WorldWideScience

Sample records for coolant pump shaft

  1. Reactor coolant pump shaft seal behavior during blackout conditions

    International Nuclear Information System (INIS)

    Mings, W.J.

    1985-01-01

    The United States Nuclear Regulatory Commission has classified the problem of reactor coolant pump seal failures as an unresolved safety issue. This decision was made in large part due to experimental results obtained from a research program developed to study shaft seal performance during station blackout and reported in this paper. Testing and analysis indicated a potential for pump seal failure under postulated blackout conditions leading to a loss of primary coolant with a concomitant danger of core uncovery. The work to date has not answered all the concerns regarding shaft seal failure but it has helped scope the problem and focus future research needed to completely resolve this issue

  2. Reactor coolant pump shaft seal stability during station blackout

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Hill, R.C.; Wensel, R.G.

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries

  3. Reactor coolant pump shaft seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, D B; Hill, R C; Wensel, R G

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries.

  4. Reactor coolant pump shaft seal behavior during station blackout

    International Nuclear Information System (INIS)

    Kittmer, C.A.; Wensel, R.G.; Rhodes, D.B.; Metcalfe, R.; Cotnam, B.M.; Gentili, H.; Mings, W.J.

    1985-04-01

    A testing program designed to provide fundamental information pertaining to the behavior of reactor coolant pump (RCP) shaft seals during a postulated nuclear power plant station blackout has been completed. One seal assembly, utilizing both hydrodynamic and hydrostatic types of seals, was modeled and tested. Extrusion tests were conducted to determine if seal materials could withstand predicted temperatures and pressures. A taper-face seal model was tested for seal stability under conditions when leaking water flashes to steam across the seal face. Test information was then used as the basis for a station blackout analysis. Test results indicate a potential problem with an elastomer material used for O-rings by a pump vendor; that vendor is considering a change in material specification. Test results also indicate a need for further research on the generic issue of RCP seal integrity and its possible consideration for designation as an unresolved safety issue

  5. Gear-shaft linkage, especially for nuclear reactor coolant pumps

    International Nuclear Information System (INIS)

    Delaunois, T.; Lefevre, R.

    1990-01-01

    The pump comprises: - inlet and outlet channels for the pumped fluid - a rotating shaft - a gear wheel mounted on the shaft by an axial locking nut which can support the axial hydraulic force - a thermal barrier above the gear wheel. A hydrostatic bearing fitted to the exterior surround of the gear wheel, the gear shaft linkage is made by at least a centering and locating device having a cylindrical span and an axial stop and another independent device which can take up the torque [fr

  6. Main-coolant-pump shaft-seal guidelines. Volume 3. Specification guidelines. Final report

    International Nuclear Information System (INIS)

    Fair, C.E.; Greer, A.O.

    1983-03-01

    This report presents a set of guidelines and criteria to aid in the generation of procurement specifications for Main Coolant Pump Shaft Seals. The noted guidelines are developed from EPRI sponsored nuclear power plant seal operating experience studies, a review of pump and shaft seal literature and discussions with pump and seal designers. This report is preliminary in nature and could be expanded and finalized subsequent to completion of further design, test and evaluation efforts

  7. Main-coolant-pump shaft-seal guidelines. Volume 1. Maintenance-manual guidelines. Final report

    International Nuclear Information System (INIS)

    Fair, C.E.; Greer, A.O.

    1983-03-01

    This report presents a set of guidelines and a listing of information and data which should be included in maintenance manuals and procedures for Main Coolant Pump Shaft Seals. The noted guidelines and data listing are developed from EPRI sponsored nuclear plant seal operating experience studies. The maintenance oriented results of the most recent such study is summarized. The shaft seal and its auxiliary supporting systems are discussed from both technical and maintenance related viewpoints

  8. Main-coolant-pump shaft-seal guidelines. Volume 2. Operational guidelines. Final report

    International Nuclear Information System (INIS)

    Fair, C.E.; Greer, A.O.

    1983-03-01

    This report presents a set of guidelines and criteria for improving main coolant pump shaft seal operational reliability. The noted guidelines are developed from EPRI sponsored nuclear power plant seal operating experience studies. Usage procedures/practices and operational environment influence on seal life and reliability from the most recent such survey are summarized. The shaft seal and its auxiliary supporting systems are discussed both from technical and operational related viewpoints

  9. Examination of reactor coolant pump shaft at Crystal River-3

    International Nuclear Information System (INIS)

    Hayner, G.O.; Frye, C.R.; Clary, M.D.

    1987-01-01

    A detailed examination was performed on a broken RCP shaft assembly. The primary fracture was located in a groove under the upper end of the hydrostatic bearing journal. Additionally, all four impeller-to-shaft bolts and one drive pin failed. Mechanical properties, bulk chemistry, hardness, and microstructure were normal for the A-286 material used for the shaft, bolts and pins. A zone of axial surface cracking was seen just above the top of the hydrostatic bearing journal. According to Yoon et.al. these cracks are caused by thermal fatigue resulting from turbulent hot and cold water mixing in this area and have a self limiting depth. The primary RCP shaft fracture was caused by high cycle fatigue. Crack initiation probably occurred during initial use of the RCP and according to Yoon was caused by a combination postulated effect of comined surface residual stresses and stress concentration in the groove area. Several combinations of effects including broken impeller bolts probably were responsible for the initial crack propagation. Fracture mechanics testing results in 550 0 F air and simulated PWR water were used to estimate the stress intensity range of the primary crack and the crack propagation time by comparison of the fracture surface features. These estimates indicated that the propagation time was probably in the range from ≅ 191 to ≅ 323 days with a maximum stress intensity level of ≅ 30 ksi √(in). (orig.)

  10. Main-coolant-pump shaft-seal reliability investigation. Interim report

    International Nuclear Information System (INIS)

    Fair, C.E.; Marsi, J.A.; Greer, A.O.

    1982-09-01

    This report contains the results of a survey of reactor coolant pump shaft seal reliability. The survey sample is representatively large (approx. = 27% of total US commercial plant population) and includes the three industry seal suppliers (Bingham-Williamette, Byron Jackson, and Westinghouse). Operationally incurred/induced problems and seal redesign parameters are identified. Failure hypotheses in the form of fault trees have been developed to describe the failure mechanisms. Recommendations are made for seal reliability improvement

  11. Secondary seal effects in hydrostatic non-contact seals for reactor coolant pump shaft

    International Nuclear Information System (INIS)

    Fujita, T.; Koga, T.; Tanoue, H.; Hirabayashi, H.

    1987-01-01

    The paper presents a seal flow analysis in a hydrostatic non-contact seal for a PWR coolant pump shaft. A description is given of the non-contact seal for the reactor coolant pump. Results are presented for a distortion analysis of the seal ring, along with the seal flow characteristics and the contact pressure profiles of the secondary seals. The results of the work confirm previously reported findings that the seal ring distortion is sensitive to the o-ring location (which was placed between the ceramic seal face and the seal ring retainer). The paper concludes that the seal flow characteristics and the tracking performance depend upon the dynamic properties of the secondary seal. (U.K.)

  12. Thermal hydraulic conditions inducing incipient cracking in the 900 MWe unit 93 D reactor coolant pump shafts

    International Nuclear Information System (INIS)

    Bore, C.

    1995-01-01

    From 1987, 900 MWe plant operating feedback revealed cracking in the lower part of the reactor coolant pump shafts, beneath the thermal ring. Metallurgical examinations established that this was due to a thermal fatigue phenomenon known as thermal crazing, occurring after a large number of cycles. Analysis of thermal hydraulic conditions initiating the cracks does not allow exact quantification of the thermal load inducing cracking. Only qualitative analyses are thus possible, the first of which, undertaken by the pump manufacturer, Jeumont Industrie, showed that the cracks could not be due to the major transients (stop-start, injection cut-off), which were too few in number. Another explanation was then put forward: the thermal ring, shrunk onto the shaft it is required to protect against thermal shocks, loosens to allow an alternating downflow of cold water from the shaft seals and an upflow of hot water from the primary system. However, approximate calculations showed that the flow involved would be too slight to initiate the cracking observed. A more stringent analysis undertaken with the 2D flow analysis code MELODIE subsequently refuted the possibility of alternating flows beneath the ring establishing that only a hot water upflow occurred due to a 'viscosity pump' phenomenon. Crack initiation was finally considered to be due to flowrate variations beneath the ring, with the associated temperature fluctuations. This flowrate fluctuation could be due to an unidentified transient phenomenon or to a variation in pump operating conditions. This analysis of the hydraulic conditions initiating the cracks disregards shaft surface residual stresses. These are tensile stresses and show that loads less penalizing than those initially retained could cause incipient cracking. Thermal ring modifications to reduce these risks were proposed and implemented. In addition, final metallurgical treatment of the shafts was altered and implemented. In addition, final metallurgical

  13. Research on RCP400-TB50 type reactor coolant pump shaft seal failure analysis and monitoring method

    International Nuclear Information System (INIS)

    Yuan Chaolian; Shen Yuxian; Wang Chuan; Du Pengcheng

    2014-01-01

    Mechanical seal is widely applied in mechanical devices of nuclear power plant. 3-stages mechanical seal applied in reactor coolant pump (abbreviate to RCP) is a kind of product with top technology and manufacture difficulty. As the only running machine in primary loop of nuclear power plant, RCP is designed with high security, reliability and perform ability. So performance of its key component, 3-stages mechanical seal, could directly decide whether units can operate safely and reliably. In this paper mechanical seal used in RCP400-TB50 type RCP which in designed and manufactured by Andritz AG is selected as a typical example of dynamic pressure type mechanical seal applied in second generation NPP. Its structure and working principle is expounded. Engineering fluid mechanics theory is used to establish the mathematical model using for analyzing status of mechanical seal and deducing the theoretical formula. Its correctness is verified by compare with the test data. So that research result can be used as the theoretical basis for analysis of RCP400-TB50 RCP shaft seal's working condition. According to the shaft seal operation characteristic we can establish a suitable RCP shaft seal monitoring method and interlock protection setting for NPP operation. (authors)

  14. Reactor having coolant recycling pump

    International Nuclear Information System (INIS)

    Goto, Tadashi; Karatsuka, Shigeki; Yamamoto, Hajime.

    1991-01-01

    In a coolant recycling pump for an LMFBR type reactor, vertical grooves are formed to a static portion which surrounds a pump shaft as far as the lower end thereof. Sodium mists present in an annular gap of the pump shaft form a rotational flow, lose its centrifugal force at the grooved portion and are collected positively to the grooved portion. Further, since the rotational flow in the grooved channel is in a state of a cavity flow, the pressure is released in the grooved portion and a secondary eddy current is formed thereby providing a depressurized state. Accordingly, by a synergestic effect of the centrifugal force and the cavity flow, sodium mists can be recovered completely. (T.M.)

  15. Design capability of CANDU heat transport pump shafts against cracking

    International Nuclear Information System (INIS)

    Kumar, A.N.; Sheikh, Z.B.; Padgett, A.

    1993-01-01

    During 1986 three different Light Water Reactors (LWR's) in the U.S. reported either a cracked or fractured shaft on one or more of their reactor coolant (RC) pumps. The RC pumps for all these stations were supplied by Byron Jackson (BJ) Pump Company. A majority of CANDU heat transport (HT) pumps (equivalent of RC pumps) are supplied by BJ Pump Company and are similar in design to RC pumps. Hence the failure of these RC pumps in the U.S. utilities caused concern regarding the relevance of these failures to the BJ supplied CANDU HT pumps (HTP). This paper presents the results of AECL assessment to establish the capability of the HT pump shaft against cracking. Two methods were used for assessment: (a) detailed comparative design review of the HTP and RCP shafts; (b) semi-empirical analysis of the HTP shafts. The results of the AECL assessment showed significant differences in detailed design, materials, assembly and fits of various components and the control of operating parameters between the HT and RC pumps. It was concluded that because of these differences the failures similar to RC pump shafts are not likely to appear in HT pump shafts. This conclusion is further reinforced by about 140,000 hours of operating history of the longest running HT pump of comparable size to RC Pumps, without failures

  16. Decontamination of main coolant pumps

    International Nuclear Information System (INIS)

    Roofthooft, R.

    1988-01-01

    Last year a number of main coolant pumps in Belgian nuclear power plants were decontaminated. A new method has been developed to reduce the time taken for decontamination and the volume of waste to be treated. The method comprises two phases: Oxidation with permanganate in nitric acid and dissolution in oxalic acid. The decontamination of main coolant pumps can now be achieved in less than one day. The decontamination factors attained range between 15 and 150. (orig.) [de

  17. Thermal hydraulic conditions inducing incipient cracking in the 900 MWe unit 93 D reactor coolant pump shafts; Pompes primaires 93 D des tranches de 900 MW. Conditions thermo-hydrauliques d`amorcage des fissures d`arbres

    Energy Technology Data Exchange (ETDEWEB)

    Bore, C.

    1995-12-31

    From 1987, 900 MWe plant operating feedback revealed cracking in the lower part of the reactor coolant pump shafts, beneath the thermal ring. Metallurgical examinations established that this was due to a thermal fatigue phenomenon known as thermal crazing, occurring after a large number of cycles. Analysis of thermal hydraulic conditions initiating the cracks does not allow exact quantification of the thermal load inducing cracking. Only qualitative analyses are thus possible, the first of which, undertaken by the pump manufacturer, Jeumont Industrie, showed that the cracks could not be due to the major transients (stop-start, injection cut-off), which were too few in number. Another explanation was then put forward: the thermal ring, shrunk onto the shaft it is required to protect against thermal shocks, loosens to allow an alternating downflow of cold water from the shaft seals and an upflow of hot water from the primary system. However, approximate calculations showed that the flow involved would be too slight to initiate the cracking observed. A more stringent analysis undertaken with the 2D flow analysis code MELODIE subsequently refuted the possibility of alternating flows beneath the ring establishing that only a hot water upflow occurred due to a `viscosity pump` phenomenon. Crack initiation was finally considered to be due to flowrate variations beneath the ring, with the associated temperature fluctuations. This flowrate fluctuation could be due to an unidentified transient phenomenon or to a variation in pump operating conditions. This analysis of the hydraulic conditions initiating the cracks disregards shaft surface residual stresses. These are tensile stresses and show that loads less penalizing than those initially retained could cause incipient cracking. Thermal ring modifications to reduce these risks were proposed and implemented. In addition, final metallurgical treatment of the shafts was altered and implemented. (Abstract Truncated)

  18. Reactor coolant pump transportation incident

    International Nuclear Information System (INIS)

    Noce, D.

    1992-01-01

    This paper reports on an incident, which occurred on August 27, 1991, in which a Reactor Coolant Pump motor en route from Surry Power Station to Westinghouse repair facilities struck the overpass at the junction of Interstate 64 and Jefferson Avenue in Newport News, Virginia. The transport container that housed the reactor coolant pump motor failed to clear the overpass. The force of the impact dislodged the container and motor from the truck bed, and it landed on the acceleration land and road shoulder. Upon impact, the container broke open and exposed the reactor coolant pump motor. Incidental radioactively contaminated water that remained in the motor coolers drained onto the road, contaminating the aggregate as well as the underlying gravel

  19. Vertical reactor coolant pump instabilities

    International Nuclear Information System (INIS)

    Jones, R.M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corractive measures taken are also described

  20. Design technology development of the main coolant pump for an integral reactor

    International Nuclear Information System (INIS)

    Park, J. S.; Lee, J. S.; Kim, M. H.; Kim, D. W.; Kim, J. I.

    2004-01-01

    All of the reactor coolant pump currently used in commercial nuclear power plant were imported from foreign country. Now, the developing program of design technology for the reactor coolant pump will be started in a few future by domestic researchers. At this stage, the design technology of the main coolant pump for an integral reactor is developed based on the regulation of domestic nuclear power plant facilities. The main coolant pump is a canned motor axial pump, which accommodates all constraints required from the integral reactor system. The main coolant pump does not have mechanical seal device because the rotor of motor and the shaft of impeller are the same one. There is no flywheel on the rotating shaft of main coolant pump so that the coastdown duration time is short when the electricity supply is cut off

  1. The operating reliability of the reactor coolant pump

    International Nuclear Information System (INIS)

    Grancy, W.

    1996-01-01

    There is a strong tendency among operating companies and manufacturers of nuclear power stations to further increase safety and operating availability of the plant and of its components. This applies also and particularly to reactor coolant pumps for the primary circuit of nuclear power stations of the type PWR. For 3 decades, ANDRITZ has developed and built such pumps and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as bearing and shaft seal. Apart from questions connected with design functioning of the pump there is one question of top priority: the operating reliability of the reactor coolant pump. The pump rotor (together with the rotor of the drive motor) is the only component within the primary system that permanently rotates at high speed during operation of the reactor plant. Many questions concerning design and configuration of such components cannot be answered purely theoretically, or they can only be answered partly. Therefore comprehensive development work and testing was necessary to increase the operating reliability of the pump rotor itself and of its surrounding elements. This contribution describes the current status of development and, as a focal point, discusses shaft sealing solutions elaborated so far. In this connection also a sealing system will be presented which aims for the first time at using a two-stage mechanical seal in reactor coolant pumps

  2. Lubrication analysis of the journal bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Kim, J. I.; Jang, M. H.

    2000-01-01

    Special type journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel. The MCP bearings are lubricated with water without external lubricating oil supply. Long bearing with vertical grooves is designed with relatively large bearing clearance to accommodate the long shaft. Lubricational analysis method for journal bearing with vertical grooves in the main coolant pump of SMART is proposed, and lubricational characteristics of the bearings are examined in this paper

  3. Mathematical model of the reactor coolant pump

    International Nuclear Information System (INIS)

    Kozuh, M.

    1989-01-01

    The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)

  4. Condition monitoring of main coolant pumps, Dhruva

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Acharya, V.N.; Tikku, A.C.; Mishra, S.K.

    2002-01-01

    Full text: Dhruva is a 100 MW research reactor with natural uranium fuel, heavy water as moderator and primary coolant. Three Centrifugal pumps circulate the primary coolant across the core and the heat exchangers. Each pump is coupled to a flywheel (FW) assembly in order to meet operational safety requirements. All the 3 main coolant pump (MCP) sets are required to operate during operation of the reactor. The pump-sets are in operation since the year 1984 and have logged more than 1,00,000 hrs. Frequent breakdowns of its FW bearings were experienced during initial years of operation. Condition monitoring of these pumps, largely on vibration based parameters, was initiated on regular basis. Break-downs of main coolant pumps reduced considerably due to the fair accurate predictions of incipient break-downs and timely maintenance efforts. An effort is made in this paper to share the experience

  5. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Pothier, N.E.; Metcalfe, R.

    1986-06-01

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  6. Main coolant pump testing at Ontario Hydro

    International Nuclear Information System (INIS)

    Hartlen, R.

    1991-01-01

    This article describes Ontario Hydro Research Division's experience with a computerized data acquisition and analysis system for monitoring mechanical vibration in reactor coolant pumps. The topics covered include bench-marking of the computer system and the coolant pumps, signatures of normal and malfunctioning pumps, analysis of data collected by the monitoring system, simulation of faults, and concerns that have been expressed about data interpretation, sensor types and locations, alarm/shutdown limits and confirmation of nondestructive examination testing. This presentation consists of overheads only

  7. Upgradation of design features of primary coolant pumps of Indian 220 MWe PHWR

    International Nuclear Information System (INIS)

    Sharma, S.S.; Mhetre, S.G.; Manna, M.M.

    1994-01-01

    Evolution in the design features of Primary Coolant Pump (PCP) had started in fifties for catering to stringent specification requirements of reactor coolant systems of larger capacity reactors of various kinds. Primary coolant pumps of PWR and PHWR are employed for circulating radioactive, pressurized hot water in a circuit consisting of reactor (heat source) and steam generator (heat sink). As primary coolant pump capacity decides the station capacity, larger capacity primary coolant pumps have been evolved. Since primary coolant pump pressure containing parts are part of Primary Heat Transport system envelope, the parts are designed, manufactured, inspected and tested in accordance with the applicable system guidelines. Flywheel is mounted on the motor shaft for increasing mass moment of inertia of pump motor rotor to meet the coast down requirements of reactor cooling system under Class-IV electrical power supply failure. Due to limited accessibility of the PCP (PCP installed in shut down accessible area), quick maintenance, condition monitoring, reliable shaft seal system/bearing system aspects have been of great concern to reactor owners and pump manufacturers. In this paper upgradation of design features of RAPS, MAPS and NAPS primary coolant pumps have been covered. (author). 4 figs., 1 tab

  8. Reactor coolant pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Harand, E.; Richter, G.; Tschoepel, G.

    1975-01-01

    A brake for the pump rotor of a main coolant pump or a shutoff member on the pump are provided in order to prevent excess speeds of the pump rotor. Such excess speeds may occur in PWR type reactors with water at a pressure below, e.g., 150 bars if there is leakage from a coolant line associated with the main coolant pump. As a brake, a centrifugal brake depending upon the pump speed or a brake ring arranged on the pump housing and acting on the pump rotor, which ring would be activated by pressure differentials in the pump, may be used. If the pressure differences between suction and pressure sockets are very small, a controlled hydraulic increase of the pressure force on the brake may also be provided. Furthermore, a turbine brake may be provided. A slide which is automatically movable in closing position along the pump rotor axis is used as a shutoff element. It is of cylindrical configuration and is arranged concentrically with the rotor axis. (DG) [de

  9. Condition monitoring of primary coolant pump-motor units of Indian PHWR

    International Nuclear Information System (INIS)

    Rshikesan, P.B.; Sharma, S.S.; Mhetre, S.G.

    1994-01-01

    As the primary coolant pump motor units are located in shut down accessible area, their start up, satisfactory operation and shut down are monitored from control room. As unavailability of one pump in standardised 220 MWe station reduces the station power to about 110 MWe, satisfactory operation of the pump is also important from economic considerations. All the critical parameters of pump shaft, mechanical seal, bearing system, motor winding and shaft displacement (vibrations) are monitored/recorded to ensure satisfactory operation of critical, capital intensive pump-motor units. (author). 2 tabs., 1 fig

  10. Lubrication analysis of the thrust bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Hur, H.; Kim, J. I.

    2001-01-01

    Thrust bearing and journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and especially the MCP bearings are lubricated with water without external lubricating oil supply. Because axial load capacity of the thrust bearing can hardly meet requirement to acquire hydrodynamic or fluid film lubrication state, self-lubrication characteristics of silicon graphite meterials would be needed. Lubricational analysis method for thrust bearing for the main coolant pump of SMART is proposed, and lubricational characteristics of the bearing generated by solving the Reynolds equation are examined in this paper

  11. Vibration monitoring/diagnostic techniques, as applied to reactor coolant pumps

    International Nuclear Information System (INIS)

    Sculthorpe, B.R.; Johnson, K.M.

    1986-01-01

    With the increased awareness of reactor coolant pump (RCP) cracked shafts, brought about by the catastrophic shaft failure at Crystal River number3, Florida Power and Light Company, in conjunction with Bently Nevada Corporation, undertook a test program at St. Lucie Nuclear Unit number2, to confirm the integrity of all four RCP pump shafts. Reactor coolant pumps play a major roll in the operation of nuclear-powered generation facilities. The time required to disassemble and physically inspect a single RCP shaft would be lengthy, monetarily costly to the utility and its customers, and cause possible unnecessary man-rem exposure to plant personnel. When properly applied, vibration instrumentation can increase unit availability/reliability, as well as provide enhanced diagnostic capability. This paper reviews monitoring benefits and diagnostic techniques applicable to RCPs/motor drives

  12. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  13. Examination of a failed reactor coolant pump rotating assembly from Crystal River Unit 3

    International Nuclear Information System (INIS)

    Hayner, G.O.; Lubnow, T.; Clary, M.

    1990-01-01

    On January 18, 1989, the A reactor coolant pump rotating assembly at the Crystal River Unit 3 Nuclear Power Plant failed during operation. A rotating assembly from this pump had previously failed in 1986. The reactor coolant pump was fabricated by Byron Jackson Pump Division of Borg-Warner Ind. Products, Inc. from UNS S66286 superalloy (Alloy A286). A root cause failure analysis examination was performed on the pump shaft and other components. The failure analysis included shaft vibrational mode and stress analyses, pump clearance and alignment analyses, and detailed destructive examination of the shaft and hydrostatic bearing assemblies. Based on the detailed physical examination of the shaft it was concluded that cracks initiated in the pump shaft at two sites approximately 180 0 apart in a band of shallow, thermally induced fatigue cracks. The cracks initiated at the bottom edge of the motor end shrink fit pad under the shrink fit sleeve supporting the hydrostatic bearing journal. The band of thermally induced fatigue cracks was apparently caused by mixing of cold seal injection water and hot reactor coolant in gaps between the pump shaft and sleeve. The motor end shrink fit was apparently not effective in preventing introduction of the seal injection water to this area. Initial crack propagation occurred by fatigue due to lateral vibration; however, the majority of crack propagation occurred by abnormal torsional fatigue loading induced by contact and sticking between the rotating and stationary portions of the hydrostatic bearing. Final fracture of the shaft occurred by torsional overload. Metallurgical characteristics and mechanical properties of the shaft were within design specification and probably did not significantly influence the cracking process

  14. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jun; Kim, Jae Shin; Ryu, In Wan; Ko, Bok Seong; Song, Keun Myung [Samjin Ind. Co., Seoul (Korea, Republic of)

    2010-01-15

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 3115m{sup 3}/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 539.4m{sup 3}/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m{sup 3}/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m{sup 3}/h, total head; 42.0m, motor output; 190kw

  15. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  16. Reactor coolant pump seal leakage monitoring

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; James, W.; Shugars, H.G.

    1986-01-01

    Problems with reactor coolant pump seals have historically accounted for a large percentage of unscheduled outages. Studies performed for the Electric Power Research Institute (EPRI) have shown that the replacement of coolant pump seals has been one of the leading causes of nuclear plant unavailability over the last ten years. Failures of coolant pump seals can lead to primary coolant leakage rates of 200-500 gallons per minute into the reactor building. Airborne activity and high surface contamination levels following these failures require a major cleanup effort and increases the time and personnel exposure required to refurbish the pump seals. One of the problems in assessing seal integrity is the inability to accurately measure seal leakage. Because seal leakage flow is normally very small, it cannot be sensed directly with normal flow instrumentation, but must be inferred from several other temperature and flow measurements. In operating plants the leakage rate has been quantified with a tipping-bucket gauge, a device which indicates when one quart of water has been accumulated. The tipping-bucket gauge has been used for most rainfall-intensity monitoring. The need for a more accurate and less expensive gauge has been addressed. They have developed a drop-counter precipitation sensor has been developed and optimized. The applicability of the drop-counter device to the problem of measuring seal leakage is being investigated. If a review of system specification and known drop-counter performance indicates that this method is feasible for measuring seal leak rates, a drop-counter gauge will be fabricated and tested in the laboratory. If laboratory tests are successful the gauge will be demonstrated in a pump test loop at Ontario Hydro and evaluated under simulated plant conditions. 3 references, 2 figures

  17. Reactor coolant purification system circulation pumps (CUW pumps)

    International Nuclear Information System (INIS)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  18. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  19. Automated surveillance of reactor coolant pump performance

    International Nuclear Information System (INIS)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.

    1992-01-01

    An artificial intelligence based expert system has been developed for continuous surveillance and diagnosis of centrifugal-type reactor coolant pump (RCP) performance and operability. The expert system continuously monitors digitized signals from a variety of physical variables (speed, vibration level, motor power, discharge pressure) associated with RCP performance for annunciation of the incipience or onset of off-normal operation. The system employs an extremely sensitive pattern-recognition technique, the sequential probability ratio test (SPRT) for rapid identification of pump operability degradation. The sequential statistical analysis of the signal noise has been shown to provide the theoretically shortest sampling time to detect disturbances and thus has the potential of providing incipient fault detection information to operators sufficiently early to avoid forced plant shutdowns. The sensitivity and response time of the expert system are analyzed in this paper using monte carlo simulation techniques

  20. Reactor coolant pump monitoring and diagnostic system

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; Walsh, M.; Humenik, K.E.

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs

  1. Summary of failed reactor coolant pump rotating assembly experience at Crystal River Unit 3

    International Nuclear Information System (INIS)

    Hayner, G.O.; Clary, M.D.

    1992-01-01

    Four reactor coolant pump (RCP) rotating assemblies (shafts) have failed or have severely cracked during operation at the Crystal River Unit 3 (CR-3) Nuclear Power Plant. The two failed shafts removed from RCP-1A have been extensively examined. All of the RCP shafts (except the D shaft) were fabricated from UNS S66286 superalloy (Alloy A-286). The D shaft was fabricated from UNS S20910 (Alloy XM-19/Nitronic 50). Torsional strain gauge analysis was performed on the RCP-1A shaft during the 1990 refueling outage. This type of analysis has not been performed previously on an operating RCP. Several results were found including: (1) the primary components of alternating torsional stress during normal RCP operation are impeller vane pass and a sub-2X torsional resonance with maximum components of ∼±0.8 ksi; (2) a typical vane pass cycle is initiated by an abrupt unloading of the shaft followed by a reload past equilibrium and a damped return to equilibrium; (3) a higher (compared to normal four pump operation) alternating torsional stress range resulted from solo operation of RCP-1A at low temperature and pressure (normal startup conditions); (4) the 2/0 combination produced the highest mean torsional stresses and the lowest alternating stresses and (5) a startup of a secured RCP with three operating pumps results in significantly higher alternating stress than a cold startup. The root cause RCP failure mechanism appears to involve RCP startup sequence at CR-3, peculiarities that necessitate this sequence and complex shaft stresses just above or under the journal bearing. The 1986 impeller bolt failure is not considered to be a root cause effect. It was also determined that fatigue cracking has always been responsible for both shaft initiation and propagation mechanisms and cracking can occur independent of shaft material

  2. Shaft/shaft-seal interface characteristics of a multiple disk centrifugal blood pump.

    Science.gov (United States)

    Manning, K B; Miller, G E

    1999-06-01

    A multiple disk centrifugal pump (MDCP) is under investigation as a potential left ventricular assist device. As is the case with most shaft driven pumps, leakage problems around the shaft/shaft seal interface are of major interest. If leakage were to occur during or after implantation, potential events such as blood loss, clotting, blood damage, and/or infections might result in adverse effects for the patient. Because these effects could be quite disastrous, potential shaft and shaft seal materials have been investigated to determine the most appropriate course to limit these effects. Teflon and nylon shaft seals were analyzed as potential candidates along with a stainless steel shaft and a Melonite coated shaft. The materials and shafts were evaluated under various time durations (15, 30, 45, and 60 min), motor speeds (800, 1,000, 1,200, and 1,400 rpm), and outer diameters (1/2 and 3/4 inches). The motor speed and geometrical configurations were typical for the MDCP under normal physiologic conditions. An air and water study was conducted to analyze the inner diameter wear, the inner temperature values, and the outer temperature values. Statistical comparisons were computed for the shaft seal materials, the shafts, and the outer diameters along with the inner and outer temperatures. The conclusions made from the results indicate that both the tested shaft seal materials and shaft materials are not ideal candidates to be used for the MDCP. Teflon experienced a significant amount of wear in air and water studies. Nylon did experience little wear, but heat generation was an evident problem. A water study on nylon was not conducted because of its molecular structure.

  3. Power supplyer for reactor coolant recycling pump

    International Nuclear Information System (INIS)

    Nara, Hiroshi; Okinaka, Yo.

    1991-01-01

    The present invention concerns a variable voltage/variable frequency static power source (static power source) used as a power source for a coolants recycling pump motor of a nuclear power plant. That is, during lower power operation such as start up or shutdown in which stoppage of the power source gives less effect to a reactor core, power is supplied from a power system, a main power generator connected thereto or a high voltage bus in the plant or a common high voltage bus to the static power source. However, during rated power operation, power is supplied from the output of an axially power generator connected with a main power generator having an extremely great inertia moment to the static power device. With such a constitution, the static power device is not stopped by the lowering of the voltage due to a thunderbolt falling accident or the like to a power-distribution line suddenly occurred in the power system. Accordingly, reactor core flowrate is free from rapid decrease caused by the reduction of rotation speed of the recycling pump. Accordingly, disadvantgages upon operation control in the reactor core is not caused. (I.S.)

  4. Speed control device for coolant recycling pump

    International Nuclear Information System (INIS)

    Kageyama, Takao.

    1992-01-01

    The present invention intends to increase a margin relative of the oscillations of neutron fluxes when the temperature of feedwater is lowered in a compulsory recycling type BWR reactor. That is, when the operation point represented by a reactor thermal power and a reactor core inlet flow rate is in a state approximate to an oscillation limit of the reactor power, the device of the present invention controls the recycling pump speed in the increasing direction depending on the lowering range of the feedwater temperature from a stationary state. With such a constitution, even if the reactor power is in the operation region near the oscillation limit in the BWR type reactor and a feedwater heating loss is caused, the speed of the coolant recycling pump is increased by 10% at the maximum depending on the extent of the reduction of the feedwater temperature, so that the oscillation of the reactor power can be prevented from lasting for a long period of time even if a reactivity external disturbance should occur in the reactor. (I.S.)

  5. Application of the cylindrically guided wave technique for bolt and pump-shaft inspections

    International Nuclear Information System (INIS)

    Light, G.M.; Ruescher, E.H.; Bloom, E.A.; Tsai, Y.M.

    1990-01-01

    Southwest Research Institute (SwRI) has been working with the cylindrically guided wave technique (CGWT) since late 1982. The initial work was aimed at inspecting reactor pressure vessel hold-down studs. The CGWT was shown to be able to detect defects as small as 0.060 inch (1.5 mm) deep through metal paths up to 120 inches (304 cm) in stud bolt carbon steel. Later developments in the application of CGWT were aimed at inspecting reactor coolant pump (RCP) shafts. The RCP shafts are usually approximately 2 meters long and have changing diameters along the length, from approximately 12 cm to 23 cm in discrete steps. The pump shafts have been susceptible to small cracks and can be inspected most cost-effectively from the top of the shaft. A matrix transducer composed of six 1-inch (2.54-cm) diameter transducers along with pulsing and receiving electronics (EPRI Pump-Shaft Inspection System) was developed during 1988. A patent application for this technology has been made. This report describes the work conducted during 1989 and the results obtained

  6. Seismic fragility capacity of equipment--horizontal shaft pump test

    International Nuclear Information System (INIS)

    Iijima, T.; Abe, H.; Suzuki, K.

    2005-01-01

    The current seismic fragility capacity of horizontal shaft pump is 1.6 x 9.8 m/s 2 (1.6 g), which was decided from previous vibration tests and we believe that it must have sufficient margin. The purpose of fragility capacity test is to obtain realistic seismic fragility capacity of horizontal shaft pump by vibration tests. Reactor Building Closed Cooling Water (RCW) Pump was tested as a typical horizontal shaft pump, and then bearings and liner rings were tested as important parts to evaluate critical acceleration and dispersion. Regarding RCW pump test, no damage was found, though maximum input acceleration level was 6 x 9.8 m/s 2 (6 g). Some kinds of bearings and liner rings were tested on the element test. Input load was based on seismic motion which was same with the RCW pump test, and maximum load was equivalent to over 20 times of design seismic acceleration. There was not significant damage that caused emergency stop of pump but degradation of surface roughness was found on some kinds of bearings. It would cause reduction of pump life, but such damage on bearings occurred under large seismic load condition that was equivalent to over 10 to 20 g force. Test results show that realistic fragility capacity of horizontal shaft pump would be at least four times as higher as current value which has been used for our seismic PSA. (authors)

  7. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  8. Monitoring for shaft cracks on reactor recirculation pumps

    International Nuclear Information System (INIS)

    Kowal, M.G.; O'Brien, J.T. Jr.

    1989-01-01

    The article discusses the vibration characteristics associated with a boiling water reactor (BWR) recirculation pump. It also describes the application of diagnostic techniques and shaft crack theory to an on-line diagnostic monitoring system for reactor recirculation pumps employed at Philadelphia Electric Company's Peach Bottom Atomic Power Station. Specific emphasis is placed on the unique monitoring techniques associated with these variable speed vertical pumps

  9. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  10. TNX/HLW Long Shaft Pumps 1995-2000

    International Nuclear Information System (INIS)

    VanPelt, B.

    2002-01-01

    Problems with long shaft pumps are becoming clearer due to increased use, better instrumentation, more analysis, and increased testing activity. The problems are with reliability and not with hydraulic performance. The root cause of reliability problems is usually excessive vibration caused by design. The outlook for satisfactory pumps is improved as understanding of problems increases. Promising developments are emerging such as the tilt pad bearing. Alternative configurations, such as gas filled columns and submerged motor pumps, will require development. Continued development, in general, should be expected due to changing technology and industry changes. This report describes thirteen distinct pump programs starting with leakage of original mixer pumps in the 1980s and ending with the testing of tilt pad bearings now in progress. Eight of the programs occurred from 1996 to 2000. All involve long shaft pumps; all involve testing at TNX; and all involve a problem of some kind. The co mmon technical issue among the activities is vibration and shaft (or rotor) instability due to journal bearings. In every case, excessive shaft vibration is a reasonable and probable explanation for some or all of the problems

  11. Development of a reactor coolant pump monitoring and diagnostic system. Progress report, June 1982-July 1983

    International Nuclear Information System (INIS)

    Morris, D.J.; Sommerfield, G.A.

    1983-12-01

    The quality of operating data has been insufficient to allow proper evaluation of theoretical reactor coolant (RC) pump seal failure mechanisms. The RC pump monitoring and diagnostic system being developed and installed at Toledo Edison's Davis-Besse Nuclear Power Station will examine the relationship between seal failures and three other variables: The rotordynamic behavior of the pump shaft and related components, the internal conditions and performance of the seals, and the plant or pump operating environment (controlled by the plant operator). Interrelationships between these areas will be developed during the data collection task, scheduled to begin in October 1983 (for a full fuel cycle at Davis-Besse). This report describes system software and hardware development, testing, and installation work performed during this period. Also described is a parallel effort being conducted by a B and W/Byron Jackson/Utility group to improve pump seal performance

  12. PUMP: analog-hybrid reactor coolant hydraulic transient model

    International Nuclear Information System (INIS)

    Grandia, M.R.

    1976-03-01

    The PUMP hybrid computer code simulates flow and pressure distribution; it is used to determine real time response to starting and tripping all combinations of PWR reactor coolant pumps in a closed, pressurized, four-pump, two-loop primary system. The simulation includes the description of flow, pressure, speed, and torque relationships derived through pump affinity laws and from vendor-supplied pump zone maps to describe pump dynamic characteristics. The program affords great flexibility in the type of transients that can be simulated

  13. Feasibility study on the type of KALIMER coolant circulation pump

    International Nuclear Information System (INIS)

    Nam, H. Y.; Kim, Y. K.; Lee, Y. B.; Hwang, J. S.; Choi, S. K.

    1997-07-01

    The characteristics of mechanical pump and electromagnetic (EM) pump for liquid sodium coolant in a liquid metal reactor are compared and analysed as a design concept of KALIMER coolant pumps. The type of coolant circulation pump affects the selection of reactor type, economics, and reliability of reactor. Though the mechanical pump has much application experience and give satisfaction to the reliability of developed reactor type, the possibility of development is limited and its large weight and volume have a negative effect on the design of the economical liquid metal reactor. The large scale electromagnetic pump has not been verified yet, but it is expected to be demonstrated in time. Because the size of EM pump is small relative to the mechanical pump, the compact reactor design is possible. Therefore the selection of EM pump can be one of the methods to improve the economics. Since the shape of EM pump can be varied according to the arrangement of electromagnet coils, a new or unique reactor type can be developed easily in the process of KALIMER development. In the view point of economic LMR development, it is desirable to adopt the electromagnetic pump. (author). 50 refs., 11 tabs., 24 figs

  14. Pump shaft failures - a compendium of case studies

    CSIR Research Space (South Africa)

    Bernt, F

    2001-04-01

    Full Text Available During operation, pump shafts usually suffer from degradation as a result of corrosion and/or mechanical degradation, usually in the form of fatigue failures. In many cases corrosion precedes fatigue failure and can actually accelerate the rate...

  15. Impedance calculations for power cables to primary coolant pump motors

    International Nuclear Information System (INIS)

    Hegerhorst, K.B.

    1977-01-01

    The LOFT primary system motor generator sets are located in Room B-239 and are connected to the primary coolant pumps by means of a power cable. The calculated average impedance of this cable is 0.005323 ohms per unit resistance and 0.006025 ohms per unit reactance based on 369.6 kVA and 480 volts. The report was written to show the development of power cable parameters that are to be used in the SICLOPS (Simulation of LOFT Reactor Coolant Loop Pumping System) digital computer program as written in LTR 1142-16 and also used in the pump coastdowns for the FSAR Analysis

  16. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970's and early 1980's raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  17. Reactor coolant pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at U.S. operating plants during the 1970's and early 1980's raised concerns from the U.S. Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  18. Nuclear reactor with coolant circulation pumps

    International Nuclear Information System (INIS)

    Peck, D.A.; Stolecki, W.E.

    1975-01-01

    Thermally induced movement of a pump or a heat exchanger in the primary circuit of a PWR is made possible by a suspension device. This device must however be, so rigid that it does not yield in cases of emergency. For this purpose, in the case of the pump a lower ring is provided carrying the pump by means of four columns. The columns are flexibly supported on the ring and a fixed constuction. Turned about 90% from these columns, two additional horizontal bars are flexibly mounted on the ring and on the motor housing of the pump as well as on the fixed construction. At the upper end of the motor housing, two shock absorbers are hinged in the same way. The joints are shaped as ball- and socket hinges. (DG) [de

  19. Structural integrity analysis of reactor coolant pump flywheel(I)

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1986-01-01

    A reactor coolant pump flywheel is an important machine element to provide the necessary rotational inertia in the event of loss of power to the pumps. This paper attempts to assess the influence of keyways on flywheel stresses and fracture behaviour in detail. The finite element method was used to determine stresses near keyways, including residual stresses, and to establish stress intensity factors for keyway cracks for use in fracture mechanics assessments. (Author)

  20. Trends and experiences in reactor coolant pump motors

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A review of the requirements and features of these motors is given as background along with a discussion of trends and experiences. Included are a discussion of thrust bearings and a review of safety related requirements and design features. Primary coolant pump motors are vertical induction motors for pumps that circulate huge quantities of water through the reactor core to carry the heat generated there to steam generator heat exchangers. 4 refs

  1. Effect of parameter variation of reactor coolant pump on loss of coolant accident consequence

    International Nuclear Information System (INIS)

    Dang Gaojian; Huang Daishun; Gao Yingxian; He Xiaoqiang

    2015-01-01

    In this paper, the analyses were carried out on Ling'ao nuclear power station phase II to study the consequence of the loss of coolant accident when the homologous characteristic curves and free volumes of the reactor coolant pump changed. Two different pumps used in the analysis were 100D (employed on Ling'ao nuclear power station phase II) and ANDRITZ. The thermal characteristics in the large break LOCA accident were analyzed using CATHRE GB and CONPATE4, and the reactor coolant system hydraulics load during blow-clown phase of LOCA accident was analyzed using ATHIS and FORCET. The calculated results show that the homologous characteristic curves have great effect on the thermal characteristics of reactor core during the reflood phase of the large break LOCA accident. The maximum cladding surface temperatures are quite different when the pump's homologous characteristic curves change. On the other hand, the pump's free volume changing results in the variation of the LOCA rarefaction wave propagation, and therefore, the reactor coolant system hydraulic load in LOCA accident would be different. (authors)

  2. On-line monitoring of main coolant pump seals

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; Glass, S.W.; Sommerfield, G.A.; Harrison, D.

