1% utilized in thermal spectrum systems. The high fuel efficiency of fast reactors could greatly dampen concerns about fuel supply. But these reactors have also several drawbacks when compared to PWRs (i.e sodium fire, Na reaction with O2 and H2O, interaction of sodium with oxide fuels). Their development at an industrial scale needs therefore an exhaustive safety assessment that comprises both experimental work and development of sophisticated modelling tools able to describe the reactor behaviour in normal or incidental conditions

  19. Pre evaluation for heat balance of prototype sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Han, Ji Woong; Kim, De Hee; Yoon, Jung; Kim, Eui Kwang; Lee, Tae Ho

    2012-01-01

    Under the long term advanced SFR R and D plan, the design of prototype reactor has been carried out toward the construction of the prototype SFR plant by 2028. The R and D efforts in fluid system design will be focused on developing a prototype design of primary heat transport system(PHTS), intermediate heat transport system (IHTS), decay heat removal system(DHRS), steam generation system(SGS), and related auxiliary system design for a prototype reactor as shown in Fig. 1. In order to make progress system design, top tier requirements for prototype reactor related to design parameters of NSSS and BOP should be decided at first. The top tier requirement includes general design basis, capacity and characteristics of reactor, various requirements related to safety, performance, securities, economics, site, and etc.. Extensive discussion has been done within Korea Atomic Energy Research Institute(KAERI) for the decision of top tier requirements of the prototype reactor. The core outlet temperature, which should be described as top tier requirements, is one of the critical parameter for system design. The higher core exit temperature could contribute to increase the plant efficiency. However, it could also contribute to decrease the design margin for structure and safety. Therefore various operating strategies based on different core outlet temperatures should be examined and evaluated. For the prototype reactor two core outlet temperatures are taken into accounted. The lower temperature is for the operation condition and the higher temperature is for the system design and licensing process of the prototype reactor. In order to evaluate the operability of prototype reactor designed based on higher temperature, the heat balance calculations have been performed at different core outlet temperature conditions. The electrical power of prototype reactor was assumed to be 100MWe and reference operating conditions were decided based on existing available data. The

  20. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  1. Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization

    Science.gov (United States)

    Blanchet, David; Fontaine, Bruno

    2017-09-01

    The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.

  2. Safety performance comparation of MOX, nitride and metallic fuel based 25-100 MWe Pb-Bi cooled long life fast reactors without on-site refuelling

    International Nuclear Information System (INIS)

    Su'ud, Zaki

    2008-01-01

    In this paper the safety performance of 25-100 MWe Pb-Bi cooled long life fast reactors based on three types of fuels: MOX, nitride and metal is compared and discussed. In the fourth generation NPP paradigm, especially for Pb-Bi cooled fast reactors, inherent safety capability is necessary against some standard accidents such as unprotected loss of flow (ULOF), unprotected rod run-out transient over power (UTOP), unprotected loss of heat sink (ULOHS). Selection of fuel type will have important impact on the overall system safety performance. The results of safety analysis of long life Pb-Bi cooled fast reactors without on-site fuelling using nitride, MOX and metal fuel have been performed. The reactors show the inherent safety pattern with enough safety margins during ULOF and UTOP accidents. For MOX fuelled reactors, ULOF accident is more severe than UTOP accident while for nitride fuelled cores UTOP accident may push power much higher than that comparable MOX fuelled cores. (author)

  3. Dynamic simulation of a sodium-cooled fast reactor power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shinaishin, M.A.M.

    1976-08-01

    Simulation of the dynamic behavior of the Clinch River Breeder Reactor Plant (CRBRP) is the subject of this dissertation. The range of transients under consideration extends from a moderate transient, of the type referred to as Anticipated Transient Without Scram (ATWS), to a transient initiated by an unexpected accident followed by reactor scram. The moderate range of transients can be simulated by a digital simulator referred to as the CRBRP ATWS simulator. Two versions of this simulator were prepared; in one, the plant controllers were not included, whereas, in the other, the controllers were incorporated. A simulator referred to as the CRBRP-DCHT simulator was constructed for studying transients due to unexpected accidents followed by reactor scram. In this simulator emphasis was placed on simulating the auxiliary heat removal system, in order to determine its capability to remove the after-shut down fission and decay heat. The transients studied using the two versions of the ATWS simulator include step and ramp reactivity perturbations, and an electrical load perturbation in the controlled plant. An uncontrolled control rod withdrawal followed by reactor scram was studied using the DCHT simulator, although the duration of this transient was restricted to 20 sec. because of computer limitations. The results agree very well with the expected physical behavior of the plant.

  4. Dynamic simulation of a sodium-cooled fast reactor power plant

    International Nuclear Information System (INIS)

    Shinaishin, M.A.M.

    1976-08-01

    Simulation of the dynamic behavior of the Clinch River Breeder Reactor Plant (CRBRP) is the subject of this dissertation. The range of transients under consideration extends from a moderate transient, of the type referred to as Anticipated Transient Without Scram (ATWS), to a transient initiated by an unexpected accident followed by reactor scram. The moderate range of transients can be simulated by a digital simulator referred to as the CRBRP ATWS simulator. Two versions of this simulator were prepared; in one, the plant controllers were not included, whereas, in the other, the controllers were incorporated. A simulator referred to as the CRBRP-DCHT simulator was constructed for studying transients due to unexpected accidents followed by reactor scram. In this simulator emphasis was placed on simulating the auxiliary heat removal system, in order to determine its capability to remove the after-shut down fission and decay heat. The transients studied using the two versions of the ATWS simulator include step and ramp reactivity perturbations, and an electrical load perturbation in the controlled plant. An uncontrolled control rod withdrawal followed by reactor scram was studied using the DCHT simulator, although the duration of this transient was restricted to 20 sec. because of computer limitations. The results agree very well with the expected physical behavior of the plant

  5. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  6. Transport of radioactive corrosion products in primary system of sodium-cooled fast breeder reactor 'MONJU'

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Hasegawa, Masanori; Maegawa, Yoshiharu; Miyahara, Shinya

    2011-01-01

    Radioactive corrosion products (CP) are primary cause of personal radiation exposure during maintenance work at FBR plants with no breached fuel. The PSYCHE code has been developed based on the Solution-Precipitation model for analysis of CP transfer behavior. We predicted and analyzed the CP solution and precipitation behavior of MONJU to evaluate the applicability of the PSYCHE code to MONJU, using the parameters verified in the calculations for JOYO. From the calculation result pertaining to the MONJU system, distribution of 54 Mn deposited in the primary cooling system over 20 years of operation is predicted to be approximately 7 times larger than that of 60 Co. In particular, predictions show a notable tendency for 54 Mn precipitation to be distributed in the primary pump and cold-leg. The calculated distribution of 54 Mn and 60 Co in the primary cooling system of MONJU agreed with tendencies of measured distribution of JOYO. (author)

  7. Numerical simulation of passive heat removal under severe core meltdown scenario in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    David, Dijo K.; Mangarjuna Rao, P., E-mail: pmr@igcar.gov.in; Nashine, B.K.; Selvaraj, P.; Chellapandi, P.

    2015-09-15

    Highlights: • PAHR in SFR under large core relocation to in-vessel core catcher is numerically analyzed. • A 1-D thermal conduction model and a 2-D axisymmetric CFD model are developed for turbulent natural convection phenomenon. • The side pool (cold pool) was found out to be instrumental in storing heat and dissipating it to the heat sink. • Single tray type in-vessel core catcher is found to be thermally effective under one-fourth core relocation. - Abstract: A sequence of highly unlikely events leading to significant meltdown of the Sodium cooled Fast Reactor (SFR) core can cause the failure of reactor vessel if the molten fuel debris settles at the bottom of the reactor main vessel. To prevent this, pool type SFRs are usually provided with an in-vessel core catcher above the bottom wall of the main vessel. The core catcher should collect, retain and passively cool these debris by facilitating decay heat removal by natural convection. In the present work, the heat removal capability of the existing single tray core catcher design has been evaluated numerically by analyzing the transient development of natural convection loops inside SFR pool. A 1-D heat diffusion model and a simplified 2-D axi-symmetric CFD model are developed for the same. Maximum temperature of the core catcher plate evaluated for different core meltdown scenarios using these models showed that there is much higher heat removal potential for single tray in-vessel SFR core catcher compared to the design basis case of melting of 7 subassemblies under total instantaneous blockage of a subassembly. The study also revealed that the side pool of cold sodium plays a significant role in decay heat removal. The maximum debris bed temperature attained during the initial hours of PAHR does not depend much on when the Decay Heat Exchanger (DHX) gets operational, and it substantiates the inherent safety of the system. The present study paves the way for better understanding of the thermal

  8. Gas-cooled fast-breeder reactor. Helium Circulator Test Facility updated design cost estimate

    International Nuclear Information System (INIS)

    1979-04-01

    Costs which are included in the cost estimate are: Titles I, II, and III Architect-Engineering Services; Titles I, II, and III General Atomic Services; site clearing, grading, and excavation; bulk materials and labor of installation; mechanical and electrical equipment with installation; allowance for contractors' overhead, profit, and insurance; escalation on materials and labor; a contingency; and installation of GAC supplied equipment and materials. The total estimated cost of the facility in As Spent Dollars is $27,700,000. Also included is a cost comparison of the updated design and the previous conceptual design. There would be a considerable penalty for the direct-cooled system over the indirect-cooled system due to the excessive cost of the large diameter helium loop piping to an outdoor heat exchanger. The indirect cooled system which utilizes a helium/Dowtherm G heat exchanger and correspondingly smaller and lower pressure piping to its outdoor air cooler proved to be the more economical of the two systems

