Sample records for coolant liquid lead-lithium

  1. Coolant Design System for Liquid Propellant Aerospike Engines (United States)

    McConnell, Miranda; Branam, Richard


    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  2. Coolant and ambient temperature control for chillerless liquid cooled data centers

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.


    Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.

  3. Investigating Liquid CO2 as a Coolant for a MTSA Heat Exchanger Design (United States)

    Paul, Heather L.; Padilla, Sebastian; Powers, Aaron; Iacomini, Christie


    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO 2) control for a future Portable Life Support System (PLSS), as well as water recycling. CO 2 removal and rejection is accomplished by driving a sorbent through a temperature swing of approximately 210 K to 280 K . The sorbent is cooled to these sub-freezing temperatures by a Sublimating Heat Exchanger (SHX) with liquid coolant expanded to sublimation temperatures. Water is the baseline coolant available on the moon, and if used, provides a competitive solution to the current baseline PLSS schematic. Liquid CO2 (LCO2) is another non-cryogenic coolant readily available from Martian resources which can be produced and stored using relatively low power and minimal infrastructure. LCO 2 expands from high pressure liquid (5800 kPa) to Mars ambient (0.8 kPa) to produce a gas / solid mixture at temperatures as low as 156 K. Analysis and experimental work are presented to investigate factors that drive the design of a heat exchanger to effectively use this sink. Emphasis is given to enabling efficient use of the CO 2 cooling potential and mitigation of heat exchanger clogging due to solid formation. Minimizing mass and size as well as coolant delivery are also considered. The analysis and experimental work is specifically performed in an MTSA-like application to enable higher fidelity modeling for future optimization of a SHX design. In doing so, the work also demonstrates principles and concepts so that the design can be further optimized later in integrated applications (including Lunar application where water might be a choice of coolant).

  4. Liquid metal reactor development. Development of LMR coolant technology

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Choi, S. K.; Hwang, J. s.; Lee, Y. B.; Choi, B. H.; Kim, J. M.; Kim, Y. G.; Kim, M. J.; Lee, S. D.; Kang, Y. H.; Maeng, Y. Y.; Kim, T. R.; Park, J. H.; Park, S. J.; Cha, J. H.; Kim, D. H.; Oh, S. K.; Park, C. G.; Hong, S. H.; Lee, K. H.; Chun, M. H.; Moon, H. T.; Chang, S. H.; Lee, D. N.


    Following studies have been performed during last three years as the 1.2 phase study of the mid and long term nuclear technology development plan. First, the small scale experiments using the sodium have been performed such as the basic turbulent mixing experiment which is related to the design of a compact reactor, the flow reversal characteristics experiment by natural circulation which is necessary for the analysis of local flow reversal when the electromagnetic pump is installed, the feasibility test of the decay heat removal by wall cooling and the operation of electromagnetic pump. Second, the technology of operation mechanism of sodium facility is developed and the technical analysis and fundamental experiments of sodium measuring technology has been performed such as differential pressure measuring experiment, local flow rate measuring experimenter, sodium void fraction measuring experiment, under sodium facility, the free surface movement experiment and the side orifice pressure drop experiment. A new bounded convection scheme was introduced to the ELBO3D thermo-hydraulic computer code designed for analysis of experimental result. A three dimensional computer code was developed for the analysis of free surface movement and the analysis model of transmission of sodium void fraction was developed. Fourth, the small scale key components are developed. The submersible-in-pool type electromagnetic pump which can be used as primary pump in the liquid metal reactor is developed. The SASS which uses the Curie-point electromagnet and the mock-up of Pantograph type IVTM were manufactured and their feasibility was evaluated. Fifth, the high temperature characteristics experiment of stainless steel which is used as a major material for liquid metal reactor and the material characteristics experiment of magnet coil were performed. (author). 126 refs., 98 tabs., 296 figs.

  5. Tritium transport modeling at system level for the EUROfusion dual coolant lithium-lead breeding blanket (United States)

    Urgorri, F. R.; Moreno, C.; Carella, E.; Rapisarda, D.; Fernández-Berceruelo, I.; Palermo, I.; Ibarra, A.


    The dual coolant lithium lead (DCLL) breeding blanket is one of the four breeder blanket concepts under consideration within the framework of EUROfusion consortium activities. The aim of this work is to develop a model that can dynamically track tritium concentrations and fluxes along each part of the DCLL blanket and the ancillary systems associated to it at any time. Because of tritium nature, the phenomena of diffusion, dissociation, recombination and solubilisation have been modeled in order to describe the interaction between the lead-lithium channels, the structural material, the flow channel inserts and the helium channels that are present in the breeding blanket. Results have been obtained for a pulsed generation scenario for DEMO. The tritium inventory in different parts of the blanket, the permeation rates from the breeder to the secondary coolant and the amount of tritium extracted from the lead-lithium loop have been computed. Results present an oscillating behavior around mean values. The obtained average permeation rate from the liquid metal to the helium is 1.66 mg h-1 while the mean tritium inventory in the whole system is 417 mg. Besides the reference case results, parametric studies of the lead-lithium mass flow rate, the tritium extraction efficiency and the tritium solubility in lead-lithium have been performed showing the reaction of the system to the variation of these parameters.

  6. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov


    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal

  7. A Study on thermal-hydraulic characteristics of the coolant materials for the transmutation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Taejon (Korea)


    The objective of this study is to provide the direction of transmutation reactor design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of various candidate materials for the transmutation reactor coolant. In this study, the characteristics of coolant materials used in current nuclear power plants and candidate materials for transmutation reactor are analyzed and compared. To evaluate the thermal hydraulic characteristics, the preliminary thermal-hydraulic calculation is performed for the candidate coolant materials of transmutation reactor. An analysis of thermal-hydraulic characteristics of transmutation reactor. An analysis of thermal-hydraulic characteristics of Sodium, Lead, Lead-Bismuth, and Lead-Lithium among the liquid metals considered as the coolant of transmutation reactor is performed by using computational fluid dynamics code FLUENT, and SIMPLER algorithm. (author). 50 refs., 40 figs., 30 tabs.

  8. Liquid Cooling of Tractive Lithium Ion Batteries Pack with Nanofluids Coolant. (United States)

    Li, Yang; Xie, Huaqing; Yu, Wei; Li, Jing


    The heat generated from tractive lithium ion batteries during discharge-charge process has great impacts on the performances of tractive lithium ion batteries pack. How to solve the thermal abuse in tractive lithium ion batteries pack becomes more and more urgent and important for future development of electrical vehicles. In this work, TiO2, ZnO and diamond nanofluids are prepared and utilized as coolants in indirect liquid cooling of tractive lithium ion batteries pack. The results show that nanofluids present superior cooling performance to that of pure fluids and the diamond nanofluid presents relatively excellent cooling abilities than that of TiO2 and ZnO nanofluids. During discharge process, the temperature distribution of batteries in batteries pack is uniform and stable, due to steady heat dissipation by indirect liquid cooling. It is expected that nanofluids could be considered as a potential alternative for indirect liquid cooling in electrical vehicles.

  9. Numerical simulation of gas volume motion during the gas injection into liquid metal coolant (United States)

    Usov, E. V.; Lobanov, P. D.; Pribaturin, N. A.; Chuhno, V. I.; Kutlimetov, A. E.; Svetonosov, A. I.


    Detailed description of relations and numerical approaches to simulate transport of gas phase in a vertical liquid column is presented in a current paper. These approaches are important to calculate phenomena that take place during steam generator tube rapture in fast reactors with liquid metal coolant. Presented relations determine interphase friction between gas and fluid in different flow regimes of two-phase flow. It is shown that correct definition of interphase friction coefficients determines the correct value of bubble velocity that is very important to simulate two-phase flow in steam generator and reactor core. The paper also contains numerical algorithm to calculate motion of gas volume in fluid flow. Especial attention is paid to describe the algorithms for simulating two-phase flow with sharp edges between phases that are character for slug flow regime. Also some experimental results are presented in the paper. Comparison between experimental data and calculation results has been provided.

  10. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement (United States)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J


    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  11. Liquid metal reactor development -Studies on safety measure of LMR coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tae; Choi, Yoon Dong; Park, Jin Hoh; Kwon, Sun Kil; Choi, Jong Hyun; Cho, Byung Ryul; Kim, Tae Joon; Kwon, Sang Woon; Jung, Kyung Chae; Kim, Byung Hoh; Hong, Soon Bok; Jung, Ji Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    A study on the safety measures of LMR coolant showed the results as follows; 1. LMR coolant safety measure. A. Analysis and improvement of sodium fire code. B. Analysis of sodium fire phenomena. 2. Sodium fire aerosol characteristics. It was carried out conceptual design and basic design for sodium fire facility of medium size composed of sodium supply tank, sodium reactor vessel, sodium fire aerosol filter system and scrubbing column, and drain tank etc. 3. Sodium purification technology. A. Construction of calibration loop. (1) Design of sodium loop for the calibration of the equipment. (2) Construction of sodium loop including test equipments and other components. B. Na-analysis technology. (1) Oxygen concentration determination by the wet method. (2) Cover gas purification preliminary experiment. 4. The characteristics of sodium-water reaction. A. Analysis of the micro and small leak phenomena. (1) Manufacture of the micro-leak test apparatus. B. Analysis of large leak events. (1) Development of preliminary code for analysis of initial spike pressure. (2) Sample calculation and comparison with previous works. C. Development of test facility for large leak event evaluation. (1) Conceptional and basic design for the water and sodium-water test facility. D. Technology development for water leak detection system. (1) Investigations for the characteristics of active acoustic detection system. (2) Testing of the characteristics of hydrogen leak detection system. 171 figs, 29 tabs, 3 refs. (Author).

  12. Reliability and Maintainability Data for Liquid Metal Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles [Idaho National Laboratory


    One of the coolants of interest for future fusion breeding blankets is lead-lithium. As a liquid metal it offers the advantages of high temperature operation for good station efficiency, low pressure, and moderate flow rate. This coolant is also under examination for use in test blanket modules to be used in the ITER international project. To perform reliability, availability, maintainability and inspectability (RAMI) assessment as well as probabilistic safety assessment (PSA) of lead-lithium cooling systems, component failure rate data are needed to quantify the system models. RAMI assessment also requires repair time data and inspection time data. This paper presents a new survey of the data sets that are available at present to support RAMI and PSA quantification. Recommendations are given for the best data values to use when quantifying system models.

  13. Oxygen sensors for Heavy Liquid Metal coolants: Calibration and assessment of the minimum reading temperature (United States)

    Bassini, S.; Antonelli, A.; Di Piazza, I.; Tarantino, M.


    Oxygen sensors for Heavy Liquid Metals (HLMs) such as lead and LBE (lead-bismuth eutectic) will be essential devices in future Lead Fast Reactor (LFR) and Accelerator Driven System (ADS). Potentiometric sensors based on solid electrolytes were developed in recent years to this purpose. Internal reference electrodes such as Pt-air and Bi/Bi2O3 liquid metal/metal-oxide are among the most used but they both have a weak point: Pt-air sensor has a high minimum reading temperature around 400 °C whereas Bi/Bi2O3 suffers from internal stresses induced by Bi volume variations with temperature, which may lead to the sensor failure in the long-term. The present work describes the performance of standard Pt-air and Bi/Bi2O3 sensors and compares them with recent Cu/Cu2O sensor. Sensors with Yttria Partially Stabilized Zirconia (YPSZ) electrolyte were calibrated in oxygen-saturated HLM between 160 and 550 °C and the electric potential compared to the theoretical one to define the accuracy and the minimum reading temperature. Standard Pt-air sensor were also tested using Yttria Totally Stabilized Zirconia (YTSZ) to assess the effect of a different electrolyte on the minimum reading temperature. The performance of Pt-air and Cu/Cu2O sensors with YPSZ electrolyte were then tested together in low-oxygen HLM between 200 and 450 °C. The results showed that Pt-air, Bi/Bi2O3 and Cu/Cu2O sensors with YPSZ measured oxygen in HLMs down to 400 °C, 290 °C and 200 °C respectively. When the YTSZ electrolyte was used in place of the YPSZ, the Pt-air sensor measured correctly down to at least 350 °C thanks to the superior ionic conductivity of the YTSZ. When Cu/Cu2O and Pt-air sensors were tested together in the same low-oxygen HLM between 200 and 450 °C, Cu/Cu2O sensor worked predictably in the whole temperature range whereas Pt-air sensor exhibited a correct output only above 400 °C.

  14. Study of Compatibility of Stainless Steel Weld Joints with Liquid Sodium-Potassium Coolants for Fission Surface Power Reactors for Lunar and Space Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, Martin [Univ. of Tennessee, Knoxville, TN (United States); Qualls, Louis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    To make a manned mission to the surface of the moon or to Mars with any significant residence time, the power requirements will make a nuclear reactor the most feasible source of energy. To prepare for such a mission, NASA has teamed with the DOE to develop Fission Surface Power technology with the goal of developing viable options. The Fission Surface Power System (FSPS) recommended as the initial baseline design includes a liquid metal reactor and primary coolant system that transfers heat to two intermediate liquid metal heat transfer loops. Each intermediate loop transfers heat to two Stirling heat exchangers that each power two Stirling converters. Both the primary and the intermediate loops will use sodium-potassium (NaK) as the liquid metal coolant, and the primary loop will operate at temperatures exceeding 600°C. The alloy selected for the heat exchangers and piping is AISI Type 316L stainless steel. The extensive experience with NaK in breeder reactor programs and with earlier space reactors for unmanned missions lends considerable confidence in using NaK as a coolant in contact with stainless steel alloys. However, the microstructure, chemical segregation, and stress state of a weld leads to the potential for corrosion and cracking. Such failures have been experienced in NaK systems that have operated for times less than the eight year goal for the FSPS. For this reason, it was necessary to evaluate candidate weld techniques and expose welds to high-temperature, flowing NaK in a closed, closely controlled system. The goal of this project was to determine the optimum weld configuration for a NaK system that will withstand service for eight years under FSPS conditions. Since the most difficult weld to make and to evaluate is the tube to tube sheet weld in the intermediate heat exchangers, it was the focus of this research. A pumped loop of flowing NaK was fabricated for exposure of candidate weld specimens at temperatures of 600°C, the expected

  15. Electrical breakdown mechanism of cryogenic liquid coolants in the presence of thermal bubbles. Goku teion reibai ekitai no netsu kiho hakai kiko

    Energy Technology Data Exchange (ETDEWEB)

    Hara, M.; Suehiro, J.; Nakamura, I.; Saita, K. (Kyushu Univ., Fukuoka (Japan))


    Investigation was made on a breakdown mechanism of a coolant under the simulated condition of a superconducting magnet coil at quenching. The breakdown mechanism was classified in the following 3 points. (1) For an abrupt pulse voltage with micro-second of rising length, the thermal bubbles do not deform, but a series complex insulating system of the gas phase and the liquid phase in the bubble is caused. (2) In the case of a slow rising electric field having a milli-second order rising length, breakdown is caused accompanying the deformation of floating bubbles in the liquid. (3) In the case of slow rising electric field having at least several tens milli-second rising length, bubbles grow from a hot spot and the breakdown is caused in the gas phase after the gap is suspended. The breakdown voltage at this time is near to the DC breakdown voltage of the saturated gas. The characteristics is directly connected to the deformation of heat bubbles when the voltage raising rate is changed in wide range. 19 refs., 11 figs.

  16. Liquid argon as active shielding and coolant for bare germanium detectors. A novel background suppression method for the GERDA 0{nu}{beta}{beta} experiment

    Energy Technology Data Exchange (ETDEWEB)

    Peiffer, J.P.


    Two of the most important open questions in particle physics are whether neutrinos are their own anti-particles (Majorana particles) as required by most extensions of the StandardModel and the absolute values of the neutrino masses. The neutrinoless double beta (0{nu}{beta}{beta}) decay, which can be investigated using {sup 76}Ge (a double beta isotope), is the most sensitive probe for these properties. There is a claim for an evidence for the 0{nu}{beta}{beta} decay in the Heidelberg-Moscow (HdM) {sup 76}Ge experiment by a part of the HdM collaboration. The new {sup 76}Ge experiment Gerda aims to check this claim within one year with 15 kg.y of statistics in Phase I at a background level of {<=}10{sup -2} events/(kg.keV.y) and to go to higher sensitivity with 100 kg.y of statistics in Phase II at a background level of {<=}10{sup -3} events/(kg.keV.y). In Gerda bare germanium semiconductor detectors (enriched in {sup 76}Ge) will be operated in liquid argon (LAr). LAr serves as cryogenic coolant and as high purity shielding against external background. To reach the background level for Phase II, new methods are required to suppress the cosmogenic background of the diodes. The background from cosmogenically produced {sup 60}Co is expected to be {proportional_to}2.5.10{sup -3} events/(kg.keV.y). LAr scintillates in UV ({lambda}=128 nm) and a novel concept is to use this scintillation light as anti-coincidence signal for background suppression. In this work the efficiency of such a LAr scintillation veto was investigated for the first time. In a setup with 19 kg active LAr mass a suppression of a factor 3 has been achieved for {sup 60}Co and a factor 17 for {sup 232}Th around Q{sub {beta}}{sub {beta}} = 2039 keV. This suppression will further increase for a one ton active volume (factor O(100) for {sup 232}Th and {sup 60}Co). LAr scintillation can also be used as a powerful tool for background diagnostics. For this purpose a new, very stable and robust wavelength

  17. Environmentally Friendly Coolant System

    Energy Technology Data Exchange (ETDEWEB)

    David Jackson Principal Investigator


    Energy reduction through the use of the EFCS is most improved by increasing machining productivity. Throughout testing, nearly all machining operations demonstrated less land wear on the tooling when using the EFCS which results in increased tool life. These increases in tool life advance into increased productivity. Increasing productivity reduces cycle times and therefore reduces energy consumption. The average energy savings by using the EFCS in these machining operations with these materials is 9%. The advantage for end milling stays with flood coolant by about 6.6% due to its use of a low pressure pump. Face milling and drilling are both about 17.5% less energy consumption with the EFCS than flood coolant. One additional result of using the EFCS is improved surface finish. Certain machining operations using the EFCS result in a smoother surface finish. Applications where finishing operations are required will be able to take advantage of the improved finish by reducing the time or possibly eliminating completely one or more finishing steps and thereby reduce their energy consumption. Some machining operations on specific materials do not show advantages for the EFCS when compared to flood coolants. More information about these processes will be presented later in the report. A key point to remember though, is that even with equivalent results, the EFCS is replacing petroleum based coolants whose production produces GHG emissions and create unsafe work environments.