    1984-06-01

    The Babcock and Wilcox Company has developed and implemented a Reactor Coolant Pump Monitoring and Diagnostic System (RCPM and DS). The system has been installed at Toledo Edison Company's Davis-Besse Nuclear Power Station Unit 1. The RCPM and PS continuously monitors a number of indicators of pump performance and notifies the plant operator of out-of-tolerance conditions or pump performance trending toward out-of-tolerance conditions. Pump seal parameters being monitored include pump internal pressures, temperatures, and flow rates. Rotordynamic performanvce and plant operating conditions are also measured with a variety of dynamic sensors. This paper describes the implementation of the system and the results of on-line monitoring of four RC pumps

  3. Development of manufacturing technology and fabrication of prototype for main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Koon Seok; Han, C.K.; Chei, J.M.; Chung, K.S.; Youn, M.H.; Shin, S.A.; Choi, D.J.; Kim, H.C. [HALLA Industrial Co., Ltd., Pusan (Korea)

    1999-03-01

    This study presents the development of the manufacturing technology for the Main Coolant Pump of the SMART. This report contains the followings; (1) Select axial type pump for the MCP (2) MCP is drived by squirrel-cage induction motor that consisted canned motor type. (3) MCP shaft has three horizontal and one vertical support bearings. (4) Design of several part of the MCP (5) Manufacturing of the performance test motor (6) Design and manufacturing of the speed sensor (7) Procedures for three-axial and five-axial M.C.T., Tig welding and Electron Beam Welding were developed. (8) Conceptional design of the MCP test facility for the performance test under operating conditions. (9) Results of standard weld test specimens according to the ASME section IX. (author). 21 refs., 35 figs., 10 tabs.

  4. Experimental research and development of main circulation pump bearings in reactor plants using heavy liquid-metal coolants

    International Nuclear Information System (INIS)

    Zudin, A.; Beznosov, A.; Chernysh, A.; Prikazchikov, G.

    2015-01-01

    At the present time, specialists in Russia are engaged in designing the BREST-OD-300 fast neutron lead-coolant reactor plant. There is currently no experience in designing and operating axial pumps of lead-coolant reactor plants, including one of their major units – bearing unit. Selection and substantiation of operating and structural parameters of plain friction bearings used in main circulation pumps of reactor plants running on heavy liquid-metal coolants are important tasks that are solved at the NNSTU. Development of a feasible procedure for designing bearings and its components operating within the structure of the main circulation pump of a reactor plant running on a heavy liquid-metal coolant as well as guidelines for an optimized structural scheme of such bearings set a goal of performing a range of theoretically-calculated and experimental works. The report contains testing data of a hydrostatic bearing with reciprocal fricative choking tested on the NNSTU FT-4 bench running on a lead coolant within the range of 420-500degC. There have been presented a scheme of a bench for testing a contact friction bearing on a high-temperature coolant and the results of investigation tests of bearings of such type at T = 450 ÷ 500degC. Material of the bearing sleeve is steel 08X18H10T, and a possibility is provided with regard to installation of the bearing sleeves and shaft made of non-metal materials (ceramic materials, silicified graphite, etc.). The presented testing data of plain friction bearings operating in a high-temperature heavy liquid-metal coolant will serve as a ground for making an alternative choice of a plain friction bearing for the main circulation pump of a reactor plant running on a heavy liquid-metal coolant. (author)

  5. Qualification test of a main coolant pump for SMART pilot

    International Nuclear Information System (INIS)

    Park, Sang Jin; Yoon, Eui Soo; Oh, Hyong Woo

    2006-01-01

    SMART Pilot is a multipurpose small capacity integral type reactor. Main Coolant Pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of 310 .deg. C and 14.7 MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present work, a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and life-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP

  6. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  7. Design of Reactor Coolant Pump Seal Online Monitoring System

    International Nuclear Information System (INIS)

    Ah, Sang Ha; Chang, Soon Heung; Lee, Song Kyu

    2008-01-01

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation

  8. Analysis of hydraulic bearing effect for vertical-shaft pump

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Mawatari, Katsuhiko; Uchida, Ken; Iikura, Takahiko; Hayakawa, Kiyoshi

    1999-01-01

    In inner-rotating non coaxial cylinders, axial flow causes a hydraulic being effect by which the inner cylinder is put at the center of the axis of the outer cylinder, because of the pressure distribution along the surface of the inner cylinder. When the rotating speed becomes higher, whirl force is generated by the pressure distribution in the narrow gap side. Therefore, pocket-type hydraulic being was added between the rotor and the wearing, based on an experiment and flow analysis. The pockets suck a part of discharged water of a pump and pressurize a water along the rotational direction in the pocket. The pressurized water enhance the hydraulic being effect. The analysis results showed good agreement with the experiments, and the analysis method for the hydraulic being for vertical-shaft pump was established. (author)

  9. Reactor coolant pump type RUV for Westinghouse Electric Company LLC reactor AP1000 TM

    International Nuclear Information System (INIS)

    Baumgarten, S.; Brecht, B.; Bruhns, U.; Fehring, P.

    2010-01-01

    The RUV is a reactor coolant pump, specially designed for the Westinghouse Electric Company LLC AP1000 TM reactor. It is a hermetically sealed, wet winding motor pump. The RUV is a very compact, vertical pump/motor unit, designed to fit into the compartment next to the reactor pressure vessel. Each of the two steam generators has two pump casings welded to the channel head by the suction nozzle. The pump/motor unit consists of a pump part, where a semi-axial impeller/diffuser combination is mounted in a one-piece pump casing. Computational Fluid Dynamics methods combined with various hydraulic tests in a 1:2 scale hydraulic test assure full compliance with the specific customer requirements. A short and rigid shaft, supported by a radial bearing, connects the impeller with the high inertia flywheel. This flywheel consists of a one-piece forged stainless steel cylinder, with an option for several smaller heavy metal cylinders inside. The flywheel is located inside the thermal barrier, which forms part of the pressure boundary. A specific arrangement of cooling water circuits guarantees a homogeneous temperature distribution in and around the flywheel, minimizes the friction losses of the flywheel and protects the motor from hot coolant. The driving torque is transmitted by the motor shaft, which itself is supported by two radial bearings. A three-phase, high-voltage squirrel-cage induction motor generates the driving torque. Due to the wet winding concept it is possible to achieve positive effects regarding motor lifetime. The cooling water is forced through the stator windings and the gap between rotor and stator by an auxiliary impeller. Furthermore, this wet winding motor concept has higher efficiency as compared to a canned motor since there are no eddy current losses. As part of the design process and in addition to the hydraulic scale model, a complete half scale model pump was built. It was used to verify the calculations performed like coast

  10. Shaft cracks detection on operating centrifugal pumps by vibration analysis

    International Nuclear Information System (INIS)

    Serra, Reynaldo Cavalcanti.

    1995-01-01

    This study gives an account of the vibratory behaviour of one centrifugal pump representative of those employed in nuclear reactors whereby its shaft contained a fatigue crack with critical orientation. Two cracks depth were included in the study, aside from the uncracked shaft. Four other machined discontinuities with varying depths were also included to allow a direct comparison. The data acquisition was carried out with a system using eight accelerometers and a tape recorder. The signals were then processed and interpreted with a dynamic signal analysis work station. The data analysis based in the time domain were unsuccessful as a result of the signal complexity. The fundamental frequency and its harmonics were defined from the frequency spectra. The corresponding amplitudes were recorded and tabulated for future reference. A method was proposed to identify the evolution of the discontinuities based on the departures from a reference state and procedure is suggested to substitute the standards and practices presently in use which are unreliable. (author). 46 refs., 48 figs., 24 tabs

  11. In-operation diagnostic system for reactor coolant pump

    International Nuclear Information System (INIS)

    Sugiyama, Mitsunobu; Hasegawa, Ichiro; Kitahara, Hiromichi; Shimamura, Kazuo; Yasuda, Chiaki; Ikeda, Yasuhiro; Kida, Yasuo.

    1996-01-01

    A reactor coolant pump (RCP) is one of the most important rotating machines in the primary loop nuclear power plants. To improve the reliability and of nuclear power plants, a new diagnostic system that enables early detection of RCP faults has been developed. This system is based on continuous monitoring of vibration and other process data. Vibration is an important indicator of mechanical faults providing information on physical phenomena such as changes in dynamic characteristics and excitation forces changes that signal failure or incipient failure. This new system features comparative vibration analysis and simulation to anticipate equipment failure. (author)

  12. Integrated main coolant pumps for pressurized-water reactors

    International Nuclear Information System (INIS)

    Wieser, R.

    1975-01-01

    The efficiency of an integrated main coolant pump for PWR's is increased. For this purpose, the pump is installed eccentric relative to the vertical axis of the U-type steam generator in the three-section HP chamber in such a way that its impeller wheel and the shell of the latter penetrate into the outlet chamber. The axis of the pump lies in the vertical plane of symmetry of the outlet chamber of the steam generator. The suction tube is arranged in the outlet chamber. To allow it to be installed, it is manufactured out of several parts. The diffusor tube, which is also made of several components, is attached to the horizontal separation plate between the outlet chamber and the pressure chamber so as to penetrate into it. To improve the outflow conditions at the diffusor tube, a plowshare-shaped baffle shield is installed between the diffusor tube and the HP chamber. Moreover, in order to improve the outflow conditions from the pump and from the pressure chamber, the outflow opening of the pressure chamber is put into the cylindrical shell of the HP chamber. In this way, the tensioning anchor is located between the pump and the outlet opening. (DG/RF) [de

  13. Analysis of pump's shaft torsional vibrations in transient conditions

    International Nuclear Information System (INIS)

    Pasqualini, G.R.; Cauquelin, C.

    1989-01-01

    When the voltage is applied to an induction motor, the currents in the stator's phases are subject to a transient period. It is consequently also the case for the torques. A method to calculate the torque in the case of an induction motor with deep bars is presented. A model is proposed to represent the squirrel cage. It allows to take into account the fact the currents are not sinusoidal and that, in this case, the rotor's winding cannot be represented by only one resistance and once reactance. The electrical model is completed by a mechanical model for the shaftline. The calculation is realized for the start up of an reactor coolant pump. A comparison is made between the results given by the new model, by the classical model and by tests

  14. Preliminary design of reactor coolant pump canned motor for AC600

    International Nuclear Information System (INIS)

    Deng Shaowen

    1998-01-01

    The reactor coolant pump canned motor of AC600 PWR is the kind of shielded motors with high moment of inertia, high reliability, high efficiency and nice starting performance. The author briefly presents the main feature, design criterion and technical requirements, preliminary design, computation results and analysis of performance of AC600 reactor coolant pump canned motor, and proposes some problems to be solved for study and design of AC600 reactor coolant pump canned motor

  15. Reactor Coolant Pump Motor Maintenance Experience in Krsko NPP

    International Nuclear Information System (INIS)

    Vukovic, J.; Besirevic, A.; Boljat, Z.

    2016-01-01

    After thirty years of service as well as maintenance in Krsko NPP both original Reactor Coolant Pump (RCP) motors are remanufactured by original vendor Westinghouse and a new one was purchased. Design function of the RCP motor is to drive Reactor Coolant Pump and for coast-down feature during Design Basis Accident. This paper will give a view on maintenance issues of RCP motor during the thirty years of service and maintenance in Krsko NPP to be kept functionally operational. During the processes of remanufacturing inspection and disassembly it was made possible to get a deeper perspective in the motor condition and the wear or fatigue of the motor parts. Parameters like bearing & winding temperature, absolute and relative vibration greatly affect motor operation if not kept inside design margins. Rotational speed causes heat generation at the bearings which is then associated with oil temperatures and as a consequence bearing temperatures. That is why the most critical parts of the motor are the components of upper and lower bearing assembly. The condition of motor stator and rotor assembly technical characteristics shall be explained with respect to influence of demanding environmental conditions that the motor is exposed. Assessment shall be made how does the wear of critical RCP motor parts can influence reliable performance of the motor if not maintained in proper way. Information on upgrades that were done on RCP motor shall be shared: Oil Spillage Protection System (OSPS), Stator upgrades, Dynamic Port, etc. (author).

  16. Multi-state reliability for coolant pump based on dependent competitive failure model

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Zhao Xinwen; Chen Ling

    2013-01-01

    By taking into account the effect of degradation due to internal vibration and external shocks. and based on service environment and degradation mechanism of nuclear power plant coolant pump, a multi-state reliability model of coolant pump was proposed for the system that involves competitive failure process between shocks and degradation. Using this model, degradation state probability and system reliability were obtained under the consideration of internal vibration and external shocks for the degraded coolant pump. It provided an effective method to reliability analysis for coolant pump in nuclear power plant based on operating environment. The results can provide a decision making basis for design changing and maintenance optimization. (authors)

  17. Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.

    Science.gov (United States)

    Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K

    1995-01-01

    The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.

  18. Conceptual design of main coolant pump for integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Kim, Jong In; Kim, Min Hwan [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The conceptual design for MCP to be installed in the integral reactor SMART was carried out. Canned motor pump was adopted in the conceptual design of MCP. Three-dimensional modeling was performed to visualize the conceptual design of the MCP and to check interferences between the parts. The theoretical design procedure for the impeller was developed. The procedures for the flow field and structural analysis of impeller was also developed to assess the design validity and to verify its structural integrity. A computer program to analyze the dynamic characteristics of the rotor shaft of MCP was developed. The rotational speed sensor was designed and its performance test was conducted to verify the possibility of operation. A prototypes of the canned motor was manufactured and tested to confirm the validity of the design concept. The MCP design concept was also investigated for fabricability by establishing the manufacturing procedures. 41 refs., 96 figs., 10 tabs. (Author)

  19. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  20. Numerical Simulation of Three-Dimensional Flow Through Full Passage and Performance Prediction of Nuclear Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Li Ying; Zhou Wenxia; Zhang Jige; Wang Dezhong

    2009-01-01

    In order to achieve the level of self-design and domestic manufacture of the reactor coolant pump (nuclear main pump), the software FLUENT was used to simulate the three-dimensional flow through full passage of one nuclear main pump basing on RNG κ-ε turbulence model and SIMPLE algorithm. The distribution of pressure and velocity of the flow in the impeller's surface was analyzed in different working conditions. Moreover, the performance of the pump was predicted based on the simulation results. The results show that the distributions of pressure and velocity are reasonable in both the working and back face of the blade in the steady working condition. The pressure of the flow is increased from the inlet to the outlet of the pump, and shows the maximal value in the impeller region. Comparatively satisfactory efficiency and head value were obtained in the condition of the pump design. The shaft power of the nuclear main pump is gradually increased with the increase of the flow flux. These results are helpful in understanding the change of the internal flow field in the nuclear main pump, which is of some importance for the pre-exploration and theoretical research on the domestic manufacture of the nuclear main pump. (authors)

  1. Study of the conditions affecting the critical speed of a rotating pump shaft

    International Nuclear Information System (INIS)

    Fardeau, P.; Huet, J.L.; Axisa, F.

    1983-01-01

    Knowing the parameters conditioning the critical speed of a pump shaft is important, both for safety and design purposes, since the shafts are often to operate beyond the first critical speed. These aims led CEA, associated with NOVATOME and FRAMATOME (with the cooperation of JEUMONT-SCHNEIDER) to carry out a test program on critical speeds of a full scale nuclear pump shaft. Fluid-structure interaction plays an important part in the setting of critical speed. Due to the coupling between the rotative fluid flow and the transverse vibrations of the shaft, inertial and stiffness forces are created, which are non conservative and proportional to the added mass of the fluid. The hydrostatic bearing effect and the influence of the water carried along by the pump wheel were also investigated, but proved unimportant in the case of the shaft studied. Experimental results are compared with calculations of critical speed. (orig.)

  2. Cooling device for leaking fluid from a centrifugal pump

    International Nuclear Information System (INIS)

    Raymond, J.R.; Thomson, C.I.

    1978-01-01

    The patented device consists of an integrated heat exchanger in a centrifugal primary cooling circuit pump whose purpose is to cool the coolant medium which leaks along the pump shaft so that the shaft seals are not damaged. The cooling water passes through spirally arranged banks of tubes round the shaft, with baffle plates to direct the leaking coolant. (JIW)

  3. Fracture Failure Analysis of Fuel Pump Transmission Shaft of Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Chen Pei-hong

    2017-01-01

    Full Text Available NTS6ZLCz-129 dual-fuel turbocharged and intercooled engine durability test at 1000h, fuel pump shaft fractured. Fracture analysis, chemical analysis, microstructure examination and finite element stress analysis were carried out on the fractured shaft. The analysis result showed that the shaft fracture cause is forging fold. By improving the forging process, the forging fold was solved, and the durability test can be carried out smoothly.

  4. Station blackout with reactor coolant pump seal leakage

    International Nuclear Information System (INIS)

    Evinay, A.

    1993-01-01

    The U.S. Nuclear Regulatory Commission (NRC) amended its regulations in 10CFR50 with the addition of a new section, 50.63, open-quotes Loss of All Alternating Current Power.close quotes The objective of these requirements is to ensure that all nuclear plants have the capability to withstand a station blackout (SBO) and maintain adequate reactor core cooling and containment integrity for a specified period of time. The NRC also issued Regulatory Guide (RG) 1.155, open-quotes Station Blackout,close quotes to provide guidance for meeting the requirements of 10CFR50.63. Concurrent with RG-1.155, the Nuclear Utility Management and Resources Council (NUMARC) has developed NUMARC 87-00 to address SBO-coping duration and capabilities at light water reactors. Licensees are required to submit a topical report based on NUMARC 87-00 guidelines, to demonstrate compliance with the SBO rule. One of the key compliance criteria is the ability of the plant to maintain adequate reactor coolant system (RCS) inventory to ensure core cooling for the required coping duration, assuming a leak rate of 25 gal/min per reactor coolant pump (RCP) seal in addition to technical specification (TS) leak rate

  5. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.

    1985-07-01

    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs

  6. Reactor coolant pump seal response to loss of cooling

    International Nuclear Information System (INIS)

    Graham, T.; Metcalfe, R.; Burchett, P.

    2000-01-01

    This paper describes the results of a test done to determine the performance of a reactor coolant pump seal for a water cooled nuclear reactor under loss of all cooling conditions. Under these conditions, seal faces can lose their liquid lubricating film and elastomers can rapidly degrade. Temperatures in the seal-cartridge tester reached 230 o C in three hours, at which time the tester was stopped and the temperature increased to 265 o C for a further five hours before cooling was restored. Seal leakage was 'normal' throughout the test. Parts sustained minor damage with no effect on seal integrity. Plant operators were shown to have ample margin beyond their 15 minute allowable reaction time. (author)

  7. Operation diagnostics of the reactor coolant pumps in the Jaslovske Bohunice nuclear power plant, CSSR

    International Nuclear Information System (INIS)

    Bahna, J.; Jaros, I.; Oksa, G.

    1990-01-01

    The state of the art of the materials basis, the diagnostics methods used, organization of data collection and processing, and some results of routine and specific investigations concerned with diagnosis of the reactor coolant pump in the Jaslovske Bohunice NPP V-1 are presented. Some information is given about the reactor coolant pump monitor developed in the VUJE. (author)

  8. The Strength Calculation of the Pump Shaft with a Worn Impeller

    Directory of Open Access Journals (Sweden)

    Nikolay P. Ovchinnikov

    2017-12-01

    Full Text Available Introduction: This paper presents the study of the impeller wear influence on stress-strain state of a centrifugal pump shaft. In agro-industrial sector, centrifugal pumps are used for watering various agricultural crops. During pumping water, a centrifugal pump impeller is usually a subject to influence of various irreversible physical-and-mechanical and physical-and-chemical processes that can result in a certain reduction in its mass. Materials and Methods: We used a comprehensive approach including the analysis of a sufficient number domestic and foreign publications on the research topic and parametric studies conducted on a laboratory-pumping unit. We had modern vibration-based diagnostic equipment, the mathematical models of loading a pump shaft and a finite-element modeling in APM Win Machine software (Beam module. Results: The comparison of the maximum equivalent dynamic stresses obtained according to the proposed method with existing methods for carrying out the checking strength calculation of a centrifugal pump shaft showed that account of the impeller wear significantly changes picture of stress-strain state shaft. Discussion and Conclusions: The amendments proposed by the author in checking strength calculation of a centrifugal pump shaft will allow estimating its stress-strain state in certain production situations.

  9. Reactor coolant pump motors manufacturing capability and references

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, Patyrick [AREVA NP, Paris (France)

    2008-04-15

    Flywheel: - Main inertia of the RCP rotor: - 2 disks, shrunk to the upper side of the shaft, driven in rotation by 3 keys. - Material: rolling A533 grade B class 1 low alloy steel plates - Major inertia of the RCP rotor (Allows a slow shut down of the RCP). - Centered by the runner collar in normal operating conditions. - Designed to withstand over-speed of 1.25 x nominal rotating speed. - Easy periodic ultrasonic inspection without disassembly of the flywheel and/or removal of the motor. Anti-reverse rotation device: Prevents reverse rotation of shaft-line when RCP is stopped and others running. 5 forged pawls assembled on the flywheel outside diameter. Ratchet plate with shock absorbers and springs. Operation: Pawls are maintained lifted by centrifugal effect since N > 150 rpm. During RCP shut-down, as N < 150 rpm pawls drop on the ratchet plate prevents reverse-rotation due to reverse torque. Inertia effects are limited by shock-absorbers. Double thrust bearing 'Kings bury' type designed to support loads of about 60 tons 8 babbit ted steel shoes with temperature sensors, equalizing pads distribute equal axial load on each shoe, designed to withstand normal, transient and incidental loading conditions. Viscosity pump ensure continuous oil lubrication and oil circulation to cooler. Instrumentation: shoes temperature (167 .deg. F max). High pressure oil pump provides an oil film between runner and shoes before and during RCP start-up and shut-down. Secondary function: oil spray into the upper guide bearing. Characteristics: minimum oil injection pressure 610 psi. Upper guide bearing 8 babbit ted steel shoes. Preloaded shoes to improve the vibratory behavior. Lubricated by oil. Oil capacity: {+-} 240 gallons. Magnetic core made of high silicon steel sheets, insulated on both sides with 'ALKOPHOS' Stacks of sheets are periodically spaced by vent spacers Winding made of rectangular section copper bars, insulated with mica tape Vacuum impregnation

  10. Reactor coolant pump motors manufacturing capability and references

    International Nuclear Information System (INIS)

    Baudin, Patyrick

    2008-01-01

    Flywheel: - Main inertia of the RCP rotor: - 2 disks, shrunk to the upper side of the shaft, driven in rotation by 3 keys. - Material: rolling A533 grade B class 1 low alloy steel plates - Major inertia of the RCP rotor (Allows a slow shut down of the RCP). - Centered by the runner collar in normal operating conditions. - Designed to withstand over-speed of 1.25 x nominal rotating speed. - Easy periodic ultrasonic inspection without disassembly of the flywheel and/or removal of the motor. Anti-reverse rotation device: Prevents reverse rotation of shaft-line when RCP is stopped and others running. 5 forged pawls assembled on the flywheel outside diameter. Ratchet plate with shock absorbers and springs. Operation: Pawls are maintained lifted by centrifugal effect since N > 150 rpm. During RCP shut-down, as N < 150 rpm pawls drop on the ratchet plate prevents reverse-rotation due to reverse torque. Inertia effects are limited by shock-absorbers. Double thrust bearing 'Kings bury' type designed to support loads of about 60 tons 8 babbit ted steel shoes with temperature sensors, equalizing pads distribute equal axial load on each shoe, designed to withstand normal, transient and incidental loading conditions. Viscosity pump ensure continuous oil lubrication and oil circulation to cooler. Instrumentation: shoes temperature (167 .deg. F max). High pressure oil pump provides an oil film between runner and shoes before and during RCP start-up and shut-down. Secondary function: oil spray into the upper guide bearing. Characteristics: minimum oil injection pressure 610 psi. Upper guide bearing 8 babbit ted steel shoes. Preloaded shoes to improve the vibratory behavior. Lubricated by oil. Oil capacity: ± 240 gallons. Magnetic core made of high silicon steel sheets, insulated on both sides with 'ALKOPHOS' Stacks of sheets are periodically spaced by vent spacers Winding made of rectangular section copper bars, insulated with mica tape Vacuum impregnation with epoxy resin End

  11. Inspection of the Sizewll 'B' reactor coolant pump flywheels

    International Nuclear Information System (INIS)

    McNulty, A.L.; Cheshire, A.

    1992-01-01

    The Sizewell ''B'' safety case has categorised some primary circuit items as components for which failure is considered to be incredible. These Incredibility of Failure (IOF) components are particularly critical in their safety function, and specially stringent and all embracing provisions are made in their design, manufacture, inspection and operation. These provisions are such as to limit the probability of failure to levels which are so low that it does not have to be taken into account and no steps are necessary to control the consequences. The reactor coolant pump flywheel is considered to be an IOF component. Consequently there is a need for rigorous inspection during both manufacture and in service (ISI). The ISI requirement results in the need for an automated inspection. There is therefore a prerequisite to perform a Pre-Service Inspection (PSI) for baseline fingerprinting purposes. Furthermore there is a requirement that the inspection procedure, the inspection equipment and the operators are validated at the Inspection Validation Centre (IVC) of the AEA Technology laboratories at Risley. Development work is described. (author)

  12. Statistical analysis of the Ft. Calhoun reactor coolant pump system

    International Nuclear Information System (INIS)

    Heising, Carolyn D.

    1998-01-01

    In engineering science, statistical quality control techniques have traditionally been applied to control manufacturing processes. An application to commercial nuclear power plant maintenance and control is presented that can greatly improve plant safety. As a demonstration of such an approach to plant maintenance and control, a specific system is analyzed: the reactor coolant pumps (RCPs) of the Ft. Calhoun nuclear power plant. This research uses capability analysis, Shewhart X-bar, R-charts, canonical correlation methods, and design of experiments to analyze the process for the state of statistical control. The results obtained show that six out of ten parameters are under control specifications limits and four parameters are not in the state of statistical control. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators Such a system would provide operators with ample time to respond to possible emergency situations and thus improve plant safety and reliability. (author)

  13. Statistical analysis of the Ft. Calhoun reactor coolant pump system

    International Nuclear Information System (INIS)

    Patel, Bimal; Heising, C.D.

    1997-01-01

    In engineering science, statistical quality control techniques have traditionally been applied to control manufacturing processes. An application to commercial nuclear power plant maintenance and control is presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) of the Ft. Calhoun nuclear power plant. This research uses capability analysis, Shewhart X-bar, R charts, canonical correlation methods, and design of experiments to analyze the process for the state of statistical control. The results obtained show that six out of ten parameters are under control specification limits and four parameters are not in the state of statistical control. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with ample time to respond to possible emergency situations and thus improve plant safety and reliability. (Author)

  14. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  15. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat......The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... heat sink configurations reduces the coolant pumping power in the system....

  16. Technical findings related to Generic Issue 23: Reactor coolant pump seal failure

    International Nuclear Information System (INIS)

    Ruger, C.J.; Luckas, W.J. Jr.

    1989-03-01

    Reactor coolant pumps contain mechanical seals to limit the leakage of pressurized coolant from the reactor coolant system to the containment. These seals have the potential to leak, and a few have degraded and even failed resulting in a small break loss of coolant accident (LOCA). As a result, ''Reactor Coolant Pump Seal Failure,'' Generic Issue 23 was established. This report summarizes the findings of a technical investigation generated as part of the program to resolve this issue. These technical findings address the various fact-finding issue tasks developed for the action plan associated with the generic issue, namely background information on seal failure, evaluation of seal cooling, and mechanical- and maintenance-induced failure mechanisms. 46 refs., 15 figs., 14 tabs

  17. Optimal hydraulic design of new-type shaft tubular pumping system

    International Nuclear Information System (INIS)

    Zhu, H G; Zhang, R T; Zhou, J R

    2012-01-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-ε turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m 3 /s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  18. Two-phase coolant pump model of pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos; Freitas, R.L.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  19. Several particular aspects of hydrostatic shaft guide bearings in mechanical liquid sodium pumps

    International Nuclear Information System (INIS)

    Elie, X.

    A number of problems arise with immersed hydrostatic shaft guide bearings in sodium pumps, mainly at high-temperature operation. Experience has shown that a substantial bearing clearance is required which, in present designs, takes a considerable amount of fluid from the pumps. A new design is suggested, resulting in a very appreciable reduction in the additional flow requirement, while maintaining a comparable load capacity by a hydrodynamic effect

  20. High pressure shaft seal

    International Nuclear Information System (INIS)

    Martinson, A.R.; Rogers, V.D.

    1980-01-01

    In relation to reactor primary coolant pumps, mechanical seal assembly for a pump shaft is disclosed which features a rotating seal ring mounting system which utilizes a rigid support ring loaded through narrow annular projections in combination with centering non-sealing O-rings which effectively isolate the rotating seal ring from temperature and pressure transients while securely positioning the ring to adjacent parts. A stationary seal ring mounting configuration allows the stationary seal ring freedom of motion to follow shaft axial movement up to 3/4 of an inch and shaft tilt about the pump axis without any change in the hydraulic or pressure loading on the stationary seal ring or its carrier. (author)

  1. Influence of building and supply conditions on coolant pumps and the various coolant pump designs for cooling towers

    International Nuclear Information System (INIS)

    Holzhueter, E.; Migod, A.; Siekmann, H.

    1977-01-01

    This contribution tries to present the various factors influencing the design of cooling tower pumps. As cooling tower pumps are very often designed as concrete speral casing pumps, the suction bend construction often offers itself. The running wheel of cooling tower pumps is usually of semi-axial design, whereby one has to differ between rigid, adjustable, and resetable running wheels. Finally, the type of cooling system and the nominal width are decisive for either the construction type of the spiral casing pump or the tubular type pump. Both methods are compared in a critical way. (orig.) [de

  2. Expert system for online surveillance of nuclear reactor coolant pumps

    International Nuclear Information System (INIS)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.

    1993-01-01

    An expert system for determining the operability of a specified pump is described comprising: a set of pumps of which the specified pump is a member; means for measuring physical parameters representative to the operations condition each pump of said set of pumps; means for acquiring data generated by said measuring means; an artificial-intelligence based inference engine coupled to said data acquiring means where said inference engine applies a sequential probability ratio test to statistically evaluate said acquired data to determine a status for the specified pump and its respective measuring means by continually monitoring and comparing changes in a specific operational parameter signal acquired from a plurality of measurement means; means for transferring said status generated by said interference engine to an output system

  3. Analysis of an Advanced Test Reactor Small-Break Loss-of-Coolant Accident with an Engineered Safety Feature to Automatically Trip the Primary Coolant Pumps

    International Nuclear Information System (INIS)

    Polkinghorne, Steven T.; Davis, Cliff B.; McCracken, Richard T.

    2000-01-01

    A new engineered safety feature that automatically trips the primary coolant pumps following a low-pressure reactor scram was recently installed in the Advanced Test Reactor (ATR). The purpose of this engineered safety feature is to prevent the ATR's surge tank, which contains compressed air, from emptying during a small-break loss-of-coolant accident (SBLOCA). If the surge tank were to empty, the air introduced into the primary coolant loop could potentially cause the performance of the primary and/or emergency coolant pumps to degrade, thereby reducing core thermal margins. Safety analysis performed with the RELAP5 thermal-hydraulic code and the SINDA thermal analyzer shows that adequate thermal margins are maintained during an SBLOCA with the new engineered safety feature installed. The analysis also shows that the surge tank will not empty during an SBLOCA even if one of the primary coolant pumps fails to trip

  4. Regulatory analysis for Generic Issue 23: Reactor coolant pump seal failure. Draft report for comment

    Energy Technology Data Exchange (ETDEWEB)

    Shaukat, S K; Jackson, J E; Thatcher, D F

    1991-04-01

    This report presents the regulatory/backfit analysis for Generic Issue 23 (GI-23), 'Reactor Coolant Pump Seal Failure'. A backfit analysis in accordance with 10 CFR 50.109 is presented in Appendix E. The proposed resolution includes quality assurance provisions for reactor coolant pump seals, instrumentation and procedures for monitoring seal performance, and provisions for seal cooling during off-normal plant conditions involving loss of all seal cooling such as station blackout. Research, technical data, and other analyses supporting the resolution of this issue are summarized in the technical findings report (NUREG/CR-4948) and cost/benefit report (NUREG/CR-5167). (author)

  5. Study on vibration characteristics of the shaft system for a dredging pump based on FEM

    International Nuclear Information System (INIS)

    Zhai, L M; Liu, X; He, L Y; Wang, Z W; Qin, L; Liu, C Y; He, Y

    2012-01-01

    The dynamic characteristics of the shaft system for a dredging pump were studied with the Finite Element Method (FEM) by SAMCEF ROTOR. At first, the influence of the fluid-solid coupling interaction of mud water and impeller, water sealing and pump shaft on the lateral critical speeds were analyzed. The results indicated that the mud water must be taken into consideration, while the water sealing need not to. Then the effects of radial and thrust rolling bearings on the lateral critical speeds were discussed, which shows that the radial bearing close to the impeller has greatest impact on the 1st order critical speed. At last, the upper and lower limits of the critical speeds of lateral, axial and torsional vibration were calculated. The rated speed of the dredging pump was far less than the predicted critical speed, which can ensure the safe operation of the unit. Each vibration mode is also shown in this paper. This dynamic analysis method offers some reference value on the research of vibration and stability of the shaft system in dredging pump.

  6. Experience on vibration analysis of primary coolant pumps in Cirus

    International Nuclear Information System (INIS)

    Ullas, O.P.; Tilara, Manoj; Kharpate, A.V.

    2002-01-01

    Full text: 40 MW (thermal) CIRUS research reactor has been in operation for over four decades. During the major portion of its life almost all the major mechanical equipment operated continuously in a healthy condition. Since 1988 ageing related breakdown has been noticed in some of the critical components, PCW pumps being one of them. Vibration measurement and analysis is carried out on a routine basis as a part of conditioning monitoring programme. Ageing degradation of various components of the pump has been detected by such a performance monitoring programme. Conditioning monitoring has been found to be quite useful for scheduling of maintenance work on pumps

  7. A New Application of Support Vector Machine Method: Condition Monitoring and Analysis of Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Meng Qinghu; Meng Qingfeng; Feng Wuwei

    2012-01-01

    Fukushima nuclear power plant accident caused huge losses and pollution and it showed that the reactor coolant pump is very important in a nuclear power plant. Therefore, to keep the safety and reliability, the condition of the coolant pump needs to be online condition monitored and fault analyzed. In this paper, condition monitoring and analysis based on support vector machine (SVM) is proposed. This method is just to aim at the small sample studies such as reactor coolant pump. Both experiment data and field data are analyzed. In order to eliminate the noise and useless frequency, these data are disposed through a multi-band FIR filter. After that, a fault feature selection method based on principal component analysis is proposed. The related variable quantity is changed into unrelated variable quantity, and the dimension is descended. Then the SVM method is used to separate different fault characteristics. Firstly, this method is used as a two-kind classifier to separate each two different running conditions. Then the SVM is used as a multiple classifier to separate all of the different condition types. The SVM could separate these conditions successfully. After that, software based on SVM was designed for reactor coolant pump condition analysis. This software is installed on the reactor plant control system of Qinshan nuclear power plant in China. It could monitor the online data and find the pump mechanical fault automatically.

  8. Analysis and countermeasures for the corrosion on the shaft of seawater pump

    International Nuclear Information System (INIS)

    Lu Hongtao; Chen Haiming

    2010-01-01

    The corrosion resistance of the shaft material-3Cr13 was studied through immersion test and electrochemistry test. The results indicated that 3Cr13 and the chromium plating on the shaft had poor resistance against local corrosion in seawater. And the free corrosion potential of 3Cr13 in seawater was lower than other components of the pump, this could accelerate the corrosion rate of the shaft due to galvanic corrosion. A comprehensive analysis showed that the root cause of the corrosion on the No.4 shaft was that 3Cr13 had poor resistance against local corrosion in seawater. Because of the exist of fit-up gap, galvanic corrosion effect and corrosive wear caused by sand, crevice corrosion, galvanic corrosion and wear occurred. All of these accelerated the corrosion rate of the shaft and finally caused its failure. It is suggested that the sealant should be improved and the current material 3Cr13 should be replaced by a kind of materials with better corrosion resistance. (authors)

  9. RETRAN analysis of inter-system LOCA within the primary coolant pump

    International Nuclear Information System (INIS)

    Gangadharan, A.; Pratt, G.F.

    1992-01-01

    One example of an inter-system loss of coolant accident is the failure of the tubing within the primary coolant pump (PCP) thermal barrier heat exchanger. Such a failure would result in the entry of primary coolant into the component cooling water (CCW) system. The primary coolant flowrate through the break would rapidly pressurize the CCW system when the relief valves are too small. The piping in the CCW system at Palisades has a low pressure rating. Failures in this system outside the containment boundary could lead to primary coolant release to the atmosphere. RETRAN-02 was used to perform a simulation of the break in the PCP integral heat exchanger. The model included a detailed nodalization of the Byron-Jackson primary coolant pump internals leading up to the CCW system relief valves. Preliminary studies show the need for increased relief capacity in the CCW system. A case was run using a larger relief valve. Critical flow in the system upstream of the relief valves maintains the pressures in those volumes above the CCW design pressure. The pressures downstream from the relief valves and outside containment will be at or below the design pressure. This paper presents the results of the transient analysis

  10. Fault diagnosis of main coolant pump in the nuclear power station based on the principal component analysis

    International Nuclear Information System (INIS)

    Feng Junting; Xu Mi; Wang Guizeng

    2003-01-01

    The fault diagnosis method based on principal component analysis is studied. The fault character direction storeroom of fifteen parameters abnormity is built in the simulation for the main coolant pump of nuclear power station. The measuring data are analyzed, and the results show that it is feasible for the fault diagnosis system of main coolant pump in the nuclear power station

  11. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    Science.gov (United States)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.

  12. Literature survey, numerical examples, and recommended design studies for main-coolant pumps. Final report

    International Nuclear Information System (INIS)

    Allaire, P.E.; Barrett, L.E.

    1982-06-01

    This report presents an up-to-date literature survey, examples of calculations of seal forces or other pump properties, and recommendations for future work pertaining to primary coolant pumps and primary recirculating pumps in the nuclear power industry. Five main areas are covered: pump impeller forces, fluid annuli, bearings, seals, and rotor calculations. The main conclusion is that forces in pump impellers is perhaps the least well understood area, seals have had some good design work done on them recently, fluid annuli effects are being discussed in the literature, bearing designs are fairly well known, and rotor calculations have been discussed widely in the literature. It should be noted, however, that usually the literature in a given area is not applied to pumps in nuclear power stations. The most immediate need for a combined theoretical and experimental design capability exists in mechanical face seals

  13. Full sized tests on a french coolant pump under two-phase flow

    International Nuclear Information System (INIS)

    Huchard, J.C.; Bore, C.; Dueymes, E.

    1997-01-01

    The French Safety Authorities required EDF to demonstrate the ability of the new N4 main coolant pump to withstand two-phase flow conditions without damage. Therefore three full sized tests, simulating a bleeding flow on the primary system, were performed on a laboratory test loop under real operating conditions (temperature = 290 deg. C, pressure = 155 b, flowrate = 7 m 3 /s; electrical power = 7 MW). The maximum value of the mean void fraction reached 75 %. The outcome of the tests is very positive: the mechanical behaviour of the main coolant pump is good, even at high void fraction. The maximum vibration levels were below the limits fixed by the manufacturer. Correlations between the mechanical behaviour of the pump and the pressure pulsation in the test loop have been found. (authors)

  14. Monitoring device for shaft oscillation of reactor incorporated-type recycling pump

    International Nuclear Information System (INIS)

    Miyashita, Kaoru; Shibasaki, Kimiyuki.

    1995-01-01

    The present invention concerns monitoring of recycling pump shaft oscillation in a BWR type reactor, which monitors by separating a rotation pulse signal and a shaft oscillation waveform signal obtained in a non-contact type displacement meter. Namely, a threshold value calculation means of a separation processing section takes in original waveform data and selects the maximum value and the minimum value among them. A threshold value is calculated based on the values. An average value of the original waveform data for portions which do not exceed the threshold value is calculated. A first calculation means compares each of the original data with the threshold value, and if the original data are greater than the threshold value, they are outputted as the original data corresponding to the rotation pulse signal. When the original data are smaller than the threshold value, they are outputted as they are as a shaft oscillation waveform signal. On the other hand, a second calculation means calculates an average value for the pulse of the original waveform data corresponding to the rotation pulse signal. An average value of the original waveform data which do not exceed the threshold value are subtracted from the average value, to form the shaft oscillation waveform signal and output the same. (I.S.)

  15. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net-power...

  16. RELAP/FRAP-T6 analysis of seized and sheared shaft accidents

    International Nuclear Information System (INIS)

    Bollinger, J.S.; Ito, T.; Peeler, G.B.

    1984-01-01

    Argonne National Laboratory (ANL) performed audit calculations of a Reactor Coolant Pump (RCP) seized/sheared shaft transient for the Westinghouse Seabrook Plant using RELAP5/MOD 1.5 (Cycle 32) and FRAP-T6. The objective was to determine the effect of time of loss of offsite power and other single component failures on the peak clad temperature. The RCP shaft seizure event was modeled in RELAP5 by using the pump model shaft stop option. In modeling the sheared shaft failure, the faulted pump was replaced with a branch component having no flow losses. In general, the RELAP5-predicted system response for the seized shaft transient was very comparable to the results presented in the Seabrook FSAR, although the Reactor Coolant System (RCS) pressure response was somewhat different. The RELAP5 sheared-shaft analysis results were very similar to those for the seized shaft

  17. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    Science.gov (United States)

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  18. Transient flow characteristics of nuclear reactor coolant pump in recessive cavitation transition process

    International Nuclear Information System (INIS)

    Wang Xiuli; Yuan Shouqi; Zhu Rongsheng; Yu Zhijun

    2013-01-01

    The numerical simulation calculation of the transient flow characteristics of nuclear reactor coolant pump in the recessive cavitation transition process in the nuclear reactor coolant pump impeller passage is conducted by CFX, and the transient flow characteristics of nuclear reactor coolant pump in the transition process from reducing the inlet pressure at cavitation-born conditions to NPSHc condition is studied and analyzed. The flow field analysis shows that, in the recessive cavitation transition process, the speed diversification at the inlet is relative to the bubble increasing, and makes the speed near the blade entrance increase when the bubble phase region becomes larger. The bubble generation and collapse will affect the the speed fluctuation near the entrance. The vorticity close to the blade entrance gradually increasing is influenced by the bubble phase, and the collapse of bubble generated by cavitation will reduce the vorticity from the collapse to impeller outlet. Pump asymmetric structure causes the asymmetry of the flow, velocity and outlet pressure distribution within every impeller flow passage, which cause the asymmetry of the transient radial force. From the dimensionless t/T = 0.6, the bubble phase starts to have impact on the impeller transient radial force, and results in the irregular fluctuations. (authors)

  19. Operating experience feedback report: Experience with pump seals installed in reactor coolant pumps manufactured by Byron Jackson

    International Nuclear Information System (INIS)

    Bell, L.G.; O'Reilly, P.D.

    1992-09-01

    This report examines the reactor coolant pump (RCP) seal operating experience through August 1990 at plants with Byron Jackson (B-J) RCPs. ne operating experience examined in this analysis included a review of the practice of continuing operation with a degraded seal. Plants with B-J RCPs that have had relatively good experience with their RCP seals attribute this success to a combination of different factors, including: enhanced seal QA efforts, modified/new seal designs, improved maintenance procedures and training, attention to detail, improved seal operating procedures, knowledgeable personnel involved in seal maintenance and operation, reduction in frequency of transients that stress the seals, seal handling and installation equipment designed to the appropriate precision, and maintenance of a clean seal cooling water system. As more plants have implemented corrective measures such as these, the number of B-J RCP seal failures experienced has tended to decrease. This study included a review of the practice of continued operation with a degraded seal in the case of PWR plants with Byron Jackson reactor coolant pumps. Specific factors were identified which should be addressed in order to safety manage operation of a reactor coolant pump with indications of a degrading seal

  20. Reactor coolant pump service life evaluation for current life cycle optimization and license renewal

    International Nuclear Information System (INIS)

    Doroshuk, B.W.; Berto, D.S.; Robles, M.

