WorldWideScience

Sample records for coolants nuclear reactors

  1. Exploring new coolants for nuclear breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A., E-mail: anlafuente@etsii.upm.e [ETSII-UPM, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Piera, M. [ETSII:UNED, c/Juan del Rosal, 12, 28040 Madrid (Spain)

    2010-06-15

    Breeder reactors are considered a unique tool for fully exploiting natural nuclear resources. In current Light Water Reactors (LWR), only 0.5% of the primary energy contained in the nuclei removed from a mine is converted into useful heat. The rest remains in the depleted uranium or spent fuel. The need to improve resource-efficiency has stimulated interest in Fast-Reactor-based fuel cycles, which can exploit a much higher fraction of the energy content of mined uranium by burning U-238, mainly after conversion into Pu-239. Thorium fuel cycles also offer several potential advantages over a uranium fuel cycle. The coolant initially selected for most of the FBR programs launched in the 1960s was sodium, which is still considered the best candidate for these reactors. However, Na-cooled FBRs have a positive void reactivity coefficient. Among other factors, this fundamental drawback has resulted in the canceled deployment of these reactors. Therefore, it seems reasonable to explore new options for breeder coolants. In this paper, a proposal is presented for a new molten salt (F{sub 2}Be) coolant that could overcome the safety issues related to the positive void reactivity coefficient of molten metal coolants. Although it is a very innovative proposal that would require an extensive R and D program, this paper presents the very appealing properties of this salt when using a specific type of fuel that is similar to that of pebble bed reactors. The F{sub 2}Be concept was studied over a typical MOX composition and extended to a thorium-based cycle. The general analysis took into account the requirements for criticality (opening the option of hybrid subcritical systems); the requirements for breeding; and the safety requirement of having a negative coolant void reactivity coefficient. A design window was found in the definition of a F{sub 2}Be cooled reactor where the safety requirement was met, unlike for molten metal-cooled reactors, which always have positive void

  2. Exploring new coolants for nuclear breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A. [ETSI Industriales-Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal, 2. 28006 Madrid (Spain)

    2010-07-01

    Breeder reactors are considered the unique tool for fully exploiting the natural nuclear resources. In current LWR, only a 0.5% of the primary energy contained in the nuclei removed from the mine is converted into useful heat, with the rest remaining in the depleted uranium or in the spent fuel. The objective of resource-efficiency stimulated the interest in Fast- Reactor-based fuel cycles which can exploit a much higher fraction of the energy content of the mined uranium by burning U-238, mainly after conversion into Pu-239. Thorium fuel cycles would also offers several potential advantages over a uranium fuel cycle. The coolant initially chosen for most of the FBR programs launched in the 60's was sodium, which still is considered the best candidate for these reactors. However, Na-cooled FBR have a positive void reactivity coefficient, which has been among others, a fundamental drawback that has cancelled the deployment of these reactors. Therefore, it seems reasonable to explore totally new options on coolants for breeders. In this paper, a proposal is presented on a new molten salt (F{sub 2}Be) coolant that could overcome the safety issues related to the positive void reactivity coefficient of molten metal coolants. Although it is a very innovative proposal that would need an extensive R and D programme, this paper presents the very appealing properties of this salt, in the case of using a specific type of fuel, similar to that of pebble bed reactors. The concept will be studied over a typical MOX composition and extended to a Thorium-based cycle. The general analysis takes into account requirements for criticality (opening the option of hybrid subcritical systems); requirements for breeding; and the safety requirement of having a negative coolant void reactivity coefficient. A design window is found in the definition of a F{sub 2}Be cooled reactor where the safety requirement is met, unlike for molten metal cooled reactors which always have positive void

  3. Expert system for online surveillance of nuclear reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.

    1992-12-31

    This report describes an expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  4. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  5. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    Science.gov (United States)

    2006-12-01

    1992) PFR UK 250 MWe - 14 Shut Down (1994) Rapsodie France 40 MWe - 40 Shut Down (1983) Phenix France 233 MWe - 22 In Operation BOR-60 Russia...107years.98 • Problems with radioactive waste management and coolant disposal during decommissioning .99 O th er • Lead is abundantly available in...is high due to Bi-210, half-life 3.6 106years.102 • Problems with radioactive waste management and coolant disposal during decommissioning . 103 O

  6. Simulating experimental investigation on the safety of nuclear heating reactor in loss-of-coolant accidents

    Science.gov (United States)

    Xu, Zhanjie

    1996-12-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology (INET) of Tsinghua University of China in 1989. Its main loop is a thermal-hydraulic system with natural circulation. This paper studies the safety of NHR under the condition of loss-of-coolant accidents (LOCAs) by means of simulant experiments. First, the background and necessity of the experiments are presented, then the experimental system, including the thermal-hydraulic system and the data collection system, and similarity criteria are introduced. Up to now, the discharge experiments with the residual heating power (20% rated heating power) have been carried out on the experimental system. The system parameters including circulation flow rate, system pressure, system temperature, void fraction, discharge mass and so on have been recorded and analyzed. Based on the results of the experiments, the conclusions are shown as follos: on the whole, the reactor is safe under the condition of LOCAs, but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  7. Spectrographic determination of metallic impurities in organic coolants for nuclear reactors; Determinacion espectrografica de impurezas metalicas en refrigerantes organicos para reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Martin Munoz, M.; Alvarez Gonzalez, F.

    1969-07-01

    A spectrochemical method for determining metallic impurities in organic coolants for nuclear reactors is given. The organic matter in solid samples is eliminated by controlled distillation and dry ashing in the presence of magnesium oxide as carrier. Liquid, samples are vacuum distillated. The residue is analyzed by carrier distillation and by total burning techniques. The analytical results are discussed and compared with those obtained destroying the organic matter without carrier and using the copper spark technique. (Author) 12 refs.

  8. The state of the art on zinc addition effect in the nuclear reactor coolant system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, U. C.; Sung, K. W.; Kim, K. R.; Paek, S.; Maeng, W. Y

    1999-12-01

    Zinc addition to the primary coolant appears promising with regard to reducing radiation dose rate, and is being used in several plants. Zinc acts to inhibit the corrosion of stainless steel by forming a thin protective film. This oxide film, with no associated increase in cobalt concentration within the film, thereby lowers the dose rate. This report on the state of art presents an overview of the zinc addition to the reactor coolant to reduce the primary system dose rate. This report discusses the effect of zinc addition for BWRs and PWRs, the thermodynamic of zinc chemistry, and the effect of zinc addition on material corrosion. (author)

  9. Experimental distribution of coolant in the IPR-R1 Triga nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z., E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN/RJ), Rio de Janeiro, RJ (Brazil); Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F.; Reis, Patricia A.L., E-mail: claubia@nuclear.ufmg.b, E-mail: dora@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2011-07-01

    The IPR-R1 is a typical TRIGA Mark I light-water and open pool type reactor. The core has an annular configuration of six rings and is cooled by natural circulation. The core coolant channels extend from the bottom grid plate to the top grid plate. The cooling water flows through the holes in the bottom grid plate, passes through the lower unheated region of the element, flows upwards through the active region, passes through the upper unheated region, and finally leaves the channel through the differential area between a triangular spacer block on the top of the fuel element and a round hole in the grid. Direct measurement of the flow rate in a coolant channel is difficult because of the bulky size and low accuracy of flow meters. The flow rate through the channel may be determined indirectly from the heat balance across the channel using measurements of the water inlet and outlet temperatures. This paper presents the experiments performed in the IPR-R1 reactor to monitoring some thermo-hydraulic parameters in the core coolant channels, such as: the radial and axial temperature profile, temperature, velocity, mass flow rate, mass flux and Reynolds's number. Some results were compared with theoretical predictions, as it was expected the variables follow the power distribution (or neutron flux) in the core. (author)

  10. Method for calculating coolant resonance frequencies under normal and accident conditions in nuclear power plants with WWER-type pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, K.N. (Moskovskij Ehnergeticheskij Inst. (USSR))

    1983-03-01

    Mathematical models are proposed for calculating acoustic oscillation resonance frequencies in the coolant in various components of the WWER type primary circuit (core, steam generator, pressurizer, piping). Due to the correspondence between model calculations and experimental results obtained in operating nuclear power plants, the developed models can be used for practical calculations. The possibility of calculating the eigenfrequencies of the coolant oscillation under different operating conditions leads to the interpretation of operational data, to the analysis of operational conditions, to the detection of coolant boiling in the reactor, and to design changes in order to prevent resonance oscillations within the coolant.

  11. NGNP Reactor Coolant Chemistry Control Study

    Energy Technology Data Exchange (ETDEWEB)

    Brian Castle

    2010-11-01

    The main focus of this paper is to identify the most desirable ranges of impurity levels in the primary coolant to optimize component life in the primary circuit of the Next Generation Nuclear Plant (NGNP), which will either be a prismatic block or pebble bed reactor.

  12. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    Science.gov (United States)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  13. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    OpenAIRE

    Lefèvre Grégory; Živković Ljiljana S.; Jaubertie Anne

    2012-01-01

    In the primary circuit of pressurized water reactors (PWR), the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspec...

  14. Simulating Experimental Investigation on the Safety of Nuclear Heating Reactor in Loss—of —Coolant Accidents

    Institute of Scientific and Technical Information of China (English)

    ZhanjieXu

    1996-01-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology(INET) of Tisinghuan University of CHina in 1989,Its main loop is a thermal-hydraulic system with natural circulation.This paper studies the safety of NHR under the condition of loss-of -coolant accidents(LOCAs) by means of simulant experiments.First,the Background and necessity of the experiments are presented.then the experimental system,including the thermal-hydraulic system and the data collection system,and similarity criteria are introduced.Up to now ,the discharge experiments with the residual heating power(20% rated heating power)have been carried out on the experimental system,The system prameters including circulation flow rate,system pressure,system temperature,void fraction,discharge mass and so on have been recorded and analyzed.Based on the results of the experiments,the conclusionas are shown as follos:on the whole,the reactor is safe under the condition of LOCAs,but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  15. A comprehensive approach to selecting the water chemistry of the secondary coolant circuit in the projects of nuclear power stations equipped with VVER-1200 reactors

    Science.gov (United States)

    Tyapkov, V. F.

    2011-05-01

    The paper presents the results obtained from studies on selecting the water chemistry of the secondary coolant circuit carried out for the project of a nuclear power station equipped with a new-generation VVER-1200 reactor on the basis of case calculations and an analysis of field experience gained at operating nuclear power stations.

  16. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-01-01

    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  17. Models and numerical methods for the simulation of loss-of-coolant accidents in nuclear reactors

    Science.gov (United States)

    Seguin, Nicolas

    2014-05-01

    In view of the simulation of the water flows in pressurized water reactors (PWR), many models are available in the literature and their complexity deeply depends on the required accuracy, see for instance [1]. The loss-of-coolant accident (LOCA) may appear when a pipe is broken through. The coolant is composed by light water in its liquid form at very high temperature and pressure (around 300 °C and 155 bar), it then flashes and becomes instantaneously vapor in case of LOCA. A front of liquid/vapor phase transition appears in the pipes and may propagate towards the critical parts of the PWR. It is crucial to propose accurate models for the whole phenomenon, but also sufficiently robust to obtain relevant numerical results. Due to the application we have in mind, a complete description of the two-phase flow (with all the bubbles, droplets, interfaces…) is out of reach and irrelevant. We investigate averaged models, based on the use of void fractions for each phase, which represent the probability of presence of a phase at a given position and at a given time. The most accurate averaged model, based on the so-called Baer-Nunziato model, describes separately each phase by its own density, velocity and pressure. The two phases are coupled by non-conservative terms due to gradients of the void fractions and by source terms for mechanical relaxation, drag force and mass transfer. With appropriate closure laws, it has been proved [2] that this model complies with all the expected physical requirements: positivity of densities and temperatures, maximum principle for the void fraction, conservation of the mixture quantities, decrease of the global entropy… On the basis of this model, it is possible to derive simpler models, which can be used where the flow is still, see [3]. From the numerical point of view, we develop new Finite Volume schemes in [4], which also satisfy the requirements mentioned above. Since they are based on a partial linearization of the physical

  18. A Model for Molten Fuel-Coolant Interaction during Melt Slumping in a Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, Manohar Singh; Siefken, Larry James

    1999-10-01

    This paper describes a simple fuel melt slumping model to replace the current parametric model in SCDAP/RELAP5. Specifically, a fuel-coolant interaction (FCI) model is developed to analyze the slumping molten fuel, molten fuel breakup, heat transfer to coolant, relocation of the molten droplets, size of a partially solidified particles that settle to the bottom of the lower plenum, and melt-plenum interaction, if any. Considering our objectives, the molten fuel jet breakup model, and fuel droplets Lagrangian model as included in a code TEXAS-V with Eulerian thermal hydraulics for water and steam from SCDAP/RELAP5 were used. The model was assessed with experimental data from MAGICO-2000 tests performed at University of California at Santa Barbara, and FARO Test L-08 performed at Joint Research Center, Ispra, Italy. The comparison was found satisfactory.

  19. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    Directory of Open Access Journals (Sweden)

    Lefèvre Grégory

    2012-01-01

    Full Text Available In the primary circuit of pressurized water reactors (PWR, the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspected to be the cause. As better understanding of the adhesion mechanism is the key factor in the prevention of fouling and particle removal, an experimental study was carried out using a laboratory set-up. With model materials, hematite and sintered alumina, the adhesion rate and surface potentials of the interacting solids were measured under different chemical conditions (solution pH and composition in analogy with the PWR ones. The obtained results were in good agreement with the DLVO (Derjaguin-Landau-Verwey- Overbeek theory and used as such to interpret this industrial phenomenon.

  20. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    Science.gov (United States)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  1. Reactor coolant pump shaft seal behavior during blackout conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mings, W.J.

    1985-01-01

    The United States Nuclear Regulatory Commission has classified the problem of reactor coolant pump seal failures as an unresolved safety issue. This decision was made in large part due to experimental results obtained from a research program developed to study shaft seal performance during station blackout and reported in this paper. Testing and analysis indicated a potential for pump seal failure under postulated blackout conditions leading to a loss of primary coolant with a concomitant danger of core uncovery. The work to date has not answered all the concerns regarding shaft seal failure but it has helped scope the problem and focus future research needed to completely resolve this issue.

  2. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  3. Station blackout with reactor coolant pump seal leakage

    Energy Technology Data Exchange (ETDEWEB)

    Evinay, A. (Southern California Edison, Irvine, CA (United States))

    1993-01-01

    The U.S. Nuclear Regulatory Commission (NRC) amended its regulations in 10CFR50 with the addition of a new section, 50.63, [open quotes]Loss of All Alternating Current Power.[close quotes] The objective of these requirements is to ensure that all nuclear plants have the capability to withstand a station blackout (SBO) and maintain adequate reactor core cooling and containment integrity for a specified period of time. The NRC also issued Regulatory Guide (RG) 1.155, [open quotes]Station Blackout,[close quotes] to provide guidance for meeting the requirements of 10CFR50.63. Concurrent with RG-1.155, the Nuclear Utility Management and Resources Council (NUMARC) has developed NUMARC 87-00 to address SBO-coping duration and capabilities at light water reactors. Licensees are required to submit a topical report based on NUMARC 87-00 guidelines, to demonstrate compliance with the SBO rule. One of the key compliance criteria is the ability of the plant to maintain adequate reactor coolant system (RCS) inventory to ensure core cooling for the required coping duration, assuming a leak rate of 25 gal/min per reactor coolant pump (RCP) seal in addition to technical specification (TS) leak rate.

  4. Nuclear reactor downcomer flow deflector

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  5. Experimental investigations of heat transfer and temperature fields in models simulating fuel assemblies used in the core of a nuclear reactor with a liquid heavy-metal coolant

    Science.gov (United States)

    Belyaev, I. A.; Genin, L. G.; Krylov, S. G.; Novikov, A. O.; Razuvanov, N. G.; Sviridov, V. G.

    2015-09-01

    an intricately shaped cross section simulating the flow pass sections for liquid-metal coolants cooling the core of nuclear reactors.

  6. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T.; Grunwald, G.

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  7. Reactor coolant pump shaft seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, D B; Hill, R C; Wensel, R G

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries.

  8. Dynamic Analysis of Coolant Channel and Its Internals of Indian 540 MWe PHWR Reactor

    Directory of Open Access Journals (Sweden)

    N. Dharmaraju

    2008-01-01

    Full Text Available The horizontal coolant channel is one of the important parts of primary heat transport system in PHWR type of reactors. There are in all 392 channels in the core of Indian 540 MWe reactor. Each channel houses 13 natural uranium fuel bundles and shielding and sealing plugs one each on either side of the channel. The heavy water coolant flows through the coolant channel and carries the nuclear heat to outside the core for steam generation and power production in the turbo-generator. India has commissioned one 540 MWe PHWR reactor in September 2005 and another similar unit will be going into operation very shortly. For a complete dynamic study of the channel and its internals under the influence of high coolant flow, experimental and modeling studies have been carried out. A good correlation has been achieved between the results of experimental and analytical models. The operating life of a typical coolant channel typically ranges from 10 to 15 full-power years. Towards the end of its operating life, its health monitoring becomes an important activity. Vibration diagnosis plays an important role as a tool for life management of coolant. Through the study of dynamic characteristics of the coolant channel under simulated loading condition, an attempt has been made to develop a diagnostics to monitor the health of the coolant channel over its operating life. A study has been also carried out to characterize the fuel vibration under different flow condition.

  9. Transient two-phase performance of LOFT reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.

  10. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  11. Parameters important to reactor coolant pump seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.C.; Rhodes, D.B.

    1986-10-24

    An assessment is made of the ability of typical Reactor Coolant Pump (RCP) Shaft Seals to withstand the conditions predicted for a station blackout (loss of all alternating current power) at a nuclear power station. Several factors are identified that are key to seal stability including inlet fluid conditions, pressure downstream of the seal, and geometrical details of the seal rings. Limits for stable seal operation are determined for various combinations of these factors, and the conclusion is drawn that some RPC seals would be near or over the threshold of instability during a station blackout. If the threshold were exceeded, significant leakage of coolant from the primary coolant system could be expected.

  12. Reactor coolant pump shaft seal behavior during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Kittmer, C.A.; Wensel, R.G.; Rhodes, D.B.; Metcalfe, R.; Cotnam, B.M.; Gentili, H.; Mings, W.J.

    1985-04-01

    A testing program designed to provide fundamental information pertaining to the behavior of reactor coolant pump (RCP) shaft seals during a postulated nuclear power plant station blackout has been completed. One seal assembly, utilizing both hydrodynamic and hydrostatic types of seals, was modeled and tested. Extrusion tests were conducted to determine if seal materials could withstand predicted temperatures and pressures. A taper-face seal model was tested for seal stability under conditions when leaking water flashes to steam across the seal face. Test information was then used as the basis for a station blackout analysis. Test results indicate a potential problem with an elastomer material used for O-rings by a pump vendor; that vendor is considering a change in material specification. Test results also indicate a need for further research on the generic issue of RCP seal integrity and its possible consideration for designation as an unresolved safety issue.

  13. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  14. Fuel, Structural Material and Coolant for an Advanced Fast Micro-Reactor

    Science.gov (United States)

    Do Nascimento, J. A.; Duimarães, L. N. F.; Ono, S.

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials.

  15. Simulating the corrosion of zirconium alloys in the water coolant of VVER reactors

    Science.gov (United States)

    Kritskii, V. G.; Berezina, I. G.; Motkova, E. A.

    2013-07-01

    A model for predicting the corrosion of cladding zirconium alloys depending on their composition and operating conditions is proposed. Laws of thermodynamics and chemical kinetics of the reactions through which the multicomponent zirconium alloy is oxidized in the reactor coolant constitute the physicochemical heart of the model. The developed version of the model is verified against the results obtained from tests of fuel rod claddings made of commercial-grade and experimental zirconium alloys carried out by different researchers under autoclave and reactor conditions. It is shown that the proposed model adequately describes the corrosion of alloys in coolants used at nuclear power stations. It is determined that, owing to boiling of coolant and its acidification in a VVER-1200 reactor, Zr-1% Nb alloys with additions of iron and oxygen must be more resistant to corrosion than the commercial-grade alloy E110.

  16. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  17. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  18. Improvements of primary coolant shutdown chemistry and reactor coolant system cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Gaudard, G.; Gilles, B.; Mesnage, F. [EDF/GDL (France); Cattant, F. [EDF R and D (France)

    2002-07-01

    In the framework of a radiation exposure management program entitled <>, EDF aims at decreasing the mass dosimetry of nuclear power plants workers. So, the annual dose per unit, which has improved from 2.44 m.Sv in 1991 to 1.08 in 2000, should target 0.8 mSv in the year 2005 term in order to meet the results of the best nuclear operators. One of the guidelines for irradiation source term reduction is the optimization of operation parameters, including reactor coolant system (RCS) chemistry in operation, RCS shutdown chemistry and RCS cleanup improvement. This paper presents the EDF strategy for the shutdown and start up RCS chemistry optimization. All the shutdown modes have been reviewed and for each of them, the chemical specifications will be fine tuned. A survey of some US PWRs shutdown practices has been conducted for an acid and reducing shutdown chemistry implementation test at one EDF unit. This survey shows that deviating from the EPRI recommended practice for acid and reducing shutdown chemistry is possible and that critical path impact can be minimized. The paper also presents some investigations about soluble and insoluble species behavior and characterization; the study focuses here on {sup 110m}Ag, {sup 122}Sb, {sup 124}Sb and iodine contamination. Concerning RCS cleanup improvement, the paper presents two studies. The first one highlights some limited design modifications that are either underway or planned, for an increased flow rate during the most critical periods of the shutdown. The second one focuses on the strategy EDF envisions for filters and resins selection criteria. Matching the study on contaminants behavior with the study of filters and resins selection criteria should allow improving the cleanup efficiency. (authors)

  19. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  20. The problem of optimizing the water chemistry used in the primary coolant circuit of a nuclear power station equipped with VVER reactors under the conditions of longer fuel cycle campaigns and increased capacity of power units

    Science.gov (United States)

    Sharafutdinov, R. B.; Kharitonova, N. L.

    2011-05-01

    It is shown that the optimal water chemistry of the primary coolant circuit must be substantiated while introducing measures aimed at increasing the power output in operating power units and for the project called AES-2006/AES TOI (a typical optimized project of a nuclear power station with enhanced information support). The experience gained from operation of PWR reactors with an elongated fuel cycle at an increased level of power is analyzed. Conditions under which boron compounds are locally concentrated on the fuel rod surfaces (the hideout phenomenon) and axial offset anomaly occurs are enlisted, and the influence of lithium on the hideout in the pores of deposits on the surfaces of fuel assemblies is shown.

  1. Application of damage function analysis to reactor coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, D.D. [Center for Electrochemical Science and Technology, Pennsylvania State Univ., University Park, PA (United States)

    2002-07-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  2. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  3. Small-break loss-of-coolant accidents in the updated PIUS 600 advanced reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, B.E.; Steiner, J.L.; Harmony, S.C. [Los Alamos National Lab., Albuquerque, NM (United States)] [and others

    1995-09-01

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is normally controlled by coolant boron concentration and the temperature of the moderator coolant. ABB submitted the PIUS design to the US Nuclear Regulatory Commission (NRC) for preapplication review, and Los Alamos supported the NRC`s review effort. Baseline analyses of small-break initiators at two locations were performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. In addition, sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions having a very low probability of occurrence.

  4. Design of an organic simplified nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States); Forrest, Eric [Primary Standards Laboratory, Sandia National Laboratories, Albuquerque (United States)

    2016-08-15

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  5. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  6. Use of Nitrogen Trifluoride To Purify Molten Salt Reactor Coolant and Heat Transfer Fluoride Salts

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.; McNamara, Bruce K.

    2017-05-02

    Abstract: The molten salt cooled nuclear reactor is included as one of the Generation IV reactor types. One of the challenges with the implementation of this reactor is purifying and maintaining the purity of the various molten fluoride salts that will be used as coolants. The method used for Oak Ridge National Laboratory’s molten salt experimental test reactor was to treat the coolant with a mixture of H2 and HF at 600°C. In this article we evaluate thermal NF3 treatment for purifying molten fluoride salt coolant candidates based on NF3’s 1) past use to purify fluoride salts, 2) other industrial uses, 3) commercial availability, 4) operational, chemical, and health hazards, 5) environmental effects and environmental risk management methods, 6) corrosive properties, and 7) thermodynamic potential to eliminate impurities that could arise due to exposure to water and oxygen. Our evaluation indicates that nitrogen trifluoride is a viable and safer alternative to the previous method.

  7. Effects of staggered blades on the hydraulic characteristics of a 1400-MW canned nuclear coolant pump

    Directory of Open Access Journals (Sweden)

    Fang-Ming Zhou

    2016-08-01

    Full Text Available A canned nuclear coolant pump is used in an advanced third-generation pressurized water reactor. Impeller is a key component of a canned nuclear coolant pump. Usually, the blade is installed between the hub and the shroud as an entire part. The blade is divided into two parts and is staggered in the circumferential direction is an approach of blade design. To understand the effects of staggered blades on a canned nuclear coolant pump, this article numerically investigated different types of staggering. The validity of the numerical simulation was confirmed by comparing the numerical and experimental results. The performance change of a canned nuclear coolant pump with staggered blades was acquired. Hydraulic performance curves, axial force curves, static pressure distributions at the impeller outlet, and static pressure pulsations were performed to investigate the performance changes caused by the staggered blades. The results show that the staggered blade has an important influence on the performance of canned nuclear coolant pumps. A staggered blade does not improve hydraulic performance but does improve the axial force and pressure pulsation. Specifically, the staggered blades can significantly reduce the pressure pulsation amplitude on the impeller pass frequency.

  8. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    Science.gov (United States)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  9. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  10. An overview of future sustainable nuclear power reactors

    OpenAIRE

    Andreas Poullikkas

    2013-01-01

    In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA). In contrast, generation III reactors, which are ...

  11. Nuclear reactor neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  12. An introduction to the engineering of fast nuclear reactors

    CERN Document Server

    Judd, Anthony M

    2014-01-01

    An invaluable resource for both graduate-level engineering students and practising nuclear engineers who want to expand their knowledge of fast nuclear reactors, the reactors of the future! This book is a concise yet comprehensive introduction to all aspects of fast reactor engineering. It covers topics including neutron physics; neutron flux spectra; flux distribution; Doppler and coolant temperature coefficients; the performance of ceramic and metal fuels under irradiation, structural changes, and fission-product migration; the effects of irradiation and corrosion on structural materials, irradiation swelling; heat transfer in the reactor core and its effect on core design; coolants including sodium and lead-bismuth alloy; coolant circuits; pumps; heat exchangers and steam generators; and plant control. The book includes new discussions on lead-alloy and gas coolants, metal fuel, the use of reactors to consume radioactive waste, and accelerator-driven subcritical systems.

  13. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.

    1985-07-01

    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs.

  14. EXPERIMENTAL STUDY OF LOCAL HYDRODYNAMICS AND MASS EXCHANGE PROCESSES OF COOLANT IN FUEL ASSEMBLIES OF PRESSURIZED WATER REACTORS

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2016-01-01

    Full Text Available The results of experimental studies of local hydrodynamics and mass exchange of coolant flow behind spacer and mixing grids of different structural versions that were developed for fuel assemblies of domestic and foreign nuclear reactors are presented in the article. In order to carry out the study the models of the following fuel assemblies have been fabricated: FA for VVER and VBER, FA-KVADRAT for PWR-reactor and FA for KLT-40C reactor. All the models have been fabricated with a full geometrical similarity with full-scale fuel assemblies. The study was carried out by simulating the flow of coolant in a core by air on an aerodynamic test rig. In order to measure local hydrodynamic characteristics of coolant flow five-channel Pitot probes were used that enable to measure the velocity vector in a point by its three components. The tracerpropane method was used for studying mass transfer processes. Flow hydrodynamics was studied by measuring cross-section velocities of coolant flow and coolant rates according to the model cells. The investigation of mass exchange processes consisted of a study of concentration distribution for tracer in experimental model, in determination of attenuation lengths of mass transfer processes behind mixing grids, in calculating of inter-cellar mass exchange coefficient. The database on coolant flow in fuel assemblies for different types of reactors had been accumulated that formed the basis of the engineering substantiation of reactor cores designs. The recommendations on choice of optimal versions of mixing grids have been taken into consideration by implementers of the JSC “OKBM Afrikantov” when creating commissioned fuel assemblies. The results of the study are used for verification of CFD-codes and CFD programs of detailed cell-by-cell calculation of reactor cores in order to decrease conservatism for substantiation of thermal-mechanical reliability.

  15. Transient Hydraulic Characteristics of Nuclear Reactor Coolant Pump in Variable Flow Transient Process%核主泵变流量过渡过程瞬态水力特性研究

    Institute of Scientific and Technical Information of China (English)

    王秀礼; 袁寿其; 朱荣生; 付强; 俞志君

    2013-01-01

    For the study on the transient hydraulic characteristics and internal flow mechanism of the nuclear reactor coolant pump in the transient process from design operation conditions to off-design conditions,the variable flow transient characteristics of centrifugal pump impeller passageway were simulated by using CFX software.The results show that during the variable flow transition,the distribution of pressure pulsation of the nuclear reactor coolant pump along the circumference direction is nonuniform.The pressure pulsation trends to rise gradually to reach the maximum value and then fall,basically following a sine-shape changing law.The times of transient pressure fluctuation change are equal to the times of rotor-stator interference between the vane and the guide vane.The closer monitoring point to the intersection surface between the vane and the guide blade is,the greater the pressure fluctuation is.Because of the attack angle,the speed of the impeller passageway first falls and then rises.The guide vane not only transfers the kinetic energy to pressure energy,but also effectively reduces the pressure pulsation amplitude.During the transition to small flow,flow reducing causes the secondary backflow to occur near the outlet of impeller and in turn leads the amplitude of flow velocity variation in the flow channel of impeller to increase with flow decrease.%为研究核主泵从设计工况向非设计工况过渡过程的瞬态水力特性及内部流动机理,应用计算流体力学软件CFX对核主泵叶轮流道内的变流量瞬态流动特性进行数值模拟计算.研究结果表明:变流量过渡时,核主泵的压力脉动沿圆周方向分布并不均匀,其变化趋势是逐渐上升到最大值后又降低,基本呈正弦变化规律,瞬态压力波动变化次数等于叶片与导叶片数之间的动静干涉次数,监测点越靠近叶片与导叶交界面,压力波动越大;由于冲角的存在造成叶轮流道内的速度呈先下降后

  16. Development of core design and analysis technology for integral reactor; development of coolant activity and dose evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Sun; Kim, Byeong Soo; Go, Hyun Seok; Lee, Young Wook; Jang, Mee [Seoul National University, Seoul (Korea)

    2002-03-01

    SMART, small- medium-sized integral reactor, is different from the customary electricity-generation PWR in design concepts and structures. The conventional coolant activity evaluation codes used in customary PWRs cannot be applied to SMART. In this study, SAEP(Specific Activity Evaluation Program) is developed that can be applied to both customary PWR and advanced reactor such as SMART. SAEP uses three methods(SAEP Ver.02, Ver.05, Ver.06) to evaluate coolant activity. They solve inhomogeneous linearly-coupled differential equations generated by considering nuclear system as N sub-components. Coolant activities of customary PWR are evaluated by use of SAEP. The results show good agreement with FSAR data. SAEP is used to evaluate coolant activities for SMART and the results are proposed in this study. These results show that SAEP is able to perform coolant activity evaluation for both customary PWR and advanced reactor such as SMART. In addition, with respect to radiation shielding optimization, conventional optimization methods and their characteristics related to radiation shielding are reviewed and analyzed. Strategies for proper usage of conventional methods are proposed to agree with the shielding design cases. 30 refs., 25 figs., 6 tabs. (Author)

  17. Development of core design and analysis technology for integral reactor; development of coolant activity and dose evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Sun; Kim, Byeong Soo; Go, Hyun Seok; Lee, Young Wook; Jang, Mee [Seoul National University, Seoul (Korea)

    2002-03-01

    SMART, small- medium-sized integral reactor, is different from the customary electricity-generation PWR in design concepts and structures. The conventional coolant activity evaluation codes used in customary PWRs cannot be applied to SMART. In this study, SAEP(Specific Activity Evaluation Program) is developed that can be applied to both customary PWR and advanced reactor such as SMART. SAEP uses three methods(SAEP Ver.02, Ver.05, Ver.06) to evaluate coolant activity. They solve inhomogeneous linearly-coupled differential equations generated by considering nuclear system as N sub-components. Coolant activities of customary PWR are evaluated by use of SAEP. The results show good agreement with FSAR data. SAEP is used to evaluate coolant activities for SMART and the results are proposed in this study. These results show that SAEP is able to perform coolant activity evaluation for both customary PWR and advanced reactor such as SMART. In addition, with respect to radiation shielding optimization, conventional optimization methods and their characteristics related to radiation shielding are reviewed and analyzed. Strategies for proper usage of conventional methods are proposed to agree with the shielding design cases. 30 refs., 25 figs., 6 tabs. (Author)

  18. Determination of mean molecular weights in organic reactor coolants. III. Differential cryoscopy with thermoelectric thermometer; Determinacion de masas moleculares medias en refrigerantes nucleares organicos. III-Crioscopia diferencial con termometro termoelectrico

    Energy Technology Data Exchange (ETDEWEB)

    Becerro, E.; Carreira, M.

    1968-07-01

    The solubility problems raised by some components of the polymeric residue of irradiated polyphenolic coolants, which make it necessary to operate with very small samples, have been solved by means of a differential cryoscopic technique using a thermoelectric thermometer (thermal) as sensitive element. The method is based on the direct measurement of the difference between the freezing points of the investigated solution and of a reference solution whose concentration may be changed at will. The change of {delta} V (mV) versus c(molal) is linear, the equivalent point being determined either analytically or graphically depending on the required accuracy. The method has been tested by measurements on pure polyphenyls, using diphenyl ether as solvent. It has been also applied to the main prospective coolants for the DON reactor. Working with 10{sup 2} molal solutions the accuracy is better than {+-} 2 per cent. (Author) 2 refs.

  19. The high-temperature sodium coolant technology in nuclear power installations for hydrogen power engineering

    Science.gov (United States)

    Kozlov, F. A.; Sorokin, A. P.; Alekseev, V. V.; Konovalov, M. A.

    2014-05-01

    In the case of using high-temperature sodium-cooled nuclear power installations for obtaining hydrogen and for other innovative applications (gasification and fluidization of coal, deep petroleum refining, conversion of biomass into liquid fuel, in the chemical industry, metallurgy, food industry, etc.), the sources of hydrogen that enters from the reactor plant tertiary coolant circuit into its secondary coolant circuit have intensity two or three orders of magnitude higher than that of hydrogen sources at a nuclear power plant (NPP) equipped with a BN-600 reactor. Fundamentally new process solutions are proposed for such conditions. The main prerequisite for implementing them is that the hydrogen concentration in sodium coolant is a factor of 100-1000 higher than it is in modern NPPs taken in combination with removal of hydrogen from sodium by subjecting it to vacuum through membranes made of vanadium or niobium. Numerical investigations carried out using a diffusion model showed that, by varying such parameters as fuel rod cladding material, its thickness, and time of operation in developing the fuel rods for high-temperature nuclear power installations (HT NPIs) it is possible to exclude ingress of cesium into sodium through the sealed fuel rod cladding. However, if the fuel rod cladding loses its tightness, operation of the HT NPI with cesium in the sodium will be unavoidable. Under such conditions, measures must be taken for deeply purifying sodium from cesium in order to minimize the diffusion of cesium into the structural materials.

  20. Determination of average molecular weights on organic reactor coolants. I.- Freezing-point depression method for benzene solutions; Determinaciond e masas moleculares medias en refrigerantes nucleares organicos. I.- Crioscopia de disolucion bencenicas

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, M.

    1965-07-01

    As a working method for determination of changes in molecular mass that may occur by irradiation (pyrolytic-radiolytic decomposition) of polyphenyl reactor coolants, a cryoscopic technique has been developed which associated the basic simplicity of Beckman's method with some experimental refinements taken out of the equilibrium methods. A total of 18 runs were made on samples of napthalene, biphenyl, and the commercial mixtures OM-2 (Progil) and Santowax-R (Monsanto), with an average deviation from the theoretical molecular mass of 0.6%. (Author) 7 refs.

  1. 核电站主管道离心铸造直管的质量控制研究%Quality Control of Nuclear Power Plant Reactor Coolant Pipe Prepared by Centrifugal Casting

    Institute of Scientific and Technical Information of China (English)

    施熔刚; 阚玉琦; 王占永; 张丽丹

    2012-01-01

    以百万千瓦级核电站冷却剂主管道离心29″直管铸件的监督实践为例,针对其离心铸造的特点,分析在铸造过程中关键工序的特点和质量控制过程中应注意的问题.%Taking manufacturing and supervision of 1000MW NPP reactor coolant centrifugal piping 29" as an example, aiming at the characteristic of centrifugal casting, the characteristic of key process in casting and the problems in the quality control process were analyzed.