  9. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  10. Fast reactor database. 2006 update

    International Nuclear Information System (INIS)

    2006-12-01

    Liquid metal cooled fast reactors (LMFRs) have been under development for about 50 years. Ten experimental fast reactors and six prototype and commercial size fast reactor plants have been constructed and operated. In many cases, the overall experience with LMFRs has been rather good, with the reactors themselves and also the various components showing remarkable performances, well in accordance with the design expectations. The fast reactor system has also been shown to have very attractive safety characteristics, resulting to a large extent from the fact that the fast reactor is a low pressure system with large thermal inertia and negative power and temperature coefficients. In addition to the LMFRs that have been constructed and operated, more than ten advanced LMFR projects have been developed, and the latest designs are now close to achieving economic competitivity with other reactor types. In the current world economic climate, the introduction of a new nuclear energy system based on the LMFR may not be considered by utilities as a near future option when compared to other potential power plants. However, there is a strong agreement between experts in the nuclear energy field that, for sustainability reasons, long term development of nuclear power as a part of the world's future energy mix will require the fast reactor technology, and that, given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. This publication contains detailed design data and main operational data on experimental, prototype, demonstration, and commercial size LMFRs. Each LMFR plant is characterized by about 500 parameters: physics, thermohydraulics, thermomechanics, by design and technical data, and by relevant sketches. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors with complete technical information of a total of 37 LMFR

  11. Euratom contributions in Fast Reactor research programmes

    International Nuclear Information System (INIS)

    Fanghänel, Th.; Somers, J.

    2013-01-01

    The Sustainable Nuclear Initiative: • demonstrate long-term sustainability of nuclear energy; • demonstration reactors of Gen IV: •more efficient use of resources; • closed fuel cycle; • reduced proliferation risks; • enhanced safety features. • Systems pursued in Europe: • Sodium-cooled fast reactor SFR; • Lead-cooled fast reactor LFR; • Gas-cooled fast reactor GFR. Sustainable Nuclear Energy Technology Platform SNE-TP promotes research, development and demonstration of the nuclear fission technologies necessary to achieve the SET-Plan goals

  12. The fast breeder reactor

    International Nuclear Information System (INIS)

    Davis, D.A.; Baker, M.A.W.; Hall, R.S.

    1990-01-01

    Following submission of written evidence, the Energy Committee members asked questions of three witnesses from the Central Electricity Generating Board and Nuclear Electric (which will be the government owned company running nuclear power stations after privatisation). Both questions and answers are reported verbatim. The points raised include where the responsibility for the future fast reactor programme should lie, with government only or with private enterprise or both and the viability of fast breeder reactors in the future. The case for the fast reactor was stated as essentially strategic not economic. This raised the issue of nuclear cost which has both a construction and a decommissioning element. There was considerable discussion as to the cost of building a European Fast reactor and the cost of the electricity it would generate compared with PWR type reactors. The likely demand for fast reactors will not arrive for 20-30 years and the need to build a fast reactor now is questioned. (UK)

  13. Dynamic simulation of a sodium-cooled fast reactor power plant

    International Nuclear Information System (INIS)

    Shinaishin, M.A.M.

    1976-01-01

    Simulation of the dynamic behavior of the Clinch River Breeder Reactor Plant (CRBRP) is dealt with. The range of transients under consideration extends from a moderate transient, of the type referred to as Anticipated Transient Without Scram (ATWS), to a transient initiated by an unexpected accident followed by reactor scram. The moderate range of transients can be simulated by a digital simulator referred to as the CRBRP ATWS simulator. Two versions of this simulator were prepared; in one, the plant controllers were not included, whereas, in the other, the controllers were incorporated. In addition to the usual assumption of lumped parameters, uniform heat transfer and point kinetics (prompt jump) have been the main approximations in this and other simulators (see below). Two different transport-delay models have also been installed in all simulators. The simulators were constructed using the DARE-P System, developed by the Electrical Engineering Department at the University of Arizona

  14. Implementation Plan for Qualification of Sodium-Cooled Fast Reactor Technology Information

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Honma, George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical information is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.

  15. An assessment of methods of calculating Doppler effects in plutonium fuelled sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Reddell, G.

    1979-01-01

    After a survey of the requirements, an assessment of UK methods and data is made on the basis of the following work. First, the analysis of the SEFOR Doppler experiments, carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code and whole reactor diffusion theory calculations of the neutron flux. Second, the analysis of some Japanese FCA central sample perturbation measurements of structural material Doppler effects. Third, an assessment of the accuracy of Doppler predictions in a sodium voided core using results from Zebra 5 and BIZET, and theoretical studies of additional effects relevant to power reactors and not covered by the above analyses, including the following, the calculation of Doppler effects at high temperature, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. The importance of crystalline binding effects in the fuel are discussed as is the importance of reactor material boundaries in the calculation of resonance shielding effects. Some suggestions for further Doppler studies are made. (U.K.)

  16. Comparative Studies of Core Thermal Hydraulic Design Methods for the Prototype Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Lim, Jae Yong; Kim, Sang Ji

    2013-01-01

    In this work, various core thermal-hydraulic design methods, which have arisen during the development of a prototype SFR, are compared to establish a proper design procedure. Comparative studies have been performed to determine the appropriate design method for the prototype SFR. The results show that the minimization method show a lower cladding midwall temperature than the fixed outlet temperature methods and superior thermal safety margin with the same coolant flow. The Korea Atomic energy Research Institute (KAERI) has performed a conceptual SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damages in SFR subassemblies are arisen from a creep induced failure. The creep limit is evaluated based on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, the core thermalhydraulic design method, which eventually determines the cladding temperature, is highly important to assure a safe and reliable operation of the reactor systems

  17. Development and characterization of the control assembly system for the large 2400 MWth Generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Girardin, G.; Rimpault, G.; Morin, F.; Bosq, J.C.; Coddington, P.; Mikityuk, K.; Chawla, R.

    2008-01-01

    The present paper is related to the design and neutronic characterization of the principal control assembly system for the reference large (2400 MWth) Generation IV gas-cooled fast reactor (GFR), which makes use of ceramic-ceramic (CERCER) plate-type fuel-elements with (U-Pu) carbide fuel contained within a SiC inert matrix. For the neutronic calculations, the deterministic code system ERANOS-2.0 has been used, in association with a full core model including a European fast reactor (EFR)-type pattern for the control assemblies as a starting point. More specifically, the core contains a total of 33 control (control system device: CSD) and safety (diverse safety device: DSD) assemblies implemented in three banks. In the design of the new control assembly system, particular attention was given to the heat generation within the assemblies, so that both neutronic and thermal-hydraulic constraints could be appropriately accounted for. The thermal-hydraulic calculations have been performed with the code COPERNIC, significant coolant mass flow rates being found necessary to maintain acceptable cladding temperatures of the absorber pins. Complementary to the design study, neutronic investigations have been performed to assess the impact of the control assemblies in the GFR core in greater detail (rod interactions, shift of the flux, peaking factors, etc.). Thus, considerable shadowing effects have been observed between the first bank and the safety bank, as also between individual assemblies within the first bank. Large anti-shadowing effects also occur, the most prominent being that between the two CSD banks, where the total assembly worth is almost doubled in comparison to the sum of the individual values. Additional investigations have been performed and, in this context, it has been found that computation of the first-order eigenvalue and the eigenvalue separation is a robust tool to anticipate control assembly interactions in a large fast-spectrum core. One interesting

  18. A domain-specific analysis system for examining nuclear reactor simulation data for light-water and sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Billings, Jay Jay; Deyton, Jordan H.; Forest Hull, S.; Lingerfelt, Eric J.; Wojtowicz, Anna

    2015-01-01

    Highlights: • Data analysis for high-performance simulations of reactors will be a problem that we address with a new management system. • We describe new input-output libraries for nuclear reactor simulations. • We describe a new user interface for visualizing and analyzing simulation results. • We show the utility of these systems with a 17 × 17 fuel assembly example simulation. • The availability of the code and avenues for collaboration are presented. - Abstract: Building a new generation of fission reactors in the United States presents many technical and regulatory challenges. One important challenge is the need to share and present results from new high-fidelity, high-performance simulations in an easily usable way. Since modern multiscale, multi-physics simulations can generate petabytes of data, they will require the development of new techniques and methods to reduce the data to familiar quantities of interest (e.g., pin powers, temperatures) with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately available in the community and need to be developed. This paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It describes requirements to build such a system and the technical challenges faced in its development at all levels (simulation, user interface, etc.). An example comparing results from two different simulation suites for a single assembly in a light-water reactor is presented, along with a detailed discussion of the system’s requirements and design

  19. Optimization of intermediate heat exchangers for sodium cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Barratt, R.O.; Cox, J.; Beith, R.M.V.