    1990-01-01

    This paper reports that as part of the plant life cycle management and license renewal program, Baltimore Gas and Electric Company (BG and E) has completed a service life evaluation of their reactor coolant pumps, funded jointly by EPRI and performed by ABB Combustion Engineering Nuclear Power. Two of the goals of the BG and E plant life cycle management and license renewal program, and of this current evaluation, are to identify actions which would optimize current plant operation, and ensure that license renewal remains a viable option. The reactor coolant pumps (RCPs) at BG and E's Calvert Cliffs Units 1 and 2 are Byron Jackson pumps with a diffuser and a single suction. This pump design is also used in many other nuclear plants. The RCP service life evaluation assessed the effect of all plausible age-related degradation mechanisms (ARDMs) on the RCP components. Cyclic fatigue and thermal embrittlement were two ARDMs identified as having a high potential to limit the service life of the pump case. The pump case is a primary pressure boundary component. Hence, ensuring its continued structural integrity is important

  1. Independent modification on water lubrication loop of radial-axial bearing of Russian reactor coolant pump

    International Nuclear Information System (INIS)

    Gu Yingbin

    2012-01-01

    Water lubrication was used for radial-axial bearings of 1391M reactor coolant pumps at both units of Tianwan Nuclear Power Plant Phase I Project, which was the first trial on large commercial pressurized water reactors in the world. As a prototype, there were inherent deficiencies leading to a series of operational events. Jiangsu Nuclear Power Corporation conducted the independent innovative technical modification to cope with the defects, and succeeded in reducing heat removal rate of the radial-axial bearings of the reactor coolant pumps, mitigating or preventing the cavitation abrasion of the bearings and improving the cooling effects. This paper illustrates the reasons of the innovative modification, the design and implementation preparation of modification program, the implementation process and evaluation of modification effect, including detailed follow-up work program. (author)

  2. Prediction of Hydraulic Performance of a Scaled-Down Model of SMART Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sun Guk; Park, Jin Seok; Yu, Je Yong; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-08-15

    An analysis was conducted to predict the hydraulic performance of a reactor coolant pump (RCP) of SMART at the off-design as well as design points. In order to reduce the analysis time efficiently, a single passage containing an impeller and a diffuser was considered as the computational domain. A stage scheme was used to perform a circumferential averaging of the flux on the impeller-diffuser interface. The pressure difference between the inlet and outlet of the pump was determined and was used to compute the head, efficiency, and break horse power (BHP) of a scaled-down model under conditions of steady-state incompressible flow. The predicted curves of the hydraulic performance of an RCP were similar to the typical characteristic curves of a conventional mixed-flow pump. The complex internal fluid flow of a pump, including the internal recirculation loss due to reverse flow, was observed at a low flow rate.

  3. Development for LMR coolant technology - Development of a submersible-in-pool electromagnetic pump

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Kim, Hee Reyoung; Lee, Sang Don; Seo, Chun Ho [Seoul National University, Seoul (Korea, Republic of); Cho, Su Won [Kyungki University, Suwon (Korea, Republic of)

    1995-08-01

    The conceptual and detailed designs of an annular linear induction electromagnetic pump of small scale submersible-in-pool type are performed for the purpose of domestic development of the pumps used for the high-temperature natrium coolant transportation in liquid metal reactors. The pump drawings for and input power of 1,100 VA, an input frequency of 17 Hz, a maximum flowrate of 60 l/min and a maximum operation temperature of 600 deg C are obtained from the optimum design analyses by solving MHD and equivalent circuit equations. The characteristics of pump materials in the high temperature and neutron irradiation environment are reflected in designing the pump, and theoretical analyses for improving the pump performance and efficiency are tried through calculations of magnetic flux and temperature distributions inside the pump. The present project contributes to the further design of engineering proto-type electromagnetic pump with higher capacity and the development of liquid metal reactor with innovative simplicity. 44 refs., 4 tabs., 33 figs. (author)

  4. Development of LMR Coolant Technology - Development of a submersible-in-pool electromagnetic pump

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hi; Kim, Hee Reyoung; Lee, Sang Don; Seo, Joon Ho [Seoul National University, Seoul (Korea, Republic of); Cho, Su Won [Kyoungki University, Suwon (Korea, Republic of)

    1997-07-15

    A submersible-in-pool type annular linear induction pumps of 60 l/min and 200 l/min, and 600 deg C has been designed with optimum geometrical and operating values found from MHD and circuit analyses reflecting the high-temperature characteristics of pump materials. Through the characteristics analyses inside the narrow flow channel of electromagnetic pump, the distribution of the time-varying flow field is calculated, and magnetic flux and force density are evaluated by end effects of linear induction electromagnetic pump and the instability analyses are carried out introducing one-dimensional linear perturbation. Testing the pump with the flow rate of 60 l/min in the suitably manufactured loop system shows a flow rate of 58 l/min at an input power of 1,377 VA with 60Hz. The design of a scaled-up pump is further taken into account LMR coolant system requiring increased capacity, and a basic analysis is carried out on the pump of 40,000 l/min for KALIMER. The present project contributes to the further design of engineering prototype electromagnetic pumps with higher capacity and to the development of liquid metal reactor with innovative simplicity. 89 refs., 8 tabs., 45 figs. (author)

  5. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    OpenAIRE

    Lefèvre, Grégory; Živković, Ljiljana S.; Jaubertie, Anne

    2012-01-01

    In the primary circuit of pressurized water reactors (PWR), the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspec...

  6. Always at the correct temperature. Thermal management with electric coolant pump; Immer richtig temperiert. Thermomanagement mit elektrischer Kuehlmittelpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Genster, A.; Stephan, W. [Pierburg GmbH, Neuss (Germany)

    2004-11-01

    Through the use of the electric coolant pump it has become possible for the first time to attain a cooling performance which is adapted precisely to the engine load and which is independent of engine speed. For cooling the new BMW six cylinder in-line Otto engine with an engine power rating of 190 kW, the electric coolant pump by Pierburg requires only 200 W of electrical power from the onboard electrical system. (orig.)

  7. The empirical intensity of PWR primary coolant pumps failure and repair

    International Nuclear Information System (INIS)

    Milivojevicj, S.; Riznicj, J.

    1988-01-01

    The wealth of operating experience concerning PWR type and nuclear reactors that has been regularly monitored and systematically processes since 1971, enabled an analysis of the PWR primary coolant pumps operation. Failure intensity α and repair intensity μ of the pump during its working life were calculated, as these values are necessary in order to determine the reliability and availability of the pump as the basis for analyzing its effect on the safety and efficiency of the nuclear power plant. The trend of failure intensity α follows the theoretically expected changes in α over time, and this is around 10 -5 in the majority of life-time. Repair intensity μ indicates a slow rise during life-time, i.e. its faster return to operation. (author).7 refs.; 5 figs

  8. Moment inertia pump analysis used in the Rsg-Gas primary coolant loop under lofa condition

    International Nuclear Information System (INIS)

    Sudarmono; Setiyanto; Dhandhang, P.; Dibyo, S.; Royadi

    1998-01-01

    The moment inertia of primary cooling system analysis under LOFA condition has been done. It is potentially one of limiting design constraints of the RSG-GAS safety because the coolant flow rate reduces very rapidly under LOFA condition due to the low inertia circulation pumps. If a loss of flow accident occurs, the mass flow will decrease rapidly and the heat transfer coefficient between cladding and coolant will also decreases. As a consequence the fuel and cladding temperature will increase. The whole core was represented by the 1/4 sector and divided into 19 subchannels and 40 axial nodes. In the present study, moment inertia of pump analysis for RSG-GAS reactor was performed with COBRA-IV-I subchannel code. As the DNB correlation, W-3 Correlation was selected for base case. The flow and power transients under pump trip accident were determined from experiments. The result above compared with the design data are 75 kg m 2 and 81 Kg m 2 respectively. The result shows that the RSG-GAS requires the inertia more than 75 kg m 2

  9. Coast-down model based on rated parameters of reactor coolant pump

    International Nuclear Information System (INIS)

    Jiang Maohua; Zou Zhichao; Wang Pengfei; Ruan Xiaodong

    2014-01-01

    For a sudden loss of power in reactor coolant pump (RCP), a calculation model of rotor speed and flow characteristics based on rated parameters was studied. The derived model was verified by comparing with the power-off experimental data of 100D RCP. The results indicate that it can be used in preliminary design calculation and verification analysis. Then a design criterion of RCP was described based on the calculation model. The moment of inertia in AP1000 RCP was verified by this criterion. (authors)

  10. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    International Nuclear Information System (INIS)

    Peyrouty, P.

    1997-01-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enables faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk represented by deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible. (author)

  11. Unbalance response and stability analyses of the rotor of SMART main coolant pump

    International Nuclear Information System (INIS)

    Park, J. H.; Park, J. S.; Kim, J. I.

    2001-01-01

    SMART main coolant pump(MCP) is being designed as a vertical type and the rotor is operated immersed in hot and high pressure water. Hydraulic forces which are taken place at journal bearings, impellers and gaps between rotor and housing are inherently highly nonlinear and have unstable characteristics. Furthermore, since vertical rotor rather than horizontal type has no dominant static bearing load such as one's weight, traveling of journal center in the clearance circle of the bearing as varying of rotational speed make change in rotor characteristics greatly. In this paper, MCP rotor dynamic characteristics are estimated relating in hydraulic forces at journal bearings and gaps

  12. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Peyrouty, P.

    1996-12-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enabled faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk which can be associated with the deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible.

  13. Analytical prediction on the pump-induced pulsating pressure in a reactor coolant pipe

    International Nuclear Information System (INIS)

    Lee, K.B.; Im, I.Y.; Lee, S.K.

    1992-01-01

    An analytical method is presented for predicting the amplitudes of pump-induced fluctuating pressures in a reactor coolant pipe using a linear transformation technique which reduces a homogeneous differential equation with non-homogeneous boundary conditions into a nonhomogeneous differential equation with homogeneous boundary conditions. At the end of the pipe, three types of boundary conditions are considered-open, closed and piston-spring supported. Numerical examples are given for a typical reactor. Comparisons of measured pressure amplitudes in the pipe with model prediction are shown to be in good agreement for the forcing frequencies. (author)

  14. Consequences in the pumps operation during a large loss of coolant accident

    International Nuclear Information System (INIS)

    Santos, G.A. dos; Sabundjian, G.

    1991-08-01

    The event of living on or turning off the operation of the Reactor Cooling Pumps - RCPs, in the case of a Loss of Coolant Accident - LOCA, has been a reason of a lot of studies after the Three Mile Island 2 accident. Thus, it was investigated a large break LOCA in the cold leg of Angra 1, with the RELAP4/MOD5 Code during the blowdown. The attained results indicated that the best performance of the core was in the case where the RCPs had been turned off in the beginning of the transient, when compared with different operation conditions of the RCPs. (author)

  15. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    International Nuclear Information System (INIS)

    Peyrouty, P.

    1996-01-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enabled faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk which can be associated with the deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible

  16. High-inertia hermetically sealed main coolant pump for next generation passive nuclear power plants

    International Nuclear Information System (INIS)

    Kujawski, Joseph M.; Nair, Bala R.; Vijuk, Ronald P.

    2003-01-01

    The main coolant pump for the Westinghouse AP1000 advanced passive nuclear power plant represents a significant scale-up in power, flow capacity, and physical size from its predecessor designed for the smaller AP600 power plant. More importantly, the AP1000 pump incorporates several innovative features that contribute to improved efficiency, operational reliability, and plant safety. The features include an internals design which provides the highest hydraulic efficiency achieved in commercial nuclear power plant applications. Another feature is the use of a distributed inertial mass system in the rotating assembly to develop the high rotational inertia to meet the extended system flow coastdown requirement for core heat removal in the event of loss of power to the pumps. This advanced canned motor pump also incorporates the latest development in higher operating voltage, providing plant designers with the ability to eliminate plant transformers and operate directly on the site electrical bus in many cases. The salient features of the pump design and performance data are presented in this paper. (author)

  17. Diapo, applying advanced AI methods to diagnosis of PWR reactor coolant pump

    International Nuclear Information System (INIS)

    Porcheron, M.; Ricard, B.

    1993-01-01

    Electricite de France has decided to increase the capabilities of its monitoring and diagnostic architecture with the development of an AI system for reactor coolant pump diagnostic support. This development is carried out with the cooperation of the equipment constructor Jeumont Schneider Industries. This diagnostic system will eventually be included in an integrated surveillance architecture. We present the architecture of the system and the basics of the knowledge model used. Main data for diagnosis are provided by sensor data issued by the pump monitoring system. Diagnostic reasoning is based on the cooperation of two main activities : a heuristic search among typical symptomatic situations that leads to the formulation of hypotheses and a ''deep'' causal analysis that consists in backtracking from identified situations up to initial faults or causes. This approach is well fitted to field expert reasoning, and provides powerful diagnostic capabilities that help to overcome conventional limitations of expert systems entirely based on heuristic knowledge. (authors). 9 figs., 11 refs

  18. Design, construction and testing of replacement nuclear coolant pump stators to meet today's equipment reliability expectations

    International Nuclear Information System (INIS)

    Fostier, L.; Howell, D.

    2005-01-01

    The reliability expectations of equipment and components in today's nuclear power plant are much greater than three or more decades ago when nuclear plants were first constructed due to economic impact of a failure. Very few components in a pressurized water reactor plant can have as much impact of the plants capacity factor as a catastrophic failure of a reactor coolant pump winding. This paper describes the maintenance approach taken by one North American utility in attempt to preclude such failures. The paper will discuss the challenges of the reactor coolant pump application and the enhancements made in the winding design and construction by the supplier to address failure mechanisms so as to better meet present reliability expectations in accordance with dedicated specifications. The paper will also present the in-process and final testing requirements and limits imposed in an attempt to ensure quality of the machine windings, along with selected test results from the stators that have been designed and constructed to these specifications to date. (author)

  19. Analysis on transient hydrodynamic characteristics of cavitation process for reactor coolant pump

    International Nuclear Information System (INIS)

    Wang Xiuli; Wang Peng; Yuan Shouqi; Zhu Rongsheng; Fu Qiang

    2014-01-01

    The reactor coolant pump hydrodynamic characteristics at different cavitation conditions were studied by using flow field analysis software ANSYS CFX, and the corresponding data were processed and analyzed by using Morlet wavelet transform and fast Fourier transform. The results show that gas content presents the law of exponential function with the pressure reduction or time increase. In the cavitation primary condition, the pulsation frequency of head for the reactor coolant pump is mainly low frequency, and the main frequency of pressure pulsation is still rotation frequency while the effect of the pressure pulsation caused by cavitation on main frequency is not obvious. With the development of cavitation, the pressure fluctuation induced by cavitation becomes more serious especially for the main frequency, secondary frequency and pulsating amplitude while the head pulsation frequency is given priority to low frequency pulse. Under serious cavitation condition, the head pulsation frequency is given priority to irregular changes of pulse high frequency, and also contains almost regular changes of low frequency. (authors)

  20. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-01-01

    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  1. One-phase and two-phase homologous curves for coolant pumps of the pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The single-phase pump characteristics are an essential feature for operational transients studies, for example, the shut-down and start-up of pump. These parameters, in terms of the homologous curves, set up the complete performance of the pump and are input for transients and accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the single-phase and two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  2. Development of a reactor-coolant-pump monitoring and diagnostic system. Semi-annual progress report, December 1981-May 1982

    International Nuclear Information System (INIS)

    Morris, D.J.; Gabler, H.C.

    1982-10-01

    Reactor coolant (RC) pump seal failures have resulted in excessive leakage of primary coolant into reactor containment buildings. In some cases, high levels of airborne activity and surface contamination following these failures have necessitated extensive cleanup efforts and personnel radiation exposure. Unpredictable pump seal performance has also caused forced outages and frequent maintenance. The quality of operating data has been insufficient to allow proper evaluation of theoretical RC pump seal failure mechanisms. The RC pump monitoring and diagnostic system being developed and installed at Toledo Edison's Davis-Besse Nuclear Power Station will examine the relationship between seal failures and three other variables. This report describes system software and hardware development, testing, and installation work performed during the period of December 1981 through May 1982. Also described herein is a parallel effort being conducted by a B and W/Byron Jackson/Utility group to improve pump seal performance

  3. Study on the VFD (Variable Frequency Drive) for RCP (Reactor Coolant Pump) Motors of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Ha; Robert, M. Field; Kim, Tae Ryong [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    Most industrial facilities are continually searching for ways to reduce energy costs while increasing or maintaining current production. In terms of electric motors, Variable Frequency Drive (VFD) units represent a critical opportunity for energy savings. Currently, VFDs are used on about ten (10) percent of industrial process motors, and this percentage is increasing every year. Properly applied VFDs have been documented to save as much as fifty percent of the energy consumed by certain industrial processes. Nuclear Power - Power plants in general and Nuclear Power Plants (NPPs) in particular are slow to adopt new technology. The nuclear power industry requires a nearly absolute demonstration through operating experience in other industries in which the new approach will result in a net improvement in plant reliability without any surprises. Only recently has the nuclear industry begun to adapt VFD units for large motors. Specifically, there are several examples in the Boiling Water Reactor (BWR) fleet of replacing Motor-Generator (M-G) sets with VFD units for Reactor Recirculation (RR) pump motor service. At one station, VFD units were introduced upstream of the Circulating Water (CWP) pump motors to address environmental issues. They units are taking advantage of VFD technology whose benefits include increased reliability, reduction in electrical house load, improved flow control, and reduced maintenance. RCP Application - In the case of new generation, it has been reported that the Westinghouse AP1000 will make use of VFD units for the Reactor Coolant Pump (RCP) motors.

  4. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghak [Korea KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed.

  5. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    International Nuclear Information System (INIS)

    Kim, Donghak

    2015-01-01

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed

  6. Dynamic stress of impeller blade of shaft extension tubular pump device based on bidirectional fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Kan; Liu, Huiwen; Yang, Chunxia [Hohai University, Nanjing (China); Zheng, Yuan [National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing (China); Fu, Shifeng; Zhang, Xin [Power China Huadong Engineering Corporation, Hangzhou (China)

    2017-04-15

    Current research on the stability of tubular pumps is mainly concerned with the transient hydrodynamic characteristics. However, the structural response under the influence of fluid-structure interaction hasn't been taken fully into consideration. The instability of the structure can cause vibration and cracks, which may threaten the safety of the unit. We used bidirectional fluid-structure interaction to comprehensively analyze the dynamic stress characteristics of the impeller blades of the shaft extension tubular pump device. Furthermore, dynamic stress of impeller blade of shaft extension tubular pump device was solved under different lift conditions of 0° blade angle. Based on Reynolds-average N-S equation and SST k-ω turbulence model, numerical simulation was carried out for three-dimensional unsteady incompressible turbulent flow field of the pump device whole flow passage. Meanwhile, the finite element method was used to calculate dynamic characteristics of the blade structure. The blade dynamic stress distribution was obtained on the basis of fourth strength theory. The research results indicate that the maximum blade dynamic stress appears at the joint between root of inlet side of the blade suction surface and the axis. Considering the influence of gravity, the fluctuation of the blade dynamic stress increases initially and decreases afterwards within a rotation period. In the meantime, the dynamic stress in the middle part of inlet edge presents larger relative fluctuation amplitude. Finally, a prediction method for dynamic stress distribution of tubular pump considering fluid-structure interaction and gravity effect was proposed. This method can be used in the design stage of tubular pump to predict dynamic stress distribution of the structure under different operating conditions, improve the reliability of pump impeller and analyze the impeller fatigue life.

  7. Segmentation of turbo generator and reactor coolant pump vibratory patterns: a syntactic pattern recognition approach

    International Nuclear Information System (INIS)

    Tira, Z.

    1993-02-01

    This study was undertaken in the context of turbogenerator and reactor coolant pump vibration surveillance. Vibration meters are used to monitor equipment condition. An anomaly will modify the signal mean. At the present time, the expert system DIVA, developed to automate diagnosis, requests the operator to identify the nature of the pattern change thus indicated. In order to minimize operator intervention, we have to automate on the one hand classification and on the other hand, detection and segmentation of the patterns. The purpose of this study is to develop a new automatic system for the segmentation and classification of signals. The segmentation is based on syntactic pattern recognition. For the classification, a decision tree is used. The signals to process are the rms values of the vibrations measured on rotating machines. These signals are randomly sampled. All processing is automatic and no a priori statistical knowledge on the signals is required. The segmentation performances are assessed by tests on vibratory signals. (author). 31 figs

  8. Team training using full-scale reactor coolant pump seal mock-ups

    International Nuclear Information System (INIS)

    McDonald, T.J.; Hamill, R.W.

    1987-01-01

    The use of full-scale reactor coolant pump (RCP) seal mock-ups has greatly enhanced Northeast Utilities' ability to effectively utilize the team training approach to technical training. With the advent of the Institute of Nuclear Power Operations accreditation come a new emphasis and standards for the integrated training of plant engineering personnel, maintenance mechanics, quality control personnel, and health physics personnel. The results of purchasing full-scale RCP mock-ups to pilot the concept of team training have far exceeded expectations and cost-limiting factors. The initial training program analysis identified RCP seal maintenance as a task that required training for maintenance department personnel. Due to radiation exposure considerations and the unavailability of actual plant equipment for training purposes, the decision was made to procure a mock-up of an RCP seal assembly and housing. This mock-up was designed to facilitate seal cartridge removal, disassembly, assembly, and installation, duplicating all internal components of the seal cartridge and housing area in exact detail

  9. RELAP5/MOD 3.3 analysis of Reactor Coolant Pump Trip event at NPP Krsko

    International Nuclear Information System (INIS)

    Bencik, V.; Debrecin, N.; Foretic, D.

    2003-01-01

    In the paper the results of the RELAP5/MOD 3.3 analysis of the Reactor Coolant Pump (RCP) Trip event at NPP Krsko are presented. The event was initiated by an operator action aimed to prevent the RCP 2 bearing damage. The action consisted of a power reduction, that lasted for 50 minutes, followed by a reactor and a subsequent RCP 2 trip when the reactor power was reduced to 28 %. Two minutes after reactor trip, the Main Steam Isolation Valves (MSIV) were isolated and the steam dump flow was closed. On the secondary side the Steam Generator (SG) pressure rose until SG 1 Safety Valve (SV) 1 opened. The realistic RELAP5/MOD 3.3 analysis has been performed in order to model the particular plant behavior caused by operator actions. The comparison of the RELAP5/MOD 3.3 results with the measurement for the power reduction transient has shown small differences for the major parameters (nuclear power, average temperature, secondary pressure). The main trends and physical phenomena following the RCP Trip event were well reproduced in the analysis. The parameters that have the major influence on transient results have been identified. In the paper the influence of SG 1 relief and SV valves on transient results was investigated more closely. (author)

  10. Tendency of nuclear pumps for PWR primary system

    International Nuclear Information System (INIS)

    Shibata, Takeshi

    1976-01-01

    At present, large PWR power stations of more than 1,000 MW are successively constructed, and the pumps used there have become large. The progress and tendency of the technical development of main pumps in primary system are described. The increase of the capacity of power stations is accomplished by increasing the circulating coolant quantity per loop or the number of loops. Same standard primary coolant pumps are employed in the plants from 500 to 1,100 MW. The type of primary coolant pumps changed from canned type to shaft seal type, and the advantages of the shaft seal type are cheap production cost, high efficiency, and the easy utilization of inertia force. The bearings and shaft seals are thermally insulated from primary coolant. As for auxiliary pumps, reciprocating filling-up pumps and centrifugal high pressure injection pumps are used for 500 MW plants, but only centrifugal pumps are used for both purposes in 800 MW plants, and in 1,100 MW plants, the pumps of both types for separate purposes and centrifugal pumps for combined purposes are installed. Horizontal or vertical pumps of same type are used as containment vessel-spraying pumps and excess heat-eliminating pumps. The type of boric acid pumps changed from canned type to mechanical seal type. (Kako, I.)

  11. Refurbishment of primary coolant pump stuffing boxes for RAPS-1,2

    International Nuclear Information System (INIS)

    Rshikesan, P.B.; Shirolkar, K.M.; Ahmad, S.N.

    2006-01-01

    Primary coolant pumps (PCPs) are the most critical equipment in PHWR and stuffing box is one of the critical parts of the PCP. The stuffing box houses the mechanical seals, radial bearings, throttle bushings and stationary part of wearing ring. During overhauling of PCPs it was observed that the cracks are developing on the inside face of the stuffing box and at the bolt holes where the lower bearing housing is fixed. Since consequence of failure of stuffing box will be a break in primary system boundary a detailed investigation was carried out to find out cause of failure. An immediate procurement of these from OEM (Original Equipment Manufacturer) was not feasible and indigenous procurement of such a large and precision-machined PCP component would have called for extensive development work. Under the circumstances, the only immediate option left was to repair and re-use these failed stuffing boxes. However, repair of these stuffing boxes was considered to be very difficult job as weld repair could cause distortion and any other option was not found suitable. Since the industry was not geared up to produce such components, a decision to carry out a heavy weld build up after removing the cracks up to root, was taken after considering various other options. Major weld repair and subsequent machining was carried out successfully on four stuffing boxes and subsequently these have been put in to service. The paper covers the investigations done, various options considered, how the weld repairs were carried out and the salient features of the indigenous development taken up. (author)

  12. Development of motors and drives for main coolant pump and CEDM

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Hyun; Ha, Hoi Doo; Park, Jung Woo; Koo, Dae Hyun; Chang, Ki Chan; Kim, Jong Moo; Kim, Won Ho; Rim, Geun Hie; Baek, Ju Won; Park, Doh Young; Hwang, Don Ha; Jeon, Jeong Woo [Korea Electrotechnology Research Institute, Changwon (Korea)

    1999-03-01

    A canned type 170kW induction motor for the main coolant pump (MCP) of the integral reactor SMART was designed to minimize the eddy current loss in the can and the volume of motor. In order to verify the design and analysis methodology, a canned type 30kW induction motor and an inverter were developed and tested. The motor was designed to have two poles with squirrel cage solid rotor and open slot stator. The motor driver was designed as VVVF inverter to operate both at 900(r.p.m) and at 3600(r.p.m). The calculated design values showed a good agreement with the experimental results. The measured efficiencies of the canned motor and the inverter were 70(%) and 96(%), respectively. A variable reluctance type linear pulse motor (LPM) with double air-gaps for the Control Element Drive Mechanism (CEDM) to lift 100kg was designed, analyzed, manufactured and tested. A converter and a test facility were manufactured to verity the dynamic performance of the LPM. The mover of the LPM was welded with magnetic material(SUS430) and non-magnetic material(SUS304) to get flux path between inner stator and outer stator. The measured thrust force was about 20(%) less than the designed thrust force. As for the rotary stepping motors for CEDM-II, which have transverse flux pattern, three design options were proposed with thrust force density of 8kN/m{sup 2}, 14kN/m{sup 2} and 52kN/m{sup 2} respectively. (author). 31 refs., 219 figs., 60 tabs.

  13. Fabrication of the shafts of the liquid metal pumps for the Creys-Malville nuclear power station

    International Nuclear Information System (INIS)

    Pasqualini, G.; Lefebvre, B.; Archer, J.; Gravier, M.

    1982-01-01

    This report is a synthesis of the considerations with regard to the project work and the work executes in the field of metallurgy, which have made it possible to manufacture the shafts of primary and secondary pumps intended for the Creys-Malville nuclear power station. In the first part of this report attention is drawn to the most important items of this equipment with regard to the performance specifications. These specifications are the expression of the experiences made in France in the industrial manufacture of pumps for liquid metals for this type of application Rapsodie (1967) and Phenix (1974). In the second part of the report on hand, in particular the technical aspects of the welding operations with regard to the use of the chosen material (austenitic corrosion resisting steel Z 15 CNW 22-12, maual TIG welding, the type of steel of the filler metal being the same as the parent metal) will be discussed. Finally, a testified comment on the most important steps of the manufacture of these shafts in the works at Jeumont will be described. (orig.) [de

  14. Impact of mechanical- and maintenance-induced failures of main reactor coolant pump seals on plant safety

    International Nuclear Information System (INIS)

    Azarm, M.A.; Boccio, J.L.; Mitra, S.

    1985-12-01

    This document presents an investigation of the safety impact resulting from mechanical- and maintenance-induced reactor coolant pump (RCP) seal failures in nuclear power plants. A data survey of the pump seal failures for existing nuclear power plants in the US from several available sources was performed. The annual frequency of pump seal failures in a nuclear power plant was estimated based on the concept of hazard rate and dependency evaluation. The conditional probability of various sizes of leak rates given seal failures was then evaluated. The safety impact of RCP seal failures, in terms of contribution to plant core-melt frequency, was also evaluated for three nuclear power plants. For leak rates below the normal makeup capacity and the impact of plant safety were discussed qualitatively, whereas for leak rates beyond the normal make up capacity, formal PRA methodologies were applied. 22 refs., 17 figs., 19 tabs

  15. Improvement to liquid metal pumps

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    This invention concerns the coolant pumps of nuclear reactors. It resolves the problems of structures which have to withstand high temperatures, the difficulties in keeping the multiple bearings of the shaft aligned, the excessive fluid flows, the risks of scoring and seizing-up by self welding, the need for narrow machining tolerances and the difficulties of access for inspection and repairs [fr

  16. Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2018-04-01

    Full Text Available Understanding of turbulent flow in the reactor coolant pump (RCP is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms. Keywords: Diffuser, Flow Structures, Particle Image Velocimetry, Reactor Coolant Pump, Spherical Casing, Velocity Distribution

  17. International Space Station Active Thermal Control Sub-System On-Orbit Pump Performance and Reliability Using Liquid Ammonia as a Coolant

    Science.gov (United States)

    Morton, Richard D.; Jurick, Matthew; Roman, Ruben; Adamson, Gary; Bui, Chinh T.; Laliberte, Yvon J.

    2011-01-01

    The International Space Station (ISS) contains two Active Thermal Control Sub-systems (ATCS) that function by using a liquid ammonia cooling system collecting waste heat and rejecting it using radiators. These subsystems consist of a number of heat exchangers, cold plates, radiators, the Pump and Flow Control Subassembly (PFCS), and the Pump Module (PM), all of which are Orbital Replaceable Units (ORU's). The PFCS provides the motive force to circulate the ammonia coolant in the Photovoltaic Thermal Control Subsystem (PVTCS) and has been in operation since December, 2000. The Pump Module (PM) circulates liquid ammonia coolant within the External Active Thermal Control Subsystem (EATCS) cooling the ISS internal coolant (water) loops collecting waste heat and rejecting it through the ISS radiators. These PM loops have been in operation since December, 2006. This paper will discuss the original reliability analysis approach of the PFCS and Pump Module, comparing them against the current operational performance data for the ISS External Thermal Control Loops.

  18. On-line vibration monitoring for submerged vertical shaft pumps: Final report

    International Nuclear Information System (INIS)

    Walter, T.J.; Marchione, M.M.

    1988-03-01

    The overall goal of this project was to extend to vertical pumps the capability that presently exists to monitor and diagnose vibration problems in horizontal pumps. Specific objectives included the development of analytical techniques to interpret vibration measurements, the verification of these techniqeus by in-plant tests, and the development of recommendations for procuring submergible vibration sensors. A concurrent analytical and experimental approach was used to accomplish these objectives. Rotordynamic analyses of selected pumps were accomplished, and each pump was instrumented and monitored for extended periods of time. The models were used to determine important frequencies and optimum sensor locations and to predict the effect that wear, imbalance, misalighment, and other mechanical changes would have on measured vibration. The predictive ability of the models was confirmed by making changes to instrumented pumps and observing actual changes in pump vibration. Simplified guidelines have been developed to assist the interested user to develop a computer model that realistically predicts the rotordynamic performance of the installed pump. Based on the work accomplished, typical sensor locations have been established. Experience gained in application of commercially available submergible sensors is also related. 11 refs., 11 figs

  19. Transient simulation of coolant peak temperature due to prolonged fan and/or water pump operation after the vehicle is keyed-off

    Science.gov (United States)

    Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali

    2014-01-01

    Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.

  20. Use of the cylindrically guided wave technique for the inspection of stud bolts, valve stems and pump shafts

    International Nuclear Information System (INIS)

    Light, G.M.; Bloom, E.A.; Ruescher, E.H.; Lui, S.N.

    1989-01-01

    Over the last several years, nuclear power plants have expressed concern about failures of bolting, valve stems, and pump shafts. This paper reports on the development of an ultrasonic technique to inspect these components. The authors have successfully demonstrated the cylindrically guided wave technique (CGWT) on a wide range of stud bolts. The CGWT employs zero-degree longitudinal waves constrained to travel within the boundary of the cylindrically shaped components during inspection. Theoretically explained, mode conversion occurs because the ultrasonic wave is guided down the length of the component. These mode-converted signals are dependent upon the diameter of the component under inspection and the longitudinal- and shear-wave velocities of the component material. This technique has also been successfully used on valve stems in the field. The geometry of the valve stem is very similar to that of the stud bolt

  1. Integral forged pump casing for the primary coolant circuit of a nuclear reactor: Development in design, forging technology, and material

    International Nuclear Information System (INIS)

    Austel, W.; Korbe, H.

    1986-01-01

    Developments in the forging of large casings for primary circuit coolant pumps for light water reactors in Germany are demonstrated beginning with the multiple forging fabricated version and ending with the integral forged type. This version is the result of the joint efforts of the pump manufacturer and the forgemaster after a cost-gain evaluation and represents an optimum solution in view of its functional and economical performance and also considering the high requirements for mechanical-technological properties, including homogeneity of the material. The development from 22 NiMoCr 3 7/A 508 Class 2 to 20 MnMoNi 5 5/A 508 Class 3 and their optimization will be demonstrated. This development is based mainly on minimizing the sulfur content and on vacuum carbon deoxidation (VCD), which results in a reduction of the A-segregations, in improving fracture toughness and isotropy, and in the desired fine-grain structure

  2. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    Directory of Open Access Journals (Sweden)

    Lefèvre Grégory

    2012-01-01

    Full Text Available In the primary circuit of pressurized water reactors (PWR, the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspected to be the cause. As better understanding of the adhesion mechanism is the key factor in the prevention of fouling and particle removal, an experimental study was carried out using a laboratory set-up. With model materials, hematite and sintered alumina, the adhesion rate and surface potentials of the interacting solids were measured under different chemical conditions (solution pH and composition in analogy with the PWR ones. The obtained results were in good agreement with the DLVO (Derjaguin-Landau-Verwey- Overbeek theory and used as such to interpret this industrial phenomenon.

  3. Effects of the reactor coolant pumps following a small break in a Westinghouse PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.

    1983-10-01

    Numerical simulations of the thermal-hydraulic events following a small cold-leg break in a Westinghouse pressurized water reactor were performed to address the pumps-on/off issue. The mode of pump operation was varied in each calculation to ascertain the optimum mode. It was found that pump operation was not critical for this break size and location because the fuel rods remained cool in all accidents analyzed. In terms of system mass, however, it was preferable to leave the pumps in operation

  4. Operating experience with an on-line vibration control system for PWR main coolant pumps

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Vortriede, A.

    1996-01-01

    The main circulation pumps are key components of nuclear power plants with pressurized water reactors, because the availability of the main circulation pumps has a direct influence on the availability and electrical output of the entire plant. The on-line automatic vibration control system ASMAS was developed for early failure detection during the normal operation of the main circulation pumps in order to avoid unexpected outages and to establish the possibility of preventive maintenance of the pumps. This system is permanently and successfully operating in three German 1300 MW el NPP's with PWR and has been successfully tested in a 350 MW el NPP with a PWR. (orig.)

  5. Operating experience with an on-line vibration control system for PWR main coolant pumps

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Vortriede, A.

    1998-01-01

    The main circulation pumps are key components of nuclear power plants with pressurized water reactors (PWRs), because the availability of the main circulation pumps has a direct influence on the availability and electrical output of the entire plant. The on-line automatic vibration control system ASMAS was developed for early failure detection during the normal operation of the main circulation pumps in order to avoid unexpected outages and to establish the possibility of preventive maintenance of the pumps. This system is permanently and successfully operating in three German 1300 MW e1 NPP's with PWR and has been successfully tested in a 350 MW e1 NPP with a PWR. (orig.)

  6. Tests of Shaft Seal Systems of Circulation Pumps during Station Blackout

    Energy Technology Data Exchange (ETDEWEB)

    Beisiegel, A.; Foppe, F.; Wich, M.

    2014-07-01

    AREVA GmbH operates a unique Thermal-hydraulic plat form in Germany, France and USA. It is recognised as a test body according to ISO 17025. The Deutsche Akkreditierungsstelle GmbH (DAkkS - German Society for Accreditation) has also certified the Thermal-hydraulic platform as an independent inspection body Type C according to ISO 17020. A part of this platform is the Component Laboratory located in Karlstein, Germany which is in operation since more than 50 years. The testing activities cover a wide range as: Critical Heat Flux Tests, Valve Testing and Environmental Qualification for safety related components. Since 2011 the Component Qualification Karlstein extended their testing scope for different types of Shaft Seal Systems. (Author)

  7. Monitoring of Rotor-Stator Interaction in Pump-Turbine Using Vibrations Measured with On-Board Sensors Rotating with Shaft

    Directory of Open Access Journals (Sweden)

    Cristian G. Rodriguez

    2014-01-01

    Full Text Available Current trends in design of pump-turbines have led into higher rotor-stator interaction (RSI loads over impeller-runner. These dynamic loads are of special interest having produced catastrophic failures in pump-turbines. Determining RSI characteristics facilitates the proposal of actions that will prevent these failures. Pressure measurements all around the perimeter of the impeller-runner are appropriate to monitor and detect RSI characteristics. Unfortunately most installed pump-turbines are not manufactured with in-built pressure sensors in appropriate positions to monitor RSI. For this reason, vibration measurements are the preferred method to monitor RSI in industry. Usually vibrations are measured in two perpendicular radial directions in bearings where valuable information could be lost due to bearing response. In this work, in order to avoid the effect of bearing response on measurement, two vibration sensors are installed rotating with the shaft. The RSI characteristics obtained with pressure measurements were compared to those determined using vibration measurements. The RSI characteristics obtained with pressure measurements were also determined using vibrations measured rotating with shaft. These RSI characteristics were not possible to be determined using the vibrations measured in guide bearing. Finally, it is recommended to measure vibrations rotating with shaft to detect RSI characteristics in installed pump-turbines as a more practical and reliable method to monitor RSI characteristics.

  8. Simulations and field tests of a reactor coolant pump emergency start-up by means of remote gas units

    International Nuclear Information System (INIS)

    Omahen, P.; Gubina, F.

    1992-01-01

    The problem of the reactor coolant pump start-up in case of emergency by means of remote gas power plant units was analyzed. In this paper a simulation model is developed which enabled a detailed simulation of the transient process occurring at the start-up. The start-up of the RCP motor set was simulated in case of available one and two gas units. The field tests were performed and the measured variable values complied well with the simulation results. Two gas units have been determined as a safe start-up scheme of the RCP motor set considering for safety reasons accepted busbars and motor protection settings. A derived model for deep rotor bars was experimentally confirmed as effective means for the RCP motor set start-up transient simulation. Start-up procedures have been designed and adopted to the safety procedures of the Nuclear Power Plant Krsko

  9. Evaluation on Safety of Stainless Steels in Chemical Decontamination Process with Immersion Type of Reactor Coolant Pump for Nuclear Reactor

    International Nuclear Information System (INIS)

    Kim, Seong Jong; Han, Min Su; Jang, Seok Ki; Kim, Ki Joon

    2011-01-01

    Due to commercialization of nuclear power, most countries have taken interest in decontamination process of nuclear power plant and tried to develop a optimum process. Because open literature of the decontamination process are rare, it is hard to obtain skills on decontamination of foreign country and it is necessarily to develop proper chemical decontamination process system in Korea. In this study, applicable possibility in chemical decontamination for reactor coolant pump (RCP) was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process with immersion type than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion also increased with increasing cycle numbers

  10. Analyses of Decrease in Reactor Coolant Flow Rate in SMART

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Kyoo Hwan; Choi, Suhn

    2011-01-01

    SMART is a small integral reactor, which is under development at KAERI to get the standard design approval by the end of 2011. SMART works like a pressurized light-water reactor in principle though it is more compact than large commercial reactors. SMART houses major components such as steam generators, a pressurizer, and reactor coolant pumps inside the reactor pressure vessel. Due to its compact design, SMART adopts a canned-motor type reactor coolant pump which has much smaller rotational inertia than the ones used in commercial reactors. As a consequence, the reactor coolant pump has very short coastdown time and reactor coolant flow rate decreases more severely compared to commercial reactors. The transients initiated by reduction of reactor coolant flow rate have been analyzed to ensure that SMART can be safely shutdown on such transients. The design basis events in this category are complete loss of flow, single pump locked rotor with loss of offsite power, and single pump shaft break with loss of offsite power

  11. Proposal of Unique Process Pump with Floating Type Centrifugal Impeller (Preliminarily Report : Axial Thrust of Impeller with Driving Shaft)

    Science.gov (United States)

    Kawashima, Ryunosuke; Kanemoto, Toshiaki; Sakamoto, Kengo; Uno, Mitsuo

    2010-06-01

    The authors have proposed the unique centrifugal pump, in which the impeller dose not have the driving shaft but is driven by the magnetic induction, namely Lorentz force, without the stay. Then, the rotating posture of the impeller is not stable, just like UFO. To make the rotating posture of the impeller stable irrespective of the operating condition, the pressure in the impeller casing was investigated experimentally while the impeller rotates at the steady state, as the preliminarily stage. The pressure, as well known, fluctuates periodically in response to the blade number. Besides, the pressure on the impeller shrouds decreases with the increase of the gap between the front shroud and the suction cover where the water leaks to the suction pipe, and is distorted in the peripheral direction. Such pressure conditions contribute directly to the hydraulic force acting on the impeller. The unstable behaviors of the impeller are induced from the above hydraulic forces, which change unsteadily in the radial and the peripheral directions in the impeller casing. The forces are affected by not only the operating condition but also the rotating posture of the impeller.

  12. Crack-depth effects in the cylindrically guided wave technique for bolt and pump-shaft inspections

    International Nuclear Information System (INIS)

    Tsai, Y.M.; Liu, S.N.; Light, G.M.

    1991-01-01

    Nuclear power plants have experienced the failures of bolts and pump shafts. The industry is concerned about nondestructive evaluation (NDE) techniques that can be applied to these components. The cylindrically guided wave technique (CGWT) has been developed to detect the simulated circumferential defects in long bolts and studs. The ultrasonic CGWT employs the zero-degree longitudinal waves constrained to travel within the boundary of the components with cylindrical shape during inspection. When longitudinal waves are guided to travel along a cylinder, and impinge onto a circumferential defect, the waves are scattered at the crack on the cylinder surface. In this work, the wave scattering at the circumferential crack on a long cylinder is investigated. The transfer factor of the scattered waves is calculated for a wide range of frequency spectra. The scattered waveform at a distance away from a crack is calculated. The effect that crack depth exerts to the waveform in CGWT is shown. CGWT signals, waveform calculation and so on are reported. (K.I.)

  13. Sodium test of the Super-Phenix full size primary pump shaft on the CPV-1 test rig at ENEA-Brasimone

    International Nuclear Information System (INIS)

    Contardi, T.; Rapezzi, L.; Partiti, C.; Zola, M.; Denimal, P.

    1984-01-01

    Tests on FBR Superphenix primary pump shaft were performed within the sodium-cooled FBR common research and development programs provided for by the cooperation agreement between ENEA and CEA. These tests were performed in CPV-1 plant ENEA - Brasimone Energy Research Center. The CPV-1 rig was built by FIAT-TTG and reproduces the reactor operating conditions (sodium-temperature and level, shaft inclination, etc..). Furthermore, CPV-1 rig's most interesting feature is its possibility to apply seismic stresses to test section by means of an oleodynamic actuator. Pivoterie-1 test section was made by JEUMONT-SCHNEIDER which built Superphenix pumps too; it was given to ENEA by FIAT-TTG. Seismic tests were performed with the cooperation of ISMES and FIAT-TTG. (author)

  14. Hydrochemical and isotopic tracing of mixing dynamics and water quality evolution under pumping conditions in the mine shaft of the abandoned Frances Colliery, Scotland

    International Nuclear Information System (INIS)

    Elliot, Trevor; Younger, Paul L.