  2. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  3. UO2 and PuO2 utilization in high temperature engineering test reactor with helium coolant

    Science.gov (United States)

    Waris, Abdul; Aji, Indarta K.; Novitrian, Pramuditya, Syeilendra; Su'ud, Zaki

    2016-03-01

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO2 fuel. In this study, we have evaluated the use of UO2 and PuO2 in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. The result shows that HTTR can obtain its criticality condition if the enrichment of 235U in loaded fuel is 18.0% or above.

  4. Reactivity control assembly for nuclear reactor. [LMFBR

    Science.gov (United States)

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  5. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Science.gov (United States)

    2010-01-01

    ... designed for inserting or removing fuel in an operating nuclear reactor. (3) Complete reactor control rod... contain fuel elements and the primary coolant in a nuclear reactor at an operating pressure in excess of... diffuser plates especially designed or prepared for use in a nuclear reactor. (8) Reactor control......

  6. Selection of sodium coolant for fast reactors in the US, France and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yoshihiko, E-mail: sakamoto.yoshihiko@jaea.go.jp [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Ibaraki-ken 311-1393 (Japan); Garnier, Jean-Claude; Rouault, Jacques [CEA, DEN, DER, Centre de Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Grandy, Christopher; Fanning, Thomas; Hill, Robert [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Chikazawa, Yoshitaka; Kotake, Shoji [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Ibaraki-ken 311-1393 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Trilateral study was conducted on coolant selection of fast reactor concept. Black-Right-Pointing-Pointer Fast reactor concepts are vital for nuclear fuel cycle sustainability goals. Black-Right-Pointing-Pointer Sodium, gas and lead cooled fast reactors are capable to achieve the goals. Black-Right-Pointing-Pointer Sodium cooled fast reactor is the most matured technology. Black-Right-Pointing-Pointer Gas and lead cooled fast reactor require long term development. - Abstract: The joint paper presents a common view of fast reactor specific missions in the development of nuclear energy and a cross-analysis of merits and demerits of several Fast Reactors concepts studied worldwide and especially in the Generation-IV International Forum (GIF) framework. The paper provides the context for fast reactors development in the United States, France and Japan and focuses on the comparison on Sodium-cooled Fast Reactor (SFR), Gas-cooled Fast Reactor (GFR), and Lead-cooled Fast Reactor (LFR), i.e. the three fast reactor concepts that have the potential to meet the nuclear fuel cycle sustainability goals. The information provided in the article permits the reader to understand each country's objectives to see that not only the objectives searched for but also the technical orientations are converging. The authors underline that SFR technology evaluation relies significantly on the substantial base technology development programs within each country which is without comparison for the other two fast reactor technologies, e.g., SFR technology has already been developed to commercial or near commercial scale in each country whereas the performance of LFR and GFR technology is still uncertain. The main GFR merits are the potential for high temperatures and the easier possibilities for inspections and repairs. The main challenges are the fuel (fabrication, in-pile behavior), materials for high temperatures, and the implementation of

  7. LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J

    1981-02-01

    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  8. Solution of heat removal from nuclear reactors by natural convection

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  9. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  10. 77 FR 39521 - Application for a License To Export Nuclear Reactor Major Components and Equipment

    Science.gov (United States)

    2012-07-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Application for a License To Export Nuclear Reactor Major Components and Equipment Pursuant to 10... Reactor internals, Components and For use in Braka nuclear power Company LLC reactor coolant equipment...

  11. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-11-15

    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  12. Experimental studies into the fluid dynamic performance of the coolant flow in the mixed core of the Temelin NPP VVER-1000 reactor

    Directory of Open Access Journals (Sweden)

    S.M. Dmitriev

    2015-11-01

    Full Text Available The paper presents the results of studies into the interassembly coolant interaction in the Temelin nuclear power plant (NPP VVER-1000 reactor core. An aerodynamic test bench was used to study the coolant flow processes in a TVSA-type fuel assembly bundle. To obtain more detailed information on the coolant flow dynamics, a VVER-1000 reactor core fragment was selected as the test model, which comprised two segments of a TVSA-12 PLUS fuel assembly and one segment of a TVSA-T assembly with stiffening angles and an interassembly gap. The studies into the coolant fluid dynamics consisted in measuring the velocity vector both in representative TVSA regions and inside the interassembly gap using a five-channel pneumometric probe. An analysis into the spatial distribution of the absolute flow velocity projections made it possible to detail the TVSA spacer, mixing and combined spacer grid flow pattern, identify the regions with the maximum transverse coolant flow, and determine the depth of the coolant flow disturbance propagation and redistribution in adjacent TVSA assemblies. The results of the studies into the interassembly coolant interaction among the adjacent TVSA assemblies are used at OKBM Afrikantov to update the VVER-1000 core thermal-hydraulic analysis procedures and have been added to the database for verification of computational fluid dynamics (CFD codes and for detailed cellwise analyses of the VVER-100 reactor cores.

  13. Liquid metal reactor development. Development of LMR coolant technology

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Choi, S. K.; Hwang, J. s.; Lee, Y. B.; Choi, B. H.; Kim, J. M.; Kim, Y. G.; Kim, M. J.; Lee, S. D.; Kang, Y. H.; Maeng, Y. Y.; Kim, T. R.; Park, J. H.; Park, S. J.; Cha, J. H.; Kim, D. H.; Oh, S. K.; Park, C. G.; Hong, S. H.; Lee, K. H.; Chun, M. H.; Moon, H. T.; Chang, S. H.; Lee, D. N.

    1997-07-15

    Following studies have been performed during last three years as the 1.2 phase study of the mid and long term nuclear technology development plan. First, the small scale experiments using the sodium have been performed such as the basic turbulent mixing experiment which is related to the design of a compact reactor, the flow reversal characteristics experiment by natural circulation which is necessary for the analysis of local flow reversal when the electromagnetic pump is installed, the feasibility test of the decay heat removal by wall cooling and the operation of electromagnetic pump. Second, the technology of operation mechanism of sodium facility is developed and the technical analysis and fundamental experiments of sodium measuring technology has been performed such as differential pressure measuring experiment, local flow rate measuring experimenter, sodium void fraction measuring experiment, under sodium facility, the free surface movement experiment and the side orifice pressure drop experiment. A new bounded convection scheme was introduced to the ELBO3D thermo-hydraulic computer code designed for analysis of experimental result. A three dimensional computer code was developed for the analysis of free surface movement and the analysis model of transmission of sodium void fraction was developed. Fourth, the small scale key components are developed. The submersible-in-pool type electromagnetic pump which can be used as primary pump in the liquid metal reactor is developed. The SASS which uses the Curie-point electromagnet and the mock-up of Pantograph type IVTM were manufactured and their feasibility was evaluated. Fifth, the high temperature characteristics experiment of stainless steel which is used as a major material for liquid metal reactor and the material characteristics experiment of magnet coil were performed. (author). 126 refs., 98 tabs., 296 figs.

  14. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  15. Position of guide vane trailing edge of nuclear reactor coolant pump under gas-liquid two phase condition%气液两相条件下核主泵导叶出口边安放位置

    Institute of Scientific and Technical Information of China (English)

    朱荣生; 习毅; 袁寿其; 付强; 龙云

    2013-01-01

    为了研究气液两相条件下,不同导叶出口边安放位置对核主泵内部压力脉动、含气率脉动的影响,并最终找出最佳的导叶出口边安放位置,采用三维数值模拟软件CFX模拟泵内部的瞬态流场,在泵壳内壁面和出口不同位置设置监测点,以了解各模型内部不同时刻、不同位置的压力、含气率分布.对比不同模型相同点的压力脉动、含气率脉动的时域、频域图可以发现:导叶出口边在泵壳中心平面(C-C平面)时,泵壳壁面上各点所受压力较小且较平稳,即压力脉动引起的振动、噪声较小,从安全性方面考虑,此时导叶出口边安放位置最佳;泵壳壁面上的压力脉动主要受叶轮的转动影响;除了类似隔舌处外,叶轮的转动对泵壳壁面和出口含气率脉动的影响不大,沿着液体绕流方向泵壳内壁面上的含气率逐渐增大,到出口达到最大.%To study the influence of different positions of guide vane trailing edge on the pressure fluctuation and gas fraction fluctuation in volute wall of nuclear reactor coolant pump under gas-liquid phase condition,and find a best position of guide vane trailing edge,the three-dimensional numerical software CFX was used to simulate the internal transient flow field of pump,with monitoring points set in different positions,in the hope of learning pressures and gas fraction distributions at different times and different positions within each model pump.By comparing pressure fluctuations,frequency domains and time domains at the same position of each model,it was found that the pressure is lower and steadier when the guide vane trailing edge is in the center plane of volute.In another word,the vibration and noise caused by pressure fluctuation were lower; it is the best position for safety.At the same time,it was also found that the fluctuation frequency of volute wall was influenced by impeller rotation frequency.Except similar tongue,impeller rotation

  16. Compatibility of structural materials with fusion reactor coolant and breeder fluids

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H.

    1979-01-01

    Fusion reactors are characterized by a lithium-containing blanket, a heat transfer medium that is integral with the blanket and first wall, and a heat engine that couples to the heat transfer medium. A variety of lithium-containing substances have been identified as potential blanket materials, including molten lithium metal, molten LiF--BeF/sub 2/, Pb--Li alloys, and solid ceramic compounds such as Li/sub 2/O. Potential heat transfer media include liquid lithium, liquid sodium, molten nitrates, water, and helium. Each of these coolants and blankets requires a particular set of chemical and mechanical properties with respect to the associated reactor and heat engine structural materials. This paper discusses the materials factors that underlie the selection of workable combinations of blankets and coolants. It also addresses the materials compatibility problems generic to those blanket-coolant combinations currently being considered in reactor design studies.

  17. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  18. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Griaznov, Georgii M.; Zhabotinskii, Evgenii E.; Serbin, Victor I.; Zrodnikov, Anatolii V.; Pupko, Victor Ia.; Ponomarev-Stepnoi, Nikolai N.; Usov, V. A.; Nikolaev, Iu. V.

    Compact thermionic nuclear reactor systems with satisfactory mass performance are competitive with space nuclear power systems based on the organic Rankine and closed Brayton cycles. The mass characteristics of the thermionic space nuclear power system are better than that of the solar power system for power levels beyond about 10 kWe. Longlife thermionic fuel element requirements, including their optimal dimensions, and common requirements for the in-core thermionic reactor design are formulated. Thermal and fast in-core thermionic reactors are considered and the ranges of their sensible use are discussed. Some design features of the fast in-core thermionic reactors cores (power range to 1 MWe) including a choice of coolants are discussed. Mass and dimensional performance for thermionic nuclear power reactor system are assessed. It is concluded that thermionic space nuclear power systems are promising power supplies for spacecrafts and that a single basic type of thermionic fuel element may be used for power requirements ranging to several hundred kWe.

  19. Modeling of Flow in Nuclear Reactor Fuel Cell Outlet

    Directory of Open Access Journals (Sweden)

    František URBAN

    2010-12-01

    Full Text Available Safe and effective load of nuclear reactor fuel cells demands qualitative and quantitative analysis of relations between coolant temperature in fuel cell outlet temperature measured by thermocouple and middle temperature of coolant in thermocouple plane position. In laboratory at Insitute of thermal power engineering of the Slovak University of Technology in Bratislava was installed an experimental physical fuel cell model of VVER 440 nuclear power plant with V 213 nuclear reactors. Objective of measurements on physical model was temperature and velocity profiles analysis in the fuel cell outlet. In this paper the measured temperature and velocity profiles are compared with the results of CFD simulation of fuel cell physical model coolant flow.

  20. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  1. ANALISIS TRANSIEN PADA FIXED BED NUCLEAR REACTOR

    Directory of Open Access Journals (Sweden)

    M. Rizaal

    2015-03-01

    Full Text Available Desain teras Fixed Bed Nuclear Reactor (FBNR yang modular memungkinkan pengendalian daya dapat dilakukan dengan mengatur ketinggian suspended core dan laju aliran massa pendingin. Tujuan penelitian ini adalah mempelajari perubahan daya termal teras sebagai akibat perubahan laju aliran massa pendingin yang masuk ke teras reaktor dan perubahan ketinggian suspended core serta mempelajari karakteristik keselamatan melekat yang dimiliki FBNR saat terjadi kegagalan pelepasan kalor (loss of heat sink. Keadaan neutronik teras dimodelkan pada kondisi tunak dengan menggunakan paket program Standard Reactor Analysis Code (SRAC untuk memperoleh data fluks neutron, konstanta grup, fraksi neutron kasip, konstanta peluruhan prekursor neutron kasip, dan beberapa parameter teras penting lainnya. Selanjutnya data tersebut digunakan pada perhitungan transien sebagai syarat awal. Analisis transien dilakukan pada tiga kondisi, yaitu saat terjadi penurunan laju aliran massa pendingin, saat terjadi penurunan ketinggian suspended core, dan saat terjadi kegagalan sistem pelepasan kalor. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa penurunan laju aliran massa pendingin sebesar 50%, dari kondisi normal, menyebabkan daya termal teras turun 28% dibanding daya sebelumnya. Penurunan ketinggian suspended core sebesar 30% dari ketinggian normal menyebabkan daya termal teras turun 17% dibanding daya sebelumnya. Sementara untuk kondisi kegagalan sistem pelepasan kalor, daya termal teras mengalami penurunan sebesar 76%. Dengan demikian, pengendalian daya pada FBNR dapat dilakukan dengan mengatur laju aliran massa pendingin dan ketinggian suspended core, serta keselamatan melekat yang handal pada kondisi kegagalan sistem pelepasan kalor. Kata kunci: FBNR, transien, daya, laju aliran massa, suspended core Modular in design enables Fixed Bed Nuclear Reactor (FBNR power controlled by the adjustment of suspended core and coolant flow rate. The main purposes of this paper

  2. Contribution to the diagnosis of mixed friction in the bearings of a reactor coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Gaev, G.P.; Shilejko, P.G.; Kail, I.T.; Proskuryakov, K.N. (Moskovskij Ehnergeticheskij Inst. (USSR)); Hippmann, N.; Kinsky, D.; Sturm, A.; Uhlemann, S. (Ingenieurhochschule Zittau (German Democratic Republic))

    1984-10-01

    Theoretical and experimental investigations have been performed to study the vibrational behaviour of a vertical, slide-bearing, fully encapsulated reactor coolant pump at various operational conditions. Magnetical and mechanical noise is interpreted as a function of pump delivery, pressure, volume flow, and temperature, and an example of an inadmissible operational condition (mixed friction in the bearings) is diagnosed.

  3. OPAL REACTOR: Calculation/Experiment comparison of Neutron Flux Mapping in Flux Coolant Channels

    Energy Technology Data Exchange (ETDEWEB)

    Barbot, L.; Domergue, C.; Villard, J. F.; Destouches, C. [CEA, Paris (France); Braoudakis, G.; Wassink, D.; Sinclair, B.; Osborn, J. C.; Huayou, Wu [ANSTO, Syeney (Australia)

    2013-07-01

    The measurement and calculation of the neutron flux mapping of the OPAL research reactor are presented. Following an investigation of fuel coolant channels using sub-miniature fission chambers to measure thermal neutron flux profiles, neutronic calculations were performed. Comparison between calculation and measurement shows very good agreement.

  4. Impact of mechanical- and maintenance-induced failures of main reactor coolant pump seals on plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Azarm, M A; Boccio, J L; Mitra, S

    1985-12-01

    This document presents an investigation of the safety impact resulting from mechanical- and maintenance-induced reactor coolant pump (RCP) seal failures in nuclear power plants. A data survey of the pump seal failures for existing nuclear power plants in the US from several available sources was performed. The annual frequency of pump seal failures in a nuclear power plant was estimated based on the concept of hazard rate and dependency evaluation. The conditional probability of various sizes of leak rates given seal failures was then evaluated. The safety impact of RCP seal failures, in terms of contribution to plant core-melt frequency, was also evaluated for three nuclear power plants. For leak rates below the normal makeup capacity and the impact of plant safety were discussed qualitatively, whereas for leak rates beyond the normal make up capacity, formal PRA methodologies were applied. 22 refs., 17 figs., 19 tabs.

  5. Use of Distribution Devices for Hydraulic Profiling of Coolant Flow in Core Gas-cooled Reactors

    Directory of Open Access Journals (Sweden)

    A. A. Satin

    2014-01-01

    Full Text Available In setting up a reactor plant for the transportation-power module of the megawatt class an important task is to optimize the path of flow, i.e. providing moderate hydraulic resistance, uniform distribution of the coolant. Significant contribution to the hydraulic losses makes one selected design of the coolant supplies. It is, in particular, hemispherical or semi-elliptical shape of the supply reservoir, which is selected to reduce its mass, resulting in the formation of torusshaped vortex in the inlet manifold, that leads to uneven coolant velocity at the inlet into the core, the flow pulsations, hydraulic losses.To control the flow redistribution in the core according to the level of energy are used the switchgear - deflectors installed in a hemispherical reservoir supplying coolant to the fuel elements (FE of the core of gas-cooled reactor. This design solution has an effect on the structure of the flow, rate in the cooling duct, and the flow resistance of the collector.In this paper we present the results of experiments carried out on the gas dynamic model of coolant paths, deflectors, and core, comprising 55 fuel rod simulators. Numerical simulation of flow in two-parameter model, using the k-ε turbulence model, and the software package ANSYS CFX v14.0 is performed. The paper demonstrates that experimental results are in compliance with calculated ones.The results obtained suggest that the use of switchgear ensures a coolant flow balance directly at the core inlet, thereby providing temperature reduction of fuel rods with a uniform power release in the cross-section. Considered options to find constructive solutions for deflectors give an idea to solve the problem of reducing hydraulic losses in the coolant paths, to decrease pulsation components of flow in the core and length of initial section of flow stabilization.

  6. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  7. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  8. A MODEL FOR PREDICTING FISSION PRODUCT ACTIVITIES IN REACTOR COOLANT: APPLICATION OF MODEL FOR ESTIMATING I-129 LEVELS IN RADIOACTIVE WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Husain, A.

    2003-02-27

    A general model was developed to estimate the activities of fission products in reactor coolant and hence to predict a value for the I-129/Cs-137 scaling factor; the latter can be applied along with measured Cs-137 activities to estimate I-129 levels in reactor waste. The model accounts for fission product release from both defective fuel rods and uranium contamination present on in-core reactor surfaces. For simplicity, only the key release mechanisms were modeled. A mass balance, considering the two fuel source terms and a loss term due to coolant cleanup was solved to estimate fission product activity in the primary heat transport system coolant. Steady state assumptions were made to solve for the activity of shortlived fission products. Solutions for long-lived fission products are time-dependent. Data for short-lived radioiodines I-131, I-132, I-133, I-134 and I-135 were analyzed to estimate model parameters for I-129. The estimated parameter values were then used to determine I-1 29 coolant activities. Because of the chemical affinity between iodine and cesium, estimates of Cs-137 coolant concentrations were also based on parameter values similar to those for the radioiodines; this assumption was tested by comparing measured and predicted Cs-137 coolant concentrations. Application of the derived model to Douglas Point and Darlington Nuclear Generating Station plant data yielded estimates for I-129/I-131 and I-129/Cs-137 which are consistent with values reported for pressurized water reactors (PWRs) and boiling water reactors (BWRs). The estimated magnitude for the I-129/Cs-137 ratio was 10-8 - 10-7.

  9. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  10. Electrochemistry of Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  11. Strategies for reactor safety: Preventing loss of coolant accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lydell, B.O.Y. [RSA Technoligies, Vista (United States)

    1997-12-01

    This final report on the NKS/RAK-1.2 summarizes the main features of the PIFRAP PC-program and its intended implementation. Regardless of the preferred technical approach to LOCA frequency estimation, the analysis approach must include recognition of the following technical issues: (a) Degradation and failure mechanisms potentially affecting piping systems within the reactor coolant pressure boundary (RCPB) and the potential consequences; (b) In-service inspection practices and how they influence piping reliability; and (c) The service experience with piping systems. The report consists of six sections and one appendix. A Nordic perspective on LOCA and nuclear safety is given. It includes summaries of results from research in material sciences and current regulatory philosophies regarding piping reliability. A summary of the LOCA concept is applied in Nordic PSA studies. It includes a discussion on deterministic and probabilistic views on LOCA. The R and D on piping reliability by SKI and the PIFRAP model is summarized. Next, Section 6 presents conclusion and recommendations. Finally, Appendix A contains a list of abbreviations and acronyms, together with a glossary of technical terms. (EG) 16 refs.

  12. Interfacing systems LOCAs (Loss of Coolant Accidents) at boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tsong-Lun; Fitzpatrick, R.; Stoyanov, S.

    1987-01-01

    The work presented in this paper was performed by Brookhaven National Laboratory (BNL) in support of Nuclear Regulatory Commission's (NRC) effort towards the resolution of Generic Issue 105 ''Interfacing System Loss of Coolant Accidents (LOCAs) at Boiling Water Reactors (BWRs).'' For BWRs, intersystem LOCA have typically either not been considered in probabilistic risk analyses, or if considered, were judged to contribute little to the risk estimates because of their perceived low frequency of occurrence. However, recent operating experience indicates that the pressure isolation valves (PIVs) in BWRs may not adequately protect against overpressurization of low pressure systems. The objective of this paper is to present the results of a study which analyzed interfacing system LOCA at several BWRs. The BWRs were selected to best represent a spectrum of BWRs in service using industry operating event experience and plant-specific information/configurations. The results presented here include some possible changes in test requirements/practices as well as an evaluation of their reduction potential in terms of core damage frequency (CDF).

  13. Development of Reactor Coolant Pump for APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Sang-Youn; Chu, Sung-Min; Chang, Jin-Young [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2015-10-15

    The development was focused on the performance requirements for APR1400 and to achieve the goals of the safety, reliability and adaptability for APR1400 system design. In addition, APR1400 RCP design was customized considering convenience of installation, operation and maintainability. This paper describes the details of the development process, improved design feature and type test results. Based on development of core technology of RCP, DOOSAN supplies the localized and improved APR1400 RCP to Shin-Hanul 1 and 2 Project. This would be good experience that the RCP core technology can break foreign monopoly in supplying the domestic nuclear industry. Also, there expect APR1400 RCP can be sustainable revenue models in nuclear industry. Moreover, development of RCP will be a catalyst to enhance design capacity for equipment and system of nuclear power plant as well as evaluation and verification skills of Korean nuclear industry.

  14. Advanced gas cooled nuclear reactor materials evaluation and development program. Selection of candidate alloys. Vol. 1. Advanced gas cooled reactor systems definition

    Energy Technology Data Exchange (ETDEWEB)

    Marvin, M.D.

    1978-10-31

    Candidate alloys for a Very High Temperature Reactor (VHTR) Nuclear Process Heal (NPH) and Direct Cycle Helium Turbine (DCHT) applications in terms of the effect of the primary coolant exposure and thermal exposure were evaluated. (FS)

  15. Hybrid reactors: Nuclear breeding or energy production?

    Energy Technology Data Exchange (ETDEWEB)

    Piera, Mireia [UNED, ETSII-Dp Ingenieria Energetica, c/Juan del Rosal 12, 28040 Madrid (Spain); Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M. [ETSII-UPM, c/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2010-09-15

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid. (author)

  16. Conceptual design of main coolant pump for integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Kim, Jong In; Kim, Min Hwan [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The conceptual design for MCP to be installed in the integral reactor SMART was carried out. Canned motor pump was adopted in the conceptual design of MCP. Three-dimensional modeling was performed to visualize the conceptual design of the MCP and to check interferences between the parts. The theoretical design procedure for the impeller was developed. The procedures for the flow field and structural analysis of impeller was also developed to assess the design validity and to verify its structural integrity. A computer program to analyze the dynamic characteristics of the rotor shaft of MCP was developed. The rotational speed sensor was designed and its performance test was conducted to verify the possibility of operation. A prototypes of the canned motor was manufactured and tested to confirm the validity of the design concept. The MCP design concept was also investigated for fabricability by establishing the manufacturing procedures. 41 refs., 96 figs., 10 tabs. (Author)

  17. Neutronic analysis of a high power density hybrid reactor using innovative coolants

    Indian Academy of Sciences (India)

    Senay Yalçin; Mustafa Übeylı; Adem Acir

    2005-08-01

    In this study, neutronic investigation of a deuterium–tritium (DT) driven hybrid reactor using ceramic uranium fuels, namely UC, UO2 or UN under a high neutron wall load (NWL) of 10 MW/m2 at the first wall is conducted over a period of 24 months for fissile fuel breeding for light water reactors (LWRs). New substances, namely, Flinabe or Li20Sn80 are used as coolants in the fuel zone to facilitate heat transfer out of the blanket. Natural lithium is also utilized for comparison to these two innovative coolants. Neutron transport calculations are performed on a simple experimental hybrid blanket with cylindrical geometry with the help of the SCALE 4·3 System by solving the Boltzmann transport equation with the XSDRNPM code in 238 neutron groups and an S8-P3 approximation. The investigated blanket using Flinabe or Li20Sn80 shows better fissile fuel breeding and fuel enrichment characteristics compared to that with natural lithium which shows that these two innovative coolants can be used in hybrid reactors for higher fissile fuel breeding performance. Furthermore, using a high NWL of 10 MW/m2 at the first wall of the investigated blanket can decrease the time for fuel rods to reach the level for charging in LWRs.

  18. Cold neutron tomography of annular coolant flow in a double subchannel model of a boiling water reactor

    Science.gov (United States)

    Kickhofel, J. L.; Zboray, R.; Damsohn, M.; Kaestner, A.; Lehmann, E. H.; Prasser, H.-M.

    2011-09-01

    Dryout of the liquid coolant film on fuel pins at the top of boiling water reactor (BWR) cores constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is a limiting factor in the thermal power, and therefore the economy, of BWRs. Ongoing research on multiphase annular flow, specifically the liquid film thickness, is fundamental not only to nuclear reactor safety and operation but also to that of evaporators, condensers, and pipelines in a general industrial context. We have performed cold neutron tomography of adiabatic air water annular flow in a scaled up model of the subchannel geometry found in BWR fuel assemblies today. All imaging has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institut in Switzerland. Neutron tomography is shown to excel in investigating the interactions of air water two phase flows with spacer vanes of different geometry. The high resolution, high contrast measurements provide spatial distributions of the coolant on top of the surfaces of the spacer, including the vanes, and in the subchannel downstream of the spacers.

  19. Effect of heat release in the coolant on the stability of a water-cooled-water-moderated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, S.I.; Sabaev, E.F.

    1985-10-01

    The authors use exact kinetic equations in order to estimate the effect of heat release on the coolant. The authors found that the instantaneous release of even an insignificant part of the heat in the coolant exerts a significant stabilizing effect on the stability of a boiling reactor, especially in the case of a high steam content at the core outlet, which must be taken into consideration when analyzing the dynamics of boiling reactors.

  20. Analysis of Pressurized Water Reactor Primary Coolant Leak Events Caused by Thermal Fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Corwin Lee; Shah, Vikram Naginbhai; Galyean, William Jospeh

    1999-09-01

    We present statistical analyses of pressurized water reactor (PWR) primary coolant leak events caused by thermal fatigue, and discuss their safety significance. Our worldwide data contain 13 leak events (through-wall cracking) in 3509 reactor-years, all in stainless steel piping with diameter less than 25 cm. Several types of data analysis show that the frequency of leak events (events per reactor-year) is increasing with plant age, and the increase is statistically significant. When an exponential trend model is assumed, the leak frequency is estimated to double every 8 years of reactor age, although this result should not be extrapolated to plants much older than 25 years. Difficulties in arresting this increase include lack of quantitative understanding of the phenomena causing thermal fatigue, lack of understanding of crack growth, and difficulty in detecting existing cracks.

  1. Experimental studies of local coolant hydrodynamics using a scaled model of cassette-type fuel assembly of a KLT-40S reactor

    Science.gov (United States)

    Dmitriev, S. M.; Barinov, A. A.; Varentsov, A. V.; Doronkov, D. V.; Solntsev, D. N.; Khrobostov, A. E.

    2016-08-01

    The results of experimental studies of local hydrodynamic and mass exchange characteristics of the coolant flow behind the spacer grid in the fuel assembly of a KLT-40S reactor are presented. The experiments were aimed at the investigation of representative domains of the fuel assembly with three tracer injection regions. The studies were performed at the aerodynamic test facility using the tracer gas diffusion method. According to the theory of hydrodynamic similarity, the obtained experimental results can be transferred to full-scale coolant flow conditions in standard fuel assemblies. The analysis of the tracer concentration propagation made it possible to determine in detail the flow pattern and find the main regularities and specific features of the coolant flow behind the plate spacer grid of KLT-40S fuel assembly. The hydraulic resistance coefficient of the spacer grid was experimentally determined. The coefficients of mass exchange between cells for representative cells of the displacer region in the KLT-40S fuel assembly were calculated for the first time; these results are presented in the form of the "mixing matrix." The results of studies of local coolant flow hydrodynamics in the KLT-40S fuel assembly are used at AO Afrikantov OKBM for estimation of thermotechnical reliability of active cores for reactors of floating nuclear power stations. The experimental data on hydrodynamic and mass exchange characteristics are included in the database for verification of CDF codes and detailed cell-wise calculation of the active core for KLT-40S reactor installation. The results of these studies can be used at FSUE RFNC-VNIIEF for testing and verification of domestic three-dimensional hydrodynamic CFD codes ("Logos") that are applied for substantiation of newly designed reactor installations. Practical recommendations on the application of the obtained results in thermohydraulic calculations of the active core for the KLT-40S reactor will be worked out. Proposals

  2. State of the art of nuclear facilities with organic cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brede, O.; Nagel, S.; Ziegenbein, D.

    1984-06-01

    USA, Canadian, and USSR activities aimed at developing nuclear facilities with organic cooled reactors are summarized. The facilities OMRE, PNPF, WR-1, and ARBUS are described, discussing in particular the problems of the chemistry of organic coolants. Finally, problems of further development and prospects of the application of organic cooled reactors are briefly outlined.

  3. Investigation of a Coolant Mixing Phenomena within the Reactor Pressure Vessel of a VVER-1000 Reactor with Different Simulation Tools

    Directory of Open Access Journals (Sweden)

    V. Sánchez

    2010-01-01

    Full Text Available The Institute of Neutron Physics and Reactor Technology (INR is involved in the qualification of coupled codes for reactor safety evaluations, aiming to improve their prediction capability and acceptability. In the frame of the VVER-1000 Coolant Transient Benchmark Phase 1, RELAP5/PARCS has been extensively assessed. Phase 2 of this benchmark was focused on both multidimensional thermal hydraulic phenomena and core physics. Plant data will be used to qualify the 3D models of TRACE and RELAP5/CFX, which were coupled for this purpose. The developed multidimensional models of the VVER-1000 reactor pressure vessel (RPV as well as the performed calculations will be described in detail. The predicted results are in good agreement with experimental data. It was demonstrated that the chosen 3D nodalization of the RPV is adequate for the description of the coolant mixing phenomena in a VVER-1000 reactor. Even though only a 3D coarse nodalization is used in TRACE, the integral results are comparable to those obtained by RELAP5/CFX.

  4. Teaching About Nature's Nuclear Reactors

    CERN Document Server

    Herndon, J M

    2005-01-01

    Naturally occurring nuclear reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactor beneath Staggs Field in 1942. In the story of their discovery, there are important lessons to be learned about scientific inquiry and scientific discovery. Now, there is evidence to suggest that the Earth's magnetic field and Jupiter's atmospheric turbulence are driven by planetary-scale nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating classroom discussions about the nature and implications of planetary energy sources and about the geomagnetic field. But more importantly, the subject can help to bring into focus the importance of discussing, debating, and challenging current thinking in a variety of areas.

  5. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  6. Evaluating the consequences of loss of flow accident for a typical VVER-1000 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mirvakili, S.M.; Safaei, S. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Nuclear Engineering, School of Mechanical Engineering; Faghihi, F. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Safety Research Center

    2010-07-01

    The loss of coolant flow in a nuclear reactor can result from a mechanical or electrical failure of the coolant pump. If the reactor is not tripped promptly, the immediate effect is a rapid increase in coolant temperature, decrease in minimum departure from nucleate boiling ratio (DNBR) and fuel damage. This study evaluated the shaft seizure of a reactor coolant pump in a VVER-1000 nuclear reactor. The locked rotor results in rapid reduction of flow through the affected reactor coolant loop and in turn leads to an increase in the primary coolant temperature and pressure. The analysis was conducted with regard for superimposing loss of power to the power plant at the initial accident moment. The required transient functions of flow, pressure and power were obtained using system transient calculations applied in COBRA-EN computer code in order to calculate the overall core thermal-hydraulic parameters such as temperature, critical heat flux and DNBR. The study showed that the critical period for the locked rotor accident is the first few seconds during which the maximum values of pressure and temperature are reached. 10 refs., 1 tab., 3 figs.

  7. Nuclear Reactor Engineering Analysis Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-12-31

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels.

  8. Technology of high temperature organic coolant

    Energy Technology Data Exchange (ETDEWEB)

    Makin, R.S.; Vorobei, M.P.; Kuprienko, V.A.; Starkov, V.A.; Tsykanov, V.A.; Checketkin, Y.V. [Research Institute of Atomic Reactors, Ulyanovsk (Russian Federation)

    1993-12-31

    Research has been performed on the problems related to the use of high temperature organic coolants in small and medium nuclear power plants. The work performed and also the experience of operating the ARBUS reactor confirmed the inherent safety features, reliability, and enhanced safety margins of the plants with this type of coolants. The advantages of this system and research highlights are presented.

  9. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Peyrouty, P.

    1996-12-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enabled faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk which can be associated with the deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible.

  10. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    Energy Technology Data Exchange (ETDEWEB)

    Al-Falahi, A. [Helsinki Univ. of Technology, Espoo (Finland); Haennine, M. [VTT Energy, Espoo (Finland); Porkholm, K. [IVO International, Ltd., Vantaa (Finland)

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  11. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  12. Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dehjourian, Mehdi; Rahgoshay, Mohmmad; Jahanfamia, Gholamreza [Dept. of Nuclear Engineering, Science and Research Branch, Islamic Azad University of Tehran, Tehran (Iran, Islamic Republic of); Sayareh, Reza [Faculty of Electrical and Computer Engineering, Kerman Graduate University of Technology, Kerman (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

  13. Advanced gas cooled nuclear reactor materials evaluation and development program

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed.

  14. Primary coolant sampling for activated corrosion product studies at Hanford N Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, D.B.

    1985-01-31

    A special system for sampling primary coolant at N Reactor during operation has been constructed and operated from 1977 to 1983. The basic criteria and design for solving the difficult problem of getting representative samples have been presented; this report details how the instrumentation was configured and sampling was done. Equipment and procedures were put together to allow one person to enter a radiation zone, check on 5 monitoring instruments, operate two batch instruments, gather five partitioned samples, record 26 pieces of information, annotate a strip chart and leave the zone in 30 minutes while expending 10 mRem of exposure. Additionally, the reduction of the samples' analysis, digitization of strip chart information and storage of all data on data management systems is maintained. As built, the system provides 0.3 to 1.0 gpm streams of coolant from upstream and downstream of a steam generator. The streams are cooled to 50 to 60/sup 0/C. The radiation environment averages 20 to 50 mR/hr to the worker. Instruments and special equipment for data gathering at the sampler include pH, conductance, dissolved oxygen, dissolved hydrogen and nitrogen, hot leg and cold leg coolant temperatures, particle sizing, turbidimetry, filtration, and continuous strip chart recording.

  15. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  16. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  17. Regulatory instrument review: Aging management of LWR cables, containment and basemat, reactor coolant pumps, and motor-operated valves

    Energy Technology Data Exchange (ETDEWEB)

    Werry, E.V.; Somasundaram, S.

    1995-09-01

    The results of Stage 2 of the Regulatory Instrument Review are presented in this volume. Selected regulatory instruments, such as the Code of Federal Regulations (CFR), US Nuclear Regulatory Commission (NRC), Regulatory Guides, and ASME Codes, were investigated to determine the extent to which these regulations apply aging management to selected safety-related components in nuclear power plants. The Regulatory Instrument Review was funded by the NRC under the Nuclear Plant Aging Research (NPAR) program. Stage 2 of the review focused on four safety-related structures and components; namely, cables, containment and basemat, reactor coolant pumps, and motor-operated valves. The review suggests that the primary-emphasis of the regulatory instruments was on the design, construction, start-up, and operation of a nuclear power plant, and that aging issues were primarily addressed after an aging-related problem was recognized. This Stage 2 review confirms the results of the prior review; (see Regulatory Instrument Review: Management of Aging of LWR Major Safety-Related Components NUREG/CR-5490. The observations indicate that the regulations generally address management of age-related degradation indirectly. Specific age-related degradation phenomena frequently are dealt with in bulletins and notices or through generic issues, letters, etc. The major recommendation of this report, therefore, is that the regulatory instruments should more directly and explicitly address the aging phenomenon and the management of the age-related degradation process.

  18. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  19. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Heames, T.J. (Science Applications International Corp., Albuquerque, NM (USA)); Williams, D.A.; Johns, N.A.; Chown, N.M. (UKAEA Atomic Energy Establishment, Winfrith (UK)); Bixler, N.E.; Grimley, A.J. (Sandia National Labs., Albuquerque, NM (USA)); Wheatley, C.J. (UKAEA Safety and Reliability Directorate, Culcheth (UK))

    1990-10-01

    This document provides a description of a model of the radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident. This document serves as the user's manual for the computer code called VICTORIA, based upon the model. The VICTORIA code predicts fission product release from the fuel, chemical reactions between fission products and structural materials, vapor and aerosol behavior, and fission product decay heating. This document provides a detailed description of each part of the implementation of the model into VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided. The VICTORIA code was developed upon a CRAY-XMP at Sandia National Laboratories in the USA and a CRAY-2 and various SUN workstations at the Winfrith Technology Centre in England. 60 refs.