    1978-01-01

    Design evolution of the Intermediate Heat Exchanger for the U.S. Fast Breeder Programme is traced from the initial FFTF through to the Clinch River Designs and anticipated onward Commercial Plant Concepts. Supporting development work is outlined. Technical merits of certain features, such as sine wave tube banks and replaceable tube banks (in-situ), are weighed up against quantified cost advantages with simpler arrangements. Future design trends are outlined which will lead eventually to fully optimised designs. (author)

  20. Innovate pin design for Sphere-pac fuel in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Pouchon, Manuel A.; Niceno, Bojan; Krepel, Jiri

    2011-01-01

    The paper discusses a new fuel element type, which combines a particle fuel concept, the Sphere-pac, with a new pin design which features internal cooling. Particle fuels are auspicious when considering a closed fuel cycle, where minor actinide containing fuels must be fabricated. The principle advantage lies in their production simplicity with much less maintenance intensive mechanical devices. Furthermore the Sphere-pac is usually produced by a wet and therefore powder-less route. Therefore the implementation in a remotely controlled and heavily shielded environment becomes easier to realize. Besides the advantages in the production process, the Sphere-pac bears one important disadvantage: the lower thermal conductivity of the particle arrangement, and the therefore higher peak temperatures in the fuel. Consequently a new fuel design is suggested in this paper. It offers an internal cooling channel and therefore smaller maximal fuel distances to the coolant. As the concept is new, the most important aspects are studied; these are the neutronics, the temperature profile in the fuel plus thermal-hydraulics aspects. (author)

  1. Status of national programmes on fast reactors

    International Nuclear Information System (INIS)

    1994-04-01

    Based on the International Working Group on Fast reactors (IWGFR) members' request, the IAEA organized a special meeting on Fast Reactor Development and the Role of the IAEA in May 1993. The purpose of the meeting was to review and discuss the status and recent development, to present major changes in fast reactor programmes and to recommend future activities on fast reactors. The IWGFR took note that in some Member States large prototypes have been built or are under construction. However, some countries, due to their current budget constraints, have reduced the level of funding for research and development programmes on fast reactors. The IWGFR noted that in this situation the international exchange of information and cooperation on the development of fast reactors is highly desirable and stressed the importance of the IAEA's programme on fast reactors. These proceedings contain important and useful information on national programmes and new developments in sodium cooled fast reactors in Member States. Refs, figs and tabs

  2. Development of the evaluation methodology for the material relocation behavior in the core disruptive accident of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Tobita, Yoshiharu; Kamiyama, Kenji; Tagami, Hirotaka; Matsuba, Ken-ichi; Suzuki, Tohru; Isozaki, Mikio; Yamano, Hidemasa; Morita, Koji; Guo, Liancheng; Zhang, Bin

    2014-01-01

    The in-vessel retention (IVR) of core disruptive accident (CDA) is of prime importance in enhancing safety characteristics of sodium-cooled fast reactors (SFRs). In the CDA of SFRs, molten core material relocates to the lower plenum of reactor vessel and may impose significant thermal load on the structures, resulting in the melt through of the reactor vessel. In order to enable the assessment of this relocation process and prove that IVR of core material is the most probable consequence of the CDA in SFRs, a research program to develop the evaluation methodology for the material relocation behavior in the CDA of SFRs has been conducted. This program consists of three developmental studies, namely the development of the analysis method of molten material discharge from the core region, the development of evaluation methodology of molten material penetration into sodium pool, and the development of the simulation tool of debris bed behavior. The analysis method of molten material discharge was developed based on the computer code SIMMER-III since this code is designed to simulate the multi-phase, multi-component fluid dynamics with phase changes involved in the discharge process. Several experiments simulating the molten material discharge through duct using simulant materials were utilized as the basis of validation study of the physical models in this code. It was shown that SIMMER-III with improved physical models could simulate the molten material discharge behavior including the momentum exchange with duct wall and thermal interaction with coolant. In order to develop evaluation methodology of molten material penetration into sodium pool, a series of experiments simulating jet penetration behavior into sodium pool in SFR thermal condition were performed. These experiments revealed that the molten jet was fragmented in significantly shorter penetration length than the prediction by existing correlation for light water reactor conditions, due to the direct

  3. Computational methodology of sodium-water reaction phenomenon in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Takata, Takashi; Yamaguchi, Akira; Uchibori, Akihiro; Ohshima, Hiroyuki

    2009-01-01

    A new computational methodology of sodium-water reaction (SWR), which occurs in a steam generator of a liquid-sodium-cooled fast reactor when a heat transfer tube in the steam generator fails, has been developed considering multidimensional and multiphysics thermal hydraulics. Two kinds of reaction models are proposed in accordance with a phase of sodium as a reactant. One is the surface reaction model in which water vapor reacts directly with liquid sodium at the interface between the liquid sodium and the water vapor. The reaction heat will lead to a vigorous evaporation of liquid sodium, resulting in a reaction of gas-phase sodium. This is designated as the gas-phase reaction model. These two models are coupled with a multidimensional, multicomponent gas, and multiphase thermal hydraulics simulation method with compressibility (named the 'SERAPHIM' code). Using the present methodology, a numerical investigation of the SWR under a pin-bundle configuration (a benchmark analysis of the SWAT-1R experiment) has been carried out. As a result, the maximum gas temperature of approximately 1,300degC is predicted stably, which lies within the range of previous experimental observations. It is also demonstrated that the maximum temperature of the mass weighted average in the analysis agrees reasonably well with the experimental result measured by thermocouples. The present methodology will be promising to establish a theoretical and mechanical modeling of secondary failure propagation of heat transfer tubes due to such as an overheating rupture and a wastage. (author)

  4. Simulation of the cladding freezing during the loss of flow accident in a Gas-Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Chu, N.N.; Eggen, D.T.

    1977-06-01

    The accident condition of the stainless steel cladding melting, relocation and freezing, following a loss of flow situation in gas-cooled fast reactors has not been determined yet. An alloy of 50 Pb/ 50 Sn was selected to facilitate experimental procedures because of its workability and its wide phase transition temperature range (183 to 216 0 C) similar to that of stainless steel (1375 to 1500 0 C). The objective of the experiment is to simulate the motion of liquid alloy through a tube and observe the conditions where it solidifies in the tube. The objective of the theoretical model is to use transient heat transfer analysis to describe the freezing front of the moving liquid metal and the plugging of the channel. Tests were conducted in alloy tubes having inside diameters 0.5 to 0.95 cm. Molten solder was poured through the vertically held tubes. The average falling velocity of the melt was measured to be about 89 cm/sec. The distance in the tube where the molten Pb/Sn solidifed across the diameter was measured. This penetration length varies from 20 to 40 cm as the initial liquid temperature ranges from 216 (liquidus point) to 500 0 C. The plugging time is calculated for those temperatures under which data on both the penetration distance and the falling velocity were obtained

  5. Basic visualization experiments on eutectic reaction of boron carbide and stainless steel under sodium-cooled fast reactor conditions

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Suzuki, Tohru; Kamiyama, Kenji; Kudo, Isamu

    2016-01-01

    This paper describes basic visualization experiments on eutectic reaction and relocation of boron carbide (B 4 C) and stainless steel (SS) under a high temperature condition exceeding 1500degC as well as the importance of such behaviors in molten core during a core disruptive accident in a Generation-IV sodium-cooled fast reactor (750 MWe class) designed in Japan. At first, a reactivity history was calculated using an exact perturbation calculation tool taking into account expected behaviors. This calculation indicated the importance of a relocation behavior of the B 4 C-SS eutectic because its behavior has a large uncertainty in the reactivity history. To clarify this behavior, basic experiments were carried out by visualizing the reaction of a B 4 C pellet contacted with molten SS in a high temperature-heating furnace. The experiments have shown the eutectic reaction visualization as well as freezing and relocation of the B 4 C-SS eutectic in upper part of the solidified test piece due to the density separation. (author)

  6. Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR with PBO Reflector

    Directory of Open Access Journals (Sweden)

    Chihyung Kim

    2016-04-01

    Full Text Available The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  7. Uranium enrichment reduction in the Prototype Gen-IV sodium-cooled fast reactor (PGSFR) with PBO reflector

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  8. Study on MAs transmutation of accelerator-driven system sodium-cooled fast reactor loaded with metallic fuel

    International Nuclear Information System (INIS)

    Han Song; Yang Yongwei

    2007-01-01

    Through the analysis of the effect of heavy metal actinides on the effective multiplication constant (k eff ) of the core in accelerator-driven system (ADS) sodium-cooled fast reactor loaded with metallic fuel, we gave the method for determining fuel components. the characteristics of minor actinides (MAs) transmutation was analyzed in detail. 3D burn-up code COUPLE, which couples MCNP4c3 and ORIGEN2, was applied to the neutron simulation and burn up calculation. The results of optimized scheme shows that adjusting the proportion of 239 Pu and maintaining the value during the burn-up cycle is an efficient method of designing k eff and keeping stable during the burn-up cycle. Spallation neutrons lead to the neutron spectrum harder at inner core than that at outer core. It is in favor of improving MA's fission cross sections and the capture-to-fission ratio. The total MAs transmutation support ratio 8.3 achieves excellent transmutation effect. For higher flux at inner core leads to obvious differences on transmutation efficiency,only disposing MAs at inner core is in favor of decreasing the loading mass and improving MAs transmutation effect. (authors)

  9. Structural assessment of intermediate printed circuit heat exchanger for sodium-cooled fast reactor with supercritical CO2 cycle

    International Nuclear Information System (INIS)

    Lee, Youho; Lee, Jeong Ik

    2014-01-01

    Highlights: • We numerically model PCHE stress arising from pressure, and thermal loadings. • Stress levels are the highest around S-CO 2 channels, due to high pressure of S-CO 2 . • The conventional analytic models for PCHE underestimate actual stress levels. • Plasticity sufficiently lowers stress levels at channel tips. • PCHE for SFR-SCO 2 is anticipated to assure compliance with ASME design standards. - Abstract: Structural integrity of intermediate Printed Circuit Heat Exchanger (PCHE) for Sodium-cooled Fast Reactor (SFR) attached to Supercritical CO 2 (S-CO 2 ) is investigated. ANSYS-Mechanical was used to simulate stress fields of representative PCHE channels, with temperature fields imported from FLUENT simulation. Mechanical stress induced by pressure loading is found to be the primary source of stress. As plasticity sufficiently lowers local stress concentration at PCHE channel tips, PCHE type intermediate heat exchangers made of SS316 are anticipated to reliably assure compliance with design standards prescribed in the ASME standards, thanks to the structure temperature that is below the effective creep inducing point. The actual life time of PCHE for SFR-SCO 2 is likely to be affected by mechanical behavior change of SS316 with reactions with S-CO 2 and fatigue

  10. Comparison of neutron diffusion theory codes in two and three space dimensions using a sodium cooled fast reactor benchmark

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Putney, J.; Sweet, D.W.