    2007-01-01

    Since 1995, when pumps were withdrawn from deep mines in East Fife (Scotland), mine waters have been rebounding throughout the coalfield. Recently, it has become necessary to pump and treat these waters to prevent their uncontrolled emergence at the surface. However, even relatively shallow pumping to surface treatment lagoons of the initially chemically-stratified mine water from a shaft in the coastal Frances Colliery during two dynamic step-drawdown tests to establish the hydraulic characteristics of the system resulted in rapid breakdown of the stratification within 24 h and a poor pumped water quality with high dissolved Fe loading. Further, data are presented here of hydrochemical and isotopic sampling of the extended pump testing lasting up to several weeks. The use in particular of the environmental isotopes δ 18 O, δ 2 H, δ 34 S, 3 H, 13 C and 14 C alongside hydrochemical and hydraulic pump test data allowed characterisation of the Frances system dynamics, mixing patterns and water quality sources feeding into this mineshaft under continuously pumped conditions. The pumped water quality reflects three significant components of mixing: shallow freshwater, seawater, and leakage from the surface treatment lagoons. In spite of the early impact of recirculating lagoon waters on the hydrochemistries, the highest Fe loadings in the longer-term pumped waters are identified with a mixed freshwater-seawater component affected by pyrite oxidation/melanterite dissolution in the subsurface system

  15. Residual heat removal pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1990-01-01

    Residual Heat Removal (RHR) pumps installed in pressurized water reactor power plants are used to provide the removal of decay heat from the reactor and to provide low head safety injection in the event of loss of coolant in the reactor coolant system. These pumps are subjected to rather severe temperature and pressure transients, therefore, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. RHR pumps have traditionally been a significant maintenance item for many utilities. The close-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. The casing separation requires the loosening of numerous highly torqued studs. Once the casing is separated, the impeller is dropped from the motor shaft to allow removal of the mechanical seal and casing cover from the motor shaft. Galling of the impeller to the motor shaft is not uncommon. The RHR pump internals are radioactive and the separation of the pump casing to perform routine maintenance exposes the maintenance personnel to high radiation levels. The handling of the impeller also exposes the maintenance personnel to high radiation levels. This paper introduces a design modification developed to convert the close-coupled RHR pumps to a coupled configuration

  16. Fracture assessment of a main reactor coolant pump in a BWR with encountered defects

    Energy Technology Data Exchange (ETDEWEB)

    Brickstad, B [Swedish Plant Inspectorate, Stockholm (Sweden)

    1988-12-31

    This document presents a case-study fracture assessment in BWR type reactor components. A cast stainless steel presenting defects due to thermal is studied. The stress analysis performed by aid of a finite element technique shows that a Leak Before Break situation could be expected. Nevertheless, it may be concluded that the cross section of the pump where the defect area was located can withstand very deep cracks before the risk of failure becomes unacceptable. (TEC).

  17. The influence of slightly different main circulation pumps on PWR coolant pressure pulsations

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1989-01-01

    Pressure distribution along the core barrel circumference caused by the simultaneous operation of six main circulating pumps with slightly different revolutions obtained as a result of measurement in operated NPP is determined on the basis of the well-known Penzes method based on the solving of the wave equation with source term using the expansion into the infinite series of eigenfunctions. Results of calculations can be summarized as follows: the pressure distribution and the resulting force acting on the core barrel has a random character. The same is valid for core barrel vibrations and mainly for the joint between core barrel and pressure vessel. (orig.)

  18. The cool seal system: a practical solution to the shaft seal problem and heat related complications with implantable rotary blood pumps.

    Science.gov (United States)

    Yamazaki, K; Mori, T; Tomioka, J; Litwak, P; Antaki, J F; Tagusari, O; Koyanagi, H; Griffith, B P; Kormos, R L

    1997-01-01

    A critical issue facing the development of an implantable, rotary blood pump is the maintenance of an effective seal at the rotating shaft. Mechanical seals are the most versatile type of seal in wide industrial applications. However, in a rotary blood pump, typical seal life is much shorter than required for chronic support. Seal failure is related to adhesion and aggregation of heat denatured blood proteins that diffuse into the lubricating film between seal faces. Among the blood proteins, fibrinogen plays an important role due to its strong propensity for adhesion and low transition temperature (approximately 50 degrees C). Once exposed to temperature exceeding 50 degrees C, fibrinogen molecules fuse together by multi-attachment between heat denatured D-domains. This quasi-polymerized fibrin increases the frictional heat, which proliferates the process into seal failure. If the temperature of the seal faces is maintained well below 50 degrees C, a mechanical seal would not fail in blood. Based on this "Cool-Seal" concept, we developed a miniature mechanical seal made of highly thermally conductive material (SiC), combined with a recirculating purge system. A large supply of purge fluid is recirculated behind the seal face to augment convective heat transfer to maintain the seal temperature below 40 degrees C. It also cools all heat generating pump parts (motor coil, bearing, seal). The purge consumption has been optimized to virtually nil (seal system has now been incorporated into our intraventricular axial flow blood pump (IVAP) and newly designed centrifugal pump. Ongoing in vivo evaluation of these systems has demonstrated good seal integrity for more than 160 days. The Cool-Seal system can be applied to any type of rotary blood pump (axial, diagonal, centrifugal, etc.) and offers a practical solution to the shaft seal problem and heat related complications, which currently limit the use of implantable rotary blood pumps.

  19. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    lose its strength even number of years of use. Dirty coolant is fed from the machines in to the reservoir of the coolant filter either by a pump or taken by the gravity and flows under the tray. This attracts the ferrous particles and builds up a cake of ferrous material and finally taken away by the scraper. The moving permanent magnets mounted on the shaft attracts ferrous chips and slide them on to plate and then to the discharge end or sludge bin. The coolant separated from chips flow back to the coolant tank. Well in this fast changing growth of metal working operation the recycling of cutting fluids become very important for the management of coolant. With the help of this developed model of magnetic coolant separator we can get highly efficient way of filtration guarantying fine finish, dimensional accuracy and increased tool life. The most significant role of this filter is that, it will reduce the waste disposal of coolant and a net profit for the production industries.

  20. Regulatory instrument review: Aging management of LWR cables, containment and basemat, reactor coolant pumps, and motor-operated valves

    International Nuclear Information System (INIS)

    Werry, E.V.; Somasundaram, S.

    1995-09-01

    The results of Stage 2 of the Regulatory Instrument Review are presented in this volume. Selected regulatory instruments, such as the Code of Federal Regulations (CFR), US Nuclear Regulatory Commission (NRC), Regulatory Guides, and ASME Codes, were investigated to determine the extent to which these regulations apply aging management to selected safety-related components in nuclear power plants. The Regulatory Instrument Review was funded by the NRC under the Nuclear Plant Aging Research (NPAR) program. Stage 2 of the review focused on four safety-related structures and components; namely, cables, containment and basemat, reactor coolant pumps, and motor-operated valves. The review suggests that the primary-emphasis of the regulatory instruments was on the design, construction, start-up, and operation of a nuclear power plant, and that aging issues were primarily addressed after an aging-related problem was recognized. This Stage 2 review confirms the results of the prior review; (see Regulatory Instrument Review: Management of Aging of LWR Major Safety-Related Components NUREG/CR-5490. The observations indicate that the regulations generally address management of age-related degradation indirectly. Specific age-related degradation phenomena frequently are dealt with in bulletins and notices or through generic issues, letters, etc. The major recommendation of this report, therefore, is that the regulatory instruments should more directly and explicitly address the aging phenomenon and the management of the age-related degradation process

  1. Numerical Simulation of the Pressure Distribution in the Reactor Vessel Downcomer Region Fluctuated by the Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dong Hwa; Jung, Byung Ryul; Jang, Ho Cheol; Yune, Seok Jeong; Kim, Eun Kee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    In this study the numerical simulation of the pressure distribution in the downcomer region resulting from the pressure pulsation by the Reactor Coolant Pump (RCP) is performed using the Finite Difference Method (FDM). Simulation is carried out for the cylindrical shaped 2-dimensional model equivalent to the outer surface of the Core Support Barrel (CSB) of APR1400 and a 1/2 model is adopted based on the bilateral symmetry by the inlet nozzle. The fluid temperature is 555 .deg. F and the forcing frequencies are 120Hz, 240Hz, 360Hz and 480Hz. Simulation results of the axial pressure distributions are provided as the Root Mean Square (RMS) values at the five locations of 0°, 45°, 90°, 135° and 180° in the circumferential direction from the inlet nozzle location. In the study, the numerical simulation of pressure distributions in the downcomer region induced by the RCP was performed using FDM and the results were reviewed. The interference of the waves returned from both boundaries in the axial direction and the source of the sinusoidal wave is shown on the inlet nozzle interface pressure point. It seems that the maximum pressures result from the superposition of the waves reflected from the seating surface and the waves newly arrived from the inlet nozzle interface pressure location.

  2. The Performance Test for Reactor Coolant Pump (RCP) adopting Variable Restriction Orifice Type Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Bae, B. U.; Cho, Y. J. and others

    2014-05-15

    The design values of the RCPTF are 17.2 MPa, 343 .deg. C, 11.7 m{sup 3}/s, and 13 MW in the maximum pressure, temperature, flow rate, and electrical power, respectively. In the RCPTF, various types of tests can be performed including a hydraulic performance test to acquire a H-Q curve as well seal transient tests, thrust bearing transient test, cost down test, NPSHR verification test, and so on. After a commissioning startup test was successfully perfomed, mechanical structures are improved including a flow stabilizer and variable restriction orifice. Two- branch pipe (Y-branch) was installed to regulate the flow rate in the range of performance tests. In the main pipe, a flow restrictor (RO: Restriction Orifice) for limiting the maximum flow rate was installed. In the branch pipe line, a globe valve and a butterfly valves for regulating the flow rate was located on the each branch line. When the pressure loss of the valve side is smaller than that of the RO side, the flow rate of valve side was increasing and the flow disturbance was occurred in the lower pipe line. Due to flow disturbnace, it is to cause an error when measuring RCP head and flow measurement of the venturi flow meter installed in the lower main pipe line, and thus leading to a decrease in measurement accuracy as a result. To increase the efficiency of the flow control availability of the test facility, the variable restriction orifice (VRO) type flow control valve was designed and manufactured. In the RCPTF in KAERI, the performance tests and various kinds of transient tests of the RCP were successfully performed. In this study, H-Q curve of the pump using the VRO revealed a similar trend to the result from two ROs. The VRO was confirmed to effectively cover the full test range of the flow rate.

  3. Expanding the applicable duration for shrink fitting of the ultrathin-walled reactor coolant pump rotor-can

    International Nuclear Information System (INIS)

    Li, Ruiqin; Zhang, Chi; Zhang, Liwen; Cui, Yan; Shen, Wenfei

    2017-01-01

    Highlights: •A thermal-mechanical coupled finite element model was developed to simulate the whole process. •Heat capacity added layer was used to extend the limited time for the process. •Shrink-fitted experiments were performed to verify the simulation results. -- Abstract: The rotor-can of reactor coolant pump (RCP) is generally assembled on the rotor using shrink fitting technique. The rotor-can is characterized by large height and ultrathin-walled cylinder, thus, its rigidity is weak and heat capacity is quite limited. The shrink fitting process has to be completed within a short limited-time, which makes it difficult for rotor to insert in the rotor-can completely. In order to solve this problem, a new method was proposed to extend the limited time by using a heat capacity added layer (HCAL) during the shrink fitting process. A thermal-mechanical coupled finite element (FE) model was developed to simulate the whole process. The transient heat exchange with a narrow gap between rotor and rotor-can during the shrink fitting process was taken into consideration. The limited time was predicted by calculating and analyzing the evolutions of temperature field and radial displacement field of the rotor-can. The simulation results indicate that the limited time of the shrink fitting process can be significantly extended with the increase of HCAL in thickness. Then, shrink fitting experiments were performed to confirm the extending effect of the HCAL. The experimental results of limited time show good agreement with the predicted values. The current results will certainly help the designer to improve the shrink fitting technique.

  4. Seismic tests in sodium of the SPX-1 primary pump shaft carried out in the CPV-1 test rig at ENEA-Brasimone

    International Nuclear Information System (INIS)

    Contardi, T.; Rapezzi, L.; Le Coz, P.; Tigeot, Y.; Partiti, C.; Zola, M.; Denimal, P.

    1988-01-01

    Dynamic tests were carried out by ISMES, on behalf of ENEA and CEA and in co-operation with FIAT/TTG, on a SPX-1 primary pump shaft. These tests were conducted, mainly in sodium, in the CPV-1 test rig at the ENEA Brasimone Center. The excitation was applied to the flange supporting the hydrostatic bearing. After some preliminary analysis performed in absence of liquid sodium and at ambient temperature, the following tests were performed on the rig filled with sodium at operating temperature: (A) sine sweeps between 1 and 15 Hz, (B) ambient vibration investigation, and (C) seismic tests with a SSE acceleration time-history (20 s duration) calculated by CEA at hydrostatic bearing level. Two sets of seismic tests were carried out, each time increasing amplitudes up to 70% of SSE. This value was not exceeded for safety reasons and actuator power limit. The first set of tests began in nominal operating conditions; when 70% of SSE was reached, pressure feed to hydrostatic bearing was reduced lowering its effective support. This simulated a larger earthquake. The second set of tests was representative of SPX-1 pump actual operating conditions, because both hydrostatic bearing pressure and shaft rotating speed were simultaneously reduced following the primary pump characteristic curve. The tests allowed the SPX-1 pump rotating set to be widely qualified. Among the main results, it is worth noting that the stiffness of the hydrostatic bearing system was generally compatible with seismic requirements. Finally, it is worth pointing out that, in order to allow the above-mentioned tests to be carried out, a full seismic qualification of the CPV-1 test rig was necessary: thus, this rig might be used in the future for further seismic tests on LMFBR components and systems in sodium. (author). Figs and tabs

  5. Pump

    International Nuclear Information System (INIS)

    Mole, C.J.

    1983-01-01

    An electromagnetic pump for circulating liquid -metal coolant through a nuclear reactor wherein opposite walls of a pump duct serve as electrodes to transmit current radially through the liquid-metal in the ducts. A circumferential electric field is supplied to the liquid-metal by a toroidal electromagnet which has core sections interposed between the ducts. The windings of the electromagnet are composed of metal which is superconductive at low temperatures and the electromagnet is maintained at a temperature at which it is superconductive by liquid helium which is fed through the conductors which supply the excitation for the electromagnet. The walls of the ducts joining the electrodes include metal plates insulated from the electrodes backed up by insulators so that they are capable of withstanding the pressure of the liquid-metal. These composite wall structures may also be of thin metal strips of low electrical conductivity backed up by sturdy insulators. (author)

  6. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  7. Potential for low fracture toughness and lamellar tearing on PWR steam generator and reactor coolant pump supports. Resolution of generic technical activity A-12

    International Nuclear Information System (INIS)

    Snaider, R.P.; Hodge, J.M.; Levin, H.A.; Zudans, J.J.

    1979-10-01

    This report summarizes work performed by the Nuclear Regulatory Commission staff and its contractor, Sandia Laboratories, in the resolution of Generic Technical Activity A-12, ''Potential for Low Fracture Toughness and Lamellar Tearing in PWR Steam Generator and Reactor Coolant Pump Supports.'' The report describes the technical issues, the technical studies performed by Sandia describes the technical issues, the technical studies performed by Sandia Laboratories, the NRC staff's technical positions based on these studies, and the staff's plan for implementing its technical positions. It also provides recommendations for further work. The complete technical input from Sandia Laboratories is appended to the report

  8. Procedure to determine the optimal parameters of the main primary coolant pump after compacting the FRG-1 reactor. Pt. 2. Partial structures of the procedure

    International Nuclear Information System (INIS)

    Pihowicz, W.

    1999-01-01

    On the basis of an extensive physical and technical analysis the partial structures of the procedure had been developed. They represent a logical linkage of determination elements in the form of decision and result units. The developed partial structures enable to determine the physical parameters, which characterize the primary circuit together with the compact core as well as the main primary coolant pump coming into question after compacting the core. The report also contains a discussions and a comparison of the partial structures. (orig.) [de

  9. Modal method for crack identification applied to reactor recirculation pump

    International Nuclear Information System (INIS)

    Miller, W.H.; Brook, R.

    1991-01-01

    Nuclear reactors have been operating and producing useful electricity for many years. Within the last few years, several plants have found cracks in the reactor coolant pump shaft near the thermal barrier. The modal method and results described herein show the analytical results of using a Modal Analysis test method to determine the presence, size, and location of a shaft crack. The authors have previously demonstrated that the test method can analytically and experimentally identify shaft cracks as small as five percent (5%) of the shaft diameter. Due to small differences in material property distribution, the attempt to identify cracks smaller than 3% of the shaft diameter has been shown to be impractical. The rotor dynamics model includes a detailed motor rotor, external weights and inertias, and realistic total support stiffness. Results of the rotor dynamics model have been verified through a comparison with on-site vibration test data

  10. Operating reliability of the shaft seal system of ANDRITZ RCP

    International Nuclear Information System (INIS)

    Grancy, Werner; Zehentner, Martin

    2002-01-01

    The next generation of nuclear power stations will have to fulfil new expectations in terms of safety, operating behaviour and costs. This applies also and especially to reactor coolant pumps for the primary circuit of pressurized water reactor type nuclear power plants (RCP). For 4 decades, ANDRITZ AG has developed and built RCPs and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as e. g. the shaft seal. Many questions concerning design and configuration of the shaft seal system cannot be answered purely theoretically, or they can only be answered partly. Therefore, comprehensive development work and testing was necessary to increase the operating reliability of the seal. Apart from all relevant questions connected with design and functioning of the pump there is one question of top priority: the operating reliability of the shaft seal system. Therefore it is intended to describe the current status of design and development of ANDRITZ RCP for future Korean NPPs, to present the most important design features and to give an introduction concerning experiences for a 3-stage-hydrodynamic seal as well as for a 2-stage-hydrodynamic seal

  11. Primary system hydraulic characteristics after modification of reactor coolant pumps' impeller wheels at Bohunice NPP executed in 2012 and 2013

    International Nuclear Information System (INIS)

    Hermansky, Jozef; Zavodsky, Martin

    2014-01-01

    A coolant flow through the reactor is usually determined after annual outages at Slovak NPP (VVER 440) in two distinct ways. First method is determination on the basis of the secondary system parameters - measurement of thermal balances. The value achieved by this method is used as the input parameter in the Table of allowed reactor operation modes. The second method draws from the primary system parameters - measurement of primary system hydraulic characteristics. Flow nozzles used for the measurement of feed water flow behind high pressure heaters were replaced at both Bohunice Units during outages in 2008. The feed water flow behind high pressure heaters is one of the main parameters used for the determination of coolant flow through the reactor by the first method. Compared to the measurement executed during previous fuel cycles, the calculated coolant flow through the reactor decreased considerably after the change of flow nozzles. The imaginary change of coolant flow through the reactor at Unit 3 was -1,6 %; and at Unit 4 -2,6 %. This change was not proved by the parallel measurement of primary system hydraulic characteristics. Later it was found out that the original flow nozzles used for 25 years were substantially deposited (original inner diameter of the nozzles was reduced by about 0,6-0,9 mm). Therefore feed water flow measurement was untrustworthy within the recent years. On the findings stated above, Bohunice NPP has decided to increase coolant flow through the reactor by changing the reactor coolant pumps impeller wheels. The modification of impellers wheels is planned within years 2012 to 2014. During the outages in 2013 two impeller wheels were replaced at both units. Nowadays Unit 4 is operated with all 6 new impeller wheels and Unit 3 with four new impeller wheels. Modification of last two impeller wheels at Unit 3 will be performed during the outage in 2014. On account of impeller wheels modification, non-standard measurement of PS hydraulic

  12. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  13. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  14. Shaft adjuster

    Science.gov (United States)

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  15. Compartmentalized safety coolant injection system

    International Nuclear Information System (INIS)

    Johnson, F.T.

    1983-01-01

    A safety coolant injection system for nuclear reactors wherein a core reflood tank is provided to afford more reliable reflooding of the reactor core in the event of a break in one of the reactor coolant supply loops. Each reactor coolant supply loop is arranged in a separate compartment in the containment structure to contain and control the flow of spilled coolant so as to permit its use during emergency core cooling procedures. A spillway allows spilled coolant in the compartment to pass into the emergency water storage tank from where it can be pumped back to the reactor vessel. (author)

  16. Design and instrumentation of an automotive heat pump system using ambient air, engine coolant and exhaust gas as a heat source

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.; Yigit, K.S.; Canakci, M.; Alptekin, E.; Turkcan, A.

    2009-01-01

    Because the amount of waste heat used for comfort heating of the passenger compartment in motor vehicles decreases continuously as a result of the increasing engine efficiencies originating from recent developments in internal combustion engine technology, it is estimated that heat requirement of the passenger compartment in vehicles using future generation diesel engines will not be met by the waste heat taken from the engine coolant. The automotive heat pump (AHP) system can heat the passenger compartment individually, or it can support the present heating system of the vehicle. The AHP system can also be employed in electric vehicles, which do not have waste heat, as well as vehicles driven by a fuel cell. The authors of this paper observed that such an AHP system using ambient air as a heat source could not meet the heat requirement of the compartment when ambient temperature was extremely low. The reason is the decrease in the amount of heat taken from the ambient air as a result of low evaporating temperatures. Furthermore, the moisture condensed from air freezed on the evaporator surface, thus blocking the air flow through it. This problem can be solved by using the heat of engine coolant or exhaust gases. In this case, the AHP system can have a higher heating capacity and reuse waste heat. (author)

  17. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  18. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    International Nuclear Information System (INIS)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav

    2017-01-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  19. The Performance Evaluation of Overall Heat Transfer and Pumping Power of γ-Al2O3/water Nanofluid as Coolant in Automotive Diesel Engine Radiator

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2013-05-01

    Full Text Available The efficiency of γ-Al2O3/water nanofluid as coolant is investigated in the present study. γ-Al2O3 nanoparticles with diameters of 20 nm dispersed in water with volume concentrations up 2% are selected and their performance in a radiator of Chevrolet Suburban diesel engine under turbulent flow conditions are numerically studied. The performance of an automobile radiator is a function of overall heat transfer coefficient and total heat transfer area. The heat transfer relations between nanofluid and airflow have been investigated to evaluate the overall heat transfer and the pumping power of γ-Al2O3/water nanofluid in the radiator with a given heat exchange capacity. In the present paper, the effects of the automotive speed and Reynolds number of the nanofluid in the different volume concentrations on the radiator performance are also investigated. As an example, the results show that for 2% γ-Al2O3 nanoparticles in water with Renf=6000 in the radiator while the automotive speed is 50 mph, the overall heat transfer coefficient and pumping power are approximately 11.11% and 29.17% more than that of water for given conditions, respectively. These results confirm that γ-Al2O3/water nanofluid offers higher overall heat transfer performance than water and can be reduced the total heat transfer area of the radiator.

  20. Maintenance experience on reactor recirculation pumps at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Singh, A.K.

    1995-01-01

    Reactor recirculation pumps at Tarapur Atomic Power Station (TAPS) are vertical, single stage centrifugal pumps having mechanical shaft seals and are driven by vertical mounted 3.3 kV, 3 phase, 1500 h.p. electric motors. During these years of operation TAPS has gained enough experience and expertise on the maintenance of reactor recirculation pumps which are dealt in this article. Failure of mechanical shaft seals, damage on pump carbon bearings, motor winding insulation failures and motor shaft damage have been the main areas of concern on recirculation pump. A detailed procedure step by step with component sketches has helped in eliminating errors during shaft seal assembly and installation. Pressure breakdown devices in seal assembly were rebuilt. Additional coolant water injection for shaft seal cooling was provided. These measures have helped in extending the reactor recirculation pump seal life. Pump bearing problems were mainly due to failure of anti-rotation pins and dowel pins of bearing assembly. These pins were redesigned and strengthened. Motor stator winding insulation failures were detected. Stator winding replacement program has been taken up on regular basis to avoid winding insulation failure due to aging. 3 refs., 2 tabs., 7 figs

  1. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    International Nuclear Information System (INIS)

    Park, Jong Woon; Park, Byung Gi; Kim, Chang Hyun

    2009-01-01

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON TM and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  2. Sensitivity Analysis of Core Damage from Reactor Coolant Pump Seal Leakage during Extended Loss of All AC Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Da Hee; Kim, Min Gi; Lee, Kyung Jin; Hwang, Su hyun; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Yoon, Duk Joo; Lee, Seung Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    In this study, in order to comprehend the Fukushima accident, the sensitivity analysis was performed to analyze the behavior of Reactor Coolant System (RCS) during ELAP using the RELAP5/MOD3.3 code. The Fukushima accident was caused by tsunami resulted in Station Black Out (SBO) followed by the reactor core melt-down and release of radioactive materials. After the accident, the equipment and strategies for the Extended Loss of All AC Power (ELAP) were recommended strongly. In this analysis, sensitivity studies for the RCP seal failure of the OPR1000 type NPP were performed by using RELAP5/MOD3.3 code. Six cases with different leakage rate of RCP seal were studied for ELAP with operator action or not. The main findings are summarized as follows: (1) Without the operator action, the core uncovery time is determined by the leakage rate of RCP seal. When the leakage rate per RCP seal are 5 gpm, 50 gpm, and 300 gpm respectively, the core uncovery time are 1.62 hr, 1.58 hr, and 1.29 hr respectively. Namely, If the leakage rate of RCP seal was much bigger, the uncover time of core would be shorter. (2) In case that the cooling by SG secondary side was performed using the TDAFP and SG ADV, the core uncovery time was significantly extended.

  3. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    International Nuclear Information System (INIS)

    Fair, C.E.; Cook, M.E.; Huber, K.A.; Rohde, R.

    1983-01-01

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system

  4. TRAC analysis of an 80% pump-side, cold-leg, large-break loss-of-coolant accident for the Westinghouse AP600 advanced reactor design

    International Nuclear Information System (INIS)

    Lime, J.F.; Boyack, B.E.

    1996-01-01

    An updated TRAC 80% pump-side, cold-leg, large-break (LB) loss-of-coolant accident (LOCA) has been calculated for the Westinghouse AP600 advanced reactor design. The updated calculation incorporates major code error corrections, model corrections, and plant design changes. The break size and location were calculated by Westinghouse to be the most severe LBLOCA for the AP600 design. The LBLOCA transient was calculated to 280 s, which is the time of in-containment refueling water-storage-tank injection. All fuel rods were quenched completely by 240 s. Peak cladding temperatures (PCTs) were well below the licensing limit of 1,478 K (2,200 F) but were very near the cladding oxidation temperature of 1,200 K (1,700 F). Transient event times and PCTs for the TRAC calculation were in reasonable agreement with those calculated by Westinghouse using their WCOBRA/TRAC code. However, there were significant differences in the detailed phenomena calculated by the two codes, particularly during the blowdown and refill periods. The reasons for these differences are still being investigated

  5. Spiral groove seal. [for hydraulic rotating shaft

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  6. Spiral groove seal. [for rotating shaft

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N. (Inventor)

    1974-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove produces a pumping action toward the fluid when the shaft rotates. This prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear. Provision is made for placing these spiral grooves in communication with the fluid to accelerate the generation of the hydraulic lifting force.

  7. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    A liquid metal pump comprising a shaft support structure which is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft carries an impeller and the support structure carries an impeller cage which is slidably disposed in a diffuser so as to allow complete removal of pump internals for inspection and repair. The diffuser is concentrically supported in the pump housing which also takes up all reaction forces generated by the discharge of the liquid metal from the diffuser, with floating seals arranged between impeller cage and the diffuser. The space between the diffuser and the pump housing permits the incoming liquid to essentially surround the diffuser. (author)

  8. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  9. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid

    DEFF Research Database (Denmark)

    Asadi, Meisam; Asadi, Amin; Aberoumand, Sadegh

    2018-01-01

    The present work aims to study heat transfer performance and pumping power of MgO-MWCNT/ thermal oil hybrid nanofluid. Using a KD2 Pro thermal analyzer, the thermal conductivity of the samples have been measured. The results showed an increasing trend for the thermal conductivity of the nanofluid...... by increasing the mass concentration and temperature, in which the maximum enhancement of thermal conductivity was approximately 65%. Predicting the thermal conductivity of the nanofluid, a highly accurate correlation in terms of solid concentration and temperature has been proposed. Moreover, the heat transfer...... nanofluid is highly efficient in heat transfer applications as a coolant fluid in both the laminar and turbulent flow regimes, although it causes a certain penalty in the pumping power....

  10. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  11. Coolant clean-up system in the primary coolant circuit for nuclear reactor

    International Nuclear Information System (INIS)

    Saito, Michio.

    1981-01-01

    Purpose: To maintain the quality of coolants at a prescribed level by distillating coolants in the primary coolant circuit for a BWR type reactor to remove impurities therefrom, taking out the condensates from the top of the distillation column and extracting impurities in a concentrated state from the bottom. Constitution: Coolant water for cooling the core is recycled by a recycling pump by way of a recycling pipeway in a reactor. The coolants extracted from an extraction pipeway connected to the recycling pipeway are fed into a distillation column, where distillation is taken place. Impurities in the coolants, that is, in-core corrosion products, fission products generated in the reactor core, etc. are separated by the distillation, concentrated and solidified in the bottom of the distillation column. While on the other hand, condensates removed with the impurities, that is, coolants cleaned-up are recycled to the coolant water for cooling the reactor core. (Moriyama, K.)

  12. Pump safety device

    International Nuclear Information System (INIS)

    Timmermans, Francis; Vandervorst, Jean.

    1981-01-01

    Safety device for longitudinally leak proofing the shaft of a pump in the event of the fracture of the dynamic seal separating the pump fluid high pressure chamber from the low pressure chamber. It is designed for fitting to the primary pumps of nuclear reactors. It includes a hollow cyclindrical piston located coaxially around the pump shaft and normally housed in a chamber provided for this purpose in the fixed housing of the dynamic seal, and means for moving this piston coaxially so as to compress a safety O ring between the shaft and the piston in the event of the dynamic seal failing [fr

  13. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid

    DEFF Research Database (Denmark)

    Asadi, Meisam; Asadi, Amin; Aberoumand, Sadegh

    2018-01-01

    The present work aims to study heat transfer performance and pumping power of MgO-MWCNT/ thermal oil hybrid nanofluid. Using a KD2 Pro thermal analyzer, the thermal conductivity of the samples have been measured. The results showed an increasing trend for the thermal conductivity of the nanofluid...... nanofluid is highly efficient in heat transfer applications as a coolant fluid in both the laminar and turbulent flow regimes, although it causes a certain penalty in the pumping power....... efficiency and pumping power in all the studied range of solid concentrations and temperatures have been theoretically investigated, based on the experimental data of dynamic viscosity and thermal conductivity, for both the internal laminar and turbulent flow regimes. It was observed that the studied......The present work aims to study heat transfer performance and pumping power of MgO-MWCNT/ thermal oil hybrid nanofluid. Using a KD2 Pro thermal analyzer, the thermal conductivity of the samples have been measured. The results showed an increasing trend for the thermal conductivity of the nanofluid...

  14. Secondary coolant purification system

    International Nuclear Information System (INIS)

    Stiteler, F.Z.; Donohue, J.P.

    1978-01-01

    The present invention combines the attributes of volatile chemical addition, continuous blowdown, and full flow condensate demineralization. During normal plant operation (defined as no primary to secondary leakage) condensate from the condenser is pumped through a full flow condensate demineralizer system by the condensate pumps. Volatile chemical additions are made. Dissolved and suspended solids are removed in the condensate polishers by ion exchange and/or filtration. At the same time a continuous blowdown of approximately 1 percent of the main steaming rate of the steam generators is maintained. Radiation detectors monitor the secondary coolant. If these monitors indicate no primary to secondary leakage, the blowdown is cooled and returned directly to the condensate pump discharge. If one of the radiation monitors should indicate a primary to secondary leak, when the temperature of the effluent exiting from the blowdown heat exchanger is compatible with the resin specifications of the ion exchangers, the bypass valve causes the blowdown flow to pass through the blowdown ion exchangers

  15. Study of transient flow in fuel element of tubular plates. Accident: Shaft locking of primary cooling pump without opening the emergency gate; Estudio del regimen transitorio en el elemento combustible de placas tubulares. Accidente: Agarrotamiento de la bomba. No se abre la compuerta

    Energy Technology Data Exchange (ETDEWEB)

    Aguilas, F; Moneva, M A; Garcia Ramirez, L; Lopez Jimenez, J; Diaz Diaz, J

    1971-07-01

    It is analysed the thermal distribution of a fuel element of tubular plates irradiated in the JEN-1 reactor in the case of shaft locking of the primary cooling pump without opening the emergency gate. The fuel element hottest channel is studied in the position of maximum neutronic flux for three reactor power levels: 3 Hw (maximum reactor power), 2 Mw and 1 Hw. (Author) 8 refs.

  16. Primary coolant circuits in FBR type reactors

    International Nuclear Information System (INIS)

    Kutani, Masushiro.

    1985-01-01

    Purpose: To eliminate the requirement of a pump for the forcive circulation of primary coolants and avoid the manufacturing difficulty of equipments. Constitution: In primary coolant circuits of an LMFBR type reactor having a recycling path forming a closed loop between a reactor core and a heat exchanger, coolants recycled through the recycling path are made of a magnetic fluid comprising liquid sodium incorporated with fine magnetic powder, and an electromagnet is disposed to the downstream of the heat exchanger. In the above-mentioned structure, since the magnetic fluid as the primary coolants losses its magnetic property when heated in the reactor core but recovers the property at a lower temperature after the completion of the heat exchange, the magnetic fluid can forcively be flown through the recycling path under the effect of the electromagnet disposed to the down stream of the heat exchanger to thereby forcively recycle the primary coolants. (Kawakami, Y.)

  17. Modular Porous Plate Sublimator /MPPS/ requires only water supply for coolant

    Science.gov (United States)

    Rathbun, R. J.

    1966-01-01

    Modular porous plate sublimators, provided for each location where heat must be dissipated, conserve the battery power of a space vehicle by eliminating the coolant pump. The sublimator requires only a water supply for coolant.

  18. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2015-05-15

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core by feeding into multiple stationary jet pumps inside the vessel. Together with the jet pumps, they allow station operators to vary coolant flow and variable pump speed provides the best and most stable reactor power control. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. This article describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motor-generator set. This article will also discuss the 2,500 hour laboratory test results conducted under reactor recirculation pump sealing conditions using a newly developed seal face technology recently implemented to overcome challenges when sealing neutral, ultra-pure water. In addition, the article will describe the elaborate shaft grounding arrangement and the preliminary measurement results achieved in order to eliminate potential damages to both pump and mechanical seal.

  19. Artificial heart system thermal converter and blood pump component research and development

    International Nuclear Information System (INIS)

    Pouchot, W.D.; Bifano, N.J.; Hanson, J.P.

    1975-01-01

    A bench model version of a nuclear-powered artificial heart system to be used as a replacement for the natural heart was constructed and tested as a part of a broader U. S. ERDA program. The objective of the broader program has been to develop a prototype of a fully implantable nuclear-powered total artificial heart system powered by the thermal energy of plutonium-238 and having minimum weight and volume and a minimum life of ten years. As a forward step in this broader program, component research and development has been carried out directed towards a fully implantable and advanced version of the bench model (IVBM). Some of the results of the component research and development effort on a Stirling engine, blood pump drive mechanisms, and coupling mechanisms are presented. The Stirling-mechanical system under development is shown. There are three major subassemblies: the thermal converter, the coupling mechanism, and the blood pump drive mechanism. The thermal converter uses a Stirling cycle to convert the heat of the plutonium-238 fueled heat source to a rotary shaft power output. The coupling mechanism changes the orientation of the output shaft by 90 degrees and transmits the pumping power by wire-wound core flexible shafting to the pumping mechanism. The coupling mechanism also provides routing of the coolant lines which carry the cycle waste heat from the thermal converter to the blood pump. The change in orientation of the thermal converter output shaft is for convenience in implanting in a calf. This orientation of thermal converter to blood pump seemed to give the best overall system fit in a calf based on fit trials with wooden models in a calf cadaver

  20. Circumferential shaft seal

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1981-01-01

    A circumferential shaft seal comprising two sealing rings held to a rotating shaft by means of a surrounding elastomeric band is disclosed. The rings are segmented and are of a rigid sealing material such as carbon or a polyimide and graphite fiber composite.

  1. Rotary shaft seal

    International Nuclear Information System (INIS)

    Langebrake, C.O.

    1984-01-01

    The invention is a novel rotary shaft seal assembly which provides positive-contact sealing when the shaft is not rotated and which operates with its sealing surfaces separated by a film of compressed ambient gas whose width is independent of the speed of shaft rotation. In a preferred embodiment, the assembly includes a disc affixed to the shaft for rotation therewith. Axially movable, non-rotatable plates respectively supported by sealing bellows are positioned on either side of the disc to be in sealing engagement therewith. Each plate carries piezoelectric transducer elements which are electrically energized at startup to produce films of compressed ambient gas between the confronting surfaces of the plates and the disc. Following shutdown of the shaft, the transducer elements are de-energized. A control circuit responds to incipient rubbing between the plate and either disc by altering the electrical input to the transducer elements to eliminate rubbing

  2. Experiences in design up-gradation of mechanical seal cooling scheme of Dhruva PHT pumps

    International Nuclear Information System (INIS)

    Balakrishnan, K.T.P.

    2002-01-01

    Full text: Dhruva is a natural uranium fuelled high flux research reactor. Heavy water is used as coolant, moderator and reflector. Heat from the heavy water coolant is removed in heat exchangers by demineralised water. The heavy water coolant is re-circulated between the reactor core and the heat exchangers in three separate loops by three main coolant pumps (MCPs). The MCPs are high capacity centrifugal pumps and are rated for continuous service. The mechanical seal of the pump prevents leakage of the process fluid, which is heavy water, through the pump shaft. Continuous operation of the pump results in the heating up of the seal and necessitates sustained cooling. An integral cooling provision is made by tapping a 15 NB line from the discharge volute of the pump and feeding the process fluid itself as coolant to the seal. A non-indicating type flow-sensing device monitors flow through this line. Limiting values of flow are set and annunciated by a pair of magnetic reed type relays. This cooling line was a built in feature of the pumps as supplied by the manufacturer. This arrangement had the following inherent limitations: 1. There was no on line indication of the coolant flow. 2. The reed type magnetic relays initiated pump trips by spurious actuation, resulting in the interruption of reactor operation. Servicing a faulty flow switch involved lengthy procedures and necessitated draining, filling and venting of the pump. This entailed extended plant outages. Close proximity of these flow switches to a highly radioactive piping element imposed severe restrictions on the planned maintenance activity on them. Efforts were made to provide a suitable alternate cooling and flow measurement scheme to overcome the above-mentioned limitations. After evaluating the relative merits and demerits of several schemes, a turbine type flow sensor, on a modified cooling line was selected as the most suitable alternative. The alternate seal-cooling scheme was implemented for all

  3. Experiences in design up-gradation of mechanical seal cooling scheme of Dhruva PHT pumps

    International Nuclear Information System (INIS)

    Balakrishnan, K.T.P.; Bharathan, R.

    2002-01-01

    Full text: Dhruva is a natural uranium fuelled high flux research reactor. Heavy water is used as coolant, moderator and reflector. Heat from the heavy water coolant is removed in heat exchangers by demineralised water. The heavy water coolant is re-circulated between the reactor core and the heat exchangers in three separate loops by three main coolant pumps (MCPs). The MCPs are high capacity centrifugal pumps and are rated for continuous service. The mechanical seal of the pump prevents leakage of the process fluid, which is heavy water, through the pump shaft. Continuous operation of the pump results in the heating up of the seal and necessitates sustained cooling. An integral cooling provision is made by tapping a 15 NB line from the discharge volute of the pump and feeding the process fluid itself as coolant to the seal. A non-indicating type flow-sensing device monitors flow through this line. Limiting values of flow are set and annunciated by a pair of magnetic reed type relays. This cooling line was a built in feature of the pumps as supplied by the manufacturer. This arrangement had the following inherent limitations : 1. There was no on line indication of the coolant flow. 2. The reed type magnetic relays initiated pump trips by spurious actuation, resulting in the interruption of reactor operation. Servicing a faulty flow switch involved lengthy procedures and necessitated draining, filling and venting of the pump. This entailed extended plant outages. Close proximity of these flow switches to a highly radioactive piping element imposed severe restrictions on the planned maintenance activity on them. Efforts were made to provide a suitable alternate cooling and flow measurement scheme to overcome the above-mentioned limitations. After evaluating the relative merits and demerits of several schemes, a turbine type flow sensor, on a modified cooling line was selected as the most suitable alternative. The alternate seal-cooling scheme was implemented for all

  4. BWR series pump recirculation system

    International Nuclear Information System (INIS)

    Dillmann, C.W.

    1992-01-01

    This patent describes a recirculation system for driving reactor coolant water contained in an annular downcomer defined between a boiling water reactor vessel and a reactor core spaced radially inwardly therefrom. It comprises a plurality of circumferentially spaced second pumps disposed in the downcomer, each including an inlet for receiving from the downcomer a portion of the coolant water as pump inlet flow, and an outlet for discharging the pump inlet flow pressurized in the second pump as pump outlet flow; and means for increasing pressure of the pump inlet flow at the pump inlet including a first pump disposed in series flow with the second pump for first receiving the pump inlet flow from the downcomer and discharging to the second pump inlet flow pressurized in the first pump

  5. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  6. Coolant leakage detection device

    International Nuclear Information System (INIS)

    Ito, Takao.

    1983-01-01

    Purpose: To surely detect the coolant leakage at a time when the leakage amount is still low in the intra-reactor inlet pipeway of FBR type reactor. Constitution: Outside of the intra-reactor inlet piping for introducing coolants at low temperature into a reactor core, an outer closure pipe is furnished. The upper end of the outer closure pipe opens above the liquid level of the coolants in the reactor, and a thermocouple is inserted to the opening of the upper end. In such a structure, if the coolants in the in-reactor piping should leak to the outer closure pipe, coolants over-flows from the opening thereof, at which the thermocouple detects the temperature of the coolants at a low temperature, thereby enabling to detect the leakage of the coolants at a time when it is still low. (Kamimura, M.)

  7. Alignment analysis of a vertical sodium pump

    International Nuclear Information System (INIS)

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump. The assembled CRBRP prototype pump shows smooth predictable vibration behavior experienced during water test. An ealier swing check of the pump shaft about the motor shaft hub demonstrated that the pump is relatively insensitive to manufacturing and assembly tolerances, a consequence of close dimensional control and unique alignment features. (orig./GL)

  8. Improved circumferential shaft seal

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N.

    1974-01-01

    Comparative tests of modified and unmodified carbon ring seals showed that addition of helical grooves to conventional segmented carbon ring seals reduced leakage significantly. Modified seal was insensitive to shaft runout and to flooding by lubricant.

  9. Transient Analysis for Evaluating the Potential Boiling in the High Elevation Emergency Cooling Units of PWR Following a Hypothetical Loss of Coolant Accident (LOCA) and Subsequent Water Hammer Due to Pump Restart

    International Nuclear Information System (INIS)

    Husaini, S. Mahmood; Qashu, Riyad K.