  20. The radionuclides of primary coolant in HANARO and the recent activities performed to reduce the radioactivity or reactor pool water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [HANARO Research Reactor Centre, Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1998-10-01

    In HANARO reactor, there have been activities to identify the principal radionuclides and to quantify them under the normal operation. The purposes of such activities were to establish the measure by which we can reduce the radioactivity of the reactor pool water and detect, in early stage, the abnormal symptoms due to the leakage of radioactive materials from the irradiation sample or the damage of the nuclear fuel, etc. The typical radionuclides produced by the activation of reactor coolant are N{sup 16} and Ar{sup 41}. The radionuclides produced by the activation of the core structural material consist of Na{sup 24}, Mn{sup 56}, and W{sup 187}. Of the various radionuclides, governing the radiation level at the pool surface are Na{sup 24}, Ar{sup 41}, Mn{sup 58}, and W{sup 187}. By establishing the hot water layer system on the pool surface, we expected that the radionuclides such as Ar{sup 41} and Mn{sup 56} whose half-life are relatively short could be removed to a certain extent. Since the content of radioactivity of Na{sup 24} occupies about 60% of the total radioactivity, we assumed that the total radiation level would be greatly reduced if we could decrease the radiation level of Na{sup 24}. However the actual radiation level has not been reduced as much as we expected. Therefore, some experiments have been carried out to find the actual causes afterwards. What we learned through the experiments are that any disturbance in reactor pool water layer causes increase of the pool surface radiation level and even if we maintain the hot water layer well, reactor shutdown will be very much likely to happen once the hot water layer is disturbed. (author)

  1. Neutron analysis of the fuel of high temperature nuclear reactors; Analisis neutronico del combustible de reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Bastida O, G. E.; Francois L, J. L., E-mail: gbo729@yahoo.com.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  2. Reactor antineutrinos and nuclear physics

    Science.gov (United States)

    Balantekin, A. B.

    2016-11-01

    Short-baseline reactor neutrino experiments successfully measured the neutrino parameters they set out to measure, but they also identified a shape distortion in the 5-7 MeV range as well as a reduction from the predicted value of the flux. Nuclear physics input into the calculations of reactor antineutrino spectra needs to be better refined if this anomaly is to be interpreted as due to sterile neutrino states.

  3. Development of seismic sloshing analysis method of liquid coolant sodium in the KALIMER reactor vessel including several cylindrical components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Yoo, Bong

    2000-11-01

    It is important to establish a highly accurate technique of evaluating the sloshing behavior of liquid sodium coolant during earthquake for structural integrity of KALIMER reactor vessel and internals. The analysis procedure of sloshing behaviors is established using finite element computer program ANSYS, and the effectiveness of the procedure is confirmed by comparison with theoretical and experimental results in the literature. The analysis results agree well with experimental ones. Based on the procedure, the sloshing characteristics of liquid sodium coolant in the KALIMER reactor vessel including reactor internal components are evaluated. The maximum response height of sodium free surface at the reactor vessel is about 55cm when subjected to horizontal safe shutdown earthquake (SSE) of 0.3g for seismically isolated reactor building.

  4. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  5. Source Term Analysis for Reactor Coolant System with Consideration of Fuel Burnup

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Jong; Ahn, Joon Gi; Hwang, Hae Ryong [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    The radiation source terms in reactor coolant system (RCS) of pressurized water reactor (PWR) are basic design information for ALARA design such as radiation protection and shielding. Usually engineering companies own self-developed computer codes to estimate the source terms in RCS. DAMSAM and FIPCO are the codes developed by engineering companies. KEPCO E and C has developed computer code, RadSTAR, for use in the Radiation Source Term Analysis for Reactor coolant system during normal operation. The characteristics of RadSTAR are as follows. (1) RadSTAR uses fuel inventory data calculated by ORIGEN, such as ORIGEN2 or ORIGEN-S to consider effects of the fuel burnup. (2) RadSTAR estimates fission products by using finite differential method and analytic method to minimize numerical error. (3) RadSTAR enhances flexibility by adding the function to build the nuclide data library (production pathway library) for user-defined nuclides from ORIGEN data library. (4) RadSTAR consists of two modules. RadSTAR-BL is to build the nuclide data library. RadSTAR-ST is to perform numerical analysis on source terms. This paper includes descriptions on the numerical model, the buildup of nuclide data library, and the sensitivity analysis and verification of RadSTAR. KEPCO E and C developed RadSTAR to calculate source terms in RCS during normal operation. Sensitivity analysis and accuracy verification showed that RadSTAR keeps stability at Δt of 0.1 day and gives more accurate results in comparison with DAMSAM. After development, RadSTAR will replace DAMSAM. The areas, necessary to further development of RadSTAR, are addition of source term calculations for activation products and for shutdown operation.

  6. Analytical study on creep behavior of a tube of coolant piping system in nuclear power plant. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Noriyuki [Kyushu Univ., Fukuoka (Japan); Hagihara, Seiya [Saga Univ., Saga (Japan); Chino, Eiichi; Maeda, Akio [MRI Systems Inc., Tokyo (Japan); Maruyama, Yu; Hashimoto, Kazuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-10-01

    During severe accident of a light water reactor (LWR), reactor coolant piping would be damaged when the piping is subjected to high internal pressure and very high temperature due to heat transfer from high-temperature gas and decay heat from wall-deposited fission product (FP), both from degraded core. In such a case, high-temperature fast creep deformation could be the main cause for the pipe failure. For the evaluation of piping integrity during severe accidents, a method to predict such high-temperature fast creep deformation should be developed, using a creep constitutive equation considering tertiary creep behavior which has not been considered well in the pipe failure analyses. In this study, a creep constitutive equation was developed first based on the Kachanov-Ravotnov isotropic damage rule that considers the tertiary creep behavior. JAERI creep tensile test data for both nuclear-grade cold-drawn SUS316N and hot-extruded SUS316 materials were used to determine coefficients of the developed constitutive equation. Using the developed constitutive equation, finite element analyses were performed for local creep deformation of coolant piping under two temperature conditions: uniform temperature and temperature gradient. The analytical results indicated the damage variable being integrated following the evolution of creep damage can indicate pipe wall internal damage condition quantitatively. The damage variable was confirmed further to be able to reproduce the observation in JAERI piping failure tests, that is, pipe failure from the wall outside. (author)

  7. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  8. Study on the effect of the impeller and diffuser blade number on reactor coolant pump performances

    Science.gov (United States)

    Long, Y.; Yin, J. L.; Wang, D. Z.; Li, T. B.

    2016-05-01

    In this paper, CFD approach was employed to study how the blade number of impeller and diffuser influences reactor coolant pump performances. The three-dimensional pump internal flow channel was modelled by pro/E software, Reynolds-averaged Naiver-Stokes equations with the k-ε turbulence model were solved by the computational fluid dynamics software CFX. By post-processing on the numerical results, the performance curves of reactor coolant pump were obtained. The results are as follows, with the blade number of the impeller increasing, the head of the pump with different diffuser universally increases in the 8Q n∼1.2Q n conditions, and at different blade number of the diffuser, the head increases with the blade number of the impeller increasing. In 1.0Q n condition, when the blades number combination of impeller and diffuser chooses 4+16, 7+14 and 6+18, the head curves exist singular points. In 1.2Q n condition, the head curve still exists singular point in 6+18. With the blade number of the impeller increasing, the efficiency of the pump with different diffuser universally decreases in the 0.8Q n and 1.0Q n conditions, but in 1.2Q n condition, the efficiency of the pump with different diffuser universally increases. In 1.0Q n condition, the impellers of 4 and 5 blades are better. When the blade number combination of impeller and diffuser choose 4+11, 4+17, 4+18, 5+12, 5+17 and 5+18, the efficiencies relatively have higher values. With the blade number of the impeller increasing, the hydraulic shaft power of the pump with different diffuser universally increases in the 0.8Q n∼1.2Q n conditions, and with the blade number of the diffuser increasing, the power of different impeller overall has small fluctuation, but tends to be uniform. This means the increase of the diffuser blade number has less influence on shaft power.The influence on the head and flow by the matching relationship of the blades number between impeller and diffuser is very complicated, which

  9. Structural integrity of nuclear reactor pressure vessels

    Science.gov (United States)

    Knott, John F.

    2013-09-01

    The paper starts from concerns expressed by Sir Alan Cottrell, in the early 1970s, related to the safety of the pressurized water reactor (PWR) proposed at that time for the next phase of electrical power generation. It proceeds to describe the design and operation of nuclear generation plant and gives details of the manufacture of PWR reactor pressure vessels (RPVs). Attention is paid to stress-relief cracking and under-clad cracking, experienced with early RPVs, explaining the mechanisms for these forms of cracking and the means taken to avoid them. Particular note is made of the contribution of non-destructive inspection to structural integrity. Factors affecting brittle fracture in RPV steels are described: in particular, effects of neutron irradiation. The use of fracture mechanics to assess defect tolerance is explained, together with the failure assessment diagram embodied in the R6 procedure. There is discussion of the Master Curve and how it incorporates effects of irradiation on fracture toughness. Dangers associated with extrapolation of data to low probabilities are illustrated. The treatment of fatigue-crack growth is described, in the context of transients that may be experienced in the operation of PWR plant. Detailed attention is paid to the thermal shock associated with a large loss-of-coolant accident. The final section reviews the arguments advanced to justify 'Incredibility of Failure' and how these are incorporated in assessments of the integrity of existing plant and proposed 'new build' PWR pressure vessels.

  10. Transmutation performance analysis on coolant options in a hybrid reactor system design for high level waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong-Hee; Siddique, Muhammad Tariq; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2015-11-15

    Highlights: • Waste transmutation performance was compared and analyzed for seven different coolant options. • Reactions of fission and capture showed big differences depending on coolant options. • Moderation effect significantly affects on energy multiplication, tritium breeding and waste transmutation. • Reduction of radio-toxicities of TRUs showed different trend to coolant choice from performance of waste transmutation. - Abstract: A fusion–fission hybrid reactor (FFHR) is one of the most attractive candidates for high level waste transmutation. The selection of coolant affects the transmutation performance of a FFHR. LiPb coolant, as a conventional coolant for a FFHR, has problems such as reduction in neutron economic and magneto-hydro dynamics (MHD) pressure drop. Therefore, in this work, transmutation performance is evaluated and compared for various coolant options such as LiPb, H{sub 2}O, D{sub 2}O, Na, PbBi, LiF-BeF{sub 2} and NaF-BeF{sub 2} applicable to a hybrid reactor for waste transmutation (Hyb-WT). Design parameters measuring performance of a hybrid reactor were evaluated by MCNPX. They are k{sub eff}, energy multiplication factor, neutron absorption ratio, tritium breeding ratio, waste transmutation ratio, support ratio and radiotoxicity reduction. Compared to LiPb, H{sub 2}O and D{sub 2}O are not suitable for waste transmutation because of neutron moderation effect. Waste transmutation performances with Na and PbBi are similar to each other and not different much from LiPb. Even though molten salt such as LiF-BeF{sub 2} and NaF-BeF{sub 2} is good for avoiding MHD pressure drop problem, waste transmutation performance is dropped compared with LiPb.

  11. Interfacing systems LOCA (loss-of-coolant accidents): Pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1989-02-01

    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Regulatory Research, Reactor and Plant Safety Issues Branch, Division of Reactor and Plant Systems, US Nuclear Regulatory Commission. This study was requested by the NRC in order to provide a technical basis for the resolution of Generic Issue 105 ''Interfacing LOCA at LWRs.'' This report deals with pressurized water reactors (PWRs). A parallel report was also accomplished for boiling water reactors. This study focuses on three representative PWRs and extrapolates the plant-specific findings for their generic applicability. In addition, a generic analysis was performed to investigate the cost-benefit aspects of imposing a testing program that would require some minimum level of leak testing of the pressure isolation valves on plants that presently have no such requirements. 28 refs., 31 figs., 64 tabs.

  12. Liquid metal reactor development -Studies on safety measure of LMR coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tae; Choi, Yoon Dong; Park, Jin Hoh; Kwon, Sun Kil; Choi, Jong Hyun; Cho, Byung Ryul; Kim, Tae Joon; Kwon, Sang Woon; Jung, Kyung Chae; Kim, Byung Hoh; Hong, Soon Bok; Jung, Ji Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A study on the safety measures of LMR coolant showed the results as follows; 1. LMR coolant safety measure. A. Analysis and improvement of sodium fire code. B. Analysis of sodium fire phenomena. 2. Sodium fire aerosol characteristics. It was carried out conceptual design and basic design for sodium fire facility of medium size composed of sodium supply tank, sodium reactor vessel, sodium fire aerosol filter system and scrubbing column, and drain tank etc. 3. Sodium purification technology. A. Construction of calibration loop. (1) Design of sodium loop for the calibration of the equipment. (2) Construction of sodium loop including test equipments and other components. B. Na-analysis technology. (1) Oxygen concentration determination by the wet method. (2) Cover gas purification preliminary experiment. 4. The characteristics of sodium-water reaction. A. Analysis of the micro and small leak phenomena. (1) Manufacture of the micro-leak test apparatus. B. Analysis of large leak events. (1) Development of preliminary code for analysis of initial spike pressure. (2) Sample calculation and comparison with previous works. C. Development of test facility for large leak event evaluation. (1) Conceptional and basic design for the water and sodium-water test facility. D. Technology development for water leak detection system. (1) Investigations for the characteristics of active acoustic detection system. (2) Testing of the characteristics of hydrogen leak detection system. 171 figs, 29 tabs, 3 refs. (Author).

  13. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  14. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  15. 二代改进型核电厂严重事故下一回路卸压时机敏感性研究%Sensitivity Analysis on Time of Reactor Coolant System Depressurization under Severe Accident for Generation II+ Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    种毅敏; 杨志义; 石雪垚; 张佳佳; 李春; 倪曼; 徐雨婷

    2015-01-01

    Reactor coolant system (RCS)depressurization is necessary measure for nuclear power plant to mitigate the severe accident,as well as a significant part of the severe accident management guidelines (SAMG).Difference may exist on the time of RCS depressurization in different NPPs.In this paper,based on MAAP4,the sensitivity analysis of time to implement RCS depressurization is performed.A typical integrated computer program,and different effects on mitigation of severe accident are compared.The simulation scenario is typical drill situation of generation II + NPPs,and conclusions can be reference for similar NPPs to implement severe accident management strategy.%一回路卸压是核电厂缓解严重事故的必要手段,也是严重事故管理导则(SAMG)的重要内容,国内核电厂严重事故管理中对一回路卸压的要求并不相同,本文基于典型二代改进型核电厂 SAMG 演练的场景,使用一体化计算程序 MAAP4,对一回路卸压时机进行敏感性分析,比较不同卸压时机对缓解严重事故效果的影响,所给出的结论可为相同类型核电厂制定严重事故管理策略时提供参考。

  16. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghak [Korea KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed.

  17. Automatic control of the lithium concentration of the reactor coolant in PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, A.; Bruere, X. [Framatome ANP, Paris (France); Cohen, J. [Electricite de France-DIS-CIPN, Marseille (France); Berger, M. [Electricite de France-DIS-SEPTEN, Villeurbanne (France)

    2002-07-01

    Given the specific operating mode of French units, observance of the lithium-boron diagram and consequently observance of reactor coolant pH is considered to be a priority relative to management of {sup 7}Li ({sup 7}Li recycling practices or prototypes). For this reason EDF and FRAMATOME-ANP have developed an automatic lithium hydroxide injection device, which serves to compensate in real time whenever the upper or lower limits of the lithium-boron diagram are exceeded and to prevent excursion at low pH. A prototype of this device is installed on unit N 2 of Tricastin NPP. The purpose of this document is to describe its principles and the main characteristics, to provide experience feedback on its operation and to present its potential. (author)

  18. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  19. Research Progress of Decontamination Process and its Corrosion Effect on Primary Coolant Systems of Nuclear Reactor%反应堆一回路系统去污工艺及其对结构材料腐蚀的影响

    Institute of Scientific and Technical Information of China (English)

    谭昭怡; 李烨; 孙宇; 汪小琳; 张东

    2012-01-01

    采用化学去污工艺可降低反应堆一回路冷却系统周围辐射场.总结了近年来反应堆一回路冷却系统去污工艺和去污试剂对结构材料的腐蚀影响的研究成果,并建议后续研究方向.%Radiation field intensity in the primary coolant system of water-cooled reactors could be reduced by chemical decontamination process.Thus,the recent research progresses of the decontamination process and its corrosion effect on structural materials of the primary coolant systems were summarized in this paper.

  20. An overview of future sustainable nuclear power reactors

    Directory of Open Access Journals (Sweden)

    Andreas Poullikkas

    2013-01-01

    Full Text Available In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA. In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will

  1. Technology of high-temperature organic coolant

    Energy Technology Data Exchange (ETDEWEB)

    Vorobei, M.P.; Makin, R.S.; Kuprienko, V.A. [and others

    1993-12-31

    A wide range of studies were carried out in RIAR on the problems connected with the use of high-temperature organic coolant at nuclear power plants. The work performed and successful experience gained in persistent operation of the ARBUS reactor confirmed the inherent safety characteristics, high operational reliability, as well as improved safety of stations with similar reactors. A large scope of studies were carried out at the ARBUS pilot reactor and loop with the organic coolant of the MIR reactor and a wide range of problems were solved. The studies are described.

  2. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  3. Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V. [JSC ' Atomtechenergo' , Filial ' Novovoronezhatomtechenergo' , Novovorenezh (Russian Federation); Ryasny, Sergei I. [JSC ' Atomtechenergo' , Mytishi (Russian Federation)

    2016-09-15

    At WWER-1000 NPPs, as well as at PWR NPPs, there is a problem of determining the correct weighted mean coolant temperature in the primary circuit hot legs based on the measuring channels information. The problem is caused by the coolant temperature stratification. The technical documentation for engineering support and maintenance of I and C systems does not provide any regulatory guidelines to consider this effect. Therefore, it is very important to represent a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of the WWER-1000 reactor plants. The given paper presents the basic preconditions and approaches applied during the methodology development. They were worked out on the basis of the executed numerical and experimental research taking into account the analysis of the extensive material obtained by the authors from full-scale tests during the commissioning of WWER-1000 power units, as well as operational data obtained from several power units with different fuel loadings.

  4. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, S. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, A. D. [US Nuclear Regulatory Commission (NRC), Washington, DC (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, M. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  5. Corrosion of high temperature alloys in the coolant helium of a gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cabet, C.; Terlain, A. [Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, DEN/DPC - CEA/Saclay, Gif sur Yvette (France); Monnier, A. [Lab. de Genie Electrique de Paris, Plateau du Moulon, Gif sur Yvette (France)

    2004-07-01

    The corrosion of structural alloys in gas cooled reactor environment appears to be a critical issue. The coolant helium proved to contain impurities mainly H{sub 2}, H{sub 2}O, CO, and CH{sub 4} in the microbar range that interact with metallic materials at high temperature. Surface scale formation, bulk carburisation and/or decarburisation can occur, depending on the gas chemistry, the alloy composition and the temperature. These structural transformations can notably influence the component mechanical properties. A short review of the literature on the topic is first given. Corrosion tests with high chromium alloys and a Mo-based alloy were carried out at 750 C in a purposely-designed facility under simulated GCR helium. The first, rather short term, results showed that the Mo-based alloy was inert while the others alloys oxidised during at least 900 hours. The alloy with the higher Al and Ti contents exhibited poor oxidation resistance impeding its use as structural material without further investigations. (orig.)

  6. A probability model: Tritium release into the coolant of a light water tritium production reactor

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D N

    1992-04-01

    This report presents a probability model of the total amount of tritium that will be released from a core of tritium target rods into the coolant of a light water reactor during a tritium production cycle.The model relates the total tritium released from a core to the release characteristics of an individual target rod within the core. The model captures total tritium release from two sources-release via target rod breach and release via permeation through the target rod. Specifically, under conservative assumptions about the breach characteristics of a target rod, total tritium released from a core is modeled as a function of the probability of a target breach and the mean and standard deviation of the permeation reduction factor (PRF) of an individual target rod. Two dominant facts emerge from the analysis in this report. First, total tritium release cannot be controlled and minimized solely through the PRF characteristics of a target rod. Tritium release via breach must be abated if acceptable tritium production is to be achieved. Second, PRF values have a saturation point to their effectiveness. Specifically, in the presence of any realistic level of PRF variability, increasing PRF values above approximately 1000 wig contribute little to minimizing total tritium release.

  7. Large-scale Flow Pulsation in Tight Square Arrayed Rod Bundles of Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hwan; Kim, Kyung Min; Cho, Hyung Hee [Yonsei University, Seoul (Korea, Republic of); Shin, Chang Hwan; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    As a major component of modern nuclear reactor, the nuclear fuel rod bundles with liquid coolant have been studied by a lot of researchers to understand the flow structure between the fuel rods. Recently, rod arrays with much small pitch-to-diameter ratio have been being tried to increase performance of the nuclear reactor. The liquid coolant flowing axially through these small spaces between the rods is known to show some peculiar phenomena including large-scale, quasi-periodic flow pulsation. These flow pulsation phenomena dominate mixing process in the subchannels. Thus, precise understating of the flow structure is essential to predict thermal-hydraulic phenomena in nuclear rod bundles. In this present paper, the turbulent flow in tight square arrayed rod bundles is investigated with Hot-wire anemometry. Then, the measured velocity data are analyzed by using Fast Fourier Transform analysis to find characteristic frequency of the pulsation

  8. Heat for industry from nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Novikov, V.M.

    Two factors which incline nations toward the use of heat from nuclear reactors for industrial use are: 1) exhaustion of cheap fossil fuel resources, and 2) ecological problems associated both with extraction of fossil fuel from the earth and with its combustion. In addition to the usual problems that beset nuclear reactors, special problems associated with using heat from nuclear reactors in various industries are explored.

  9. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  10. Application of CFD Codes in Nuclear Reactor Safety Analysis

    Directory of Open Access Journals (Sweden)

    T. Höhne

    2010-01-01

    Full Text Available Computational Fluid Dynamics (CFD is increasingly being used in nuclear reactor safety (NRS analyses as a tool that enables safety relevant phenomena occurring in the reactor coolant system to be described in more detail. Numerical investigations on single phase coolant mixing in Pressurised Water Reactors (PWR have been performed at the FZD for almost a decade. The work is aimed at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity. For the experimental investigation of horizontal two phase flows, different non pressurized channels and the TOPFLOW Hot Leg model in a pressure chamber was build and simulated with ANSYS CFX. In a common project between the University of Applied Sciences Zittau/Görlitz and FZD the behaviour of insulation material released by a LOCA released into the containment and might compromise the long term emergency cooling systems is investigated. Moreover, the actual capability of CFD is shown to contribute to fuel rod bundle design with a good CHF performance.

  11. Numerical Simulation of the Pressure Distribution in the Reactor Vessel Downcomer Region Fluctuated by the Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dong Hwa; Jung, Byung Ryul; Jang, Ho Cheol; Yune, Seok Jeong; Kim, Eun Kee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    In this study the numerical simulation of the pressure distribution in the downcomer region resulting from the pressure pulsation by the Reactor Coolant Pump (RCP) is performed using the Finite Difference Method (FDM). Simulation is carried out for the cylindrical shaped 2-dimensional model equivalent to the outer surface of the Core Support Barrel (CSB) of APR1400 and a 1/2 model is adopted based on the bilateral symmetry by the inlet nozzle. The fluid temperature is 555 .deg. F and the forcing frequencies are 120Hz, 240Hz, 360Hz and 480Hz. Simulation results of the axial pressure distributions are provided as the Root Mean Square (RMS) values at the five locations of 0°, 45°, 90°, 135° and 180° in the circumferential direction from the inlet nozzle location. In the study, the numerical simulation of pressure distributions in the downcomer region induced by the RCP was performed using FDM and the results were reviewed. The interference of the waves returned from both boundaries in the axial direction and the source of the sinusoidal wave is shown on the inlet nozzle interface pressure point. It seems that the maximum pressures result from the superposition of the waves reflected from the seating surface and the waves newly arrived from the inlet nozzle interface pressure location.

  12. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation....

  13. Crack growth tests on a ferritic reactor pressure vessel steel under the simultaneous influence of simulated BWR coolant and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H. [VGB PowerTech e.V., Essen (Germany); Huettner, F. [Hamburgische Electricitaets-Werke AG, Hamburg (Germany); Ilg, U. [EnBW Kraftwerke AG, Philippsburg (Germany); Wachter, O. [E.ON Kernkraft GmbH, Hannover(Germany); Widera, M. [RWE Power AG, Essen (Germany); Brozova, A.; Ernestova, M.; Kysela, J.; Vsolak, R. [Nuclear Research Institute Rez plc (Czech Republic)

    2004-07-01

    Crack growth tests under constant load with initial in-situ cycling were performed on the low alloy reactor pressure vessel (RPV) steel 22 NiMoCr 3 7 (A 508 Cl. 2) with the goal to determine crack growth rates of irradiated and non-irradiated steel under the simultaneous influence of simulated BWR coolant and irradiation. The tests were performed under conditions as near as possible to operational conditions in a commercial BWR reactor. The research results are summarized and are compared with international data. (orig.)

  14. Experimental Study of a Stoppage Natural Circulation during a Nuclear Heating Reactor LOCA

    Institute of Scientific and Technical Information of China (English)

    博金海; 张佑杰; 姜胜耀

    2001-01-01

    The 5MW nuclear heating reactor is an integral naturalcirculation reactor. The rupture of the coolant penetrating tube is a typical accident causing coolant loss. When the water level drops down to the upper edge of the inlet of the heat exchanger, the natural circulation stops. This influences the core cooling and the stability of the main loop. A series of tests showed that there is a stable drop of pressure, and the heated element temperature is not too high to cause burnout. But the backward flow or flow oscillation in the primary coolant circuit occurs when the flow breaks completely in the end. The whole flow process is described and the mechanism is discussed.

  15. Conducting water chemistry of the secondary coolant circuit of VVER-based nuclear power plant units constructed without using copper containing alloys

    Science.gov (United States)

    Tyapkov, V. F.

    2014-07-01

    The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.

  16. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  17. Westinghouse Small Modular Reactor nuclear steam supply system design

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam

  18. Radioactive target needs for nuclear reactor physics and nuclear astrophysics

    OpenAIRE

    Jurado, B.; Barreau, G.; Bacri, C. O.

    2010-01-01

    Nuclear Instruments and Methods in Physics Research Section A - In press.; Nuclear reaction cross sections of short-lived nuclei are key inputs for new generation nuclear reactor simulations and for models describing the nucleosynthesis of elements. After discussing various topics of nuclear astrophysics and reactor physics where the demand of nuclear data on unstable nuclei is strong, we describe the general characteristics of the targets needed to measure the requested data. In some cases t...

  19. Commissioning of the STAR test section for experimental simulation of loss of coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maprelian, Eduardo; Torres, Walmir M.; Prado, Adelk C.; Umbehaun, Pedro E.; Franca, Renato L.; Santos, Samuel C.; Macedo, Luiz A.; Sabundjian, Gaiane, E-mail: emaprel@ipen.br, E-mail: wmtorres@ipen.br, E-mail: acprado@ipen.br, E-mail: umbehaun@ipen.br, E-mail: rlfranca@ipen.br, E-mail: samuelcs@ipen.br, E-mail: lamacedo@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SO (Brazil)

    2015-07-01

    The three basic safety functions of Research Reactors (RR) are the safe shutdown of the reactor, the proper cooling of the decay heat of the fuel elements and the confinement of radioactive materials. Compared to Nuclear Power Reactors, RR power release is small, yet its three safety functions must be met to ensure the integrity of the reactor. During a loss of coolant accident (LOCA) in pool type RR, partial or complete loss of pool water may occur, with consequent partial or complete uncovering of the fuel assemblies. In such an accident, the decay heat removal safety function must not be compromised. The Test Section for Experimental Simulation of Loss of Coolant Accident (STAR) is in commissioning phase. This test section will provide experimental data on partial and total uncovering of the EC-208 instrumented fuel assembly (IFA) irradiated in the IEA-R1. Experimental results will be useful in validation of computer codes for RR safety analysis, particularly on heat removal efficiency aspects (safety function) in accident conditions. STAR comprises a base on which is installed the IFA, the cylindrical stainless steel hull, the compressed air system for the test section emptying and refilling, and the instrumentation for temperature and level measurements. The commissioning tests or pre-operational check, consist of several preliminary tests to verify experimental procedures, the difficulties during assembling of STAR in the pool, the difficulties in control the emptying and refilling velocities, as well as, the repeatability capacity, tests of equipment, valves and systems and tests of instrumentation and data acquisition system. Safety, accuracy and easiness of operation will be checked. (author)

  20. Thermal hydraulic characteristics during ingress of coolant and loss of vacuum events in fusion reactors

    Science.gov (United States)

    Takase, K.; Kunugi, T.; Seki, Y.; Akimoto, H.

    2000-03-01

    The thermal hydraulic characteristics in the vacuum vessel (VV) of a fusion reactor under an ingress of coolant event (ICE) and a loss of vacuum event (LOVA) were investigated quantitatively using preliminary experimental apparatuses. In the ICE experiments, pressure rise characteristics in the VV were clarified for experimental parameters of the wall temperature and water temperature and for cases with and without a blowdown tank. In addition, the functional performance of a blowdown tank with and without a water cooling system was examined and it was confirmed that the blowdown tank with a water cooling system is effective for suppressing the pressure rise during the ICE. In the LOVA experiments, the saturation time in the VV from vacuum to atmosphere was investigated for various breach sizes and it was found that the saturation time is in inverse proportion to the breach size. In addition, the characteristics of exchange flow through breaches were clarified for the different breach positions on the VV. It was proven from the experimental results that the exchange flow became a counter-current flow when the breach was positioned on the top of the VV and a stratified flow when it was formed on the side wall of the VV, and that the exchange flow under the stratified flow condition was smoother than that of counter-current flow. On the basis of these results, the severest breach condition in ITER was changed from the top-break case to the side-break case. To predict with high accuracy the thermal hydraulic characteristics during ICEs and LOVAs under ITER conditions, a large scale test facility will be necessary. The current conceptual design of the combined ICE-LOVA test facility with a scaling factor of 1/1000 in comparison with the ITER volume is presented.

  1. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  2. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    2016-09-01

    The aim of this largely pedagogical article is toemploy pre-college physics to arrive at an understanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuelpin, the moderator, and lastly the dimensions ofthe nuclear reactor.

  3. Effect of Check Valve on Consequences of Coolant Pump Rotor Seizure Accident for EPR Reactor%止回阀对EPR反应堆主泵卡轴事故后果的影响

    Institute of Scientific and Technical Information of China (English)

    陈秋炀; 周拥辉

    2012-01-01

    分析计算欧洲先进压水堆(EPR)反应堆主泵卡轴事故,并对比在主泵出口安装止回阀和没有安装止回阀模型的卡轴事故安全分析.结果表明,在EPR主泵卡轴事故中,止回阀可增加模型堆芯进口流量约4%,有利于堆芯的冷却.止回阀可显著地提高堆芯最小偏离泡核沸腾比(DNBR),降低堆芯偏离泡核沸腾(DNB)份额,降低包壳温度约14℃.模型分析结果表明,在主泵卡轴事故工况下,主泵出口安装止回阀可更好地维持堆芯的完整性.%Counter current flow phenomenon would appear during reactor coolant pump rotor seizure accident. Present work analyzes the coolant pump rotor seizure accident for European Pressurized Reactor (EPR). The accident safety analysis results of model with check valve and without check valve are compared. It can be found that the check valve can increase the core inlet flow rate of model about 4%. The increasing of coolant flow rate is beneficial to the reactor core cooling. Check valve can increase the minimum departure from nucleate boiling ratio (DNBR), reduce the departure from nucleate boiling (DNB) fraction and the fuel rod cladding temperature about 14℃ during coolant pump rotor seizure accident. The analyses results show that the model with check valve can maintain the integrity of nuclear fuel rod effectively during reactor coolant pump rotor seizure accident.

  4. Towards an efficient multiphysics model for nuclear reactor dynamics

    Directory of Open Access Journals (Sweden)

    Obaidurrahman K.

    2015-01-01

    Full Text Available Availability of fast computer resources nowadays has facilitated more in-depth modeling of complex engineering systems which involve strong multiphysics interactions. This multiphysics modeling is an important necessity in nuclear reactor safety studies where efforts are being made worldwide to combine the knowledge from all associated disciplines at one place to accomplish the most realistic simulation of involved phenomenon. On these lines coupled modeling of nuclear reactor neutron kinetics, fuel heat transfer and coolant transport is a regular practice nowadays for transient analysis of reactor core. However optimization between modeling accuracy and computational economy has always been a challenging task to ensure the adequate degree of reliability in such extensive numerical exercises. Complex reactor core modeling involves estimation of evolving 3-D core thermal state, which in turn demands an expensive multichannel based detailed core thermal hydraulics model. A novel approach of power weighted coupling between core neutronics and thermal hydraulics presented in this work aims to reduce the bulk of core thermal calculations in core dynamics modeling to a significant extent without compromising accuracy of computation. Coupled core model has been validated against a series of international benchmarks. Accuracy and computational efficiency of the proposed multiphysics model has been demonstrated by analyzing a reactivity initiated transient.

  5. Large-break loss-of-coolant accident phenomena identification and ranking table (PIRT) for the advanced Candu reactor

    Energy Technology Data Exchange (ETDEWEB)

    Popov, N.; Snell, V.G.; Sills, H.E.; Langman, V.J.; Boyack, B. [Atomic Energy of Canada Ltd (Canada)

    2004-07-01

    The Advanced Candu Reactor (ACR) is an evolutionary advancement of the current Candu-6 reactor, aimed at producing electrical power for a capital cost and unit-energy cost significantly less than that of current reactor designs. The ACR retains the modular concept of horizontal fuel channels surrounded by heavy water moderator, as with all Candu reactors. However, ACR uses slightly enriched uranium (SEU) fuel, compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (e.g., via reductions in the heavy water requirements and the use of a light water coolant), as well as improved safety. This paper is focused on the double-ended guillotine critical inlet header break (CRIHB) loss-of-coolant accident (LOCA) in an ACR reactor, which is considered as a large break LOCA. Large Break LOCA in water-cooled reactors has been used historically as a design basis event by regulators, and it has attracted a very large share of safety analysis and regulatory review. The LBLOCA event covers a wide range of system behaviours and fundamental phenomena. The Phenomena Identification and Ranking Table (PIRT) for LBLOCA therefore provides a good understanding of many of the safety characteristics of the ACR design. The paper outlines the design characteristics of the ACR reactor that impact the PIRT process and computer code applicability. It also describes the LOCA phenomena, lists all components and systems that have an important role during the event, discusses the PIRT process and results, and presents the final PIRT summary table. (authors)

  6. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  7. Nuclear reactor composite fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  8. Failure rates in Barsebaeck-1 reactor coolant pressure boundary piping. An application of a piping failure database

    Energy Technology Data Exchange (ETDEWEB)

    Lydell, B. [RSA Technologies, Vista, CA (United States)

    1999-05-01

    This report documents an application of a piping failure database to estimate the frequency of leak and rupture in reactor coolant pressure boundary piping. The study used Barsebaeck-1 as reference plant. The study tried two different approaches to piping failure rate estimation: 1) PSA-style, simple estimation using Bayesian statistics, and 2) fitting of statistical distribution to failure data. A large, validated database on piping failures (like the SKI-PIPE database) supports both approaches. In addition to documenting leak and rupture frequencies, the SKI report describes the use of piping failure data to estimate frequency of medium and large loss of coolant accidents (LOCAs). This application study was co sponsored by Barsebaeck Kraft AB and SKI Research 41 refs, figs, tabs

  9. Linear stability analysis of a nuclear reactor using the lumped model

    Directory of Open Access Journals (Sweden)

    Kale Vivek A.

    2016-01-01

    Full Text Available The stability analysis of a nuclear reactor is an important aspect in the design and operation of the reactor. A stable neutronic response to perturbations is essential from the safety point of view. In this paper, a general methodology has been developed for the linear stability analysis of nuclear reactors using the lumped reactor model. The reactor kinetics has been modelled using the point kinetics equations and the reactivity feedbacks from fuel, coolant and xenon have been modelled through the appropriate time dependent equations. These governing equations are linearized considering small perturbations in the reactor state around a steady operating point. The characteristic equation of the system is used to establish the stability zone of the reactor considering the reactivity coefficients as parameters. This methodology has been used to identify the stability region of a typical pressurized heavy water reactor. It is shown that the positive reactivity feedback from xenon narrows down the stability region. Further, it is observed that the neutron kinetics parameters (such as the number of delayed neutron precursor groups considered, the neutron generation time, the delayed neutron fractions, etc. do not have a significant influence on the location of the stability boundary. The stability boundary is largely influenced by the parameters governing the evolution of the fuel and coolant temperature and xenon concentration.