    1980-04-01

    This report describes work performed to compare two UK neutron diffusion theory codes, TIGAR and SNAP, with published results for eight other codes available abroad. Both mesh edge and mesh centred finite difference diffusion theory codes as well as one axial synthesis code are included in the comparison and a range of iteration procedures are used by them. Comparison is made of calculations for a model of the sodium cooled fast reactor SNR-300 in both triangular and rectangular geometry and for a range of spatial meshes, enabling extrapolations to infinite mesh to be made. Calculated values of the effective multiplication constant, keff, for all the codes, agree very well when extrapolated to infinite mesh, indicating that no significant errors arising from the finite difference approximation but independent of mesh spacing are present in the calculations. The variation of keff with mesh area is found to be linear for the small meshes considered here, with the gradients for the mesh centred and mesh edged codes being of opposite sign. The results obtained using the mesh centred codes TIGAR, SNAP and CITATION agree closely with one another for all the meshes considered; the mesh edge codes agree less closely. (author)

  11. Measurements of Flow Mixing at Subchannels in a Wire-Wrapped 61-Rod Bundle for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, Hyungmo; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Jeong, Ji-Young; Lee, Hyeong-Yeon

    2015-01-01

    For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are crucial factor for the design code verification and validation. Wrapped wires make a cross flow in a circumference of the fuel rod, and this effect lets flow be mixed. Therefore the sub-channel analysis method is commonly used for thermal hydraulic analysis of a SFR, a wire wrapped sub-channel type. To measure flow mixing characteristics, a wire mesh sensing technique can be useful method. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, the recent reports that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. The subchannel flow characteristics analysis method is commonly used for the thermal hydraulic analysis of a SFR, a wire wrapped subchannel type. In this study, mixing experiments were conducted successfully at a hexagonally arrayed 61-pin wire-wrapped fuel rod bundle test section. Wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable

  12. Acceleration Test Method for Failure Prediction of the End Cap Contact Region of Sodium Cooled Fast Reactor Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Hyun-Seung; Lee, Kang-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the B{sub 0.004} life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.

  13. Pre-conceptual core design of a small modular fast reactor cooled by supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baolin; Cao, Liangzhi; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, No 28, Xianning West Road, Xi’an 710049, Shaanxi (China); Yuan, Xianbao, E-mail: ztsbaby@163.com [School of Nuclear Science and Technology, Xi’an Jiaotong University, No 28, Xianning West Road, Xi’an 710049, Shaanxi (China); College of Mechanical & Power Engineering, China Three Gorges University, No 8, Daxue Road, Yichang 443002, Hubei (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China)

    2016-04-15

    Abstracts: A Small Modular fast reactor cooled by Supercritical CO{sub 2} (SMoSC) is pre-conceptually designed through three-dimensional coupled neutronics/thermal-hydraulics analysis. The power rating of the SMoSC is designed to be 300 MW{sub th} to meet the energy demand of small electrical grids. The excellent thermal properties of supercritical CO{sub 2} (S-CO{sub 2}) are employed to obtain a high thermal efficiency of about 40% with an electric output of 120 MWe. MOX fuel is utilized in the core design to improve fuel efficiency. The tube-in-duct (TID) assembly is applied to get lower coolant volume fraction and reduce the positive coolant void reactivity. According to the coupled neutronics/thermal-hydraulics calculations, the coolant void reactivity is kept negative throughout the whole core life. With a specific power density of 9.6 kW/kg and an average discharge burnup of 70.1 GWd/tHM, the SmoSC can be operated for 20 Effective Full Power Years (EFPYs) without refueling.

  14. Fine 3D neutronic characterization of a gas-cooled fast reactor based on plate-type sub-assemblies

    International Nuclear Information System (INIS)

    Bosq, J. C.; Peneliau, Y.; Rimpault, G.; Vanier, M.

    2006-01-01

    CEA neutronic studies have allowed the definition of a first 2400 MWth reference gas-cooled fast reactor core using plate-type sub-assemblies, for which the main neutronic characteristics were calculated by the so-called ERANOS 'design calculation scheme' relying on several method approximations. The last stage has consisted in a new refine characterization, using the reference calculation scheme, in order to confirm the impact of the approximations of the design route. A first core lay-out taking into account control rods was proposed and the reactivity penalty due to the control rod introduction in this hexagonal core lay-out was quantified. A new adjusted core was defined with an increase of the plutonium content. This leads to a significant decrease of the breeding gain which needs to be recovered in future design evolutions in order to achieve the self breeding goal. Finally, the safety criteria associated to the control rods were calculated with a first estimation of the uncertainties. All these criteria are respected, even if the safety analysis of GFR concepts and the determination of these uncertainties should be further studied and improved. (authors)

  15. The Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes the key features and potential advantages of the IFR concept, its technology development status, fuel cycle economics potential, and its future development path

  16. Measurements of Flow Mixing at Subchannels in a Wire-Wrapped 37-Rod Bundle for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Bae, Hwang; Chang, Seok-Kyu; Choi, Sun Rock; Lee, Dong Won; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Lee, Hyeong-Yeon

    2014-01-01

    For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are very important. Wrapped wires make a cross flow in a around the fuel rod) of the fuel rod, and this effect lets flow be mixed. Experimental results of flow mixing can be meaningful for verification and validation of thermal mixing correlation in a reactor core thermo-hydraulic design code. A wire mesh sensing technique can be useful method for measuring of flow mixing characteristics. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, it has been recently reported that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. This can be powerfully adapted to recognize flow mixing characteristics by wrapped wires in SFR core thermal design. In this work, we conducted the flow mixing experiments using a custom designed wire mesh sensor. To verify and validate computer codes for the SFR core thermal design, mixing experiments were conducted at a hexagonally arrayed 37-pin wire-wrapped fuel rod bundle test section. The well-designed wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable. In addition, by uncertainty analysis, the system errors and the random error were estimated in experiments. Therefore, the present results and methods can be used for design code verification and validation

  17. Upper limits to americium concentration in large sized sodium-cooled fast reactors loaded with metallic fuel

    International Nuclear Information System (INIS)

    Zhang, Youpeng; Wallenius, Janne

    2014-01-01

    Highlights: • The americium transmutation capability of Integral Fast Reactor was investigated. • The impact from americium introduction was parameterized by applying SERPENT Monte Carlo calculations. • Higher americium content in metallic fuel leads to a power penalty, preserving consistent safety margins. - Abstract: Transient analysis of a large sized sodium-cooled reactor loaded with metallic fuel modified by different fractions of americium have been performed. Unprotected loss-of-offsite power, unprotected loss-of-flow and unprotected transient-over-power accidents were simulated with the SAS4A/SASSYS code based on the geometrical model of an IFR with power rating of 2500 MW th , using safety parameters obtained with the SERPENT Monte Carlo code. The Ti-modified austenitic D9 steel, having higher creep rupture strength, was considered as the cladding and structural material apart from the ferritic/martensitic HT9 steel. For the reference case of U–12Pu–1Am–10Zr fuel at EOEC, the margin to fuel melt during a design basis condition UTOP is about 50 K for a maximum linear rating of 30 kW/m. In order to maintain a margin of 50 K to fuel failure, the linear power rating has to be reduced by ∼3% and 6% for 2 wt.% and 3 wt.% Am introduction into the fuel respectively. Hence, an Am concentration of 2–3 wt.% in the fuel would lead to a power penalty of 3–6%, permitting a consumption rate of 3.0–5.1 kg Am/TW h th . This consumption rate is significantly higher than the one previously obtained for oxide fuelled SFRs

  18. Conceptual design for Japan Sodium-Cooled Fast Reactor. (4) Developmental study of steel plate reinforced concrete containment vessel for JSFR

    International Nuclear Information System (INIS)

    Hosoya, Takusaburo; Negishi, Kazuo; Satoh, Kenichiro; Somaki, Takahiro; Matsuo, Ippei; Shimizu, Katsusuke

    2009-01-01

    An innovative containment vessel, namely Steel plate reinforced Concrete Containment Vessel (SCCV) is developed for Japan Sodium-Cooled Fast Reactor (JSFR). Reducing plant construction cost is one of the most important issues for commercialization of fast reactors. This study investigated construction issues including the building structure and the construction method as well as design issues in terms of the applicability of SCCV to fast reactors. An experimental study including loading and/or heating tests has been carried out to investigate the fundamental structural features, which would be provided to develop methodology to evaluate the feasibility of SCCV under the severe conditions. In this paper, the test plan is described as well as the first test results. (author)

  19. Evaluation of molten fuel containment concepts for gas-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Kang, C.S.; Torri, A.