    2004-01-01

    The Generic Letter GL-96-06 issued by the U.S. Nuclear Regulatory Commission (NRC) required the utilities to evaluate the potential for voiding in their Containment Emergency Cooling Units (ECUs) due to a hypothetical Loss Of Coolant Accident (LOCA) or a Main Steam Line Break (MSLB) accompanied by the Loss Of Offsite Power (LOOP). When the offsite power is restored, the Component Cooling Water (CCW) pumps restart causing water hammer to occur due to cavity closure. Recently EPRI (Electric Power Research Institute) performed a research study that recommended a methodology to mitigate the water hammer due to cavity closure. The EPRI methodology allows for the cushioning effects of hot steam and released air, which is not considered in the conventional water column separation analysis. The EPRI study was limited in scope to the evaluation of water hammer only and did not provide any guidance for evaluating the occurrence of boiling and the extent of voiding in the ECU piping. This paper presents a complete methodology based on first principles to evaluate the onset of boiling. Also, presented is a methodology for evaluating the extent of voiding and the water hammer resulting from cavity closure by using an existing generalized computer program that is based on the Method of Characteristics. The EPRI methodology is then used to mitigate the predicted water hammer. Thus it overcomes the inherent complications and difficulties involved in performing hand calculations for water hammer. The heat transfer analysis provides an alternative to the use of very cumbersome modeling in using CFD (computational fluid dynamics) based computer programs. (authors)

  10. HANARO secondary coolant management

    International Nuclear Information System (INIS)

    Kim, Seon Duk.

    1998-02-01

    In this report, the basic theory for management of water quality, environmental factors influencing to the coolant, chemicals and its usage for quality control of coolant are mentioned, and water balance including the loss rate by evaporation (34.3 m 3 /hr), discharge rate (12.665 m 3 /hr), concentration ratio and feed rate (54.1 m 3 /hr) are calculated at 20 MW operation. Also, the analysis data of HANSU Limited for HANARO secondary coolant (feed water and circulating coolant) - turbidity, pH, conductivity, M-alkalinity, Ca-hardness, chloride ion, total iron ion, phosphoric ion and conversion rate are reviewed. It is confirmed that the feed water has good quality and the circulating coolant has been maintained within the control specification in general, but some items exceeded the control specification occasionally. Therefore it is judged that more regular discharge of coolant is needed. (author). 6 refs., 17 tabs., 18 figs

  11. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  12. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  13. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  14. Coolant clean up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tajima, Fumio; Iwami, Hiroshi.

    1981-01-01

    Purpose: To decrease the amount of main steams and improve the plant heat efficiency by the use of condensated water as coolants for not-regenerative heat exchangers in a coolant clean up system of a nuclear reactor. Constitution: In a coolant clean up system of a nuclear reactor, a portion of condensates is transferred to the shell of a non-regenerative heat exchanger by way of a condensate pump for non-regenerative heat exchanger through a branched pipeway provided to the outlet of a condensate desalter for using the condensates as the coolants for the shell of the heat exchanger and the condensates are then returned to the inlet of a feedwater heater after the heat exchange. The branched flow rate of the condensates is controlled by the flow rate control valve mounted in the pipeway. Condensates passed through the heat exchanger and the condensates not passed through the heat exchanger are mixed and heated in a heater and then fed to the nuclear reactor. In a case where no feedwater is necessary to the nuclear reactor such as upon shutdown of the reactor, the condensates are returned by way of feedwater bypass pipeway to the condensator. By the use of the condensates as the coolants for the heat exchanger, the main steam loss can be decreased and the thermal load for the auxiliary coolant facility can be reduced. (Kawakami, Y.)

  15. 40 CFR 65.116 - Quality improvement program for pumps.

    Science.gov (United States)

    2010-07-01

    ... (for example, piston, horizontal or vertical centrifugal, gear, bellows); pump manufacturer; seal type and manufacturer; pump design (for example, external shaft, flanged body); materials of construction... program. (4) Pump or pump seal inspection. The owner or operator shall inspect all pumps or pump seals...

  16. Shaft siting decision

    International Nuclear Information System (INIS)

    1987-08-01

    This study identifies and establishes relative guidelines to be used for siting of repository shafts. Weights were determined for the significant factors that impact the selection of shaft locations for a nuclear waste repository in salt. The study identified a total of 45 factors. A panel of experienced mining people utilized the Kepner-Tregoe (K-T) Decision Analysis Process to perform a structured evaluation of each significant shaft siting factor. The evaluation determined that 22 of the factors were absolute constraints and that the other 23 factors were desirable characteristics. The group established the relative weights for each of the 23 desirable characteristics by using a paired comparison method. 8 refs., 2 figs., 5 tabs

  17. Reactor auxiliary cooling facility and coolant supplying method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1996-06-07

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  18. Reactor auxiliary cooling facility and coolant supplying method therefor

    International Nuclear Information System (INIS)

    Ando, Koji; Kinoshita, Shoichiro.

    1996-01-01

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  19. Femoral shaft fractures

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C. II

    1985-01-01

    The femur is the longest, largest, and strongest bone in the body. Because of its length, width, and role as primary weight-bearing bone, it must tolerate the extremes of axial loading and angulatory stresses. Massive musculature envelopes the femur. This masculature provides abundant blood supply to the bone, which also allows great potential for healing. Thus, the most significant problem relating to femoral shaft fractures is not healing, but restoration of bone length and alignment so that the femoral shaft will tolerate the functional stresses demanded of it

  20. Alignment and operability analysis of a vertical sodium pump

    International Nuclear Information System (INIS)

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump

  1. Multi-stage internal gear/turbine fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  2. Demonstration and Validation of Corrosion-Mitigation Technologies for Mechanical Room Utility Piping and Cooling-Tower Pumps

    Science.gov (United States)

    2015-05-01

    34advanced material for cooling pump shafts" Stainless steel (316 or 416 ) Floway Pump Company, Fresno, CA 316 or 416 stainless steel shafts to replace...pump 5 incorporating 316 stainless steel housing. .................................... 19 Figure 13. New pump 5 being installed...43 Figure 28. Pump 5 (316 Stainless Steel ), 12 months exposure. .......................................... 43

  3. Hydrostatic radial bearing of centrifugal pump

    International Nuclear Information System (INIS)

    Skalicky, A.

    1976-01-01

    A hydrostatic radial pump is described characterized by the fact that part of the medium off-taken from delivery is used as a lubricating medium. Two additional bodies are placed alongside a hydrostatic bearing with coils in between them and the pump shaft; the coils have an opposite pitch. The feed channel for the hydrostatic bearing pocket is linked to delivery. The coil outlets are connected to the pump suction unit. Two rotating coils placed alongside the hydrostatic bearing will considerably simplify the communication channel design and reduce the dependence on the pump shaft deflections. The addition of another rotating coil in the close vicinity of the pump shaft or directly on the shaft further increases the efficiency. The bearing can be used in designing vertical circulating pumps for the cooling circuits of nuclear reactors. (J.B.)

  4. Extension of the Consolidation 3 shaft

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenkamp, G [Gesteins- und Tiefbau G.m.b.H., Recklinghausen (Germany, F.R.)

    1978-02-01

    The conversion of a mine shaft into a central winning shaft is described, in particular planning principles, problems to be solved, preliminary work, timber drawing, extension work, shaft deepening, and the installation of shaft internals.

  5. Magnetic shaft seals prevent hazardous leakage from wastewater agitators

    International Nuclear Information System (INIS)

    Traino, F.A.

    1985-01-01

    The US Department of Energy's laboratory in Miamisburg, OH, operated by Monsanto Research Corporation, processes approximately 45,000 gallons per week of low-level radioactive wastewater to meet Federal Environmental Protection Agency quality standards. Preventing the spread of radioactive contamination throughout the operating area demands effective sealing of all process piping, valves, pumps, and agitators. Rotating shafts of pumps and agitators installed a the start of operations in 1947 were sealed by stuffing glands with graphite impregnated asbestos packing. These pumps proved to be unsatisfactory. In the mid-1970's, new process pumps with mechanical seals and some with magnetic drives were installed. Later, in January 1979, new agitator shaft drives with double tandem, spring-loaded mechanical seals were installed, maintenance of these pumps was costly. The agitator drive shafts were redesigned to accommodate magnetic seals of the type successfully used in blowers and vacuum/pressure pumps in other plant locations. One inherent advantage of the magnetic seal is that it operates with a face loading as much as 50% less than a conventional spring-loaded mechanical seal. The lower loading by a predetermined uniform magnetic force contributes to long face life. Other advantages include compactness, ease of assembly with only a few parts, and insensitivity to vibration. The magnetic shaft seals installed on the agitator shafts in February 1983 are still in service without any leakage or need for maintenance. Based on current operating data and a projected five-year meantime between failures, the estimated cost benefit of the magnetic seals over spring-loaded mechanical seals over spring-loaded mechanical seals will be $640 vs $2400 respectively per seal, with 60% less downtime for maintenance

  6. LWR primary coolant pipe rupture test rig

    International Nuclear Information System (INIS)

    Yoshitoshi, Shyoji

    1978-01-01

    The rupture test rig for primary coolant pipes is constructed in the Japan Atomic Energy Research Institute to verify the reliability of the primary coolant pipes for both PWRs and BWRs. The planned test items consisted of reaction force test, restraint test, whip test, jet test and continuous release test. A pressure vessel of about 4 m 3 volume, a circulating pump, a pressurizer, a heater, an air cooler and the related instrumentation and control system are included in this test rig. The coolant test condition is 160 kg/cm 2 g, 325 deg C for PWR test, and 70 kg/cm 2 g, saturated water and steam for BWR test, 100 ton of test load for the ruptured pipe bore of 8B Schedule 160, and 20 lit/min. discharge during 20 h for continuous release of coolant. The maximum pit internal pressure was estimated for various pipe diameters and time under the PWR and BWR conditions. The spark rupturing device was adopted for the rupture mechanics in this test rig. The computer PANAFACOM U-300 is used for the data processing. This test rig is expected to operate in 1978 effectively for the improvement of reliability of LWR primary coolant pipes. (Nakai, Y.)

  7. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  8. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  9. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 06-06-2016 2. REPORT TYPE Interim Report 3. DATES COVERED ... Corrosion Testing of Traditional and Extended Life Coolants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hansen, Gregory A. T...providing vehicle specific coolants. Several laboratory corrosion tests were performed according to ASTM D1384 and D2570, but with a 2.5x extended time

  10. Research on coolant radiochemistry

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, W. H.; Park, Y. J.; Im, J. K.; Jung, Y. J.; Jee, K. Y.; Choi, K. C.

    2004-04-01

    The final objective of this study is to develop the technology on the reduction of radioactive material formed in reactor coolant circuit. The contents of this study are composed of the simulation of primary cooling system, chemistry measurement technology in the high-temperature high-pressure environments, and coolant chemistry control technology. The main results are as follows; High-temperature and high-pressure loop system was designed and fabricated, which is to inducing CRUD growth condition on the surface of cladding. The high-temperature pH measurement system was established with YSZ sensing electrode and Ag/AgCl reference electrode. The performance of pH electrode was confirmed in the temperature range 200∼280 .deg. C. Coolant chemistry control technologies such as the neutron irradiation technique of boric acid solution, the evaluation on high-temperature electrochemical behavior of coolant, and the measurement of physicochemical properties of micro-particles were developed. The results of this study can be useful for the understanding of chemical phenomena occurred in reactor coolant and for the study on the reduction of radioactive material in primary coolant, which will be carried out in the next research stage

  11. Review on research of small break loss of coolant accident

    International Nuclear Information System (INIS)

    Bo Jinhai; Wang Fei

    1998-01-01

    The Small Break Loss of Coolant Accident (SBLOCA) and its research art-of -work are reviewed. A typical SBLOCA process in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) and the influence of break size, break location and reactor coolant pump on the process are described. The existing papers are classified in two categories: experimental and numerical modeling, with the primary experimental apparatuses in the world listed and the research works on SBLOCA summarized

  12. Pumps in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, J.H.

    1991-01-01

    This paper reports that pumps play an important role in nuclear plant operation. For instance, reactor coolant pumps (RCPs) should provide adequate cooling for reactor core in both normal operation and transient or accident conditions. Pumps such as Low Pressure Safety Injection (LPSI) pump in the Emergency Core Cooling System (ECCS) play a crucial role during an accident, and their reliability is of paramount importance. Some key issues involved with pumps in nuclear plant system include the performance of RCP under two-phase flow conditions, piping vibration due to pump operating in two-phase flows, and reliability of LPSI pumps

  13. FRACTURE SHAFT HUMERUS: INTERLOCKING

    Directory of Open Access Journals (Sweden)

    Deepak Kaladagi

    2014-12-01

    Full Text Available BACKGROUND: The incidence of humeral fracture has significantly increased during the present years due to the population growth and road traffic, domestic, industrial, automobile accidents & disasters like tsunami, earthquakes, head-on collisions, polytrauma etc. In order to achieve a stable fixation followed by early mobilization, numerous surgical implants have been devised. PURPOSE: The purpose of this study is to analyze the results of intramedullary fixation of proximal 2/3rd humeral shaft fractures using an unreamed interlocking intramedullary nail. INTRODUCTION: In 40 skeletally matured patients with fracture shaft of humerus admitted in our hospital, we used unreamed antegrade interlocking nails. MATERIAL: We carried out a prospective analysis of 40 patients randomly selected between 2001 to 2014 who were operated at JNMC Belgaum, MMC Mysore & Navodaya Medical College, Raichur. All cases were either RTAs, Domestic, Industrial, automobile accidents & also other modes of injury. METHOD: Routine investigations with pre-anaesthetic check-up & good quality X-rays of both sides of humerus was taken. Time of surgery ranged from 5-10 days from the time of admission. Only upper 1/3rd & middle 1/3rd humeral shaft fractures were included in the study. In all the cases antegrade locked unreamed humeral nails were inserted under C-arm. Patient was placed in supine position & the shoulder was kept elevated by placing a sandbag under the scapula. In all patients incision taken from tip of acromion to 3cm over deltoid longitudinally. Postoperatively sling applied with wrist & shoulder movements started after 24 hours. All the patients ranged between the age of 21-50 years. RESULTS: Total 40 patients were operated. Maximum fracture site were in the middle third- 76%, 14% upper 1/3rd. All 40 patients achieved union. The average time of union was 8-10 weeks. All patients regained full range of movements except in few cases, where there was shoulder

  14. The post-mining context at Decazeville-Firmi concession (Aveyron, France): analysis of impacts resulting from the cessation of pumping at the central shaft. Survey of various scenarios related to the water level of the pit lake in the Grande Decouverte

    International Nuclear Information System (INIS)

    Cojean, R.; Franco, N.; Lazarewicz, J.C.; Blachere, A.; Lefort, D.; Sorgi, C.

    2005-01-01

    Within the frame of the Survey related to the cessation of mine workings in Decazeville-Firmi concession, various impacts resulting from the cessation of pumping at the Central Shaft were assessed. Mainly these impacts are related to groundwater behaviour in the abandoned underground coal mines, hydro-chemistry of waters discharged to the environment, ground stability concerns and coal gas emanations. This analysis allowed the choice of the most appropriate elevation of the pit lake level in the Grande Decouverte, with the necessity to continue the pumping. Two main objectives were reached. The elected elevation is high enough to result in a permanent chemical stratification, which allows the pumping of the superficial waters and its discharge to natural watercourses without any treatment. The elected elevation is low enough to avoid any problem of inflow of water or ground stability at some particular places which might have been threatened by the rising of the piezometric level of the mining aquifer. Lastly, the elected elevation of the pit lake allows a quality scenery design around the pit lake. (authors)

  15. The post-mining context at Decazeville-Firmi concession (Aveyron, France): analysis of impacts resulting from the cessation of pumping at the central shaft. Survey of various scenarios related to the water level of the pit lake in the Grande Decouverte

    Energy Technology Data Exchange (ETDEWEB)

    Cojean, R. [Ecole des Mines de Paris, Institut des Geosciences, Centre de Geologie de l' Ingenieur, UMLV, 77 - Marne-la-Vallee (France); Franco, N. [Charbonnages de France, Dir. Technique Nationale, 42 - Saint-Etienne (France); Lazarewicz, J.C. [Charbonnages de France, Dir. Technique Nationale, 13 - Meyreuil (France); Blachere, A.; Lefort, D. [Bureau d' Etudes CESAME, 42 - Fraisses (France); Sorgi, C. [INERIS, 60 - Verneuil-en-Halatte (France)

    2005-07-01

    Within the frame of the Survey related to the cessation of mine workings in Decazeville-Firmi concession, various impacts resulting from the cessation of pumping at the Central Shaft were assessed. Mainly these impacts are related to groundwater behaviour in the abandoned underground coal mines, hydro-chemistry of waters discharged to the environment, ground stability concerns and coal gas emanations. This analysis allowed the choice of the most appropriate elevation of the pit lake level in the Grande Decouverte, with the necessity to continue the pumping. Two main objectives were reached. The elected elevation is high enough to result in a permanent chemical stratification, which allows the pumping of the superficial waters and its discharge to natural watercourses without any treatment. The elected elevation is low enough to avoid any problem of inflow of water or ground stability at some particular places which might have been threatened by the rising of the piezometric level of the mining aquifer. Lastly, the elected elevation of the pit lake allows a quality scenery design around the pit lake. (authors)

  16. Triboengineering problems of lead coolant in innovative fast reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Novozhilova, O.O.; Shumilkov, A.I.; Lvov, A.V.; Bokova, T.A.; Makhov, K.A.

    2013-01-01

    Graphical abstract: Models of experimental sites for research of processes tribology in heavy liquid metal coolant. -- Highlights: • The contact a pair of heavy liquid metal coolant for reactors on fast neutrons. • The hydrostatic bearings main circulation pumps. • Oxide coating and degree of wear of friction surfaces in heavy liquid metal coolant. -- Abstract: So far, there are plenty of works dedicated to studying the phenomenon of friction. However, there are none dedicated to functioning of contact pairs in heavy liquid-metal coolants for fast neutron, reactor installations (Kogaev and Drozdov, 1991; Modern Tribology, 2008; Drozdov et al., 1986). At the Nizhny Novgorod State Technical University, such research is conducted in respect to friction, bearings of main circulating pumps, interaction of sheaths of neutron absorber rods with their covers, of the reactor control and safety system, refueling systems, and interaction of coolant flows with, channel borders. As a result of experimental studies, the characteristic of friction pairs in the heavy, liquid metal coolant shows the presence dependences of oxide film on structural materials of the wear. The inapplicability of existing calculation methods for assessing the performance of the bearing nodes, in the heavy liquid metal coolant is shown

  17. Shaft Boring Machine: A method of mechanized vertical shaft excavation

    International Nuclear Information System (INIS)

    Goodell, T.M.

    1991-01-01

    The Shaft Boring Machine (SBM) is a vertical application of proven rock boring technology. The machine applies a rotating cutter wheel with disk cutters for shaft excavation. The wheel is thrust against the rock by hydraulic cylinders and slews about the shaft bottom as it rotates. Cuttings are removed by a clam shell device similar to conventional shaft mucking and the muck is hoisted by buckets. The entire machine moves down (and up) the shaft through the use of a system of grippers thrust against the shaft wall. These grippers and their associated cylinders also provide the means to maintain verticality and stability of the machine. The machine applies the same principles as tunnel boring machines but in a vertical mode. Other shaft construction activities such as rock bolting, utility installation and shaft concrete lining can be accomplished concurrent with shaft boring. The method is comparable in cost to conventional sinking to a depth of about 460 meters (1500 feet) beyond which the SBM has a clear host advantage. The SBM has a greater advantage in productivity in that it can excavate significantly faster than drill and blast methods

  18. Coolant leakage detecting device

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Kawai, Katsunori; Ishihara, Yoshinao.

    1995-01-01

    The device of the present invention judges an amount of leakage of primary coolants of a PWR power plant at high speed. Namely, a mass of coolants contained in a pressurizer, a volume controlling tank and loop regions is obtained based on a preset relational formula and signals of each of process amount, summed up to determine the total mass of coolants for every period of time. The amount of leakage for every period of time is calculated by a formula of Karman's filter based on the total mass of the primary coolants for every predetermined period of time, and displays it on CRT. The Karman's filter is formed on every formula for several kinds of states formed based on the preset amount of the leakage, to calculate forecasting values for every mass of coolants. An adaptable probability for every preset leakage amount is determined based on the difference between the forecast value and the observed value and the scattering thereof. The adaptable probability is compared with a predetermined threshold value, which is displayed on the CRT. This device enables earlier detection of leakage and identification of minute leakage amount as compared with the prior device. (I.S.)

  19. Forging Long Shafts On Disks

    Science.gov (United States)

    Tilghman, Chris; Askey, William; Hopkins, Steven

    1989-01-01

    Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.

  20. Reactor coolant cleanup device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To enable to introduce reactor water at high temperature and high pressure as it is, as well as effectively adsorb to eliminate cobalt in reactor water. Constitution: The coolant cleanup device comprises a vessel main body inserted to coolant pipeway circuits in a water cooled reactor power plant and filters contained within the vessel main body. The filters are prepared by coating and baking powder of metal oxides such as manganese ferrite having a function capable of adsorbing cobalt in the coolants onto the surface of supports made of metals or ceramics resistant to strong acids and alkalies in the form of three-dimensional network structure, for example, zircaloy-2, SUS 303 and the zirconia (baking) to form a basic filter elements. The basic filter elements are charged in plurality to the vessel main body. (Kawaiami, Y.)

  1. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  2. Test study on safety features of station blackout accident for nuclear main pump

    International Nuclear Information System (INIS)

    Liu Xiajie; Wang Dezhong; Zhang Jige; Liu Junsheng; Yang Zhe

    2009-01-01

    The theoretical and experimental studies of reactor coolant pump accidents encountered nation-wide and world-wide were described. To investigate the transient hydrodynamic performance of reactor coolant pump (RCP) during the period of rotational inertia in the station blackout accident, some theoretical and experimental studies were carried out, and the analysis of the test results was presented. The experiment parameters, conditions and test methods were introduced. The flow-rate, rotate speed and vibrations were analyzed emphatically. The quadruplicate polynomial curve equation was used to simulate the flow-rate,rotate speed along with time. The test results indicate that the flow-rate and rotator speed decrease rapidly at the very beginning of cut power and the test results accord with the regulation of safety standard. The vibrant displacement of bearing seat is intensified at the moment of lose power, but after a certain period rotor shaft libration changes. The test and analysis results help to understand the hydrodynamic performance of nuclear primary pump under lost of power accident, and provide the basic reference for safety evaluation. (authors)

  3. Using Composite Materials in a Cryogenic Pump

    Science.gov (United States)

    Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

    2008-01-01

    Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

  4. Internal pump monitoring device

    International Nuclear Information System (INIS)

    Kurosaki, Toshikazu.

    1996-01-01

    In the present invention, a thermometer is disposed at the upper end of an internal pump casing of a coolant recycling system in a BWR type reactor to detect leakage of reactor water thereby ensuring the improvement of reliability of the internal pump. Namely, a thermometer is disposed, which can detect temperature elevation occurred when water in the internal pump leaked from a reactor pressure vessel passes through the gap between a stretch tube and an upper end of the pump casing. Signals from the thermometer are transmitted to a signal processing device by an instrumentation cable. The signal processing device generates an alarm when the temperature signal exceeds a predetermined value and announces that leakage of reactor water occurs in the internal pump. Since the present invention can detect the leakage of the reactor water in the pump casing in an early stage, it can contribute to the improvement of the safety and reliability of the internal pump. (I.S.)

  5. Coolant system decontamination

    International Nuclear Information System (INIS)

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P.

    1981-01-01

    An improved method for decontaminating the coolant system of water cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution. (author)

  6. Research on Coolant Radiochemistry

    International Nuclear Information System (INIS)

    Ha, Yeong Keong; Kim, W. H.; Yeon, J. W.; Jung, Y. J.; Choi, K. C.; Choi, K. S.; Park, Y. J.; Cho, Y. H.

    2007-06-01

    The final objective of this study is to develop a method for reducing radioactive materials formed in the reactor coolant circuit. This second stage research was categorized into the following three subgroups: the development of the estimation technique of microscopic chemical variation at high temperatures and pressures, the fundamental study on the thermodynamics at high temperatures and pressures, and the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD. First, in the development of the estimation technique of microscopic chemical change at high temperatures and pressures, the technique for measuring coolant chemistry such as pH, conductivity and Eh was developed to be appropriate for the high temperature and pressure condition. The coolant chemistry measuring system including the self-devised high temperature pH sensor can be applied to the field of nuclear reactor and contribute on a large scale in the automation of the coolant chemistry control and the establishment of the real-time on-line measuring technique. Secondly, the dissociation constant of water and the solubility of metal oxides were measured in the fundamental study on the thermodynamics at high temperatures and pressures. Finally, in the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD, the careful investigation of the deposition phenomena of micro particles on the cladding surface showed that subcooled boiling and the dissolved hydrogen are the main factors responsible for the growth of CRUD. In addition, the basis was provided for the construction of a new particle behavior model in the reactor coolant circuit

  7. Laser shaft alignment measurement model

    Science.gov (United States)

    Mo, Chang-tao; Chen, Changzheng; Hou, Xiang-lin; Zhang, Guoyu

    2007-12-01

    Laser beam's track which is on photosensitive surface of the a receiver will be closed curve, when driving shaft and the driven shaft rotate with same angular velocity and rotation direction. The coordinate of arbitrary point which is on the curve is decided by the relative position of two shafts. Basing on the viewpoint, a mathematic model of laser alignment is set up. By using a data acquisition system and a data processing model of laser alignment meter with single laser beam and a detector, and basing on the installation parameter of computer, the state parameter between two shafts can be obtained by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated. This will instruct us to move the apparatus to align the shafts.

  8. Shaft seal assembly and method

    Science.gov (United States)

    Keba, John E. (Inventor)

    2007-01-01

    A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.

  9. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  10. Primary coolant recycling device for FBR type reactor

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru; Tokiwai, Moriyasu

    1998-01-01

    A primary coolants (liquid sodium) recycling device comprises a plurality of recycling pumps. The recycling pumps are operated while using, as a power source, electric power generated by a thermoelectric power generation system by utilizing heat stored in the coolants. The thermoelectric power generation system comprises a thermo-electric conversion module, heat collecting heat pipes as a high temperature side heat conduction means and heat dissipating pipes as a low temperature side heat conduction means. The heat of coolants is transferred to the surface of the high temperature side of each thermo-electric conversion elements of the thermal power generation system by the heat collecting heat pipes. The heat on the low temperature side of each of the thermo-electric conversion elements is removed by the heat dissipating pipes. Accordingly, temperature difference is caused between both surfaces of the thermo-electric conversion elements. Even upon loss of a main power source due to stoppage of electricity, electric power is generated by utilizing heat of coolants, so that the recycling pumps circulate coolants to cool a reactor core continuously. (I.N.)

  11. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  12. Chemical sensors for monitoring non-metallic impurities in liquid sodium coolant

    International Nuclear Information System (INIS)

    Ganesan, Rajesh; Jayaraman, V.; Rajan Babu, S.; Sridharan, R.; Gnanasekaran, T.

    2011-01-01

    Liquid sodium is the coolant of choice for fast breeder reactors. Liquid sodium is highly compatible with structural steels when the concentration of dissolved non-metallic impurities such as oxygen and carbon are low. However, when their concentrations are above certain threshold limits, enhanced corrosion and mass transfer and carburization of the steels would occur. The threshold concentration levels of oxygen in sodium are determined by thermochemical aspects of various ternary oxides of Na-M-O systems (M alloying elements in steels) which take part in corrosion and mass transfer. Dissolved carbon also influences these threshold levels by establishing relevant carbide equilibria. An event of steam leak into sodium at the steam generator, if undetected at its inception itself, can lead to extensive wastage of the tubes of the steam generator and prolonged shutdown. Air ingress into the argon cover gas and leak of hydrocarbon oil used as cooling fluids of the shafts of the centrifugal pumps of sodium are the sources of oxygen and carbon impurities in sodium. Continuous monitoring of the concentration of dissolved hydrogen, carbon and oxygen in sodium coolant will help identifying their ingress at inception itself. An electrochemical hydrogen sensor based on CaHBr-CaBr 2 hydride ion conducting solid electrolyte has been developed for detecting the steam leak during normal operating conditions of the reactor. A nickel diffuser based sensor system using thermal conductivity detector (TCD) and Pd-doped tin oxide thin film sensor has been developed for use during low power operations of the reactor or during its start up. For monitoring carbon in sodium, an electrochemical sensor with molten Na 2 CO 3 -LiCO 3 as the electrolyte and pure graphite as reference electrode has been developed. Yttria Doped Thoria (YDT) electrolyte based oxygen sensor is under development for monitoring dissolved oxygen levels in sodium. Fabrication, assembly, testing and performance of

  13. LMR [liquid metal reactor] centrifugal pump coastdowns

    International Nuclear Information System (INIS)

    Dunn, F.E.; Malloy, D.J.

    1987-01-01

    A centrifugal pump model which describes the interrelationships of the pump discharge flowrate, pump speed, shaft torque and dynamic head has been implemented based upon existing models. Specifically, the pump model is based upon the dimensionless-homologous pump theory of Wylie and Streeter. Given data from a representative pump, homologous theory allows one to predict the transient characteristics of similarly sized pumps. This homologous pump model has been implemented into both the one-dimensional SASSYS-1 systems analysis code and the three-dimensional COMMIX-1A code. Comparisons have been made both against other pump models (CRBR) and actual pump coastdown data (EBR-II and FFTF). Agreement with this homologous pump model has been excellent. Additionally, these comparisons indicate the validity of applying the medium size pump data of Wylie and Streeter to a range of typical LMR centrifugal pumps

  14. Detection of stress corrosion cracks in reactor pressure vessel and primary coolant system anchor studs

    International Nuclear Information System (INIS)

    Light, G.M.; Joshi, N.R.

    1987-01-01

    Under Electric Power Research Institute (EPRI) contract No. 2179-2, southwest Research Institute is continuing work on the use of the cylindrically guided wave technique (CGWT) for inspecting stud bolts. Also being evaluated is the application of the CGWT to the inspection of reactor coolant pump shafts. Data have been collected for stud bolts ranging from 16 to 112 inches (40.6 to 285 cm) in length, and from 1 to 4.5 inches (2.54 to 11.4 cm) in diameter. For each bolt size, tests were conducted to determine the smallest detectable notch, the effect of thread noise, and the amount of detectable simulated corrosion. The ratio of reflected longitudinal signals to mode-converted signals was analyzed with respect to bolt diameter, bolt length, and frequency parameters. The results of these test showed the following: (1) The minimum detectable notch in the threaded region was approximately 0.05 inch (1.3 mm) for all stud bolts evaluated. (2) Thread noise could easily be detected, but the level of noise was below the minimum detectable notch signal. (3) For carbon steel, optimum transducer frequency was 5 MHz, using a transducer whose face had an impedance that matched the steel surface. (4) Simulated corrosion of 15% reduced diameter could be detected

  15. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1981-01-01

    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  16. Device for preventing coolant outflow in a reactor

    International Nuclear Information System (INIS)

    Nemoto, Kiyomitsu; Mochizuki, Keiichi.

    1975-01-01

    Object: To prevent outflow of coolant from a reactor vessel even in an occurrence of leaking trouble at a low position in a primary cooling system or the like in the reactor vessel. Structure: An inlet at the foremost end of a coolant inlet pipe inserted into a reactor vessel is arranged at a level lower than a core, and a check valve is positioned at a level higher than the core in a rising portion of the inlet. In normal condition, the check valve is pushed up by discharge pressure of a main circulating pump and remains closed, and hence, producing no flow loss of coolant, sodium. However, when a trouble such as rupture occurs at the lower position in the primary cooling system, the attractive force for allowing the coolant to back-flow outside the reactor vessel and the load force of the coolant within the reactor vessel cause the check valve to actuate, as a consequence of which a liquid level of the coolant downwardly moves to the position of the check valve to intake the cover gases into a gas intake, thereby cutting off a flow passage of the coolant to stop outflow thereof. (Kamimura, M.)

  17. Torsion of a growing shaft

    Directory of Open Access Journals (Sweden)

    Alexander V. Manzhirov

    2017-12-01

    Full Text Available The torsion of a shaft by rigid disks is considered. The shaft has the form of circular cylinder. Two rigid disks are attached to its end faces. The process of continuous growth of such shaft under the influence of twisting torques applied to the disks is studied. Dual series equations which reflect the mathematical content of the problem at the different stages of the growing process are derived and solved. Results of the numerical analysis and singularities of the qualitative mechanical behaviour of the fundamental characteristics are discussed.

  18. TIBIAL SHAFT FRACTURES.

    Science.gov (United States)

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  19. Circulation pump mounting

    International Nuclear Information System (INIS)

    Skalicky, A.

    1976-01-01

    The suspension is described of nuclear reactor circulating pumps enabling their dilatation with a minimum reverse force consisting of spacing rods supported with one end in the anchor joints and provided with springs and screw joints engaging the circulating pump shoes. The spacing rods are equipped with side vibration dampers anchored in the shaft side wall and on the body of the circulating pump drive body. The negative reverse force F of the spacing rods is given by the relation F=Q/l.y, where Q is the weight of the circulating pump, l is the spatial distance between the shoe joints and anchor joints, and y is the deflection of the circulating pump vertical axis from the mean equilibrium position. The described suspension is advantageous in that that the reverse force for the deflection from the mean equilibrium position is minimal, dynamic behaviour is better, and construction costs are lower compared to suspension design used so far. (J.B.)

  20. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of shaft liner tests as part of the large shaft development test proposed for the Hanford Site in support of the repository development program. The objectives of these tests are to develop techniques for measuring liner alignment (straightness), both construction assembly alignment and downhole cumulative alignment, and to assess the alignment information as a real time feedback to aid the installation procedure. The test plan is based upon installing a 16 foot ID shaft liner into a 20 foot diameter shaft to a depth of 1000 feet. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs

  1. Shaft and tunnel sealing considerations

    International Nuclear Information System (INIS)

    Kelsall, P.C.; Shukla, D.K.

    1980-01-01

    Much of the emphasis of previous repository sealing research has been placed on plugging small diameter boreholes. It is increasingly evident that equal emphasis should now be given to shafts and tunnels which constitute more significant pathways between a repository and the biosphere. The paper discusses differences in requirements for sealing shafts and tunnels as compared with boreholes and the implications for seal design. Consideration is given to a design approach for shaft and tunnel seals based on a multiple component design concept, taking into account the requirements for retrievability of the waste. A work plan is developed for the future studies required to advance shaft and tunnel sealing technology to a level comparable with the existing technology for borehole sealing

  2. Design of automotive engine coolant hoses

    Directory of Open Access Journals (Sweden)

    Hrishikesh D BACHCHHAV

    2018-03-01

    Full Text Available In this paper, we are present the performance of engine coolant hoses (radiator hoses used in passenger cars by checking various physical behaviours such as hose leakage, hose burst, hose collapse or any mechanical damage as studied-thru design guidelines, CFD analysis and product validation testing and also check pressure drop of the hoses when engine will be running. The design term is more likely used for technical part modelling using CAD tool. Later on, we will focus on the transformation of the part design to process design. The process design term is more likely used for "tooling design" for manufacturing of the product using CAD Tool. Then inlet hose carries coolant from engine to radiator inlet tank, then coolant circulated in radiator and passed through radiator outlet tank to water pump of engine with the help of outlet hose. After that …nding any leakage, Burst, damage or collapse of hose and pressure drop of the hose with the help of design checklist, CFD Analysis and product validation testing.

  3. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  4. Emergency recirculation pump driving mechanism

    International Nuclear Information System (INIS)

    Morooka, Shin-ichi.

    1980-01-01

    Purpose: To sufficiently secure the coolant flow rate in a reactor core and restrict the temperature on the surface of fuel elements to low degree when the coolant is lost in a BWR type reactor. Constitution: In order to secure sufficient coolant flow rate in a reactor core and to sufficiently cool the reactor core when the coolant is lost in a BWR type reactor, it is tripped upon loss of power supply simultaneously when an accident occurs, a recycling pump at the side of normal reactor where its rotating speed is decelerated in accordance with its inertia is restarted by the pressure water stored in a tank out of the reactor to increase the coolant flow rate in the reactor core so as to sufficiently cool the reactor core. (Aizawa, K.)

  5. Centrifugal pump assembly for use in nuclear reactor plants or the like

    International Nuclear Information System (INIS)

    Honold, E.; Ruepp, M.

    1975-01-01

    A description is given of a vertical centrifugal pump assembly for use as a primary recirculating pump in a nuclear reactor plant which has an uppermost shaft which is driven by a motor, a lowermost shaft which drives the impeller of the pump, and an intermediate shaft which is movable axially between the uppermost and lowermost shafts and carries a housing for radial and/or thrust bearings. A rigid coupling between the lowermost shaft and the intermediate shaft is disengaged when the intermediate shaft is lifted to thereby afford access to certain parts of the lowermost shaft. The uppermost shaft can drive the intermediate shaft through the medium of a flexible coupling having coupling elements mounted on the lower end of the uppermost shaft and the upper end of the intermediate shaft, and a distancing sleeve whose internal threads are in permanent mesh with external threads of the two coupling elements. A shroud which surrounds the flexible coupling has a maximum-diameter tubular section rigid with the housing for the bearings, a minimum-diameter tubular section rigid with but detachable from the casing of the motor, and a median tubular section which penetrates into the maximum-diameter section when the intermediate shaft is lifted. When the minimum-diameter section is detached from the casing of the motor, it can be slid, together with the intermediate section, into the maximum-diameter section to thereby afford access to the flexible coupling. The rigid coupling has two coaxial coupling elements which are mounted at the upper end of the pump shaft and the lower end of the intermediate shaft and may have teeth which mate when the intermediate shaft assumes its lower end position in which it can drive the pump

  6. Pumps for German pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dernedde, R.

    1984-01-01

    The article describes the development of a selection of pumps which are used in the primary coolant system and the high-pressure safety injection system and feed water system during the past 2 decades. The modifications were caused by the step-wise increasing power output of the plants from 300 MW up to 1300 MW. Additional important influences were given be the increased requirements for quality assurance and final-documentation. The good operating results of the delivered pumps proved that the reliability is independent of the volume of the software-package. The outlook expects that consolidation will be followed by additional steps for the order processing of components for the convoy pumps. KW: main coolant pump; primary system; boiler feed pump; reactor pump; secondary system; barrel insert pump; pressure water reactor; convoy pump; state of the art.

  7. CFD analysis of the service shaft during the recovery work of the damaged cleaning tank in the Paks NPP

    International Nuclear Information System (INIS)

    Legradi, Gabor; Aszodi Attila

    2005-01-01

    The recovery work of the cleaning tank that has suffered a serious incident in 10-11 th of April, 2003 is under planning in the 2 nd unit of the Packs Nuclear Power Plant. During this work, the service shaft will be operated in a low-coolant-level operational mode. Since the operators of the damaged fuel removing equipment will work standing on a platform just above the surface of the coolant of decreased level, protecting them against unnecessary personal doses is a very important task. From this viewpoint, the coolant of the service shaft plays double role. First, the few meters high layer of coolant between the working platform and the damaged fuel is an important part of the biological shielding for the workers. O the other hand, due to the considerable amount od radioactive contamination dispersed into the coolant, it is also a source of radiation. Therefore the vertical distribution of the contamination in the service shaft is a very important question during different operational modes of the cooling and purification systems (Authors)

  8. Humeral Shaft Fracture: Intramedullary Nailing.

    Science.gov (United States)

    Konda, Sanjit R; Saleh, Hesham; Fisher, Nina; Egol, Kenneth A

    2017-08-01

    This video demonstrates the technique of intramedullary nailing for a humeral shaft fracture. The patient is a 30-year-old man who sustained a gunshot wound to his right arm. The patient was indicated for humeral nailing given the comminuted nature of the diaphysis and to allow for minimal skin incisions. Other relative indications include soft-tissue compromise about the arm precluding a large surgical exposure. This video presents a case of a comminuted humeral shaft fracture treated with an intramedullary nail. Anatomic reduction and stable fixation was obtained with this technique. This case demonstrates a soft-tissue sparing technique of humeral shaft fixation using a humeral intramedullary nail. The technique is easy to perform and has significant benefits in minimizing surgical exposure, decreasing operative time, and decreasing blood loss. In the correct clinical setting, humeral nailing provides an expeditious form of fixation that restores length, alignment, and rotation of the fracture humeral diaphysis.

  9. Exploratory shaft liner corrosion estimate

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1985-10-01

    An estimate of expected corrosion degradation during the 100-year design life of the Exploratory Shaft (ES) is presented. The basis for the estimate is a brief literature survey of corrosion data, in addition to data taken by the Basalt Waste Isolation Project. The scope of the study is expected corrosion environment of the ES, the corrosion modes of general corrosion, pitting and crevice corrosion, dissimilar metal corrosion, and environmentally assisted cracking. The expected internal and external environment of the shaft liner is described in detail and estimated effects of each corrosion mode are given. The maximum amount of general corrosion degradation was estimated to be 70 mils at the exterior and 48 mils at the interior, at the shaft bottom. Corrosion at welds or mechanical joints could be significant, dependent on design. After a final determination of corrosion allowance has been established by the project it will be added to the design criteria. 10 refs., 6 figs., 5 tabs

  10. Dual coolant blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Schleisiek, K.

    1994-11-01

    A self-cooled liquid metal breeder blanket with helium-cooled first wall ('Dual Coolant Blanket Concept') for a fusion DEMO reactor is described. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. Described are the design of the blankets including the ancillary loop system and the results of the theoretical and experimental work in the fields of neutronics, magnetohydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium control, safety, reliability, and electrically insulating coatings. The remaining open questions and the required R and D programme are identified. (orig.) [de

  11. Improvements to secondary coolant circuits of a liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Brachet, Alain.

    1981-01-01

    This invention concerns improvements to secondary coolant-systems for sodium cooled nuclear reactors. It further concerns a protective device for a free level mechanical pump which prevents any gas bubbles due to leaks of the working gas of the pump from entering the secondary system of the nuclear reactor [fr

  12. Hydrodynamic problems of heavy liquid metal coolants technology in loop-type and mono-block-type reactor installations

    International Nuclear Information System (INIS)

    Orlov, Yuri I.; Efanov, Alexander D.; Martynov, Pyotr N.; Gulevsky, Valery A.; Papovyants, Albert K.; Levchenko, Yuri D.; Ulyanov, Vladimir V.

    2007-01-01

    In the report, the influence of hydrodynamics of the loop with heavy liquid metal coolants (Pb and Pb-Bi) on the realization methods and efficiency of the coolant technology for the reactor installations of loop, improved loop and mono-block type of design has been studied. The last two types of installations, as a rule, are characterized by the following features: availability of loop sections with low hydraulic head and low coolant velocities, large squares of coolant free surfaces; absence of stop and regulating valve, auxiliary pumps on the coolant pumping-over lines. Because of the different hydrodynamic conditions in the installation types, the tasks of the coolant technology have specific solutions. The description of the following procedures of coolant technology is given in the report: purification by hydrogen (purification using gas mixture containing hydrogen), regulation of dissolved oxygen concentration in coolant, coolant filtrating, control of dissolved oxygen concentration in coolant. It is shown that change of the loop design made with economic purpose and for improvement of the installation safety cause additional requirements to the procedures and apparatuses of the coolant technology realization

  13. Inadvertent raising of levels in the FFTF primary sodium pumps. Final unusual occurrence report, HEDL 79-34 (FFTF-58)

    International Nuclear Information System (INIS)

    Kuechle, J.D.