  10. Materials technology for an advanced space power nuclear reactor concept: Program summary

    Science.gov (United States)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  11. Potential for low fracture toughness and lamellar tearing on PWR steam generator and reactor coolant pump supports. Resolution of generic technical activity A-12

    Energy Technology Data Exchange (ETDEWEB)

    Snaider, R.P.; Hodge, J.M.; Levin, H.A.; Zudans, J.J.

    1979-10-01

    This report summarizes work performed by the Nuclear Regulatory Commission staff and its contractor, Sandia Laboratories, in the resolution of Generic Technical Activity A-12, ''Potential for Low Fracture Toughness and Lamellar Tearing in PWR Steam Generator and Reactor Coolant Pump Supports.'' The report describes the technical issues, the technical studies performed by Sandia describes the technical issues, the technical studies performed by Sandia Laboratories, the NRC staff's technical positions based on these studies, and the staff's plan for implementing its technical positions. It also provides recommendations for further work. The complete technical input from Sandia Laboratories is appended to the report.

  12. Design of an Organic Simplified Nuclear Reactor

    OpenAIRE

    Koroush Shirvan; Eric Forrest

    2016-01-01

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attr...

  13. Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, M. [Instituto de Fusion Nuclear (DENIM), ETSII, Universidad Politecnica Madrid UPM, J. Gutierrez Abascal 2, Madrid 28006 (Spain); Sedano, L. A. [Asociacion Euratom-Ciematpara Fusion, Av. Complutense 22, 28040 Madrid (Spain); Perlado, J. M. [Instituto de Fusion Nuclear (DENIM), ETSII, Universidad Politecnica Madrid UPM, J. Gutierrez Abascal 2, Madrid 28006 (Spain)

    2008-07-15

    Tritium will be responsible for a large fraction of the environmental impact of the first generation of DT fusion reactors. Today, the efforts of conceptual development of the tritium cycle for DEMO are mainly centred in the so called Inner Breeding Tritium Cycle, conceived as guarantee of reactor fuel self-sufficiency. The EU Fusion Programme develops for the short term of fusion power technology two breeding blanket conceptual designs both helium cooled. One uses Li-ceramic material (HCPB, Helium-Cooled Pebble Bed) and the other a liquid metal eutectic alloy (Pb15.7Li) (HCLL, Helium-Cooled Lithium Lead). Both are Li-6 enriched materials. At a proper scale designs will be tested as Test Blanket Modules in ITER. The tritium cycles linked to both blanket concepts are similar, with some different characteristics. The tritium is recovered from the He purge gas in the case of HCPB, and directly from the breeding alloy through a carrier gas in HCLL. For a 3 GWth self-sufficient fusion reactor the tritium breeding need is few hundred grams of tritium per day. Safety and environmental impact are today the top priority design criteria. Dose impact limits should determine the key margins and parameters in its conception. Today, transfer from the cycle to the environment is conservatively assumed to be operating in a 1-enclosure scheme through the tritium plant power conversion system (intermediate heat exchangers and helium blowers). Tritium loss is caused by HT and T{sub 2} permeation and simultaneous primary coolant leakage through steam generators. Primary coolant chemistry appears to be the most natural way to control tritium permeation from the breeder into primary coolant and from primary coolant through SG by H{sub 2} tritium flux isotopic swamping or steel (EUROFER/INCOLOY) oxidation. A primary coolant chemistry optimization is proposed. Dynamic flow process diagrams of tritium fluxes are developed ad-hoc and coupled with tritiated effluents dose impact evaluations

  14. Nuclear reactor melt arrest and coolability device

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, Theo G.; Dinh, Nam Truc; Wachowiak, Richard M.

    2016-06-14

    Example embodiments provide a Basemat-Internal Melt Arrest and Coolability device (BiMAC) that offers improved spatial and mechanical characteristics for use in damage prevention and risk mitigation in accident scenarios. Example embodiments may include a BiMAC having an inclination of less than 10-degrees from the basemat floor and/or coolant channels of less than 4 inches in diameter, while maintaining minimum safety margins required by the Nuclear Regulatory Commission.

  15. Technical support to the Nuclear Regulatory Commission for the boiling water reactor blowdown heat transfer program

    Energy Technology Data Exchange (ETDEWEB)

    Rice, R.E.

    1976-09-01

    Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments.

  16. Proliferation Resistant Nuclear Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount

  17. Validation of computational fluid dynamics calculation using Rossendorf coolant mixing model flow measurements in primary loop of coolant in a pressurized water reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Istvan; Hutli, Ezddin; Faekas, Tatiana; Takacs, Antal; Guba, Attila; Toth, Ivan [Dept. of Thermohydraulics, Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2016-08-15

    The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM) 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD) calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal. The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively) with experimental results.

  18. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  19. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.

  20. Development of advanced techniques for life management and inspection of advanced heavy water reactor (AWHR) coolant channel components

    Energy Technology Data Exchange (ETDEWEB)

    Madhusoodanan, K.; Sinha, S.K.; Kumar, K.; Shyam, T.V.; Panwar, S.; Sharma, B.S.V.G. [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India); Sinha, R. K. [Bhabha Atomic Research Centre, Reactor Design and Development Group., Trombay, Mumbai (India)

    2011-07-01

    Operating life of pressure tubes of Pressurized Heavy Water Reactor (PHWR) is limited due to the presence of various issues associated with the material like hydrogen pick up, delayed hydride cracking, axial elongation and increase in diameter due to irradiation creep and growth. Periodic monitoring of the health of the pressure tube under in-situ conditions is essential to ensure the safe operation of the reactor. New designs of reactor call for innovative design philosophy, modification in fabrication route of pressure tube, development of reactor specific tools, both analytical and hardware for assessing the fitness for service of the pressure tube. Feedback from existing reactors has enhanced the understanding about life limiting parameters. This paper gives an insight into the life limiting issues associated with pressure tube and the efforts pursued for development of life management techniques for coolant channel of Advanced Heavy Water Reactor (AHWR) designed in India. The tools and techniques for in-situ property/hydrogen measurement, pulsed eddy current technique for zirconium alloy in-homogeneity characterization, horizontal shear wave EMAT system for dissimilar metal weld inspection, sliver sampling of vertical channel etc. are elaborated in the paper. (author)

  1. Study of fuel assemblies for the nuclear reactor GFR; Estudio de ensambles de combustible para el reactor nuclear GFR

    Energy Technology Data Exchange (ETDEWEB)

    Reyes R, R.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: ricarera@yahoo.com.mx

    2008-07-01

    In the present work the criticality calculations for two models of fuel assembly were realized to study the nuclear reactor cooled by gas (Gas Fast Reactor) of IV Generation. Model 1 is an assembly with hexagonal adjustment of fuel rods with reflector in the axial ends higher and lower, the coolant flows between the rods. Model 2 is an hexagonal assembly type block with spheres dispersion and cylindrical channels for where the coolant with reflector in the axial ends also flows. The materials selected for each component of the assemblies, should be resistant to the radiation of fast neutrons and high operation temperatures, for what in both models the following materials were chosen: a mixture of uranium carbide more plutonium for the fuel; a mixture of silicon carbide in different theoretical density percentages for structures and shieldings; helium gas like coolant and a zirconium carbide mixture like reflector, which fulfill the restrictions of being resistant to the high operation temperatures and means of irradiation. General considerations were taken, which are common parameters to both types of assemblies, like size and materials used in the different parts of each model of assembly. The criticality calculations were obtained with the help of the MCNPx code, based on the Monte Carlo method. It was realized a validation of the atomic density data of each component of the assemblies, to have the certainty of the proportionate values that they were introduced of correct way in the code. The results show that model 1 makes better use of the fissile material in a assembly that has the same dimensions externally. That is to say, that from the only considered viewpoint, the neutron one, model 1 is better than model 2. (Author)

  2. Reverse osmosis for the recovery of boric acid from the primary coolant at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bártová, Šárka, E-mail: sarka.bartova@cvrez.cz [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Kůs, Pavel [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Skala, Martin [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); University of Chemical Technology, Prague, Department of Chemical Engineering, Technická 5, Prague 166 28 (Czech Republic); Vonková, Kateřina [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic)

    2016-04-15

    Highlights: • RO membranes tested for boric acid recovery from primary coolant of nuclear power plants. • Scanning electron microscopy was used for the characterization of the membranes. • Lab scale experiments performed under various operation conditions. • We proposed configuration of and operation conditions for RO unit in nuclear power plant. - Abstract: At nuclear power plants (NPP), evaporators are used for the treatment of primary coolant and other liquid radioactive waste containing H{sub 3}BO{sub 3}. Because the operation of evaporators is expensive, a number of more cost-effective alternatives has been considered, one of which is reverse osmosis. We tested reverse osmosis modules from several manufactures on a batch laboratory apparatus. SEM images of the tested membranes were taken to distinguish the differences between the membranes. Water permeability through membranes was evaluated from the experiments with pure water. The experiments were performed with feed solutions containing various concentrations of H{sub 3}BO{sub 3} in a range commonly occurring in radioactive waste. The pH of the feed solutions ranged from 5.2 to 11.2. Our results confirmed that the pH of the feed solution plays the most important role in membrane separation efficiency of H{sub 3}BO{sub 3}. Certain modifications to the pH of the feed solution were needed to enable the tested membranes to concentrate the H{sub 3}BO{sub 3} in the retentate stream, separate from the pure water in the permeate stream. On this basis, we propose the configuration of and operational conditions for a reverse osmosis unit at NPP.

  3. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Thermo- and fluid-dynamic effects

    Energy Technology Data Exchange (ETDEWEB)

    Seeliger, André, E-mail: a.seeliger@hszg.de [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Alt, Sören; Kästner, Wolfgang; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Kryk, Holger; Harm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany)

    2016-08-15

    Highlights: • Borated coolant supports corrosion at zinc-coated installations in PWR after LOCA. • Dissolved zinc is injected into core by ECCS during sump recirculation phase. • Corrosion products can reach and settle at further downstream components. • Corrosion products can cause head losses at spacers and influence decay heat removal. • Preventive procedures were tested at semi-technical scale facilities. - Abstract: Within the framework of the German reactor safety research, generic experimental investigations were carried out aiming at thermal-hydraulic consequences of physicochemical mechanisms, caused by dissolution of zinc in boric acid during corrosion processes at hot-dip galvanized surfaces of containment internals at lower coolant temperatures and the subsequent precipitation of solid zinc borates in PWR core regions of higher temperature. This constellation can occur during sump recirculation operation of ECCS after LOCA. Hot-dip galvanized compounds, which are installed inside a PWR containment, may act as zinc sources. Getting in contact with boric acid coolant, zinc at their surfaces is released into coolant in form of ions due to corrosion processes. As a long-term behavior resp. over a time period of several days, metal layers of zinc and zinc alloys can dissolve extensively. First fundamental studies at laboratory scale were done at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Their experimental results were picked up for the definition of boundary conditions for experiments at semi-technical scale at the Hochschule Zittau/Görlitz (HSZG). Electrical heating rods with zircaloy cladding tubes have been used as fuel rod simulators. As near-plant core components, a 3 × 3 configuration of heating rods (HRC) and a shortened, partially heatable PWR fuel assembly dummy were applied into cooling circuits. The HRC module includes segments of spacers for a suitable representation of a heating channel geometry. Formations of different solid

  4. Analysis of the impact of coolant density variations in the high efficiency channel of a pressure tube super critical water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scriven, M.G.; Hummel, D.W.; Novog, D.R.; Luxat, J.C. [McMaster Univ., Hamilton, Ontario (Canada)

    2012-07-01

    The Pressure Tube (PT) Supercritical Water Reactor (SCWR) is based on a light water coolant operating at pressures above the thermodynamic critical pressure; a separate low temperature and low pressure moderator. The coolant density changes by an order of magnitude depending on its local enthalpy in the porous ceramic insulator tube. This causes significant changes in the neutron transport characteristics, axially and radially, in the fuel channel. This work performs lattice physics calculations for a 78-element Pu-Th fuel at zero burnup and examines the effect of assumptions related to coolant density in the radial direction of a HEC, using the neutron transport code WIMS-AECL. (author)

  5. On-Line Coolant Chemistry Analysis

    Energy Technology Data Exchange (ETDEWEB)

    LM Bachman

    2006-07-19

    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level.

  6. CNP1000轴封式核主泵技术%Technology for CNP1000 shaft sealed reactor coolant pump

    Institute of Scientific and Technical Information of China (English)

    冯晓东; 吴大转; 杨立峰; 贾允

    2016-01-01

    CNP1000轴封式核主泵作为泵类行业的高端设备是核电站一回路系统中唯一没有实现国产化的设备,其自主设计、制造及试验是中国推进核电自主化的重点和难点。对核电泵的国内技术现状以及1000 MW轴封式核主泵结构特点进行了介绍,分别从承压边界、水力部件、转子轴系、隔热组件、轴密封、停车密封、水导轴承、推力轴承、一体化供油泵、油密封、辅助系统及其关键设备进行了设计原理和实施要求的详细说明。通过对不同类型主泵的出口限制情况和应用前景比较分析,说明了轴封主泵对外出口的优势,提出轴封主泵将在很长一段时间占据核电市场的主导地位。目前国内企业已完成了多项关键技术,如主轴密封、水力部件、全流量试验等的自主化,但是核主泵的理论基础并没有完整建立,有待进一步研究。因此,核主泵的国产化研制任务仍需较长的时间去攻克。%As high-end equipment in pump industry , CNP1000 shaft sealed reactor coolant pump ( RCP) in the primary loop system of pressurized water reactor ( PWR) in a nuclear power plant is the only equipment which cannot be manufactured domestically .Therefore, the independent design , ma-nufacturing and test of this kind of pump are important and difficult tasks in promoting the nationaliza-tion of nuclear technology in China .The domestic technological situation and structural characteristics of 1 000 MW shaft sealed RCP are introduced , and the design principle and technical implementation requirement are elaborated in terms of pressure retaining boundary , hydraulic components , pump rotor system, heat insulation subassembly , shaft seal, standstill seal, lower guide bearings, thrust bearing, integrated oil pump , oil seal, auxiliary system and key equipment in detail .Through an analysis on ex-port restriction and application prospect of various types of RCP , it is

  7. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    Energy Technology Data Exchange (ETDEWEB)

    Lister, D. [University of New Brunswick, Fredericton, NB (Canada). Dept. of Chemical Engineering; Lang, L.C. [Atomic Energy of Canada Ltd., Chalk River Lab., ON (Canada)

    2002-07-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  8. Hysteresis phenomenon in nuclear reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pirayesh, Behnam; Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Akbari, Monireh [Shahid Rajaee Teacher Training Univ., Tehran (Iran, Islamic Republic of). Dept. of Mathematics

    2017-05-15

    This paper applies a nonlinear analysis method to show that hysteresis phenomenon, due to the Saddle-node bifurcation, may occur in the nuclear reactor. This phenomenon may have significant effects on nuclear reactor dynamics and can even be the beginning of a nuclear reactor accident. A system of four dimensional nonlinear ordinary differential equations was considered to study the hysteresis phenomenon in a typical nuclear reactor. It should be noted that the reactivity was considered as a nonlinear function of state variables. The condition for emerging hysteresis was investigated using Routh-Hurwitz criterion and Sotomayor's theorem for saddle node bifurcation. A numerical analysis is also provided to illustrate the analytical results.

  9. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future lunar and Mars robotic and manned missions impose new and innovative technological requirements for their control and protection...

  10. Modelling material effects on flow-accelerated corrosion in primary CANDU coolant and secondary reactor feed-water

    Energy Technology Data Exchange (ETDEWEB)

    Phromwong, P.; Lister, D., E-mail: c7r13@unb.ca [Univ. of New Brunswick, Dept. of Chemical Engineering, Fredericton, New Brunswick (Canada); Uchida, S. [Japan Atomic Energy Agency, Tokai-mura, Ibaraki (Japan)

    2012-07-01

    The effects of chromium content on flow-accelerated corrosion (FAC) of carbon steel have been predicted very well by including a passivating layer, which is a chromium-dependent diffusion barrier at the metal-oxide interface. By adjusting the properties of the chromium-dependent layer, described with a Passivation Parameter (PP), we can predict the FAC of carbon steel of different chromium contents in typical reactor feed-water environments (140{sup o}C and neutral or ammoniated chemistry). The model and an appropriate PP are also applied to the environment typical of carbon-steel feeders in the primary coolant of a CANDU reactor (310{sup o}C and lithiated chemistry). The model predicts FAC rate very well (with a deviation of 10% or less) in both situations. (author)

  11. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Heams, T J [Science Applications International Corp., Albuquerque, NM (United States); Williams, D A; Johns, N A; Mason, A [UKAEA, Winfrith, (England); Bixler, N E; Grimley, A J [Sandia National Labs., Albuquerque, NM (United States); Wheatley, C J [UKAEA, Culcheth (England); Dickson, L W [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Osborn-Lee, I [Oak Ridge National Lab., TN (United States); Domagala, P; Zawadzki, S; Rest, J [Argonne National Lab., IL (United States); Alexander, C A [Battelle, Columbus, OH (United States); Lee, R Y [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  12. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  13. Nuclear data requirements for fusion reactor nucleonics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.R.; Abdou, M.A.

    1980-01-01

    Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future.

  14. Use of ethanolamine for alkalization of secondary coolant. First experience at VVER reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smiesko, I. [NPP Jaslovske Bohunice (Slovakia); Bystriansky, J. [TEDIS-KOR, Dobra (Czech Republic); Szalo, A. [NPPRI Trnava (Slovakia)

    2002-07-01

    The paper summarises preparatory work and results of six-week plant trial aimed at use of ethanolamine for alkalization of secondary coolant. Operational data in pre-test and test period are given and outage inspection results are commented. Future plans are outlined. (authors)

  15. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  16. Mathematical Modeling for Simulation of Nuclear Reactor Analysis

    OpenAIRE

    Salah Ud-Din Khan; Shahab Ud-Din Khan

    2013-01-01

    In this paper, we have developed a mathematical model for the nuclear reactor analysis to be implemented in the nuclear reactor code. THEATRe is nuclear reactor analysis code which can only work for the cylindrical type fuel reactor and cannot applicable for the plate type fuel nuclear reactor. Therefore, the current studies encompasses on the modification of THEATRe code for the plate type fuel element. This mathematical model is applicable to the thermal analysis of the reactor which is ver...

  17. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  18. Feasibility analysis of the Primary Loop of Pool-Type Natural Circulating Nuclear Reactor Dedicated to Seawater Desalination

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woonho; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the feasibility of natural circulation was evaluated for the reference plant AHR400 (Advanced Heating Reactor 400MWth). AHR400 is a pool-type desalination-dedicated nuclear reactor. As a consequence, AHR400 has low operating pressure and temperature which provides large safety margin. Removal of the reactor coolant pump from the AHR400 will enforce integrity of the reactor vessel and passive safety feature. Therefore, the study also tried to find out optimized primary loop design to achieve total natural circulation of the coolant. Natural circulation capacity of the primary loop of the desalination dedicated nuclear reactor AHR400 was evaluated. It was concluded that to remove RCP from the AHR400 and operates the reactor only by natural circulation of the coolant is impossible. Decreased core power as half make removal of RCP possible with 15m central height difference between the core and IHXs. Furthermore, validation and modification of pressure loss coefficients by small-scaled natural circulation experiment at a pool-type reactor would provide more accurate results.

  19. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  20. U.S. Nuclear Power Reactor Plant Status

    Data.gov (United States)

    Nuclear Regulatory Commission — Demographic data on U.S. commercial nuclear power reactors, including: plant name/unit number, docket number, location, licensee, reactor/containment type, nuclear...

  1. Study of Natural Convection Passive Cooling System for Nuclear Reactors

    Science.gov (United States)

    Abdillah, Habibi; Saputra, Geby; Novitrian; Permana, Sidik

    2017-07-01

    Fukushima nuclear reactor accident occurred due to the reactor cooling pumps and followed by all emergencies cooling systems could not work. Therefore, the system which has a passive safety system that rely on natural laws such as natural convection passive cooling system. In natural convection, the cooling material can flow due to the different density of the material due to the temperature difference. To analyze such investigation, a simple apparatus was set up and explains the study of natural convection in a vertical closed-loop system. It was set up that, in the closed loop, there is a heater at the bottom which is representing heat source system from the reactor core and cooler at the top which is showing the cooling system performance in room temperature to make a temperature difference for convection process. The study aims to find some loop configurations and some natural convection performances that can produce an optimum flow of cooling process. The study was done and focused on experimental approach and simulation. The obtained results are showing and analyzing in temperature profile data and the speed of coolant flow at some point on the closed-loop system.

  2. Reactor neutrons in nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Glorius, Jan; Göbel, Kathrin; Heftrich, Tanja; Jentschel, Michael; Jurado, Beatriz; Käppeler, Franz; Köster, Ulli; Langer, Christoph; Litvinov, Yuri A.; Weigand, Mario

    2017-09-01

    The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.

  3. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  4. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, K.M.

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  5. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  6. Advanced Neutron Source Reactor (ANSR) phenomena identification and ranking (PIR) for large break loss of coolant accidents (LBLOCA)

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, A. E. [Oak Ridge National Lab., TN (United States); Tennessee Univ., Knoxville, TN (United States); Cheng, L. Y. [Brookhaven National Lab., Upton, NY (United States); Dimenna, R. A. [Westinghouse Savannah River Co., Aiken, SC (United States); Griffith, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Wilson, G. E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-06-01

    A team of experts in reactor analysis conducted a phenomena identification and ranking (PIR) exercise for a large break loss-of-coolant accident (LBLOCA) in the Advanced Neutron source Reactor (ANSR). The LBLOCA transient is broken into two separate parts for the PIR exercise. The first part considers the initial depressurization of the system that follows the opening of the break. The second part of the transient includes long-term decay heat removal after the reactor is shut down and the system is depressurized. A PIR is developed for each part of the LBLOCA. The ranking results are reviewed to establish if models in the RELAP5-MOD3 thermalhydraulic code are adequate for use in ANSR LBLOCA simulations. Deficiencies in the RELAP5-MOD3 code are identified and existing data or models are recommended to improve the code for this application. Experiments were also suggested to establish models for situations judged to be beyond current knowledge. The applicability of the ANSR PIR results is reviewed for the entire set of transients important to the ANSR safety analysis.

  7. ROSA-III base test series for a large break loss-of-coolant accident in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Abe, N.; Anoda, Y.; Koizumi, Y.; Shiba, M.

    1982-05-01

    The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. It is confirmed from the experimental results obtained so far that the ROSA-III test facility can simulate major aspects of a BWR LOCA, such as boiling transition by lowering of the mixture level in the core, rewetting by the lower plenum flashing, and final quenching by the ECCS. The overall agreement between the calculated results by the RELAP5/ MOD0 code and the experimental results is good; however, the calculated lower plenum flashing rewetted the whole core and the calculated cladding temperature considerably underpredicts the measured value at the upper part of the core.

  8. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  9. Some questions on nuclear safety of heavy-water power reactor operating in self-sufficient thorium cycle

    Directory of Open Access Journals (Sweden)

    Bergelson Boris R.

    2008-01-01

    Full Text Available In this paper the comparative calculations of the void coefficient have been made for different types of channel reactors for the coolant density interval 0.8-0.01 g/cm3. These results demonstrate the following. In heavy-water channel reactors, the replacement of D2O coolant by H2O, ensuring significant economic advantage, leads to the essential reducing of nuclear safety of an installation. The comparison of different reactors by the void coefficient demonstrates that at the dehydration of channels the reactivity increase is minimal for HWPR(Th, operating in the self-sufficient mode. The reduction of coolant density in channels in most cases is accompanied by the increase of power and temperatures of fuel assemblies. The calculations show that the reduction of reactivity due to Doppler effect can compensate the effect of dehydration of a channel. However, the result depends on the time dependency of heat-hydraulic processes, occurring in reactor channels in the specific accident. The result obtained in the paper confirms that nuclear safety of HWPR(Th lies on the same level as nuclear safety of CANDU type reactors approved in practice.

  10. Oklo reactors and implications for nuclear science

    CERN Document Server

    Davis, E D; Sharapov, E I

    2014-01-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross sections are input to all Oklo modeling and we discuss a parameter, the $^{175}$Lu ground state cross section for thermal neutron capture leading to the isomer $^{176\\mathrm{m}}$ Lu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant $\\alpha$ and the ratio $X_q=m_q/\\Lambda$ (where $m_...

  11. Detectability prediction for a thermoacoustic sensor in the breazeale nuclear reactor pool

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James [Idaho National Laboratory, Idaho Falls, ID (United States); Hrisko, Joshua [Idaho National Laboratory, Idaho Falls, ID (United States); Garrett, Steven [Idaho National Laboratory, Idaho Falls, ID (United States)

    2016-03-01

    Laboratory experiments have suggested that thermoacoustic engines can be in- corporated within nuclear fuel rods. Such engines would radiate sounds that could be used to measure and acoustically-telemeter information about the op- eration of the nuclear reactor (e.g., coolant temperature or uxes of neutrons or other energetic particles) or the physical condition of the nuclear fuel itself (e.g., changes in temperature, evolved gases) that are encoded as the frequency and/or amplitude of the radiated sound [IEEE Measurement and Instrumen- tation 16(3), 18-25 (2013)]. For such acoustic information to be detectable, it is important to characterize the vibroacoustical environments within reactors. Measurements will be presented of the background noise spectra (with and with- out coolant pumps) and reverberation times within the 70,000 gallon pool that cools and shields the fuel in the 1 MW research reactor on Penn State's campus using two hydrophones, a piezoelectric projector, and an accelerometer. Sev- eral signal-processing techniques will be demonstrated to enhance the measured results. Background vibrational measurement were also taken at the 250 MW Advanced Test Reactor, located at the Idaho National Laboratory, using ac- celerometers mounted outside the reactor's pressure vessel and on plumbing will also be presented. The detectability predictions made in the thesis were validated in September 2015 using a nuclear ssion-heated thermoacoustic sensor that was placed in the core of the Breazeale Nuclear Reactor on Penn State's campus. Some features of the thermoacoustic device used in that experiment will also be revealed. [Work supported by the U.S. Department of Energy.

  12. Nordic Nuclear Materials Forum for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, C. (Studsvik Nuclear AB, Nykoeping (Sweden)); Penttilae, S. (Technical Research Centre of Finland, VTT (Finland))

    2010-03-15

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  13. Effect of Coolant Inventories and Parallel Loop Interconnections on the Natural Circulation in Various Heat Transport Systems of a Nuclear Power Plant during Station Blackout

    Directory of Open Access Journals (Sweden)

    Avinash J. Gaikwad

    2008-01-01

    Full Text Available Provision of passive means to reactor core decay heat removal enhances the nuclear power plant (NPP safety and availability. In the earlier Indian pressurised heavy water reactors (IPHWRs, like the 220 MWe and the 540 MWe, crash cooldown from the steam generators (SGs is resorted to mitigate consequences of station blackout (SBO. In the 700 MWe PHWR currently being designed an additional passive decay heat removal (PDHR system is also incorporated to condense the steam generated in the boilers during a SBO. The sustainability of natural circulation in the various heat transport systems (i.e., primary heat transport (PHT, SGs, and PDHRs under station blackout depends on the corresponding system's coolant inventories and the coolant circuit configurations (i.e., parallel paths and interconnections. On the primary side, the interconnection between the two primary loops plays an important role to sustain the natural circulation heat removal. On the secondary side, the steam lines interconnections and the initial inventory in the SGs prior to cooldown, that is, hooking up of the PDHRs are very important. This paper attempts to open up discussions on the concept and the core issues associated with passive systems which can provide continued heat sink during such accident scenarios. The discussions would include the criteria for design, and performance of such concepts already implemented and proposes schemes to be implemented in the proposed 700 MWe IPHWR. The designer feedbacks generated, and critical examination of performance analysis results for the added passive system to the existing generation II & III reactors will help ascertaining that these safety systems/inventories in fact perform in sustaining decay heat removal and augmenting safety.

  14. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  15. Nuclear Data and the Oklo Natural Nuclear Reactors

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Sonzogni, A. A.

    2014-04-01

    Data from the Oklo natural nuclear reactors have enabled some of the most sensitive terrestrial tests of time variation of dimensionless fundamental constants. The constraints on variation of αEM, the fine structure constant are particular good, but depend on the reliability of the nuclear data, and on the reliability of the modeling of the reactor environment. We briefly review the history of these tests and discuss our recent work in 1) attempting to better bound the temperatures at which the reactors operated, 2) investigating whether the γ-ray fluxes in the reactors could have contributed to changing lutetium isotopic abundances and 3) determining whether lanthanum isotopic data could provide an alternate estimate of the neutron fluence.

  16. Nuclear reactor alignment plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  17. Study of Compatibility of Stainless Steel Weld Joints with Liquid Sodium-Potassium Coolants for Fission Surface Power Reactors for Lunar and Space Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, Martin [Univ. of Tennessee, Knoxville, TN (United States); Qualls, Louis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-31

    To make a manned mission to the surface of the moon or to Mars with any significant residence time, the power requirements will make a nuclear reactor the most feasible source of energy. To prepare for such a mission, NASA has teamed with the DOE to develop Fission Surface Power technology with the goal of developing viable options. The Fission Surface Power System (FSPS) recommended as the initial baseline design includes a liquid metal reactor and primary coolant system that transfers heat to two intermediate liquid metal heat transfer loops. Each intermediate loop transfers heat to two Stirling heat exchangers that each power two Stirling converters. Both the primary and the intermediate loops will use sodium-potassium (NaK) as the liquid metal coolant, and the primary loop will operate at temperatures exceeding 600°C. The alloy selected for the heat exchangers and piping is AISI Type 316L stainless steel. The extensive experience with NaK in breeder reactor programs and with earlier space reactors for unmanned missions lends considerable confidence in using NaK as a coolant in contact with stainless steel alloys. However, the microstructure, chemical segregation, and stress state of a weld leads to the potential for corrosion and cracking. Such failures have been experienced in NaK systems that have operated for times less than the eight year goal for the FSPS. For this reason, it was necessary to evaluate candidate weld techniques and expose welds to high-temperature, flowing NaK in a closed, closely controlled system. The goal of this project was to determine the optimum weld configuration for a NaK system that will withstand service for eight years under FSPS conditions. Since the most difficult weld to make and to evaluate is the tube to tube sheet weld in the intermediate heat exchangers, it was the focus of this research. A pumped loop of flowing NaK was fabricated for exposure of candidate weld specimens at temperatures of 600°C, the expected

  18. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J.H.

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  19. SAFETY ANALYSIS METHODOLOGY FOR AGED CANDU® 6 NUCLEAR REACTORS

    Directory of Open Access Journals (Sweden)

    WOLFGANG HARTMANN

    2013-10-01

    Full Text Available This paper deals with the Safety Analysis for CANDU® 6 nuclear reactors as affected by main Heat Transport System (HTS aging. Operational and aging related changes of the HTS throughout its lifetime may lead to restrictions in certain safety system settings and hence some restriction in performance under certain conditions. A step in confirming safe reactor operation is the tracking of relevant data and their corresponding interpretation by the use of appropriate thermalhydraulic analytic models. Safety analyses ranging from the assessment of safety limits associated with the prevention of intermittent fuel sheath dryout for a slow Loss of Regulation (LOR analysis and fission gas release after a fuel failure are summarized. Specifically for fission gas release, the thermalhydraulic analysis for a fresh core and an 11 Effective Full Power Years (EFPY aged core was summarized, leading to the most severe stagnation break sizes for the inlet feeder break and the channel failure time. Associated coolant conditions provide the input data for fuel analyses. Based on the thermalhydraulic data, the fission product inventory under normal operating conditions may be calculated for both fresh and aged cores, and the fission gas release may be evaluated during the transient. This analysis plays a major role in determining possible radiation doses to the public after postulated accidents have occurred.

  20. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    Science.gov (United States)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-01

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors. Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat. The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  1. Sensitivity Analysis of Core Damage from Reactor Coolant Pump Seal Leakage during Extended Loss of All AC Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Da Hee; Kim, Min Gi; Lee, Kyung Jin; Hwang, Su hyun; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Yoon, Duk Joo; Lee, Seung Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    In this study, in order to comprehend the Fukushima accident, the sensitivity analysis was performed to analyze the behavior of Reactor Coolant System (RCS) during ELAP using the RELAP5/MOD3.3 code. The Fukushima accident was caused by tsunami resulted in Station Black Out (SBO) followed by the reactor core melt-down and release of radioactive materials. After the accident, the equipment and strategies for the Extended Loss of All AC Power (ELAP) were recommended strongly. In this analysis, sensitivity studies for the RCP seal failure of the OPR1000 type NPP were performed by using RELAP5/MOD3.3 code. Six cases with different leakage rate of RCP seal were studied for ELAP with operator action or not. The main findings are summarized as follows: (1) Without the operator action, the core uncovery time is determined by the leakage rate of RCP seal. When the leakage rate per RCP seal are 5 gpm, 50 gpm, and 300 gpm respectively, the core uncovery time are 1.62 hr, 1.58 hr, and 1.29 hr respectively. Namely, If the leakage rate of RCP seal was much bigger, the uncover time of core would be shorter. (2) In case that the cooling by SG secondary side was performed using the TDAFP and SG ADV, the core uncovery time was significantly extended.

  2. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  3. CFD-DEM simulation of a conceptual gas-cooled fluidized bed nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Lucilla C.; Su, Jian, E-mail: lucillalmeida@gmail.com, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Aguirre, Joao, E-mail: aguirre@rocky-dem.com [Engineering Simulation and Scientific Software (ESSS), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Several conceptual designs of the fluidized-bed nuclear reactor have been proposed due to its many advantages over conventional nuclear reactors such as PWRs and BWRs. Amongst their characteristics, the enhanced heat transfer and mixing enables a more uniform temperature distribution, reducing the risk of hot-spot and excessive fuel temperature, in addition to resulting in a higher burnup of the fuel. Furthermore, the relationship between the bed height and reactor neutronics turns the coolant flow rate control into a power production mechanism. Moreover, the possibility of removing the fuel by gravity from the movable core in case of a loss-of-cooling accident increases its safety. High-accuracy modeling of particles and coolant flow in fluidized bed reactors is needed to evaluate reliably the thermal-hydraulic efficiency and safety margin. The two-way coupling between solid and fluid can account for high-fidelity solid-solid interaction and reasonable accuracy in fluid calculation and fluid-solid interaction. In the CFD-DEM model, the particles are modeled as a discrete phase, following the DEM approach, whereas the fluid flow is treated as a continuous phase, described by the averaged Navier-Stokes equations on a computational cell scale. In this work, the coupling methodology between Fluent and Rocky is described. The numerical approach was applied to the simulation of a bubbling fluidized bed and the results were compared to experimental data and showed good agreement. (author)

  4. Radiogenic Lead with Dominant Content of 208Pb: New Coolant and Neutron Moderator for Innovative Nuclear Facilities

    Directory of Open Access Journals (Sweden)

    A. N. Shmelev

    2011-01-01

    Full Text Available As a rule materials of small atomic weight (light and heavy water, graphite, and so on are used as neutron moderators and reflectors. A new very heavy atomic weight moderator is proposed—radiogenic lead consisting mainly of isotope 208Pb. It is characterized by extremely low neutron radiative capture cross-section (0.23 mbarn for thermal neutrons, i.e., less than that for graphite and deuterium and highest albedo of thermal neutrons. It is evaluated that the use of radiogenic lead makes it possible to slow down the chain fission reaction on prompt neutrons in a fast reactor. This can increase safety of the fast reactors and reduce as well requirements pertaining to the fuel fabrication technology. Radiogenic lead with high 208Pb content as a liquid-metal coolant of fast reactors helps to achieve a favorable (negative reactivity coefficient on coolant temperature. It is noteworthy that radiogenic lead with high 208Pb content may be extracted from thorium (as well as thorium-uranium ores without isotope separation. This has been confirmed experimentally by the investigations performed at San Paulo University, Brazil.

  5. Liquid-lithium nitrate: candidate fusion reactor coolant or chemical curiosity

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M.G.

    1986-01-01

    On the basis of the recent Blanket Comparison and Selection Study, 700 K was selected as the threshold for useful high-temperature operation of a liquid nitrate coolant and 800 K was assumed as a realistic upper operating limit. Both standard Second Law equilibrium calculations and computerized Gibbs energy minimization methods were used to determine equilibrium compositions of multiphase, multicomponent salt systems at specified temperatures under certain condensed were performed on the LiNO/sub 3/-LiNO/sub 2/, NaNO/sub 3/- NaNO/sub 2/, and KNO/sub 3/-KNO/sub 2/ systems, and then predicted decomposition pressures were compared for equivalent degrees of decomposition at temperatures ranging from 600 to 900K. Two approaches were taken in calculating decomposition pressures over MNO/sub 3/-MNO/sub 2/ systems: (a) allowing the formation of molecular N/sub 2/ as a gaseous reaction product and (b) not allowing its formation. In calculations of MNO/sub 2/-M/sub 2/O-MOH-H/sub 2/O equilibria, which were used to evaluate the reversibility of tritium dissolution and release, the activity of hydroxide reaction product was determined as a function of water activity at two representative temperatures. Preliminary results and conclusions are summarized.

  6. FUEL COMPOSITION FOR NUCLEAR REACTORS

    Science.gov (United States)

    Andersen, J.C.