    1979-10-01

    Four in-vessel molten fuel containment concepts for the GCFR were compared, namely, (1) a ceramic crucible, (2) a borax bath, (3) a heavy metal bath, and (4) a steel bath. The ceramic crucible is the simplest but depends on substantial upward heat removal. The borax bath and the heavy metal bath concepts offer better performance but would require design changes and an increased experimental effort. The steel bath concept is a good compromise and has potential for further improvement by combining it with the essential features of other concepts, i.e., the crucible or the heavy metal bath. It is concluded that several concepts could potentially exploit the normally provided cooled liner barrier in the PCRV cavity for post-accident fuel containment

  20. Astrid (fast breeder nuclear reactor)

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a French project of sodium-cooled fast breeder reactor, fourth generation reactor which should be fuelled by uranium 238 rather than uranium 235, and should therefore need less extracted natural uranium to produce electricity. The operation principle of fast breeder reactors is described. They notably directly consume plutonium, allow an easier radioactive waste management as they transform long life radioactive elements into shorter life elements by transmutation. The regeneration process is briefly described, and the various operation modes are evoked (iso-generator, sub-generator, and breeder). Some peculiarities of sodium-cooled reactors are outlined. The Astrid operation principle is described, its main design innovations outlined. Various challenges are discussed regarding safety of supply and waste processing, and the safety of future reactors. Major actors are indicated: CEA, Areva, EDF, SEIV Alcen, Toshiba, Rolls Royce, and Comex. Some key data are indicated: expected lifetime, expected availability rate, cost. The projected site is Marcoule and fast breeder reactors operated or under construction in the world are indicated. The document also proposes an overview of the background and evolution of reactors of 4. generation

  1. Conceptual design for Japan sodium-cooled fast reactor. (1) Current status of system design for JSFR

    International Nuclear Information System (INIS)

    Uto, Nariki; Sakai, Takaaki; Mihara, Takatsugu; Kotake, Shoji; Aoto, Kazumi; Toda, Mikio

    2009-01-01

    Japan Atomic Energy Agency is now conducting 'Fast Reactor Cycle Technology Development (FaCT)' project. In the FaCT project, the system design for JSFR has been carried out along the design categories such as safety design, reactor system, heat transport system, etc., together with research and developments (R and Ds) on innovative technologies to be adopted to JSFR for achieving economic competitiveness, enhanced safety and reliability. This paper describes the system design features of JSFR and a summary of the progresses of the design and R and Ds concerned with a compact reactor vessel, an innovative containment vessel, etc. The approach for the commercialization of fast reactors including discussion on a demonstration reactor for JSFR is also briefly described. (author)

  2. Failed fuel monitoring and surveillance techniques for liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Mikaili, R.; Gross, K.C.; Strain, R.V.; Aoyama, T.; Ukai, S.; Nomura, S.; Nakae, N.

    1995-01-01

    The Experimental Breeder Reactor II (EBR-II) has been used as a facility for irradiation of LMR fuels and components for thirty years. During this time many tests of experimental fuel were continued to cladding breach in order to study modes of element failure; the methods used to identify such failures are described in a parallel paper. This paper summarizes experience of monitoring the delayed-neutron (DN) and fission-gas (FG) release behavior of a smaller number of elements that continued operation in the run-beyond-cladding-breach (RBCB) mode. The scope of RBCB testing, the methods developed to characterize failures on-line, and examples of DN/FG behavior are described

  3. Numerical simulation for debris bed behavior in sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Tagami, Hirotaka; Tobita, Yoshiharu

    2014-01-01

    For safety analysis of SFR, it is necessary to evaluate behavior along with coolability of debris bed in lower plenum which is formed in severe accident. In order to analyze debris behavior, model for dense sediment particles behavior was proposed and installed in SFR safety analysis code SIMMER. SIMMER code could adequately reproduce experimental results simulating the self-leveling phenomena with appropriate model parameters for bed stiffness. In reactor condition, the self-leveling experiment for prototypical debris bed has not been performed. Additionally, the prototypical debris bed consists of non-spherical particles and it is difficult to quantify model parameters. This situation brings sensitivity analysis to investigate effect of model parameters on the self-leveling phenomena of prototypical debris bed in present paper. As initial condition for sensitivity analysis, simple mound-like debris bed in sodium-filled lower plenum in reactor vessel is considered. The bed consists of the mixture of fuel debris of 3,300 kg and steel debris of 1,570 kg. Decay heat is given to this fuel debris. The model parameter is chosen as sensitivity parameter. Sensitivity analysis shows that the model parameters can effect on intensity of self-leveling phenomena and eventual flatness of bed. In all analyses, however, coolant and sodium vapor break the debris bed at mainly center part of bed and the debris is relocated to outside of bed. Through this process, the initial debris bed is almost planarized before re-melting of debris. This result shows that the model parameters affect the self-leveling phenomena, but its effect in the safety analysis of SFRs is limited. (author)

  4. Fast reactors worldwide

    International Nuclear Information System (INIS)

    Hall, R.S.; Vignon, D.

    1985-01-01

    The paper concerns the evolution of fast reactors over the past 30 years, and their present status. Fast reactor development in different countries is described, and the present position, with emphasis on cost reduction and collaboration, is examined. The French development of the fast breeder type reactor is reviewed, and includes: the acquisition of technical skills, the search for competitive costs and the spx2 project, and more advanced designs. Future prospects are also discussed. (U.K.)

  5. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  6. Characterization of velocity and temperature fields in a 217 pin wire wrapped fuel bundle of sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Naveen Raj, M.; Velusamy, K.

    2016-01-01

    Highlights: • We simulate flow and temperature fields in fuel subassembly of fast reactor. • We perform high fidelity computations for 217 pin bundle of 7 axial pitch lengths. • We investigate transverse and axial flows in different types of subchannels. • Correlations are proposed for transverse flow, which form input for subchannel analysis. • Periodic variations of large magnitude are observed in subchannel flow rates. - Abstract: RANS based computational fluid dynamic (CFD) simulation of flow and temperature fields in a fast reactor fuel subassembly has been carried out. The sodium cooled prototype subassembly consists of 217 pins with helical wire spacers. An axial length of seven helical wire pitches has been considered for the study adopting a structured mesh having 36 million points and 84 processors in parallel. The computational model has been validated against in-house and published experimental data for friction factor and Nusselt number. Also, the transverse flow in the central subchannel and swirl flow in the peripheral subchannel are compared against reported experimental data and those computed by subchannel models. The focus of the study is investigation of transverse and axial flows in different types of subchannels. Based on the 3-dimensional CFD study, correlations have been proposed for calculation of transverse flow, which forms an important input for development of subchannel analysis codes. Periodic variations have been observed in the subchannel axial flow rates. For the subchannels located in the central region, the peak to peak variation in the axial flow rate is ∼21% and it is found to be contributed by the changes in the flow area and hydraulic resistance due to frequent passage of helical wires through the subchannel. For the subchannels located in the periphery, this variation is as high as 50%. The transverse flow in the central subchannels follows a cosine profile, for all the faces. However, there is a phase lag of 120

  7. Recovery of a broken inspection lance from the reactor vessel of the German sodium cooled fast breeder reactor SNR 300

    International Nuclear Information System (INIS)

    Menck, J.W.; Hoeft, E.; Kirchner, G.

    1988-01-01

    An inspection lance for flow and vibration measurements was installed into the SNR-300 rotating plug. Centering and guiding of the lower end of the lance was effected in the central grid plate insert. The lance was torn off due to handling problems. The task consisted in recovering all defective parts from the reactor vessel and re-establishing the intact initial state. (author)

  8. Development of polymeric applications for sodium cooled Fast Breeder Reactors: Chronicles of inception, progress and achievements

    International Nuclear Information System (INIS)

    Sinha, N.K.; Raj, Baldev

    2010-01-01

    The collaborative programme on development of important polymeric applications of Indian FBRs is chronicled from the days of motivation to its present state. Failure of inflatable seals of FBTR RPs (1985) and adoption of all-elastomer sealing concept for PFBR RPs (early 1990s), coupled with the unique characteristics of elastomeric materials, led to inception of the programme at IGCAR (1998) which involved DMSRDE as the first partner (1999). The planned initiative, which eventually involved more than 15 other Indian agencies, resulted in complete development of FKM backup seals for PFBR RPs which has been installed in reactor recently. Coated FKM and EPDM inflatable seals for PFBR and FBTR RPs have been developed, produced and evaluated up to ∼2 m diameter. Development methodologies for other critical polymeric applications of PFBR, FBTR and FCF have been formulated. Accomplishments and novelties of the development include EPDM and FKM compounds and designs for inflatable and backup seals, a common FEA procedure for elastomeric ring seals, PECVD based Teflon-like coating technology up to 7 m seal diameter, seal production process by cold feed extrusion and continuous cure, a robust quality control framework and the new facilities developed to support the programme. Future developments are focused on delivery of validated inflatable seals, life assessment and development of new elastomeric compounds which include silicone rubber and perfluoroelastomer, PECVD based coating on stainless steel and development of adhesionless joining of FKM. The achievements and future research will standardize the design and development of the elastomeric seals of Indian FBRs, PHWRs and AHWR based on a few well-characterized compounds, a common FEA method and PECVD based coating technology which can result in a universal design code.

  9. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  10. Emergency reactor cooling circuit

    International Nuclear Information System (INIS)

    Araki, Hidefumi; Matsumoto, Tomoyuki; Kataoka, Yoshiyuki.