    1981-01-01

    The final unusual occurrence report describes the inadvertent raising of the sodium level in the FFTF primary sodium pumps during system testing. This event is now judged to have caused permanent deformation of the primary pump shaft on loop 1 during a period when pump rotation was stopped and sodium level in the pump tank was inadvertently increased. The shaft was subsequently removed, straightened, and returned to service in the spare FFTF pump

  14. An exploratory shaft facility in SALT: Draft shaft study plan

    International Nuclear Information System (INIS)

    1987-03-01

    This draft Shaft Study Plan describes a program of testing and monitoring in the Exploratory Shafts of a candidate high-level nuclear waste repository site in Deaf Smith County, Texas. The purpose of the programs to assist with site characterization in support of a determination of site suitability for development as a repository design and performance assessment evaluations. The program includes a variety of geological, geophysical, geomechanical, thermomechanical, and geohydrological testing and monitoring. The program is presented as a series of separate studies concerned with geological, geomechanical, and geohydrological site characterization, and with evaluating the mechanical and hydrological response of the site to construction of the shafts. The various studies, and associated test or monitoring methods are shown. The procedure used in developing the test program has been to initially identify the information necessary to satisfy (1) federal, state, and local requirements, and (2) repository program requirements. These information requirements have then been assessed to determine which requirements can be addressed wholly or in significant part by monitoring and testing from within the shafts. Test methods have been identified to address specific information requirements. 67 refs., 39 figs., 31 tabs

  15. SNR coolant system components

    International Nuclear Information System (INIS)

    De Haas Van Dorsser, A.H.; Mausbeck, H.

    1976-01-01

    The DEBENELUX prototype fast reactor power plant SNR 300 at Kalkar has a loop-type heat transfer system similar to that of the prototype LMFBR plants in the USA and Japan. There exist three 257 MW/sub th/ primary sodium loops, each with a hot leg centrifugal pump and three 85.6 MW/sub th/ intermediate heat exchangers in parallel. From there the heat is transferred to the steam generators via three secondary sodium loops with one cold leg sodium circulating pump in each. At a nominal reactor outlet temperature of 819 0 K and a turbine inlet power of 771 MW/sub th/ super heated steam of 166 bar and 733 0 K is produced, giving rise to a plant rating of 327 MW/sub e/ gross. The primary and secondary loops are described in detail

  16. Magnetohydrodynamic generator and pump system

    International Nuclear Information System (INIS)

    Birzvalk, Yu.A.; Karasev, B.G.; Lavrentyev, I.V.; Semikov, G.T.

    1983-01-01

    The MHD generator-pump system, or MHD coupling, is designed to pump liquid-metal coolant in the primary circuit of a fast reactor. It contains a number of generator and pump channels placed one after another and forming a single electrical circuit, but hydraulically connected parallel to the second and first circuits of the reactor. All the generator and pump channels are located in a magnetic field created by the magnetic system with an excitation winding that is fed by a regulated direct current. In 500 to 2000 MW reactors, the flow rate of the coolant in each loop of the primary circuit is 3 to 6 m 3 /s and the hydraulic power is 2 to 4 MW. This paper examines the primary characteristics of an MHD generator-pump system with various dimensions and number of channels, wall thicknesses, coolant flow rates, and magnetic fields. It is shown that its efficiency may reach 60 to 70%. The operating principle of the MHD generator-pump system is explained in the referenced patent and involves the transfer of hydraulic power from generator channels to pump channels using a magnetic field and electrical circuit common to both channels. Variations of this system may be analyzed using an equivalent circuit. 7 refs., 5 figs

  17. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  18. Coolant channel module CCM

    International Nuclear Information System (INIS)

    Hoeld, Alois

    2007-01-01

    A complete and detailed description of the theoretical background of an '(1D) thermal-hydraulic drift-flux based mixture-fluid' coolant channel model and its resulting module CCM will be presented. The objective of this module is to simulate as universally as possible the steady state and transient behaviour of the key characteristic parameters of a single- or two-phase fluid flowing within any type of heated or non-heated coolant channel. Due to the possibility that different flow regimes can appear along any channel, such a 'basic (BC)' 1D channel is assumed to be subdivided into a number of corresponding sub-channels (SC-s). Each SC can belong to only two types of flow regime, an SC with just a single-phase fluid, containing exclusively either sub-cooled water or superheated steam, or an SC with a two-phase mixture flow. After an appropriate nodalisation of such a BC (and therefore also its SC-s) a 'modified finite volume method' has been applied for the spatial discretisation of the partial differential equations (PDE-s) which represent the basic conservation equations of thermal-hydraulics. Special attention had to be given to the possibility of variable SC entrance or outlet positions (which describe boiling boundaries or mixture levels) and thus the fact that an SC can even disappear or be created anew. The procedure yields for each SC type (and thus the entire BC), a set of non-linear ordinary 1st order differential equations (ODE-s). To link the resulting mean nodal with the nodal boundary function values, both of which are present in the discretised differential equations, a special quadratic polygon approximation procedure (PAX) had to be constructed. Together with the very thoroughly tested packages for drift-flux, heat transfer and single- and two-phase friction factors this procedure represents the central part of the here presented 'Separate-Region' approach, a theoretical model which provides the basis to the very effective working code package CCM

  19. Control rod drive shaft latch

    International Nuclear Information System (INIS)

    Thorp, A.G. II.

    1976-01-01

    A latch mechanism is operated by differential pressure on a piston to engage the drive shaft for a control rod in a nuclear reactor, thereby preventing the control rod from being ejected from the reactor in case of failure of the control rod drive mechanism housing which is subjected to the internal pressure in the reactor vessel. 6 claims, 4 drawing figures

  20. Geotechnical instrumentation for repository shafts

    International Nuclear Information System (INIS)

    Lentell, R.L.; Byrne, J.

    1993-01-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts

  1. Coolant controls of a PEM fuel cell system

    Science.gov (United States)

    Ahn, Jong-Woo; Choe, Song-Yul

    When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops. Therefore, proper design of a control for the coolant flow plays an important role in ensuring highly reliable and efficient operations of the fuel cell system. Herein, we propose a new temperature control strategy based on a thermal circuit. The proposed thermal circuit consists of a bypass valve, a radiator with a fan, a reservoir and a coolant pump, while a blower and inlet and outlet manifolds are components of the air supply system. Classic proportional and integral (PI) controllers and a state feedback control for the thermal circuit were used in the design. In addition, the heat source term, which is dependent upon the load current, was feed-forwarded to the closed loop and the temperature effects on the air flow rate were minimized. The dynamics and performance of the designed controllers were evaluated and analyzed by computer simulations using developed dynamic fuel cell system models, where a multi-step current and an experimental current profile measured at the federal urban driving schedule (FUDS) were applied. The results show that the proposed control strategy cannot only suppress a temperature rise in the catalyst layer and prevent oxygen starvation, but also reduce the

  2. Update of 1972 status report on deep shaft studies

    International Nuclear Information System (INIS)

    1976-09-01

    The following aspects of shaft sinking are considered: the effects of geology, factors affecting shaft size, the conventional shaft sinking techniques and the newer mechanized methods, several representative or difficult shafts, and certain long-term problems and solutions

  3. 30 CFR 57.19106 - Shaft sets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shaft sets. 57.19106 Section 57.19106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19106 Shaft sets. Shaft sets shall be kept in good repair and clean of hazardous material. ...

  4. 30 CFR 56.19106 - Shaft sets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shaft sets. 56.19106 Section 56.19106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Shaft sets. Shaft sets shall be kept in good repair and clean of hazardous material. ...

  5. Full reactor coolant system chemical decontamination qualification programs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-03-01

    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systems leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.

  6. Reactor coolant flow measurements at Point Lepreau

    International Nuclear Information System (INIS)

    Brenciaglia, G.; Gurevich, Y.; Liu, G.

    1996-01-01

    The CROSSFLOW ultrasonic flow measurement system manufactured by AMAG is fully proven as reliable and accurate when applied to large piping in defined geometries for such applications as feedwater flows measurement. Its application to direct reactor coolant flow (RCF) measurements - both individual channel flows and bulk flows such as pump suction flow - has been well established through recent work by AMAG at Point Lepreau, with application to other reactor types (eg. PWR) imminent. At Point Lepreau, Measurements have been demonstrated at full power; improvements to consistently meet ±1% accuracy are in progress. The development and recent customization of CROSSFLOW to RCF measurement at Point Lepreau are described in this paper; typical measurement results are included. (author)

  7. Forces on Centrifugal Pump Impellers

    OpenAIRE

    Jery, Belgacem; Brennen, Christopher E.; Caughey, Thomas K.; Acosta, Allan

    1985-01-01

    Forces are exerted on a centrifugal pump impeller, due to the asymmetry of the flow caused by the volute of diffuser, and to the motion of the center of the impeller whenever the shaft whirls. Recent work in the measurement of these forces as a function of the whirl speed to shaft speed ratio, and the influence of the volute, is reviewed. These forces may be decomposed into a steady force, a static stiffness matrix, a damping matrix and an inertia matrix. It is shown that for centrifugal p...

  8. Pre-cementation of deep shaft

    Science.gov (United States)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  9. Heat Radiators for Electromagnetic Pumps

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  10. Mine-shaft conveyance monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Beus, M.J.; Ruff, T.M.; Iverson, S.; McCoy, W.G. [National Institute for Occupational Safety and Health, Spokane, WA (USA). Spokane Research Laboratory

    2000-10-01

    Monitoring conveyance position and wire rope load directly from the skip or cage top offers several significant safety and production advantages. The Spokane Research Laboratory (SRL) of the National Institute for Occupational Safety and Health (NIOSH) developed a shaft conveyance monitoring system (SCMS). This system consists of position and guide-displacement sensors, a maintenance-free battery power supply and a new sensor, which is mounted on the wire rope with a Crosby Clip, to measure hoist-rope tension. A radio data link transmits sensor output to the hoist room. A state-of-the-art automated hoisting test facility was also constructed to test the concept in a controlled laboratory setting. Field tests are now underway at the SRL hoisting research facility and in deep mine shafts in northern Idaho. 4 refs., 5 figs.

  11. Design and construction of a two-stage centrifugal pump | Nordiana ...

    African Journals Online (AJOL)

    Centrifugal pumps are widely used in moving liquids from one location to another in homes, offices and industries. Due to the ever increasing demand for centrifugal pumps it became necessary to design and construction of a two-stage centrifugal pump. The pump consisted of an electric motor, a shaft, two rotating impellers ...

  12. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of a large shaft development test at the Hanford site in support of the repository development program. The purpose and objective of the test plan is to obtain the information necessary to establish feasibility and to predict the performance of the drilling system used to drill large diameter shafts. The test plan is based upon drilling a 20 ft diameter shaft to a depth of 1,000 feet. The test plan specifies series of tests to evaluate the performance of the downhole assembly, the performance of the rig, and the ability of the system to cope with geologic hazards. The quality of the hole produced will also be determined. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs., 3 tabs

  13. Motor-pump unit provided with a lifting appliance of the motor

    International Nuclear Information System (INIS)

    Veronesi, Luciano; Francis, W.R.

    1978-01-01

    This invention relates to lifting appliances and particularly concerns a 'pump and motor set' or motor-pump unit fitted with a lifting appliance enabling the motor to be separated from the pump. In nuclear power stations the reactor discharges heat that is carried by the coolant to a distant point away from the reactor to generate steam and electricity conventionally. In order to cause the reactor coolant to flow through the system, coolant motor-pump units are provided in the cooling system. These units are generally of the vertical type with an electric motor fitted vertically on the pump by means of a cylindrical or conical structure called motor support [fr

  14. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  15. Electromagnetic pump technology

    International Nuclear Information System (INIS)

    Prabhakar, R.

    1994-01-01

    Fast Breeder Reactors have an important role to play in our nuclear power programme. Liquid metal sodium is used as the coolant for removing fission heat generated in fast reactors and a distinctive physical property of sodium is its high electrical conductivity. This enables application of electromagnetic (EM) pumps, working on same principle as electric motors, for pumping liquid sodium. Due to its lower efficiency as compared to centrifugal pumps, use of EM pumps has been restricted to reactor auxiliary circuits and experimental facilities. As part of our efforts to manufacture fast reactor components indigenously, work on the development of two types of EM pumps namely flat linear induction pump (FLIP) and annular linear induction pump (ALIP) has been undertaken. Design procedures based on an equivalent circuit approach have been established and results from testing a 5.6 x 10E-3 Cum/s (20 Cum/h) FLIP in a sodium loop were used to validate the procedure. (author). 7 refs., 6 figs

  16. Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics

    Science.gov (United States)

    Krakov, M. S.; Nikiforov, I. V.

    2008-12-01

    Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.

  17. Shaft placement in a bedded salt repository

    International Nuclear Information System (INIS)

    Klasi, M.L.

    1982-10-01

    Preferred shaft pillar sizes and shaft locations were determined with respect to the induced thermal stresses in a generic bedded salt repository at a depth of 610 m with a gross thermal loading of 14.8 W/m 2 . The model assumes isotropic material properties, plane strain and linear elastic behavior. Various shaft locations were analyzed over a 25 year period. The thermal results show that for this time span, the stratigraphy is unimportant except for the region immediately adjacent to the repository. The thermomechanical results show that for the given repository depth of 610 m, a minimum central shaft pillar radius of 244 m is required to equal the material strength in the barrier pillar. An assumed constant stress and constant temperature distribution creep model of the central shaft region adjacent to the repository conservatively overestimates a creep closure of 310 mm in a 6.1 m diameter centrally-located shaft

  18. The SSC access shafts calculational study

    International Nuclear Information System (INIS)

    Baishev, I.S.; Mokhov, N.V.; Toohig, T.E.

    1991-06-01

    The SSC generic shaft requirements and access spacing are considered elsewhere. The shafts connecting the ground surface with the underground accelerator tunnel deliver to the surface some portion of the radiation created in the tunnel. The radiation safety problem of access shafts consists of two major questions: Does the dose equivalent at the ground surface exceed permissible limits? If it exceeds those limits, what additional shielding measures are required? A few works deal with this problem for high energy machines. This work is an attempt to answer these questions for the basic types of shafts specific to the SSC magnet delivery, utility and personnel shafts using full-scale Monte-Carlo calculations of the entire process from hadronic cascades in the lattice elements to particles scattered in the tunnel, niches, alcoves, shafts and surface bunkers and buildings. 9 refs., 16 figs., 1 tab

  19. Numerically Analysed Thermal Condition of Hearth Rollers with the Water-Cooled Shaft

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2016-01-01

    Full Text Available Continuous furnaces with roller hearth have wide application in the steel industry. Typically, furnaces with roller hearth belong to the class of medium-temperature heat treatment furnaces, but can be used to heat the billets for rolling. In this case, the furnaces belong to the class of high temperature heating furnaces, and their efficiency depends significantly on the reliability of the roller hearth furnace. In the high temperature heating furnaces are used three types of watercooled shaft rollers, namely rollers without insulation, rollers with insulating screens placed between the barrel and the shaft, and rollers with bulk insulation. The definition of the operating conditions of rollers with water-cooled shaft greatly facilitates the choice of their design parameters when designing. In this regard, at the design stage of the furnace with roller hearth, it is important to have information about the temperature distribution in the body of the rollers at various operating conditions. The article presents the research results of the temperature field of the hearth rollers of metallurgical heating furnaces. Modeling of stationary heat exchange between the oven atmosphere and a surface of rollers, and between the cooling water and shaft was executed by finite elements method. Temperature fields in the water-cooled shaft rollers of various designs are explored. The water-cooled shaft rollers without isolation, rollers with screen and rollers with bulk insulation, placed between the barrel and the water-cooled shaft were investigated. Determined the change of the thermo-physic parameters of the coolant, the temperature change of water when flowing in a pipe and shaft, as well as the desired pressure to supply water with a specified flow rate. Heat transfer coefficients between the cooling water and the shaft were determined directly during the solution based on the specified boundary conditions. Found that the greatest heat losses occur in the

  20. Shaft MisalignmentDetectionusing Stator Current Monitoring

    OpenAIRE

    Alok Kumar Verma, Somnath Sarangi and M.H. Kolekar

    2013-01-01

    This paper inspects the misaligned of shaft by usingdiagnostic medium such as current and vibration.Misalignments in machines can cause decrease inefficiency and in the long-run it may cause failurebecause of unnecessary vibration, stress on motor,bearings and short-circuiting in stator and rotorwindings.In this study, authors investigate the onsetof instability on a shaft mounted on journal bearings.Shaft displacement and stator current samples duringmachine run up under misaligned condition...

  1. Storage shaft definitive closure plug and method

    International Nuclear Information System (INIS)

    Dardaine, M.

    1992-01-01

    A definitive closure plug system for radioactive waste storage at any deepness, is presented. The inherent weight of the closure materials is used to set in the plug: these materials display an inclined sliding surface in such a way that when the closure material rests on a stable surface of the shaft storage materials, the relative sliding of the different materials tends to spread them towards the shaft internal wall so as to completely occlude the shaft

  2. Sodium as a reactor coolant

    International Nuclear Information System (INIS)

    Cesar, S.B.G.

    1989-01-01

    This work is related to the use of sodium as a reactor coolant, to the advantages and problems related to its use, its mechanical, thermophysics, eletronical, magnetic and nuclear properties. It is mainly a bibliographic review, with the aim of gathering the necessary information to persons initiating in the study of sodium and also as reference source. (author) [pt

  3. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  4. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  5. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T. [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W. [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J. [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H. [Siemens Power Generation (Germany)

    1998-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  6. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H [Siemens Power Generation (Germany)

    1999-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  7. Application of damage function analysis to reactor coolant circuits

    International Nuclear Information System (INIS)

    MacDonald, D.D.

    2002-01-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  8. Application of damage function analysis to reactor coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, D.D. [Center for Electrochemical Science and Technology, Pennsylvania State Univ., University Park, PA (United States)

    2002-07-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  9. Development of Reactor Coolant Pump for APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Sang-Youn; Chu, Sung-Min; Chang, Jin-Young [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2015-10-15

    The development was focused on the performance requirements for APR1400 and to achieve the goals of the safety, reliability and adaptability for APR1400 system design. In addition, APR1400 RCP design was customized considering convenience of installation, operation and maintainability. This paper describes the details of the development process, improved design feature and type test results. Based on development of core technology of RCP, DOOSAN supplies the localized and improved APR1400 RCP to Shin-Hanul 1 and 2 Project. This would be good experience that the RCP core technology can break foreign monopoly in supplying the domestic nuclear industry. Also, there expect APR1400 RCP can be sustainable revenue models in nuclear industry. Moreover, development of RCP will be a catalyst to enhance design capacity for equipment and system of nuclear power plant as well as evaluation and verification skills of Korean nuclear industry.

  10. Coolant monitoring systems for PWR reactors

    International Nuclear Information System (INIS)

    Luzhnov, A.M.; Morozov, V.V.; Tsypin, S.G.

    1987-01-01

    The ways of improving information capacity of existing monitoring systems and the necessity of designing new ones for coolant monitoring are reviewed. A wide research program on development of coolant monitoring systems in PWR reactors is analyzed. The possible applications of in-core and out-of-core detectors for coolant monitoring are demonstrated

  11. Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic

    International Nuclear Information System (INIS)

    Bediou, J.; Pasqualini, G.

    1992-01-01

    Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic

  12. Balanced pressure gerotor fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Raney, Michael Raymond; Maier, Eugen

    2004-08-03

    A gerotor pump for pressurizing gasoline fuel is capable of developing pressures up to 2.0 MPa with good mechanical and volumetric efficiency and satisfying the durability requirements for an automotive fuel pump. The pump has been designed with optimized clearances and by including features that promote the formation of lubricating films of pressurized fuel. Features of the improved pump include the use of a shadow port in the side plate opposite the outlet port to promote balancing of high fuel pressures on the opposite sides of the rotors. Inner and outer rotors have predetermined side clearances with the clearances of the outer rotor being greater than those of the inner rotor in order to promote fuel pressure balance on the sides of the outer rotor. Support of the inner rotor and a drive shaft on a single bushing with bearing sleeves maintains concentricity. Additional features are disclosed.

  13. Responses to Small Break Loss of Coolant Accidents for SMART

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Kim, Hee C.; Chang, Moon H.; Zee, Sung Q.; Kim, Si-Hwan; Lee, Un-Chul

    2004-01-01

    The SMART NSSS adopts the design characteristics of containing most of the primary circuit components, such as the reactor core, main coolant pumps (MCPs), steam generators (SGs), and N 2 gas pressurizer (PZR) in a single leak-tight Reactor Pressure Vessel (RPV) with a relatively large ratio of the primary coolant inventory to the core power compared to the conventional loop-type PWR. Due to these design characteristics, the SMART can fundamentally eliminate the possibility of Large Break Loss of Coolant Accidents (LBLOCAs), improve the natural circulation capability, and assure a sufficient time to mitigate the possibility of core uncover. Also, SMART adopts inherent safety improving features and passive engineered safety systems such as the substantially large negative moderator temperature coefficients, passive residual heat removal system, emergency core cooling system, and a steel-made leak-tight Safeguard Vessel (SV) housing the RPV. This paper presents the results of the safety analyses using a MARS/SMR code for the instantaneous guillotine ruptures of the major pipelines penetrating the RPV. The analysis results, employing conservative initial/boundary conditions and assumptions, show that the safety systems of the SMART basic design adequately remove the core decay heat without causing core uncover for all the cases of the Small Break Loss of Coolant Accidents (SBLOCAs). The sensitivity study results with variable SV conditions show that the reduced SV net free volume can shorten the time for reaching the thermal and mechanical equilibrium condition between the RPV and SV. Under these boundary conditions, the primary system inventory loss can be minimized and the core remains covered for a longer period of time without any makeup of the coolant. (authors)

  14. Trace organics in AGR coolants

    International Nuclear Information System (INIS)

    Smith, R.; Green, L.O.; Johnson, P.A.V.

    1980-01-01

    Several analytical techniques have been employed in previous studies of the stable organic compounds arising from the radiolysis of methane/carbon monoxide/carbon dioxide coolants. The majority of this early information was collected from the Windscale AGR prototype. Analyses were also carried out on the liquors obtained from the WAGR humidryers. Three classes of compound were found in the liquors; aliphatic acids in the aqueous phase and methyl ketones and aromatic hydrocarbons in the oily phase. Acetic acid was found to be the predominant carboxylic acid. This paper outlines the major findings from a recent analytical survey of coolants taken over a wide range of dose rate, pressure, temperature and composition, from materials testing reactor facilities, WAGR and CAGR. (author)

  15. Quantitative determination of a hydrogen impurity in a sodium coolant by hydride thermal dissociation

    Science.gov (United States)

    Ivanovskiy, M. N.; Pavlova, G. D.; Shmatko, B. A.; Milovidova, A. V.; Konovalov, E. YE.; Arnoldov, M. N.; Pleshivtsev, A. D.

    1988-01-01

    A molten sodium coolant containing hydrogen was heated in a vacuum at 450 C, and the gases generated pumped through a liquid nitrogen trap, and the H2 was then oxidized on a copper oxide substrate heated to 400 C. The accuracy of the method is 1.5 percent and the sensitivity is 1x10 to the -5 wt percent hydrogen.

  16. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  17. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    International Nuclear Information System (INIS)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-01-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications

  18. Penis Pump

    Science.gov (United States)

    ... your appointment might be less involved. Choosing a penis pump Some penis pumps are available without a ... it doesn't get caught in the ring. Penis pumps for penis enlargement Many advertisements in magazines ...

  19. Using combined system of shaft guides for buckets during shaft deepening

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.; Ivenskii, N.S.; Alekhin, P.I.

    1981-06-01

    This paper discusses a system of shaft guides used in the Krasnopol'evsk underground coal mine. The existing skip shaft 514 m deep is deepened to a depth of 700 m. Shaft design is adapted to a system of two pairs of skips, however, only one pair of skips is in operation and the other has been removed. The free space can be used to remove rock material from shaft bottom. It is noted that a system of buckets moving along elastic shaft guides made of rope or along rigid shaft guides can be used. Both solutions have numerous advantages. If rope guides are used time consuming installation of shaft guides is unnecessary in the zone close to the bottom. If rigid guides are used capacity of the bucket can be significantly increased. A system which combines advantages of both solutions is used: in the lower part of the shaft being deepened, buckets are guided by rope, and in the upper zone in which rigid shaft guides have been installed the bucket moves along rigid guides and rope guides simultaneously. Design of the element guiding the bucket is shown in two diagrams. It is noted that using the combined system of shaft guides increases capacity of the hoisting system by 1.5 times.

  20. Measuring surface-water loss in Honouliuli Stream near the ‘Ewa Shaft, O‘ahu, Hawai‘i

    Science.gov (United States)

    Rosa, Sarah N.

    2017-05-30

    The Honolulu Board of Water Supply is currently concerned with the possibility of bacteria in the pumped water of the ‘Ewa Shaft (State well 3-2202-21). Groundwater from the ‘Ewa Shaft could potentially be used to meet future potable water needs in the ‘Ewa area on the island of O‘ahu. The source of the bacteria in the pumped water is unknown, although previous studies indicate that surface water may be lost to the subsurface near the site. The ‘Ewa Shaft consists of a vertical shaft, started near the south bank of Honouliuli Stream at an altitude of about 161 feet, and two horizontal infiltration tunnels near sea level. The shaft extracts groundwater from near the top of the freshwater lens in the Waipahu-Waiawa aquifer system within the greater Pearl Harbor Aquifer Sector, a designated Water Management Area.The surface-water losses were evaluated with continuous groundwater-level data from the ‘Ewa Shaft and a nearby monitoring well, continuous stream-discharge data from U.S. Geological Survey streamflow-gaging station 16212490 (Honouliuli Stream at H-1 Freeway near Waipahu), and seepage-run measurements in Honouliuli Stream and its tributary. During storms, discharge at the Honouliuli Stream gaging station increases and groundwater levels at ‘Ewa Shaft and a nearby monitoring well also increase. The concurrent increase in water levels at ‘Ewa Shaft and the nearby monitoring well during storms indicates that regional groundwater-level changes related to increased recharge, reduced withdrawals (due to a decrease in demand during periods of rainfall), or both may be occurring; although these data do not preclude the possibility of local recharge from Honouliuli Stream. Discharge measurements from two seepage runs indicate that surface water in the immediate area adjacent to ‘Ewa Shaft infiltrates into the streambed and may later reach the groundwater system developed by the ‘Ewa Shaft. The estimated seepage loss rates in the vicinity of

  1. Method of decontaminating primary coolant circuits

    International Nuclear Information System (INIS)

    Ishibashi, Masaru; Sumi, Masao.

    1981-01-01

    Purpose: To eliminate hard contaminated layers as well as soft contaminated layers without injuring substrate materials, upon decontamination of radiation contaminated portions in equipments and pipeways constituting primary coolant circuits. Constitution: High pressure water from a high pressure pump is jetted out from the nozzle of a spray gun to the radiation contaminated portions in equipments, for example, to the surface of water chamber in a vapor evaporator. High pressure pure water or aqueous boric acid is jetted out from the periphery and boric oxide particles (of about 1 - 100 μ particle size) are jetted out from the center of the nozzle of the spray gun. The particles (blasting material) jetted out together with the high pressure water impinge on the contaminated surfaces to remove the contaminated layers. Upon impingement, the high pressure water acts as the shock absorber for the blasting material and, after the impingement, it flows down to the bottom of the water chamber, and the blasting material is dissolved in the high pressure water. (Horiuchi, T.)

  2. Exploratory Shaft Facility design basis study report

    International Nuclear Information System (INIS)

    Langstaff, A.L.

    1987-01-01

    The Design Basis Study is a scoping/sizing study that evaluated the items concerning the Exploratory Shaft Facility Design including design basis values for water and methane inflow; flexibility of the design to support potential changes in program direction; cost and schedule impacts that could result if the design were changed to comply with gassy mine regulations; and cost, schedule, advantages and disadvantages of a larger second shaft. Recommendations are proposed concerning water and methane inflow values, facility layout, second shaft size, ventilation, and gassy mine requirements. 75 refs., 3 figs., 7 tabs

  3. The effect of texture on the shaft surface on the sealing performance of radial lip seals

    Science.gov (United States)

    Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing

    2014-07-01

    On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.

  4. Shaft Seal Compensates for Cold Flow

    Science.gov (United States)

    Myers, W. N.; Hein, L. A.

    1985-01-01

    Seal components easy to install. Ring seal for rotating or reciprocating shafts spring-loaded to compensate for slow yielding (cold flow) of sealing material. New seal relatively easy to install because components preassembled, then installed in one piece.

  5. Documentation and verification of the SHAFT code

    International Nuclear Information System (INIS)

    St John, C.M.

    1991-12-01

    The SHAFT code incorporates equations to compute stresses in a shaft liner when the rock through which a shaft passes is subject to known three-dimensional states of stress or strain. The deformation modes considered are hoop deformation, axial deformation, and shear on a plane normal to the shaft axis. Interaction between the liner and the soil and rock is considered, and it is assumed that the liner is in place before loading is applied. This code is intended to be used interactively but creates a permanent record complete with necessary quality assurance information. The code has been carefully verified for the case of generalized plane strain, in which an arbitrary axial strain can be defined. It may also be used for plane stress analysis. Output is given in the form of stresses at selected sample points in the linear and the rock and a simple graphical representation of the distribution of stress through the liner. 12 figs., 13 tabs

  6. Reliability assessment of underground shaft closure

    International Nuclear Information System (INIS)

    Fossum, A.F.; Munson, D.E.

    1994-01-01

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties

  7. FIXTURING DEVICE FOR DRILLING A STRAIGHT SHAFT

    Directory of Open Access Journals (Sweden)

    SUSAC, Florin

    2017-05-01

    Full Text Available The paper presents a fixturing device used for machining by drilling a straight shaft. The shaft was manufactured on EMCO CONCEPT TURN 55 CNC. The blank used was a bar with circular cross-section. The orientation and fixing scheme of the part and the orientation elements for fixturing device are presented as they were drawn in Autodesk Inventor and AutoCAD software.

  8. Incidence and epidemiology of tibial shaft fractures.

    Science.gov (United States)

    Larsen, Peter; Elsoe, Rasmus; Hansen, Sandra Hope; Graven-Nielsen, Thomas; Laessoe, Uffe; Rasmussen, Sten

    2015-04-01

    The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large and complete population and report the distribution of fracture classification, trauma mechanism and patient baseline demographics. Retrospective reviews of clinical and radiological records. A total of 196 patients were treated for 198 tibial shaft fractures in the years 2009 and 2010. The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have the highest frequency between the age of 30 and 40. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. The majority of tibial shaft fractures occur during walking, indoor activity and sports. The distribution among genders shows that males present a higher frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Review of magnetohydrodynamic pump applications

    Directory of Open Access Journals (Sweden)

    O.M. Al-Habahbeh

    2016-06-01

    Full Text Available Magneto-hydrodynamic (MHD principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps. In this work, the progress achieved in this field is surveyed and organized according to the type of application. The literature of the past 27 years is searched for the major developments of MHD applications. MHD seawater thrusters are promising for a variety of applications requiring high flow rates and velocity. MHD molten metal pump is important replacement to conventional pumps because their moving parts cannot stand the molten metal temperature. MHD molten salt pump is used for nuclear reactor coolants due to its no-moving-parts feature. Nanofluid MHD pumping is a promising technology especially for bioapplications. Advantages of MHD include silence due to no-moving-parts propulsion. Much progress has been made, but with MHD pump still not suitable for wider applications, this remains a fertile area for future research.

  10. Experimental study on utilization of air-borne jet sound in coolant leak detector

    International Nuclear Information System (INIS)

    Hayamizu, Y.; Kitahara, T.; Hayashi, T.; Nishimura, M.

    1975-10-01

    Studies have been undertaken to develop a new coolant leak detection method by the use of a microphone to pick up jet sound generated when pressurized high temperature water is discharged from a pressure boundary into the atmosphere. Leakage was simulated in three shapes, such as two machine-made circular holes and longitudinal and transverse slits in an inlet tube of a blowdown test facility. The measured power level of the jet sound was in agreement with theoretical values calculated from Lighthill's equation. In the study of utilization, this new method has been confirmed as applicable, and to be calculated theoretically for design on 'signal to noise ratio' evaluation. Detection of a small coolant leakage of 1 kg/sec is possible in a recirculation pump room which has large background noise from the pump if a suitable isolation wall, such as hot boxes, is installed between the monitored pipes and the pump. (auth.)

  11. Superconducting bearings for a LHe transfer pump

    Science.gov (United States)

    Kloeppel, S.; Muehsig, C.; Funke, T.; Haberstroh, C.; Hesse, U.; Lindackers, D.; Zielke, S.; Sass, P.; Schoendube, R.

    2017-12-01

    Superconducting bearings are used in a number of applications for high speed, low loss suspension. Most of these applications suspend a warm shaft and thus require continuous cooling, which leads to additional power consumption. Therefore, it seems advantageous to use these bearings in systems that are inherently cold. One respective application is a submerged pump for the transfer of liquid helium into mobile dewars. Centrifugal pumps require tight sealing clearances, especially for low viscosity fluids and small sizes. This paper covers the design and qualification of superconducting YBCO bearings for a laboratory sized liquid helium transfer pump. Emphasis is given to the axial positioning, which strongly influences the achievable volumetric efficiency.

  12. Coolant mixing in pressurized water reactors. Proceedings

    International Nuclear Information System (INIS)

    Hoehne, T.; Grunwald, G.; Rohde, U.

    1998-10-01

    For the analysis of boron dilution transients and main steam like break scenarios the modelling of the coolant mixing inside the reactor vessel is important. The reactivity insertion due to overcooling or deboration depends strongly on the coolant temperature and boron concentration. The three-dimensional flow distribution in the downcomer and the lower plenum of PWR's was calculated with a computational fluid dynamics (CFD) code (CFX-4). Calculations were performed for the PWR's of SIEMENS KWU, Westinghouse and VVER-440 / V-230 type. The following important factors were identified: exact representation of the cold leg inlet region (bend radii etc.), extension of the downcomer below the inlet region at the PWR Konvoi, obstruction of the flow by the outlet nozzles penetrating the downcomer, etc. The k-ε turbulence model was used. Construction elements like perforated plates in the lower plenum have large influence on the velocity field. It is impossible to model all the orifices in the perforated plates. A porous region model was used to simulate perforated plates and the core. The porous medium is added with additional body forces to simulate the pressure drop through perforated plates in the VVER-440. For the PWR Konvoi the whole core was modelled with porous media parameters. The velocity fields of the PWR Konvoi calculated for the case of operation of all four main circulation pumps show a good agreement with experimental results. The CFD-calculation especially confirms the back flow areas below the inlet nozzles. The downcomer flow of the Russian VVER-440 has no recirculation areas under normal operation conditions. By CFD calculations for the downcomer and the lower plenum an analytical mixing model used in the reactor dynamic code DYN3D was verified. The measurements, the analytical model and the CFD-calculations provided very well agreeing results particularly for the inlet region. The difficulties of analytical solutions and the uncertainties of turbulence

  13. Experimental and numerical investigation of the coolant mixing during fast deboration transients

    International Nuclear Information System (INIS)

    Hoehne, T.; Rohde, U.; Weiss, F.P.

    1999-01-01

    For the analysis of boron dilution transients and main steam line break scenarios the modeling of the coolant mixing inside the reactor vessel is important, because the reactivity insertion strongly depends on boron acid concentration or the coolant temperature distribution. Calculations for steady state flow conditions for the VVER-440 were performed with a CFD code (CFX-4). The comparison with experimental data and an analytical mixing model which is implemented in the neutron-kinetic code DYN3D showed a good agreement for near-nominal conditions. First experiments at the Rossendorf Mixing Test Facility ROCOM were performed simulating the start-up of the first main coolant pump. The reference reactor for the geometrically 1:5 scaled Plexiglas model is the German Konvoi type PWR. After demonstrating the capability of the CFD code to simulate these complicated flow transients, calculations were performed for the start-up of the first pump in a VVER-440 type reactor. These calculations are a first step of understanding the coolant mixing in the RPV of a VVER-440 type reactor under transient conditions. The results of the calculation show a very complex flow in the downcomer. A high downcomer of VVER-440 and the existence of the lower control rod chamber support coolant mixing is concluded. (author)

  14. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  15. Turbomolecular pump vacuum system for the Princeton Large Torus

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1977-10-01

    A turbomolecular pump vacuum system has been designed and installed on the Princeton Large Torus (PLT). Four vertical shaft, oil-bearing, 1500 l/s turbomolecular pumps have been interfaced to the 6400 liter PLT Vacuum vessel to provide a net pumping speed of 3000 l/s for H 2 . The particular requirements and problems of tokamak vacuum systems are enumerated. A vacuum control system is described which protects the vacuum vessel from contamination, and protects the turbomolecular pumps from damage under a variety of possible failure modes. The performance of the vacuum system is presented in terms of pumping speed measurements and residual gas behavior

  16. Coolant inlet device for nuclear reactors

    International Nuclear Information System (INIS)

    Ando, Hiroshi; Abe, Yasuhiro; Iwabuchi, Toshihiko; Yamamoto, Kenji.

    1969-01-01

    Herein disclosed is a coolant inlet device for liquid-metal cooled reactors which employs a coolant distributor serving also as a supporting means for the reactor core. The distributor is mounted within the reactor vessel so as to slide horizontally on supporting lugs, and is further slidably connected via a junction pipe to a coolant inlet conduit protruding through the floor of the vessel. The distributor is adapted to uniformly disperse the highly pressured coolant over the reactor core so as to reduce the stresses sustained by the reactor vessel as well as the supporting lugs. Moreover, the slidable nature of the distributor allows thermal shock and excessive coolant pressures to be prevented or alleviated, factors which posed major difficulties in conventional coolant inlet devices. (Owens, K. J.)

  17. Organic coolant for ARIES-III

    International Nuclear Information System (INIS)

    Sze, D.K.; Sviatoslavsky, I.; Sawan, M.; Gierszewski, P.; Hollies, R.; Sharafat, S.; Herring, S.

    1991-04-01

    ARIES-III is a D-He 3 reactor design study. It is found that the organic coolant is well suited for the D-He 3 reactor. This paper discusses the unique features of the D-He 3 reactor, and the reason that the organic coolant is compatible with those features. The problems associated with the organic coolant are also discussed. 8 refs., 2 figs., 6 tabs

  18. Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Elina Syrjaelahti; Anitta Haemaelaeinen [VTT Processes, P.O.Box 1604, FIN-02044 VTT (Finland)

    2005-07-01

    Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)

  19. Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark

    International Nuclear Information System (INIS)

    Elina Syrjaelahti; Anitta Haemaelaeinen

    2005-01-01

    Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)

  20. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  1. Cleaning of aluminum after machining with coolants

    International Nuclear Information System (INIS)

    Roop, B.

    1992-01-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended

  2. Method of suppressing the deposition of Co-60 to primary coolant pipeways in a nuclear reactor

    International Nuclear Information System (INIS)

    Hoshi, Michio; Tachikawa, Enzo; Goto, Satoshi; Sagawa, Chiaki; Yonezawa, Chushiro.

    1987-01-01

    Purpose: To suppress the deposition of Co-60 to primary coolant pipeways in a nuclear reactor. Method: To reduce the accumulation of Co-60 by causing chemical species of extremely similar chemical property with soluble Co-60 to be present together in coolants and replacing the deposition of Co-60 to the primary coolant pipeways in a nuclear reactor with that of the coexistent chemical spacies. Ni or Zn is used as the coexistet chemical spacies of similar chemical property with Co-60. The coexistent amount is from 5 to 10 times of the soluble Co-60 in the primary coolants. Ni or Zn solution adjusted with concentration is poured into and mixed with the coolants from a water feed source by using a high pressure constant volume pump. The amount of Co-60 taken into the pipeways caused by corrosion due to high temperature coolant is reduced to about 1/5 as compared with the case of Co-60 alone if 1 ppb of soluble Co-60 is present in water and 5 ppb of soluble Ni or Zn is added and, reduced to 1/12 if the amount of Ni or Zn is 10 ppb. (Kamimura, M.)

  3. Hydromechanical transmission with three simple planetary assemblies, one sun gear being mounted on the output shaft and the other two on a common shaft connected to an input-driven hydraulic module

    Science.gov (United States)

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1978-01-01

    A power transmission having three simple planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gears of the first two planetary assemblies, these two sun gears being connected together on a common shaft. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft is also connected to drive the second ring gear and, furthermore is clutchable to the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the second planetary assembly drives the ring gear of the third planetary assembly, which is clutchable to the output shaft, and the sun gear of the third planetary assembly is mounted rigidly to the output shaft.

  4. System design for shaft safety and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Owen, D.; Parsons, R.; Ward, R.

    1988-03-01

    The aim of this paper is to describe the process of designing a system to improve safety and productivity in shafts. The objectives and constraints for the design were set out in official reports following a shaft accident at Markham Colliery in 1973. The problems to be solved were: to enable the shaftsmen to transfer the existing statutory code of signals efficiently from, or on top of, a conveyance anywhere in the shaft to the winding engineman and banksman at the surface: to detect the existence of slack rope or to detect that conditions have arisen that slack rope could be created and transmit this information to where action can be taken; and to allow conversations between winding engineman, banksman and shaftsman making allowances for the high level of acoustic noise in shafts. The approach adopted for slack rope monitoring was to monitor the tension in the cage suspension gear, thus measuring a first order effect. The three problems have a common element: information must be transferred through the shaft. This particular problem was solved with guided radio, using the winding rope as the transmission medium. The radio signal is coupled into the winding rope by means of fixed toroid encircling it at the cage and fixed magnetic antennas at the surface. The design of a digital transmission system for signalling and tension data is discussed. The 'top down' modular approach used in the design enabled full advantage to be taken of the opportunities for building a more reliable, safer and flexible system presented by technologies new to the shaft environment. The resultant system, the Safecom Shaft Signalling Communication and Winder Safety Monitoring System type S100, is in regular use at over 20 installations. 3 refs., 4 figs., 1 tab.

  5. Designing vertical mine shafts under conditions of increasing shaft depth with rock hoisting to the operating mining level

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1983-05-01

    A system for shaft excavation in deep coal mines with mining depth exceeding 1,000 m is discussed. During mine sinking rocks are removed to the ground surface. When depth of a deep mine shaft is increased rocks are removed to the operating mining level, causing lower investment costs than the system with rock hoisting to the ground surface. The Yuzhgiproshakht design firm carries out investigations on the optimum methods for increasing shaft depth in coal mines. Coal mines with the following coal output are included in evaluations: 0.9, 1.2, 1.5, and 1.8 Mt/year. Mine shaft depth of 600, 800, 1000, 1200, 1400 and 1600 m is analyzed. Shaft depth is increased by 100, 200, 300 or 400 m. Shaft sinking rate ranges from 10 to 70 m/month. Effects of rock hoisting from the shaft bottom on the hoisting scheme in a mine shaft are analyzed. Position of hoisting bucket in relation to cages or skips moving in a shaft is investigated. Investigation results are given in 5 schemes. Analyses show that use of a shaft sinking system with rock hoisting to the ground surface during shaft excavation and with rock hoisting to the operating mining level during shaft depth increasing is economical when a shaft with skips is from 7 to 8 m in diameter or when a cage shaft is 6 m, 7 m or 8 m in diameter. Use of standardized shaft excavation systems is recommended. (In Russian)

  6. Report on measurements at the pump Avala - Annex 7

    International Nuclear Information System (INIS)

    Nikolic, M.

    1963-01-01

    Visual inspection and measuring results have shown that the surface of the upper pump bearing is much more worn-out than the lower radial bearing. This has proved that most of the cobalt (contained in the stellite alloy) came from the upper pump bearings. It could be stated that about 60 grams of cobalt from the upper pump bearings could come into the coolant system [sr

  7. Construction and testing of a double acting bellows liquid helium pump

    International Nuclear Information System (INIS)

    Burns, W.A.; Green, M.A.; Ross, R.R.; Van Slyke, H.