  18. Development of Figure of Merits (FOMs) for Intermediate Coolant Characterization and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Eung Soo Kim; Piyush Sabharwall; Nolan Anderson


    This paper focuses on characterization of several coolant performances in the IHTL. There are lots of choices available for the IHTL coolants; gases, liquid metals, molten salts, and etc. Traditionally, the selection of coolants is highly dependent on engineer's experience and decisions. In this decision, the following parameters are generally considered: melting point, vapor pressure, density, thermal conductivity, heat capacity, viscosity, and coolant chemistry. The followings are general thermal-hydraulic requirements for the coolant in the IHTL: (1) High heat transfer performance - The IHTL coolant should exhibit high heat transfer performance to achieve high efficiency and economics; (2) Low pumping power - The IHTL coolant requires low pumping power to improve economics through less stringent pump requirements; (3) Low amount of coolant volume - The IHTL coolant requires less coolant volume for better economics; (4) Low amount of structural materials - The IHTL coolant requires less structural material volume for better economics; (5) Low heat loss - The IHTL requires less heat loss for high efficiency; and (6) Low temperature drop - The IHTL should allow less temperature drop for high efficiency. Typically, heat transfer coolants are selected based on various fluid properties such as melting point, vapor pressure, density, thermal conductivity, heat capacity, viscosity, and coolant chemistry. However, the selection process & results are highly dependent on the engineer's personal experience and skills. In the coolant selection, if a certain coolant shows superior properties with respect to the others, the decision will be very straightforward. However, generally, each coolant material exhibits good characteristics for some properties but poor for the others. Therefore, it will be very useful to have some figures of merits (FOMs), which can represent and quantify various coolant thermal performances in the system of interest. The study summarized in

  19. On monitoring the tritium breeder in a lead-lithium cooled ceramic breeder (LLCB) module of the ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kapyshev, V., E-mail: [Federal State Unitary Enterprise ' Dollezhal Research and Development Institute of Power Engineering' , PO Box 788, Moscow 101000 (Russian Federation); Kartashev, I.; Kovalenko, V.; Leshukov, A.; Poliksha, V.; Rasmerov, A.; Strebkov, Yu.; Yukhnov, N.; Vladimirova, N. [Federal State Unitary Enterprise ' Dollezhal Research and Development Institute of Power Engineering' , PO Box 788, Moscow 101000 (Russian Federation)


    The operation of a tritium breeder is a most process among engineering problems of DEMO. In this study, a design for monitoring tritium-breeding in the reactor is discussed. Additionally, a system for the experimental estimation of the tritium-breeding ratio (TBR) and the tritium-breeding dynamics in a lead-lithium cooled ceramic breeder (LLCB) test module used in the ITER is proposed. The systems are based on tritium and neutron-flux measurements under the ITER plasma D-T experiments and the use of lithium ortho-silicate and lithium carbonate samples and neutron detectors. Different lithum-6 and lithium-7 isotope contents in the samples are used to measure neutron spectrum. The samples and detectors are delivered in containers to the test breeder module (TBM) on a monitor channel connecting the TBM to an operating zone of the ITER. The tritium content in the samples is measured in a laboratory by the liquid scintillation method. Pneumatic control is used to deliver the samples to the TBM and to extract the samples using the channel during plasma-operational pauses. Neutron calculation is performed to estimate the tritium content in the samples and the heat distribution in the materials of the channel under reactor irradiation. A measurement accuracy of the tritium content in the carbonate and orthosilicate samples can attain a level of 7% and 10%, respectively. The results of the channel-cooling calculation performed under the nominal operating conditions of the TBM (a plasma pulse) are presented in the paper.

  20. Reactor coolant pump flywheel (United States)

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph


    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  1. Oscillating-Coolant Heat Exchanger (United States)

    Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.


    Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.

  2. Survey of coolant options of a monolithic CFC divertor

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M. (Commission of the European Communities, Joint Research Centre, Institute for Advanced Materials, TP 750, 21020 Ispra (Vatican City State, Holy See) (Italy)); Matera, R. (Commission of the European Communities, Joint Research Centre, Institute for Advanced Materials, TP 750, 21020 Ispra (Vatican City State, Holy See) (Italy))


    Different coolant options for a monolithic CFC divertor are examined. Helium gas, HB-40 organic liquid and some liquid metals seem to be viable solutions. The thermal performances of the divertor concept are presented as well as a list of possible advantages and a brief cost evaluation. ((orig.))

  3. RELAP/SCDAPSIM/MOD4.0 modification for transient accident scenario of Test Blanket Modules in ITER involving helium flows into heavy liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J.; Pérez, M.; Mas de les Valls, E.; Batet, L.; Sandeep, T.; Chaudhari, V.; Reventós, F.


    The Institute for Plasma Research (IPR), India, is currently involved in the design and development of its Test Blanket Module (TBM) for testing in ITER (International Thermo nuclear Experimental Reactor). The Indian TBM concept is a Lead-Lithium cooled Ceramic Breeder (LLCB), which utilizes lead-lithium eutectic alloy (LLE) as tritium breeder, neutron multiplier and coolant. The first wall facing the plasma is cooled by helium gas. In preparation of the regulatory safety files of ITER-TBM, a number of off-normal event sequences have been postulated. Thermal hydraulic safety analyses of the TBM system will be carried out with the system code RELAP/SCDAPSIM/MOD4.0 which was initially designed to predict the behavior of light water reactor systems during normal and accidental conditions. In order to analyze some of the postulated off-normal events, there is the need to simulate the mixing of Helium and Lead-Lithium fluids. The Technical University of Catalonia is cooperating with IPR to implement the necessary changes in the code to allow for the mixing of helium and liquid metal. In the present study, the RELAP/SCDAPSIM/MOD4 two-phase flow 6-equations structure has been modified to allow for the mixture of LLE in the liquid phase with dry Helium in the gas phase. Practically obtaining a two-fluid 6-equation model where each fluid is simulated with a set of energy, mass and momentum balance equations. A preliminary flow regime map for LLE and helium flow has been developed on the basis of numerical simulations with the OpenFOAM CFD toolkit. The new code modifications have been verified for vertical and horizontal configurations. (Author)

  4. Comparative analysis of coolants for FBR of future nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, G.I.; Grigoryev, O.G.; Pylchenkov, E.H.; Skorikov, D.E.; Komkova, O.I. [State Scientific Center of Russian Federation, Institute for Physics and Power Engineering named after Academician A.I. Leipusky, Kaluga Region (Russian Federation)


    Selection of a fast reactor (FR) coolant for future nuclear reactors is a complex task that has not a single solution. Safety requirements are expected to grow in the future. The requirements to FR are reconsidered. Gradual transition from the FR as a builder up of plutonium to the FR as an economically effective energy source, is taking place. Among all types of coolants viable for FR, LMC (light molten salt coolants) cover the most complete range of requirements to advanced reactors and have a complete database. Sodium and lead-bismuth coolant (LBC) are selected because there is a complete package of technologies for their handling. Heavy liquid metal coolant (HLMC), being at a disadvantage of heat transfer rate in relation to sodium, make it possible to give the inherent safety properties to the reactor and, as a result, to simplify essentially the reactor design and its safety systems. This results in capital and costs reduction. Neutronic characteristics of HLMC cooled reactors make possible to transmute their own minor actinides (MA) safely, and LBC cooled reactors are able to transmute LWR'MA with high safety characteristics. Basing on the comparison carried out, it can be concluded, that both LBC and sodium are perspective coolants for future FR.

  5. A study on the characteristics of alternative coolants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Kim, B. H.; Kim, T. J.; Jeong, K. C.; Choi, Y. D.; Choi, J. H.; Hwang, S. T


    The role of the coolant in liquid metal fast breeder reactor is very important for reasons of system safety. Recently, it has revealed that lead and lead-bismuth alloy show good safety characteristics as a fast reactor coolant compared to the sodium, such as low chemical activity, high boiling temperature and more negative void coefficient. So many countries take interest in these metals. The objectives of this project are to study the characteristics of heavy liquid metals(lead, lead-bismuth alloy) and to provide valuble information useful for the estimate the possibilities of its as the alternative coolant materials. An intensive research was performed into the global development status, basic properties, safety assurance methods, and direction of research in the futures and so on.

  6. Coolant-side heat-transfer rates for a hydrogen-oxygen rocket and a new technique for data correlation (United States)

    Schacht, R. L.; Quentmeyer, R. J.


    An experimental investigation was conducted to determine the coolant-side, heat transfer coefficients for a liquid cooled, hydrogen-oxygen rocket thrust chamber. Heat transfer rates were determined from measurements of local hot gas wall temperature, local coolant temperature, and local coolant pressure. A correlation incorporating an integration technique for the transport properties needed near the pseudocritical temperature of liquid hydrogen gives a satisfactory prediction of hot gas wall temperatures.

  7. Corrosion of structural materials by lead-based reactor coolants.

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, D. P.; Leibowitz, L.; Maroni, V. A.; McDeavitt, S. M.; Raraz, A. G.


    Advanced nuclear reactor design has, in recent years, focused increasingly on the use of heavy-liquid-metal coolants, such as lead and lead-bismuth eutectic. Similarly, programs on accelerator-based transmutation systems have also considered the use of such coolants. Russian experience with heavy-metal coolants for nuclear reactors has lent credence to the validity of this approach. Of significant concern is the compatibility of structural materials with these coolants. We have used a thermal convection-based test method to allow exposure of candidate materials to molten lead and lead-bismuth flowing under a temperature gradient. The gradient was deemed essential in evaluating the behavior of the test materials in that should preferential dissolution of components of the test material occur we would expect dissolution in the hotter regions and deposition in the colder regions, thus promoting material transport. Results from the interactions of a Si-rich mild steel alloy, AISI S5, and a ferritic-martensitic stainless steel, HT-9, with the molten lead-bismuth are presented.

  8. Design and fabrication of magnetic coolant filter (United States)

    Prashanth, B. N.


    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  9. Exhaust temperature analysis of four stroke diesel engine by using MWCNT/Water nanofluids as coolant (United States)

    Muruganandam, M.; Mukesh Kumar, P. C.


    There has been a continuous improvement in designing of cooling system and in quality of internal combustion engine coolants. The liquid engine coolant used in early days faced many difficulties such as low boiling, freezing points and inherently poor thermal conductivity. Moreover, the conventional coolants have reached their limitations of heat dissipating capacity. New heat transfer fluids have been developed and named as nanofluids to try to replace traditional coolants. Moreover, many works are going on the application of nanofluids to avail the benefits of them. In this experimental investigation, 0.1, 0.3 and 0.5% volume concentrations of multi walled carbon nanotube (MWCNT)/water nanofluids have been prepared by two step method with surfactant and is used as a coolant in four stroke single cylinder diesel engine to assess the exhaust temperature of the engine. The nanofluid prepared is characterized with scanning electron microscope (SEM) to confirm uniform dispersion and stability of nanotube with zeta potential analyzer. Experimental tests are performed by various mass flow rate such as 270 300 330 LPH (litre per hour) of coolant nanofluids and by changing the load in the range of 0 to 2000 W and by keeping the engine speed constant. It is found that the exhaust temperature decreases by 10-20% when compared to water as coolant at the same condition.

  10. Investigation on efficiency of gas liquid contactor used as tritium extraction unit for HCLL-TBM Pb-16Li loop

    Energy Technology Data Exchange (ETDEWEB)

    Utili, M., E-mail: [C.R. ENEA, C.R. Brasimone, 40032, Camugnano (Italy); Aiello, A.; Laffi, L.; Malavasi, A. [C.R. ENEA, C.R. Brasimone, 40032, Camugnano (Italy); Ricapito, I. [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Builiding B3, 08019 Barcelona (Spain)


    Highlights: • A dedicated facility, called TRIEX was manufactured in order to investigate the tritium extraction efficiency of GLC as TEU (Tritium Extraction Unit) of HCLL-TBM. • The experimental characterization of GLC has been performed in view of its utilization for the TES (Tritium Extraction System) of ITER. • An analytical model has been developed in this paper. • Results of experimental measurement of the parameters such as tritium extraction efficiency have been analyzed and compared with literature data. • It turns out the Tritium extraction value in the range between 10- and 30%. - Abstract: One of the main open issues in the design of the HCLL Test Blanket System for nuclear fusion energy applications is the design and testing of the Tritium Extraction Unit (TEU). The lead-lithium alloy which, in the HCLL blanket project, is used both as tritium breeder and neutron multiplier, will generate tritium that must be extracted with an efficiency as high as possible in order to keep low the tritium concentration in the liquid metal, then minimizing tritium permeation into the main coolant, the consequent CPS load and, last but not least, tritium permeation into the Port Cell through the PbLi loop pipes. Gas-liquid contactors (GLC) and, more in detail, packed columns are the reference technology for TEU of European ITER HCLL-TBS. An experimental campaign on a GCL packed column was performed in TRIEX (TRItium Extraction) facility in ENEA Brasimone Research Centre. Starting from the experimental results a parametric analysis was performed in order determine the basic parameters of the gas extraction process and consequently the efficiency of this technology in different operative conditions. Experiments were conducted at a constant temperature of 450 °C varying the mass flow rate in the range 0,1–0,35 kg/s for lead lithium and 5–150 Nl/h for Ar stripping gas. The hydrogen partial pressure in lead lithium at extractor inlet was investigated in the

  11. Evaluation of 2 1/4 Cr-1 Mo steel for liquid-lithium containment. III. Effect of velocity and lead content. Unabridged final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, B.D.; Edwards, G.R.


    The intergranular penetration of specially heat treated 2-1/4 Cr-1 Mo steel by lead-lithium liquids containing 0, 17.6, and 53 w/o lead has been investigated at temperatures ranging from 300 to 600/sup 0/C and for times to 1000 hours. Limited tests using a 99.3 w/o lead-lithium liquid were also conducted.

  12. Flow boiling test of GDP replacement coolants

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. [comp.


    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  13. Membrane technology for treating of waste nanofluids coolant: A review (United States)

    Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi


    The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide


    Directory of Open Access Journals (Sweden)



    Full Text Available Strained environment is a global problem. In metal industries the use of coolant has become more problematic in terms of both employee health and environmental pollution. It is said that the use of coolant forms approximately 8 - 16 % of the total production costs.The traditional methods that use coolants are now obviously becoming obsolete. Hence, it is clear that using a dry cutting system has great implications for resource preservation and waste reduction. For this purpose, a new cooling system is designed for dry cutting. This paper presents the new eco-friendly cooling innovation and the benefits gained by using this method. The new cooling system relies on a unit for ionising ejected air. In order to compare the performance of using this system, cutting experiments were carried out. A series of tests were performed on a horizontal turning machine and on a horizontal machining centre.

  15. On-Line Coolant Chemistry Analysis

    Energy Technology Data Exchange (ETDEWEB)

    LM Bachman


    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level.

  16. NGNP Reactor Coolant Chemistry Control Study

    Energy Technology Data Exchange (ETDEWEB)

    Brian Castle


    The main focus of this paper is to identify the most desirable ranges of impurity levels in the primary coolant to optimize component life in the primary circuit of the Next Generation Nuclear Plant (NGNP), which will either be a prismatic block or pebble bed reactor.

  17. Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Mirghaffari, Reza; Jahanfarnia, Gholamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering


    Nanofluids have shown to be promising as an alternative for a PWR reactor coolant or as a safety system coolant to cover the core in the event of a loss of coolant accident. The nanoparticles distribution and neutronic parameters are intensively affected by the local boiling of nanofluid coolant. The main goal of this study was the physical-mathematical modeling of the nanoparticles distribution in the nucleate boiling of nanofluids within the viscous sublayer. Nanoparticles concentration, especially near the heat transfer surfaces, plays a significant role in the enhancement of thermal conductivity of nanofluids and prediction of CHF, Hide Out and Return phenomena. By solving the equation of convection-diffusion for the liquid phase near the heating surface and the bulk stream, the effect of heat flux on the distribution of nanoparticles was studied. The steady state mass conservation equations for liquids, vapors and nanoparticles were written for the flow boiling within the viscous sublayer adjacent the fuel cladding surface. The derived differential equations were discretized by the finite difference method and were solved numerically. It was found out that by increasing the surface heat flux, the concentration of nanoparticles increased.

  18. SIMMER-III applications to fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Kondo, Sa.; Tobita, Y.; Brear, D.J. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center


    The main purpose of the SIMMER-III code is to provide a numerical simulation of complex multiphase, multicomponent flow problems essential to investigate core disruptive accidents in liquid-metal fast reactors (LMFRs). However, the code is designed to be sufficiently flexible to be applied to a variety of multiphase flows, in addition to LMFR safety issues. In the present study, some typical experiments relating to fuel-coolant interactions (FCIs) have been analyzed by SIMMER-III to demonstrate that the code is applicable to such complex and highly transient multiphase flow situations. It is shown that SIMMER-III can reproduce the premixing phase both in water and sodium systems as well as the propagation of steam explosion. It is thus demonstrated the code is basically capable of simulating integral multiphase thermal-hydraulic problems included in FCI experiments. (author)

  19. Bittering agents: their potential application in reducing ingestions of engine coolants and windshield wash. (United States)

    Jackson, M H; Payne, H A


    Ethylene glycol automobile engine coolants and methanol-based windshield washer liquids are toxic. Despite international attempts to improve the safety of these products through better labelling and packaging, accidental and intentional ingestions continue a source of poisonings worldwide. The rejection of bitter tasting substances forms part of the human defense against ingestion of harmful substances. Denatonium benzoate (DB) is currently recognised as a means to prevent ingestion of ethyl alcohol intended for industrial use. This study investigated the use of this bitter substance also as a deterrent against ingesting ethylene glycol and methanol. The palatability of ethylene glycol and methanol with and without the addition of DB was assessed using a human taste panel; 30 ppm DB rendered each product intolerable to the panel. The addition of DB to ethylene glycol engine coolants and methanol-based windshield washer liquids at low concentrations could afford protection against accidental ingestions.

  20. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail:; Grishchenko, Dmitry, E-mail:; Konovalenko, Alexander, E-mail:; Karbojian, Aram, E-mail:


    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  1. Rotor dynamic analysis of main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chong Won; Seo, Jeong Hwan; Kim, Choong Hwan; Shin, Jae Chul; Wang, Lei Tian [Korea Advanced Institute of Science and Technology, Taejon (Korea)


    A rotor dynamic analysis program DARBS/MCP, for the main coolant pump of the integral reactor, has been developed. The dynamic analysis model of the main coolant pump includes a vertical shaft, three grooved radial journal bearings and gaps that represent the structure-fluid interaction effects between the rotor and the lubricant fluid. The electromagnetic force from the motor and the hydro-dynamic force induced by impeller are the major sources of vibration that may affect the rotor system stability. DARBS/MCP is a software that is developed to effectively analyze the dynamics of MCP rotor systems effectively by applying powerful numerical algorithms such as FEM with modal truncation and {lambda}-matrix method for harmonic analysis. Main design control parameters, that have much influence to the dynamic stability, have been found by Taguchi's sensitivity analysis method. Design suggestions to improve the stability of MCP rotor system have been documented. The dynamic bearing parameters of the journal bearings used for main coolant pump have been determined by directly solving the Reynolds equation using FDM method. Fluid-structure interaction effect that occurs at the small gaps between the rotor and the stator were modeled as equivalent seals, the electromagnetic force effect was regarded as a linear negative radial spring and the impeller was modeled as a rigid disk with hydrodynamic and static radial force. Although there exist critical speeds in the range of operational speeds for type I and II rotor systems, the amplitude of vibration appears to be less than the vibration limit set by the API standards. Further more, it has been verified that the main design parameters such as the clearance and length of journal bearings, and the static radial force of impeller should be properly adjusted, in order to the improve dynamic stability of the rotor system. (author). 39 refs., 81 figs., 17 tabs.