    1994-01-01

    Cooling water in a gravitationally dropping water reservoir is injected into a reactor pressure vessel passing through a pipeline upon occurrence of emergency. The pipeline is inclined downwardly having one end thereof being in communication with the pressure vessel. During normal operation, the cooling water in the upper portion of the inclined pipeline is heated by convection heat transfer from the communication portion with the pressure vessel. On the other hand, cooling water present at a position lower than the communication portion forms cooling water lumps. Accordingly, temperature stratification layers are formed in the inclined pipeline. Therefore, temperature rise of water in a vertical pipeline connected to the inclined pipeline is small. With such a constitution, the amount of heat lost from the pressure vessel by way of the water injection pipeline is reduced. Further, there is no worry that cooling water to be injected upon occurrence of emergency is boiled under reduced pressure in the injection pipeline to delay the depressurization of the pressure vessel. (I.N.)

  11. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    International Nuclear Information System (INIS)

    1980-01-01

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases

  12. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    International Nuclear Information System (INIS)

    DeVault, G.P.; Bell, C.R.

    1985-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed

  13. Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2015-09-01

    Full Text Available The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System and LEADER (Lead-cooled European Advanced Demonstration Reactor projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs, and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.

  14. Water experiments on thermal striping in reactor vessel of advanced sodium-cooled fast reactor. Influence of flow collector of backup CR guide tube

    International Nuclear Information System (INIS)

    Kobayashi, Jun; Ezure, Toshiki; Tanaka, Masaaki; Kamide, Hideki

    2016-01-01

    Design study of an advanced large-scale sodium-cooled fast reactor (SFR) has been conducted in JAEA. In the region between the bottom of the Upper Internal Structure (UIS) and the core outlet, the hot sodium from the fuel subassembly mixes with the cold sodium from the neighbor control rod (CR) channel. Therefore, temperature fluctuation due to mixing fluids at different temperatures may cause high cycle thermal fatigue at the bottom of the UIS. In the advanced design, installation of a flow guide structure named Flow-Collector (FC) to the backup control rod (BCR) guide tube is considered to enhance reliable operation of self-actuated shutdown system (SASS) and to ensure reactor shutdown operation. Previously, water experiments without the FC model had been examined in JAEA to investigate effective countermeasures to the significant temperature fluctuation generation at the bottom of the UIS. Since the FC may affect the thermal mixing behavior at the bottom of the UIS, influence of the FC on characteristics of the temperature fluctuation around the BCR channels was investigated using a water experimental facility with structure model of the FC. Through the experiment, small influence of the FC on the temperature fluctuation distribution at the bottom of the UIS was indicated. (author)

  15. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Guidez, Joel; Jarriand, Paul.

    1975-01-01

    The invention concerns a fast neutron nuclear reactor cooled by a liquid metal driven through by a primary pump of the vertical drive shaft type fitted at its lower end with a blade wheel. To each pump is associated an exchanger, annular in shape, fitted with a central bore through which passes the vertical drive shaft of the pump, its wheel being mounted under the exchanger. A collector placed under the wheel comprises an open upward suction bell for the liquid metal. A hydrostatic bearing is located above the wheel to guide the drive shaft and a non detachable diffuser into which at least one delivery pipe gives, envelopes the wheel [fr

  16. Fast reactors and nonproliferation

    International Nuclear Information System (INIS)

    Orlov, V.V.

    1997-01-01

    1.Three aspects of nonproliferation relevant to nuclear power are: Pu buildup in NPP spent fuel cooling ponds (∼ 104 t in case of consumption of ∼ 107 t cheap uranium). Danger of illegal radiochemical extraction of Pu for weapons production; Pu extraction from NPP fuel at the plants available in nuclear countries, its burning along with weapon-grade Pu in NPP reactors or in special-purpose burners; increased hazard of nuclear weapons sprawl with breeders and closed fuel cycle technology spreading all over the world. 2.The latter is one of major obstacles to creation of large-scale nuclear power. 3.Nuclear power of the first stage using 235 U will be able to meet the demands of certain fuel-deficient countries and regions, replacing ∼ 5-10% of conventional fuels in the global consumption for a number of decades. 4.Fast reactors of the first generation and the currently employed fuel technology are far from exhausting their potential for solving economic problems and meeting the challenges of safety, radioactive waste and nonproliferation. Development of large-scale nuclear power will become an option accepted by society for solving energy problems in the following century, provided a breeder technology is elaborated and demonstrated in the next 15-20 years, which would comply with the totality of the following requirement: full internal Pu breeding deterministic elimination of severe accidents involving fuel damage and high radioactivity releases: fast runaway, loss of coolant, fires, steam and hydrogen explosions, etc.; reaching a balance between radioactive wastes disposed of and uranium mined in terms of radiation hazard; technology of closed fuel cycle preventing its use for Pu extraction and permitting physical protection from fuel thefts;economic competitiveness of nuclear power for most of countries and regions, i.e. primarily the cost of NPPs with fat reactors is to be below the cost of modern LWR plants, etc

  17. A neutronics study for improving the safety and performance parameters of a 3600 MWth Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Sun, Kaichao; Krepel, Jiri; Mikityuk, Konstantin; Chawla, Rakesh

    2013-01-01

    Highlights: ► The potential for neutronics design optimization is assessed for a large SFR core. ► Both beginning-of-life and equilibrium fuel cycle conditions are considered. ► The sodium void effect is decomposed via a neutron balance based methodology. ► The optimized core options adopt an appropriate sodium plenum design to reduce the void effect. ► The introduction of moderator pins is considered for enhancing the Doppler effect. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many performance advantages, but has one dominating neutronics drawback – a positive sodium void reactivity. The starting point for the present study is an SFR core design considered in the Collaborative Project on the European Sodium-cooled Fast Reactor (CP-ESFR). The aim is to analyze, for this reference core, four safety and performance parameters from the viewpoint of four different optimization options, and to propose possible optimized core designs. In doing so, the study focuses not only on the beginning-of-life state of the core, but also on the beginning of equilibrium closed fuel cycle. The four studied optimization options are: (a) introducing an upper sodium plenum and boron layer, (b) varying the core height-to-diameter (H/D) ratio, (c) introducing moderator pins into the fuel assembly, and (d) modifying the initial plutonium content. The sensitivity of the void reactivity, Doppler constant, nominal reactivity and breeding gain has been evaluated. In particular, the void reactivity, which is the most crucial safety parameter for the SFR, has been decomposed into its reaction-wise, isotope-wise and energy-group-wise components using a methodology based on the neutron balance equation. Extended voiding in the upper sodium plenum region – in conjunction with the effect of a boron layer introduced above the plenum – is found to be particularly effective in the void effect reduction while, at the same time

  18. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    Monado, F.; Permana, S.

    2013-01-01

    Full-text: A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8 % HM. From the neutronic point of view, this design is in compliance with good performance. (author)

  19. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-01-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance

  20. High energy resolution and high count rate gamma spectrometry measurement of primary coolant of generation 4 sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Coulon, R.

    2010-01-01

    Sodium-cooled Fast Reactors are under development for the fourth generation of nuclear reactor. Breeders reactors could gives solutions for the need of energy and the preservation of uranium resources. An other purpose is the radioactive wastes production reduction by transmutation and the control of non-proliferation using a closed-cycle. These thesis shows safety and profit advantages that could be obtained by a new generation of gamma spectrometry system for SFR. Now, the high count rate abilities, allow us to study new methods of accurate power measurement and fast clad failure detection. Simulations have been done and an experimental test has been performed at the French Phenix SFR of the CEA Marcoule showing promising results for these new measurements. (author) [fr

  1. Burnup effects on criticality, breeding and safety of 1,000 MWe gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Ohta, Fumio

    1977-12-01

    Burnup characteristics of 1,000 MWe, PuO 2 - UO 2 fuelled helium-cooled fast breeder reactor have been studied concerning criticality, breeding and safety. A 26-energy group cross-section set produced from ENDF/B-3 was used. Criticality and breeding were studied with two-dimensional burnup code APOLLO and 4-energy group cross-section set generated by collapsing the mentioned cross-section set. Safety aspects such as Doppler reactivity effect, coolant-depressurisation and steam-ingression reactivity effect were studied with multi-dimensional diffusion theory code CITATION and perturbation theory code PERKY, as well as the 26-energy group cross-section set. The following were revealed: (1) The reactivity swing over a year's irradiation is merely 1.5% ΔK/K. This small swing may permit relatively long fuel dwelling in GCFR and , thus, the frequency of outages for refuelling can be minimised. (2) The surplus fissile plutonium over a year's irradiation is about 360 Kg, and the system doubling time is about 9 years. The GCFR studied has excellent breeding, compared with those in PuO 2 -UO 2 fuelled LMFBR and other GCFRs. (3) The coolant-depressurisation reactivity effect becomes more positive with burnup. This is not so serious as the sodium-void reactivity effect of LMFBR. (4) In the start-up core, the steam-ingression reactivity effect due to steam ingression to the core and blanket from the secondary coolant system becomes positive at certain steam density (0.02gr/cc) and this positive effect increases with steam density. With advance of burnup, however, the effect becomes negative, this increasing with steam density. After all, the steam ingression is no hazard in operation of GCFR since the reactivity effect is negative in the equilibrium state. (auth.)