    1963-08-01

    A process for making refractory nuclear fuel elements involves heating uranium and silicon powders in an inert atmosphere to 1600 to 1800 deg C to form USi/sub 3/; adding silicon carbide, carbon, 15% by weight of nickel and aluminum, and possibly also molybdenum and silicon powders; shaping the mixture; and heating to 1700 to 2050 deg C again in an inert atmosphere. Information on obtaining specific compositions is included. (AEC)

  7. Cold nuclear fusion reactor and nuclear fusion rocket

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang

    2013-10-01

    Full Text Available "Nuclear restraint inertial guidance directly hit the cold nuclear fusion reactor and ion speed dc transformer" [1], referred to as "cold fusion reactor" invention patents, Chinese Patent Application No. CN: 200910129632.7 [2]. The invention is characterized in that: at room temperature under vacuum conditions, specific combinations of the installation space of the electromagnetic field, based on light nuclei intrinsic magnetic moment and the electric field, the first two strings of the nuclei to be bound fusion on the same line (track of. Re-use nuclear spin angular momentum vector inherent nearly the speed of light to form a super strong spin rotation gyro inertial guidance features, to overcome the Coulomb repulsion strong bias barrier to achieve fusion directly hit. Similar constraints apply nuclear inertial guidance mode for different speeds and energy ion beam mixing speed, the design of ion speed dc transformer is cold fusion reactors, nuclear fusion engines and such nuclear power plants and power delivery systems start important supporting equipment, so apply for a patent merger

  8. Investigating hydrodynamic characteristics and peculiarities of the coolant flow behind a spacer grid of a fuel rod assembly of the floating nuclear power unit

    Science.gov (United States)

    Dmitriev, S. M.; Doronkov, D. V.; Legchanov, M. A.; Pronin, A. N.; Solncev, D. N.; Sorokin, V. D.; Hrobostov, A. E.

    2016-05-01

    The results of experimental investigations of local hydrodynamics of a coolant flow in fuel rod assembly (FA) of KLT-40C reactor behind a plate spacer grid have been presented. The investigations were carried out on an aerodynamic rig using the gas-phase diffusive tracer test. An analysis of spatial distribution of absolute flow velocity projections and distribution of tracer concentration allowed specifying a coolant flow pattern behind the plate spacer grid of the FA. On the basis of obtained experimental data the recommendations were provided to specify procedures for determining the coolant flow rates for the programs of cell-wise calculation of a core zone of KLT-40C reactor. Investigation results were accepted for the practical use in JSC "OKBM Afrikantov" to assess heat engineering reliability of cores of KLT-40C reactor and were included in a database for verification of CFD programs (CFD-codes).

  9. An advanced method for determination of loss of coolant accident in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, R. [Department of Engineering, Shahid Beheshti University, GC, Evin, Tehran (Iran, Islamic Republic of); Shahriari, M., E-mail: m-shahriari@sbu.ac.ir [Department of Engineering, Shahid Beheshti University, GC, Evin, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A. [Department of Engineering, Shahid Beheshti University, GC, Evin, Tehran (Iran, Islamic Republic of)

    2011-06-15

    Highlights: > The considerations of vibration signals are introduced as a new method for determination of accidents directly by detecting of vibration signals without including signals from other components and this is the superiority of the proposed method. > FFT provides an alternate way of representing data. Instead of representing vibration signal amplitude as a function of time, the signal is represented by the amount of information which is contained at different frequencies. > The most of frequencies of structure and fluid coupled are presented in the FFT of structural response and through it the dominant frequency of excitation is obtained. > The Power Spectral Density, a measurement of energy at various frequencies is worked out. MATLAB software is used to convert signals from the time to frequency domain and to obtain PSD of signals. - Abstract: A major objective in reactor design is to provide the capability to withstand a wide range of postulated events without exceeding specified safety limits. Assessment of the consequence of hypothetical loss of coolant accident (LOCA) in primary circuit is an essential element to address fulfilment of acceptance criteria. In addition, finding the position of rupture, one could manage accident in a right direction. In this work, the transient vibration signal from a pipe rupture is used to determine the position of LOCA. A finite element formulation (Galerkin Method) is implemented to include the effect of fluid-structure interaction (FSI). The coupled equations of fluid motion and pipe displacement are solved. The obtained results are in good agreement with published data. Fast Fourier transform (FFT) provides an alternate way of representing data. Instead of representing vibration signal amplitude as a function of time, the signal is represented by the amount of information, which is contained at different frequencies. The most of frequencies of structure and fluid coupled are presented in the FFT of structural

  10. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  11. Medical Radioisotopes Production Without A Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Keur, H.

    2010-05-15

    This report is answering the key question: Is it possible to ban the use of research reactors for the production of medical radioisotopes? Chapter 2 offers a summarized overview on the history of nuclear medicine. Chapter 3 gives an overview of the basic principles and understandings of nuclear medicine. The production of radioisotopes and its use in radiopharmaceuticals as a tracer for imaging particular parts of the inside of the human body (diagnosis) or as an agent in radiotherapy. Chapter 4 lists the use of popular medical radioisotopes used in nuclear imaging techniques and radiotherapy. Chapter 5 analyses reactor-based radioisotopes that can be produced by particle accelerators on commercial scale, other alternatives and the advantages of the cyclotron. Chapter 6 gives an overview of recent developments and prospects in worldwide radioisotopes production. Chapter 7 presents discussion, conclusions and recommendations, and is answering the abovementioned key question of this report: Is it possible to ban the use of a nuclear reactor for the production of radiopharmaceuticals? Is a safe and secure production of radioisotopes possible?.

  12. FX2-TH: a two-dimensional nuclear reactor kinetics code with thermal-hydraulic feedback

    Energy Technology Data Exchange (ETDEWEB)

    Shober, R.A.; Daly, T.A.; Ferguson, D.R.

    1978-10-01

    FX2-TH is a two-dimensional, time-dependent nuclear reactor kinetics program with thermal and hydraulic feedback. The neutronics model used is multigroup neutron diffusion theory. The following geometry options are available: x, r, x-y, r-z, theta-r, and triangular. FX2-TH contains two basic thermal and hydraulic models: a simple adiabatic fuel temperature calculation, and a more detailed model consisting of an explicit representation of a fuel pin, gap, clad, and coolant. FX2-TH allows feedback effects from both fuel temperature (Doppler) and coolant temperature (density) changes. FX2-TH will calculate a consistent set of steady state conditions by iterating between the neutronics and thermal-hydraulics until convergence is reached. The time-dependent calculation is performed by the use of the improved quasistatic method. A disk editing capability is available. FX2-TH is operational on IBM system 360 or 370 computers and on the CDC 7600.

  13. Wire core reactor for nuclear thermal propulsion

    Science.gov (United States)

    Harty, Richard B.; Brengle, Robert G.

    1993-01-01

    Studies have been performed of a compact high-performance nuclear rocket reactor that incorporates a tungsten alloy wire fuel element. This reactor, termed the wire core reactor, can deliver a specific impulse of 1,000 s using an expander cycle and a nozzle expansion ratio of 500 to 1. The core is constructed of layers of 0.8-mm-dia fueled tungsten wires wound over alternate layers of spacer wires, which forms a rugged annular lattice. Hydrogen flow in the core is annular, flowing from inside to outside. In addition to the concepts compact size and good heat transfer, the core has excellent power-flow matching features and can resist vibration and thermal stresses during star-up and shutdown.

  14. Muon trackers for imaging a nuclear reactor

    Science.gov (United States)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  15. Simulating the behaviour of zirconium-alloy components in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.E

    2001-12-01

    To prevent failure in nuclear components one needs to understand the interactions between adjacent materials and the changes in their physical properties during all phases of reactor operation. Three examples from CANDU reactors are described to illustrate the use of simulations that imitate complicated reactor situations. These are: swelling tests that led to a method for increasing the tolerance or Zircaloy fuel cladding to power ramps; observations of the behaviour of leaking cracks in Zr-2.5Nb pressure tubes that provide confidence in the use of leak-before-break as part of the defence against flaw development; and contact boiling tests on modifications to the surfaces of Zircaloy calandria tubes that enhance the ability of the heavy water moderator to act as a heat sink after a postulated loss-of-coolant accident. (author)

  16. Reference Neutron Radiographs of Nuclear Reactor Fuel

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Reference neutron radiographs of nuclear reactor fuel were produced by the Euraton Neutron Radiography Working Group and published in 1984 by the Reidel Publishing Company. In this collection a classification is given of the various neutron radiographic findings, that can occur in different parts...... of pelletized, annular and vibro-conpacted nuclear fuel pins. Those parts of the pins are shown where changes of appearance differ from those for the parts as fabricated. Also radiographs of those as fabricated parts are included. The collection contains 158 neutron radiographs, reproduced on photographic paper...

  17. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  18. Multivariable Feedback Control of Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Rune Moen

    1982-07-01

    Full Text Available Multivariable feedback control has been adapted for optimal control of the spatial power distribution in nuclear reactor cores. Two design techniques, based on the theory of automatic control, were developed: the State Variable Feedback (SVF is an application of the linear optimal control theory, and the Multivariable Frequency Response (MFR is based on a generalization of the traditional frequency response approach to control system design.

  19. Some views on nuclear reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, P.Y. [Electricite de France, Paris (France)

    1995-04-01

    This document is the text of a speech given by Pierre Y. Tanguy (Electricite de France) at the 22nd Water Reactor Safety Meeting held in Bethesda, MD in 1994. He describes the EDF nuclear program in broad terms and proceeds to discuss operational safety results with EDF plants. The speaker also outlines actions to enhance safety planned for the future, and he briefly mentions French cooperation with the Chinese on the Daya Bay project.

  20. Linearized model for the hydrodynamic stability investigation of molten fuel jets into the coolant of a Liquid Metal Fast Breeder Reactor (LMFBR)

    Science.gov (United States)

    Hartel, K.

    1986-02-01

    The hydrodynamic stability of liquid jets in a liquid continuum, both characterized by low viscosity was analyzed. A linearized mathematical model was developed. This model enables the length necessary for fragmentation of a vertical, symmetric jet of molten fuel by hydraulic forces in the coolant of a liquid metal fast breeder reactor to be evaluated. On the basis of this model the FRAG code for numerical calculation of the hydrodynamic fragmentation mechanism was developed.

  1. Oklo reactors and implications for nuclear science

    Science.gov (United States)

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-04-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross-sections are input to all Oklo modeling and we discuss a parameter, the 175Lu ground state cross-section for thermal neutron capture leading to the isomer 176mLu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant α and the ratio Xq = mq/Λ (where mq is the average of the u and d current quark masses and Λ is the mass scale of quantum chromodynamics (QCD)). We suggest a formula for the combined sensitivity to α and Xq that exhibits the dependence on proton number Z and mass number A, potentially allowing quantum electrodynamic (QED) and QCD effects to be disentangled if a broader range of isotopic abundance data becomes available.

  2. Nuclear vapor thermal reactor propulsion technology

    Science.gov (United States)

    Maya, Isaac; Diaz, Nils J.; Dugan, Edward T.; Watanabe, Yoichi; McClanahan, James A.; Wen-Hsiung Tu, Carman, Robert L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF4) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (˜100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development.

  3. ADS 嬗变堆冷却剂及燃料优化布置的蒙特卡罗模拟%Monte Carlo Simulation of ADS Transmutation Reactor Coolant and Fuel Optimal Arrangement

    Institute of Scientific and Technical Information of China (English)

    魏强林; 王爱星; 刘义保; 杨波; 钮云龙; 郭晗

    2013-01-01

    为探索我国核裂变能可持续发展的新技术途径,利用MCNP5程序,建立了加速器驱动次临界系统(ADS)嬗变堆堆芯结构数学模型,模拟计算嬗变堆中分别使用氦气、液态铅、液态钠3种不同冷却剂对反应堆内局部中子能谱的影响,得出用液态铅作为ADS反应堆的冷却剂效果最佳的结论,提出了可提高嬗变堆内嬗变率的非均匀燃料组件排布的优化方案。%For exploring new technical approach of sustainable development of nuclear fission energy , the sub-ject used the MCNP5 program to establish mathematical model of accelerator driven system (ADS) transmuta-tion reactor core, and calculate influence on reactor local neutron spectrum of transmutation reactor , in which used three different coolant such as helium , liquid lead and liquid sodium.The results show that cooling effect of liquid lead is the best for ADS reactor , and then, a non-uniform optimization plan of fuel assembly is pro-posed to improve the reactor transmutation rate .

  4. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  5. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    OpenAIRE

    Djurcic, Z.(Argonne National Laboratory, Argonne, Illinois, 60439, U.S.A.); Detwiler, J. A.; Piepke, A.; Foster Jr., V. R.; Miller, L.; Gratta, G.

    2008-01-01

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

  6. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  7. Designed porosity materials in nuclear reactor components

    Science.gov (United States)

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  8. Designed porosity materials in nuclear reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  9. Advanced nuclear reactor public opinion project

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  10. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  11. Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, September 23, 1976--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This report presents the results of work performed from September 23, 1976 through December 31, 1976 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the affect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed.

  12. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-07

    The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  13. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-25

    Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

  14. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1979-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-25

    The results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  15. Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, July 1--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-24

    Results of work performed from July 1, 1978 through September 30, 1978 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. Candidate alloys were evaluated for Very High Temperature Reactor Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the affect of simulated reactor primary coolant (Helium containing small amounts of various other gases), the high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. The activities associated with the characterization of the materials for the screening test program are reported, i.e., test specimen preparation, information from the materials characterization tests performed by General Electric, and the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented.

  16. Advanced Nuclear Reactor Concepts for China

    Energy Technology Data Exchange (ETDEWEB)

    Knoche, D.; Sassen, F.; Tietsch, W. [Westinghouse Electric Germany, Postfach 10 05 63, 68140 Mannheim (Germany); Yujie, Dong; Li, Cao [INET, Tsinghua University, 100084 Beijing (China)

    2008-07-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  17. Simulation of a postulated loss of coolant accident due to a break in the pressurizer surge line of Angra 2 Nuclear Power Plan; Calculo do acidente postulado de perda de refrigerante por uma ruptura na linha de surto do pressurizador da central nuclear Angra 2

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Carlos V. Goulart de; Palmieri, Elcio T.; Aronne, Ivan D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: cvga@cdtn.br; etp@cdtn.br; aroneid@cdtn.br

    2005-07-01

    This work presents the simulation of a postulated loss of coolant accident due to a 437 cm{sup 2} break in the pressurizer surge line of Angra 2 Nuclear Power Plant, as described in its Final Safety Analysis Report, section 15.6.4.1.3.11. This accident is characterized by a fast depressurization of the reactor coolant system followed by the actuation of the safety injection system. This work, which aims to develop and qualify a basic Angra 2 nodalization for RELAP5, was done in the framework of a CNEN internal technical cooperation involving three of its research centers (CDTN, IPEN and IEN) and its Reactors Division. This simulation is part of a comprehensive number of accidents and transients necessary to verify the adequacy of the modeled logic of the control and protection systems as well as the performance of the modeled thermal-hydraulic systems. Therefore this work contributes to the qualification process of the developed nodalization. (author)

  18. The influence of EI-21 redox ion-exchange resins on the secondary-coolant circuit water chemistry of vehicular nuclear power installations

    Science.gov (United States)

    Moskvin, L. N.; Rakov, V. T.

    2015-06-01

    The results obtained from testing the secondary-coolant circuit water chemistry of full-scale land-based prototype bench models of vehicular nuclear power installations equipped with water-cooled water-moderated and liquid-metal reactor plants are presented. The influence of copper-containing redox ionexchange resins intended for chemically deoxygenating steam condensate on the working fluid circulation loop's water chemistry is determined. The influence of redox ion-exchange resins on the water chemistry is evaluated by generalizing an array of data obtained in the course of extended monitoring using the methods relating to physicochemical analysis of the quality of condensate-feedwater path media and the methods relating to metallographic analysis of the state of a faulty steam generator's tube system surfaces. The deoxygenating effectiveness of the normal state turbine condensate vacuum deaeration system is experimentally determined. The refusal from applying redox ion-exchange resins in the condensate polishing ion-exchange filters is formulated based on the obtained data on the adverse effect of copper-containing redox ionexchange resins on the condensate-feedwater path water chemistry and based on the data testifying a sufficient effect from using the normal state turbine condensate vacuum deaeration system. Data on long-term operation of the prototype bench model of a vehicular nuclear power installation without subjecting the turbine condensate to chemical deoxygenation are presented.

  19. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    Science.gov (United States)

    2004-12-01

    contrasted with nuclear thermal rockets which use the heat from a nuclear fission reactor to heat propellant to provide rocket thrust and radioisotope...K. Note that the highest temperature (2550 K by the Pewee reactor) was for a nuclear thermal rocket application and has the shortest duration (40 min

  20. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    Science.gov (United States)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  1. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, D.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Tsang, K.T. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Laughton, P.J

    1998-09-01

    Detailed radiation physics calculations of energy deposition have been done for the coolant of CANDU reactors and Pressurized Water Reactors (PWRs). The geometry of the CANDU fuel channel was modelled in detail. Fluxes and energy-deposition rates for neutrons, recoil ions, photons, and fast electrons have been calculated using MCNP4B, WIMS-AECL, and specifically derived energy-transfer factors. These factors generate the energy/flux spectra of recoil ions from fast-neutron energy/flux spectra. The energy spectrum was divided into 89 discrete ranges (energy bins).The production of oxidizing species and net coolant radiolysis can be suppressed by the addition of hydrogen to the coolant of nuclear reactors. It is argued that the net dissociation of coolant by gamma rays is suppressed by lower levels of excess hydrogen than when dissociation is by ion recoils. This has consequences for the modelling of coolant radiolysis by homogeneous kinetics. More added hydrogen is required to stop water radiolysis by recoil ions acting alone than if recoil ions and gamma rays acted concurrently in space and time. Homogeneous kinetic models and experimental data suggest that track overlap is very inefficient in providing radicals from gamma-ray tracks to recombine molecular products in ion-recoil tracks. An inhomogeneous chemical model is needed that incorporates ionizing-particle track structure and track overlap. Such a model does not yet exist, but a number of limiting cases using homogeneous kinetics are discussed. There are sufficient uncertainties and contradictions in the data relevant to the radiolysis of reactor coolant that the relatively high CHC's (critical hydrogen concentration) observed in NRU reactor experiments (compared to model predictions) may be explainable by errors in fundamental data and understanding of water radiolysis under reactor conditions. The radiation chemistry program at CRL has been focused to generate quantitative water-radiolysis data in a

  2. On the fundamentals of nuclear reactor safety assessment. Inherent threats and their implications

    Energy Technology Data Exchange (ETDEWEB)

    Hyvaerinen, J. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Nuclear Safety Dept.

    1996-12-01

    The thesis addresses some fundamental questions related to implementation and assessment of nuclear safety. The safety principles and assessment methods are described, followed by descriptions of selected novel technical challenges to nuclear safety. The novel challenges encompass a wide variety of technical issues, thus providing insights on the limitations of conventional safety assessment methods. Study of the limitations suggests means to improve nuclear reactor design criteria and safety assessment practices. The novel safety challenges discussed are (1) inherent boron dilution in PWRs, (2) metallic insulation performance with respect to total loss of emergency cooling systems in a loss-of-coolant accident, and (3) horizontal steam generator heat transfer performance at natural circulation conditions. (50 refs.).

  3. Laser pulse heating of nuclear fuels for simulation of reactor power transients

    Indian Academy of Sciences (India)

    C S Viswanadham; K C Sahoo; T R G Kutty; K B Khan; V P Jathar; S Anantharaman; Arun Kumar; G K Dey

    2010-12-01

    It is important to study the behaviour of nuclear fuels under transient heating conditions from the point of view of nuclear safety. To simulate the transient heating conditions occurring in the known reactor accidents like loss of coolant accident (LOCA) and reactivity initiated accident (RIA), a laser pulse heating system is under development at BARC, Mumbai. As a prelude to work on irradiated nuclear fuel specimens, pilot studies on unirradiated UO2 fuel specimens were carried out. A laser pulse was used to heat specimens of UO2 held inside a chamber with an optically transparent glass window. Later, these specimens were analysed by metallography and X-ray diffraction. This paper describes the results of these studies.

  4. Collective control of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rognin, L.

    1995-06-01

    Nowadays, mainly related to the increasing complexity of working environments, working activities become more and collective. The present research on the paradoxical nature of working teams, considered from a reliability point of view. This document is composed of four Sections. The first Section introduces the context of the research, its objectives and the underlying assumptions. In the second Section, we describe a working situation, which is the control of a nuclear reactor. Relations between cooperative work and reliability are discussed in the third Section. Finally, in the fourth Section, a synthesis of the research and some perspectives are proposed. (authors). 7 refs.

  5. Experimental and analytical investigations of primary coolant pump coastdown phenomena for the Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alatrash, Yazan [Advanced Nuclear Engineering System Department, Korea University of Science and Technology (UST), 217 Gajeong-ro Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Kang, Han-ok; Yoon, Hyun-gi; Seo, Kyoungwoo; Chi, Dae-Young [Korea Atomic Energy Institute (KAERI), 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Yoon, Juhyeon, E-mail: yoonj@kaeri.re.kr [Korea Atomic Energy Institute (KAERI), 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon (Korea, Republic of)

    2015-05-15

    Highlights: • Core flow coastdown phenomena of a research reactor are investigated experimentally. • The experimental dataset is well predicted by a simulation software package, MMS. • The validity and consistency of the experimental dataset are confirmed. • The designed coastdown half time is confirmed to be well above the design requirement. - Abstract: Many low-power research reactors including the Jordan Research and Training Reactor (JRTR) are designed to have a downward core flow during a normal operation mode for many convenient operating features. This design feature requires maintaining the downward core flow for a short period of time right after a loss of off-site power (LOOP) accident to guarantee nuclear fuel integrity. In the JRTR, a big flywheel is installed on a primary cooling system (PCS) pump shaft to passively provide the inertial downward core flow at an initial stage of the LOOP accident. The inertial pumping capability during the coastdown period is experimentally investigated to confirm whether the coastdown half time requirement given by safety analyses is being satisfied. The validity and consistency of the experimental dataset are evaluated using a simulation software package, modular modeling system (MMS). In the MMS simulation model, all of the design data that affect the pump coastdown behavior are reflected. The experimental dataset is well predicted by the MMS model, and is confirmed to be valid and consistent. The designed coastdown half time is confirmed to be well above the value required by safety analysis results. (wwwyoon@gmail.com)

  6. PARTICLE IMAGE VELOCIMETRY MEASUREMENTS IN A REPRESENTATIVE GAS-COOLED PRISMATIC REACTOR CORE MODEL: FLOW IN THE COOLANT CHANNELS AND INTERSTITIAL BYPASS GAPS

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Conder; Richard Skifton; Ralph Budwig

    2012-11-01

    Core bypass flow is one of the key issues with the prismatic Gas Turbine-Modular Helium Reactor, and it refers to the coolant that navigates through the interstitial, non-cooling passages between the graphite fuel blocks instead of traveling through the designated coolant channels. To determine the bypass flow, a double scale representative model was manufactured and installed in the Matched Index-of-Refraction flow facility; after which, stereo Particle Image Velocimetry (PIV) was employed to measure the flow field within. PIV images were analyzed to produce vector maps, and flow rates were calculated by numerically integrating over the velocity field. It was found that the bypass flow varied between 6.9-15.8% for channel Reynolds numbers of 1,746 and 4,618. The results were compared to computational fluid dynamic (CFD) pre-test simulations. When compared to these pretest calculations, the CFD analysis appeared to under predict the flow through the gap.

  7. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  8. Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments

    Science.gov (United States)

    Reinhardt, Brian T.

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts

  9. Conceptual Design of a Nuclear Reactor Dedicated for Desalination

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Hun; Moon, Jang Sik; Jeong, Yong Hoon [Korea Adavanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The many advantages of nuclear desalination, the nuclear safety issues still remain a perennial problem today. To respond to such needs, the development of a desalination-dedicated nuclear reactor with maximized safety features was proposed. From the feasibility study, the desalination-dedicated reactor was found to be a good solution for meeting future water demand during the winter season in some countries like UAE by decoupling water and electricity supply. The economic analysis results indicated that under certain conditions, the desalination-dedicated reactor can produce freshwater at lower cost than the target nuclear cogeneration reactor using steam extraction technologies. A conceptual design of the desalination-dedicated nuclear reactor is in progress. The design features of the desalination-dedicated nuclear reactor could significantly enhance safety, reliability, and simplicity, and facilitate the extensive use of innovative passive safety systems. These maximized safety features of desalination-dedicated reactor could provide advanced capabilities for passive reactor shutdown and residual heat removal, and eventually prevent radioactivity release into the environment. The conceptual design achieved will provide a foothold for the future commercialization of the desalination-dedicated nuclear reactor and eventually help to address both a serious water crisis and nuclear safety issues.

  10. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores. [PEBBLE code

    Energy Technology Data Exchange (ETDEWEB)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases.

  11. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  12. Development of a nuclear reactor control system simulator using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.b, E-mail: amir@cdtn.b, E-mail: fsl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  13. Specifics of high-temperature sodium coolant purification technology in fast reactors for hydrogen production and other innovative applications

    Directory of Open Access Journals (Sweden)

    F.A. Kozlov

    2017-03-01

    Full Text Available In creating a large-scale atomic-hydrogen power industry, the resolution of technological issues associated with high temperatures in reactor plants (900°C and large hydrogen concentrations intended as long-term resources takes on particular importance. The paper considers technological aspects of removing impurities from high-temperature sodium used as a coolant in the high-temperature fast reactor (BN-HT 600MW (th. intended for the production of hydrogen as well as other innovative applications. The authors examine the behavior of impurities in the BN-HT circuits associated with the mass transfer intensification at high temperatures (Arrhenius law in different operating modes. Special attention is given to sodium purification from hydrogen, tritium and corrosion products in the BN-HT. Sodium purification from hydrogen and tritium by their evacuation through vanadium or niobium membranes will make it possible to develop compact highly-efficient sodium purification systems. It has been shown that sodium purification from tritium to concentrations providing the maximum permissible concentration of the produced hydrogen (3.6Bq/l according to NRB-99/2009 specifies more stringent requirements to the hydrogen removal system, i.e., the permeability index of the secondary tritium removal system should exceed 140kg/s. Provided that a BN-HN-type reactor meets these conditions, the bulk of tritium (98% will be accumulated in the compact sodium purification system of the secondary circuit, 0.6% (∼ 4·104Bq/s, will be released into the environment and 1.3% will enter the product (hydrogen. The intensity of corrosion products (CPs coming into sodium is determined by the corrosion rate of structural materials: at a high temperature level, a significant amount of corrosion products flows into sodium. The performed calculations showed that, for the primary BN-HT circuit, the amount of corrosion products formed at the oxygen concentration in sodium of 1mln

  14. The Impact of Climate Changes on the Thermal Performance of a Proposed Pressurized Water Reactor: Nuclear-Power Plant

    Directory of Open Access Journals (Sweden)

    Said M. A. Ibrahim

    2014-01-01

    Full Text Available This paper presents a methodology for studying the impact of the cooling water temperature on the thermal performance of a proposed pressurized water reactor nuclear power plant (PWR NPP through the thermodynamic analysis based on the thermodynamic laws to gain some new aspects into the plant performance. The main findings of this study are that an increase of one degree Celsius in temperature of the coolant extracted from environment is forecasted to decrease by 0.39293 and 0.16% in the power output and the thermal efficiency of the nuclear-power plant considered, respectively.

  15. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    Science.gov (United States)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  16. Nuclear reactors built, being built, or planned 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly.

  17. Evaluation of DSA effects on SA516-Gr. 70 steel for reactor coolant piping elbow material. (Dynamic and quasi-static J-R curve characteristics.)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Hong, Jun Hwa; Yoon, Ji Hyun; Oh, Jong Myung; Kim, Jin Won [Korea Atomic Energy Reserach Institute, Taejon (Korea, Republic of)

    1997-11-01

    Dynamic and quasi-static J-R curve tests for RCS piping elbow material (SA516-Gr.70) were performed by DCPD method at various temperatures (25 deg C - 316 deg C). The objective of this project was to qualify that DSA would not affect the design safety margin for LBB analysis in the normal operating temperature region. This report describes the effects of temperature and loading rate on J-R characteristics of SA516-Gr. 70 steel for reactor coolant piping elbow material. 13 refs., 3 tabs., 9 figs. (author)

  18. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  19. Casting technique optimization of the primary coolant bent pipes used for a pressurized water reactor nuclear power plant by ProCAST software%基于ProCAST软件优化压水堆核电站一回路弯管铸造工艺

    Institute of Scientific and Technical Information of China (English)

    吉晓霞; 王根启; 杨滨; 王西涛

    2012-01-01

    利用ProCAST软件对压水堆核电站一回路90°弯管的充型和凝固过程进行了模拟.结果表明,浇注过程中金属液充型平稳,浇注系统设计符合顺序凝固原则.利用固相率法预测了弯管易出现缩孔缩松的位置,优化设计后获得了无缩孔缩松的弯管铸造工艺.研究表明,运用ProCAST软件有利于提高弯管铸件的工艺出品率.%The filling and solidification processes of the primary coolant 90° bent pipes in pressurized water reactors(PWR) were simulated by ProCAST software.The simulation results show that molten steel can be filled smoothly,which demonstrates that the gating system plan meets the directional solidification principle.The locations of shrinkage and porosity in the bent pipes were predicted by using the solid fraction method.A series of technique optimizations were carried out in order to eliminate the shrinkage and porosity,so an optimized casting technique was finally obtained for the bend pipes.It is indicated that the casting yield of the bent pipes can be increased using ProCAST software analysis.

  20. Improvement of Measurement Accuracy of Coolant Flow in a Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Jong-Bum; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seoyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, to improve the measurement accuracy of coolant flow in a coolant flow simulator, elimination of external noise are enhanced by adding ground pattern in the control panel and earth around signal cables. In addition, a heating unit is added to strengthen the fluctuation signal by heating the coolant because the source of signals are heat energy. Experimental results using the improved system shows good agreement with the reference flow rate. The measurement error is reduced dramatically compared with the previous measurement accuracy and it will help to analyze the performance of nuclear fuels. For further works, out of pile test will be carried out by fabricating a test rig mockup and inspect the feasibility of the developed system. To verify the performance of a newly developed nuclear fuel, irradiation test needs to be carried out in the research reactor and measure the irradiation behavior such as fuel temperature, fission gas release, neutron dose, coolant temperature, and coolant flow rate. In particular, the heat generation rate of nuclear fuels can be measured indirectly by measuring temperature variation of coolant which passes by the fuel rod and its flow rate. However, it is very difficult to measure the flow rate of coolant at the fuel rod owing to the narrow gap between components of the test rig. In nuclear fields, noise analysis using thermocouples in the test rig has been applied to measure the flow velocity of coolant which circulates through the test loop.

  1. Tornado wind-loading requirements based on risk assessment techniques (For specific reactor safety Class 1 coolant system features)

    Science.gov (United States)

    Deobald, Theodore L.; Coles, Garill A.; Smith, Gary L.

    1992-01-01

    Regulations require that nuclear power plants be protected from tornado winds. If struck by a tornado, a plant must be capable of safely shutting down and removing decay heat. Probabilistic techniques are used to show that risk to the public from the U.S. Department of Energy SP-100 reactor is acceptable without tornado hardening parts of the secondary system. Relaxed requirements for design wind loadings will result in significant cost savings. To demonstrate an acceptable level of risk, this document examines tornado-initiated accidents. The two tornado-initiated accidents examined in detail are loss of cooling resulting in core damage and loss of secondary system boundary integrity leading to sodium release. Loss of core cooling is analyzed using fault/event tree models. Loss of secondary system boundary integrity is analyzed by comparing the consequences to acceptance criteria for the release of radioactive material or alkali metal aerosol.

  2. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    OpenAIRE

    Vladimir Petrochenko; Georgy Toshinsky

    2012-01-01

    On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing...

  3. Spent nuclear fuel discharges from U.S. reactors 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  4. Inherently safe reactors and a second nuclear era.

    Science.gov (United States)

    Weinberg, A M; Spiewak, I

    1984-06-29

    The Swedish PIUS reactor and the German-American small modular high-temperature gas-cooled reactor are inherently safe-that is, their safety relies not upon intervention of humans or of electromechanical devices but on immutable principles of physics and chemistry. A second nuclear era may require commercialization and deployment of such inherently safe reactors, even though existing light-water reactors appear to be as safe as other well-accepted sources of central electricity, particularly hydroelectric dams.

  5. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  6. Nuclear reactor materials at the atomic scale

    Directory of Open Access Journals (Sweden)

    Emmanuelle A. Marquis

    2009-11-01

    Full Text Available With the renewed interest in nuclear energy, developing new materials able to respond to the stringent requirements of the next-generation fission and future fusion reactors has become a priority. An efficient search for such materials requires detailed knowledge of material behaviour under irradiation, high temperatures and corrosive environments. Minimizing the rates of materials degradation will be possible only if the mechanisms by which it occurs are understood. Atomic-scale experimental probing as well as modelling can provide some answers and help predict in-service behaviour. This article illustrates how this approach has already improved our understanding of precipitation under irradiation, corrosion behaviour, and stress corrosion cracking. It is also now beginning to provide guidance for the development of new alloys.

  7. Nuclear reactor composite fuel assembly. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, D.M.; Cappiello, M.W.; Marr, D.R.; Omberg, R.P.

    1980-11-25

    A core and composite fuel assembly are described for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  8. Neutron measurements at nuclear power reactors [55

    CERN Document Server

    Scherpelz, R I

    2002-01-01

    Staff from the Pacific Northwest National Laboratory (operated by Battelle Memorial Institute), have performed neutron measurements at a number of commercial nuclear power plants in the United States. Neutron radiation fields at light water reactor (LWR) power plants are typically characterized by low-energy distributions due to the presence of large amounts of scattering material such as water and concrete. These low-energy distributions make it difficult to accurately monitor personnel exposures, since most survey meters and dosimeters are calibrated to higher-energy fields such as those produced by bare or D sub 2 O-moderated sup 2 sup 5 sup 2 Cf sources. Commercial plants typically use thermoluminescent dosimeters in an albedo configuration for personnel dosimetry and survey meters based on a thermal-neutron detector inside a cylindrical or spherical moderator for dose rate assessment, so their methods of routine monitoring are highly dependent on the energy of the neutron fields. Battelle has participate...

  9. Role of research reactors for nuclear power program in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soentono, S.; Arbie, B. [National Atomic Energy Agency, Batan (Indonesia)

    1994-12-31

    The main objectives of nuclear development program in Indonesia are to master nuclear science and technology, as well as to utilise peaceful uses of nuclear know-how, aiming at stepwisely socioeconomic development. A Triga Mark II, previously of 250 kW, reactor in Bandung has been in operation since 1965 and its design power has been increased to 1000 kW in 1972. Using core grid of the Triga 250 kW, BATAN designed and constructed the Kartini Reactor in Yogyakarta which started its operation in 1979. Both of these Triga reactors have served a wide spectrum of utilisation, such as training of manpower in nuclear engineering as well as radiochemistry, isotope production and beam research activities in solid state physics. In order to support the nuclear power development program in general and to suffice the reactor experiments further, simultaneously meeting the ever increasing demand for radioisotope, the third reactor, a multipurpose reactor of 30 MW called GA. Siwabessy (RSG-GAS) has been in operation since 1987 at Serpong near Jakarta. Each of these reactors has strong cooperation with Universities, namely the Bandung Institute of Technology at Bandung, the Gadjah Mada University at Yogyakarta, and the Indonesia University at Jakarta and has facilitated the man power development required. The role of these reactors, especially the multipurpose GA. Siwabessy reactor, as essential tools in nuclear power program are described including the experience gained during preproject, construction and commissioning, as well as through their operation, maintenance and utilisation.

  10. Meteodiffusive Characterization of Algiers' Nuclear Research Reactor

    Directory of Open Access Journals (Sweden)

    Mourad Messaci

    2007-01-01

    Full Text Available In the framework of the environmental impact studies of the nuclear research reactor of Algiers, we will present the work related to the atmospheric dispersion of releases due to the installation in normal operation, which dealt with the assessment of spatial distribution of yearly average values of atmospheric dilution factor. The aim of this work is a characterization of the site in terms of diffusivity, which is basic for the radiological impact evaluation of the reactor. The meteorological statistics result from the National Office of Meteorology and concern 15 years of hourly records. According to the nature and features of these data, a Gaussian-type model with wind direction sectors was used. Values of wind speed at release height were estimated from measurement values at 10 m from ground. For the assessment of vertical dispersion coefficient, we used Briggs' formulas related to a sampling time of one hour. Areas of maximum impact were delimited and points of highest concentration within these zones were identified.

  11. Space Molten Salt Reactor Concept for Nuclear Electric Propulsion and Surface Power

    Science.gov (United States)

    Eades, M.; Flanders, J.; McMurray, N.; Denning, R.; Sun, X.; Windl, W.; Blue, T.