    1980-05-01

    The double acting reciprocating bellows liquid helium pump built and tested at the Lawrence Berkeley Laboratory is described. The pump is capable of delivering 50 gs -1 of liquid helium to supply the two-phase cooling sytem for a large superconducting magnet. The pump is driven by a torque motor at room temperature; the reciprocating motion is transmitted to the pump through a shaft which operates between room temperature and 4 0 K. The design details of this liquid helium pump are presented. The helium pump has operated in a helium bath and in pumped forced flow helium circuits. The results of these experimental tests are presented in this report

  8. Experimental research on pressure fluctuation and vibration in a mixed flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Houlin; Wang, Wenbo [National Research Center of Pumps and Pumping System Engineering and Technology, Jiangsu University, Zhenjiang (China); Zhou, Xiaohua [Gree Electric Appliance Inc. of Zhuhai, Zhuhai (China)

    2016-01-15

    To study the pressure fluctuation and vibration in mixed flow pumps, we chose a mixed flow pump with specific speed of 436.1 to measure. The time domains and frequency domain at each monitoring point on diffuser and outlet elbow were analyzed, as well as the vibration frequency domain characteristics at the impeller outlet and near the motor. The results show that the peak value of pressure fluctuation peak decreased gradually with the increase of flow rate. The pressure fluctuation of each monitoring point had periodicity, and the frequency domain dominated by blade passing frequency and multiple shaft frequency. The vibration frequency of each monitoring point occurred at shaft frequency and its multiple shaft frequency. The dominant frequency and the second frequency were distributed in shaft frequency and double shaft frequency.

  9. Organic coolant in Winnipeg riverbed sediments

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Acres, O.E.

    1979-03-01

    Between January and May 1977 a prolonged leak of organic coolant occurred from the Whiteshell Nuclear Research Establishment's nuclear reactor, and a minimum of 1450 kg of coolant entered the Winnipeg River and was deposited on the riverbed. The level of radioactivity associated with this coolant was low, contributing less than 0.2 μGy (0.02 mrad) a year to the natural background gamma radiation field from the riverbed. The concentration of coolant in the water samples never exceeded 0.02 mg/L, the lower limit of detection. The mortality of crayfish, held in cages where the riverbed was covered with the largest deposits of coolant, was not significantly different from that in the control cages upstream of the outfall. No evidence of fish kill was found. (author)

  10. Shaft siting decision report: Final report

    International Nuclear Information System (INIS)

    1985-11-01

    The purpose of this study is to identify and establish relative guidelines to be used for siting of repository shafts. Weights were determined for the significant factors which impact the selection of shaft locations for a nuclear waste repository in salt. The study identified a total of 45 factors. A panel of experienced mining people utilized the Kepner-Tregoe (K-T) Decision Analysis Process to perform a structured evaluation of each significant shaft siting factor. The evaluation determined that 22 of the factors were absolute constraints and that the other 23 factors were desirable characteristics. The group established the relative weights for each of the 23 desirable characteristics by using a paired comparison method. 49 refs., 2 figs., 5 tabs

  11. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  12. Development of model pump for establishing hydraulic design of primary sodium pumps in PFBR

    International Nuclear Information System (INIS)

    Chougule, R.J.; Sahasrabudhe, H.G.; Rao, A.S.L.K.; Balchander, K.; Kale, R.D.

    1994-01-01

    Indira Gandhi Centre for Atomic Research, Kalpakkam indicated requirement of indigenous development of primary sodium pump, handling liquid sodium as coolant in Fast Breeder Reactor. The primary sodium pump concept selected in its preliminary design is a vertical, single stage, with single suction impeller, suction facing downwards. The pump is having diffuser, discharge casing and discharge collector. The 1/3 rd size model pump is developed to establish the hydraulic performance of the prototype primary sodium pump. The main objectives were to verify the hydraulic design to operate on low net positive suction head available (NPSHA), no evidence of visible cavitation at available NPSHA, the pump should be designed with a diffuser etc. The model pump PSP 250/40 was designed and successfully developed by Research and Development Division of M/s Kirloskar Brothers Ltd., Kirloskarvadi. The performance testing using model pump was successfully carried out on a closed circuit test rig. The performance of a model pump at three different speeds 1900 rpm, 1456 rpm and 975 rpm was established. The values of hydraulic axial thrust with and without balancing holes on impeller at 1900 rpm was measured. Visual cavitation study at 1900 rpm was carried out to establish the NPSH at bubble free operation of the pump. The tested performance of the model pump is converted to the full scale prototype pump. The predicted performance of prototype pump at 700 rpm was found to be meeting fully with the expected duties. (author). 6 figs., 3 tabs

  13. Ipsilateral humeral neck and shaft fractures

    Directory of Open Access Journals (Sweden)

    Zhu Bin

    2017-01-01

    Full Text Available Background/Aim. Fractures of the proximal humerus or shaft are common, however, ipsilateral neck and shaft humerus fracture is a rare phenomenon. This combination injury is challenging for orthopaedic surgeons because of its complex treatment options at present. The purpose of this study was to review a series of ipsilateral humeral neck and shaft fractures to study the fracture pattern, complications and treatment outcomes of each treatment options used. Methods. A total of six patients (four female and two male with the average age of 42.8 years (range: 36–49 years was collected and reviewed retrospectively. Two of them were treated with double plates and four with antegrade intramedullary nail. According to the Neer’s classification, all proximal fractures were two-part surgical neck fractures. All humeral shaft fractures were located at the middle of one third. Five fractures were simple transverse (A3, one fragmented wedge fracture (B3. One patient had associated radial nerve palsy. Results. All surgical neck fractures except one united uneventfully in the average time span of 8.7 weeks. Four humeral shaft fractures healed in near anatomic alignment. The remaining two patients had the nonunion with no radiological signs of fracture healing. The average University of California, Los Angeles End-Results (UCLA score was 23.1. On the contrary, the average American Shoulder and Elbow Surgeon's (ASES score was 73.3. The patients treated with antegrade intramedullary nails presented 70.5 points. The ASES scores were 79 in the double plates group. Conclusions. Ipsilateral humeral shaft and neck fracture is extremely rare. Both antegrade intramedullar nailing and double plates result in healing of fractures. However the risk of complication is lower in the double plating group.

  14. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  15. Structural Modifications for Torsional Vibration Control of Shafting Systems Based on Torsional Receptances

    Directory of Open Access Journals (Sweden)

    Zihao Liu

    2016-01-01

    Full Text Available Torsional vibration of shafts is a very important problem in engineering, in particular in ship engines and aeroengines. Due to their high levels of integration and complexity, it is hard to get their accurate structural data or accurate modal data. This lack of data is unhelpful to vibration control in the form of structural modifications. Besides, many parts in shaft systems are not allowed to be modified such as rotary inertia of a pump or an engine, which is designed for achieving certain functions. This paper presents a strategy for torsional vibration control of shaft systems in the form of structural modifications based on receptances, which does not need analytical or modal models of the systems under investigation. It only needs the torsional receptances of the system, which can be obtained by testing simple auxiliary structure attached to relevant locations of the shaft system and using the finite element model (FEM of the simple structure. An optimization problem is constructed to determine the required structural modifications, based on the actual requirements of modal frequencies and mode shapes. A numerical experiment is set up and the influence of several system parameters is analysed. Several scenarios of constraints in practice are considered. The numerical simulation results demonstrate the effectiveness of this method and its feasibility in solving torsional vibration problems in practice.

  16. A system for cooling electronic elements with an EHD coolant flow

    International Nuclear Information System (INIS)

    Tanski, M; Kocik, M; Barbucha, R; Garasz, K; Mizeraczyk, J; Kraśniewski, J; Oleksy, M; Hapka, A; Janke, W

    2014-01-01

    A system for cooling electronic components where the liquid coolant flow is forced with ion-drag type EHD micropumps was tested. For tests we used isopropyl alcohol as the coolant and CSD02060 diodes in TO-220 packages as cooled electronic elements. We have studied thermal characteristics of diodes cooled with EHD flow in the function of a coolant flow rate. The transient thermal impedance of the CSD02060 diode cooled with 1.5 ml/min EHD flow was 7.8°C/W. Similar transient thermal impedance can be achieved by applying to the diode a large RAD-A6405A/150 heat sink. We found out that EHD pumps can be successfully applied for cooling electronic elements.

  17. Construction of blind shafts with the PVS 3500 planetary full shaft drilling machine

    International Nuclear Information System (INIS)

    Glogowski, P.; Kolditz, H.

    1992-01-01

    The PVS 3500 planetary full shaft drilling machine has proved as a prototype in the construction of two blind shafts. The drilling rate of 8 m/shift or 25.6 m 3 /MS is outstanding for the initial use of this drilling machine. Blind shafts were cut from the solid by a dry drilling method for the first time. It opens up the possibility of making available storage boreholes for larger quantities of radioactive waste with low activity and for toxic waste materials. (orig.)

  18. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  19. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  20. Malone-brayton cycle engine/heat pump

    Science.gov (United States)

    Gilmour, Thomas A.

    1994-07-01

    A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.

  1. Determination of Volumetric Losses in Hydrodynamic Pump Using Numerical Modelling

    Directory of Open Access Journals (Sweden)

    Lukáš ZAVADIL

    2012-06-01

    Full Text Available This paper deals with the numerical modelling of the flow in the single-stage centrifugal pump. The main objective is to determine leakage losses through annular seals at the suction side of the pump. Leakage through a shaft seal is not included in the simulation. The amount of liquid that circulates from the impeller discharge back to suction of the pump is determined in dependence on the flow rate. Losses in the pump are further discussed as well as the possibility of their prediction.

  2. Recent quality of ultra large rotor shafts

    International Nuclear Information System (INIS)

    Suzuki, Akira; Kinoshita, Shushi; Morita, Kikuo; Kikuchi, Hideo; Takada, Masayoshi

    1983-01-01

    Large size and high quality are required for rotor shafts accompanying recent trend of thermal and nuclear power generation toward large capacity. As for the low pressure rotor shafts for large capacity turbines, the disks and a shaft tend to be made into one body instead of conventional shrink fit construction, because of the experience of rotor accidents and the improvement of reliability. Therefore the ingots required become more and more large, and excellent production techniques are required for steel making, forging and heat treatment. Kobe Steel Ltd. have made about 20 large generator shafts from 420 t and 500 t ingots, and confirmed their stable high quality. Also a one-body low pressure rotor of 2600 mm diameter was made for trial, and its quality was examined. It was confirmed that the effect of forging and heat treatment was given sufficiently, and the production techniques for super-large one-body rotors were established. In steel making, vacuum degassing was applied twice to decrease hydrogen content, and VV restriction forging and pre-stage treatment were carried out. The properties of large rotors are reported. (Kako, I.)

  3. Incidence and epidemiology of tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Elsøe, Rasmus; Hansen, Sandra Hope

    2015-01-01

    Introduction: The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large....... The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have...... frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. Conclusion: This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type...

  4. Exploratory shaft conceptual design report: Permian Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Permian Basin locatd in the western part of Texas. Conceptualized designs for other possible locations (Paradox Basin in Utah and Gulf Interior Region salt domes in Louisiana and Mississippi) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in situ testing of the salt. The in situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homogeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptual design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  5. Exploratory shaft conceptual design report: Paradox Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Paradox Basin located in the southeastern part of Utah. Conceptualized designs for other possible locations (Permian Basin in Texas and Gulf Interior Region salt domes in Louisiana and Mississippi) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in situ testing of the salt. The in-situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homogeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptual design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  6. Continuous surveillance of reactor coolant circuit integrity

    International Nuclear Information System (INIS)

    1986-01-01

    Continuous surveillance is important to assuring the integrity of a reactor coolant circuit. It can give pre-warning of structural degradation and indicate where off-line inspection should be focussed. These proceedings describe the state of development of several techniques which may be used. These involve measuring structural vibration, core neutron noise, acoustic emission from cracks, coolant leakage, or operating parameters such as coolant temperature and pressure. Twenty three papers have been abstracted and indexed separately for inclusion in the data base

  7. Geological investigation of shaft mine in Devonian limestone in Kansas City, Missouri and other potentially dry excavated subsurface space in part of the Forest City Basin

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, E.D.

    1977-10-01

    A high quality limestone is currently being mined from a deep shaft mine (1072 feet) in Middle Devonian rocks (Callaway) within the city limits of Kansas City, Missouri. About 15 acres of essentially dry space (room and pillar) with up to 14-foot ceilings have been developed. There are few natural joints observable in the rock within the mine. Some of these are periodically damp. More than 80% of the mine is dry. Saltwater from aquifers (Pennsylvanian) cut by the shaft accumulates behind the shaft at the pump station at 850 feet and at the bottom of the shaft (Devonian-Ordovician rocks). As long as the pumps lift the water to the surface, the mine can be kept relatively dry. Grouting of the aquifer's rocks in the shaft may seal off that source of water. The Burlington limestone of the Mississippian System is potentially mineable on the property now developed. The Burlington limestone, the Middle Devonian limestone, and the Kimmswick (Middle Ordovician) limestone are all potentially mineable by shaft mining in the northern part of Greater Kansas City and northward into the Forest City Basin.

  8. Numerical FEM Analyses of primary coolant system at NPP Temelin

    International Nuclear Information System (INIS)

    Junek, L.; Slovacek, M.; Ruzek, L.; Moulis, P.

    2003-01-01

    The main goal of this paper is to inform about the beginning and first steps of implementation of an aging management system at the Temelin NPP. The aging management system is important not only for achieving the current safety level but also for reaching operational reliability of a production unit equipment above the life time assumed by the original design, typically over 40 years. A method to locate the most prominent degradation regions is described. A global shell model of the primary coolant system including all loops and their components - reactor pressure vessel (RPV), steam generator (SG), main coolant pump (MCP), pressurizer, feed water and steam pipelines system is presented. The results of stress-strain analysis on the measured service parameters base are given. Validation of the results is very important and the method to compare the service measurement data with the numerical results is described. The global/local approach is mentioned and discussed. The effects of the complete global system on the individual components under monitoring are transformed into more accurate local spatial models. The local spatial models are used to analyze the gradual lifetime exhaustion of a facility during its service operation. Two spatial local models are presented, viz. feed water nozzle of SG and main coolant piping system T-brunch. The results of analysis of the local spatial models are processed by the neural network computing method, which is also described. The actual gradual damage of the material of the components under monitoring can be obtained based on the analyses performed and on the results from the neural network in combination with the knowledge of the real material characteristics. The procedures applied are included in the DIALIFE diagnostic system

  9. Minimizing unbalance response of the CRBRP sodium pumps

    International Nuclear Information System (INIS)

    Gupta, V.K.; Marrujo, F.G.

    1979-04-01

    The unbalance response characteristics of the vertical pumps for the Clinch River Breeder Reactor Plant are investigated. Finite-element shell and beam models representative of the pump-motor structure including the rotating assembly are developed to assess structural stiffnesses of dominant joints as well as the foundation support stiffness so as to exclude the danger of resonant excitation during normal operation. Less than four mils peak-to-peak vibration amplitude at the pump tank discharge nozzle results from just 10% frequency separation between the first rocking mode and the maximum operating speed of 1116 RPM, based on 0.5% modal damping ratio and balance quality grade of ISO/ANSI G2.5 for the rotating components: motor rotor, pump shaft, Bendix diaphragm-type flexible coupling, and centrigual double-suction impeller. Several design options are explored for raising shaft critical speed beyond 125% of maximum operating speed

  10. Evaluation of stress histories of reactor coolant loop piping for pipe rupture prediction

    International Nuclear Information System (INIS)

    Lu, S.C.; Larder, R.A.; Ma, S.M.

    1981-01-01

    This paper describes the analyses used to evaluate stress histories in the primary coolant loop piping of a selected four-loop PNR power station. In order to make the simulation as realistic as possible, best estimates rather than conservative assumptions were considered throughout. The best estimate solution, however, was aided by a sensitivity study to assess the possible variation of outcomes resulted from uncertainties associated with these assumptions. Sources of stresses considered in the evaluation were pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, pump vibrations, and finally seismic excitations. The best estimates of pressure and thermal transient histories arising from plant operations were based on actual plant operation records supplemented by specified plant design conditions. Seismic motions were generated from response spectrum curves developed specifically for the region surrounding the plant site. Stresses due to dead weight and thermal expansion were computed from a three dimensional finite element model which used a combination of pipe, truss, and beam elements to represent the coolant loop piping, the pressure vessel, coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients were obtained by closed form solutions. Seismic stress calculations considered the soil structure interaction, the coupling effect between the containment structure and the reactor coolant system. A time history method was employed for the seismic analysis. Calculations of residual stresses accounted for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation were estimated by a dynamic analysis using existing measurements of pump vibrations. (orig./HP)

  11. Design on Hygrometry System of Primary Coolant Circuit of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yanfei; Zhong Shuoping; Huang Xiaojin

    2014-01-01

    Helium is the primary coolant in HTR-PM. If vapor get into the helium in primary coolant circuit because of some special reasons, such as the broken of steam-generator tube, chemical reaction will take effect between the graphite in reactor core and vapor in primary coolant circuit, and the safety of the reactor operation will be influenced. So the humidity of the helium in primary coolant circuit is one key parameter of HTR-PM to be monitored in-line. Once the humidity is too high, trigger signal of turning off the reactor must be issued. The hygrometry system of HTR-PM is consisting of filter, cooler, hygrometry sensor, flow meter, and some valves and tube. Helium with temperature of 250℃ is lead into the hygrometry system from the outlet of the main helium blower. After measuring, the helium is re-injected back to the primary circuit. No helium loses in this processing, and no other pump is needed. Key factors and calculations in design on hygrometry system of HTR-PM are described. A sample instrument has been made. Results of experiments proves that this hygrometry system is suitable for monitoring the humidity of the primary coolant of HTR-PM. (author)

  12. Consideration of hot channel factors in design for providing operating margins on coolant channel outlet temperature

    International Nuclear Information System (INIS)

    Sharma, V.K.; Surendar, C.; Bapat, C.N.

    1994-01-01

    The Indian Pressurized Heavy Water Reactors (IPHWR) are horizontal pressure tube reactors using natural uranium oxide fuel in the form of short (495 mm) clusters. The fuel clusters in the Zr-Nb pressure tubes are cooled by high pressure, high temperature and subcooled circulating heavy water. Coolant flow distribution to individual channels is designed to match the power distribution so as to obtain uniform coolant outlet temperature. However, during operation, the coolant outlet temperature in individual channels deviate from their nominal value due to: tolerances in process design; effects of grid frequency on the pump speed; deviation in channel powers from the nominal values due to on-power fuelling and movement of reactivity devices, and so on. Thus an operating margin, between the highest permissible and nominal coolant outlet temperatures, is required taking into account various hot channel factors that contribute to higher coolant outlet temperatures. The paper discusses the methodology adopted to assess various hot channel factors which would provide optimum operating margins while ensuring sub-cooling. (author)

  13. Connect-disconnect coupling for preadjusted rigid shafts

    Science.gov (United States)

    Bajkowski, F. W.; Holmberg, A.

    1969-01-01

    Coupling device enables a rigid shaft to be connected to or disconnected from a fixed base without disturbing the point of adjustment of the shaft in a socket or causing the shaft to rotate. The coupling consists of an externally threaded, internally slotted boss extending from the fixed base.

  14. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and... connected to the slope or shaft opening with fireproof air ducts; (3) Designed to permit the reversal of the...

  15. Procedure for determining the optimum rate of increasing shaft depth

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1983-03-01

    Presented is an economic analysis of increasing shaft depth during mine modernization. Investigations carried out by the Yuzhgiproshakht Institute are analyzed. The investigations are aimed at determining the optimum shaft sinking rate (the rate which reduces investment to the minimum). The following factors are considered: coal output of a mine (0.9, 1.2, 1.5 and 1.8 Mt/year), depth at which the new mining level is situated (600, 800, 1200, 1400 and 1600 m), four schemes of increasing depth of 2 central shafts (rock hoisting to ground surface, rock hoisting to the existing level, rock haulage to the developed level, rock haulage to the level being developed using a large diameter borehole drilled from the new level to the shaft bottom and enlarged from shaft bottom to the new level), shaft sinking rate (10, 20, 30, 40, 50 and 60 m/month), range of increasing shaft depth (the difference between depth of the shaft before and after increasing its depth by 100, 200, 300 and 400 m). Comparative evaluations show that the optimum shaft sinking rate depends on the scheme for rock hoisting (one of 4 analyzed), range of increasing shaft depth and gas content in coal seams. The optimum shaft sinking rate ranges from 20 to 40 m/month in coal mines with low methane content and from 20 to 30 m/month in gassy coal mines. The planned coal output of a mine does not influence the optimum shaft sinking rate.

  16. Circulating water pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Satoh, Hiroshi; Ohmori, Tsuneaki

    1979-01-01

    Shortly, the nuclear power station with unit power output of 1100 MW will begin the operation, and the circulating water pumps manufactured recently are those of 2.4 to 4 m bore, 840 to 2170 m 3 /min discharge and 2100 to 5100 kW driving power. The circulating water pumps are one of important auxiliary machines, because if they fail, power generation capacity lowers immediately. Enormous quantity of cooling water is required to cool condensers, therefore in Japan, sea water is usually used. As siphon is formed in circulating water pipes, the total head of the pumps is not very high. The discharge of the pumps is determined so as to keep the temperature rise of discharged water lower than 7 deg. C. The quantity of cooling water for nuclear power generation is about 50% more as compared with thermal power generation because of the difference in steam conditions. The total head of the pumps is normally from 8 to 15 m. The circulating water pumps rarely stop after they started the operation, therefore it is economical to determine the motor power so that it can withstand 10% overload for a short period, instead of large power. At present, vertical shaft, oblique flow circulating water pumps are usually employed. Recently, movable blade pumps are adopted. The installation, construction and materials of the pumps and the problems are described. (Kako, I.)

  17. Heat transfer properties of organic coolants containing high boiling residues

    International Nuclear Information System (INIS)

    Debbage, A.G.; Driver, M.; Waller, P.R.

    1964-01-01

    Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 10 4 to 10 5 . The data was correlated with the equation Nu = 0.015 Re b 0.85 Pr b 0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)

  18. Small break LOCA [loss of coolant accident] mitigation for Bellefonte

    International Nuclear Information System (INIS)

    Bayless, P.D.; Dobbe, C.A.

    1986-01-01

    Several 5-cm (2-in.) diameter cold leg break loss coolant accidents for the Bellefonte nuclear plant were analyzed as part of the Severe Accident Sequence Analysis Program. The transients assumed various system failures, and included the S 2 D sequence. Operator actions to mitigate the S 2 D transient were also investigated. The transients were analyzed until either core damage began or long-term decay heat removal was established. The S 2 D sequence was analyzed into the core damage phase of the transient. The analyses showed that the flow from one high pressure injection pump was necessary and sufficient to prevent core damage in the absence of operator actions. Operator actions were also able to prevent core damage for the S 2 D sequence

  19. Coolant processing device for nuclear reactor

    International Nuclear Information System (INIS)

    Kizawa, Hideo; Funakoshi, Toshio; Izumoji, Yoshiaki

    1981-01-01

    Purpose: To reduce an entire facility cost by concentrating and isolating tritium accumulated in coolants, removing the tritium out of the system, and returning hydrogen gas generated at a reactor accident to a recombiner in a closed loop by the switching of a valve. Constitution: Coolant from a reactor cooling system processed by a chemical volume control system facility (CVCS) and coolant drain from various devices processed by a liquid waste disposing system facility (LWDS) are fed to a tritium isolating facility, in which they are isolated into concentrated tritium water and dilute tritium water. The concentrated tritium water is removed out of the system and stored. The dilute tritium water is reused as supply water for coolant. If an accident occurs to cause hydrogen to be generated, a closed loop is formed between the containment vessel and the recombiner, the hydrogen is recombined with oxygen in the air of the closed loop to be thus returned to water. (Kamimura, M.)

  20. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  1. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  2. Standardized sampling system for reactor coolants

    International Nuclear Information System (INIS)

    Divine, J.R.; Munson, L.F.; Nelson, J.L.; McDowell, R.L.; Jankowski, M.W.

    1982-09-01

    A three-pronged approach was developed to reach the objectives of acceptable coolant sampling, assessment of occupational exposure from corrosion products, and model development for the transport and buildup of corrosion products. Emphasis is on sampler design

  3. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  4. Pump selection and application in a pressurized water reactor electric generating plant

    International Nuclear Information System (INIS)

    Kitch, D.M.

    1985-01-01

    Various pump applications utilized in a nuclear pressurized water reactor electric generating plant are described. Emphasis is on pumps installed in the auxiliary systems of the primary nuclear steam supply system. Hydraulic and mechanical details, the ASME Code (Nuclear Design), materials, mechanical seals, shaft design, seismic qualification, and testing are addressed

  5. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family o......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  6. Prediction of potential failures in hydraulic gear pumps

    Directory of Open Access Journals (Sweden)

    E. Lisowski

    2010-07-01

    Full Text Available Hydraulic gear pumps are used in many machines and devices. In hydraulic systems of machines gear pumps are main component ofsupply unit or perform auxiliary function. Gear pumps opposite to vane pumps are less complicated. They consists of such components as:housing, gear wheels, bearings, shaft, seal for rotation motion which are not very sensitive for damage and that is why they are using veryoften. However, gear pumps are break down from time to time. Usually damage of pump cause shutting down of machines and devices.One of the way for identifying potential failures and foreseeing their effects is a quality method. On the basis of these methods apreventing action might be undertaken before failure appear. In this paper potential failures and damages of a gear pump were presented bythe usage of matrix FMEA analysis.

  7. Solar-powered turbocompressor heat pump system

    Science.gov (United States)

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  8. Concepts for backfilling and sealing of shafts

    International Nuclear Information System (INIS)

    Pierau, B.

    1990-01-01

    The disposal site is situated at a depth of 1000 to 1200 meters. It is covered by very thick cretatious mudstone layers forming the main barrier against the spread of radioactively contaminated water into the biosphere. Because of the excavation works and the resulting stress redistributions, the material surrounding the shafts is probably broken up, which leads to increased permeability in comparison with the intact rock. It is planned to backfill the shafts with an insoluble mineral mixture including a fine fraction necessary to achieve the sealing required. The joints and cracks in the brocken-up surrounding material are believed to be sealed by themselves due to swelling of the mudstone. Some strata of the mudstone contain more than 20% of smektite, a swelling clay mineral. Those regions, where the broken-up zone cannot be considered sure to self-seal due to swelling, are planned to be sealed by pressure grouting using clay suspension. (orig./HP) [de

  9. Exploratory shaft facility preliminary designs - Permian Basin

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Permian Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Permian Basin, Texas. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references, 13 tables

  10. Work on a transfer tunnel access shaft

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Civil engineers work on one of the access shafts from the SPS to the LHC transfer tunnel, which will allow components and equipment to be lowered directly so that minimal transport is required. The transfer tunnel will take a proton beam from the SPS pre-accelerator and inject it into the clockwise circulating ring in the LHC where the beam will be accelerated to a final energy of 7 TeV.

  11. Modular 3-D solid finite element model for fatigue analyses of a PWR coolant system

    International Nuclear Information System (INIS)

    Garrido, Oriol Costa; Cizelj, Leon; Simonovski, Igor

    2012-01-01

    Highlights: ► A 3-D model of a reactor coolant system for fatigue usage assessment. ► The performed simulations are a heat transfer and stress analyses. ► The main results are the expected ranges of fatigue loadings. - Abstract: The extension of operational licenses of second generation pressurized water reactor (PWR) nuclear power plants depends to a large extent on the analyses of fatigue usage of the reactor coolant pressure boundary. The reliable estimation of the fatigue usage requires detailed thermal and stress analyses of the affected components. Analyses, based upon the in-service transient loads should be compared to the loads analyzed at the design stage. The thermal and stress transients can be efficiently analyzed using the finite element method. This requires that a 3-D solid model of a given system is discretized with finite elements (FE). The FE mesh density is crucial for both the accuracy and the cost of the analysis. The main goal of the paper is to propose a set of computational tools which assist a user in a deployment of modular spatial FE model of main components of a typical reactor coolant system, e.g., pipes, pressure vessels and pumps. The modularity ensures that the components can be analyzed individually or in a system. Also, individual components can be meshed with different mesh densities, as required by the specifics of the particular transient studied. For optimal accuracy, all components are meshed with hexahedral elements with quadratic interpolation. The performance of the model is demonstrated with simulations performed with a complete two-loop PWR coolant system (RCS). Heat transfer analysis and stress analysis for a complete loading and unloading cycle of the RCS are performed. The main results include expected ranges of fatigue loading for the pipe lines and coolant pump components under the given conditions.

  12. Development of fast-burn combustion with elevated coolant temperatures for natural gas engines. Final report, May 1985-May 1990

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, K.L.; Dennis, J.W.

    1990-09-01

    The overall objective of the work was to improve the state of the art in the gas fired spark ignited engine for use in a cogeneration system. Four characteristics were enhanced for cogeneration, namely, Low Pressure Gas Induction, Improved Shaft Thermal Efficiency, Low NOx Emissions, and Increased Jacket Coolant Temperature. Using Taguchi methods and statistical design of experiment methodologies, an engine design evolved that exhibited: The ability to run satisfactorily on supply gas pressure as low as 1.5 psig (goal: 1 psig); A brake specific fuel consumption as low as 6950 Btu/hp-hr (36.6% thermal efficiency) at 2 gm/hp-hr NOx (goal: 7000 acceptable, 6800 excellent with NOx no more than 2 gm/hp-hr); A jacket water coolant system (with oil cooler on the same circuit) temperature of 225 F (goal); and The ability to burn gas with Methane Number as low as 67 (goal).

  13. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 3: nonseismic stress analysis. Final report

    International Nuclear Information System (INIS)

    Chan, A.L.; Curtis, D.J.; Rybicki, E.F.; Lu, S.C.

    1981-08-01

    This volume describes the analyses used to evaluate stresses due to loads other than seismic excitations in the primary coolant loop piping of a selected four-loop pressurized water reactor nuclear power station. The results of the analyses are used as input to a simulation procedure for predicting the probability of pipe fracture in the primary coolant system. Sources of stresses considered in the analyses are pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, and mechanical vibrations. Pressure and thermal transients arising from plant operations are best estimates and are based on actual plant operation records supplemented by specified plant design conditions. Stresses due to dead weight and thermal expansion are computed from a three-dimensional finite element model that uses a combination of pipe, truss, and beam elements to represent the reactor coolant loop piping, reactor pressure vessel, reactor coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients are obtained by closed-form solutions. Calculations of residual stresses account for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation are estimated by a dynamic analysis using existing measurements of pump vibrations

  14. Analysis of the core reflooding of a PWR reactor under a loss-of-coolant postulated accident

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.

    1978-12-01

    The main purpose of this work is to analyse the termohydraulic behaviour of emergency cooling water, during reflooding of a PWR core submitted to a postulated loss-of-coolant accident, with the scope of giving the boundary conditions needed to verify fuel element and containment integrity. The analytical model presented was applied to the simulation of Angra I core reflooding phase, after a double-ended break between pressure vessel and discharge of one of the main coolant pumps. For this accident, with a discharge coefficient of C sub(D) = 0.4, the highest peak cladding temperature is expected. (author) [pt

  15. Nuclear reactor of pressurized liquid coolant type

    International Nuclear Information System (INIS)

    Costes, D.

    1976-01-01

    The reactor comprises a vertical concrete pressure vessel, a bell-housing having an open lower end and disposed coaxially with the interior of the pressure vessel so as to delimit therewith a space filled with gas under pressure for the thermal insulation of the internal vessel wall, a pressurizing device for putting the coolant under pressure within the bell-housing and comprising a volume of control gas in contact with a large free surface of coolant in order that an appreciable variation in volume of liquid displaced within the coolant circuit inside the bell-housing should correspond to a small variation in pressure of the control gas. 9 claims, 3 drawing figures

  16. ENVIRONMENTALLY REDUCING OF COOLANTS IN METAL CUTTING

    Directory of Open Access Journals (Sweden)

    Veijo KAUPPINEN

    2012-11-01

    Full Text Available Strained environment is a global problem. In metal industries the use of coolant has become more problematic in terms of both employee health and environmental pollution. It is said that the use of coolant forms approximately 8 - 16 % of the total production costs.The traditional methods that use coolants are now obviously becoming obsolete. Hence, it is clear that using a dry cutting system has great implications for resource preservation and waste reduction. For this purpose, a new cooling system is designed for dry cutting. This paper presents the new eco-friendly cooling innovation and the benefits gained by using this method. The new cooling system relies on a unit for ionising ejected air. In order to compare the performance of using this system, cutting experiments were carried out. A series of tests were performed on a horizontal turning machine and on a horizontal machining centre.

  17. Iron crud supply device to reactor coolant

    International Nuclear Information System (INIS)

    Baba, Takao.

    1993-01-01

    In a device for supplying iron cruds into reactor coolants in a BWR type power plant, a system in which feed water containing iron cruds is supplied to the reactor coolants after once passing through an ion exchange resin is disposed. As a result, iron cruds having characteristics similar with those of naturally occurring iron cruds in the plant are obtained and they react with ionic radioactivity, to form composite oxides. Then, iron cruds having high performance of being secured to the surface of a fuel cladding tube can be supplied to the reactor coolants, thereby enabling to greatly reduce the density of reactor water ionic radioactivity. In its turn, dose rate on the surface of pipelines can be reduced, thereby enabling to reduce operators' radiation exposure dose in the plant. Further, contamination of a condensate desalting device due to iron cruds can be prevented, and further, the density of the iron cruds supplied can easily be controlled. (N.H.)

  18. Limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.

    1985-01-01

    The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass

  19. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov

    2014-01-01

    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal

  20. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  1. Application of a hydrophilic Fe-Co magnetic fluid to the oil seal of a rotary shaft

    International Nuclear Information System (INIS)

    Lee, J. H.; Ryu, B. O.; Song, W. S.; Hong, G. P.; Zoo, Y. S.

    2003-01-01

    Existing oil seals of rotary shafts are made of rubber or ceramic goods (rubber retainer or mechanical seal). Thus if they are used for a long time, lubricant's leakage is induced from the gap between the shaft and bearings because of stiffening and abrading on the quality of seals due to the friction between rotating shaft and oil seal. Therefore the oil seals is restricted to durability limits and caused to require a quick change of the seal parts and to require significant man - powers for the complicated fabrication of seals. This study is established from the idea for working out these problems. This seal is composed of magnetic fluid to stop up oil in seals. As magnetic fluid between shaft and oil seal stops up oil in seals during rotating shaft, there is a friction but isn't an abrasion between shaft and oil seal so that there is no problem of the durability limits. In this study, with Fe- Co magnetic fluid is produced by hydrophilic ethylene glycol medium, Fe- Co(30 % : Co) powder, ring structure's Nd- permanent magnet of magnetic field strength 3300 Gauss and pole-piece(thickness : 1 mm, mild steel plate). With this arrangement the performance is such that the maximum resisting pressure of the oil seal apparatus was measured to be 25 kg/ cm 2 at the shaft speed 1800 rpm. It is believed that this magnetic fluid of Fe-Co powder used at the oil seal apparatus is the highest value among magnetic fluids in use until now. In an innovation this can give the advantages of lower noise, longer durability, and airtight of sealing as the contact of shaft (solid) to be friction and magnetic fluid(liquid) to seal. For that reason, this magnetic fluid of Fe-Co powder not only has enough specificity about the oil seal of rotary shaft but also shows enough quality as resisting pressure seal apparatus. Applications of this seal include all kinds of pump like high damping seal. This seal apparatus is economical and has an excellent sealing efficiency which can not be

  2. Axis vibration detection device for reactor recycling pump

    International Nuclear Information System (INIS)

    Ide, Katsuki.

    1995-01-01

    The present invention provides a device for detecting, in a contactless manner, vibrations of a recycling pump shaft disposed in a reactor pressure vessel of a BWR type reactor. Namely, the vibration detector comprises an eddy current type displacement gauge having a sensing portion at one end of a linear tube type metal holder. It also comprises a rotational member made of an electroconductive material rotating integrally with a rotational pump shaft. The vibration detector is inserted into an attaching hole passing through a pump casing at a position where the sensing portion faces the outer circumference of the rotational member. The attaching hole is closed by a holder of the oscillation detector and a metal cap integrated to one end of the holder. A high pressure hermetic seal connector is disposed at a position outer side of the attaching hole of the vibration detector for electrically connecting the inside and the outside thereof. The device of the present invention can directly detect the vibration of the pump shaft. As a result, an abnormality, if should occur, in the recycling pump can be found in an early stage. Since the vibration detector is covered with a metal and shielded by the high pressure hermetic seal connector, it can sufficiently ensure pressure resistance. (I.S.)

  3. Miniature Scroll Pumps Fabricated by LIGA

    Science.gov (United States)

    Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam

    2009-01-01

    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.

  4. Electrokinetic pump

    Science.gov (United States)

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  5. Technical meeting on 'Primary coolant pipe rupture event in liquid metal cooled fast reactors'. Working material

    International Nuclear Information System (INIS)

    2003-01-01

    In Liquid Metal cooled Fast Reactors (LMFR) or in accelerator driven sub-critical systems (ADS) with LMFR like sub-critical cores, the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). The primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on 'Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors' was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the Technical Meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the Technical Meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  6. Comparative design study of FR plants with various coolants. 1. Studies on Na coolant FR, Pb-Bi coolant FR, gas coolant FR

    International Nuclear Information System (INIS)

    Konomura, Mamoru; Shimakawa, Yoshio; Hori, Toru; Kawasaki, Nobuchika; Enuma, Yasuhiro; Kida, Masanori; Kasai, Shigeo; Ichimiya, Masakazu

    2001-01-01

    In Phase I of the Feasibility Studies on the Commercialized Fast Reactor (FR) Cycle System, plant designs on FR were performed with various coolants. This report describes the plant designs on FR with sodium, lead-bismuth, CO 2 gas and He gas coolants. A construction cost of 0.2 million yen/kWe was set up as a design goal. The result is as follows: The sodium reactor has a capability to obtain the goal, and lead-bismuth and gas reactors may satisfy the goal with further improvements. (author)

  7. On-Line Coolant Chemistry Analysis

    International Nuclear Information System (INIS)

    LM Bachman

    2006-01-01

    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level

  8. Leak detection device for reactor coolant

    International Nuclear Information System (INIS)

    Oshima, Koichiro.

    1990-01-01

    In a light water cooled reactor, if reactor coolants are leaked from pipelines in a pipeline chamber, activated products (N-16) are diffused together to an atmosphere in the pipeline chamber. N-16 is sucked from an extracting tube which is always sucking the atmosphere in the pipeline chamber to a sucking blower. Then, β-rays released from N-16 are monitored by a radiation monitor in a measuring chamber which is radiation-shielded from the pipeline chamber. Accordingly, since the radiation monitor can detect even slight leakage, the slight leakage of reactor coolants in the pipelines can be detected at an early stage. (I.N.)

  9. Application of a magnetic fluid seal to rotary blood pumps

    International Nuclear Information System (INIS)

    Mitamura, Y; Arioka, S; Azegami, M; Sakota, D; Sekine, K

    2008-01-01

    A magnetic fluid seal enables mechanical contact-free rotation of a shaft without frictional heat and material wear and hence has excellent durability. However, the durability of a magnetic fluid seal decreases in liquid. The life of a seal applied to a rotary blood pump is not known. We have developed a magnetic fluid seal that has a shield mechanism minimizing the influence of the rotary pump on the magnetic fluid. The developed magnetic fluid seal worked for over 286 days in a continuous flow condition, for 24 days (on-going) in a pulsatile flow condition and for 24 h (electively terminated) in blood flow. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps

  10. Fast Flux Test Facility replacement of a primary sodium pump

    International Nuclear Information System (INIS)

    Krieg, S.A.; Thomson, J.D.

    1985-01-01

    The Fast Flux Test Facility is a 400 MW Thermal Sodium Cooled Fast Reactor operated by Westinghouse Hanford Company for the US Department of Energy. During startup testing in 1979, the sodium level in one of the primary sodium pumps was inadvertently raised above the normal height. This resulted in distortion of the pump shaft. Pump replacement was carried out using special maintenance equipment. Nuclear radiation and contamination were not significant problems since replacement operations were carried out shortly after startup of the Fast Flux Test Facility

  11. Acoustic monitoring of the BOR-60 reactor circulating pump state

    International Nuclear Information System (INIS)

    Efimov, V.N.; Myntsov, A.A.

    1988-01-01

    Diagnostics methods for circulation pumps of the experimental BOR-60 fast reactor are described. The results of signal processing during a microcompain, as well as detected anomalies in pump operation in the earth stage are presented. Analysis carried out for an acoustic signal envelope has shown high efficiency of the method. When oscillations of a mechanical shaft are present, the envelope level increases 1.5 times. More detailed investigation is carried out by the analysis of the spectrum of the pump acoustic signal envelope. During abnormal operation there are peaks, corresponding to the circulation frequency, and harmonics multiple of it, in the spectrum. 6 figs

  12. A dynamic model of the reactor coolant system flow for KMRR plant simulation

    International Nuclear Information System (INIS)

    Rhee, B.W.; Noh, T.W.; Park, C.; Sim, B.S.; Oh, S.K.

    1990-01-01

    To support computer simulation studies for reactor control system design and performance evaluation, a dynamic model of the reactor coolant system (RCS) and reflector cooling system has been developed. This model is composed of the reactor coolant loop momentum equation, RCS pump dynamic equation, RCS pump characteristic equation, and the energy equation for the coolant inside the various components and piping. The model is versatile enough to simulate the normal steady-state conditions as well as most of the anticipated flow transients without pipe rupture. This model has been successfully implemented as the plant simulation code KMRRSIM for the Korea Multi-purpose Research Reactor and is now under extensive validation testing. The initial stage of validation has been comparison of its result with that of already validated, more detailed reactor system transient codes such as RELAP5. The results, as compared to the predictions by RELAP5 simulation, have been generally found to be very encouraging and the model is judged to be accurate enough to fulfill its intended purpose. However, this model will continue to be validated against other plant's data and eventually will be assessed by test data from KMRR

  13. An evaluation of debris mobility within a PWR reactor coolant system during the recirculation mode

    International Nuclear Information System (INIS)

    Andreychek, T.S.

    1987-01-01

    To provide for the long-term cooling of the nuclear core of a Pressurized Water Rector (PWR) following a hypothetical Loss-of-Coolant Accidnet (LOCA), water is drawn from the containment sump and pumped into the reactor coolant system (RCS). It has been postulated that debris from the containment, such as dirt, sand, and paint from containment walls and in-containment equipment, could be carried into the containment sump due to the action of the RCS coolant that escapes from the breach in the piping and then flows to the sump. Once in the sump, this debris could be pumped into the Safety Injection System (SIS) and ultimately the RCS itself, causing the performance of the SIS to be degraded. Of particular interest is the potential for core blockage that may occur due to debris transport into the core region by the recirculating flow. This paper presents a method of evaluating the potential for debris from the sump to form core blockages under recirculating flow conditions following a hypothetical LOCA for a PWR

  14. Evaluation of Coolant Injection Procedure in the Severe Accident Management Strategy of APR1400

    International Nuclear Information System (INIS)

    Cho, Yongjin; Lim, Kukhee; Song, Sungchu; Lee, Sukho; Hwang, Taesuk

    2013-01-01

    A coolant injection strategy in the severe accident management guideline (SAMG) of APR1400 relates to immediate coolant injection into RCS (Reactor Coolant System) or injection following the recovery of secondary coolant inventory. This strategy could play important role in accident mitigation and radiological consequences. In this study, appropriateness of the strategy was evaluated using MELCOR1.8.6 and several sensitivity studies of the key parameters were performed. Analysis for APR1400 using MELCOR 1.8.6 was performed to evaluate the effectiveness of accident management strategies and the following conclusions were identified. Sequential operation of secondary and RCS injection may not be the best strategy and the simultaneous injection of secondary and RCS injection could be more preferable. At least, the RCS injection should start before complete drainage of water in the safety injection tank using mobile pumps. In this study, the effectiveness of timing of operator action has been examined and the amount of injection flowrate needs to be studied in the future

  15. Phenomena occuring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1990-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. This paper discusses, how in the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. The physical and chemical processes occurring within the RCS during normal operation of the reactor are relatively uncomplicated and are reasonably well understood. When the flow of coolant is properly adjusted, the thermal energy resulting from nuclear fission (or, in the shutdown mode, from radioactive decay processes) and secondary inputs, such as pumps, are exactly balanced by thermal losses through the RCS boundaries and to the various heat sinks that are employed to effect the conversion of heat to electrical energy. Because all of the heat and mass fluxes remain sensibly constant with time, mathematical descriptions of the thermophysical processes are relatively straightforward, even for boiling water reactor (BWR) systems. Although the coolant in a BWR does undergo phase changes, the phase boundaries remain well-defined and time-invariant

  16. Conceptual design of the integral test loop (I): Reactor coolant system and secondary system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Lee, Seong Je; Kwon, Tae Soon; Moon, Sang Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This report describes the conceptual design of the primary coolant system and the secondary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the primary coolant system and secondary system is as follows ; Reference plant: Korean Standard Nuclear Plant (KSNP), Height ratio : 1/1, Volume ratio : 1/200, Power scale : Max. 15% of the scaled nominal power, Temperature, Pressure : Real plant conditions. The primary coolant system includes a reactor vessel, which contains a core simulator, a steam generator, a reactor coolant pump simulator, a pressurizer and piping, which consists of two hot legs, four cold legs and four intermediate legs. The secondary system consists of s steam discharge system, a feedwater supply system and a steam condensing system. This conceptual design report describes general configuration of the reference plant, and major function and operation of each system of the plant. Also described is the design philosophy of each component and system of the ITL, and specified are the design criteria and technical specifications of each component and system of the ITL in the report. 17 refs., 43 figs., 51 tabs. (Author)

  17. New cooling system of the FRG-1 two barrier system of the primary coolant cycle

    International Nuclear Information System (INIS)

    Knop, W.; Schreiner, P.