  2. Reliability study of a special decay heat removal system of a gas-cooled fast reactor demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Burgazzi, Luciano, E-mail: luciano.burgazzi@enea.it

    2014-12-15

    The European roadmap toward the development of generation IV concepts addresses the safety and reliability assessment of the special system designed for decay heat removal of a gas-cooled fast reactor demonstrator (GFRD). The envisaged system includes the combination of both active and passive means to accomplish the fundamental safety function. Failure probabilities are calculated on various system configurations, according to either pressurized or depressurized accident events under investigation, and integrated with probabilities of occurrence of corresponding hardware components and natural circulation performance assessment. The analysis suggests the improvement of measures against common cause failures (CCF), in terms of an appropriate diversification among the redundant systems, to reduce the system failure risk. Particular emphasis is placed upon passive system reliability assessment, being recognized to be still an open issue, and the approach based on the functional reliability is adopted to address the point. Results highlight natural circulation as a challenging factor for the decay heat removal safety function accomplishment by means of passive devices. With the models presented here, the simplifying assumptions and the limited scenarios considered according to the level of definition of the design, where many systems are not yet established, one can conclude that attention has to be paid to the functional aspects of the passive system, i.e. the ones not pertaining to the “hardware” of the system. In this article the results of the analysis are discussed, where the effects of the analytical assumptions, design options, accident managements on the reliability are examined. The design diversity of the components undergoing CCFs can be effective for the improvement and some accident management measures are also possible by making use of the long grace period in GFRD.

  3. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  4. Level II Probabilistic Safety Analysis Methodology for the Application to GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Park, S. Y.; Kim, T. W.; Han, S. H.; Jeong, H. Y.

    2010-03-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing liquid metal reactor (LMR) design technologies under a National Nuclear R and D Program. Nevertheless, there is no experience of the probabilistic safety assessment (PSA) domestically for a fast reactor with the metal fuel. Therefore, the objective of this study is to establish the methodologies of risk assessment for the reference design of GEN-IV sodium fast reactor (SFR). An applicability of the PSA methodology of U. S. NRC and PRISM plant to the domestic GEN-IV SFR has been studied. The study contains a plant damage state analysis, a containment event tree analysis, and a source-term release category binning process

  5. Development of the control assembly pattern and dynamic analysis of the Generation IV large gas-cooled fast reactor (GFR)

    Energy Technology Data Exchange (ETDEWEB)

    Girardin, G.

    2009-07-15

    During the past ten years, different independent factors, such as the rapidly increasing worldwide demand in energy, societal concerns about greenhouse gas emissions, and the high and volatile prices for fossil fuels, have contributed to the renewed interest in nuclear technology. In this context, the Generation IV International Forum (GIF) launched the initiative to collaborate on the research and development efforts needed for the next generation of nuclear reactors. A particular goal set for Generation IV systems is closure of the nuclear fuel cycle; they are expected to offer a better utilization of natural resources, as also a minimization of long-lived radioactive wastes. Among the systems selected by the GIF, the Gas-cooled Fast Reactor (GFR) is a highly innovative system with advanced fuel geometry and materials. The principal aim of the present research is to develop and qualify the control assembly (CA) pattern and corresponding CA implementation scheme for the 2400 MWth reference GFR design. The work has been carried out in three successive phases: (1) validation of the neutronics tools, (2) the CA pattern development and related static analysis, and (3) dynamic core behaviour studies for hypothetical CA driven transients. The deterministic code system ERANOS and its associated nuclear data libraries for fast reactors were developed and validated for sodium-cooled reactors. In order to validate ERANOS for GFR applications, a systematic reanalysis of the GFR-relevant integral data generated at PSI during the GCFR-PROTEUS experimental program of the 1970’s was undertaken. The reference PROTEUS test lattice has been analyzed with ERANOS-2.0 and its associated, adjusted nuclear data library ERALIB1. Benchmark calculations were performed with the Monte Carlo code MCNPX, allowing one to both check the deterministic results and to analyze the sensitivity to different modern data libraries. For the main reaction rate ratios, the new analysis of the GCFR

  6. Development of the control assembly pattern and dynamic analysis of the Generation IV large gas-cooled fast reactor (GFR)

    International Nuclear Information System (INIS)

    Girardin, G.

    2009-07-01

    During the past ten years, different independent factors, such as the rapidly increasing worldwide demand in energy, societal concerns about greenhouse gas emissions, and the high and volatile prices for fossil fuels, have contributed to the renewed interest in nuclear technology. In this context, the Generation IV International Forum (GIF) launched the initiative to collaborate on the research and development efforts needed for the next generation of nuclear reactors. A particular goal set for Generation IV systems is closure of the nuclear fuel cycle; they are expected to offer a better utilization of natural resources, as also a minimization of long-lived radioactive wastes. Among the systems selected by the GIF, the Gas-cooled Fast Reactor (GFR) is a highly innovative system with advanced fuel geometry and materials. The principal aim of the present research is to develop and qualify the control assembly (CA) pattern and corresponding CA implementation scheme for the 2400 MWth reference GFR design. The work has been carried out in three successive phases: (1) validation of the neutronics tools, (2) the CA pattern development and related static analysis, and (3) dynamic core behaviour studies for hypothetical CA driven transients. The deterministic code system ERANOS and its associated nuclear data libraries for fast reactors were developed and validated for sodium-cooled reactors. In order to validate ERANOS for GFR applications, a systematic reanalysis of the GFR-relevant integral data generated at PSI during the GCFR-PROTEUS experimental program of the 1970’s was undertaken. The reference PROTEUS test lattice has been analyzed with ERANOS-2.0 and its associated, adjusted nuclear data library ERALIB1. Benchmark calculations were performed with the Monte Carlo code MCNPX, allowing one to both check the deterministic results and to analyze the sensitivity to different modern data libraries. For the main reaction rate ratios, the new analysis of the GCFR

  7. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  8. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  9. Study on flow-induced vibration of large-diameter pipings in a sodium-cooled fast reactor. Influence of elbow curvature on velocity fluctuation field

    International Nuclear Information System (INIS)

    Ono, Ayako; Kimura, Nobuyuki; Kamide, Hideki; Tobita, Akira

    2010-02-01

    The main cooling system of Japan Sodium-cooled Fast Reactor (JSFR) consists of two loops to reduce the plant construction cost. In the design of JSFR, sodium coolant velocity is beyond 9m/s in the primary hot leg pipe with large-diameter (1.3m). The maximum Reynolds number in the piping reaches 4.2x10 7 . The hot leg pipe having a 90 degree elbow with curvature ratio of r/D=1.0, so-called 'short elbow', which enables a compact reactor vessel. In sodium cooled fast reactors, the system pressure is so low that thickness of pipings in the cooling system is thinner than that in LWRs. Under such a system condition in the cooling system, the flow-induced vibration (FIV) is concerned at the short elbow. The evaluation of the structural integrity of pipings in JSFR should be conducted based on a mechanistic approach of FIV at the elbow. It is significant to obtain the knowledge of the fluctuation intensity and spectra of velocity and pressure fluctuations in order to grasp the mechanism of the FIV. In this study, water experiments were conducted. Two types of 1/8 scaled elbows with different curvature ratio, r/D=1.0, 1.5, were used to investigate the influence of curvature on velocity fluctuation at the elbow. The velocity fields in the elbows were measured using a high speed PIV method. Unsteady behavior of secondary flow at the elbow outlet and separation flow at the inner wall of elbow were observed in the two types of elbows. It was found that the growth of secondary flow correlated with the flow fluctuation near the inside wall of the elbow. (author)

  10. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  11. A standalone decay heat removal device for the Gas-cooled Fast Reactor for intermediate to atmospheric pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A., E-mail: aaron@epiney.ch [Paul Scherrer Institute PSI, Villigen (Switzerland); Ecole Polytechnique Federale EPFL, Lausanne (Switzerland); Alpy, N., E-mail: nicolas.alpy@cea.fr [CEA, DEN, Service d' Etudes des Systemes Innovants, F-13108 Saint Paul Lez Durance (France); Mikityuk, K., E-mail: konstantin.mikityuk@psi.ch [Paul Scherrer Institute PSI, Villigen (Switzerland); Chawla, R., E-mail: rakesh.chawla@psi.ch [Paul Scherrer Institute PSI, Villigen (Switzerland); Ecole Polytechnique Federale EPFL, Lausanne (Switzerland)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer An analytical model predicting Brayton cycle off-design steady states, is developed. Black-Right-Pointing-Pointer The model is used to design an autonomous decay heat removal system for the GFR. Black-Right-Pointing-Pointer Predictions of the analytical model are verified using CATHARE. Black-Right-Pointing-Pointer CATHARE code is used to simulate a set of GFR safety depressurization transients using this device. Black-Right-Pointing-Pointer Convenient turbo-machine designs exist for the targeted autonomous decay heat removal for a wide pressure range. - Abstract: This paper reports a design study for a Brayton cycle machine, which would constitute a dedicated, standalone decay heat removal (DHR) device for the Generation IV Gas-cooled Fast Reactor (GFR). In comparison to the DHR reference strategy developed by the French Commissariat a l'Energie Atomique during the GFR pre-conceptual design phase (which was completed at the end of 2007), the salient feature of this alternative device would be to combine the energetic autonomy of the natural convection process - which is foreseen for operation at high and medium pressures - with the efficiency of the forced convection process which is foreseen for operation down to very low pressures. An analytical model, the so-called 'Brayton scoping model', is described first. This is based on simplified thermodynamic and aerodynamic equations, and was developed to highlight design choices. Two different machine designs are analyzed: a Brayton loop turbo-machine working with helium, and a second one working with nitrogen, since nitrogen is the heavy gas foreseen to be injected into the primary system to enhance the natural convection under loss-of-coolant-accident (LOCA) conditions. Simulations of the steady-state and transient behavior of the proposed device have then been carried out using the CATHARE code. These serve to confirm the insights obtained from usage of the

  12. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  13. Design, in-sodium testing and performance evaluation of annular linear induction pump for a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Nashine, B.K.; Rao, B.P.C.