    Students at The Ohio State University working under the NASA Steckler Grant sought to investigate how molten salt reactors with fissile material dissolved in a liquid fuel medium can be applied to space applications. Molten salt reactors of this kind, built for non-space applications, have demonstrated high power densities, high temperature operation without pressurization, high fuel burn up and other characteristics that are ideal for space fission systems. However, little research has been published on the application of molten salt reactor technology to space fission systems. This paper presents a conceptual design of the Space Molten Salt Reactor (SMSR), which utilizes molten salt reactor technology for Nuclear Electric Propulsion (NEP) and surface power at the 100 kWe to 15 MWe level. Central to the SMSR design is a liquid mixture of LiF, BeF2 and highly enriched U235F4 that acts as both fuel and core coolant. In brief, some of the positive characteristics of the SMSR are compact size, simplified core design, high fuel burn up percentages, proliferation resistant features, passive safety mechanisms, a considerable body of previous research, and the possibility for flexible mission architecture.

  12. Nuclear safety in light water reactors severe accident phenomenology

    CERN Document Server

    Sehgal, Bal Raj

    2011-01-01

    This vital reference is the only one-stop resource on how to assess, prevent, and manage severe nuclear accidents in the light water reactors (LWRs) that pose the most risk to the public. LWRs are the predominant nuclear reactor in use around the world today, and they will continue to be the most frequently utilized in the near future. Therefore, accurate determination of the safety issues associated with such reactors is central to a consideration of the risks and benefits of nuclear power. This book emphasizes the prevention and management of severe accidents to teach nuclear professionals

  13. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  14. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  15. Nuclear research reactors activities in INVAP

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, Juan Pablo [INVAP, Bariloche (Argentina)

    2013-07-01

    This presentation describes the different activities in the research reactor field that are being carried out by INVAP. INVAP is presently involved in the design of three new research reactors in three different countries. The RA-10 is a multipurpose reactor, in Argentina, planned as a replacement for the RA-3 reactor. INVAP was contracted by CNEA for carrying out the preliminary engineering for this reactor, and has recently been contracted by CNEA for the detailed engineering. CNEA groups are strongly involved in the design of this reactor. The RMB is a multipurpose reactor, planned by CNEN from Brazil. CNEN, through REDETEC, has contracted INVAP to carry out the preliminary engineering for this reactor. As the user requirements for RA-10 and RMB are very similar, an agreement was signed between Argentina and Brasil governments to cooperate in these two projects. The agreement included that both reactors would use the OPAL reactor in Australia, design and built by INVAP, as a reference reactor. INVAP has also designed the LPRR reactor for KACST in Saudi Arabia. The LPRR is a 30 kw reactor for educational purposes. KACST initially contracted INVAP for the engineering for this reactor and has recently signed the contract with INVAP for building the reactor. General details of these three reactors will be presented.

  16. Three-dimensional nuclear analysis for the US dual coolant lead lithium ITER test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Sawan, M.E., E-mail: sawan@engr.wisc.edu [Fusion Technology Institute, University of Wisconsin, 1500 Engineering Dr., Madison, WI 53706 (United States); Smith, B.; Marriott, E.P.; Wilson, P.P.H. [Fusion Technology Institute, University of Wisconsin, 1500 Engineering Dr., Madison, WI 53706 (United States)

    2010-12-15

    Detailed 3-D neutronics calculations have been performed for the US DCLL TBM. The neutronics calculations were performed directly in the CAD model using the DAG-MCNP code that allows preserving the geometrical details. Detailed high-resolution, high-fidelity profiles of the nuclear parameters were generated using fine mesh tallies. These included tritium production, nuclear heating, and radiation damage. The TBM heterogeneity, exact source profile, and inclusion of the surrounding frame and other in-vessel components result in lower TBM nuclear parameters compared to the previous 1-D predictions. This work clearly demonstrates the importance of preserving geometrical details in nuclear analyses of geometrically complex components in fusion systems.

  17. A brief history of design studies on innovative nuclear reactors

    Science.gov (United States)

    Sekimoto, Hiroshi

    2014-09-01

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  18. A brief history of design studies on innovative nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com [Emeritus Professor, Tokyo Institute of Technology (Japan)

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  19. A model for the analysis of loss of decay heat removal during loss of coolant accident in MTR pool type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bousbia-salah, Anis [Dipartimento di Ingegneria Meccanica, Nucleari e della Produzione, Facolta di Ingegneria, Universita di Pisa, Via Diotisalvi, 2, 56126 Pisa (Italy)]. E-mail: b.salah@ing.unipi.it; Meftah, Brahim [Division Reacteur - Centre de Recherche Nucleaire Draria (CRND), BP 43 Sebala DRARIA - Algiers (Algeria); Hamidouche, Tewfik [Laboratoire des Analyses de Surete, Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz Fanon, B.P. 399, 16000 Algiers (Algeria)]. E-mail: thamidouche@comena-dz.org; Si-Ahmed, El Khider [Laboratoire des Ecoulements Polyhpasiques, Universite des Sciences et de la Technologie d' Alger, Algiers (Algeria)

    2006-03-15

    During a loss of coolant accident leading to total emptying of the reactor pool, the decay heat could be removed through air natural convection. However, under partial pool emptying the core is partially submerged and the coolant circulation inside the fuel element could no more be possible. Under such conditions, a core overheat takes place, and the thermal energy is essentially diffused from the core to its periphery by combined thermal radiation and conduction. In order to predict fuel element temperature evolution under such conditions a mathematical model is performed. The model is based on a 3D geometry and takes into account a variety of core configurations including fuel elements (standard and control), reflector elements and grid plates. The homogeneous flow model is used and the fluid conservation equations are solved using a semi-implicit finite difference method. Preliminary tests of the developed model were made by considering a series of hypothetical accidents. In the current framework a loss of decay heat removal accidents in the IAEA benchmark open pool MTR-type research reactor is considered. It is shown that in the case of a low core immersion height no water boiling is observed and the fuel surface temperature rise remains below the melting point of the aluminium cladding.

  20. Nuclear reactors built, being built, or planned, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  1. A preliminary approach to the extension of the Transuranus code to the fuel rod performance analysis of HLM-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Luzzi, L.; Botazzoli, P.; Devita, M.; Di Marcello, V.; Pastore, G. [Department of Energy, Politecnico di Milano, Enrico Fermi Center for Nuclear Studies - CeSNEF, via Ponzio 34/3, 20133 Milano (Italy)

    2010-07-01

    This paper briefly presents a preliminary modelling approach, aimed at the extension of the TRANSURANUS code to the fuel rod performance analysis of Heavy Liquid Metal (HLM) cooled nuclear reactors, with specific reference to the employment of the T91 steel as cladding material and of the liquid Lead-Bismuth Eutectic (LBE) as coolant. On the basis of literature indications, correlations for heat transfer to LBE, corrosion behaviour and thermo-mechanical properties of T91 are proposed, and some open issues are discussed in prospect of more reliable fuel rod performance analysis of HLM-cooled nuclear reactors. (authors)

  2. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  3. Theory of neutron slowing down in nuclear reactors

    CERN Document Server

    Ferziger, Joel H; Dunworth, J V

    2013-01-01

    The Theory of Neutron Slowing Down in Nuclear Reactors focuses on one facet of nuclear reactor design: the slowing down (or moderation) of neutrons from the high energies with which they are born in fission to the energies at which they are ultimately absorbed. In conjunction with the study of neutron moderation, calculations of reactor criticality are presented. A mathematical description of the slowing-down process is given, with particular emphasis on the problems encountered in the design of thermal reactors. This volume is comprised of four chapters and begins by considering the problems

  4. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C.; Kanyukt, R.; Pongpat, P. [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  5. A study on future nuclear reactor technology and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels.

  6. The necessity of nuclear reactors for targeted radionuclide therapies.

    Science.gov (United States)

    Krijger, Gerard C; Ponsard, Bernard; Harfensteller, Mark; Wolterbeek, Hubert T; Nijsen, Johannes W F

    2013-07-01

    Nuclear medicine has been contributing towards personalized therapies. Nuclear reactors are required for the working horses of both diagnosis and treatment, i.e., Tc-99m and I-131. In fact, reactors will remain necessary to fulfill the demand for a variety of radionuclides and are essential in the expanding field of targeted radionuclide therapies for cancer. However, the main reactors involved in the global supply are ageing and expected to shut down before 2025. Therefore, the fields of (nuclear) medicine, nuclear industry and politics share a global responsibility, faced with the task to secure future access to suitable nuclear reactors. At the same time, alternative production routes should be industrialized. For this, a coordinating entity should be put into place.

  7. Fuel enrichment and temperature distribution in nuclear fuel rod in (D-T) driven hybrid reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Ypek [Suleyman Demirel Universitesi Muhendislik-Mimarlyk Fakultesi, Isparta (Turkey)

    2001-07-01

    In this study, melting point of the fuel rod and temperature distribution in nuclear fuel rod are investigated for different coolants under various first wall loads (P{sub w}, =5, 6, 7, 8, 9, and 10 MWm{sup -2}) in Fusion-Fission reactor fueled with 50%LWR +50%CANDU. The fusion source of neutrons of 14.1 MeV is simulated by a movable target along the main axis of cylindrical geometry as a line source. In addition, the fusion chamber was thought as a cylindrical cavity with a diameter of 300 cm that is comparatively small value. The fissile fuel zone is considered to be cooled with four different coolants, gas, flibe (Li{sub 2}BeF{sub 4}), natural lithium (Li), and eutectic lithium (Li{sub 17}Pb{sub 83}). Investigations are observed during 4 years for discrete time intervals of{delta}t= 0.5 month and by a plant factor (PF) of 75%. Volumetric ratio of coolant-to fuel is 1:1, 45.515% coolant, 45.515% fuel, 8.971% clad, in fuel zone. (author)

  8. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  9. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  10. Recent advances on thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandro S., E-mail: alexandrossilva@ifba.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Vitoria da Conquista, BA (Brazil); Mazaira, Leorlen Y.R., E-mail: leored1984@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Dominguez, Dany S.; Hernandez, Carlos R.G., E-mail: alexandrossilva@gmail.com, E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Programa de Pos-Graduacao em Modelagem Computacional; Lira, Carlos A.B.O., E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2015-07-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal-hydraulic characteristics. In this article, it was performed the thermal-hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a FCC (Face Centered Cubic) cell with the half height of the core, with 21 layers and 95 pebbles. The input data used were taken from the thermal-hydraulic IAEA Bechmark. The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  11. Equalisation of Transient Temperature Profile Within the Fuel Pin of a Miniature Neutron Source Reactor (MNSR During Total Loss of Coolant

    Directory of Open Access Journals (Sweden)

    Christian Amevi Adjei

    2010-10-01

    Full Text Available Transient temperature distributions in cylindrical fuel element of Ghana Research Reactor-1 (GHARR-1 Miniature Neutron Source Reactor (MNSR following sudden total loss of cooling have been investigated. The loss of cooling in the reactor core resulting from a blockage of the inner orifice of coolant flow channels was assumed to occur during normal operations and led to sudden shut dow n of the reactor. The objective was to analyse the transient behaviour by solving analytically the heat transfer equation using Bessel functions and also develop from first principle the transient temperature equations for the fuel element. Results obtained during a sudden total lost of cooling showed a high transient temperature distribution at the centre of the fuel element, with the surface of the fuel clad recording the least temperature. The transient temperature distribution decreased from the centre of the fuel element to the surface of the fuel clad and followed a parabolic decay pattern which after increase in tim e follow ed an equalisation pattern. During sudden shut down, since there w as no heat generated and decay heat , the rate at which the fuel elem ent was cooled w as directly proportional to time.

  12. Behavior of primary coolant pump shaft seals during station blackout conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.C.; Rhodes, D.B.

    1986-09-12

    An assessment is made of the ability of typical Reactor Coolant Pump (RCP) Shaft Seals to withstand the conditions predicted for a station blackout (loss of all alternating current power) at a nuclear power station. Several factors are identified that are key to seal stability including inlet fluid conditions, pressure downstream of the seal, and geometrical details of the seal rings. Limits for stable seal operation are determined for various combinations of these factors, and the conclusion is drawn that some RPC seals would be near the threshold of instability during a station blackout. If the threshold were exceeded, significant leakage of coolant from the primary coolant system could be expected.

  13. Nuclear reactors built, being built, or planned 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

  14. Investigation on two-phase critical flow for loss-of-coolant accident of pressurized water reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    The previous investigations were mainly conducted under the condition of low pressure,however,the steam-water specific volume and the interphase evaporation rate in high pressure are much different from those in low pressure,Therefore,the new experimental and theoretical investigation are performed in Xi'an Jiaotong University.The investigation results could be directly applied to the analysis of loss-of -coolant accident for pressurized water reacor.The system transition characteristics of cold leg and hot leg break loss-of -coolant tests are described for convective circulation test loop.Two types of loss-of-coolant accident are identified for :hot leg” break,while three types for “cold leg”break and the effect parameters on the break geometries.Tests indicate that the mass flow rate with convergent-divergent nozzle reaches the maximum value among the different break sections at the same inlet fluid condition because the fluid separation does not occur.A wall surface cavity nucleation model is developed for prediction of the critical mass flow rate with water flowing in convergentdivergent nozzles.

  15. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  16. Neutron spectrometer for fast nuclear reactors

    CERN Document Server

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  17. Experimental determination of nuclear parameters for RP-0 reactor core; Determinacion experimental de los parametros nucleares para el nucleo tipo MTR del reactor nuclear RP-0

    Energy Technology Data Exchange (ETDEWEB)

    Cajacuri, Rafael A. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2000-07-01

    In the nuclear reactor for investigations RP-0 which is in Lima, Peru, that is a open pool class reactor with 1 to 10 watts of power and as a nuclear fuel uranium 238 enriched to 20% constituted by elements of Material Testing Reactor fuel class. This has reflectors of graphite and moderator of water demineralized. In 1996/1997 was measured in this reactor the following parameters: position of the control bar that make critic the reactor, critic height of moderator, excess of reactivity of the nucleus, parameter of reactivity for vacuum, parameter of reactivity for temperature, reactivity of its control bar, levels of doses in the reactor. (author)

  18. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  19. Simulation of a channel blockage transient in the Angra 2 Nuclear Reactor using a RELAP5-3D model

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mantecon, Javier; Costa, Antonella L.; Veloso, Maria Auxiliadora F.; Pereira, Claubia; Reis, Patricia A.L.; Scari, Maria E., E-mail: mantecon1987@gmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: patricialire@yahoo.com.br, E-mail: melizabethscari@yahoo.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear

    2015-07-01

    The Angra 2 Nuclear Power Plant (NPP) is a Pressurized Water Reactor (PWR) type with electrical output of about 1350 MW. The RELAP5-3D code was used to develop a detailed thermal hydraulic model of such reactor using reference data from the Angra 2 Final Safety Analysis Report (FSAR). In this work, a blockage transient has been investigated at full power operation. The transient herein considered is related to total obstruction of a core cooling channel of one fuel assembly. The calculations were performed using a point kinetic model. The reactor behavior after this transient was analyzed and the time evolution of cladding and coolant temperatures mass flow and void fraction are presented. (author)

  20. Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, April 1--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-31

    The objectives of the program are to evaluate candidate alloys for Very High Temperature Reactor Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the affect of simulated reactor primary coolant (Helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in the report includes the activities associated with the procurement of the materials for the screening test program, information from vendor certification for the materials receiver, and preliminary information from the materials characterization tests performed by General Electric. The construction status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment are discussed. The status of the data management system is also reviewed.

  1. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  2. Nuclear reactors built, being built, or planned, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  3. Nuclear reactors built, being built, or planned: 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  4. International Nuclear Safety Center database on thermophysical properties of reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.K.; Sofu, T.; Ley, H.

    1997-08-01

    The International Nuclear Safety Center (INSC) database has been established at Argonne National Laboratory to provide easily accessible data and information necessary to perform nuclear safety analyses and to promote international collaboration through the exchange of nuclear safety information. The INSC database, located on the World Wide Web at http://www.insc.anl.gov, contains critically assessed recommendations for reactor material properties for normal operating conditions, transients, and severe accidents. The initial focus of the database is on thermodynamic and transport properties of materials for water reactors. Materials that are being included in the database are fuel, absorbers, cladding, structural materials, coolant, and liquid mixtures of combinations of UO{sub 2}, ZrO{sub 2}, Zr, stainless steel, absorber materials, and concrete. For each property, the database includes: (1) a summary of recommended equations with uncertainties; (2) a detailed data assessment giving the basis for the recommendations, comparisons with experimental data and previous recommendations, and uncertainties; (3) graphs showing recommendations, uncertainties, and comparisons with data and other equations; and (4) property values tabulated as a function of temperature.

  5. Modeling of Complex Wear Behavior Associated with Grid-to-Rod Fretting in Light Water Nuclear Reactors

    Science.gov (United States)

    Blau, P. J.; Qu, J.; Lu, R.

    2016-09-01

    Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.

  6. Modeling of Complex Wear Behavior Associated with Grid-to-Rod Fretting in Light Water Nuclear Reactors

    Science.gov (United States)

    Blau, P. J.; Qu, J.; Lu, R.

    2016-11-01

    Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.

  7. Large break loss-of-coolant accident analysis for China Qinshan-2 nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yong; Ban, Chang Hwan; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Wang, Rongzhong; Yu, Hongxing [Nuclear Power Institute of China, Chengdu, SC (China)

    1994-12-01

    Large break LOCA analysis for China Qinshan-2 nuclear power plant has been performed using realistic evaluation model which has been being developed by KAERI. RELAP5/MOD3/KAERI code, which is a modified version of RELAP5/MOD3, is coupled with CONTEMPT4/MOD5 and is used as a best estimate code to predict the thermal hydraulic behavior of the system. PCT uncertainty which stems from code uncertainty, plant application uncertainty, scaling uncertainty and PCT bias are discussed. Among them, plant application uncertainty is described in detail. The licensing PCT is calculated by adding all the uncertainties to the best-estimate PCT. The result indicates the Qinshan-2 nuclear power plant has at least 37 deg C safety margin for large break LOCA. (Author) 10 refs., 47 figs., 14 tabs.

  8. Experimental and numerical investigation of coolant mixing in a model of reactor pressure vessel down-comer and in cold leg inlets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2017-01-01

    Full Text Available Thermal fatigue and pressurized thermal shock phenomena are the main problems for the reactor pressure vessel and the T-junctions both of them depend on the mixing of the coolant. The mixing process, flow and temperature distribution has been investigated experimentally using particle image velocimetry, laser induced fluorescence, and simulated by CFD tools. The obtained results showed that the ratio of flow rate between the main pipe and the branch pipe has a big influence on the mixing process. The particle image velocimetry/planar laser-induced fluorescence measurements technologies proved to be suitable for the investigation of turbulent mixing in the complicated flow system: both velocity and temperature distribution are important parameters in the determination of thermal fatigue and pressurized thermal shock. Results of the applied these techniques showed that both of them can be used as a good provider for data base and to validate CFD results.

  9. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    Science.gov (United States)

    Ariani, Menik; Satya, Octavianus Cakra; Monado, Fiber; Su'ud, Zaki; Sekimoto, Hiroshi

    2016-03-01

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on "Region-8" and "Region-10" core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  10. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    Energy Technology Data Exchange (ETDEWEB)

    Ariani, Menik, E-mail: menikariani@gmail.com; Satya, Octavianus Cakra; Monado, Fiber [Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, jl Palembang-Prabumulih km 32 Indralaya OganIlir, South of Sumatera (Indonesia); Su’ud, Zaki [Nuclear and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, jlGanesha 10, Bandung (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, 2-12-11N1-17 Ookayama, Meguro-Ku, Tokyo (Japan)

    2016-03-11

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on “Region-8” and “Region-10” core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  11. Generic study on the relation between contamination if primary coolants and occupational radiation exposure in nuclear power plants with PWR. Final report; Generische Studie zum Zusammenhang zwischen Kontamination von Primaerkreislaufmedien und beruflicher Strahlenexposition bei Kernkraftwerken mit Druckwasserreaktor. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Andreas; Bruhn, Gerd; Schneider, Sebastian [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany); Strub, Erik [Koeln Univ. (Germany)

    2016-01-15

    A generic model for the primary cooling system contamination in pressurized water reactors and the resulting radiological consequences has been developed. The functional capability was demonstrated by means of three examples concerning manipulation procedures during revision outages. Activities at the main reactor coolant pumps were studied and the influence of the coolant contamination on the resulting dose rates and collective doses were calculated. The effect of a Co-90 hot spot in a more remote area on the radiation exposure during the specific action at the reactor pumps was considered.

  12. Physics of nuclear reactors; La physique des reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Marguet, S. [Ecole Nationale Superieure de Risques Industriels de Bourges, 18 (France); Institut de Transfert de Technologie d' EDF, 92 - Clamart (France)

    2011-07-01

    This manual covers all the aspects of the science of neutron transport in nuclear reactors and can be used with great advantage by students, engineers or even reactor experts. It is composed of 18 chapters: 1) basis of nuclear physics, 2) the interactions of neutrons with matter, 3) the interactions of electromagnetic radiations and charged-particles with matter, 4) neutron slowing-down, 5) resonant absorption, 6) Doppler effect, 7) neutron thermalization, 8) Boltzmann equation, 9) calculation methods in neutron transport theory, 10) neutron scattering, 11) reactor reactivity, 12) theory of the critical homogenous pile, 13) the neutron reflector, 14) the heterogeneous reactor, 15) the equations of the fuel cycle, 16) neutron counter-reactions, 17) reactor kinetics, and 18) calculation methods in neutron scattering

  13. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted

  14. Nuclear data and reactor physics activities in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Liem, P.H. [National Atomic Energy Agency, Tangerang (Indonesia). Center for Multipurpose Reactor

    1998-03-01

    The nuclear data and reactor physics activities in Indonesia, especially, in the National Atomic Energy Agency are presented. In the nuclear data field, the Agency is now taking the position of a user of the main nuclear data libraries such as JENDL and ENDF/B. These nuclear data libraries become the main sources for producing problem dependent cross section sets that are needed by cell calculation codes or transport codes for design, analysis and safety evaluation of research reactors. In the reactor physics field, besides utilising the existing core analysis codes obtained from bilateral and international co-operation, the Agency is putting much effort to self-develop Batan`s codes for reactor physics calculations, in particular, for research reactor and high temperature reactor design, analysis and fuel management. Under the collaboration with JAERI, Monte Carlo criticality calculations on the first criticality of RSG GAS (MPR-30) first core were done using JAERI continuous energy, vectorized Monte Carlo code, MVP, with JENDL-3.1 and JENDL-3.2 nuclear data libraries. The results were then compared with the experiment data collected during the commissioning phase. Monte Carlo calculations with both JENDL-3.1 and -3.2 libraries produced k{sub eff} values with excellent agreement with experiment data, however, systematically, JENDL-3.2 library showed slightly higher k{sub eff} values than JENDL-3.1 library. (author)

  15. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core; Comportamento termofluidodinamico do gas refrigerante helio em um canal topico de reator VHTGR de nucleo prismatico

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Allan Cavalcante

    2016-08-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4{sup th} generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range

  16. Nuclear Technology Series. Course 8: Reactor Safety.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Nuclear Technology Series. Course 12: Reactor Physics.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Monitoring Akkuyu Nuclear Reactor Using Anti-Neutrino Flux Measurement

    CERN Document Server

    Ozturk, Sertac; Ozcan, V Erkcan; Unel, Gokhan

    2016-01-01

    We present a simulation based study for monitoring Akkuyu Nuclear Power Plant's activity using anti-neutrino flux originating from the reactor core. A water Cherenkov detector has been designed and optimization studies have been performed using Geant4 simulation toolkit. A first study for the design of a monitoring detector facility for Akkuyu Nuclear Power Plant has been discussed in this paper.

  19. Economics and utilization of thorium in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information on thorium utilization in power reactors is presented concerning the potential demand for nuclear power, the potential supply for nuclear power, economic performance of thorium under different recycle policies, ease of commercialization of the economically preferred cases, policy options to overcome institutional barriers, and policy options to overcome technological and regulatory barriers.

  20. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  1. Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer Loop

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D. F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-06-30

    This report provides an assessment of candidate salts proposed as the coolant for the loop that shuttles heat from the Next Generation Nuclear Plant (NGNP) to the Nuclear Hydrogen Initiative (NHI) hydrogen-production plant. The physical properties most relevant for coolant service were reviewed, and key chemical factors that influence material compatibility were also analyzed for the purpose of screening candidate salts. A preliminary assessment of the cost of the raw materials required to produce the coolant is also presented. Salts that are suitable for use as the primary coolant in a high-temperature nuclear reactor were previously analyzed. Some of the fluoride salts identified in the previous study are also appropriate for consideration as the secondary coolant in a heat-transfer loop; therefore, results from the previous report are used in this document. However, alternative coolant salts (i.e., chlorides and fluoroborates) that were not considered in the previous report should be considered for service in the heat-transfer loop. These alternative coolants are considered in this report.

  2. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  3. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of... GE Hitachi Nuclear Energy (GEH) for the economic simplified boiling water reactor (ESBWR) standard...

  4. Nuclear fission reactors from thousand of million years; Reactores de fision nuclear de hace miles de millones de anos

    Energy Technology Data Exchange (ETDEWEB)

    Bulbulian G, S.; Ordonez R, E.; Fernandez V, S.M. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2005-07-01

    This book is about nuclear reactors, not only of the industrial ones that work to provide electric power, neither of those experimental ones as the first one that worked in Chicago in the first half of the XX Century but, mainly, of those that worked in the Earth thousands of millions of years ago. The book examines what happened in last geologic times, when the natural uranium had a different constitution to the current one. We will give you information on the nuclear fission reactors that worked in Gabon, Africa. A discussion of the radioactive isotopes formed during the operation of those reactors and its behavior until our days is presented. (Author)

  5. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  6. SCW Pressure-Channel Nuclear Reactor Some Design Features

    Science.gov (United States)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  7. Spent nuclear fuel discharges from US reactors 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

  8. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  9. Designing a mini subcritical nuclear reactor; Diseno de un mini reactor nuclear subcritico

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo G, C. R.; Vega C, H. R.; Davila H, V. M., E-mail: rafelaescobedo@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Jardin Juarez 147, Col. Centro, 98000 Zacatecas, Zac. (Mexico)

    2015-10-15

    In this work the design of a mini subcritical nuclear reactor formed by means of light water moderator, uranium as fuel, and isotopic neutron source of {sup 239}PuBe was carried out. The design was done by Monte Carlo methods with the code MCNP5 in which uranium was modeled in an array of concentric holes cylinders of 8.5, 14.5, 20.5, 26.5, 32.5 cm of internal radius and 3 cm of thickness, 36 cm of height. Different models were made from a single fuel cylinder (natural uranium) to five. The neutron source of {sup 239}PuBe was situated in the center of the mini reactor; in each arrangement was used water as moderator. Cross sections libraries Endf/Vi were used and the number of stories was large enough to ensure less uncertainty than 3%. For each case the effective multiplication factor k{sub e}-f{sub f}, the amplification factor and the power was calculated. Outside the mini reactor the ambient dose equivalent H (10) was calculated for different cases. The value of k{sub eff}, the amplification factor and power are directly related to the number of cylinders of uranium as fuel. Although the average energy of the neutrons {sup 239}PuBe is between 4.5 and 5 MeV in the case of the mini reactor for a cylinder, in the neutron spectrum the presence of thermal neutrons does not exist, so that produced fissions are generated with fast neutrons, and in designs of two and three rings the neutron spectra shows the presence of thermal neutrons, however the fissions are being generated with fast neutrons. Finally in the four and five cases the amount of moderator is enough to thermalized the neutrons and thereby produce the fission. The maximum value for k{sub eff} was 0.82; this value is very close to the assembly of Universidad Autonoma de Zacatecas generating a k{sub eff} of 0.86. According to the safety and radiation protection standards for the design of mini reactor of one, two and three cylinders they comply with the established safety, while designs of four and five

  10. Spent nuclear fuel discharges from US reactors 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  11. SNIF: A Futuristic Neutrino Probe for Undeclared Nuclear Fission Reactors

    CERN Document Server

    Lasserre, Thierry; Mention, Guillaume; Reboulleau, Romain; Cribier, Michel; Letourneau, Alain; Lhuillier, David

    2010-01-01

    Today reactor neutrino experiments are at the cutting edge of fundamental research in particle physics. Understanding the neutrino is far from complete, but thanks to the impressive progress in this field over the last 15 years, a few research groups are seriously considering that neutrinos could be useful for society. The International Atomic Energy Agency (IAEA) works with its Member States to promote safe, secure and peaceful nuclear technologies. In a context of international tension and nuclear renaissance, neutrino detectors could help IAEA to enforce the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). In this article we discuss a futuristic neutrino application to detect and localize an undeclared nuclear reactor from across borders. The SNIF (Secret Neutrino Interactions Finder) concept proposes to use a few hundred thousand tons neutrino detectors to unveil clandestine fission reactors. Beyond previous studies we provide estimates of all known background sources as a function of the detecto...

  12. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  13. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  14. Multiscale Methods for Nuclear Reactor Analysis

    Science.gov (United States)

    Collins, Benjamin S.

    The ability to accurately predict local pin powers in nuclear reactors is necessary to understand the mechanisms that cause fuel pin failure during steady state and transient operation. In the research presented here, methods are developed to improve the local solution using high order methods with boundary conditions from a low order global solution. Several different core configurations were tested to determine the improvement in the local pin powers compared to the standard techniques, that use diffusion theory and pin power reconstruction (PPR). Two different multiscale methods were developed and analyzed; the post-refinement multiscale method and the embedded multiscale method. The post-refinement multiscale methods use the global solution to determine boundary conditions for the local solution. The local solution is solved using either a fixed boundary source or an albedo boundary condition; this solution is "post-refinement" and thus has no impact on the global solution. The embedded multiscale method allows the local solver to change the global solution to provide an improved global and local solution. The post-refinement multiscale method is assessed using three core designs. When the local solution has more energy groups, the fixed source method has some difficulties near the interface: however the albedo method works well for all cases. In order to remedy the issue with boundary condition errors for the fixed source method, a buffer region is used to act as a filter, which decreases the sensitivity of the solution to the boundary condition. Both the albedo and fixed source methods benefit from the use of a buffer region. Unlike the post-refinement method, the embedded multiscale method alters the global solution. The ability to change the global solution allows for refinement in areas where the errors in the few group nodal diffusion are typically large. The embedded method is shown to improve the global solution when it is applied to a MOX/LEU assembly

  15. Experimental and computational studies of thermal mixing in next generation nuclear reactors

    Science.gov (United States)

    Landfried, Douglas Tyler

    The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).

  16. Primary loop simulation of the SP-100 space nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Braz Filho, Francisco A.; Guimaraes, Lamartine N.F., E-mail: eduardo@ieav.cta.b, E-mail: fbraz@ieav.cta.b, E-mail: guimarae@ieav.cta.b [Instituto de Estudos Avancados (IEAv/DCTA) Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    Between 1983 and 1992 the SP-100 space nuclear reactor development project for electric power generation in a range of 100 to 1000 kWh was conducted in the USA. Several configurations were studied to satisfy different mission objectives and power systems. In this reactor the heat is generated in a compact core and refrigerated by liquid lithium, the primary loops flow are controlled by thermoelectric electromagnetic pumps (EMTE), and thermoelectric converters produce direct current energy. To define the system operation point for an operating nominal power, it is necessary the simulation of the thermal-hydraulic components of the space nuclear reactor. In this paper the BEMTE-3 computer code is used to EMTE pump design performance evaluation to a thermalhydraulic primary loop configuration, and comparison of the system operation points of SP-100 reactor to two thermal powers, with satisfactory results. (author)

  17. Preliminary studies of coolant by-pass flows in a prismatic very high temperature reactor using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki Sato; Richard Johnson; Richard Schultz

    2009-09-01

    Three dimensional computational fluid dynamic (CFD) calculations of a typical prismatic very high temperature gas-cooled reactor (VHTR) were conducted to investigate the influence of gap geometry on flow and temperature distributions in the reactor core using commercial CFD code FLUENT. Parametric calculations changing the gap width in a whole core length model of fuel and reflector columns were performed. The simulations show the effects of core by-pass flows in the heated core region by comparing results for several gap widths including zero gap width. The calculation results underline the importance of considering inter-column gap width for the evaluation of maximum fuel temperatures and temperature gradients in fuel blocks. In addition, it is shown that temperatures of core outlet flow from gaps and channels are strongly affected by the gap width of by-pass flow in the reactor core.

  18. The role of nuclear reactors in space exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  19. Fractional calculus with applications for nuclear reactor dynamics

    CERN Document Server

    Ray, Santanu Saha

    2015-01-01

    Introduces Novel Applications for Solving Neutron Transport EquationsWhile deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous ways. Since fractional calculus represents a reactor more closely than classical integer order calculus, Fractional Calculus with Applications for Nuclear Reactor Dynamics focuses on the application of fractional calculus to describe the physical behavi

  20. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  1. LWR fuel rod behavior during reactor tests under loss-of-coolant conditions: Results of the FR2 in-pile tests

    Energy Technology Data Exchange (ETDEWEB)

    Karb, E.H.; Sepold, L.; Hofmann, P.; Petersen, C.; Schanz, G.; Zimmermann, H. (Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.))

    1982-05-01

    Results of the FR2 in-pile tests on fuel rod behavior under loss-of-coolant accident (LOCA) conditions are presented. To investigate the possible influence of a nuclear environment on fuel rod failure mechanisms, unirradiated as well as irradiated (2500 to 35,000 MWd/tsub(U)) PWR-type test fuel rods were exposed to temperature transients simulating the second heatup phase of a LOCA. Loaded by internal overpressure, the cladding ballooned and ruptured. The burst data do not indicate major differences from results obtained out-of-pile with electrically heated fuel rod simulators, and do not show an influence of burnup. The fuel pellets in previously irradiated rods, already cracked during normal operation, crumbled completely in the regions with large cladding deformation. Post-test examinations revealed cladding mechanical behavior and oxidation to be comparable to out-of-pile results, with relatively little fission gas release during the transient.

  2. Complex risk analysis for loss of electric power in liquid metal nuclear reactor by system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering

    2012-07-15

    The power stabilization of the nuclear power plants (NPPs) is investigated in the aspect of the liquid metal coolant. The quantification of the risk analysis is performed by the system dynamics (SD) method which is processed by the feedback and accumulation complex algorithms. The Vensim software package is used for the simulations, which is supported by the Monte-Carlo method. There are 2 kinds of considerations as the economic and safety properties. The result shows the stability of the operations when the power can be decided. This shows the higher efficiency of the reactor. The failure frequency is 16/60 = 27%. In the event of Power Stabilized, the failure event is in the quite lower frequency rate. The commercial use of the reactor is important in the operations. (orig.)

  3. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  4. Development of an educational nuclear research reactor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Reactor Physics Dept.

    2014-12-15

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  5. Spectral structure of electron antineutrinos from nuclear reactors.

    Science.gov (United States)

    Dwyer, D A; Langford, T J

    2015-01-01

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principles calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructures in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of these substructures can elucidate the nuclear processes occurring within reactors. These substructures can be a systematic issue for measurements utilizing the detailed spectral shape.

  6. Spectral Structure of Electron Antineutrinos from Nuclear Reactors

    CERN Document Server

    Dwyer, D A

    2014-01-01

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principle calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructure in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of this substructure can constrain nuclear reactor physics. The substructure can be a systematic uncertainty for measurements utilizing the detailed spectral shape.

  7. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  8. 振动诊断在核电厂主泵检修指导中的应用%The Vibration Diagnosis Application in NPP Reactor Coolant Pump Maintenance Guidance

    Institute of Scientific and Technical Information of China (English)

    欧阳钦; 周正平

    2015-01-01

    利用主泵振动监测系统得出的振动信号,文章结合田湾核电站俄供ГЦНА-1391型主泵结构特点,对主泵径向止推轴承轴向振动缓慢升高的原因进行了分析,判断其上幅面板可能存在缺陷,提出了大修期间的检修建议和备件准备.在其后大修中进行检查,验证了振动分析的可靠性,为后续分析诊断提供了经验.%According to vibration signal of reactor coolant pump(RCP) vibration monitoring system and structure characteristics of Tianwan nuclear power plant Russia Г Ц Н А -1391 type RCP, the cause of slowly rise of the RCP radial thrust bearing axial vibration is analyzed, and conclusion that upper panel may be flawed is drawn. Suggestions and preparations of spare parts are put forward to the overhaul maintenance. The reliability of vibration analysis is verified, and which provides the experience for subsequent analysis.

  9. Axial offset as measure of stability of light water nuclear reactor during capacity maneuvering

    Directory of Open Access Journals (Sweden)

    Mark V. Nikolsky

    2015-03-01

    Full Text Available High reliability and security of power unit are required during operation of power unit while maneuvering. They depend on the stability of reactor when transition from one power level to another. The axial offset is a quantitative measure of the reactor stability. It is shown that change of the active core inlet coolant temperature yields an uncontrollable disturbance affecting the axial offset and therefore the reactor stability. To insure the reactor stability the compromise-combined power control method is proposed. Analysis of the influence of temperature of coolant at the magnitude of the axial offset for different regulatory programs is carried out. The change in the depth of immersion of regulators in the active zone for different regulatory programs when the reactor plant daily capacity maneuver is studied.