    2003-01-01

    The GKSS research center operates the swimming pool reactor FRG-1 with a thermal power of 5 MW as national neutron source for neutron scattering experiments and sample irradiation as well. Before changing the primary coolant cycle consisted of the reactor core and the closed piping including pumps, heat exchanger and delay tank. The closed cooling circuit was located underneath the reactor pool, in the so-called radioactive cellar. This piping system served secondary coolant system. Due to the location of the primary coolant cycle below the operation pool a postulated 2-F line break and simultaneous failure of the pool slide gate valve could lead to a falling dry of the total reactor core. the new primary coolant system was built in the beginning 2002 in a partitioned cell all within the radioactive cellar, so that the reactor core remains with water with the assumed incident. Due to the new two barrier-inclusion of the primary circuit only the melting of two fuel plates (from total 252 fuel plates) has to be taken into account. This measure and the core compactness in 2000 with a neutron flux gain of a factor of 2 makes the FRG-1 ready for the next 15 years of reactor operation. (author)

  18. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    OpenAIRE

    Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong

    2015-01-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...

  19. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  20. Grouting of nuclear waste vault shafts

    International Nuclear Information System (INIS)

    Gyenge, M.

    1980-01-01

    A nuclear waste vault must be designed and built to ensure adequate isolation of the nuclear wastes from human contact. Consequently, after a vault has been fully loaded it must be adequately sealed off to prevent radionuclide migration which may be provided by circulating ground water. Of particular concern in vault sealing are the physical and chemical properties of the sealing materials its long-term durability and stability and the techniques used for its emplacement. Present grouting technology and grout material are reviewed in terms of the particular needs of shaft grouting. Areas requiring research and development are indicated

  1. Pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Ogura, Shiro

    1979-01-01

    16 nuclear power plants are in commercial operation in Japan, and nuclear power generation holds the most important position among various substitute energies. Hereafter also, it is expected that the construction of nuclear power stations will continue because other advantageous energy sources are not found. In this paper, the outline of the pumps used for BWR plants is described. Nuclear power stations tend to be large scale to reduce the construction cost per unit power output, therefore the pumps used are those of large capacity. The conditions to be taken in consideration are high temperature, high pressure, radioactive fluids, high reliability, hydrodynamic performances, aseismatic design, relevant laws and regulations, and quality assurance. Pumps are used for reactor recirculation system, control rod driving hydraulic system, boric acid solution injecting system, reactor coolant purifying system, fuel pool cooling and purifying system, residual heat removing system, low pressure and high pressure core spraying systems, and reactor isolation cooling system, for condensate, feed water, drain and circulating water systems of turbines, for fresh water, sea water, make-up water and fire fighting services, and for radioactive waste treating system. The problems of the pumps used for nuclear power stations are described, for example, the requirement of high reliability, the measures to radioactivity and the aseismatic design. (Kako, I.)

  2. Pumps and pump facilities. 2. ed.

    International Nuclear Information System (INIS)

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  3. Residual torsional properties of composite shafts subjected to impact loadings

    International Nuclear Information System (INIS)

    Sevkat, Ercan; Tumer, Hikmet

    2013-01-01

    Highlights: • Impact loading reduces the torsional strength of composite shaft. • Impact energy level determines the severity of torsional strength reduction. • Hybrid composite shafts can be manufactured by mixing two types of filament. • Maximum torque capacity of shafts can be estimated using finite element method. - Abstract: This paper presents an experimental and numerical study to investigate residual torsional properties of composite shafts subjected to impact loadings. E-glass/epoxy, carbon/epoxy and E-glass–carbon/epoxy hybrid composite shafts were manufactured by filament winding method. Composite shafts were impacted at 5, 10, 20 and 40 J energy levels. Force–time and energy–time histories of impact tests were recorded. One composite shaft with no impact, and four composite shafts with impact damage, five in total, were tested under torsion. Torque-twisting angle relations for each test were obtained. Reduction at maximum torque and maximum twisting angle induced by impact loadings were calculated. While 5 J impact did not cause significant reduction at maximum torque and maximum twisting angle, remaining impact loadings caused 34–67% reduction at maximum torque, and 30–61% reduction at maximum twisting angle. Reductions increased with increasing energy levels and varied depending on the material of composite shafts. The 3-D finite element (FE) software, Abaqus, incorporated with an elastic orthotropic model, was then used to simulate the torsion tests. Good agreement between experimental and numerical results was achieved

  4. Increasing shaft depth with rock hoisting to the surface. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1982-06-01

    Schemes of shaft construction with increasing shaft depth depend on: shaft depth, shaft diameter, types of hoisting systems, schemes of shaft reinforcement. Investigations carried out in underground coal mines in the USSR show that waste rock haulage to the surface by an independent hoisting system is most economical. Installation of this system depends on the existing hoisting scheme. When one of the operating cages or skips can be removed without a negative influence on mine operation the system of rock waste hoisting is used. The hoisting bucket used for rock removal from the shaft bottom moves in the shaft section from which one of the cages or skips has been removed. Examples of using this scheme in Donbass, Kuzbass and other coal basins are given. Economic aspects of waste material hoisting to the surface are analyzed. The system is economical when the remaining hoisting system can accept additional loads after removal of a cage or skip from the shaft. Investigations show that use of a bucket with a capacity from 2.5 to 3.0 m/sup 3/ for waste rock removal from the shaft being modernized and deepened is most economical.

  5. Four-quadrant characteristics of Psb-VVER pumps

    International Nuclear Information System (INIS)

    Lipatov, I.A.; Elkin, I.V.; Antonova, A.I.; Dremin, G.I.; Kapustin, A.V.; Nikonov, S.M.; Rovnov, A.A.; Gudkov, V.I.

    2005-01-01

    This paper represents description of determination of Tunis-1620 pump head and torque characteristics of the integral thermophysical test facility Psb-Ver, obtained for single-phase coolant. Test procedure and main results obtained are described in the paper. (author)

  6. Earthquake resistance of residual heat removed (RHR) pump for pressurized water reactors (PWR)

    International Nuclear Information System (INIS)

    Uga, Takeo; Shiraki, K.; Honma, T.; Matsubayashi, H.; Inazuka, H.

    1980-01-01

    The present paper deals with the earthquake resistance of the residual heat removed (RHR) pump of single stage double volute type, which is one of the structurally simplest pumps used for pressurized water reactors (PWR). The results of the study can be summarized as follows: (1) Any trouble which can give effect on the functions of the pump at earthquake does not become a problem so long as each part of the pump is of aseismatically rigid structure. (2) Aseismatic tolerance test in the pump's operating condition has shown that the earthquake resistance of the pump at its location has a tolerance about five times the dynamic design acceleration. (3) The pump is provided with an impeller-casing wear ring at the pressure boundary between the suction side pressure and discharge side pressure. This wear ring acts as an underwater bearing when the pump is in operation, and improves the vibration characteristics, particularly damping ratio, of the pump shaft to a great extent to make the pump more aseismatic. (4) In the evaluation of the underwater bearing characteristics of the wear ring, the evaluation accuracy of the vibration characteristics of the pump shaft can be improved by taking into consideration the pressure loss in the wear ring part from the head of the single stage of the pump due to the rotation of the impeller. (author)

  7. Fission product release into the primary coolant

    International Nuclear Information System (INIS)

    Apperson, C.E.

    1977-01-01

    The analytic evaluation of steady state primary coolant activity is discussed. The reported calculations account for temperature dependent fuel failure in two particle types and arbitrary radioactive decay chains. A matrix operator technique implemented in the SUVIUS code is used to solve the simultaneous equations. Results are compared with General Atomic Company's published results

  8. Repair of Kaplan turbine shaft sealing based on evaluation of hydraulic conditions

    International Nuclear Information System (INIS)

    Lakatos, K; Szamosi, Z; Bereczkei, S

    2012-01-01

    This paper has been written to call attention to a potential danger what may occur in Kaplan turbine refurbishments. In Tiszalök hydropower plant, Hungary, the shaft sealing of the refurbished turbine was damaged. In searching for the reasons it was assumed that due to increased internal velocities in the turbine, the pressure at the hub clearance became lower than the atmospheric pressure, and therefore the sealing, which always operated satisfactorily before the refurbishment, had uncertain water supply, dry-running occurred, and after some time the sealing was burnt. First the flow conditions in the turbine and the pressure at the hub clearance were calculated by a one-dimensional flow model. Later this was refined by a two-dimensional approach. The above conclusion was also justified by the data acquisition system and by observing the operation of the small dewatering pump. When the turbine operated at a larger discharge than a certain limit value, then the dewatering pump remained standstill, indicating that no water passed through the shaft sealing. External water supply was then applied, and after this the turbine operated all right.

  9. Repair of Kaplan turbine shaft sealing based on evaluation of hydraulic conditions

    Science.gov (United States)

    Lakatos, K.; Szamosi, Z.; Bereczkei, S.

    2012-11-01

    This paper has been written to call attention to a potential danger what may occur in Kaplan turbine refurbishments. In Tiszalök hydropower plant, Hungary, the shaft sealing of the refurbished turbine was damaged. In searching for the reasons it was assumed that due to increased internal velocities in the turbine, the pressure at the hub clearance became lower than the atmospheric pressure, and therefore the sealing, which always operated satisfactorily before the refurbishment, had uncertain water supply, dry-running occurred, and after some time the sealing was burnt. First the flow conditions in the turbine and the pressure at the hub clearance were calculated by a one-dimensional flow model. Later this was refined by a two-dimensional approach. The above conclusion was also justified by the data acquisition system and by observing the operation of the small dewatering pump. When the turbine operated at a larger discharge than a certain limit value, then the dewatering pump remained standstill, indicating that no water passed through the shaft sealing. External water supply was then applied, and after this the turbine operated all right.

  10. Investigation on Flow-Induced Noise due to Backflow in Low Specific Speed Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2013-01-01

    Full Text Available Flow-induced noise causes disturbances during the operation of centrifugal pumps and also affects their performance. The pumps often work at off-design conditions, mainly at part-load conditions, because of frequent changes in the pump device system. Consequently numerous unstable phenomena occur. In low specific speed centrifugal pumps the main disturbance is the inlet backflow, which is considered as one of the most important factors of flow-induced noise and vibration. In this study, a test rig of the flow-induced noise and vibration of the centrifugal pump was built to collect signals under various operating conditions. The three-dimensional unsteady flow of centrifugal pumps was calculated based on the Reynolds-averaged equations that resemble the shear stress transport (SST k-ω turbulence model. The results show that the blade passing frequency and shaft frequency are dominant in the spectrum of flow-induced noise, whereas the shaft component, amplitude value at shaft frequency, and peak frequencies around the shaft increase with decreasing flow. Through flow field analysis, the inlet backflow of the impeller occurs under 0.7 times the design flow. The pressure pulsation spectrum with backflow conditions validates the flow-induced noise findings. The velocity characteristics of the backflow zone at the inlet pipe were analyzed, and the dynamic characteristics of the backflow eddy during one impeller rotating period were simultaneously obtained by employing the backflow conditions. A flow visualization experiment was performed to confirm the numerical calculations.

  11. Removable control rod drive shaft guide

    International Nuclear Information System (INIS)

    Ales, M.W.; Brown, S.K.; Dixon, L.D.

    1988-01-01

    A removable control rod drive shaft guide is described for a control rod ''guide'' structure card, comprising: a. a substantially annular shaped main body portion having a central axial bore for receiving a control rod drive shaft and an upper exterior groove for receiving removal tooling; b. the main body portion having a reduced outer diameter at its lower section; c. a shoulder portion integral with the main body portion for supporting the main body portion on the guide structure card; d. the shoulder portion having a substantially radial bore and the reduced outer diameter lower section having a slot in alignment with the radial bore; e. a locking arm ''pivotaly'' mounted in the radial bore which protrudes into the slot and is movable between a first normal locking position for engaging the guide structure card and a second release position; f. a spring received within a second axial bore in the main body portion and biased against the locking arm for urging and locking arm into the first normal locking position; and g. a release tab at one end of the locking arm for moving the locking arm into the second release position

  12. High reliability flow system - an assessment of pump reliability and optimisation of the number of pumps

    International Nuclear Information System (INIS)

    Butterfield, J.M.

    1981-01-01

    A system is considered where a number of pumps operate in parallel. Normally, all pumps operate, driven by main motors fed from the grid. Each pump has a pony motor fed from an individual battery supply. Each pony motor is normally running, but not engaged to the pump shaft. On demand, e.g. failure of grid supplies, each pony motor is designed to clutch-in automatically when the pump speed falls to a specified value. The probability of all the pony motors failing to clutch-in on demand must be demonstrated with 95% confidence to be less than 10 -8 per demand. This assessment considers how the required reliability of pony motor drives might be demonstrated in practice and the implications on choice of the number of pumps at the design stage. The assessment recognises that not only must the system prove to be extremely reliable, but that demonstration that reliability is adequate must be done during plant commissioning, with practical limits on the amount of testing performed. It is concluded that a minimum of eight pony motors should be provided, eight pumps each with one pony motor (preferred) or five pumps each with two independent pony motors. A minimum of two diverse pony motor systems should be provided. (author)

  13. Preliminary design of RDE feedwater pump impeller

    International Nuclear Information System (INIS)

    Sri Sudadiyo

    2018-01-01

    Nowadays, pumps are being widely used in the thermal power generation including nuclear power plants. Reaktor Daya Experimental (RDE) is a proposed nuclear reactor concept for the type of nuclear power plant in Indonesia. This RDE has thermal power 10 MW th , and uses a feedwater pump within its steam cycle. The performance of feedwater pump depends on size and geometry of impeller model, such as the number of blades and the blade angle. The purpose of this study is to perform a preliminary design on an impeller of feedwater pump for RDE and to simulate its performance characteristics. The Fortran code is used as an aid in data calculation in order to rapidly compute the blade shape of feedwater pump impeller, particularly for a RDE case. The calculations analyses is solved by utilizing empirical correlations, which are related to size and geometry of a pump impeller model, while performance characteristics analysis is done based on velocity triangle diagram. The effect of leakage, pass through the impeller due to the required clearances between the feedwater pump impeller and the volute channel, is also considered. Comparison between the feedwater pump of HTR-10 and of RDE shows similarity in the trend line of curve shape. These characteristics curves will be very useful for the values prediction of performance of a RDE feedwater pump. Preliminary design of feedwater pump provides the size and geometry of impeller blade model with 5-blades, inlet angle 14.5 degrees, exit angle 25 degrees, inside diameter 81.3 mm, exit diameter 275.2 mm, thickness 4.7 mm, and height 14.1 mm. In addition, the optimal values of performance characteristics were obtained when flow capacity was 4.8 kg/s, fluid head was 29.1 m, shaft mechanical power was 2.64 kW, and efficiency was 52 % at rotational speed 1750 rpm. (author)

  14. Interfacing systems loss of coolant accident (ISLOCA) pressure capacity methodology and Davis-Besse results

    International Nuclear Information System (INIS)

    Wesley, D.A.

    1991-01-01

    A loss of coolant accident resulting from the overpressurization by reactor coolant fluid of a system designed for low-pressure, low-temperature service has been identified as a potential contributor to nuclear power plant risk. In this paper, the methodology developed to assess the probability of failure as a function of internal pressure is presented, and sample results developed for the controlling failure modes and locations of four fluid systems at the Davis-Besse Plant are shown. Included in this evaluation are the tanks, heat exchangers, filters, pumps, valves, and flanged connections for each system. The variability in the probability of failure is included, and the estimated leak rates or leak areas are given for the controlling modes of failure. For this evaluation, all failures are based on quasistatic pressures since the probability of dynamic effects resulting from such causes as water hammer have been initially judged to be negligible for the Davis-Besse plant ISLOCA

  15. Numerical investigation of the coolant mixing during fast deboration transients for VVER-440 type reactors

    International Nuclear Information System (INIS)

    Hoehne, T.; Rhode, U.

    2000-01-01

    The VVER-440 (440 MW) V-230 was considered for analyzing the flow field and mixing processes. The V-230 has no elliptical sieve plate in the lower plenum. Previously, the 3D flow distribution in the downcomer and the lower plenum of the VVER-440 reactor have been calculated by means of the CFD code CFX-4 for operational conditions. The CFX-calculations were compared with the experimental data and the analytical mixing model. In this paper, CFD calculations for the start-up of the first main coolant pump in a VVER-440 type reactor are reported about. This scenario is important in case that there is a plug of lower borated water in one of the primary coolant loops. (orig.)

  16. Analysis Of Primary Coolant Suction Side Pressure In The Delay Chamber Of The RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto

    2000-01-01

    Delay chamber is a tank to delay flow that located in the primary cooling suction side of RSG-GAS. A void occurred when operation reactor caused by too high the delta P at inlet suction pump. The condition may be avoided by using one line mode of the cooling flow. The analysis show that void volume in the delay chamber is occurred because the coolant negative pressure lowers the saturation pressure should be avoided though decreasing the delta P until about 0.1 bar at about 45 exp 0 C. Solution suggested are to use bypass flow from the spent fuel to the delay chamber. Coolant temperature can be also decreased by decreasing the power level of the reactor as well as improving the heat exchanger and cooling tower performances

  17. Single failure effects of reactor coolant system large bore hydraulic snubbers for Korean Standard Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, T.S.; Park, S.H.; Sung, K.K.; Kim, T.W.; Jheon, J.H.

    1996-01-01

    A potential snubber single failure is one of the safety significances identified in General Safety Issue 113 for Large Bore Hydraulic Snubber (LBHS) dynamic qualification. This paper investigates dynamic structural effects of single failures of the steam generator and reactor coolant pump snubbers in Korean Standard Nuclear Power Plant by performing the time history dynamic analyses for the reactor coolant system under seismic and postulated pipe break events. The seismic input motions considered are the synthesized ground time histories conforming to SRP 3.7.1, and he postulated pipe break input loadings result from steam generator main seam line and feedwater line pipe breaks which govern pipe breaks remaining after applying LBB to the main coolant line and primary side ranch lines equal to and greater than 12 inch nominal pipe size

  18. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    National Research Council Canada - National Science Library

    Can, Levent

    2006-01-01

    .... The overall focus of this study is the build up of induced radioactivity in the coolant of metal cooled reactors as well as the evaluation of other physical and chemical properties of such coolants...

  19. LOFT pump speed controller stability and accuracy analysis

    International Nuclear Information System (INIS)

    Good, R.R.

    1978-01-01

    Two system modifications to the primary coolant pumps motor generators control systems have recently been completed. The range of pump speed operation has been extended and the scoop tube positioner motor replaced. This has necessitated a re-analysis of PSMG stability throughout its range of operation. System accuracy requirements of less than 4 Hz differential pump speed when operating at less than 35 Hz and 8.5 Hz differential pump speed when operating at greater than 35 Hz can be guaranteed by specifying the gain of the system. The installation of the new scoop tube positioner motor will increase the PSMG system's bandwidth and stability. Low speed pump trips should be carefully evaluated if the pump's operational range is to extend to 10 Hz

  20. Design and experimental characterization of an EM pump

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Hong, Sang Hee

    1999-01-01

    Generally, an EM (electromagnetic) pump is been employed to circulate electrically conducting liquids by using the Lorentz force. Especially, at the liquid metal reactor (LMR), which uses liquid sodium with high electrical conductivity as a coolant, an EM pump is needed due to its advantages over a mechanical pump, such as no rotating parts, no noise, and simplicity. In this research, an EM pump of a pilot annular linear induction type with a flow rate of 200 l/min was designed by using the electrical equivalent-circuit method. The pump was designed and manufactured by considering material and environmental (high temperature and liquid sodium) requirements. The pump performance was experimentally characterized based on input currents, voltage, power, and frequency. Also, the theoretical prediction was compared with the experimental result

  1. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    International Nuclear Information System (INIS)

    Siamidis, John; Mason, Lee

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed excel analytical model, HRS O pt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids

  2. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.).

  3. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.)

  4. Fluidic pumps

    International Nuclear Information System (INIS)

    Priestman, G.H.

    1990-01-01

    A fluidic pump has primary and secondary vessels connected by a pipe, a displacement vessel having liquid to be delivered through a pipe via a rectifier provided with a feed tank. A drive unit delivers pressure fluid to a line to raise liquid and compress trapped gas or liquid in the space, including the pipe between the liquids in the two vessels and thus drive liquid out of the displacement vessel. The driving gas is therefore separated by the barrier liquid and the trapped gas or liquid from the liquid to be pumped which liquid could be e.g. radioactive. (author)

  5. Pumped storage

    International Nuclear Information System (INIS)

    Strauss, P.L.

    1991-01-01

    The privately financed 1,000 MW Rocky Point Pumped Storage Project located in central Colorado, USA, will be one of the world's highest head, 2,350 feet reversible pump/turbine projects. The project will offer an economical supply of peaking power and spinning reserve power to Colorado and other southwestern states. This paper describes how the project will be made compatible with the environmental conditions in the project area and the type of terrestrial mitigation measures that are being proposed for those situations where the project impacts the environment, either temporarily or permanently

  6. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-11-15

    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  7. Fractures of the shafts of the tibia and fibula

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C.

    1985-01-01

    Fractures of the shafts of the tibia and fibula are the most common long bone fractures. This chapter discusses tibial and fibular shaft fractures. Treatment of tibial and fibular fractures is similar and, therefore, reference is primarily made to the tibia. Diagnostic techniques are also evaluated

  8. Boundary integral method for torsion of composite shafts

    International Nuclear Information System (INIS)

    Chou, S.I.; Mohr, J.A.

    1987-01-01

    The Saint-Venant torsion problem for homogeneous shafts with simply or multiply-connected regions has received a great deal of attention in the past. However, because of the mathematical difficulties inherent in the problem, very few problems of torsion of shafts with composite cross sections have been solved analytically. Muskhelishvili (1963) studied the torsion problem for shafts with cross sections having several solid inclusions surrounded by an elastic material. The problem of a circular shaft reinforced by a non-concentric round inclusion, a rectangular shaft composed of two rectangular parts made of different materials were solved. In this paper, a boundary integral equation method, which can be used to solve problems more complex than those considered by Katsikadelis et. al., is developed. Square shaft with two dissimilar rectangular parts, square shaft with a square inclusion are solved and the results compared with those given in the reference cited above. Finally, a square shaft composed of two rectangular parts with circular inclusion is solved. (orig./GL)

  9. Percutaneous Kirschner wire (K-wire) fixation for humerus shaft ...

    African Journals Online (AJOL)

    Background: Fractures of the humeral shaft are uncommon, representing less than 10 percent of all fractures in children. Humeral shaft fractures in children can be treated by immobilisation alone. A small number of fractures are unable to be reduced adequately or maintained in adequate alignment, and these should be ...

  10. New endoscope shaft for endoscopic transsphenoidal pituitary surgery.

    NARCIS (Netherlands)

    Lindert, E.J. van; Grotenhuis, J.A.

    2005-01-01

    OBJECTIVE: To describe a new endoscope shaft developed for suction-aspiration during endoscopic transsphenoidal pituitary surgery. METHODS: A custom-made shaft for a Wolf endoscope (Richard Wolf GmbH, Knittlingen, Germany) was developed with a height of 10 mm and a width of 5 mm, allowing an

  11. Proceedings of the conference on shaft drilling technology

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the following topics, Market analysis, World-wide operations, Innovative drilling and boring, Raise boring, Shaft lining and fittings, Entry considerations for the Yucca Mountain exploratory shaft facility for potential Radioactive Waste Disposal, Drilling rigs in the coal industry

  12. 46 CFR 171.100 - Shaft tunnels and stern tubes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Shaft tunnels and stern tubes. 171.100 Section 171.100... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.100 Shaft tunnels and... passengers on an international voyage. (b) The watertight seal in the bulkhead between the stern tube space...

  13. A coupled mechanical/hydrologic model for WIPP shaft seals

    International Nuclear Information System (INIS)

    Ehgartner, B.

    1991-06-01

    Effective sealing of the Waste Isolation Pilot Plant (WIPP) shafts will be required to isolate defense-generated transuranic wastes from the accessible environment. Shafts penetrate water-bearing hard rock formations before entering a massive creeping-salt formation (Salado) where the WIPP is located. Short and long-term seals are planned for the shafts. Short-term seals, a composite of concrete and bentonite, will primarily be located in the hard rock formations separating the water-bearing zones from the Salado Formation. These seals will limit water flow to the underlying long-term seals in the Salado. The long-term seals will consist of lengthly segments of initially unsaturated crushed salt. Creep closure of the shaft will consolidate unsaturated crushed salt, thereby reducing its permeability. However, water passing through the upper short-term seals and brine inherent to the salt host rock itself will eventually saturate the crushed salt and consolidation could be inhibited. Before saturating, portions of the crushed salt in the shafts are expected to consolidate to a permeability equivalent to the salt host rock, thereby effectively isolating the waste from the overlying water-bearing formations. A phenomenological model is developed for the coupled mechanical/hydrologic behavior of sealed WIPP shafts. The model couples creep closure of the shaft, crushed salt consolidation, and the associated reduction in permeability with Darcy's law for saturated fluid flow to predict the overall permeability of the shaft seal system with time. 17 refs., 6 figs., 1 tab

  14. Hair Shaft Abnormality in Children: a Narrative Review

    Directory of Open Access Journals (Sweden)

    Ghasem Rahmatpour Rokni

    2017-08-01

    Full Text Available Background Hair is an ectodermal structure, and its formation is regulated by master genes important in embryology. Hair shaft consists of three major regions: the medulla, cortex and cuticle. Hair shaft abnormality will divide structural hair abnormalities into two broad categories - those associated with increased hair fragility and those not associated with increased hair fragility. We conducted a review study to assess hair shaft abnormality in children. Materials and Methods We conducted a review of all papers published on hair shaft abnormalities. A literature search was performed using PubMed, Scopus and Google Scholar on papers publish from 1990 to 2016. The search terms were: hair shaft abnormality, Hair loss, Hair fragility. All abstracts and full text English-language articles were studied. Results While common developmental and structural features are shared in hair follicles and hair shafts. Anomalies of the hair shaft are separated into those with and those without increased hair fragility. Conclusion Although hair has no vital function, it may serve as an indicator for human health. Clinical and morphological hair abnormalities can be clues to specific complex disorders. Hair shaft abnormalities can be inherited or acquired, can reflect a local problem or a systemic disease.

  15. Exploratory Shaft Seismic Design Basis Working Group report

    International Nuclear Information System (INIS)

    Subramanian, C.V.; King, J.L.; Perkins, D.M.; Mudd, R.W.; Richardson, A.M.; Calovini, J.C.; Van Eeckhout, E.; Emerson, D.O.

    1990-08-01

    This report was prepared for the Yucca Mountain Project (YMP), which is managed by the US Department of Energy. The participants in the YMP are investigating the suitability of a site at Yucca Mountain, Nevada, for construction of a repository for high-level radioactive waste. An exploratory shaft facility (ESF) will be constructed to permit site characterization. The major components of the ESF are two shafts that will be used to provide access to the underground test areas for men, utilities, and ventilation. If a repository is constructed at the site, the exploratory shafts will be converted for use as intake ventilation shafts. In the context of both underground nuclear explosions (conducted at the nearby Nevada Test Site) and earthquakes, the report contains discussions of faulting potential at the site, control motions at depth, material properties of the different rock layers relevant to seismic design, the strain tensor for each of the waveforms along the shaft liners, and the method for combining the different strain components along the shaft liners. The report also describes analytic methods, assumptions used to ensure conservatism, and uncertainties in the data. The analyses show that none of the shafts' structures, systems, or components are important to public radiological safety; therefore, the shafts need only be designed to ensure worker safety, and the report recommends seismic design parameters appropriate for this purpose. 31 refs., 5 figs., 6 tabs

  16. Performance of meta power rotor shaft torque meter

    DEFF Research Database (Denmark)

    Schmidt Paulsen, U.

    2002-01-01

    The present report describes the novel experimental facility in detecting shaft torque in the transmission system (main rotor shaft, exit stage of gearbox) of a wind turbine, the results and the perspectives in using this concept. The measurements arecompared with measurements, based on existing ...

  17. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  18. Modeling the spatial distribution of the parameters of the coolant in the reactor volume

    International Nuclear Information System (INIS)

    Nikonov, S.P.

    2011-01-01

    In this paper the approach to the question about the spatial distribution of the parameters of the coolant in-reactor volume. To describe the in-core space is used specially developed preprocessor. When the work of the preprocessor in the first place, is recreated on the basis of available information (mostly-the original drawings) with high accuracy three-dimensional description of the structures of the reactor volume and, secondly, are prepared on this basis blocks input to the nodal system code improved estimate ATHLET, allows to take into account the hydrodynamic interaction between the spatial control volumes. As an example the special case of solutions of international standard problem on the reconstruction of the transition process in the third unit of the Kalinin nuclear power plant, due to the shutdown of one of the four Main Coolant Pumps in operation at the rated capacity (first download). Model-core area consists of approximately 58 000 control volumes and spatial relationships. It shows the influence of certain structural units of the core to the distribution of the mass floe rate of its height. It is detected a strong cross-flow coolant in the area over the baffle. Moreover, we study the distribution of the coolant temperature at the assembly head of WWER-1000 reactor. It is shown that in the region of the top of the assembly head, where we have installation of thermocouples, the flow coolant for internal assemblies core is formed by only from guide channel Reactor control and protected system Control rod flow, or a mixture of the guide channel flow and flow from the area in front of top grid head assembly (the peripheral assemblies). It is shown that the magnitude of the flow guide channels affects not only the position of control rods, but also the presence of a particular type of measuring channels (Self powered neutron detector sensors or Temperature control sensors) in the cassette. (Author)

  19. Ipsilateral femoral neck and shaft fractures: An overlooked association

    International Nuclear Information System (INIS)

    Daffner, R.H.; Riemer, B.L.; Butterfield, S.L.

    1991-01-01

    A total of 304 patients with injuries to the femoral shaft and ipsilateral hip presented between 1984 and 1990. Some 253 of them suffered fractures of the femoral shaft and dislocated hips or fractures of the acetabulum, and 51 of these sustained fractures of the femoral shaft and neck or trochanteric region. All of the trochanteric injuries were demonstrated on the initial radiographs. However, in 11 of the patients with combined femoral shaft and neck fractures, the diagnosis was delayed by as much as 4 weeks. This delay related to the fact that these fractures tended not to separate in the initial evaluation period and that there was external rotation of the proximal femoral fragment due to the femoral shaft fracture. (orig./GDG)

  20. Ipsilateral femoral neck and shaft fractures: An overlooked association

    Energy Technology Data Exchange (ETDEWEB)

    Daffner, R.H. (Dept. of Diagnostic Radiology, Allegheny General Hospital, Pittsburgh, PA (USA) Medical Coll. of Pennsylvania, Pittsburgh, PA (USA)); Riemer, B.L.; Butterfield, S.L. (Dept. of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, PA (USA) Medical Coll. of Pennsylvania, Pittsburgh, PA (USA))

    1991-05-01

    A total of 304 patients with injuries to the femoral shaft and ipsilateral hip presented between 1984 and 1990. Some 253 of them suffered fractures of the femoral shaft and dislocated hips or fractures of the acetabulum, and 51 of these sustained fractures of the femoral shaft and neck or trochanteric region. All of the trochanteric injuries were demonstrated on the initial radiographs. However, in 11 of the patients with combined femoral shaft and neck fractures, the diagnosis was delayed by as much as 4 weeks. This delay related to the fact that these fractures tended not to separate in the initial evaluation period and that there was external rotation of the proximal femoral fragment due to the femoral shaft fracture. (orig./GDG).

  1. Exploratory Shaft Facility quality assurance impact evaluation

    International Nuclear Information System (INIS)

    1987-08-01

    This report addresses the impact of the quality assurance practices used for the Exploratory Shaft Facility (ESF) design, and construction in licensing as part of the repository. Acceptance criteria used for evaluating the suitability of ESF QA practices are based on documents that had not been invoked for repository design or construction activities at the time of this evaluation. This report identifies the QA practices necessary for ESF design and construction licensability. A review and evaluation of QA practices for ESF design and construction resulted in the following conclusions. QA practices were found to be acceptable with a few exceptions. QA practices for construction activities were found to be insufficiently documented in implementing procedures to allow a full and effective evaluation for licensing purposes. Recommendations are provided for mitigating impacts to ensure compatibility of the QA practices with those considered necessary for repository licensing. 8 refs., 3 tabs

  2. Tibial shaft fractures in football players

    Directory of Open Access Journals (Sweden)

    Daisley Susan

    2007-06-01

    Full Text Available Abstract Background Football is officially the most popular sport in the world. In the UK, 10% of the adult population play football at least once a year. Despite this, there are few papers in the literature on tibial diaphyseal fractures in this sporting group. In addition, conflicting views on the nature of this injury exist. The purpose of this paper is to compare our experience of tibial shaft football fractures with the little available literature and identify any similarities and differences. Methods and Results A retrospective study of all tibial football fractures that presented to a teaching hospital was undertaken over a 5 year period from 1997 to 2001. There were 244 tibial fractures treated. 24 (9.8% of these were football related. All patients were male with a mean age of 23 years (range 15 to 29 and shin guards were worn in 95.8% of cases. 11/24 (45.8% were treated conservatively, 11/24 (45.8% by Grosse Kemp intramedullary nail and 2/24 (8.3% with plating. A difference in union times was noted, conservative 19 weeks compared to operative group 23.9 weeks (p Conclusion Our series compared similarly with the few reports available in the literature. However, a striking finding noted by the authors was a drop in the incidence of tibial shaft football fractures. It is likely that this is a reflection of recent compulsory FIFA regulations on shinguards as well as improvements in the design over the past decade since its introduction.

  3. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  4. Freeform Deposition Method for Coolant Channel Closeout

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)

    2017-01-01

    A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.

  5. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  6. Recovery studies for plutonium machining oil coolant

    International Nuclear Information System (INIS)

    Navratil, J.D.; Baldwin, C.E.

    1977-01-01

    Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tetrachloride. Appropriate methods then could be developed to remove the plutonium and to recycle the oil and carbon tetrachloride. Studies showed that the mixtures of spent oil and carbon tetrachloride contained particulate plutonium and plutonium species that are soluble in water or in oil and carbon tetrachloride. The particulate plutonium was removed by filtration; the nonfilterable plutonium was removed by adsorption on various materials. Laboratory-scale tests indicated the lathe-coolant oil mixture could be separated by distilling the carbon tetrachloride to yield recyclable products

  7. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the 13 N content in the containment atmosphere. 13 N is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/ 13 N+ 4 He. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium 13 N concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  8. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/Nl3+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  9. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1979-08-01

    The present paper deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process H1+016 → N13+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m -3 and 7 kBq m -3 for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge (Li) flow detector assembly operated at elevated pressure. (Auth.)

  10. Pump Coastdown with the Submerged Flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.

  11. Enhancing resistance to burnout via coolant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tu, J. P.; Dinh, T. N.; Theofanous, T. G. [Univ. of California, Santa Barbara (United States)

    2003-07-01

    Boiling Crisis (BC) on horizontal, upwards-facing copper and steel surfaces under the influence of various coolant chemistries relevant to reactor containment waters is considered. In addition to Boric Acid (BA) and TriSodium Phosphate (TSP), pure De-Ionized Water (DIW) and Tap Water (TW) are included in experiments carried out in the BETA facility. The results are related to a companion paper on the large scale ULPU facility.

  12. THE PROBLEM OF ENERGY EFFICIENCY OF THE GEOTHERMAL CIRCULATION SYSTEM IN DIFFERENT MODES OF REINJECTION OF THE COOLANT

    OpenAIRE

    D. K. Djavatov; A. A. Azizov

    2017-01-01

    Aim. Advanced technologies are crucial for widespread use of geothermal energy to ensure its competitiveness with conventional forms of energy. To date, the basis for the development of geothermal energy is the technology of extracting the heat transfer fluids from the subsoil. There are the following ways to extract the coolant: freeflow; pumping and circular methods. Of greatest interest is the technology to harness the geothermal energy based on geothermal circulatory system (GCS). There i...

  13. Assessment of the heat carrier movement in the primary coolant circuit by its own momentum

    International Nuclear Information System (INIS)

    Kadalev, Stoyan

    2014-01-01

    Highlights: • We model the heat carrier flow alteration after the circulation pump(s) stop. • The general mathematical model used is described in details. • The model is adapted and applied to a particular example research reactor. • Assessment is presented in detail, step by step with references. • The information provided is enough to apply calculations to another facility. - Abstract: In the presented paper is considered the approach to an assessment of the heat carrier flow alteration in the primary water–water reactor coolant circuit after the circulation pump(s) stop. This topic is highly relevant trough advanced and increased nuclear safety requirements because such a process is observed in case of black-out accident or damaged pump(s). The general mathematical model used is described; enabling preparation of this evaluation adapted and applied to a particular example facility namely a pool type research reactor. The factors influencing to the heat carrier movement by its own momentum are examined. The evaluation measures and includes the factors influencing the heat carrier flow rate from the moment the pump(s) stops down to a negligible value. Assessment is presented in detail, step by step and where needed with references to specific data and/or formulae from reference books to allow repetition of the calculations and/or apply to another facility. The calculations are presented utilizing all necessary data according to the design and technological documentation. No account is given to the pressure of the natural circulation caused by the residual heat generation in the fuel after the reactor scram system extinction of the fission reaction

  14. Minimizing secondary coolant blowdown in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Ryu, J. S.; Cho, Y. G.; Lim, N. Y.

    2000-01-01

    There is about 80m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30MW research reactor. The evaporation and the windage is necessary loss to maintain the performance of cooling tower, but the blowdown is artificial lose to get rid of the foreign material and to maintain the quality of the secondary cooling water. Therefore, minimizing the blowdown loss was studied. It was confirmed, through the relation of the number of cycle and the loss rate of secondary coolant, that the number of cycle is saturated to 12 without blowdown because of the windage loss. When the secondary coolant is treated by high Ca-hardness treatment program (the number of cycle > 10) to maintain the number of cycle around 12 without blowdown, only the turbidity exceeds the limit. By adding filtering system it was confirmed, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2% of filtering rate without blowdown. And it was verified, through the performance test of back-flow filtering unit, that this unit gets rid of foreign material up to 95% of the back-flow and that the water can be reused as coolant. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  15. Use of microPCM fluids as enhanced liquid coolants in automotive EV and HEV vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, James C.; Gould, Richard D.

    2001-10-31

    Proof-of-concept experiments using a specific microPCM fluid that potentially can have an impact on the thermal management of automotive EV and HEV systems have been conducted. Samples of nominally 20-micron diameter microencapsulated octacosane and glycol/water coolant were prepared for testing. The melting/freezing characteristics of the fluid, as well as the viscosity, were determined. A bench scale pumped-loop thermal system was used to determine heat transfer coefficients and wall temperatures in the source heat exchanged. Comparisons were made which illustrate the enhancements of thermal performance, reductions of pumping power, and increases of heat transfer which occur with the microPCM fluid.

  16. CANDU with supercritical water coolant: conceptual design features

    International Nuclear Information System (INIS)

    Spinks, N.

    1997-01-01

    An advanced CANDU reactor, with supercritical water as coolant, has many attractive design features. The pressure exceeds 22 MPa but coolant temperatures in excess of 370 degrees C can be reached without encountering the two-phase region with its associated fuel-dry-out and flow-instability problems. Increased coolant temperature leads to increased plant thermodynamic efficiency reducing unit energy cost through reduced specific capital cost and reduced fueling cost. Increased coolant temperature leads to reduced void reactivity via reduced coolant in-core density. Light water becomes a coolant option. To preserve neutron economy, an advanced fuel channel is needed and is described below. A supercritical-water-cooled CANDU can evolve as fuel capabilities evolve to withstand increasing coolant temperatures. (author)

  17. Integrated equipment for increasing and maintaining coolant pressure in primary circuit of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sykora, D.

    1986-01-01

    An open heat pump circuit is claimed connected to the primary circuit. The pump circuit consists of a steam pressurizer with a built-in steam distributor, a compressor, an expander, a reducing valve, an auxiliary pump, and of water and steam pipes. The operation is described and a block diagram is shown of integrated equipment for increasing and maintaining pressure in the nuclear power plant primary circuit. The appropriate entropy diagram is also shown. The advantage of the open pump circuit consists in reducing the electric power input and electric power consumption for the steam pressurizers, removing entropy loss in heat transfer with high temperature gradient, in the possibility of inserting, between the expander and the auxiliary pump, a primary circuit coolant treatment station, in simplified design and manufacture of the high-pressure steam pressurizer vessel, reducing the weight of the steam pressurizer by changing its shape from cylindrical to spherical, increasing the rate of pressure growth in the primary circuit. (E.S.)

  18. Development of Coolant Radioactivity Interpretation Code

    International Nuclear Information System (INIS)

    Kim, Kiyoung; Jung, Youngsuk; Kim, Kyounghyun; Kim, Jangwook

    2013-01-01

    In Korea, the coolant radioactivity analysis has been performed by using the computer codes of foreign companies such as CADE (Westinghouse), IODYNE and CESIUM (ABB-CE). However, these computer codes are too conservative and have involved considerable errors. Furthermore, since these codes are DOS-based program, their easy operability is not satisfactory. Therefore it is required development of an enhanced analysis algorithm applying an analytical method reflecting the change of operational environments of domestic nuclear power plants and a fuel failure evaluation software considering user' conveniences. We have developed a nuclear fuel failure evaluation code able to estimate the number of failed fuel rods and the burn-up of failed fuels during nuclear power plant operation cycle. A Coolant Radio-activity Interpretation Code (CRIC) for LWR has been developed as the output of the project 'Development of Fuel Reliability Enhanced Technique' organized by Korea Institute of Energy Technology Evaluation and Planning (KETEP). The CRIC is Windows based-software able to evaluate the number of failed fuel rods and the burn-up of failed fuel region by analyzing coolant radioactivity of LWR in operation. The CRIC is based on the model of fission products release commonly known as 'three region model' (pellet region, gap region, and coolant region), and we are verifying the CRIC results based on the cases of domestic fuel failures. CRIC users are able to estimate the number of failed fuel rods, burn-up and regions of failed fuel considered enrichment and power distribution of fuel region by using operational cycle data, coolant activity data, fuel loading pattern, Cs-134/Cs-137 ratio according to burn-up and U-235 enrichment provided in the code. Due to development of the CRIC, it is secured own unique fuel failure evaluation code. And, it is expected to have the following significant meaning. This is that the code reflecting a proprietary technique for quantitatively

  19. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  20. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Directory of Open Access Journals (Sweden)

    Luo Jun

    2015-10-01

    Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.