    2014-01-01

    Highlights: • Derivation of applicable design equations. • Design of an annular induction pump based on these equations. • Testing of the designed pump in a sodium test facility. • Performance evaluation of the designed pump. - Abstract: Annular linear induction pumps (ALIPs) are used for pumping electrically conducting liquid metals. These pumps find wide application in fast reactors since the coolant in fast reactors is liquid sodium which a good conductor of electricity. The design of these pumps is usually done using equivalent circuit approach in combination with numerical simulation models. The equivalent circuit of ALIP is similar to that of an induction motor. This paper presents the derivation of equivalent circuit parameters using first principle approach. Sodium testing of designed ALIP using the equivalent circuit approach is also described and experimental results of the testing are presented. Comparison between experimental and analytical calculations has also been carried out. Some of the reasons for variation have also been listed in this paper

  14. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  15. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  16. Measurement of the physics properties of gas-cooled fast reactors in the zero energy reactor PROTEUS and analysis of the results

    International Nuclear Information System (INIS)

    Richmond, R.

    1982-12-01

    The main aim of the fast reactor physics measurements carried out in the zero energy reactor PROTEUS was to check the performance of data sets and calculation methods used in the design of fast breeder reactors. This allowed the accuracy of the power reactor calculations to be determined and enabled an assessment to be made of whether this accuracy would be sufficient to allow the design, construction and licensing of the GCFR power reactor. In order to carry out the physics measurements an existing zero energy reactor was converted to a form in which a central fast reactor lattice was surrounded by thermal zones to drive the reactor critical. One of the most important measuring techniques used to check the performance of data sets and calculation methods was the determination of reaction rate ratios and, by using an appropriate range of nuclides, it was possible to obtain a detailed picture covering 70% of reactions taking place in the central part of the fast reactor zone and with an accuracy of +-1.5% in a typical ratio. A further technique used during the work on GCFR-PROTEUS was the measurement of neutron spectrum which was carried out in a wide range of environments and, in the later stages of the work, covered the energy range from 9 keV to 2.3 MeV. These measurements, in particular, indicated significant errors in the FGL4 scattering cross-sections. A third technique, which was developed to a high degree of accuracy, was the measurement of reactivity worths. This was used in measurements of the worths of small samples and also in the application of the null reactivity technique to determine k-infinity and hence the absorption cross-sections of reactor structural materials. (Auth.)

  17. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  18. Study on small long-life LBE cooled fast reactor with CANDLE burn-up. Part 1. Steady state research

    International Nuclear Information System (INIS)

    Yan, Mingyu; Sekimoto, Hiroshi

    2008-01-01

    Small long-life reactor is required for some local areas. CANDLE small long-life fast reactor which does not require control rods, mining, enrichment and reprocessing plants can satisfy this demand. In a CANDLE reactor, the shapes of neutron flux, nuclide number densities and power density distributions remain constant and only shift in axial direction. The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead-Bismuth is used as coolant. From steady state analysis, we obtained the burn-up velocity, output power distribution, core temperature distribution, etc. The burn-up velocity is less than 1.0 cm/year that enables a long-life design easily. The core averaged discharged fuel burn-up is about 40%. (author)

  19. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  20. The 'SURA' fast reactor program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The Commissariat a l'Energie Atomique's SURA program on fast reactor safety consists of two specific testing programs on fastbreeder reactor safety: the Cabri and Scarabee programs. Both Cabri and Scarabee are examples of multinational research collaboration. The CEA and the Karlsruhe Nuclear Research Center are each covering half of the construction costs. Britain, the US and Japan are also due to participate in these experiments. The aim of the programs is to examine the behaviour of fuel in sodium cooled fast reactors. The Cabri program consists of setting off a reactivity accident in a power reactor core which is cooled with liquid sodium, such an accident occurring after a sharp increase in reactivity or as a result of the pump suddenly breaking down without there at the same time being any fall in the control rods. In 1967 the Commissariat a l'Energie Atomique started its Scarabee research program which is trying to analyse the sort of things that can go wrong with fuel cooling systems and what the consequences can be [fr

  1. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    International Nuclear Information System (INIS)

    McCulloch, R.W.; Post, D.W.; Lovell, R.T.; Snyder, S.D.

    1981-04-01

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relate this profile to that generated by the coils in completed fuel pin simulators

  2. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  3. Startup of the FFTF sodium cooled reactor

    International Nuclear Information System (INIS)

    Redekopp, R.D.; Umek, A.M.

    1981-03-01

    The Fast Flux Test Facility (FFTF), located on the Department of Energy (DOE) Hanford Reservation near Richland, Washington, is a 3 Loop 400 MW(t) sodium cooled fast reactor with a primary mission to test fuels and materials for development of the Liquid Metal Fast Breeder Reactor (LMFBR). Bringing FFTF to a condition to accomplish this mission is the goal of the Acceptance Test Program (ATP). This program was the mechanism for achieving startup of the FFTF. Highlights of the ATP involving the system inerting, liquid metal and inerted cell testing and initial ascent to full power are discussed

  4. Metrological certification of systems to monitor the seal integrity of fuel-element cladding based on exposed fuel in sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Eliseev, A.V.; Filonov, V.S.; Ushakov, V.M.; Belov, S.P.; Pedyash, B.V.; Zemtsev, B.V.; Skorikov, N.V.

    1992-01-01

    In sodium-cooled fast reactors, the clad monitoring system for seal integrity of the fuel element cladding is practically the only source of operator information on the serviceability of fuel elements in the core. The monitoring system can be used as the basis for critical decisions whether the reactor must be shut down of whether operation can continue, but only if the meterologically provided measurements are reliable. This article describes a method developed for certifying working rods on the basis of the domestic standard. The method includes a combined irradiation of the sample and the rod to be certified in an arbitrary field of a plutonium-beryllium neutron source with an output rate greater than 10 8 sec -1 , which is mounted in a paraffin moderator. The positive results of the metrological certification of the system to monitor cladding seal integrity leads the authors to recommend this method for other current and planned sodium-cooled fast reactors. 6 refs., 2 tabs

  5. JSFR design progress related to development of safety design criteria for generation IV sodium-cooled fast reactors. (3) Progress of component design

    International Nuclear Information System (INIS)

    Enuma, Yasuhiro; Kawasaki, Nobuchika; Orita, Junichi; Eto, Masao; Miyagawa, Takayuki

    2015-01-01

    In the frame work of generation IV international forum (GIF), safety design criteria (SDC) and safety design guideline (SDG) for the generation IV sodium-cooled fast reactors have been developing in the circumstance of worldwide deployment of SFRs. JAEA, JAPC, MFBR have been investigating design study for JSFR to satisfy SDC in the feasibility study of SDG for Sodium-cooled Fast Reactor (SFR). In addition to the safety measures, maintainability, reparability and manufacturability are taken into account in the JSFR design study. This paper describes the design of main components. Enlargement of the access route for the inspection devices and addition of the access routes were carried out for the reactor structure. The pump-integrated IHX (pump/IHX) was modified for the primary heat exchanger (PHX), which was installed for the decay heat removal in the IHX at the upper plenum, to be removable for improved repair and maintenance. For the steam generator (SG), protective wall tube type design is under investigation as an option with less R and D risks. (author)

  6. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1981-06-01

    The accuracy requirements and the status of the evaluated fission-product cross sections for fast reactors are reviewed; the work on calculating the sensitivity of the sodium void effect to fission-product cross sections is described; some results of the intercomparison of adjusted data sets for capture cross sections of fission-products (RCN-2A and CARNAVAL-IV) are discussed; the applicability of the maximum-likelihood method for the analysis of resolved resonance parameters for a large class of fission-product nuclides is demonstrated; the neutron cross sections for corrosion product 64 Ni are evaluated. Some results of post-irradiation examination of a loss-of-cooling experiment are given; the progress in testing the equipment and instrumentation for transient-overpower experiments is reported. The proceedings in the thermochemical investigations on uranium compounds with some fission-products are described. The creep behaviour of a heat of DIN 1.4948 parent metal is investigated with respect to the changes in strain with different test temperatures. Sodium smoke aerosols have been produced and analysed with respect to their aerodynamic behaviour and morphology. The two-phase local boiling experiments have been analysed to find criteria for the occurrence of different boiling regimes with the objection to deduce general dryout correlations

  7. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  8. The fast breeder reactor

    International Nuclear Information System (INIS)

    Patterson, W.

    1990-01-01

    The author criticises the United Kingdom Atomic Energy Authority's fast breeder reactor programme in his evidence to the House of Commons Select Committee on Energy in January 1990. He argues for power generation by renewable means and greater efficiency in the use rather than in the generation of electricity. He refutes the arguments for nuclear power on the basis of reduced global warming as he claims support technology produces significant amounts of carbon dioxide in any case. Serious doubts are raised about the costs of a fast breeder reactor programme compared to, say, generation by pressurised water reactors. The idea of a uranium scarcity in several decades is also refuted. The reliability of fast breeder reactor technology is called into question. He argues against reprocessing plutonium for economic, health and safety reasons. (UK)

  9. Pressure drop and heat transfer in the sodium to air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, H.; Eoh, J.; Cha, J.; Kim, S.

    2011-01-01

    A numerical study was performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX were modeled as porous media and simulated heat and momentum transfer. Two-dimensional flow characteristic appeared at the most region of AHX annulus. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX were evaluated and compared with Zhukauskas empirical correlations. (author)

  10. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fas