  10. Investigation of loss of coolant accidents in pressurized water reactors using the ''Dynamic Best-Estimate Safety Analysis'' (DYBESA) method for considering of uncertainties in TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Sporn, Michael; Hurtado, Antonio [Technische Univ. Dresden (Germany)

    2016-02-15

    Loss of coolant accident must take uncertainties with potentially strong effects on the accident sequence prediction into account. For example, uncertainties in computational model input parameters resulting from varying geometry and material data due to manufacturing tolerances or unavailable measurements should be considered. The uncertainties of physical models used by the software program are also significant. In this paper, use of the ''Dynamic Best-Estimate Safety Analysis'' (DYBESA) method to quantify the uncertainties in the TRACE thermal-hydraulic program is demonstrated. For demonstration purposes loss of coolant accidents with breaks of various types and sizes in a DN 700 reactor coolant pipe are used as an example Application.

  11. Thermal-hydraulic behavior of physical quantities at critical velocities in a nuclear research reactor core channel using plate type fuel

    Directory of Open Access Journals (Sweden)

    Sidi Ali Kamel

    2012-01-01

    Full Text Available The thermal-hydraulic study presented here relates to a channel of a nuclear reactor core. This channel is defined as being the space between two fuel plates where a coolant fluid flows. The flow velocity of this coolant should not generate vibrations in fuel plates. The aim of this study is to know the distribution of the temperature in the fuel plates, in the cladding and in the coolant fluid at the critical velocities of Miller, of Wambsganss, and of Cekirge and Ural. The velocity expressions given by these authors are function of the geometry of the fuel plate, the mechanical characteristics of the fuel plate’s material and the thermal characteristics of the coolant fluid. The thermal-hydraulic study is made under steady-state; the equation set-up of the thermal problem is made according to El Wakil and to Delhaye. Once the equation set-up is validated, the three critical velocities are calculated and then used in the calculations of the different temperature profiles. The average heat flux and the critical heat flux are evaluated for each critical velocity and their ratio reported. The recommended critical velocity to be used in nuclear channel calculations is that of Wambsganss. The mathematical model used is more precise and all the physical quantities, when using this critical velocity, stay in safe margins.

  12. The role of integral experiments and nuclear cross section evaluations in space nuclear reactor design

    Science.gov (United States)

    Moses, David L.; McKnight, Richard D.

    The importance of the nuclear and neutronic properties of candidate space reactor materials to the design process has been acknowledged as has been the use of benchmark reactor physics experiments to verify and qualify analytical tools used in design, safety, and performance evaluation. Since June 1966, the Cross Section Evaluation Working Group (CSEWG) has acted as an interagency forum for the assessment and evaluation of nuclear reaction data used in the nuclear design process. CSEWG data testing has involved the specification and calculation of benchmark experiments which are used widely for commercial reactor design and safety analysis. These benchmark experiments preceded the issuance of the industry standards for acceptance, but the benchmarks exceed the minimum acceptance criteria for such data. Thus, a starting place has been provided in assuring the accuracy and uncertainty of nuclear data important to space reactor applications.

  13. University Reactor Conversion Lessons Learned Workshop for Texas A&M University Nuclear Science Center Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Eric C. Woolstenhulme; Dana M. Meyer

    2007-04-01

    The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the Texas A&M University Nuclear Science Center (TAMU NSC) TRIGA Reactor Conversion so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges. This workshop was held in conjunction with a similar workshop for the University of Florida Reactor Conversion. Some of the generic lessons from that workshop are included in this report for completeness.

  14. Evaluation of the fuel rod integrity in PWR reactors from the spectrometric analysis of the primary coolant; Avaliacao da integridade de varetas combustiveis em reatores PWR a partir da analise espectrometrica da agua do primario

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Iara Arraes

    1999-02-15

    The main objective of this thesis is to provide a better comprehension of the phenomena involved in the transport of fission products, from the fuel rod to the coolant of a PWR reactor. To achieve this purpose, several steps were followed. Firstly, it was presented a description of the fuel elements and the main mechanisms of fuel rod failure, indicating the most important nuclides and their transport mechanisms. Secondly, taking both the kinetic and diffusion models for the transport of fission products as a basis, a simple analytical and semi-empirical model was developed. This model was also based on theoretical considerations and measurements of coolant's activity, according to internationally adopted methodologies. Several factors are considered in the modelling procedures: intrinsic factors to the reactor itself, factors which depend on the reactor's operational mode, isotope characteristic factors, and factors which depend on the type of rod failure. The model was applied for different reactor's operational parameters in the presence of failed rods. The main conclusions drawn from the analysis of the model's output are relative to the variation on the coolant's water activity with the fuel burnup, the linear operation power and the primary purification rate and to the different behaviour of iodine and noble gases. The model was saturated from a certain failure size and showed to be unable to distinguish between a single big fail and many small ones. (author)

  15. Production capabilities in US nuclear reactors for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  16. Global risk of radioactive fallout after major nuclear reactor accidents

    Science.gov (United States)

    Lelieveld, J.; Kunkel, D.; Lawrence, M. G.

    2012-05-01

    Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7), using particulate 137Cs and gaseous 131I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  17. Global risk of radioactive fallout after major nuclear reactor accidents

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2012-05-01

    Full Text Available Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7, using particulate 137Cs and gaseous 131I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  18. Application of a Russian nuclear reactor simulator VVER-1000; Aplicacion de un simulador de reactor nuclear ruso VVER-1000

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Peniche S, A. [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04360 Mexico D. F. (Mexico); Salazar S, E., E-mail: alpsordo@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (Mexico)

    2012-10-15

    The objective of the present work is to give to know the most important characteristics in the Russian nuclear reactor of pressurized light water VVER-1000, doing emphasis in the differences that has with the western equivalent the reactor PWR in the design and the safety systems. Therefore, a description of the computerized simulation of the reactor VVER-1000 developed by the company Eniko TSO that the International Atomic of Energy Agency distributes to the states members with academic purposes will take place. The simulator includes mathematical models that represent to the essential systems in the real nuclear power plant, for what is possible to reproduce common faults and transitory characteristic of the nuclear industry with a behavior sufficiently attached to the reality. In this work is analyzed the response of the system before a turbine shot. After the accident in the nuclear power plant of Three Mile Island (US) they have been carried out improvements in the design of the reactor PWR and their safety systems. To know the reach and the limitations of the program, the events that gave place to this accident will be reproduced in the simulator VVER-1000. With base to the results of the simulation we will conclude that so reliable is the response of the safety system of this reactor. (Author)

  19. Handbook of nuclear engineering: vol 1: nuclear engineering fundamentals; vol 2: reactor design; vol 3: reactor analysis; vol 4: reactors of waste disposal and safeguards

    CERN Document Server

    2013-01-01

    The Handbook of Nuclear Engineering is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all academic levels, this five volume set provides the latest findings in nuclear data and experimental techniques, reactor physics, kinetics, dynamics and control. Readers will also find a detailed description of data assimilation, model validation and calibration, sensitivity and uncertainty analysis, fuel management and cycles, nuclear reactor types and radiation shielding. A discussion of radioactive waste disposal, safeguards and non-proliferation, and fuel processing with partitioning and transmutation is also included. As nuclear technology becomes an important resource of non-polluting sustainable energy in the future, The Handbook of Nuclear Engineering is an excellent reference for practicing engineers, researchers and professionals.

  20. Nuclear reactor (1960); Reacteurs nucleaires (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Maillard, M.L. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Leo, M.B. [Electricite de France (EDF), 75 - Paris (France)

    1960-07-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [French] Les premiers reacteurs industriels plutonigenes francais G1 - G2 - G3 du Centre de Marcoule comportent une installation de recuperation d'energie. La production d'electricite de G1 ne compense pas l'energie depensee par ailleurs pour le fonctionnement de l'ensemble, par contre, G2 et G3 doivent fournir chacun une puissance de 25 a 30 MW au reseau national d'Electricite de France. Cette puissance est modeste, mais l'experience acquise grace a ces reacteurs est tres grande et c'est grace a elle qu'il nous sera possible de mettre en exploitation les reacteurs energetiques EDF1 - EDF2 - EDF3. Le memoire decrit comment, avant tout demarrage du reacteur, les essais effectues, en particulier ceux concernant l'installation de recuperation d'energie et le caisson, ont permis d'abreger la phase de montee en puissance. (auteur)

  1. Optimizing the Design of Small Fast Spectrum Battery-Type Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Staffan Qvist

    2014-07-01

    Full Text Available This study is focused on defining and optimizing the design parameters of inherently safe “battery” type sodium-cooled metallic-fueled nuclear reactor cores that operate on a single stationary fuel loading at full power for 30 years. A total of 29 core designs were developed with varying power and flow conditions, including detailed thermal-hydraulic, structural-mechanical and neutronic analysis. Given set constraints for irradiation damage, primary cycle pressure drop and inherent safety considerations, the attainable power range and performance characteristics of the systems are defined. The optimum power level for a core with a coolant pressure drop limit of 100 kPa and an irradiation damage limit of 200 DPA (displacements per atom is found to be 100 MWt/40 MWe. Raising the power level of an optimized core gives significantly higher attainable power densities and burnup, but severely decreases safety margins and increases the irradiation damage. A fully optimized inherently safe battery-type fast reactor core with an active height and diameter of 150 cm (2.6 m3, a pressure drop limit of 100 kPa and an irradiation damage limit of 300 DPA can be designed to operate at 150 MWt/60 MWe for 30 years, reaching an average discharge burnup of 100 MWd/kg-actinide.

  2. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  3. Synergistic Smart Fuel For In-pile Nuclear Reactor Measurements

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Dale K. Kotter; Randall A. Ali; Steven L . Garrett

    2013-10-01

    In March 2011, an earthquake of magnitude 9.0 on the Richter scale struck Japan with its epicenter on the northeast coast, near the Tohoku region. In addition to the immense physical destruction and casualties across the country, several nuclear power plants (NPP) were affected. It was the Fukushima Daiichi NPP that experienced the most severe and irreversible damage. The earthquake brought the reactors at Fukushima to an automatic shutdown and because the power transmission lines were damaged, emergency diesel generators (EDGs) were activated to ensure that there was continued cooling of the reactors and spent fuel pools. The situation was being successfully managed until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to the reactors.2 At this point, the situation became critical. There was a loss of the sensors and instrumentation within the reactor that could have provided valuable information to guide the operators to make informed decisions and avoid the unfortunate events that followed. In the light of these events, we have developed and tested a potential self-powered thermoacoustic system, which will have the ability to serve as a temperature sensor and can transmit data independently of electronic networks. Such a device is synergistic with the harsh environment of the nuclear reactor as it utilizes the heat from the nuclear fuel to provide the input power.

  4. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  5. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    Directory of Open Access Journals (Sweden)

    Vladimir Petrochenko

    2012-09-01

    Full Text Available On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC “AKME-Engineering” established on a parity basis by the State Atomic Energy Corporation “Rosatom” and the Limited Liability Company “EuroSibEnergo”.

  6. Neutron Capture and the Antineutrino Yield from Nuclear Reactors.

    Science.gov (United States)

    Huber, Patrick; Jaffke, Patrick

    2016-03-25

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  7. Neutron Capture and the Antineutrino Yield from Nuclear Reactors

    Science.gov (United States)

    Huber, Patrick; Jaffke, Patrick

    2016-03-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ˜0.9 % of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  8. Piezoelectric material for use in a nuclear reactor core

    Science.gov (United States)

    Parks, D. A.; Reinhardt, Brian; Tittmann, B. R.

    2012-05-01

    In radiation environments ultrasonic nondestructive evaluation has great potential for improving reactor safety and furthering the understanding of radiation effects and materials. In both nuclear power plants and materials test reactors, elevated temperatures and high levels of radiation present challenges to ultrasonic NDE methodologies. The challenges are primarily due to the degradation of the ultrasonic sensors utilized. We present results from the operation of a ultrasonic piezoelectric transducer, composed of bulk single crystal AlN, in a nuclear reactor core for over 120 MWHrs. The transducer was coupled to an aluminum cylinder and operated in pulse echo mode throughout the irradiation. In addition to the pulse echo testing impedance data were obtained. Further, the piezoelectric coefficient d33 was measured prior to irradiation and found to be 5.5 pC/N which is unchanged from as-grown samples, and in fact higher than the measured d33 for many as-grown samples.

  9. Alloying of steel and graphite by hydrogen in nuclear reactor

    Science.gov (United States)

    Krasikov, E.

    2017-02-01

    In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite. It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs. As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.

  10. Optimizing Nuclear Reactor Operation Using Soft Computing Techniques

    NARCIS (Netherlands)

    Entzinger, J.O.; Ruan, D.; Kahraman, Cengiz

    2006-01-01

    The strict safety regulations for nuclear reactor control make it di±cult to implement new control techniques such as fuzzy logic control (FLC). FLC however, can provide very desirable advantages over classical control, like robustness, adaptation and the capability to include human experience into

  11. Method of controlling crystallite size in nuclear-reactor fuels

    Science.gov (United States)

    Lloyd, M.H.; Collins, J.L.; Shell, S.E.

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  12. Global risk of radioactive fallout after nuclear reactor accidents

    Science.gov (United States)

    Kunkel, D.; Lelieveld, J.; Lawrence, M. G.

    2012-04-01

    Reactor core meltdowns of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents, using particulate 137Cs and gaseous 131I as proxies for the fallout. It appears that previously the occurrence of major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a core melt of any nuclear power plant worldwide, more than 90 % of emitted 137Cs would be transported beyond 50 km and about 50 % beyond 1000 km distance. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human deposition exposure are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in southern Asia where a core melt can subject 55 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  13. Use of hafnium in control bars of nuclear reactors; Uso de hafnio en barras de control de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin-mx

    2003-07-01

    Recently the use of hafnium as neutron absorber material in nuclear reactors has been reason of investigation by virtue of that this material has nuclear properties as to the neutrons absorption and structural that can prolong the useful life of the control mechanisms of the nuclear reactors. In this work some of those more significant hafnium properties are presented like nuclear material. Also there are presented calculations carried out with the HELIOS code for fuel cells of uranium oxide and of uranium and plutonium mixed oxides under controlled conditions with conventional bars of boron carbide and also with similar bars to which are substituted the absorbent material by metallic hafnium, the results are presented in this work. (Author)

  14. Fukushima-derived radionuclides in sediments of the Japanese Pacific Ocean coast and various Japanese water samples (seawater, tap water, and coolant water of Fukushima Daiichi reactor unit 5).

    Science.gov (United States)

    Shozugawa, Katsumi; Riebe, Beate; Walther, Clemens; Brandl, Alexander; Steinhauser, Georg

    We investigated Ocean sediments and seawater from inside the Fukushima exclusion zone and found radiocesium ((134)Cs and (137)Cs) up to 800 Bq kg(-1) as well as (90)Sr up to 5.6 Bq kg(-1). This is one of the first reports on radiostrontium in sea sediments from the Fukushima exclusion zone. Seawater exhibited contamination levels up to 5.3 Bq kg(-1) radiocesium. Tap water from Tokyo from weeks after the accident exhibited detectable but harmless activities of radiocesium (well below the regulatory limit). Analysis of the Unit 5 reactor coolant (finding only (3)H and even low (129)I) leads to the conclusion that the purification techniques for reactor coolant employed at Fukushima Daiichi are very effective.

  15. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  16. ROSA-III double-ended break test series for a loss-of-coolant accident in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Anoda, Y.; Koizumi, Y.; Kumamaru, H.; Nakamura, H.; Shiba, M.; Suzuki, M.; Yonomoto, T.

    1985-01-01

    The Rig of Safety Assessment (ROSA) III facility is a volumetrically scaled (1/424) boiling water reactor (BWR) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency-core-cooling-system (ECCS) tests. Experimental results obtained so far confirm that the severest single failure assumption in ECCS is the high-pressure core spray system failure even in a large-break LOCA in a BWR. The measured peak cladding temperature was well below the present safety criterion of 1473 K, even with the single failure assumption in ECCS, and the effectiveness of ECCS for core cooling during a double-ended-break LOCA has been confirmed. The overall agreement between the results calculated by the RELAP4/MOD6/U4/J3 computer code and the experimental results is good. The similarity between the ROSA-III test and a BWR LOCA has been confirmed through the comparison of calculated results for the ROSA-III facility and a BWR system.

  17. The near boiling reactor: Conceptual design of a small inherently safe nuclear reactor to extend the operational capability of the Victoria Class submarine

    Science.gov (United States)

    Cole, Christopher J. P.

    Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas

  18. The near boiling reactor : conceptual design of a small inherently safe nuclear reactor to extend the operational capability of the Victoria Class submarine

    Energy Technology Data Exchange (ETDEWEB)

    Cole, C.J.P

    2005-07-01

    Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the 'Victoria' Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96{sup o}C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has

  19. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    David E. Shropshire

    2004-04-01

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  20. Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes

    Science.gov (United States)

    Reza, S. M. Mohsin

    Design options have been evaluated for the Modular Helium Reactor (MHR) for higher temperature operation. An alternative configuration for the MHR coolant inlet flow path is developed to reduce the peak vessel temperature (PVT). The coolant inlet path is shifted from the annular path between reactor core barrel and vessel wall through the permanent side reflector (PSR). The number and dimensions of coolant holes are varied to optimize the pressure drop, the inlet velocity, and the percentage of graphite removed from the PSR to create this inlet path. With the removal of ˜10% of the graphite from PSR the PVT is reduced from 541°C to 421°C. A new design for the graphite block core has been evaluated and optimized to reduce the inlet coolant temperature with the aim of further reduction of PVT. The dimensions and number of fuel rods and coolant holes, and the triangular pitch have been changed and optimized. Different packing fractions for the new core design have been used to conserve the number of fuel particles. Thermal properties for the fuel elements are calculated and incorporated into these analyses. The inlet temperature, mass flow and bypass flow are optimized to limit the peak fuel temperature (PFT) within an acceptable range. Using both of these modifications together, the PVT is reduced to ˜350°C while keeping the outlet temperature at 950°C and maintaining the PFT within acceptable limits. The vessel and fuel temperatures during low pressure conduction cooldown and high pressure conduction cooldown transients are found to be well below the design limits. The reliability and availability studies for coupled nuclear hydrogen production processes based on the sulfur iodine thermochemical process and high temperature electrolysis process have been accomplished. The fault tree models for both these processes are developed. Using information obtained on system configuration, component failure probability, component repair time and system operating modes

  1. Gamma thermometer based reactor core liquid level detector

    Science.gov (United States)

    Burns, Thomas J.

    1983-01-01

    A system is provided which employs a modified gamma thermometer for determining the liquid coolant level within a nuclear reactor core. The gamma thermometer which normally is employed to monitor local core heat generation rate (reactor power), is modified by thermocouple junctions and leads to obtain an unambiguous indication of the presence or absence of coolant liquid at the gamma thermometer location. A signal processor generates a signal based on the thermometer surface heat transfer coefficient by comparing the signals from the thermocouples at the thermometer location. The generated signal is a direct indication of loss of coolant due to the change in surface heat transfer when coolant liquid drops below the thermometer location. The loss of coolant indication is independent of reactor power at the thermometer location. Further, the same thermometer may still be used for the normal power monitoring function.

  2. Performance tests for integral reactor nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  3. Advanced methods for nuclear reactor gas laser coupling

    Energy Technology Data Exchange (ETDEWEB)

    Miley, G.H.; Verdeyen, J.T.

    1978-06-01

    Research is described that led to the discovery of three nuclear-pumped lasers (NPLs) using mixtures of Ne--N/sub 2/, He--Hg, and He or Ne with CO or CO/sub 2/. The Ne--N/sub 2/ NPL was the first laser obtained with modest neutron fluxes from a TRIGA reactor (vs fast burst reactors used elsewhere in such work), the He--Hg NPL was the first visible nuclear-pumped laser, while the Ne--CO and He--CO/sub 2/ lasers are the first to provide energy storage on a millisecond time scale. Important potential applications of NPLs include coupling and power transmission from remote power stations such as nuclear plants in satellites and neutron-feedback operation of inertial confinement fusion plants.

  4. Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

    Directory of Open Access Journals (Sweden)

    Sergey Perevoznikov

    2016-10-01

    Full Text Available In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium–water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas–liquid flow model (sodium–hydrogen–sodium hydroxide. Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

  5. Modeling of hydrodynamic processes at a large leak of water into sodium in the fast reactor coolant circuit

    Energy Technology Data Exchange (ETDEWEB)

    Perevoznikov, Sergey; Shvetsov, Yuriy; Kamayev, Aleksey; Paknomov, Ilia; Borisov, Viacheslav; Pazan, Gennadiy; Mizeabasov, Oleg; Korzun, Olga [Joint Stock Company State Scientific Centre of the Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, Obninsk (Russian Federation)

    2016-10-15

    In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium-water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas-liquid flow model (sodium-hydrogen-sodium hydroxide). Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

  6. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  7. Computational fluid dynamics analysis of core bypass flow and crossflow in a prismatic very high temperature gas-cooled nuclear reactor based on a two-layer block model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huhu, E-mail: huhuwang@tamu.edu [Department of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77840 (United States); Dominguez-Ontiveros, Elvis, E-mail: elvisdom@tamu.edu [Department of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77840 (United States); Hassan, Yassin A., E-mail: y-hassan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77840 (United States); Department of Mechanical Engineering, Texas A and M University, 3123 TAMU, College Station, TX 77840 (United States)

    2014-03-15

    Highlights: • A CFD model was built based on a two-layer block experimental facility at Texas A and M University. • The coolant characterizations within the uniform and wedge-shaped crossflow gap regions were investigated. • The influence on the coolant distribution from the bypass flow gap width was studied. • Discretization and iterative errors involved in the simulations were quantified. - Abstract: The very high temperature gas-cooled nuclear reactor (VHTR) has been designated as one of the promising reactors that will serve for the Next Generation (Generation IV) Nuclear Plant. For a prismatic VHTR core, the bypass flow and crossflow phenomena are important design considerations. To investigate the coolant distribution in the reactor core based on the two-layer block facility built at Texas A and M University, a three-dimensional steady-state CFD analysis was performed using the commercial code STAR-CCM+ v6.04. Results from this work serve as a guideline and validating source for the related experiments. A grid independence study was conducted to quantify related errors in the simulations. The simulation results show that the bypass flow fraction was not a strong function of the Reynolds number. The presence of the crossflow gap had a significant effect on the distribution of the coolant in the core. Uniform and wedge-shape crossflow gaps were studied. It was found that a significant secondary flow in the crossflow gap region moved from the bypass flow gap toward coolant holes, which resulted in up to a 28% reduction of the coolant mass flow rate in the bypass flow gap.

  8. Optimized core design and fuel management of a pebble-bed type nuclear reactor

    NARCIS (Netherlands)

    Boer, B.

    2009-01-01

    The core design of a pebble-bed type Very High Temperature Reactor (VHTR) is optimized, aiming for an increase of the coolant outlet temperature to 1000 C, while retaining its inherent safety features. The VHTR has been selected by the international Generation IV research initiative as one of the si

  9. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-1: Pressurized Water Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical pressurized water reactor (PWR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module is the PWR…

  10. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…

  11. Methodology for the integral comparison of nuclear reactors: selecting a reactor for Mexico; Metodologia para la comparacion integral de reactores nucleares: seleccion de un reactor para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Reyes R, R.; Martin del Campo M, C. [UNAM, Facultad de Ingenieria, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: ricarera@yahoo.com.mx

    2006-07-01

    In this work it was built a methodology to compare nuclear reactors of third generation that can be contemplated for future electric planning in Mexico. This methodology understands the selection of the reactors to evaluate eliminating the reactors that still are not sufficiently mature at this time of the study. A general description of each reactor together with their main ones characteristic is made. It was carried out a study for to select the group of parameters that can serve as evaluation indicators, which are the characteristics of the reactors with specific values for each considered technology, and it was elaborated an evaluation matrix indicators including the reactors in the columns and those indicators in the lines. Since that none reactor is the best in all the indicators were necessary to use a methodology for multi criteria taking decisions that we are presented. It was used the 'Fuzzy Logic' technique, the which is based in those denominated diffuse groups and in a system of diffuse inference based on heuristic rules in the way 'If Then consequence> ', where the linguistic values of the condition and of the consequence is defined by diffuse groups, it is as well as the rules always they transform a diffuse group into another. Later on they combine all the diffuse outputs to create a single output and an inverse transformation is made that it transfers the output from the diffuse domain to the real one. They were carried out two studies one with the entirety of the indicators and another in which the indicators were classified in three approaches: the first one refers to indicators related with the planning of the plants inside the context of the general electric sector, the second approach includes indicators related with the characteristics of the fuel and the third it considers indicators related with the acting of the plant in safety and environmental impact. This second study allowed us to know the qualities of

  12. Neutron capture and the antineutrino yield from nuclear reactors

    CERN Document Server

    Huber, Patrick

    2015-01-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low-energies below 3.2MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach 0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the non-equilibrium correction...

  13. Purification of liquid metal systems with sodium coolant from oxygen using getters

    Science.gov (United States)

    Kozlov, F. A.; Konovalov, M. A.; Sorokin, A. P.

    2016-05-01

    For increasing the safety and economic parameters of nuclear power stations (NPSs) with sodium coolant, it was decided to install all systems contacting radioactive sodium, including purification systems of circuit I, in the reactor vessel. The performance and capacity of cold traps (CTs) (conventional element of coolant purification systems) in these conditions are limited by their volume. It was proposed to use hot traps (HTs) in circuit I for coolant purification from oxygen. It was demonstrated that, at rated parameters of the installation when the temperature of the coolant streamlining the getter (gas absorber) is equal to 550°C, the hot trap can provide the required coolant purity. In shutdown modes at 250-300°C, the performance of the hot trap is reduced by four orders of magnitude. Possible HT operation regimes for shutdown modes and while reaching rated parameters were proposed and analyzed. Basic attention was paid to purification modes at power rise after commissioning and accidental contamination of the coolant when the initial oxygen concentration in it reached 25 mln-1. It was demonstrated that the efficiency of purification systems can be increased using HTs with the getter in the form of a foil or granules. The possibility of implementing the "fast purification" mode in which the coolant is purified simultaneously with passing over from the shutdown mode to the rated parameters was substantiated.

  14. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  15. Installation of a new type of nuclear reactor in Mexico: advantages and disadvantages; Instalacion de un nuevo tipo de reactor nuclear en Mexico: ventajas y desventajas

    Energy Technology Data Exchange (ETDEWEB)

    Jurado P, M.; Martin del Campo M, C. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: mjp_green@hotmail.com

    2005-07-01

    In this work the main advantages and disadvantages of the installation of a new type of nuclear reactor different to the BWR type reactor in Mexico are presented. A revision of the advanced reactors is made that are at the moment in operation and of the advanced reactors that are in construction or one has already planned its construction in the short term. Specifically the A BWR and EPR reactors are analyzed. (Author)

  16. Thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach; Simulacao termohidraulica do nucleo do reator nuclear HTR-10 com o uso da abordagem realistica CFD

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandro S.; Dominguez, Dany S., E-mail: alexandrossilva@gmail.com, E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil); Mazaira, Leorlen Y. Rojas; Hernandez, Carlos R.G., E-mail: leored1984@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba); Lira, Carlos Alberto Brayner de Oliveira, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2015-07-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, it was performed the thermal–hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a column of FCC (Face Centered Cubic) cells, with 41 layers and 82 pebbles. The input data used were taken from the thermohydraulic IAEA Benchmark (TECDOC-1694). The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  17. Parallelization and automatic data distribution for nuclear reactor simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liebrock, L.M. [Liebrock-Hicks Research, Calumet, MI (United States)

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.

  18. Transient behavior of a nuclear reactor coupled to an accelerator

    Science.gov (United States)

    Sadineni, Suresh Babu

    Accelerator Driven Systems (ADS) present one of the most viable solutions for transmutation and effective utilization of nuclear fuel. Spent fuel from reactors will be partitioned to separate plutonium and other minor actinides to be transmuted in the ADS. Without the ADS, minor actinides must be stored at a geologic repository for long periods of time. One problem with ADS is understanding the control issues that arise when coupling an accelerator to a reactor. "ADSTRANS" was developed to predict the transient behavior of a nuclear reactor coupled to an accelerator. It was based on MCNPX, a radiation transport code developed at the LANL, and upon a numerical model of the neutron transport equation. MCNPX was used to generate the neutron "source" term that occurs when the accelerator is fired. ADSTRANS coupled MCNPX to a separate finite difference code that solved the transient neutron transport equation. A cylindrical axisymmetric reactor with steel shielding was considered for this analysis. Multiple neutron energy groups, neutron precursor groups and neutron poisons were considered. ENDF/B cross-section data obtained through MCNPX was also employed. The reactor was assumed to be isothermal and near zero power level. Unique features of this code are: (1) it predicts the neutron behavior of an ADS for different reactor geometry, material concentration, both electron and proton particle accelerators, and target material, (2) it develops input files for MCNPX to simulate neutron production, runs MCNPX, and retrieves information from the MCNPX output files. Neutron production predicted by MCNPX for a 20 MeV electron accelerator and lead target was compared with experimental data from the Idaho Accelerator Center and found to be in good agreement. The spatial neutron flux distribution and transient neutron flux in the reactor as predicted by the code were compared with analytical solutions and found to be in good agreement. Fuel burnup and poison buildup were also as

  19. Basic Model of a Control Assembly Drop in Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Radek BULÍN

    2013-06-01

    Full Text Available This paper is focused on the modelling and dynamic analysis of a nonlinear system representing a control assembly of the VVER 440/V213 nuclear reactor. A simple rigid body model intended for basic dynamic analyses is introduced. It contains the influences of the pressurized water and mainly the eects of possible control assembly contacts with guiding tubes inside the reactor. Another approach based on a complex multibody model is further described and the suitability of both modelling approaches is discussed.

  20. iDREAM: an industrial detector for nuclear reactor monitoring

    Science.gov (United States)

    Gribov, I. V.; Gromov, M. B.; Lukjanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2016-02-01

    Prototype of industrial reactor antineutrino detector iDREAM is dedicated for an experiment to demonstrate the possibility of remote monitoring of PWR reactor operational modes by neutrino method in real-time in order to avoid undeclared exposure modes for nuclear fuel and unauthorized removal of isotopes. The prototype detector was started up in 2014. To test the detector elements and components of electronics distilled water has been used as a target, which enables the use of Cerenkov radiation from cosmic muons as a physical signal. Also parallel measuring of the long-term stability has been doing for samples of liquid organic scintillator doped with gadolinium and synthesized by different methods

  1. Nuclear reactor for breeding U.sup.233

    Science.gov (United States)

    Bohanan, Charles S.; Jones, David H.; Raab, Jr., Harry F.; Radkowsky, Alvin

    1976-01-01

    A light-water-cooled nuclear reactor capable of breeding U.sup.233 for use in a light-water breeder reactor includes physically separated regions containing U.sup.235 fissile material and U.sup.238 fertile material and Th.sup.232 fertile material and Pu.sup.239 fissile material, if available. Preferably the U.sup.235 fissile material and U.sup.238 fertile material are contained in longitudinally movable seed regions and the Pu.sup.239 fissile material and Th.sup.232 fertile material are contained in blanket regions surrounding the seed regions.

  2. Thermohydraulic and nuclear modeling of natural fission reactors

    Science.gov (United States)

    Viggato, Jason Charles

    Experimental verification of proposed nuclear waste storage schemes in geologic repositories is not possible, however, a natural analog exists in the form of ancient natural reactors that existed in uranium-rich ores. Two billion years ago, the enrichment of natural uranium was high enough to allow a sustained chain reaction in the presence of water as a moderator. Several natural reactors occurred in Gabon, Africa and were discovered in the early 1970's. These reactors operated at low power levels for hundreds of thousands of years. Heated water generated from the reactors also leached uranium from the surrounding rock strata and deposited it in the reactor cores. This increased the concentration of uranium in the core over time and served to "refuel" the reactor. This has strong implications in the design of modern geologic repositories for spent nuclear fuel. The possibility of accidental fission events in man-made repositories exists and the geologic evidence from Oklo suggests how those events may progress and enhance local concentrations of uranium. Based on a review of the literature, a comprehensive code was developed to model the thermohydraulic behavior and criticality conditions that may have existed in the Oklo reactor core. A two-dimensional numerical model that incorporates modeling of fluid flow, temperatures, and nuclear fission and subsequent heat generation was developed for the Oklo natural reactors. The operating temperatures ranged from about 456 K to about 721 K. Critical reactions were observed for a wide range of concentrations and porosity values (9 to 30 percent UO2 and 10 to 20 percent porosity). Periodic operation occurred in the computer model prediction with UO2 concentrations of 30 percent in the core and 5 percent in the surrounding material. For saturated conditions and 30 percent porosity, the model predicted temperature transients with a period of about 5 hours. Kuroda predicted 3 to 4 hour durations for temperature transients

  3. The noncondensable gas effects on loss-of-coolant accident steam condensation loads in boiling water reactor pressure suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Namatame, K.; Shiba, M.; Takeshita, I.

    1983-11-01

    The noncondensable gas effects on the loss-ofcoolant-accident-induced steam condensation loads in the boiling water reactor pressure suppression pool have been investigated with regard to experimental data obtained from a large-scale multivent test program. Previous studies have noted that the presence of the noncondensable gas (air), which initially fills the containment drywell space, stabilizes the direct-contact condensation in the pressure suppression pool and hampers onset of the chugging phenomenon, which induces most significant steam condensation load onto the pool boundary. This was found to be true for the tests with relatively small-break diameters, where the maximum steam mass fluxes in the vent pipe were lower than the upper threshold value for the onset of chugging. However, in the tests with the maximum vent steam mass fluxes moderately higher than the chugging upper threshold value, early depletion of the noncondensable gas tended to result in significant stabilization of steam condensation accompanied by an excursion of temperature of pool water surrounding the vent pipe outlets, which led to a delayed onset of chugging. Due to this combined influence of the noncondensable gas and nonuniform pool temperature, and due to dependence of magnitude of chugging load on the vent steam mass flux, the peak magnitude of the steam condensation load appearing in a blowdown can be very sensitive to the initial and break conditions.

  4. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    Energy Technology Data Exchange (ETDEWEB)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  5. Synergistic smart fuel for in-pile nuclear reactor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Kotter, D.K. [Idaho National Laboratories, Idaho Falls (United States); Ali, R.A.; Garrett, S.L. [Penn State University, University Park, State College, PA 16801 (United States)

    2013-07-01

    The thermo-acoustic fuel rod sensor developed in this research has demonstrated a novel technique for monitoring the temperature within the core of a nuclear reactor or the temperature of the surrounding heat-transfer fluid. It uses the heat from the nuclear fuel to generate sustained acoustic oscillations whose frequency will be indicative of the temperature. Converting a nuclear fuel rod into this type of thermo-acoustic sensor simply requires the insertion of a porous material (stack). This sensor has demonstrated a synergy with the elevated temperatures that exist within the nuclear reactor using materials that have only minimal susceptibility to high-energy particle fluxes. When the sensor is in operation, the sound waves radiated from the fuel rod resonator will propagate through the surrounding cooling fluid. The frequency of these oscillations is directly correlated with an effective temperature within the fuel rod resonator. This device is self-powered and is operational even in case of total loss of power of the reactor.

  6. Procedure of calculation of the spatial distribution of temperatures and heat fluxes in the steam generator of a nuclear power installation with an RBEC fast-neutron reactor

    Science.gov (United States)

    Frolov, A. A.; Sedov, A. A.

    2016-08-01

    A method for combined 3D/1D-modeling of thermohydraulics of a once-through steam generator (SG) based on the joint analysis of three-dimensional thermo- and hydrodynamics of a single-phase heating coolant in the intertube space and one-dimensional thermohydraulics of steam-generating channels (tubes) with the use of well-known friction and heat-transfer correlations under various boiling conditions is discussed. This method allows one to determine the spatial distribution of temperatures and heat fluxes of heat-exchange surfaces of SGs with a single-phase heating coolant in the intertube space and with steam generation within tubes. The method was applied in the analytical investigation of typical operation of a once-through SG of a nuclear power installation with an RBEC fast-neutron heavy-metal reactor that is being designed by Kurchatov Institute in collaboration with OKB GIDROPRESS and Leipunsky Institute of Physics and Power Engineering. Flow pattern and temperature fields were obtained for the heavy-metal heating coolant in the intertube space. Nonuniformities of heating of the steam-water coolant in different heat-exchange tubes and nonuniformities in the distribution of heat fluxes at SG heat-exchange surfaces were revealed.

  7. Activities in the field of small nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baranaev, Yu.D.; Dolgov, V.V.; Sergeev, Yu.A. [Physics and Power Eng. Inst., Obninsk (Russian Federation). State Res. Centre

    1997-10-01

    Considerable efforts have been undertaken for development, design, construction and operation of small nuclear power plants (SNPP) in Russia. Systematic work in this area was started in the mid-1950s. The driving force for this activity was the awareness that the use of nuclear fuel would practically solve the problem of fuel transportation. As far as the remote northern regions are concerned, this provides the key advantage of nuclear over conventional energy sources. The activity in the field of SNPP has included pre-design analytical feasibility studies and experimental research including large-scale experiments on critical assemblies, thermal and hydraulic test facilities, research and development work, construction and operation of pilot and demonstration SNPPs, and finally, construction and more than 20 years of operation of the commercial SNPP, namely Bilibino nuclear co-generation plant (NCGP) located in Chukotka autonomous district, which is one of the most remote regions in the far north-east of Russia. In recent years, studies have been carried out on the development of several new SNPP designs using advanced reactors of the new generation. Among these are the second stage of Bilibino NCGP, floating NCGP VOLNOLOM-3, designated for siting in the Arctic sea coast area, and a nuclear district heating plant for the town of Apatity, in the Murmansk region. In this paper, the background and current status of the SNPPs are given, and the problems as well as prospects of small nuclear reactors development and implementation are considered. (orig.) 20 refs.