  2. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    Energy Technology Data Exchange (ETDEWEB)

    Soli T. Khericha


    This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

  3. Modeling of melt-coolant mixing by bottom injection

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkov, I.V.; Paladino, D.; Sehgal, B.R. [Royal Inst. of Tech., Div. of Nuclear Power Safety, Stockholm (Sweden)


    In this paper, the flow characteristics during the coolant injection, with submerged nozzles, at the bottom of a molten pool are studied. The flow pattern developed by the rising coolant is considered for the case of complete coolant vaporization, and the pool-coolant phase distributions are assessed by a modeling approach delivered from literature for a heterogeneous turbulent jet. To calculate the basic characteristics of such flow, integral relationships are proposed for the two-phase boundary layer. The results of numerical computations and approximate solution are compared with the experimental data obtained in the low temperature experiments, conducted in the DECOBI (debris coolability by bottom injection) facility. (authors)

  4. Efficiency of water coolant for DEMO divertor

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail:; Igitkhanov, Yuri; Bazylev, Boris


    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  5. Liquid metal cooled nuclear reactor plant system (United States)

    Hunsbedt, Anstein; Boardman, Charles E.


    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  6. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T.; Grunwald, G.


    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  7. Activation of water coolant in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Khripunov, V.; Santoro, R.T.; Lida, H.; Parker, R.; Janeschitz, G.; Plenteda, R. [ITER Joint Central Team Garching, Muenchen (Germany)


    Water as been selected as the main coolant for the ITER blanket and vacuum vessel. Following exposure to DT neutrons, water becomes a source of high energy {sup 16}N-decay photons and energetic ({approx}0.9 MeV) {sup 17}N decay neutrons outside the reactor that lead to shielding problems during both reactor operation and after shutdown. As a result of comprehensive neutronic and hydraulic analyses, corresponding design measures were developed to diminish these effects. The use of a correlation between the {sup 16}N-production rate and the 14.1-MeV neutron flux in flowing water was recommended for determining fusion power by measuring water decay photons behind the radiation shield. (authors)

  8. Power module assemblies with staggered coolant channels (United States)

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D


    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  9. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)


    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  10. Test facility for investigation of heat transfer of promising coolants for the nuclear power industry (United States)

    Belyaev, I. A.; Sviridov, V. G.; Batenin, V. M.; Biryukov, D. A.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, E. V.


    The results are presented of experimental investigations into liquid metal heat transfer performed by the joint research group consisting of specialist in heat transfer and hydrodynamics from NIU MPEI and JIHT RAS. The program of experiments has been prepared considering the concept of development of the nuclear power industry in Russia. This concept calls for, in addition to extensive application of water-cooled, water-moderated (VVER-type) power reactors and BN-type sodium cooled fast reactors, development of the new generation of BREST-type reactors, fusion power reactors, and thermonuclear neutron sources. The basic coolants for these nuclear power installations will be heavy liquid metals, such as lead and lithium-lead alloy. The team of specialists from NRU MPEI and JIHT RAS commissioned a new RK-3 mercury MHD-test facility. The major components of this test facility are a unique electrical magnet constructed at Budker Nuclear Physics Institute and a pressurized liquid metal circuit. The test facility is designed for investigating upward and downward liquid metal flows in channels of various cross-sections in a transverse magnetic field. A probe procedure will be used for experimental investigation into heat transfer and hydrodynamics as well as for measuring temperature, velocity, and flow parameter fluctuations. It is generally adopted that liquid metals are the best coolants for the Tokamak reactors. However, alternative coolants should be sought for. As an alternative to liquid metal coolants, molten salts, such as fluorides of lithium and beryllium (so-called FLiBes) or fluorides of alkali metals (so-called FLiNaK) doped with uranium fluoride, can be used. That is why the team of specialists from NRU MPEI and JIHT RAS, in parallel with development of a mercury MHD test facility, is designing a test facility for simulating molten salt heat transfer and hydrodynamics. Since development of this test facility requires numerical predictions and verification

  11. Transport Phenomena in Liquid Foams and Liquid Marble Colloids


    Attia, Joseph


    Liquid foams consist of randomly packed bubbles separated by a thin liquid fluid. They can be found in various industrial applications including separation processes, oil recovery, water treatment, food, and material processings. They are also being considered as coolant in heat exchangers systems for heat transfer enhancement compared with single-phase air. Similarly, liquid marbles, a phase inversion of liquid foams, consisting of a liquid core stabilized by closely packed solid hydrophobic...

  12. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project (United States)

    Morrison, Russell H.; Holt, Mike


    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.


    Directory of Open Access Journals (Sweden)

    Andrey N. Makeev


    Full Text Available Abstract. Objectives The aim of the study is to generalise the results of the application of technologies and means for organising pulse coolant flow within a district heating system in order to increase its energy efficiency based on the organisation of local hydraulic shocks and the subsequent use of their energy to ensure the purification of heat energy equipment, intensify the heat transfer process and realise the possibility of transforming the available head from one hydraulic circuit to another. Methods Substations connecting the thermal power installations of consumers with heat networks via dependent and independent schemes are analytically generalised. The use of pulse coolant circulation is proposed as a means of overcoming identified shortcomings. Results Principal schemes of substations with pulse coolant circulation for dependent and independent connection of thermal power installations are detailed. A detailed description of their operation is given. The advantages of using pulse coolant circulation in substations are shown. The materials reflecting the results of the technical implementation and practical introduction of this technology are presented. Conclusion Theoretical analysis of the operation of the basic schemes of substations with pulse coolant circulation and the results of their practical application, as well as the materials of scientific works devoted to the use of the energy of a hydraulic impact and the study of the effect of pulse coolant flow on thermal and hydrodynamic processes, have yielded a combination of factors reflecting technical and economic rationality of application of pulse coolant circulation. 

  14. Reclamation and disposal of water-based machining coolants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A.


    The Oak Ridge Y-12 Plant, which is operated by the Union Carbide Corporation, Nuclear Division for the Department of Energy under US government contract W-7405-eng-26, currently uses about 10{sup 6} L/yr (260,000 gal/yr) of water-based coolants in its machining operations. These coolants are disposed of in a 110,000-L (29,000-gal) activated sludge reactor. The reactor has oxidized an average of 38.6 kg of total organic carbon (TOC) per day with an overall efficiency of 90%. The predominant bacteria in the reactor have been identified once each year for the past three years. Six primary types of water-based coolants are currently used in the machine shops. In order to reduce the coolant usage rate, efforts are being made to introduce one universal coolant into the shops. By using a biocide to limit bacterial deterioration and using a filter and centrifuge system to remove dirt and tramp oils from the coolant, the coolant discard rate can be greatly reduced. 1 tab.

  15. The high-temperature sodium coolant technology in nuclear power installations for hydrogen power engineering (United States)

    Kozlov, F. A.; Sorokin, A. P.; Alekseev, V. V.; Konovalov, M. A.


    In the case of using high-temperature sodium-cooled nuclear power installations for obtaining hydrogen and for other innovative applications (gasification and fluidization of coal, deep petroleum refining, conversion of biomass into liquid fuel, in the chemical industry, metallurgy, food industry, etc.), the sources of hydrogen that enters from the reactor plant tertiary coolant circuit into its secondary coolant circuit have intensity two or three orders of magnitude higher than that of hydrogen sources at a nuclear power plant (NPP) equipped with a BN-600 reactor. Fundamentally new process solutions are proposed for such conditions. The main prerequisite for implementing them is that the hydrogen concentration in sodium coolant is a factor of 100-1000 higher than it is in modern NPPs taken in combination with removal of hydrogen from sodium by subjecting it to vacuum through membranes made of vanadium or niobium. Numerical investigations carried out using a diffusion model showed that, by varying such parameters as fuel rod cladding material, its thickness, and time of operation in developing the fuel rods for high-temperature nuclear power installations (HT NPIs) it is possible to exclude ingress of cesium into sodium through the sealed fuel rod cladding. However, if the fuel rod cladding loses its tightness, operation of the HT NPI with cesium in the sodium will be unavoidable. Under such conditions, measures must be taken for deeply purifying sodium from cesium in order to minimize the diffusion of cesium into the structural materials.

  16. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States)


    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  17. Corrosion problems with aqueous coolants, final report

    Energy Technology Data Exchange (ETDEWEB)

    Diegle, R B; Beavers, J A; Clifford, J E


    The results of a one year program to characterize corrosion of solar collector alloys in aqueous heat-transfer media are summarized. The program involved a literature review and a laboratory investigation of corrosion in uninhibited solutions. It consisted of three separate tasks, as follows: review of the state-of-the-art of solar collector corrosion processes; study of corrosion in multimetallic systems; and determination of interaction between different waters and chemical antifreeze additives. Task 1 involved a comprehensive review of published literature concerning corrosion under solar collector operating conditions. The reivew also incorporated data from related technologies, specifically, from research performed on automotive cooling systems, cooling towers, and heat exchangers. Task 2 consisted of determining the corrosion behavior of candidate alloys of construction for solar collectors in different types of aqueous coolants containing various concentrations of corrosive ionic species. Task 3 involved measuring the degradation rates of glycol-based heat-transfer media, and also evaluating the effects of degradation on the corrosion behavior of metallic collector materials.

  18. Development of nuclear transmutation technology - A study on the thermal-hydraulic characteristics of Pb-Bi coolant material

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Yang, Hui Chang; Huh, Byung Gil [Seoul National University, Seoul (Korea)


    The objective of this study is to provide the direction of HYPER design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of lead-bismuth material as a HYPER coolant and of proton accelerator target system. In this study, in order to evaluate the thermal-hydraulic characteristics of HYPER system, the FLUENT calculation is performed with liquid metal lead-bismuth(43%) and the turbulent Prandtl number model is developed. Also, the heat transfer analyses including temperature rising are performed for accelerator beam window, solid tungsten target and liquid target which is composed of liquid lead and lead-bismuth, respectively and the thermal stress analyses are performed for accelerator beam window. Through this study, the BASECASE whose parameter is HYPER system design specification is calculated by FLUENT. It is shown that the coolant velocity must exceeds 1.6 m/s for supporting the core coolant temperature in operating temperature range. The suggested turbulent Prandtl number model is applicable to liquid metal. And in order to maintain the integrity of proton beam target system, it is necessary to investigate the target structure associated with smoothing the flow path and beam window cooling. 43 refs., 67 figs., 27 tabs. (Author)

  19. Breakup of jet and drops during premixing phase of fuel coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Haraldur Oskar


    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  20. Analysis of Loss-of-Coolant Accidents in the NBSR

    Energy Technology Data Exchange (ETDEWEB)

    Baek J. S.; Cheng L.; Diamond, D.


    This report documents calculations of the fuel cladding temperature during loss-of-coolant accidents in the NBSR. The probability of a pipe failure is small and procedures exist to minimize the loss of water and assure emergency cooling water flows into the reactor core during such an event. Analysis in the past has shown that the emergency cooling water would provide adequate cooling if the water filled the flow channels within the fuel elements. The present analysis is to determine if there is adequate cooling if the water drains from the flow channels. Based on photographs of how the emergency water flows into the fuel elements from the distribution pan, it can be assumed that this water does not distribute uniformly across the flow channels but rather results in a liquid film flowing downward on the inside of one of the side plates in each fuel element and only wets the edges of the fuel plates. An analysis of guillotine breaks shows the cladding temperature remains below the blister temperature in fuel plates in the upper section of the fuel element. In the lower section, the fuel plates are also cooled by water outside the element that is present due to the hold-up pan and temperatures are lower than in the upper section. For small breaks, the simulation results show that the fuel elements are always cooled on the outside even in the upper section and the cladding temperature cannot be higher than the blister temperature. The above results are predicated on assumptions that are examined in the study to see their influence on fuel temperature.

  1. Experimental research to investigate the performance of bio coolant when turning of mild carbon steel (United States)

    Agus Susanto, Tri; Nur, Rusdi


    Some literatures have been reported that the using bio coolant show better lubricating and cooling performances and reduce the occupational health risks associated with petroleum-oil-based coolant since they have lower toxicity. This paper investigates the effect the cutting conditions on the surface roughness through turning of mild carbon steel using dry, coolant and bio coolant. Measurement of surface roughness was conducted and then compared with the change of the cutting conditions. The relationship between surface roughness and cutting conditions was created in a curve for different of the cutting speed and coolant. The results indicate that the surface roughness was reduced when the speed of cutting is set to the highest level for all of coolant conditions (dry, coolant, and bio coolant) and constant of DOC and feed. The surface roughness had better performance using bio coolant than coolant conventional (mineral fluid).

  2. Full reactor coolant system chemical decontamination qualification programs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)


    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systems leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.

  3. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)


    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  4. Loss of Coolant Accident Analysis Methodology for SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Bae, K. H.; Lee, G. H.; Yang, S. H.; Yoon, H. Y.; Kim, S. H.; Kim, H. C


    The analysis methodology on the Loss-of-coolant accidents (LOCA's) for SMART-P is described in this report. SMART-P is an advanced integral type PWR producing a maximum thermal power of 65.5 MW with metallic fuel. LOCA's are hypothetical accidents that would result from the loss of reactor coolant, at a rate in excess of the capability of the reactor coolant makeup system, from breaks in pipes in the reactor coolant pressure boundary up to and including a break equivalent in size to the double-ended rupture of the largest pipe in the reactor coolant system. Since SMART-P contains the major primary circuit components in a single Reactor Pressure Vessel (RPV), the possibility of a large break LOCA (LBLOCA) is inherently eliminated and only the small break LOCA is postulated. This report describes the outline and acceptance criteria of small break LOCA (SBLOCA) for SMART-P and documents the conservative analytical model and method and the analysis results using the TASS/SMR code. This analysis method is applied in the SBLOCA analysis performed for the ECCS performance evaluation which is described in the section 6.3.3 of the safety analysis report. The prediction results of SBLOCA analysis model of SMART-P for the break flow, system's pressure and temperature distributions, reactor coolant distribution, single and two-phase natural circulation phenomena, and the time of major sequence of events, etc. should be compared and verified with the applicable separate and integral effects test results. Also, it is required to set-up the feasible acceptance criteria applicable to the metallic fueled integral reactor of SMART-P. The analysis methodology for the SBLOCA described in this report will be further developed and validated as the design and licensing status of SMART-P evolves.

  5. A study on natural circulation of primary Pb-Bi coolant and decay heat removal system for ENHS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [KAIST, Taejon (Korea, Republic of)


    The feasibility study has been carried out for verifying the feasibility of the ENHS (Encapsulated Nuclear Heat Source) concept with 100%-natural circulation of primary Pb-Bi coolant. However, the transfer characteristics of Pb-Bi heavy liquid metal were not quantified. This problem leads to the uncertainty of accuracy of the ENHS module scale and layout. In addition, the most accident scenarios were not simulated through the detailed analysis code. Therefore, this paper presents the heat transfer characteristics of Pb-Bi coolant and the optimized ENHS design. The other is decay heat removal system, which is proper to Pb-Bi eutectic pool of ENHS secondary system, which is simulated through the detailed code- DSNP (Dynamic Simulator Nuclear Power Plant). In addition, as the validation of the DNHS stability, the LOHS (Loss of Heat Sink) and reactivity insertion are simulated through the DSNP code. Results illustrate that the performance of the ENHS module is reasonable.


    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants at a New Jersey Department of Transportation garage. The specific recycling units evaluated are based on the technologies of filtrat...


    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants for a facility such as the New Jersey Department of Transportation garage in Ewing, New Jersey. he specific recycling evaluated is b...

  8. Numerical experimentation on convective coolant flow in Ghana ...

    African Journals Online (AJOL)

    Numerical experiments on one dimensional convective coolant flow during steady state operation of the Ghana Research Reactor-1 (GHARR-I) were performed to determine the thermal hydraulic parameters of temperature, density and flow rate. The computational domain was the reactor vessel, including the reactor core.

  9. Numerical Investigation of Urea Freezing and Melting Characteristics Using Coolant Heater

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Yeop; Kim, Nam Il; Kim, Man Young [Chounbuk Nat' l Univ., Jeonju (Korea, Republic of); Park, Yun Beom [Jeju College of Technology, Jeju (Korea, Republic of)


    UREA-SCR technology is known as one of the powerful NOx reduction systems for vehicles as well as stationary applications. For its consistent and reliable operation in vehicle applications, however, the freezing and melting of the urea solution in cold environments have to be resolved. In this study, therefore, a numerical study of three-dimensional unsteady problems was analyzed to understand the urea freezing and heating phenomena and heat transfer characteristics in terms of urea liquid volume fraction, temperature profiles, and phase change behavior in urea solutions with time by using the commercial software Fluent 6.3. As a result, it was found that the freezing phenomenon proceeds with a phase change from the tank wall to the center, whereas the melting phenomenon occurs faster in the upper part of the storage tank by natural convection and in the adjacent part of the coolant pipe than in other parts. Furthermore, approximately 190s were required to obtain 1a of urea solution using a 4-coiled coolant heater under conditions of 70 .deg. C and 200 L/h.

  10. Modular Porous Plate Sublimator /MPPS/ requires only water supply for coolant (United States)

    Rathbun, R. J.


    Modular porous plate sublimators, provided for each location where heat must be dissipated, conserve the battery power of a space vehicle by eliminating the coolant pump. The sublimator requires only a water supply for coolant.

  11. A Design Study for Standard Nanofluid Coolants

    Energy Technology Data Exchange (ETDEWEB)

    Bang, In Cheol [Energy Sciences, Global Edge Institute Tokyo Institute of Technology, Tokyo (Korea, Republic of); Heo, Gyun Young [Kyung Hee University, Seoul (Korea, Republic of)


    The experimental data for nanofluids in thermal-fluid systems have shown that the new fluids promise to become advanced heat transfer fluids in terms of thermal performance. While enhancing thermal characteristics, the solid-liquid mixtures present an unavoidable disadvantage in terms of pumping cost for economic operation of thermal-fluid systems. In addition, there is a lack of agreement between experimental data provided in the literature. We can find that this issue of nanofluids resembles that of designing new materials. Many nanofluids researchers tend to view the nanofluid field as a highly coupled 'tetrahedro' whose four vertices (performance, properties, structure, and processes) are interconnected to each other. The present design study has a big merit to systemize the nanofluid work and to reduce a lot of trial-error efforts. The present work found that there would be no comprehensible design strategy in developing nanofluids. In this work, the Axiomatic Design (AD) theory is applied to standardize the design of nanofluids in order to bring its practical use forward. According to the Independence Axiom of the AD theory, the excessive couplings between the functional requirements and the parameters of a nanofluid system prevent from meeting the functional goals of the entire system. At a parametric level, the design of a nanofluid system is inherently coupled due to the characteristics of thermal-fluid system; the design parameters physically affect each other sharing sub-level parameters for nanoparticles with making a feedback loop. Even though parts of the nanofluids are naturally coupled, it is possible to reduce and/or eliminate the degree of coupling by help of AD principles. From the perspective of AD, this implies that we are able to ascertain which nanofluid system is better one in the light of functional achievement.

  12. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems. (United States)


    ... 10 Energy 1 2010-01-01 2010-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems required...

  13. Mechanisms of thermal interaction of corium with coolants (sodium, water)

    Energy Technology Data Exchange (ETDEWEB)

    Yuri I Zagorulko; Viktor G Zhmurin; Andrey N Volov; Michail V Kashcheev; Yuri P Kovalev [SSC RF-IPPE named after A.I. Leypunsky, Bondarenko sq. 1, Obninsk, 249033, Kaluga region (Russian Federation)


    Full text of publication follows: Experimental assessments of corium thermal-energy-to-mechanical-work conversion factors at thermal interaction (TI) with coolants (sodium, water) and the effects of material transport (coolant, its vapor, corium fragments) caused by this interaction provide a basis for testing the physical and computational TI models. It is evident that the physical TI model should provide an adequate description of all parameters to be measured experimentally (pressure history in the system, amplitude-frequency characteristics of vibrational spectra, rate and acceleration of material transport, final corium fragments size distribution and their morphology) in terms of initial conditions of interaction, inertia and geometrical constraints imposed on the system. The paper presents a generalized analysis of experimental results of TI study in systems 'coolant (sodium, water)/corium (melts of thermit mixtures U+MoO{sub 3}, Zr+Fe{sub 2}O{sub 3})' as to possible mechanisms of thermal interaction in these systems. The study was performed with free channels and those encumbered by rod bundles of hexagonal geometry. In all tests, the sodium temperature was {approx} 823 K, that of water {approx} 293 K, at mass ratios M{sub corium}/M{sub coolant} {approx_equal} 0.3-0.6. The corium outflow conditions were set with regard to modeling of fission gas presence (argon in sodium experiments, air in tests with water) at melt temperatures of {approx} 3000 K and gas pressures up to 0.6-1 MPa. The rate of melt outflow amounted to 20 m/s. The kinematic parameters of material transport and impact loads caused by this transport were determined by means of two independent techniques. The first technique was based on measuring residual deformations of bend of calibrated plate elements (copper, steel). The assemblies of these elements were located at a specified distance above the coolant level in the plane perpendicular to the axis of the channel (the interaction

  14. Application of damage function analysis to reactor coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, D.D. [Center for Electrochemical Science and Technology, Pennsylvania State Univ., University Park, PA (United States)


    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  15. Expert system for online surveillance of nuclear reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.


    This report describes an expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  16. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others


    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  17. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.


    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  18. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead-lithium with the Self-consistent nucleation theory and surface tension corrections

    CERN Document Server

    Fradera, Jorge


    Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFoam(r) CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a cr...

  19. Reverse osmosis for the recovery of boric acid from the primary coolant at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bártová, Šárka, E-mail: [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Kůs, Pavel [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Skala, Martin [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); University of Chemical Technology, Prague, Department of Chemical Engineering, Technická 5, Prague 166 28 (Czech Republic); Vonková, Kateřina [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic)


    Highlights: • RO membranes tested for boric acid recovery from primary coolant of nuclear power plants. • Scanning electron microscopy was used for the characterization of the membranes. • Lab scale experiments performed under various operation conditions. • We proposed configuration of and operation conditions for RO unit in nuclear power plant. - Abstract: At nuclear power plants (NPP), evaporators are used for the treatment of primary coolant and other liquid radioactive waste containing H{sub 3}BO{sub 3}. Because the operation of evaporators is expensive, a number of more cost-effective alternatives has been considered, one of which is reverse osmosis. We tested reverse osmosis modules from several manufactures on a batch laboratory apparatus. SEM images of the tested membranes were taken to distinguish the differences between the membranes. Water permeability through membranes was evaluated from the experiments with pure water. The experiments were performed with feed solutions containing various concentrations of H{sub 3}BO{sub 3} in a range commonly occurring in radioactive waste. The pH of the feed solutions ranged from 5.2 to 11.2. Our results confirmed that the pH of the feed solution plays the most important role in membrane separation efficiency of H{sub 3}BO{sub 3}. Certain modifications to the pH of the feed solution were needed to enable the tested membranes to concentrate the H{sub 3}BO{sub 3} in the retentate stream, separate from the pure water in the permeate stream. On this basis, we propose the configuration of and operational conditions for a reverse osmosis unit at NPP.

  20. System Study: High-Pressure Coolant Injection 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.


    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.


    Directory of Open Access Journals (Sweden)



    In this report, the effect of the boron content in a pressurized-water reactor primary coolant on the separation process of 129I was examined, as was the effect of 3H on the measurement of the activity of iodine. As a result, no influence of the boron content and of the simultaneous 3H presence was found with activity concentrations of 3H lower than 50 Bq/mL, and with a boron concentration of less than 2,000 μg/mL.

  2. System Study: High-Pressure Coolant Injection 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.


    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  3. LOFT primary coolant addition and Control Piping System stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murdock, S.M.


    A stress analysis was performed on the Primary Coolant Addition and Control Piping System to determine if it met the conditions of the ASME Code, Section III, for Class 2 components. Results indicate that the Addition and Control System does not meet Section III criteria as the system is now installed. Only hanger (support) modifications are required to bring the stresses within the limits set forth in the Code. A design temperature of 459/sup 0/F was assumed for the analysis. The specified design temperature of 650/sup 0/F has been revised by ECRA's L-5713 and L-5714.

  4. Experimental Investigation of Coolant Boiling in a Half-Heated Circular Tube - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wenhua [Argonne National Lab. (ANL), Argonne, IL (United States); Singh, Dileep [Argonne National Lab. (ANL), Argonne, IL (United States); France, David M. [Argonne National Lab. (ANL), Argonne, IL (United States)


    Coolant subcooled boiling in the cylinder head regions of heavy-duty vehicle engines is unavoidable at high thermal loads due to high metal temperatures. However, theoretical, numerical, and experimental studies of coolant subcooled flow boiling under these specific application conditions are generally lacking in the engineering literature. The objective of this project was to provide such much-needed information, including the coolant subcooled flow boiling characteristics and the corresponding heat transfer coefficients, through experimental investigations.

  5. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric Joseph


    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  6. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meier, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frantoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reyes, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  7. Diesel engine coolant analysis, new application for established instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.P.; Lukas, M.; Lynch, B.K. [Spectro Incorporated, Littleton, MA (United States)


    Rotating disk electrode (RDE) arc emission spectrometers are user` many commercial, industrial and military laboratories throughout the world to analyze millions of oil and fuel samples each year. In fact, RDE spectrometers have been used exclusively for oil and fuel analysis for so long that it has nearly been forgotten by most practitioners that when RDE spectrometers were first introduced more than 40 years ago, they were routinely used for aqueous samples as well. This presentation reviews early methods of aqueous sample analysis using RDE technology. This presentation also describes recent work to calibrate an RDE spectrometer for both water samples and for engine coolant samples which are a mixture of approximately 50 % water and 50 % ethylene or propylene glycol. Limits of detection determined for aqueous standards are comparable to limits of detection for oil standards. Repeatability of aqueous samples is comparable to the repeatability achieved for oil samples. A comparison of results for coolant samples measured by both inductively coupled plasma (ICP) and rotating disk electrode (RDE) spectrometers is presented. Not surprisingly, RDE results are significantly higher for samples containing particles larger than a few micrometers. Although limits of detection for aqueous samples are not as low as can be achieved using the more modern ICP spectrometric method or the more cumbersome atomic absorption (AA) method, this presentation suggests that RDE spectrometers may be appropriate for certain types of aqueous samples in situations where the more sensitive ICP or AA spectrometers and the laboratory environment and skilled personnel needed for them to operate are not conveniently available. (orig.) 4 refs.

  8. Single-Sided Digital Microfluidic (SDMF Devices for Effective Coolant Delivery and Enhanced Two-Phase Cooling

    Directory of Open Access Journals (Sweden)

    Sung-Yong Park


    Full Text Available Digital microfluidics (DMF driven by electrowetting-on-dielectric (EWOD has recently been attracting great attention as an effective liquid-handling platform for on-chip cooling. It enables rapid transportation of coolant liquid sandwiched between two parallel plates and drop-wise thermal rejection from a target heating source without additional mechanical components such as pumps, microchannels, and capillary wicks. However, a typical sandwiched configuration in DMF devices only allows sensible heat transfer, which seriously limits heat rejection capability, particularly for high-heat-flux thermal dissipation. In this paper, we present a single-sided digital microfluidic (SDMF device that enables not only effective liquid handling on a single-sided surface, but also two-phase heat transfer to enhance thermal rejection performance. Several droplet manipulation functions required for two-phase cooling were demonstrated, including continuous droplet injection, rapid transportation as fast as 7.5 cm/s, and immobilization on the target hot spot where heat flux is locally concentrated. Using the SDMF platform, we experimentally demonstrated high-heat-flux cooling on the hydrophilic-coated hot spot. Coolant droplets were continuously transported to the target hot spot which was mitigated below 40 K of the superheat. The effective heat transfer coefficient was stably maintained even at a high heat flux regime over ~130 W/cm2, which will allow us to develop a reliable thermal management module. Our SDMF technology offers an effective on-chip cooling approach, particularly for high-heat-flux thermal management based on two-phase heat transfer.

  9. Radiogenic Lead with Dominant Content of 208Pb: New Coolant and Neutron Moderator for Innovative Nuclear Facilities

    Directory of Open Access Journals (Sweden)

    A. N. Shmelev


    Full Text Available As a rule materials of small atomic weight (light and heavy water, graphite, and so on are used as neutron moderators and reflectors. A new very heavy atomic weight moderator is proposed—radiogenic lead consisting mainly of isotope 208Pb. It is characterized by extremely low neutron radiative capture cross-section (0.23 mbarn for thermal neutrons, i.e., less than that for graphite and deuterium and highest albedo of thermal neutrons. It is evaluated that the use of radiogenic lead makes it possible to slow down the chain fission reaction on prompt neutrons in a fast reactor. This can increase safety of the fast reactors and reduce as well requirements pertaining to the fuel fabrication technology. Radiogenic lead with high 208Pb content as a liquid-metal coolant of fast reactors helps to achieve a favorable (negative reactivity coefficient on coolant temperature. It is noteworthy that radiogenic lead with high 208Pb content may be extracted from thorium (as well as thorium-uranium ores without isotope separation. This has been confirmed experimentally by the investigations performed at San Paulo University, Brazil.

  10. Radionuclides in primary coolant of a fluoride salt-cooled high-temperature reactor during normal operation

    National Research Council Canada - National Science Library

    Zhang, Guo-Qing; Wang, Shuai; Zhang, Hai-Qing; Zhu, Xing-Wang; Peng, Chao; Cai, Jun; He, Zhao-Zhong; Chen, Kun


    The release of fission products from coated particle fuel to primary coolant, as well as the activation of coolant and impurities, were analysed for a fluoride salt-cooled high-temperature reactor (FHR...

  11. Development of LMR Coolant Technology - Development of a submersible-in-pool electromagnetic pump

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hi; Kim, Hee Reyoung; Lee, Sang Don; Seo, Joon Ho [Seoul National University, Seoul (Korea, Republic of); Cho, Su Won [Kyoungki University, Suwon (Korea, Republic of)


    A submersible-in-pool type annular linear induction pumps of 60 l/min and 200 l/min, and 600 deg C has been designed with optimum geometrical and operating values found from MHD and circuit analyses reflecting the high-temperature characteristics of pump materials. Through the characteristics analyses inside the narrow flow channel of electromagnetic pump, the distribution of the time-varying flow field is calculated, and magnetic flux and force density are evaluated by end effects of linear induction electromagnetic pump and the instability analyses are carried out introducing one-dimensional linear perturbation. Testing the pump with the flow rate of 60 l/min in the suitably manufactured loop system shows a flow rate of 58 l/min at an input power of 1,377 VA with 60Hz. The design of a scaled-up pump is further taken into account LMR coolant system requiring increased capacity, and a basic analysis is carried out on the pump of 40,000 l/min for KALIMER. The present project contributes to the further design of engineering prototype electromagnetic pumps with higher capacity and to the development of liquid metal reactor with innovative simplicity. 89 refs., 8 tabs., 45 figs. (author)

  12. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.


    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  13. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant

    Directory of Open Access Journals (Sweden)

    Zhi Li


    Full Text Available Output performance of a thermoelectric-based automotive waste heat recovery system with a nanofluid coolant is analyzed in this study. Comparison between Cu-Ethylene glycol (Cu-EG nanofluid coolant and ethylene glycol with water (EG-W coolant under equal mass flow rate indicates that Cu-EG nanofluid as a coolant can effectively improve power output and thermoelectric conversion efficiency for the system. Power output enhancement for a 3% concentration of nanofluid is 2.5–8 W (12.65–13.95% compared to EG-Water when inlet temperature of exhaust varies within 500–710 K. The increase of nanofluid concentration within a realizable range (6% has positive effect on output performance of the system. Study on the relationship between total area of thermoelectric modules (TEMs and output performance of the system indicates that optimal total area of TEMs exists for maximizing output performance of the system. Cu-EG nanofluid as coolant can decrease optimal total area of TEMs compared with EG-W, which will bring significant advantages for the optimization and arrangement of TEMs whether the system space is sufficient or not. Moreover, power output enhancement under Cu-EG nanofluid coolant is larger than that of EG-W coolant due to the increase of hot side heat transfer coefficient of TEMs.


    Directory of Open Access Journals (Sweden)

    V. V. Sorokin


    Full Text Available Sufficient atomic power generation safety increase may be done with microfuel adapting to reactor plants with water coolant. Microfuel particle is a millimeter size grain containing fission material core in a protecting coverage. The coverage protects fuel contact with coolant and provides isolation of fission products inside. Well thermophysical properties of microfuel bed in a direct contact with water coolant excludes fuel overheating when accidents. Microfuel use was suggested for a VVER, а direct flow reactor for superheat steam generation, a reactor with neutron spectra adjustment by the steam partial content varying in the coolant.Nonuniformities of two-phase coolant distribution in a heat generating particles bed are predicted by calculations in this text. The one is due to multiple-valuedness of pressure drop across the bed on the steam quality dependency. The nonuniformity decreases with flow rate and particle size growths absolute pressure diminishing while porosity effect is weak. The worse case is for pressure quality of order of one. Some pure steam filled pores appears parallel to steam water mixture filled pores, latter steam quality is less than the mean of the bed. Considering this regime for the direct flow reactor for superheat steam generation we predict some water drops at the exit flow. The two-phase coolant filtration with subcooled water feed is unstable to strong disturbance effects are found. Uniformity of two-phase coolant distribution is worse than for one-phase in the same radial type reactor.

  15. Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis

    Directory of Open Access Journals (Sweden)

    Jinsu Park


    Full Text Available This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700 fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

  16. Physics study of Canada deuterium uranium lattice with coolant void reactivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Shin, Ho Cheol [Korea Hydro and Nuclear Power Central Research Institute (KHNP-CRI), Daejeon (Korea, Republic of)


    This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 x 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

  17. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes (United States)

    Mohammadian, Shahabeddin K.; He, Ya-Ling; Zhang, Yuwen


    Two and three dimensional transient thermal analysis of a prismatic Li-ion cell has been carried out to compare internal and external cooling methods for thermal management of Lithium Ion (Li-ion) battery packs. Water and liquid electrolyte have been utilized as coolants for external and internal cooling, respectively. The effects of the methods on decreasing the temperature inside the battery and also temperature uniformity were investigated. The results showed that at the same pumping power, using internal cooling not only decreases the bulk temperature inside the battery more than external cooling, but also decreases the standard deviation of the temperature field inside the battery significantly. Finally, using internal cooling decreases the intersection angle between the velocity vector and the temperature gradient which according to field synergy principle (FSP) causes to increase the convection heat transfer.

  18. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  19. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse


    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat...... heat sink configurations reduces the coolant pumping power in the system....

  20. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan


    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  1. A study on safety measure of LMR coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Choi, Y. D.; Choi, J. H.; Kim, T. J.; Jeong, K. C.; Kwon, S. W.; Kim, B. H.; Jeong, J. Y.; Park, J. H.; Kim, K. R.; Jo, B. R.


    A study on safety measures of LMR coolant showed the results as follows: 1. Sodium fire characteristics. A. Sodium pool temp., gas temp., oxygen concentration calculated by flame combustion model were generally higher than those calculated by surface combustion model. B. Basic and detail designs for medium sodium fire test facility were carried out and medium sodium fire test facility was constructed. 2. Sodium/Cover gas purification technology. A. Construction and operation of calibration loop. B. Purification analysis and conceptual design of the packing for a cold trap. 3. Analysis of sodium-water reaction characteristics. We have investigated the characteristics analysis for micro and small leaks phenomena, development of the computer code for analysis of initial and quasi steady-state spike pressures to analyze large leak accident. Also, water mock-up test facility for the analysis of large leak accident phenomena was designed and manufactured. 4. Development of water leak detection technology. Detection signals were appeared when the hydrogen detector is operated to Ar-H{sub 2} gas system. The technology for the passive acoustic detection with respect to large leakage of water into sodium media was reviewed. And water mock-up test equipment and instrument system were designed and constructed. (author). 19 refs., 45 tabs., 52 figs.

  2. Refurbishment of the IEAR1 primary coolant system piping supports

    Energy Technology Data Exchange (ETDEWEB)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel, E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    A partial replacement of the IEA-R1 piping system was concluded in 2014. This paper presents the study and the structural analysis of the IEA-R1 primary circuit piping supports, considering all the changes involved in the replacement. The IEA-R1 is a nuclear reactor for research purposes designed by Babcox-Willcox that is operated by IPEN since 1957. The reactor life management and modernization program is being conducted for the last two decades and already resulted in a series of changes, especially on the reactor coolant system. This set of components, divided in primary and secondary circuit, is responsible for the circulation of water into the core to remove heat. In the ageing management program that includes regular inspection, some degradation was observed in the primary piping system. As result, the renewing of the piping system was conducted in 2014. Moreover the poor condition of some original piping supports gave rise to the refurbishment of all piping supports. The aim of the present work is to review the design of the primary system piping supports taking into account the current conditions after the changes and refurbishment. (author)

  3. Cracked shaft detection on large vertical nuclear reactor coolant pump (United States)

    Jenkins, L. S.