  8. Optimization Algorithms for Nuclear Reactor Power Control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Min; Oh, Won Jong; Oh, Seung Jin; Chun, Won Gee; Lee, Yoon Joon [Jeju National University, Jeju (Korea, Republic of)

    2010-10-15

    One of the control techniques that could replace the present conventional PID controllers in nuclear plants is the linear quadratic regulator (LQR) method. The most attractive feature of the LQR method is that it can provide the systematic environments for the control design. However, the LQR approach heavily depends on the selection of cost function and the determination of the suitable weighting matrices of cost function is not an easy task, particularly when the system order is high. The purpose of this paper is to develop an efficient and reliable algorithm that could optimize the weighting matrices of the LQR system

  9. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z., E-mail: jonatasfmata@yahoo.com.br, E-mail: vasconv@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  10. Recommendations on selecting the closing relations for calculating friction pressure drop in the loops of nuclear power stations equipped with VVER reactors

    Science.gov (United States)

    Alipchenkov, V. M.; Belikov, V. V.; Davydov, A. V.; Emel'yanov, D. A.; Mosunova, N. A.

    2013-05-01

    Closing relations describing friction pressure drop during the motion of two-phase flows that are widely applied in thermal-hydraulic codes and in calculations of the parameters characterizing the flow of water coolant in the loops of reactor installations used at nuclear power stations and in other thermal power systems are reviewed. A new formula developed by the authors of this paper is proposed. The above-mentioned relations are implemented in the HYDRA-IBRAE thermal-hydraulic computation code developed at the Nuclear Safety Institute of the Russian Academy of Sciences. A series of verification calculations is carried out for a wide range of pressures, flowrates, and heat fluxes typical for transient and emergency operating conditions of nuclear power stations equipped with VVER reactors. Advantages and shortcomings of different closing relations are revealed, and recommendations for using them in carrying out thermal-hydraulic calculations of coolant flow in the loops of VVER-based nuclear power stations are given.

  11. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2011-10-15

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  12. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The

  13. Uso de detectores de neutrinos para el monitoreo de reactores nucleares Uso de detectores de neutrinos para el monitoreo de reactores nucleares

    Directory of Open Access Journals (Sweden)

    Gerardo Moreno

    2012-02-01

    Full Text Available Se estudia la factibilidad del uso de los detectores de antineutrinos para el monitoreo de reactores nucleares. Usando un modelo sencillo de cascada de fisión a dos componentes, se ilustra la dependencia del número de antineutrinos detectados a una distancia L del reactor según la composición nuclear del combustible. Se explica el principio de detección de neutrinos de reactores en base al decaimiento beta inverso y se describe como los detectores de neutrinos pueden emplearse para el monitoreo de la producción de materiales fisibles en el reactor. Se comenta como generalizar este análisis al caso real de un reactor nuclear in situ y uno de los principales experimentos internacionales dedicados a este propósito. We study the feasibility to use antineutrinos detectors for monitoring of nuclear reactors. Using a simple model of fission shower with two components, we illustrate how the numbers of antineutrinos detected at a distance L from the reactor depend on the composition of the nuclear combustible. We explain the principles of reactor neutrino detection using inverse beta decays and we describe how neutrinos detectors can be used for monitoring the production of fissile materials within the reactors. We comment how to generalize this analysis to the realistic case of a nuclear reactor in situ and one of the main international experiments dedicated to study the use of neutrinos detectors as nuclear safeguards.

  14. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, R. (Institutt for Energiteknikk, OECD Halden Reactor Project (Norway))

    2012-01-15

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  15. Signal processing system design for improved shutdown system of CANDU{sup ®} nuclear reactors in large break LOCA events

    Energy Technology Data Exchange (ETDEWEB)

    Gabbar, Hossam A., E-mail: hossam.gabbar@uoit.ca [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, Canada L1H 7K4 (Canada); Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, Canada L1H 7K4 (Canada); Xia, Lingzhi; Isham, Manir U. [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, Canada L1H 7K4 (Canada); Ponomarev, Vladimir [Megawatt Solutions, 1235 Radom St., unit 68, Pickering, ON, Canada L1W 1J3 (Canada)

    2016-03-15

    Highlights: • Neutronic signal processing system design to improve CANDU SDS1 performance. • Reactor modeling for CANDU LLOCA transient. • MATLAB/Simulink system implementation for the SDS1 trip logic. • Increasing the SDS1 trip response. - Abstract: For CANDU reactors, several options to improve CANDU nuclear power plant operation safety margin have been investigated in this paper. A particular attention is paid to the response time of CANDU shutdown system number 1 (SDS1) in case of large break loss of coolant accident (LLOCA). Based on point kinetic method, a systematic fundamental analysis is performed to CANDU LLOCA event, and the power transient signal is generated. In order to improve the SDS1 response time during LLOCA events, an innovative power measurement and signal processing system is particularly designed. The new signal processing system is implemented with the input of the LLOCA power transient, and the simulation results of the reactor trip time and signal are compared to those of the existing system in CANDU power plants. It is demonstrated that the new signal processing system can not only achieve a shorter reactor trip time than the existing system, but also accommodate the spurious trip immunity. This will significantly enhance the safety margin for the power plant operation, or bring extra economical benefits to the power plant units.

  16. Passive heat-transfer means for nuclear reactors. [LMFBR

    Science.gov (United States)

    Burelbach, J.P.

    1982-06-10

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  17. Software reliability and safety in nuclear reactor protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  18. A probabilistic safety analysis of incidents in nuclear research reactors.

    Science.gov (United States)

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  19. Fission-Produced (99)Mo Without a Nuclear Reactor.

    Science.gov (United States)

    Youker, Amanda J; Chemerisov, Sergey D; Tkac, Peter; Kalensky, Michael; Heltemes, Thad A; Rotsch, David A; Vandegrift, George F; Krebs, John F; Makarashvili, Vakho; Stepinski, Dominique C

    2017-03-01

    (99)Mo, the parent of the widely used medical isotope (99m)Tc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of (99)Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of (99)Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The (99)Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq (99)Mo production run are presented.

  20. Temperature measuring analysis of the nuclear reactor fuel assembly

    Science.gov (United States)

    F., Urban; Ľ., Kučák; Bereznai, J.; Závodný, Z.; Muškát, P.

    2014-08-01

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  1. Advanced Space Nuclear Reactors from Fiction to Reality

    Science.gov (United States)

    Popa-Simil, L.

    The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.

  2. Inception and evolution of Oklo natural nuclear reactors

    Science.gov (United States)

    Bentridi, Salah-Eddine; Gall, Benoît; Gauthier-Lafaye, François; Seghour, Abdeslam; Medjadi, Djamel-Eddine

    2011-11-01

    The occurrence of more than 15 natural nuclear Reactor Zones (RZ) in a geological environment remains a mystery even 40 years after their discovery. The present work gives for the first time an explanation of the chemical and physical processes that caused the start-up of the fission reactions with two opposite processes, uranium enrichments and progressive impoverishment in 235U. Based on Monte-Carlo neutronics simulations, a solution space was defined taking into account realistic combinations of relevant parameters acting on geological conditions and neutron transport physics. This study explains criticality occurrence, operation, expansion and end of life conditions of Oklo natural nuclear reactors, from the smallest to the biggest ones.

  3. Systems and methods for dismantling a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon

    2014-10-28

    Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.

  4. ZEEP: Canada's first nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.E.; Okazaki, A. [retired, Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2015-09-15

    In 1905 Albert Einstein published his historic paper on special relativity, which contained the equation E=mc 2. The significance of this mass-energy relationship became evident with the discovery of nuclear fission in 1939, when it was realized that large amounts of energy would be released in a fission chain reaction. Canadian scientists were involved in this field from the beginning and their efforts resulted in the startup in September 1945 of the ZEEP reactor at Chalk River, the first reactor to go critical outside the USA. In this paper we recall some of the events that led to the construction of ZEEP, and describe the role it played in the development of the Canadian nuclear energy program. (author)

  5. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  6. Testing piezoelectric sensors in a nuclear reactor environment

    Science.gov (United States)

    Reinhardt, Brian T.; Suprock, Andy; Tittmann, Bernhard

    2017-02-01

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this work piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65×1020 nf/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 × 1020 nf/cm2, Zinc Oxide is capable of transduction up to at least 6.27 × 1020 nf/cm2, and Aluminum Nitride is capable of transduction up to at least 8.65 × 1020 nf/cm2.

  7. A Nuclear Reactor Transient Methodology Based on Discrete Ordinates Method

    Directory of Open Access Journals (Sweden)

    Shun Zhang

    2014-01-01

    Full Text Available With the rapid development of nuclear power industry, simulating and analyzing the reactor transient are of great significance for the nuclear safety. The traditional diffusion theory is not suitable for small volume or strong absorption problem. In this paper, we have studied the application of discrete ordinates method in the numerical solution of space-time kinetics equation. The fully implicit time integration was applied and the precursor equations were solved by analytical method. In order to improve efficiency of the transport theory, we also adopted some advanced acceleration methods. Numerical results of the TWIGL benchmark problem presented demonstrate the accuracy and efficiency of this methodology.

  8. Neutron physics for nuclear reactors unpublished writings by Enrico Fermi

    CERN Document Server

    Fermi, Enrico; Pisanti, O

    2010-01-01

    This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on

  9. Determination of 36Cl in nuclear waste from reactor decommissioning

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Frøsig, Lars; Nielsen, Sven Poul

    2007-01-01

    An analytical method for the determination of Cl-36 in nuclear waste such as graphite, heavy concrete, steel, aluminum, and lead was developed. Several methods were investigated for decomposing the samples. AgCl precipitation was used to separate Cl-36 from the matrix elements, followed by ion...... of this analytical method for Cl-36 is 14 mBq. The method has been used to determine Cl-36 in heavy concrete, aluminum, and graphite from the Danish DR-2 research reactor....

  10. Circuit for power variation rate measurements in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moisin, L.H.

    1980-01-01

    An asychronous digital circuit for the power variation rate of a nuclear reactor is proposed. The circuit is based on the fact that the variation rate can be obtained by a simple division between the difference of two time normalized adjacent measurements of the neutron flux and the total value of the first measurement. The circuit maintains a constant precision of the counting rate due to the effect of an automatic time constant switch. 4 references.

  11. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  12. La política nuclear espanyola: el caos del reactor nuclear Argos

    OpenAIRE

    Barca i Salom, Francesc Xavier

    2000-01-01

    L’11 de juny de 1962 s’inaugurava a l’Escola Tècnica Superior d’Enginyeria Industrial de Barcelona un reactor nuclear experimental, que era batejat amb el nom mític d’Argos. Tota la premsa barcelonina se’n feu ressò i el presentava com el primer reactor construït íntegrament a Espanya per la Junta d’Energia Nuclear. La idea de dotar l’Escola d’un reactor nuclear havia nascut, però, set anys abans, precisament en el mateix moment de la creació de la Càtedra Ferran Tallada d’enginyeria...

  13. Neutron dose estimation in a zero power nuclear reactor

    Science.gov (United States)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  14. Reactor Core Scheme for Small Nuclear Power Plant%小型核电站堆芯方案

    Institute of Scientific and Technical Information of China (English)

    解家春; 刘天才

    2012-01-01

    The small nuclear power planl enjoys advantages of long life and passive safely and is an important choice in the future nuclear power development. A conceptual core is designed for the small nuclear power planl. It is a pool-type fast reactor with sodium as coolant, the movable reflector and the fixed absorber as the reactivity control system for long-life. Further calculation results show thai the life of the reactor could be as long as 30 years, with a reasonable power distribution, all the reactivity coefficients negative, enough reactivity control worth, and all parameters satisfy the design requirements.%具有长寿命、非能动安全的小型核电站是核电发展的一个重要方向.本研究设计了一个小型核电站堆芯方案.该方案为池式钠冷快堆,采用移动反射层和堆内固定吸收体实现较长的堆芯寿期.进一步计算表明,该堆芯方案的寿期可达30年,功率分布合理,各种反应性系数为负值,控制方式的价值足够,满足设计要求.

  15. Problems and prospects connected with development of high-temperature filtration technology at nuclear power plants equipped with VVER-1000 reactors

    Science.gov (United States)

    Shchelik, S. V.; Pavlov, A. S.

    2013-07-01

    Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.

  16. The Dynamic Monte Carlo Method for Transient Analysis of Nuclear Reactors

    NARCIS (Netherlands)

    Sjenitzer, B.L.

    2013-01-01

    In this thesis a new method for the analysis of power transients in a nuclear reactor is developed, which is more accurate than the present state-of-the-art methods. Transient analysis is important tool when designing nuclear reactors, since they predict the behaviour of a reactor during changing co

  17. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhengang, E-mail: duan_zg@imr.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Yang, Huilong [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Satoh, Yuhki [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Abe, Hiroaki, E-mail: abe.hiroaki@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan)

    2017-05-15

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  18. Pellet bed reactor concept for nuclear electric propulsion

    Science.gov (United States)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Juhasz, Albert

    1993-01-01

    For Nuclear Electric Propulsion (NEP) applications, gas cooled nuclear reactors with dynamic energy conversion systems offer high specific power and low total mass. This paper describes the Pellet Bed Reactor (PeBR) concept for potential NEP missions to Mars. The helium cooled, 75-80 MWt PeBR, consists of a single annular fuel region filled with a randomly packed bed of spherical fuel pellets, is designed for multiple starts, and offers unique safety and operation features. Each fuel pellet, about 8-10 mm in diameter, is composed of hundreds of TRISO type fuel microspheres embedded in a graphite matrix for a full retention of fission products. To eliminate the likelihood of a single-point failure, the annular core of the PeBR is divided into three 120° sectors. Each sector is self contained and separate and capable of operating and being cooled on its own and in cooperation with either one or two other sectors. Each sector is coupled to a separate, 5 MWe Closed Brayton Cycle (CBC) energy conversion unit and is subcritical for safe handling and launching. In the event of a failure of the cooling system of a core sector, the reactor power level may be reduced, allowing adjacent sectors to convect the heat away using their own cooling system, thus maintaining reactor operation. Also, due to the absence of an internal core structure in the PeBR core, fueling of the reactor can easily be performed either at the launch facility or in orbit, and refueling can be accomplished in orbit as needed to extend the power system lifetime

  19. Design and axial optimization of nuclear fuel for BWR reactors; Diseno y optimizacion axial de combustible nuclear para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia V, M.A

    2006-07-01

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  20. Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC

    Science.gov (United States)

    Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology

  1. Investigation of Thermal Hydraulics of a Nuclear Reactor Moderator

    Science.gov (United States)

    Sarchami, Araz

    A three-dimensional numerical modeling of the thermo hydraulics of Canadian Deuterium Uranium (CANDU) nuclear reactor is conducted. The moderator tank is a Pressurized heavy water reactor which uses heavy water as moderator in a cylindrical tank. The main use of the tank is to bring the fast neutrons to the thermal neutron energy levels. The moderator tank compromises of several bundled tubes containing nuclear rods immersed inside the heavy water. It is important to keep the water temperature in the moderator at sub-cooled conditions, to prevent potential failure due to overheating of the tubes. Because of difficulties in measuring flow characteristics and temperature conditions inside a real reactor moderator, tests are conducted using a scaled moderator in moderator test facility (MTF) by Chalk River Laboratories of Atomic Energy of Canada Limited (CRL, AECL). MTF tests are conducted using heating elements to heat tube surfaces. This is different than the real reactor where nuclear radiation is the source of heating which results in a volumetric heating of the heavy water. The data recorded inside the MTF tank have shown levels of fluctuations in the moderator temperatures and requires in depth investigation of causes and effects. The purpose of the current investigation is to determine the causes for, and the nature of the moderator temperature fluctuations using three-dimensional simulation of MTF with both (surface heating and volumetric heating) modes. In addition, three dimensional simulation of full scale actual moderator tank with volumetric heating is conducted to investigate the effects of scaling on the temperature distribution. The numerical simulations are performed on a 24-processor cluster using parallel version of the FLUENT 12. During the transient simulation, 55 points of interest inside the tank are monitored for their temperature and velocity fluctuations with time.

  2. The MAUS nuclear space reactor with ion propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, Enrico [DINCE - Dipartimento di Ingegneria Nucleare e Conversioni Energetiche, University of Rome ' La Sapienza' , C.so V. Emanuele II, 244, 00186 Rome (Italy)]. E-mail: mainardi@frascati.enea.it

    2006-06-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome 'La Sapienza' starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  3. The Maus nuclear space reactor with ion propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Enrico Mainardi [DINCE - Dipartimento di Ingegneria Nucleare e Conversioni Energetiche, University of Rome ' La Sapienza' , C.so V. EmanueleII, 244, 00186 Roma (Italy)

    2006-07-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long lasting, low mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome 'La Sapienza' starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA. (author)

  4. The BLOW-3A: A theoretical model to describe transient two phase flow conditions in Liquid Metal Fast Breeder Reactor (LMFBR) coolant channels

    Science.gov (United States)

    Bottoni, M.; Struwe, D.

    The theoretical background of the BLOW-3A program is reported, including the basic equations used to determine temperature fields in the fuel, clad, coolant and structure material as well as the coolant dynamics in single and two-phase flow conditions. The two-phase flow model assumes an annular flow regime. Special aspects to calculate two-phase pressure drops for these conditions are discussed. Examples of the experimental validation of the program are given.

  5. Advanced nuclear reactor public opinion project. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  6. Nuclear power pilot plant for district heating on tne base of the ARBUS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsykanov, V.A.; Chechetkin, Yu.V.; Kormushkin, Yu.P.; Polivanov, I.F.; Pochechura, V.P.; Yakshin, E.K.; Makin, R.S.; Rozhdestvenskaya, L.N.; Buntushkin, V.P.

    1981-06-01

    Problems and perspectives of using reactors with organic coolant for district heating are discussed. Data obtained during plant operation on the base of ARBUS reactor, in which ditolylmethane is used as a coolant, are presented. The principal flow sheet and main parameters of the plant and characteristics of the reactor during operation at different levels thermal power are given. It is concluded that the plant, with the ARBUS reactor is simple and convenient in operation, it permits to quickly increase and decrease loadings and does not require numerous personnel. Standard equipment and accessories used in oil-chemical industry can be the basis for development of plant equipment. Low vapour pressure of the coolant and its weak corrosion activity permit to successfully apply thin-wall tubes and equipment made of carbon steels for the primary circuit. Level of radiation fields from the equipment is not essential during operation and shut-down of the plant and it does not create additional difficulties in operation and maintenance.

  7. Investigation of neutronic performance of a peaceful nuclear explosive reactor (PACER) evaluating UF4 and ThF4 nuclides

    Indian Academy of Sciences (India)

    Selahaddin Orhan Akansu; Nafiz Kahraman

    2004-08-01

    In this study, neutronic behaviour of a peaceful nuclear explosion reactor (PACER) producing approx 1.2 GWe power from fusion explosions is analysed considering ThF4 and UF4 as fissile zones. UF4 and ThF4 are put in to the system adjacent to the inner-side of the flibe coolant zone positions (distance between explosive region and fuel zone, DR = 50, 100, 200, 400, 500 and 700 cm). Flibe percentages are taken to be 25, 50, 75 and 100%. It is found that optimum combinations of fissile zone thickness, coolant zone position and coolant percentages are 10 cm, 200 cm and 25% flibe for UF4 and 10 cm, 50 cm and 25% flibe for ThF4. The behaviour of fuels mentioned above has been observed over a period of 30 years at discrete time intervals, $\\Delta t = 30$ days. In the case of UF4; values at DR = 200 cm reach 5.35, 5.22, 4.88, and 4.88 from 3.12, 2.98, 2.83 and 2.83, for 25, 50, 75, 100% flibe respectively. For ThF4 at DR = 50 cm, values reach from 1.61, 1.54, 1.50 and 1.46 to 1.93, 2.00, 2.04 and 1.99 for 25, 50, 75, 100% flibe respectively. Cumulative fissile fuel breeding (CFFE) values reach up to 5.5 from 0.7 at DR = 200 and 25% case for UF4, and up to 6.36% from 0%, at DR = 50 and 25% flibe, for ThF4, at the end of the operation period.

  8. Development of an automated core model for nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mosteller, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop an automated package of computer codes that can model the steady-state behavior of nuclear-reactor cores of various designs. As an added benefit, data produced for steady-state analysis also can be used as input to the TRAC transient-analysis code for subsequent safety analysis of the reactor at any point in its operating lifetime. The basic capability to perform steady-state reactor-core analysis already existed in the combination of the HELIOS lattice-physics code and the NESTLE advanced nodal code. In this project, the automated package was completed by (1) obtaining cross-section libraries for HELIOS, (2) validating HELIOS by comparing its predictions to results from critical experiments and from the MCNP Monte Carlo code, (3) validating NESTLE by comparing its predictions to results from numerical benchmarks and to measured data from operating reactors, and (4) developing a linkage code to transform HELIOS output into NESTLE input.

  9. Light weight space power reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H.; Mughabghab, S.; Lazareth, O.; Perkins, K.; Schmidt, E.; Powell, J.R.

    1991-01-01

    A Nuclear Electric Propulsion (NEP) unit capable of propelling a manned vehicle to MARS will be required to have a value of {alpha} (kg/kWe) which is less than five. In order to meet this goal the reactor mass, and thus its contribution to the value of {alpha} will have to be minimized. In this paper a candidate for such a reactor is described. It consists of a gas cooled Particle Bed Reactor (PBR), with specially chosen materials which allow it to operate at an exit temperature of approximately 2000 K. One of the unique features of a PBR is the direct cooling of particulate fuel by the working fluid. This feature allows for high power densities, highest possible gas exit temperatures, for a given fuel temperature and because of the thin particle bed a low pressure drop. The PBR's described in this paper will have a ceramic moderator (Be{sub 2}C), ZrC coated fuel particles and a carbon/carbon hot frit. All the reactors will be designed with sufficient fissile loading to operate at full power for seven years. The burn up possible with particulate fuel is approximately 30%--50%. These rector designs achieve a value of {alpha} less than unity in the power range of interest (5 MWe). 5 refs., 3 figs.

  10. Commercial US nuclear reactors and waste: the current status

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Robinson, J.V.

    1980-09-01

    Between March 1 and June 15, 1980, the declared size of the commercial light waste reactor (LWR) nuclear power industry in the US has decreased another 9 GWe. For the presently declared size: the 165 declared reactors will peak at a capacity of 153 GWe in 2001 and will consume about 870,000 MTU as enrichment feed; the theoretical rate of enrichment requirements will peak at about 19,000,000 SWUs/y in the year 2014; as few as two repositories each with capacity equivalent to 100,000 MTU would hold the waste; and predisposal storage reactor basins and AFRs (away-from-reactor basins) would peak at <85,000 MTU in the year 2020 if the two respositories were commissioned in the years 1997 and 2020. It should be noted that the number of declared LWRs has dropped from 226 on December 31, 1974 to 165 as of this writing. The oil equivalent of the energy loss, assuming a 50% efficiency in use as in cars, is 17,000 million barrels. This is about 10 years of the current rate of US consumption of OPEC oil.

  11. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and/or Mars. These reactors require robust automatic control systems using low mass, rapid...

  12. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and Mars. These reactors require robust automatic control systems using low mass, rapid...

  13. System Study: High-Pressure Coolant Injection 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  14. System Study: High-Pressure Coolant Injection 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-01-31

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  15. Optimization process for the design of the DCLL blanket for the European DEMOnstration fusion reactor according to its nuclear performances

    Science.gov (United States)

    Palermo, Iole; Rapisarda, David; Fernández-Berceruelo, Iván; Ibarra, Angel

    2017-07-01

    The research study focuses on the neutronic design analysis and optimization of one of the options for a fusion reactor designed as DCLL (dual coolant lithium-lead). The main objective has been to develop an efficient and technologically viable modular DCLL breeding blanket (BB) using the DEMO generic design specifications established within the EUROfusion Programme. The final neutronic design has to satisfy the requirements of: tritium self-sufficiency; BB thermal efficiency; preservation of plasma confinement; temperature limits imposed by materials; and radiation limits to guarantee the largest operational life for all the components. Therefore, a 3D fully heterogeneous DCLL neutronic model has been developed for the DEMO baseline 2014 determining its behaviour under the real operational conditions of the DEMO reactor. Consequent actions have been adopted to improve its performances. Neutronic assessments have specially addressed tritium breeding ratio, multiplication energy factor, power density distributions, damage and shielding responses. The model has then been adapted to the subsequent DEMO baseline 2015 (with a more powerful and bigger plasma, smaller divertor and bigger blanket segments), implying new design choices to improve the reactor nuclear performances.

  16. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1980-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-12

    Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, 950 and 1050/sup 0/C. Initiation of controlled purity helium creep-rupture testing in the intensive screening test program is discussed. In addition, the results of 1000-hour exposures at 750 and 850/sup 0/C on several experimental alloys are discussed.

  17. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1980-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-14

    Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850 and 950/sup 0/C. The initiation of air creep-rupture testing in the intensive screening test program is discussed. In addition, the status of the data management system is described.

  18. SIMODIS - a software package for simulating nuclear reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine; Borges, Eduardo M. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados. E-mail: guimarae@ieav.cta.br; Oliveira Junior, Nilton S.; Santos, Glauco S.; Bueno, Mariana F. [Universidade Bras Cubas, Mogi das Cruzes, SP (Brazil)

    2000-07-01

    In this paper it is presented the initial development effort in building a nuclear reactor component simulation package. This package was developed to be used in the MATLAB simulation environment. It uses the graphical capabilities from MATLAB and the advantages of compiled languages, as for instance FORTRAN and C{sup ++}. From the MATLAB it takes the facilities for better displaying the calculated results. From the compiled languages it takes processing speed. So far models from reactor core, UTSG and OTSG have been developed. Also, a series a user-friendly graphical interfaces have been developed for the above models. As a by product a set of water and sodium thermal and physical properties have been developed and may be used directly as a function from MATLAB, or by being called from a model, as part of its calculation process. The whole set was named SIMODIS, which stands for SIstema MODular Integrado de Simulacao. (author)

  19. Qualitative diagnosis for transients analysis on nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lorre, J.P.; Dorlet, E.; Evrard, J.M.

    1995-12-31

    One of the major aims of an intelligent monitoring system, is the supervision task which assist the operator in understanding what occurs on a process. Failures hypotheses must be located and the inferring process must be explained. This paper demonstrate a second generation expert system (SEXTANT) decided to the transients analysis on PWR nuclear reactors. This system detects failures by simulating the process with a numerical model. A diagnosis module uses an even graph built from a causal graph model of the plant to generate hypotheses, and a numerical model to validate these hypotheses. Hypotheses are stored into scenarios which are concurrent possible interpretations of the process evolution. The approach is illustrated by an application for the analysis of the house load operation on a pressurized water reactor. (authors). 9 refs., 10 figs.

  20. Prediction of the thermophysical properties of molten salt fast reactor fuel from first-principles

    OpenAIRE

    Gheribi, Aimen; Corradini, D; Dewan, L. (Lawrence); Chartrand, P; Simon, C.; Madden, Paul,; M. Salanne

    2014-01-01

    International audience; Molten fluorides are known to show favorable thermophysical properties which make them good candidate coolants for nuclear fission reactors. Here we investigate the special case of mixtures of lithium fluoride and thorium fluoride, which act both as coolant and fuel in the molten salt fast reactor concept. By using ab initio parameterized polarizable force fields, we show that it is possible to calculate the whole set of properties (density, thermal expansion, heat cap...

  1. Summary of space nuclear reactor power systems, 1983--1992

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  2. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    OpenAIRE

    Matjaž Leskovar; Mitja Uršič

    2016-01-01

    A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In ...

  3. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  4. Analysis of the containment of a compact reactor PWR submitted to loss of coolant accident; Analise da contencao de um reator PWR compacto submetido a acidente de perda de refrigerante

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Alexandre de Souza; Belchior Junior, Antonio; Guimaraes, Leonam dos Santos [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    2000-07-01

    In the present paper analyses were done with the computer code RELAP5/MOD2 for rising the process conditions of the containment of a compact reactor PWR of low potency, submitted to Loss of Coolant Accidents (LOCA). The main results obtained were the behavior of maximum conditions of pressure as a function of the available containment free volume. It was also studied the problem of containment sub-compartmentation, that is to say, the possibility of the rupture to happen in restricted spaces generating high sub-compartment peak pressure and, consequently, high strains on the internal structures. (author)

  5. Nuclear renaissance in the reactor training of Areva

    Energy Technology Data Exchange (ETDEWEB)

    De Braquilanges, Bertrand [Reactor Training Center/France Manager, La Tour Areva - 1, place Jean Millier - 92084 Paris - La Defense (France); Napior, Amy [Reactor Training Center/USA Manager, 1300 Old Graves Mill Road - Lynchburg VA, 2450 (United States); Schoenfelder, Christian [Reactor Training Center/Germany Manager, Kaiserleistrasse 29 - 63067 Offenbach (Germany)

    2010-07-01

    Because of the perspectives of new builds, a significant increase in the number of design, construction and management personnel working in AREVA, their clients and sub-contractors has been estimated for the next future. In order to cope with the challenge to integrate newly hired people quickly and effectively into the AREVA workforce, a project - 'Training Task Force (TTF)' - was launched in 2008. The objective was to develop introductory and advanced courses and related tools harmonized between AREVA Training Centers in France, Germany and USA. First, a Global Plants Introductory Session (GPIS) was developed for newly hired employees. GPIS is a two weeks training course introducing in a modular way AREVA and specifically the activities and the reactors technical basics. As an example, design and operation of a nuclear power plant is illustrated on EPRTM. Since January 2009, these GPIS are held regularly in France, Germany and the US with a mixing of employees from these 3 regions. Next, advanced courses for more experienced employees were developed: - Advanced EPR{sup TM}, giving a detailed presentation of the EPR{sup TM} reactor design; - Codes and Standards; - Technical Nuclear Safety. Finally, feasibility studies on a Training Material Management (TMM) system, able to manage the training documentation, and on a worldwide training administration tool, were performed. The TTF project was completed mid of 2009; it transferred their recurrent activities to a new AREVA training department. This unit now consists of the French, German and US Reactors Training Centers. In particular, all courses developed by the TTF are now implemented worldwide with an opening to external trainees. The current worldwide course catalogue includes training courses for operation and maintenance personnel as well as for managers, engineers and non technical personnel of nuclear operators, suppliers, safety authorities and expert organizations. Training delivery is supported

  6. Modelling and simulation the radioactive source-term of fission products in PWR type reactors; Modelagem e simulacao do termo-fonte radioativo de produtos de fissao em reatores nucleares do tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Porfirio, Rogilson Nazare da Silva

    1996-07-01

    The source-term was defined with the purpose the quantify all radioactive nuclides released the nuclear reactor in the case of accidents. Nowadays the source-term is limited to the coolant of the primary circuit of reactors and may be measured or modelled with computer coders such as the TFP developed in this work. The calculational process is based on the linear chain techniques used in the CINDER-2 code. The TFP code considers forms of fission products release from the fuel pellet: Recoil, Knockout and Migration. The release from the gap to the coolant fluid is determined from the ratio between activity measured in the coolant and calculated activity in the gap. Considered the operational data of SURRY-1 reactor, the TFP code was run to obtain the source=term of this reactor. From the measured activities it was verified the reliability level of the model and the employed computational logic. The accuracy of the calculated quantities were compared to the measured data was considered satisfactory. (author)

  7. Thermo-magnetic systems for space nuclear reactors an introduction

    CERN Document Server

    Maidana, Carlos O

    2014-01-01

    Introduces the reader to engineering magnetohydrodynamics applications and presents a comprehensive guide of how to approach different problems found in this multidisciplinary field. An introduction to engineering magnetohydrodynamics, this brief focuses heavily on the design of thermo-magnetic systems for liquid metals, with emphasis on the design of electromagnetic annular linear induction pumps for space nuclear reactors. Alloy systems that are liquid at room temperature have a high degree of thermal conductivity far superior to ordinary non-metallic liquids. This results in their use for

  8. Computation system for nuclear reactor core analysis. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals.

  9. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR)

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.G.; Richards, R.E.; Reece, W.J.; Gertman, D.I.

    1992-10-01

    This Reference Guide contains instructions on how to install and use Version 3.5 of the NRC-sponsored Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). The NUCLARR data management system is contained in compressed files on the floppy diskettes that accompany this Reference Guide. NUCLARR is comprised of hardware component failure data (HCFD) and human error probability (HEP) data, both of which are available via a user-friendly, menu driven retrieval system. The data may be saved to a file in a format compatible with IRRAS 3.0 and commercially available statistical packages, or used to formulate log-plots and reports of data retrieval and aggregation findings.

  10. Nuclear reactor fuel element with vanadium getter on cladding

    Science.gov (United States)

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  11. Evaluation of a hydrogen sensor for nuclear reactor containment monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hoffheins, B.S.; McKnight, T.E.; Lauf, R.J.; Smith, R.R. [Oak Ridge National Lab., TN (United States); James, R.E. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-02-01

    Measurement of hydrogen concentration in containment atmospheres in nuclear plants is a key safety capability. Current technologies require extensive sampling systems and subsequent maintenance and calibration costs can be very expensive. A new hydrogen sensor has been developed that is small and potentially inexpensive to install and maintain. Its size and low power requirement make it suitable in distributed systems for pinpointing hydrogen buildup. This paper will address the first phase of a testing program conducted to evaluate this sensor for operation in reactor containments.

  12. Promising design options for the encapsulated nuclear heat source reactor

    Energy Technology Data Exchange (ETDEWEB)

    Conway, L.; Carelli, M.D.; Dzodzo, M. [Westinghouse Science and Technology, Pittsburgh, PA (United States); Hossain, Q.; Brown, N.W. [Lawrence Livermore National Lab., CA (United States); Wade, D.C.; Sienick, J.J. [Argonne National Lab., IL (United States); Greenspan, E.; Kastenberg, W.E.; Saphier, D. [University of California Dept of Nuclear Engineering, Berkeley, CA (United States)

    2001-07-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  13. The 25 MW Super Near Boiling nuclear reactor (SNB25) for supplying co-generation energy to an Arctic Canadian Forces Base

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W.; Paquette, S.; Boucher, P.J. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2014-12-15

    Nuclear energy represents a better alternative for the supply of heat and electricity to the Canadian Forces bases in the Arctic (CFS Alert and CFB Nanisivik). In this context, the Super Near-Boiling 25-MWth reactor (SNB25) has been designed as a small unpressurized LWR that displays inherent safety and is intended to run in automatic mode. The reactor employs TRISO fuel particles (20% enrichment) in zirconium-sheathed fuel rods, and is light water cooled and moderated with a normal output temperature is 95 {sup o} C at atmospheric pressure. Control is via 133 control rods and six adjustable radial reflector plates. The design work used the probabilistic simulation code MCNP 5 and the deterministic code WIMS-AECL Version 3.1, permitting a code-to-code comparison of the results. Inherent safety was confirmed and is mostly due to the large negative void reactivity coefficient of -5.17 mk per % void. A kinetic model that includes thermal-hydraulics calculations was developed to determine the reactor's behaviour in transient states, and the results further confirm the inherent safety. Large power excursions temperatures that could compromise structural integrity cannot be produced. If the coolant/moderator temperature exceeds the saturation temperature of 100 {sup o} C, the coolant begins to boil and the large negative void coefficient causes the reactor to become subcritical in 0.84 seconds. The SNB25 reactor's core life exceeds 12 years between refuellings. A group of 4 SNB25 reactors meets both the heating and electricity requirements of a base like CFB Nanisivik via a hot water network and through an organic Rankine cycle conversion plant. (author)

  14. Computer simulation of two-phase flow in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.

    1992-09-01

    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  15. Computer simulation of two-phase flow in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.

    1992-01-01

    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter's closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  16. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  17. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  18. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    Science.gov (United States)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  19. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    Science.gov (United States)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-10-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  20. RTC-control of power transients in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ratemi, Wajdi Mohamed [Alfateh University, PO Box 13040, Tripoli (Libyan Arab Jamahiriya)

    2006-07-01

    In this paper, the new Reactivity Trace Curve (RTC) method (Ratemi 1993,1994), which is based on the dynamic period studies (Bernard et al.,1984), has been studied for maneuvering of the nuclear reactor power without power shooting. The reactor is modeled with one group of delayed neutrons with temperature feedback effect, as well as, Xenon feedback effect. A precursors concentration model is used to provide for the effective dynamic decay constant (in one group case, it is a static one). The RTC-identifier which is given by a differential equation is then solved at each sampling time (for one group, it has an analytical solution). Its solution is what is called the Reactivity Trace Curve which keeps the power steady at the desired power. An inverse kinetic model which uses the on-line power data for reactivity calculation is used to provide initial condition (initial reactivity) for the RTC- power controller. Also feedback model are needed to evaluate both the temperature and Xenon reactivities which when subtracted from the RTC-value, one then can determine the reactivity required to keep the reactor power steady without power shooting. (authors)