    Due to difficulty and radiation exposure associated with examination of the internals of large commercial nuclear reactor coolant pumps, it is necessary to be able to diagnose the cause of an excessive vibration problem quickly without resorting to extensive trial and error efforts. Consequently, it is necessary to make maximum use of all available data to develop a consistent theory which locates the problem area in the machine. This type of approach was taken at Three Mile Island, Unit #1, in February 1984 to identify and locate the cause of a continuously climbing vibration level of the pump shaft. The data gathered necessitated some in-depth knowledge of the pump internals to provide proper interpretation and avoid misleading conclusions. Therefore, the raw data included more than just the vibration characteristics. Pertinent details of the data gathered is shown and is necessary and sufficient to show that the cause of the observed vibration problem could logically only be a cracked pump shaft in the shaft overhang below the pump bearing.

  4. The study of ultrasonic reflex-radar waveguide coolant level gage for a nuclear reactor

    Directory of Open Access Journals (Sweden)

    V.I. Mel'nikov


    The instrument works reliably and does not require introducing corrections of readings when coolant thermal physical properties change. The measurement instrument is intended for application in heat exchanging equipment in thermal and nuclear power generation.

  5. The study of ultrasonic reflex-radar waveguide coolant level gage for a nuclear reactor

    National Research Council Canada - National Science Library

    Mel'nikov, V.I; Ivanov, V.V; Teplyashin, I.A


    Results of experimental study of operation of ultrasonic reflex-radar waveguide level gage in water coolant at elevated parameters with pressure up to 18MPa and temperature up to 350°C are examined...

  6. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s) (United States)

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R


    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  7. Attenuation of Vane-Rotor Shock Interactions with Pulsating Coolant Flows (United States)


    observed over a range of bleed air mass flows near to the value producing a maximum level of base pressure. Sieverding [15] showed that a higher base...Rotating valve Pulsation in the coolant stream was provided by a perforated rotating disc . When the holes on the disc are facing the inlet and outlet...of the vortex formation location downstream when the highest base pressure is observed [14]. Augmentation in coolant ejection rates brakes down the

  8. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.


    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  9. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division


    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  10. The electrochemistry of IGSCC mitigation in BWR coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D.D. [Center for Electrochemical Science and Technology, The Pennsylvania State Univ., University Park, PA (United States)


    A brief review is presented of the electrochemical mitigation of IGSCC in water-cooled reactor heat transport circuit structural materials. Electrochemical control and mitigation is possible, because of the existence of a critical potential for IGSCC and by the feasibility of modifying the environment to displace the corrosion potential (ECP) to a value that is more negative than the critical value. However, even in cases where the ECP cannot be displaced sufficiently in the negative direction to become more negative than the critical potential, considerable advantage is accrued, because of the roughly exponential dependence of crack growth rate on potential. The most important parameters in affecting electrochemical control over the ECP and crack growth rate are the kinetic parameters (exchange current densities and Tafel constants) for the redox reactions involving the principal radiolysis products of water (O{sub 2}, H{sub 2}, H{sub 2}O{sub 2}), external solution composition (concentrations of O{sub 2}, H{sub 2}O{sub 2}, and H{sub 2}), flow velocity, and the conductivity of the bulk environment. The kinetic parameters for the redox reactions essentially determine the charge transfer impedance of the steel surface, which is shown to be one of the key parameters in affecting the magnitude of the coupling current and hence the crack growth rate. The exchange current densities, in particular, are amenable to control by catalysis or inhibition, with the result that surface modification techniques are highly effective in controlling and mitigating IGSCC in reactor coolant circuit materials. (authors)

  11. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project -2006 Update (United States)

    Morrison, Russell H.; Holt, Mike


    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. This paper presents a status of the coolant stability over the past year as well as results from destructive analyses of hardware removed from the on-orbit system and the current approach to coolant remediation.

  12. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)


    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  13. Use of Distribution Devices for Hydraulic Profiling of Coolant Flow in Core Gas-cooled Reactors

    Directory of Open Access Journals (Sweden)

    A. A. Satin


    Full Text Available In setting up a reactor plant for the transportation-power module of the megawatt class an important task is to optimize the path of flow, i.e. providing moderate hydraulic resistance, uniform distribution of the coolant. Significant contribution to the hydraulic losses makes one selected design of the coolant supplies. It is, in particular, hemispherical or semi-elliptical shape of the supply reservoir, which is selected to reduce its mass, resulting in the formation of torusshaped vortex in the inlet manifold, that leads to uneven coolant velocity at the inlet into the core, the flow pulsations, hydraulic losses.To control the flow redistribution in the core according to the level of energy are used the switchgear - deflectors installed in a hemispherical reservoir supplying coolant to the fuel elements (FE of the core of gas-cooled reactor. This design solution has an effect on the structure of the flow, rate in the cooling duct, and the flow resistance of the collector.In this paper we present the results of experiments carried out on the gas dynamic model of coolant paths, deflectors, and core, comprising 55 fuel rod simulators. Numerical simulation of flow in two-parameter model, using the k-ε turbulence model, and the software package ANSYS CFX v14.0 is performed. The paper demonstrates that experimental results are in compliance with calculated ones.The results obtained suggest that the use of switchgear ensures a coolant flow balance directly at the core inlet, thereby providing temperature reduction of fuel rods with a uniform power release in the cross-section. Considered options to find constructive solutions for deflectors give an idea to solve the problem of reducing hydraulic losses in the coolant paths, to decrease pulsation components of flow in the core and length of initial section of flow stabilization.

  14. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)


    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  15. Investigation of molten fuel coolant interaction phenomena using real time X-ray imaging of simulated woods metal-water system

    Directory of Open Access Journals (Sweden)

    Avinash Kumar Acharya


    Full Text Available In liquid metal fast breeder reactors, postulated failures of the plant protection system may lead to serious unprotected accidental consequences. Unprotected transients are generically categorized as transient overpower accidents and transient under cooling accidents. In both cases, core meltdown may occur and this can lead to a molten fuel coolant interaction (MFCI. The understanding of MFCI phenomena is essential for study of debris coolability and characteristics during post-accident heat removal. Sodium is used as coolant in liquid metal fast breeder reactors. Viewing inside sodium at elevated temperature is impossible because of its opaqueness. In the present study, a methodology to depict MFCI phenomena using a flat panel detector based imaging system (i.e., real time radiography is brought out using a woods metal-water experimental facility which simulates the UO2-Na interaction. The developed imaging system can capture attributes of the MFCI process like jet breakup length, jet front velocity, fragmented particle size, and a profile of the debris bed using digital image processing methods like image filtering, segmentation, and edge detection. This paper describes the MFCI process and developed imaging methodology to capture MFCI attributes which are directly related to the safe aspects of a sodium fast reactor.

  16. Nanomaterials for efficiently lowering the freezing point of anti-freeze coolants. (United States)

    Hong, Haiping; Zheng, Yingsong; Roy, Walter


    In this paper, we report, for the first time, the effect of the lowered freezing point in a 50% water/50% anti-freeze coolant (PAC) or 50% water/50% ethylene glycol (EG) solution by the addition of carbon nanotubes and other particles. The experimental results indicated that the nano materials are much more efficient (hundreds fold) in lowering the freezing point than the regular ionic materials (e.g., NaCl). The possible explanation for this interesting phenomenon is the colligative property of fluid and relative small size of nano material. It is quite certain that the carbon nanotubes and metal oxide nano particles could be a wonderful candidate for the nano coolant application because they could not only increase the thermal conductivity, but also efficiently lower the freezing point of traditional coolants.

  17. Simulating the corrosion of zirconium alloys in the water coolant of VVER reactors (United States)

    Kritskii, V. G.; Berezina, I. G.; Motkova, E. A.


    A model for predicting the corrosion of cladding zirconium alloys depending on their composition and operating conditions is proposed. Laws of thermodynamics and chemical kinetics of the reactions through which the multicomponent zirconium alloy is oxidized in the reactor coolant constitute the physicochemical heart of the model. The developed version of the model is verified against the results obtained from tests of fuel rod claddings made of commercial-grade and experimental zirconium alloys carried out by different researchers under autoclave and reactor conditions. It is shown that the proposed model adequately describes the corrosion of alloys in coolants used at nuclear power stations. It is determined that, owing to boiling of coolant and its acidification in a VVER-1200 reactor, Zr-1% Nb alloys with additions of iron and oxygen must be more resistant to corrosion than the commercial-grade alloy E110.

  18. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR (United States)

    Tokarz, R.D.


    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  19. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  20. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin


    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  1. Integrated Fuel-Coolant Interaction (IFCI 6.0) code. User`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Davis, F.J.; Young, M.F. [Sandia National Labs., Albuquerque, NM (United States)


    The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User`s Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks.

  2. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl


    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net...

  3. Integrated Fuel-Coolant Interaction (IFCI 7.0) Code User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Young, Michael F.


    The integrated fuel-coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, three-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a description of IFCI 7.0. The user's manual describes the hydrodynamic method and physical models used in IFCI 7.0. Appendix A is an input manual provided for the creation of working decks.

  4. Production test IP-750 raw water as a reactor coolant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frymier, J.W.; Geier, R.G.


    Approximately ten years ago single-tube tests demonstrated the feasibility of using unfiltered river water as a reactor coolant from the standpoint of aluminum corrosion and film formation. However, some effluent activity penalty was indicated. Inasmuch as both current water plant operation and the characteristics of Columbia River water have changed, it was deemed appropriate to reinvestigate the use of partially treated water as a reactor coolant. This report summarizes the results of a half-reactor test carried out at F Reactor.

  5. Modern coolant additives. Environmental friendly and light metal compatible coolant additives for modern combustion engines; Moderne Kuehlmittelzusaetze. Umwelt- und leichtmetallvertraegliche Kuehlmittelzusaetze fuer moderne Verbrennungskraftmaschinen. Abschlussbericht. Vorhaben Nr. 777

    Energy Technology Data Exchange (ETDEWEB)

    Gugau, M.; Kaiser, M.


    The authors of the contribution under consideration report on the influence of the enhanced thermal stress on the impact of environmental friendly and light metal compatible coolant additives. The application and advancement of new research methods under mechanism-oriented objective led to a validation of a new guideline to the examination of the suitability of coolant additives for the coolant of internal combustion engines. Moreover, the authors create a knowledge base, on which a purposeful development can take place from suitable formulations of inhibitor for magnesium. For aluminium with silicate containing corrosion anti-freezes a close relationship between the surface temperature and the impoverishment of silicate exists. During the excess of limit temperatures, cooling agent-specific damage features arise reproducibly. The comparison of the different methods for the investigation of cavitation showed that one cannot dispense with both methods in order to evaluate a demand of insulating cavitation and a cavitative / corrosive complex regarding to the development of a test guideline. By the comprehensive electro-chemical and cavitative investigations for the magnesium alloy AZ91hp, a broad knowledge base could be formed, on which a purposeful development and evaluation of inhibitors under the use can take place from different glycols.

  6. Liquid-cooled nuclear reactor. [Patent:; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Deinlein, H.; Kummer, G.


    H/sub 2/ is directly added to the coolant circuit. This requires a pipe bypassing the volume expansion tank and being connected with the suction side of the high pressure pump. The supply of H/sub 2/ is realized via ceramic filter catridges in a liquid cooled part of the pipe at the suction side of the high pressure pump. Thus, the danger of oxyhydrogen explosions is avoided.

  7. 77 FR 19740 - Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident (United States)


    ... COMMISSION Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident AGENCY... Guide (RG) 1.82, ``Water Sources for Long- Term Recirculation Cooling Following a Loss-of-Coolant... Commission (NRC or the Commission) is issuing a revision to Regulatory Guide (RG) 1.82, ``Water Sources for...

  8. The effect of outflowing water coolant with supercritical parameters on a barrier

    Directory of Open Access Journals (Sweden)

    Alekseev Maksim


    Full Text Available The outflow of supercritical coolant with different initial parameters and its impact on the barrier have been numerically simulated. Spatial and axial distributions of pressure and steam quality are presented. The force acting on the barrier at different parameters of the outflow has been calculated.

  9. Conceptual design of the integral test loop (I): Reactor coolant system and secondary system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Lee, Seong Je; Kwon, Tae Soon; Moon, Sang Ki [Korea Atomic Energy Research Institute, Taejon (Korea)


    This report describes the conceptual design of the primary coolant system and the secondary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the primary coolant system and secondary system is as follows ; Reference plant: Korean Standard Nuclear Plant (KSNP), Height ratio : 1/1, Volume ratio : 1/200, Power scale : Max. 15% of the scaled nominal power, Temperature, Pressure : Real plant conditions. The primary coolant system includes a reactor vessel, which contains a core simulator, a steam generator, a reactor coolant pump simulator, a pressurizer and piping, which consists of two hot legs, four cold legs and four intermediate legs. The secondary system consists of s steam discharge system, a feedwater supply system and a steam condensing system. This conceptual design report describes general configuration of the reference plant, and major function and operation of each system of the plant. Also described is the design philosophy of each component and system of the ITL, and specified are the design criteria and technical specifications of each component and system of the ITL in the report. 17 refs., 43 figs., 51 tabs. (Author)

  10. Flat plate film cooling at the coolant supply into triangular and cylindrical craters

    Directory of Open Access Journals (Sweden)

    Khalatov Artem A.


    Full Text Available The results are given of the film cooling numerical simulation of three different schemes including single-array of the traditional round inclined holes, as well as inclined holes arranged in the cylindrical or triangular dimples (craters. The results of simulation showed that at the medium and high values of the blowing ratio (m > 1.0 the scheme with coolant supply into triangular craters improves the adiabatic film cooling efficiency by 1.5…2.7 times compared to the traditional array of inclined holes, or by 1.3…1.8 times compared to the scheme with coolant supply into cylindrical craters. The greater film cooling efficiency with the coolant supply into triangular craters is explained by decrease in the intensity of secondary vortex structures (“kidney” vortex. This is due to the partial destruction and transformation of the coolant jets structure interacting with front wall of the crater. Simultaneously, the film cooling uniformity is increased in the span-wise direction.

  11. Alternative coolant to soluble oil in machining a mild steel material ...

    African Journals Online (AJOL)

    This paper presents the use of soybean as an alternative to soluble oil in machining a mild steel material. A detailed comparison of soluble oil and soybean oil as coolants was carried out. The coefficient of correlation (r) of soybean oil when computed was found to be 0.5, a value that fall in the range of moderate correlation.

  12. Partial Discharge Measurements in HV Rotating Machines in Dependence on Pressure of Coolant

    Directory of Open Access Journals (Sweden)

    I. Kršňák


    Full Text Available The influence of the pressure of the coolant used in high voltage rotating machines on partial discharges occurring in stator insulation is discussed in this paper. The first part deals with a theoretical analysis of the topic. The second part deals with the results obtained on a real generator in industrial conditions. Finally, theoretical assumptions and obtained results are compared.

  13. The problems of using a high-temperature sodium coolant in nuclear power plants for the production of hydrogen and other innovative applications (United States)

    Sorokin, A. P.; Alexeev, V. V.; Kuzina, Ju. A.; Konovalov, M. A.


    The intensity of the hydrogen sources arriving from the third contour of installation in second in comparison with the hydrogen sources on NPP BN-600 increases by two – three order at using of high-temperature nuclear power plants with the sodium coolant (HT-NPP) for drawing of hydrogen and other innovative applications (gasification and a liquefaction of coal, profound oil refining, transformation of biomass to liquid fuel, in the chemical industry, metallurgy, the food-processing industry etc.). For these conditions basic new technological solutions are offered. The main condition of their implementation is raise of hydrogen concentration in the sodium coolant on two – three order in comparison with the modern NPP, in a combination to hydrogen removal from sodium and its pumping out through membranes from vanadium or niobium. The researches with use diffusive model have shown possibility to expel a casium inflow in sodium through a leakproof shell of fuel rods if vary such parameters as a material of fuel rods shell, its thickness and maintenance time at design of fuel rods for high-temperature NPP. However maintenance of high-temperature NPP in the presence of casium in sodium is inevitable at loss of leakproof of a fuel rods shell. In these conditions for minimisation of casium diffusion in structural materials it is necessary to provide deep clearing of sodium from cesium.

  14. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.; Staunton, M.R.; Starke, M.R.


    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from

  15. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL


    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from


    Directory of Open Access Journals (Sweden)

    S. T. Antipov


    Full Text Available Summary. Drying of buckwheat seeds is one of the most important stages of preparation of this raw material to the subsequent process of its processing. The nutritional value and quality indicators of the finished product depend on the mode of drying and are the result of structural, mechanical, biological and physico-mechanical transformations of substances. Technological modes of drying buckwheat seeds depend on the content of water and have a significant effect on the change of carbohydrates, protein denaturation, oxidation of lipids, changes of vitamins and organic acids. A new method of drying buckwheat and designed and constructed an experimental dryer with adjustable swirling flow of the coolant is proposed. For the study of the experiments and to determine the optimal mode of drying was used central composite rotatable uniforms - planning and selected full factorial experiment. The kinetics of drying and heat buckwheat in the device with twisted coolant flow was investigated. The influence of various parameters on the drying kinetics of buckwheat in the dryer with twisted coolant flow was invesigated. Presents the results of experimental studies, buckwheat drying in the dryer with twisted coolant flows. On the basis of experimental data and their statistical processing was obtained a mathematical model that adequately describes the process of drying buckwheat in the device with twisted coolant flow. The character of changes in the criteria optimization depending on the input factors was determined. The results of the mathematical model will be useful to a wide range of professionals involved in drying buckwheat, as well as for the calculation and design of modern drying - boiler systems.

  17. Simulation of fuel dispersion in the MYRRHA-FASTEF primary coolant with CFD and SIMMER-IV

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Sophia, E-mail: [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Eboli, Marica [University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa (Italy); Moreau, Vincent [CRS4, Science and Technology Park Polaris – Piscina Manna, 09010 Pula (Italy); Van Tichelen, Katrien [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)


    Highlights: • A comparison between CFD and system codes applied to long-term dispersion of fuel particles inside the MYRRHA reactor is proposed. • Important accumulations at the free-surface level are to be expected. • The risk of core blockage should not be neglected. • Numerical approach and modeling assumptions have a strong influence on the simulation results and accuracy. - Abstract: The objective of this work is to assess the behavior of fuel redistribution in heavy liquid metal nuclear systems under fuel pin failure conditions. Two different modeling approaches are considered using Computational Fluid Dynamics (CFD) codes and a system code, applied to the MYRRHA facility primary coolant loop version 1.4. Two different CFD models are constructed: the first is a single-phase steady model prepared in ANSYS Fluent, while the second is a two-phase model based on the volume of fluid (VOF) method in STARCCM+ to capture the upper free-surface dynamics. Both use a Lagrangian tracking approach with oneway coupling to follow the particles throughout the reactor. The system code SIMMER-IV is used for the third model, without neutronic coupling. Although limited regarding the fluid dynamic aspects compared to the CFD codes, comparisons of particle distributions highlight strong similarities despite quantitative discrepancies in the size of fuel accumulations. These disparities should be taken into account while performing the safety analysis of nuclear systems and developing strategies for accident mitigation.


    Gaugler, R. E.


    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient

  19. Development of self-cooled liquid metal breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S.; Tillack, M.S. [comps.; Barleon, L.; Baumgaertner, S.; Borgstedt, H.U.; Buehler, L.; Buerkle, G.; Dammel, F.; Feuerstein, H.; Fischer, U.; Gabel, K.; Gerhardt, H.; Glasbrenner, H.; Heider, T.; Jordan, T.; Kleefeldt, K.; Kleykamp, H.; Lindau, R.; Moeslang, A.; Norajitra, F.; Reimann, G.; Reimann, J.; Riesch-Oppermann, H.; Ritzhaupt-Kleissl, H.J.; Schleisiek, K.; Schmitz, G.; Schnauder, H.; Stieglitz, R.; Tellini, B.; Tsige-Tamirat, H.


    The development of liquid metal breeder blankets for fusion reactors has been performed in the Forschungszentrum Karlsruhe as a part of the European fusion blanket development program with the aim to select the two most promising concepts in 1995 for further development. In this report are described the designs of self-cooled blankets together with the results of the accompanying R and D program of the years 1992-1995. The program includes design studies as well as theoretical and experimental work in the fields of neutronics, magneto-hydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium extraction and control, safety, reliability, electrical insulating coatings, and fabrication technologies for blanket segments. (orig.) 250 refs.

  20. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S


    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  1. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)


    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  2. Additional requirements for leak-before-break application to primary coolant piping in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, G. [AIB Vincotte Nuclear, Brussels (Belgium)


    Leak-Before-Break (LBB) technology has not been applied in the first design of the seven Pressurized Water Reactors the Belgian utility is currently operating. The design basis of these plants required to consider the dynamic effects associated with the ruptures to be postulated in the high energy piping. The application of the LBB technology to the existing plants has been recently approved by the Belgian Safety Authorities but with a limitation to the primary coolant loop. LBB analysis has been initiated for the Doel 3 and Tihange 2 plants to allow the withdrawal of some of the reactor coolant pump snubbers at both plants and not reinstall some of the restraints after steam generator replacement at Doel 3. LBB analysis was also found beneficial to demonstrate the acceptability of the primary components and piping to the new conditions resulting from power uprating and stretch-out operation. LBB analysis has been subsequently performed on the primary coolant loop of the Tihange I plant and is currently being performed for the Doel 4 plant. Application of the LBB to the primary coolant loop is based in Belgium on the U.S. Nuclear Regulatory Commission requirements. However the Belgian Safety Authorities required some additional analyses and put some restrictions on the benefits of the LBB analysis to maintain the global safety of the plant at a sufficient level. This paper develops the main steps of the safety evaluation performed by the Belgian Safety Authorities for accepting the application of the LBB technology to existing plants and summarizes the requirements asked for in addition to the U.S. Nuclear Regulatory Commission rules.

  3. The study of ultrasonic reflex-radar waveguide coolant level gage for a nuclear reactor


    Mel'Nikov, V.I.; Ivanov, V. V.; Teplyashin, I.A.


    Results of experimental study of operation of ultrasonic reflex-radar waveguide level gage in water coolant at elevated parameters with pressure up to 18MPa and temperature up to 350°C are examined. In contrast to the known waveguide level gages, traveltime of acoustic pulses along the waveguide from the radiator to the subsurface layer and back is measured in the level gage under study. Waveguide consists of two acoustically isolated waveguides – the radiating waveguide and the receiving ...

  4. Mathematical simulation of ionic equilibriums of water coolant using electrical conductivity and pH measurements (United States)

    Bushuev, E. N.


    A generalized mathematical model for ionic equilibriums of water coolant is proposed. Particular cases of its solution for turbine condensate, demineralized water, feedwater, and boiler water are considered. It is shown that, by using the proposed method, it is possible to indirectly determine the concentrations of standardized ionic impurities from readings of conductivity meters and pH meters, instruments available in a regular chemical monitoring system.

  5. Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO


    Catalán, J.P.; Ogando Serrano, Francisco; Sanz Gonzalo, Javier; Palermo, I.; Veredas, G.; Gómez Ros, J.M.; Sedano, L.


    A conceptual design of a DEMO fusion reactor is being developed under the Spanish Breeding Blanket Technology Programme: TECNO_FUS based on a He/LiPb dual coolant blanket as reference design option. The following issues have been analyzed to address the demonstration of the neutronic reliability of this conceptual blanket design: power amplification capacity of the blanket, tritium breeding capability for fuel self-sufficiency, power deposition due to nuclear heating in superconducting coils ...

  6. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Shack, W.J. [Argonne National Lab., IL (United States)


    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented.

  7. CFD analysis of localized crud effects on the flow of coolant in nuclear rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cinosi, N., E-mail:; Walker, S.P.


    Highlights: • CDF simulation of PWR sub-channels with crudded rods. • Evaluation of coolant flow variations induced by crud rough surfaces. • Evaluation of coolant temperatures in presence of crudded rods. • Evaluation of crud effects on critical heat flux and DNBR margins. - Abstract: It has been suggested that crud deposits on a number of adjacent fuel rods might reduce coolant flow rates in associated sub-channels. Such reduced flow rates could then worsen thermal-hydraulic conditions, such as margin to saturated boiling, fuel surface temperature, and the DNB ratio. We report the results of a detailed computational fluid dynamics study of the flow pattern in a partially crudded rod bundle. Values obviously depend on, for example, the thickness of crud assumed, but sub-channel flow rate reductions of ∼10% were predicted by this analysis. However, this mass flow rate reduction was found to be more than offset by improved heat transfer induced by the relatively rough surface of the crud. Cladding temperatures were predicted to be essentially unchanged, and the DNBR was similarly little altered. We conclude that such flow reduction and diversion is not likely to be of concern.

  8. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Titov, Gene; Lustbader, Jason; Leighton, Daniel; Kiss, Tibor


    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.

  9. Guidelines to achieve seals with minimal leak rates for HWR-NPR coolant system components

    Energy Technology Data Exchange (ETDEWEB)

    Finn, P.A.


    Seal design practices that are acceptable in pressurized-water and boiling-water reactors in the United States are not usable for the Heavy Water Reactor-New Production Reactor (HWR-NPR) because of the stringent requirement on tritium control for the atmosphere within its containment building. To maintain an atmosphere in which workers do not need protective equipment, the components of the coolant system must have a cumulative leak rate less than 0.00026 L/s. Existing technology for seal systems was reviewed with regard to flange, elastomer, valve, and pump design. A technology data base for the designers of the HWR-NPR coolant system was derived from operating experience and seal development work on reactors in the United States, Canada, and Europe. This data base was then used to generate guidelines for the design of seals and/or joints for the HWR-NPR coolant system. Also discussed are needed additional research and development, as well as the necessary component qualification tests for an effective quality control program. 141 refs., 21 figs., 14 tabs.

  10. Thermal Behavior of the Coolant in the Emergency Cooldown Tank for an Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Seok; Kim, Woo Shik; Jung, Seo Yoon; Kim, Young In [KAERI, Daejeon (Korea, Republic of)


    The Residual Heat Removal System (PRHRS) is one of the passive safety systems which should be activated after an accident to remove the residual heat from the core and the sensible heat of the reactor coolant system (RCS) through the steam generators until the safe shutdown conditions are reached. In the previous study presented at the last KNS Autumn Meeting, transient behavior of the RCS temperature and the cooling performance of the PRHRS were investigated numerically by using newly developed in-house code based on MATLAB software. By using the program, the steady-state and transient (quasi-steady state) characteristics during the operation of the PRHRS had been reported. In this program, the temperature of the coolant in the Emergency Cooldown Tank (ECT) was assumed to be constant at saturated state and pool boiling heat transfer mechanism was applied through the entire time domain. The coolant of the ECT reached at a saturated state in early time. It was revealed that the assumption made in the previous study was reasonable.

  11. Analysis of small break loss of coolant accident for Chinese CPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of); Cilier, Anthonie [North-West University, Mahikeng (South Africa); Poc, Li-chi Cliff [Micro-Simulation Technology, Montville (United States)


    This research analyses the small break loss of coolant accident (LOCA) on a Chinese CPR1000 type reactor. LOCA accident is used as benchmark for the PCTRAN/CPR1000 code by comparing the effects and results to the Manshaan FSAR accident analysis. LOCA is a design basis accident in which a guillotine break is postulated to occur in one of the cold legs of a pressurized water reactor (PWR). Consequently, the primary system pressure would drop and almost all the reactor coolant would be discharged into the reactor containment. The drop in pressure would activate the reactor protection system and the reactor would trip. The simulation of a 3-inch small break loss of coolant accident using the PCTRAN/CPR1000 has revealed this code's effectiveness as well as weaknesses in specific simulation applications. The code has the ability to run at 16 times real time and produce very accurate results. The results are consistently producing the same trends as licensed codes used in Safety Assessment Reports. It is however able to produce these results in a fraction of the time and also provides a whole plant simulation coupling the various thermal, hydraulic, chemical and neutronic systems together with a plant specific control system.

  12. Use of Nitrogen Trifluoride To Purify Molten Salt Reactor Coolant and Heat Transfer Fluoride Salts

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.; McNamara, Bruce K.


    Abstract: The molten salt cooled nuclear reactor is included as one of the Generation IV reactor types. One of the challenges with the implementation of this reactor is purifying and maintaining the purity of the various molten fluoride salts that will be used as coolants. The method used for Oak Ridge National Laboratory’s molten salt experimental test reactor was to treat the coolant with a mixture of H2 and HF at 600°C. In this article we evaluate thermal NF3 treatment for purifying molten fluoride salt coolant candidates based on NF3’s 1) past use to purify fluoride salts, 2) other industrial uses, 3) commercial availability, 4) operational, chemical, and health hazards, 5) environmental effects and environmental risk management methods, 6) corrosive properties, and 7) thermodynamic potential to eliminate impurities that could arise due to exposure to water and oxygen. Our evaluation indicates that nitrogen trifluoride is a viable and safer alternative to the previous method.

  13. Parametric study on maximum transportable distance and cost for thermal energy transportation using various coolants

    Energy Technology Data Exchange (ETDEWEB)

    Su-Jong Yoon; Piyush Sabharwall


    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as district heating, desalination, hydrogen production and other process heat applications, etc. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor has to be transported a fair distance. In this study, analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium and water. Fluoride salts are superior because of better heat transport characteristics but chloride salts are most economical for higher temperature transportation purposes. For lower temperature water is a possible alternative when compared with He, because low pressure He requires higher pumping power which makes the process very inefficient and economically not viable for both low and high temperature application.

  14. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors (United States)

    Kulikov, E. G.


    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  15. Vibroacoustic diagnostic monitoring of selected primary coolant circuit components of the Bohunice V-1 nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bahna, J.; Jaros, I. (Forschungsinstitut fuer Kernkraftwerke, Jaslovske Bohunice (Czechoslovakia))


    An information is given about vibroacoustic monitoring systems installed at the two units of the Bohunice V-1 nuclear power plant for oscillation monitoring of the reactor coolant pumps and reactor pressure vessel. Signal processing and analysis techniques have been developed for diagnostic measurements. It is reported on some experience gained from oscillation measurements at the reactor coolant pumps of the V-1 nuclear power plant since commissioning of the plant.

  16. Always at the correct temperature. Thermal management with electric coolant pump; Immer richtig temperiert. Thermomanagement mit elektrischer Kuehlmittelpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Genster, A.; Stephan, W. [Pierburg GmbH, Neuss (Germany)


    Through the use of the electric coolant pump it has become possible for the first time to attain a cooling performance which is adapted precisely to the engine load and which is independent of engine speed. For cooling the new BMW six cylinder in-line Otto engine with an engine power rating of 190 kW, the electric coolant pump by Pierburg requires only 200 W of electrical power from the onboard electrical system. (orig.)

  17. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)


    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  18. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger. (United States)

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama


    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  19. Thermodynamic consideration of hydrogen injection in BWR coolant. Estimation of potential for SCC control and oxidation-reduction condition of reactor coolant

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Kaori; Hirano, Hideo; Domae, Masashi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab; Kushida, H.


    Hydrogen injection into BWR coolant has been carried out in order to reduce stress corrosion cracking (SCC). It was clarified by in-plant test that SCC can be reduced under corrosion potential -0.23 V(v.s.SHE), but the theoretical basis has not been clarified. On the other hand, highly precise water quality analysis of re-circulatory-system water is generally performed. Especially, nitrogen compound changes chemical from to NO{sub 3}{sup -} -> NO{sub 2}{sup -} -> NH{sub 3}, and the NH{sub 3} becomes the cause of the increase of dose rate of the main steamy system in connection with the increase in the amount of hydrogen injection. However, the relation between this chemical form, oxidisation reduction potential, and temperature is not clear: Then, in this paper, these two points were considered by thermodynamics calculation at 25-300degC using the thermodynamics data in the high temperature accumulated in CRIEPI, and calculation results are summarized as follows; (1) the potential of the stainless steel to which the chemical form change to FeCr{sub 2}O{sub 4} from NiFe{sub 2}O{sub 4} is equilibrium is about -0.23 V at 288degC so this change is expected as one of factors for reduction of SCC, (2) the changes of chemical form of nitrogen compounds show oxidation-reduction of reactor coolant, so it can be useful as the index for control of dose rate. (author)

  20. Experimental study of conjugate heat transfer from liquid metal layer cooled by overlying freon

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J.S.; Suh, K.Y.; Chung, C.H. [Seoul National University, Seoul (Korea, Republic of); Park, R.J.; Kim, S.B. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    Steady-state and transient experiments were performed for the heat transfer from the liquid metal pool with overlying Freon (R113) coolant in the process of boiling. The simulant molten pool material is tin (Sn) with the melting temperature of 232 Celsius degrees. The metal pool is heated from the bottom surface and the coolant is injected onto the molten metal pool. Tests were conducted under the condition of the bottom surface heating in the test section and the forced convection of the R113 coolant being injected onto the molten metal pool. The bottom heating condition was varied from 8 kW to 14 kW. The temperature distributions of the metal layer and coolant were obtained in the steady-state experiment. The boiling mechanism of the R113 coolant was changed from the nucleate boiling to film boiling in the transient experiment. The critical heat flux (CHF) phenomenon was observed during the transition from the nucleate boiling to the film boiling. Also, the Nusselt (Nu) number and the Rayleigh (Ra) number in the molten metal pool region were obtained as functions of time. Analysis was done for the relationship between the heat flux and the temperature difference between the metal layer surface and the boiling coolant. In this experiment, the heat transfer is achieved with accompanying solidification in the molten metal pool by the boiling R113 coolant there above. The present test results of the natural convection heat transfer on the molten metal pool are higher than those of the liquid metal natural convection heat transfer without coolant boiling. It can be interpreted that the heat transfer rate is enhanced by the overlying boiling coolant having the high heat removal rate. Analysis of the relationship between the heat flux and the difference between the metal layer surface temperature and the coolant bulk boiling temperature revealed that the CHF occurs when the temperature difference reaches a neighborhood of 50 Celsius degrees. Also, if the temperature

  1. Liquid metals as alternative solution for the power exhaust of future fusion devices: status and perspective

    NARCIS (Netherlands)

    Coenen, J. W.; De Temmerman, G.; G Federici,; Philipps, V.; Sergienko, G.; G Strohmayer,; Terra, A.; Unterberg, B.; Wegener, T.; van den Bekerom, D. C. M.


    Applying liquid metals as plasma facing components for fusion power-exhaust can potentially ameliorate lifetime issues as well as limitations to the maximum allowed surface heat loads by allowing for a more direct contact with the coolant. The material choice has so far been focused on lithium (Li),

  2. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors. (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…

  3. Innovation Incubator: LiquidCool Solutions Technical Evaluation. Laboratory Study and Demonstration Results of a Directed-Flow, Liquid Submerged Server for High-Efficiency Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric J [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    LiquidCool Solutions (LCS) has developed liquid submerged server (LSS) technology that changes the way computer electronics are cooled. The technology provides an option to cool electronics by the direct contact flow of dielectric fluid (coolant) into a sealed enclosure housing all the electronics of a single server. The intimate dielectric fluid contact with electronics improves the effectiveness of heat removal from the electronics.

  4. Impact of high-pressure coolant supply on chip formation in milling (United States)

    Klocke, F.; Döbbeler, B.; Lakner, T.


    Machining of titanium alloys is considered as difficult, because of their high temperature strength, low thermal conductivity and low E-modulus, which contributes to high mechanical loads and high temperatures in the contact zone between tool and workpiece. The generated heat in the cutting zone can be dissipated only in a low extent. When cutting steel materials, up to 75% of the process heat is transported away by the chips, contrary to only 25% when machining titanium alloys. As a result, the cutting tool heats up, which leads to high tool wear. Therefore, machining of titanium alloys is only possible with relatively low cutting speeds. This leads to low levels of productivity for milling processes with titanium alloys. One way to increase productivity is to use more cutting edges in tools with the same diameter. However, the limiting factor of adding more cutting edges to a milling tool is the minimum size of the chip spaces, which are sufficient for a stable chip evacuation. This paper presents experimental results on the chip formation and chip size influenced by high-pressure coolant supply, which can lead to smaller chips and to smaller sizes of the chip spaces, respectively. Both influences, the pressure of the supplied coolant and the volumetric flow rate were individually examined. Alpha-beta annealed titanium TiAl6V4 was examined in relation to the reference material quenched and tempered steel 42CrMo4+QT (AISI 4140+QT). The work shows that with proper chip control due to high-pressure coolant supply in milling, the number of cutting edges on the same diameter tool can be increased, which leads to improved productivity.

  5. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  6. Chemical and spectroscopic characterization of a vegetable oil used as dielectric coolant in distribution transformers


    Gomez,Neffer A.; Abonia,Rodrigo; Cadavid, Hector; Vargas,Ines H.


    In this work, a complete UV-Vis, IR and (¹H, 13C and DEPT) NMR spectroscopic analysis was performed for a FR3® vegetable oil sample used as dielectric coolant in an experimental distribution transformer. The same spectroscopic analysis was performed for three used FR3® oil samples (i.e., 4 months in use, 8 months in use and 7 years in use), removed from several operating distribution transformers. Comparison of the data indicated that no significant spectroscopic changes, and hence, no struct...

  7. Proceedings of the CSNI specialists meeting on fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)



    A specialists meeting on fuel-coolant interactions was held in Santa Barbara, CA from January 5-7, 1993. The meeting was sponsored by the United States Nuclear Regulatory Commission in collaboration with the Committee on the Safety of Nuclear Installation (CSNI) of the OECD Nuclear Energy Agency (NEA) and the University of California at Santa Barbara. The objectives of the meeting are to cross-fertilize on-going work, provide opportunities for mutual check points, seek to focus the technical issues on matters of practical significance and re-evaluate both the objectives as well as path of future research. Individual papers have been cataloged separately.

  8. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.


    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  9. CFD Analysis of Localised Crud Effects on the Flow of Coolant in Nuclear Rod Bundles


    Cinosi, N; Walker, SP


    It has been suggested that crud deposits on a number of adjacent fuel rods might reduce coolant flow rates in associated sub-channels. Such reduced flow rates could then worsen thermal-hydraulic conditions, such as margin to saturated boiling, fuel surface temperature, and the DNB ratio. We report the results of a detailed computational fluid dynamics study of the flow pattern in a partially-crudded rod bundle. Values obviously depend on, for example, the thickness of crud assumed, but sub-ch...

  10. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Peyrouty, P.


    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enabled faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk which can be associated with the deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible.

  11. Definition of loss-of-coolant accident radiation source. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)


    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist.

  12. 3-D slug flow heat transfer analysis of coupled coolant cells in finite LMFBR bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.N.; Wolf, L.


    A three-dimensional single region slug flow heat transfer analysis for finite LMFBR rod bundles using a classical analytical solution method has been performed. According to the isolated single cell analysis, the results show that the peripheral clad temperature variation as well as the thermal entrance length are strongly dependent upon the degree of irregularity displayed by various coolant geometries. Since under the present LMFBR conditions, fully-developed temperature fields may hardly be established in such characteristic rod bundle regions, a 3-D heat transfer analysis seems to be mandatory. This implies that the results of fully developed heat transfer analyses are by far too conservative.

  13. Comparative evaluation of physicochemical properties of jatropha curcas seed oil for coolant-lubricant application (United States)

    Murad, Muhamad Nasir; Sharif, Safian; Rahim, Erween Abd.; Abdullah, Rozaini


    Increased attention to environmental issues due to industrial activities has forced the authorities raise awareness and implement regulations to reduce the use of mineral oil. Some vegetable oils unexplored or less explored, particularly the non-edible oils such as Jatropha curcas oil (JCO) and others. Physicochemical properties of JCO is compared with others edible oils, synthetic ester and fatty alcohol to obtain a viable alternative in metal cutting fluids. The oil was found to show the suitability of properties for coolant-lubricant applications in term of its physicochemical properties and better in flash point and viscosity value.

  14. Estimation of the coolant flow through a natural circulation BWR fuel channel applying and equivalent electrical model

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, DEPFI, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Campus Morelos en IMTA, Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)


    This work presents the design and implementation of an advanced controller for a reduced order model of a BWR reactor core cooled by natural circulating water, which allows real time estimates of coolant flows through fuel assemblies about standard neutron flux strings. Nuclear power plants with boiling water reactors control individual fuel assembly coolant flows by forced circulation using external or internal water pumps and different core support plate orifices. These two elements reduce flow dependency on local channel pressure drops. In BWR reactors using only natural circulation coolant flows, these two elements are not available and therefore individual channel coolant flows are highly dependent in local conditions, such as power distributions and local pressure drops. Therefore it is expected that grater uncertainties in these variables be used during safety, fuel management and other analysis, which in turns may lead to increased operation penalties, such as tighter operating limits. The objective of this work is to asses by computer simulations means to reduce uncertainties in the measurement of fuel assembly coolant flows and eventually the associated penalties. During coolant phase transitions, pressure drops and local power may alter local natural circulation through fuel assemblies and flow estimates can be helped or not by control rod moves. This work presents the construction of an optimal controller for a core flow estimator based on a reduced order model of the coolant going though the reactor vessel components and nuclear core. This model is to be driven by plant signals from standard BWR instrumentation in order to estimate the coolant flows in selected fuel assemblies about a LPRM string. For this purpose an equivalent electrical model has been mathematically developed and numerically tested. The power-flow maps of typical BRW are used as steady state references for this equivalent model. Once these were fully reproduced for steady state

  15. Liquid-cooled nuclear reactor. Kernreaktor mit einem fluessigen Kuehlmittel

    Energy Technology Data Exchange (ETDEWEB)

    Deinlein, H.; Kummer, G.


    H/sub 2/ is directly added to the coolant circuit. This requires a pipe bypassing the volume expansion tank and being connected with the suction side of the high pressure pump. The supply of H/sub 2/ is realized via ceramic filter catridges in a liquid cooled part of the pipe at the suction side of the high pressure pump. Thus, the danger of oxyhydrogen explosions is avoided.

  16. Development of core design and analysis technology for integral reactor; development of coolant activity and dose evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Sun; Kim, Byeong Soo; Go, Hyun Seok; Lee, Young Wook; Jang, Mee [Seoul National University, Seoul (Korea)


    SMART, small- medium-sized integral reactor, is different from the customary electricity-generation PWR in design concepts and structures. The conventional coolant activity evaluation codes used in customary PWRs cannot be applied to SMART. In this study, SAEP(Specific Activity Evaluation Program) is developed that can be applied to both customary PWR and advanced reactor such as SMART. SAEP uses three methods(SAEP Ver.02, Ver.05, Ver.06) to evaluate coolant activity. They solve inhomogeneous linearly-coupled differential equations generated by considering nuclear system as N sub-components. Coolant activities of customary PWR are evaluated by use of SAEP. The results show good agreement with FSAR data. SAEP is used to evaluate coolant activities for SMART and the results are proposed in this study. These results show that SAEP is able to perform coolant activity evaluation for both customary PWR and advanced reactor such as SMART. In addition, with respect to radiation shielding optimization, conventional optimization methods and their characteristics related to radiation shielding are reviewed and analyzed. Strategies for proper usage of conventional methods are proposed to agree with the shielding design cases. 30 refs., 25 figs., 6 tabs. (Author)

  17. Computational and Experimental Investigations of the Coolant Flow in the Cassette Fissile Core of a KLT-40S Reactor (United States)

    Dmitriev, S. M.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Pronin, A. N.; Sorokin, V. D.; Khrobostov, A. E.


    Results of experimental investigations of the local hydrodynamic and mass-exchange characteristics of a coolant flowing through the cells in the characteristic zones of a fuel assembly of a KLT-40S reactor plant downstream of a plate-type spacer grid by the method of diffusion of a gas tracer in the coolant flow with measurement of its velocity by a five-channel pneumometric probe are presented. An analysis of the concentration distribution of the tracer in the coolant flow downstream of a plate-type spacer grid in the fuel assembly of the KLT-40S reactor plant and its velocity field made it possible to obtain a detailed pattern of this flow and to determine its main mechanisms and features. Results of measurement of the hydraulic-resistance coefficient of a plate-type spacer grid depending on the Reynolds number are presented. On the basis of the experimental data obtained, recommendations for improvement of the method of calculating the flow rate of a coolant in the cells of the fissile core of a KLT-40S reactor were developed. The results of investigations of the local hydrodynamic and mass-exchange characteristics of the coolant flow in the fuel assembly of the KLT-40S reactor plant were accepted for estimating the thermal and technical reliability of the fissile cores of KLT-40S reactors and were included in the database for verification of computational hydrodynamics programs (CFD codes).


    Directory of Open Access Journals (Sweden)

    Marcela de Souza Leite


    Full Text Available Transportation plays a very significant role when it comes to the costs of a company representing on average 60% of logistics costs, so its management is very important for any company. The transportation modal choice is one of the most important transportation decisions. The purpose of this article is to select the transportation mode which is able to minimize total costs, and consistent with the objectives of customer service on the coolant import, which is used in plasma cutting machines. With the installation of a distribution center in Brazil and the professionalization of the logistics department of the company, it was decided to re-evaluate the transportation mode previously chosen to import some items. To determine the best mode of transportation was used basic compensation costs, in other words the cost compensation of using the shuttle service to the indirect cost of inventory related to the modal performance. Through the study, it was possible to observe it may be possible to save up to 73% on the coolant international transportation by changing the transportation mode used by the company.

  19. Experimental and analytical studies of melt jet-coolant interactions: a synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R.; Green, J.A.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety


    Instability and fragmentation of a core melt jet in water have been actively studied during the past ten years. Several models, and a few computer codes, have been developed. However, there are, still, large uncertainties, both, in interpreting experimental results and in predicting reactor-scale processes. Steam explosion and debris coolability, as reactor safety issues, are related to the jet fragmentation process. A better understanding of the physics of jet instability and fragmentation is crucial for assessments of fuel-coolant interactions (FCIs). This paper presents research, conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning molten jet-coolant interactions, as a precursor for premixing. First, observations were obtained from scoping experiments with simulant fluids. Second, the linear perturbation method was extended and applied to analyze the interfacial-instability characteristics. Third, two innovative approachs to CFD modeling of jet fragmentation were developed and employed for analysis. The focus of the studies was placed on (a) identifying potential factors, which may affect the jet instability, (b) determining the scaling laws, and (c) predicting the jet behavior for severe accidents conditions. In particular, the effects of melt physical properties, and the thermal hydraulics of the mixing zone, on jet fragmentation were investigated. Finally, with the insights gained from a synthesis of the experimental results and analysis results, a new phenomenological concept, named `macrointeractions concept of jet fragmentation` is proposed. (author)

  20. Performance of Water-Based Zinc Oxide Nanoparticle Coolant during Abrasive Grinding of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    M. M. Rahman


    Full Text Available This paper presents the performance of ductile cast iron grinding machining using water-based zinc oxide nanoparticles as a coolant. The experimental data was utilized to develop the mathematical model for first- and second-order models. The second order gives worthy performance of the grinding. The results indicate that the optimum parameters for the grinding model are 20 m/min table speed and 42.43 μm depth of cut for single-pass grinding. For multiple-pass grinding, optimization is at a table speed equal to 35.11 m/min and a depth of cut equal to 29.78 μm. The model fit was adequate and acceptable for sustainable grinding using a 0.15% volume concentration of zinc oxide nanocoolant. This paper quantifies the impact of water-based ZnO nanoparticle coolant on the achieved surface quality. It is concluded that the surface quality is the most influenced by the depth of cut(s and table speed.

  1. Analysis of events related to cracks and leaks in the reactor coolant pressure boundary

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Antonio, E-mail: [JRC-IET: Institute for Energy and Transport of the Joint Research Centre of the European Commission, Postbus 2, NL-1755 ZG Petten (Netherlands); Sanda, Radian; Peinador, Miguel; Zerger, Benoit [JRC-IET: Institute for Energy and Transport of the Joint Research Centre of the European Commission, Postbus 2, NL-1755 ZG Petten (Netherlands); Negri, Patrice [IRSN: Institut de Radioprotection et de Sûreté Nucléaire (France); Wenke, Rainer [GRS: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH (Germany)


    Highlights: • The important role of Operating Experience Feedback is emphasised. • Events relating to cracks and leaks in the reactor coolant pressure boundary are analysed. • A methodology for event investigation is described. • Some illustrative results of the analysis of events for specific components are presented. - Abstract: The presence of cracks and leaks in the reactor coolant pressure boundary may jeopardise the safe operation of nuclear power plants. Analysis of cracks and leaks related events is an important task for the prevention of their recurrence, which should be performed in the context of activities on Operating Experience Feedback. In response to this concern, the EU Clearinghouse operated by the JRC-IET supports and develops technical and scientific work to disseminate the lessons learned from past operating experience. In particular, concerning cracks and leaks, the studies carried out in collaboration with IRSN and GRS have allowed to identify the most sensitive areas to degradation in the plant primary system and to elaborate recommendations for upgrading the maintenance, ageing management and inspection programmes. An overview of the methodology used in the analysis of cracks and leaks related events is presented in this paper, together with the relevant results obtained in the study.

  2. Evaluation of radioactivity and gamma spectra in the secondary coolant system of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaohuan, E-mail: [North China Electric Power University, Beijing 102206 (China); Chen, Yixue, E-mail: [North China Electric Power University, Beijing 102206 (China); Li, Lu; Song, Wen [North China Electric Power University, Beijing 102206 (China); Sun, Yeshuai [State Nuclear Power Technology Corporation, Beijing 100029 (China)


    Highlights: • The nuclear reaction data was extracted from ENDF/B-VII.1. • The benchmark was based on the data from ANSI/ANS-18.1-1999. • Mathematic models of the radionuclides generation and disappearance mechanism in the system were established. - Abstract: “Source Term” is the fundamental data used to evaluate the environmental impact of radioactive releases during normal operation. This paper presents a general investigation on the computational model of radiation source-term for the secondary coolant system of the pressurized water reactor (PWR). Research is carried out on the radionuclide migration, adsorption, retention, decay. Accordingly, mathematic models are described on the basis of the mechanism of radionuclides generation and disappearance in the system. Based on the implementation of these models, the corresponding function modules were developed and tested, which completes the source-term program previously developed. The nuclear reaction data of nuclides was extracted from the evaluated nuclear data library-ENDF/B-VII.1. The results obtained from preliminary verification between this work and ANSI/ANS-18, 1999 supported the models, indicating that the models could be used in the secondary coolant system for radiation shielding, accident prevention, environmental assessment and nuclear facility decommission.

  3. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen


    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  4. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques


    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  5. A review of the effects of coolant environments on the fatigue life of LWR structural materials.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Shack, W. J.


    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code specifies design curves for the fatigue life of structural materials in nuclear power plants. However, the effects of light water reactor (LWR) coolant environments were not explicitly considered in the development of the design curves. The existing fatigue-strain-versus-life ({var_epsilon}-N) data indicate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives in water relative to those in air can be a factor of 15 lower for austenitic stainless steels and a factor of {approx}30 lower for carbon and low-alloy steels. This paper reviews the current technical basis for the understanding of the fatigue of piping and pressure vessel steels in LWR environments. The existing fatigue {var_epsilon}-N data have been evaluated to identify the various material, environmental, and loading parameters that influence fatigue crack initiation and to establish the effects of key parameters on the fatigue life of these steels. Statistical models are presented for estimating fatigue life as a function of material, loading, and environmental conditions. An environmental fatigue correction factor for incorporating the effects of LWR environments into ASME Code fatigue evaluations is described. This paper also presents a critical review of the ASME Code fatigue design margins of 2 on stress (or strain) and 20 on life and assesses the possible conservatism in the current choice of design margins.

  6. Corrosion of Ferritic Steels in High Temperature Molten Salt Coolants for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; El-Dasher, B; de Caro, M S; Ferreira, J


    Corrosion of ferritic steels in high temperature molten fluoride salts may limit the life of advanced reactors, including some hybrid systems that are now under consideration. In some cases, the steel may be protected through galvanic coupling with other less noble materials with special neutronic properties such a beryllium. This paper reports the development of a model for predicting corrosion rates for various ferritic steels, with and without oxide dispersion strengthening, in FLiBe (Li{sub 2}BeF{sub 4}) and FLiNaK (Li-Na-K-F) coolants at temperatures up to 800 C. Mixed potential theory is used to account for the protection of steel by beryllium, Tafel kinetics are used to predict rates of dissolution as a function of temperature and potential, and the thinning of the mass-transfer boundary layer with increasing Reynolds number is accounted for with dimensionless correlations. The model also accounts for the deceleration of corrosion as the coolants become saturated with dissolved chromium and iron. This paper also reports electrochemical impedance spectroscopy of steels at their corrosion potentials in high-temperature molten salt environments, with the complex impedance spectra interpreted in terms of the interfacial charge transfer resistance and capacitance, as well as the electrolyte conductivity. Such in situ measurement techniques provide valuable insight into the degradation of materials under realistic conditions.


    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J


    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  8. System Assessment of Carbon Dioxide Used as Gas Oxidant and Coolant in Vanadium-Extraction Converter (United States)

    Du, Wei Tong; Wang, Yu; Liang, Xiao Ping


    With the aim of reducing carbon dioxide (CO2) emissions and of using waste resources in steel plants, the use of CO2 as a gas oxidant and coolant in the converter to increase productivity and energy efficiency was investigated in this study. Experiments were performed in combination with thermodynamic theory on vanadium-extraction with CO2 and oxygen (O2) mixed injections. The results indicate that the temperature of the hot metal bath decreased as the amount of CO2 introduced into O2 increased. At an injection of 85 vol.% O2 and 15 vol.% CO2, approximately 12% of additional carbon was retained in the hot metal. Moreover, the content of vanadium trioxide in the slag was higher. In addition, the O2 consumption per ton of hot metal was reduced by 8.5% and additional chemical energy was recovered by the controlled injection of CO2 into the converter. Therefore, using CO2 as a gas coolant was conducive to vanadium extraction, and O2 consumption was reduced.

  9. Modeling of cooling channel flow in liquid-propellant rocket engines


    Pizzarelli, Marco


    Ever since the development of liquid rocket engine, there has been a need to predict the peak heat flux that affects the engine material and thus to control the wall thermal behavior of rocket engine. To prevent thermal failure, the engine is generally cooled by means of a coolant that flows in passages that line the hottest part of the engine (i.e., combustion chamber and nozzle wall). This is the fluid-cooling system. If the coolant is one of the propellants, once it passes through th...

  10. Monitoring system for a liquid-cooled nuclear fission reactor (United States)

    DeVolpi, Alexander


    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  11. Numerical Investigation on the Performance of an Automotive Thermoelectric Generator with Exhaust-Module-Coolant Direct Contact (United States)

    Wang, Yiping; Tang, Yulin; Deng, Yadong; Su, Chuqi


    Energy conservation and environmental protection have typically been a concern of research. Researchers have confirmed that in automotive engines, just 12-25% of the fuel energy converts into effective work and 30-40% gets wasted in the form of exhaust. Saidur et al. (Energy Policy 37:3650, 2009) and Hasanuzzaman et al. (Energy 36:233, 2011). It will be significant to enhance fuel availability and decrease environmental pollution if the waste heat in the exhaust could be recovered. Thermoelectric generators (TEGs), which can translate heat into electricity, have become a topic of interest for vehicle exhaust waste heat recovery. In conventional automotive TEGs, the thermoelectric modules (TEMs) are arranged between the exhaust tank and the coolant tank. The TEMs do not contact the hot exhaust and coolant, which leads to low heat transfer efficiency. Moreover, to provide enough packing force to keep good contact with the exhaust tank and the coolant tank, the framework required is so robust that the TEGs become too heavy. Therefore, in current study, an automotive TEG was designed which included one exhaust channel, one coolant channel and several TEMs. In the TEG, the TEMs which contacted the exhaust and coolant directly were inserted into the walls of each coolant channel. To evaluate the performance of the automotive TEG, the flow field and temperature field were computed by computational fluid dynamics (CFD). Based on the temperature distribution obtained by CFD and the performance parameters of the modules, the total power generation was obtained by some proved empirical formulas. Compared with conventional automotive TEGs, the power generation per unit volume exhaust was boosted.


    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev


    Full Text Available The results of experimental studies of local hydrodynamics and mass exchange of coolant flow behind spacer and mixing grids of different structural versions that were developed for fuel assemblies of domestic and foreign nuclear reactors are presented in the article. In order to carry out the study the models of the following fuel assemblies have been fabricated: FA for VVER and VBER, FA-KVADRAT for PWR-reactor and FA for KLT-40C reactor. All the models have been fabricated with a full geometrical similarity with full-scale fuel assemblies. The study was carried out by simulating the flow of coolant in a core by air on an aerodynamic test rig. In order to measure local hydrodynamic characteristics of coolant flow five-channel Pitot probes were used that enable to measure the velocity vector in a point by its three components. The tracerpropane method was used for studying mass transfer processes. Flow hydrodynamics was studied by measuring cross-section velocities of coolant flow and coolant rates according to the model cells. The investigation of mass exchange processes consisted of a study of concentration distribution for tracer in experimental model, in determination of attenuation lengths of mass transfer processes behind mixing grids, in calculating of inter-cellar mass exchange coefficient. The database on coolant flow in fuel assemblies for different types of reactors had been accumulated that formed the basis of the engineering substantiation of reactor cores designs. The recommendations on choice of optimal versions of mixing grids have been taken into consideration by implementers of the JSC “OKBM Afrikantov” when creating commissioned fuel assemblies. The results of the study are used for verification of CFD-codes and CFD programs of detailed cell-by-cell calculation of reactor cores in order to decrease conservatism for substantiation of thermal-mechanical reliability.

  13. Apparatus for suppressing formation of vortices in the coolant fluid of a nuclear reactor and associated method (United States)

    Ekeroth, Douglas E.; Garner, Daniel C.; Hopkins, Ronald J.; Land, John T.


    An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof.

  14. Development of superior liquid coolants CCF-1. Final technical report, 1 September 1978-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, R M


    A comprehensive study of four representative commercially available heat transfer fluids being used in solar systems was undertaken to establish the most cost effective fluid over the life of the system. Criteria for making the assessment were the relative results of fluid toxicity tests, fire hazards tests, collector stagnation tests, and physical property comparison data of various fluids. The specific fluids evaluated were Dow Corning SylthermTM 444 silicone, Uniroyal PAO-LV polyalphaolefin hydrocarbon, Union Carbide Prestone II ethylene glycol/water solution and Dow Chemical Ambitrol NTC propylene glycol/water solution. Although there is no essential difference in the installed cost when comparing solar systems based on each of these fluids, there is a very large cost difference between the systems when life cycle costing is performed on the systems. The system representing propylene glycol/water is by far the most costly system followed by the system representing ethylene glycol/water due to possible failures and maintenance schedules. The Uniroyal PAO-LV polyalphaolefin system is the third most expensive system. The SylthermTM 444 silicone system is the least expensive, offering little or no potential for catastrophic failure and does not require any fluid maintenance.

  15. Simulation of Heat Transfer to the Gas Coolant with Low Prandtl Number Value

    Directory of Open Access Journals (Sweden)

    T. N. Kulikova


    Full Text Available The work concerns the simulating peculiarities of heat transfer to the gas coolants with low values of the Prandtl number, in particular, to the binary mixtures of inert gases.The paper presents simulation results of heat transfer to the fully established flow of a helium-xenon mixture in the round tube of 6 mm in diameter with the boundary condition of the second kind. It considers a flow of three helium-xenon mixtures with different helium content and molecular Prandtl numbers within the range 0.239–0.322 and with Reynolds numbers ranged from 10000 to 50000. During numerical simulation a temperature factor changed from 1.034 to 1.061. CFD-code STAR-CCM+ that is designed for solving a wide range of problems of hydrodynamics, heat transfer and stress was used as the primary software.The applicability of the five models for the turbulent Prandtl number is examined. It is shown that the choice of the model has a significant influence on the heat transfer coefficient. The paper presents structural characteristics of the flow in the wall region. It estimates a thermal stabilization section to be approximately as long as 30 diameters of tube.Simulation results are compared with the known data on heat transfer to gas coolants with low values of the Prandtl number. It is shown that V2F low-Reynolds number -ε turbulence model with an approximation for the turbulent Prandtl number used according Kays-CrawfordWeigand gives the best compliance with the results predicted by relationships of Kays W.M. and Petukhov B.S. The approximating correlation summarizes a set of simulation results.Application of the work results is reasonable when conducting the numerical simulation of heat transfer to binary gas mixtures in channels of different forms. The presented approximating correlation allows rapid estimate of heat transfer coefficients to the gas coolants with a low value of the molecular Prandl number within the investigated range with a flow through the

  16. Numerical study of wave disturbance in liquid cooling film

    Directory of Open Access Journals (Sweden)

    S.R. Shine


    Full Text Available Transient numerical simulations are carried out to investigate the liquid-gas interface characteristics associated with liquid film cooling flows. A two-dimensional axisymmetric multi-phase numerical model using finite volume formulation is developed. The model has been validated against available experimental data for liquid-film cooling flows inside tubes. The model has been used to predict the interface characteristics for a variety of imposed parameters and momentum flux ratios under cold flow conditions wherein both the coolant and mainstream are maintained at the same temperature. Disturbance waves are observed at the liquid-gas interface for coolant flows above a critical value and after a finite distance from the inlet. The distance toward the wave inception point increased with the increase of momentum flux ratio. However, at higher momentum flux ratios, the properties of the disturbance waves did not vary significantly. The parameters related to the liquid-gas interface waves, namely, wave velocity, frequency, amplitude and wave length have been analyzed in detail. Analysis indicates that the liquid entrainment is due to the shearing of the disturbance wave crest.

  17. The stress analysis of a heavy liquid metal pump impeller (United States)

    Ma, X. D.; Li, X. L.; Zhu, Z. Q.; Li, C. J.; Gao, S.


    Lead-based coolant reactor is a promising Generation-IV reactor. In the lead-based coolant reactor, the coolant is liquid lead or lead-bismuth eutectic. The main pump in the reactor is a very important device. It supplies force for the coolant circulation. The liquid metal has a very large density which is about ten times of the water. Also, the viscosity of the coolant is small which is about one sixth of the water. When the pump transports heavy liquid, the blade loading is heavy. The large force can cause the failure of the blade when the fatigue stress exceeds the allowable stress. The impeller fraction is a very serious accident which is strictly prohibited in the nuclear reactor. In this paper, the numerical method is used to simulate the flow field of a heavy liquid metal pump. The SST k-w turbulent model is used in the calculation to get a more precise flow structure. The hydraulic force is obtained with the one way fluid solid coupling. The maximum stress in the impeller is analyzed. The stress in the liquid metal pump is compared with that in the water pump. The calculation results show that the maximum stress of the impeller blade increases with increase of flow rate. In the design of the impeller blade thickness, the impeller strength in large operating condition should be considered. The maximum stress of the impeller blade located in the middle and near the hub of the leading edge. In this position, the blade is easy to fracture. The maximum deformation of the impeller firstly increase with increase of flow rate and then decrease with increase of flow rate. The maximum deformation exists in the middle of the leading edge when in small flow rate and in the out radius of the impeller when in large flow rate. Comparing the stress of the impeller when transporting water and LBE, the maximum stress is almost one-tenth of that in the LBE impeller which is the same ratio of the density. The static stress in different medium is proportional to the pressure

  18. Chemical and radiolytical characterization of some perfluorocarbon fluids used as coolants for LHC experiments

    CERN Document Server

    Battistin, M; Setnescu, R; Teissandier, B; CERN. Geneva. TS Department


    Perfluorocarbon fluids, - mainly C6F14 - used as coolants within High Energy Physics Detectors in the Large Hadrons Collider (LHC) at CERN, were characterized by applying mainly the following methods: GC, FT-IR and UV-Vis. The aim of this work was the quality control, the identification and the quantification of different impurities which could increase the radiation sensitivity of these fluids. Thus, the presence of H containing molecules within perfluorocarbons strongly influences the appearance of hydrofluoric acid during their irradiation. The procedures settled-up in this work are sensitive to the presence of such impurities and would be used for the analyses of the received perfluorocarbon fluids as well as to assess the radiation induced modifications and the efficiency of their purification treatments.

  19. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL


    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  20. An overview of fuel-coolant interactions (FCI) research at NRC

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S.; Speis, T.P. [Nuclear Regulatory Commission, North Bethesda, MD (United States)


    An overview of the fuel-coolant interactions (FCI) research programs sponsored by the U.S. Nuclear Regulatory Commission (NRC) is presented in this paper. A historical perspective of the program is provided with particular reference to in-vessel steam explosion and its consequences on the reactor pressure vessel and the containment integrity. Emphasis is placed on research in the last decade involving fundamentals of FCI phenomenology, namely, premixing, triggering, propagation, and energetics. The status of the current understanding of in-vessel steam explosion-induced containment failure (alpha-mode) issue, and other FCI issues related to reactor vessel and containment integrity are reported, including the extensive review and discussion of these issues at the recently held second Steam Explosion Review Group Workshop (SERG-2). Ongoing NRC research programs are discussed in detail. Future research programs including those recommended at the SERG-2 workshop are outlined.

  1. Primary coolant pH for control of CANDU plant aging

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A.; Cheluget, E.L.; Miller, D.G.; Turner, C.W


    Plant aging can be defined as any degradation with time of system performance that increases the operator's difficulty in maintaining operation within design specification. Degradation can be a physical change in a component (e.g., surface roughness), or a change in operating condition (e.g., Reactor Inlet Header Temperature (RIHT) rise). This paper focuses on the corrosion of the carbon steel piping in the CANDU primary circuit and the aging issues that arise. In one approach, a small reduction in the coolant pH has been recommended to operating plants that will slow those aging issues driven by dissolved iron transport around the primary circuit. Secondly, chemical decontamination of the entire Heat Transport System (HTS) can be carried out as a single process application step, or it can be performed following cleaning of the steam generators. (author)

  2. CATHARE Multi-1D Modeling of Coolant Mixing in VVER-1000 for RIA Analysis

    Directory of Open Access Journals (Sweden)

    I. Spasov


    Full Text Available The paper presents validation results for multichannel vessel thermal-hydraulic models in CATHARE used in coupled 3D neutronic/thermal hydraulic calculations. The mixing is modeled with cross flows governed by local pressure drops. The test cases are from the OECD VVER-1000 coolant transient benchmark (V1000CT and include asymmetric vessel flow transients and main steam line break (MSLB transients. Plant data from flow mixing experiments are available for comparison. Sufficient mesh refinement with up to 24 sectors in the vessel is considered for acceptable resolution. The results demonstrate the applicability of such validated thermal-hydraulic models to MSLB scenarios involving thermal mixing, azimuthal flow rotation, and primary pump trip. An acceptable trade-off between accuracy and computational efficiency can be obtained.

  3. Frontier between medium and large break loss of coolant accidents of pressurized water reactor (United States)

    Kim, Taewan


    In order to provide the probabilistic safety assessment with more realistic condition to calculate the frequency of the initiating event, a study on the frontier between medium-break and large-break loss-of-coolant-accidents has been performed by using best-estimate thermal hydraulic code, TRACE. A methodology based on the combination of the essential safety features and system parameter has been applied to the Zion nuclear power plant to evaluate the validity of the frontier utilized for the probabilistic safety assessment. The peak cladding temperature has been chosen as a relevant system parameter that represents the system behavior during the transient. The results showed that the frontier should be extended from 6 in. to 10 in. based on the required safety functions and system response.

  4. Compatibility of structural materials with liquid bismuth, lead, and mercury

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, J.R. [Brookhaven National Lab., Upton, NY (United States)


    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies, the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.

  5. TACT 1: A computer program for the transient thermal analysis of a cooled turbine blade or vane equipped with a coolant insert. 2. Programmers manual (United States)

    Gaugler, R. E.


    A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled axial flow turbine blade or vane with an impingement insert is described. Coolant-side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Input to the program includes a description of the blade geometry, coolant-supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the coolant-side heat transfer coefficients.

  6. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors

    DEFF Research Database (Denmark)

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos


    and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel...

  7. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions (United States)

    Gamble, K. A.; Barani, T.; Pizzocri, D.; Hales, J. D.; Terrani, K. A.; Pastore, G.


    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterion is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Further experiments are required to confirm these observations.

  8. The influence of EI-21 redox ion-exchange resins on the secondary-coolant circuit water chemistry of vehicular nuclear power installations (United States)

    Moskvin, L. N.; Rakov, V. T.


    The results obtained from testing the secondary-coolant circuit water chemistry of full-scale land-based prototype bench models of vehicular nuclear power installations equipped with water-cooled water-moderated and liquid-metal reactor plants are presented. The influence of copper-containing redox ionexchange resins intended for chemically deoxygenating steam condensate on the working fluid circulation loop's water chemistry is determined. The influence of redox ion-exchange resins on the water chemistry is evaluated by generalizing an array of data obtained in the course of extended monitoring using the methods relating to physicochemical analysis of the quality of condensate-feedwater path media and the methods relating to metallographic analysis of the state of a faulty steam generator's tube system surfaces. The deoxygenating effectiveness of the normal state turbine condensate vacuum deaeration system is experimentally determined. The refusal from applying redox ion-exchange resins in the condensate polishing ion-exchange filters is formulated based on the obtained data on the adverse effect of copper-containing redox ionexchange resins on the condensate-feedwater path water chemistry and based on the data testifying a sufficient effect from using the normal state turbine condensate vacuum deaeration system. Data on long-term operation of the prototype bench model of a vehicular nuclear power installation without subjecting the turbine condensate to chemical deoxygenation are presented.

  9. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa


    of a superconducting cable includes the thermal insulation of the cable, the current- and coolant feed-throughs and possibly dynamic vacuum control. Since feed-throughs represent major sources of heat in-leak to the cryogenic system it is important to optimise the design and the number of these in a superconducting...... cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  10. Experimental studies into the fluid dynamic performance of the coolant flow in the mixed core of the Temelin NPP VVER-1000 reactor

    Directory of Open Access Journals (Sweden)

    S.M. Dmitriev


    Full Text Available The paper presents the results of studies into the interassembly coolant interaction in the Temelin nuclear power plant (NPP VVER-1000 reactor core. An aerodynamic test bench was used to study the coolant flow processes in a TVSA-type fuel assembly bundle. To obtain more detailed information on the coolant flow dynamics, a VVER-1000 reactor core fragment was selected as the test model, which comprised two segments of a TVSA-12 PLUS fuel assembly and one segment of a TVSA-T assembly with stiffening angles and an interassembly gap. The studies into the coolant fluid dynamics consisted in measuring the velocity vector both in representative TVSA regions and inside the interassembly gap using a five-channel pneumometric probe. An analysis into the spatial distribution of the absolute flow velocity projections made it possible to detail the TVSA spacer, mixing and combined spacer grid flow pattern, identify the regions with the maximum transverse coolant flow, and determine the depth of the coolant flow disturbance propagation and redistribution in adjacent TVSA assemblies. The results of the studies into the interassembly coolant interaction among the adjacent TVSA assemblies are used at OKBM Afrikantov to update the VVER-1000 core thermal-hydraulic analysis procedures and have been added to the database for verification of computational fluid dynamics (CFD codes and for detailed cellwise analyses of the VVER-100 reactor cores.

  11. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Thermo- and fluid-dynamic effects

    Energy Technology Data Exchange (ETDEWEB)

    Seeliger, André, E-mail: [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Alt, Sören; Kästner, Wolfgang; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Kryk, Holger; Harm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany)


    Highlights: • Borated coolant supports corrosion at zinc-coated installations in PWR after LOCA. • Dissolved zinc is injected into core by ECCS during sump recirculation phase. • Corrosion products can reach and settle at further downstream components. • Corrosion products can cause head losses at spacers and influence decay heat removal. • Preventive procedures were tested at semi-technical scale facilities. - Abstract: Within the framework of the German reactor safety research, generic experimental investigations were carried out aiming at thermal-hydraulic consequences of physicochemical mechanisms, caused by dissolution of zinc in boric acid during corrosion processes at hot-dip galvanized surfaces of containment internals at lower coolant temperatures and the subsequent precipitation of solid zinc borates in PWR core regions of higher temperature. This constellation can occur during sump recirculation operation of ECCS after LOCA. Hot-dip galvanized compounds, which are installed inside a PWR containment, may act as zinc sources. Getting in contact with boric acid coolant, zinc at their surfaces is released into coolant in form of ions due to corrosion processes. As a long-term behavior resp. over a time period of several days, metal layers of zinc and zinc alloys can dissolve extensively. First fundamental studies at laboratory scale were done at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Their experimental results were picked up for the definition of boundary conditions for experiments at semi-technical scale at the Hochschule Zittau/Görlitz (HSZG). Electrical heating rods with zircaloy cladding tubes have been used as fuel rod simulators. As near-plant core components, a 3 × 3 configuration of heating rods (HRC) and a shortened, partially heatable PWR fuel assembly dummy were applied into cooling circuits. The HRC module includes segments of spacers for a suitable representation of a heating channel geometry. Formations of different solid

  12. Fuel--Coolant Thermal Interaction Project. Progress report No. 8. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N E


    Progress is reported in the areas of: (a) Analysis of the experimental results of a fundamental Taylor Instability Experiment; (b) Development of simple models for liquid entrainment and liquid-vapor heat transfer occurring in the transient expansion of a gaseous high pressure zone; and (c) Application of these models experiments to assess the model's adequacy.

  13. Fermi liquids and Luttinger liquids


    Schulz, H. J.; Cuniberti, G.; Pieri, P.


    In these lecture notes, the basic physics of Fermi liquids and Luttinger liquids is presented. Fermi liquids are discussed both from a phenomenological viewpoint, in relation to microscopic approaches, and as renormalization group fixed points. Luttinger liquids are introduced using the bosonization formalism, and their essential differences with Fermi liquids are pointed out. Applications to transport effects, the effect of disorder, quantum spin chains, and spin ladders, both insulating and...

  14. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Uebert G.; Dominguez, Dany S. [Universidade Estadual de Santa Cruz (UESC), Ilh´eus, BA (Brazil). Programa de P´os-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Mazaira, Leorlen Y.R.; Lira, Carlos A.B.O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Hernandez, Carlos R.G., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Instituto Superior de Tecnologas y Ciencias Aplicadas (InSTEC), La Habana (Cuba)


    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  15. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    Energy Technology Data Exchange (ETDEWEB)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze [University of Tehran, Karaj (India)


    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  16. Proceedings of the OECD/CSNI specialists meeting on fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Mamoru; Yamano, Norihiro; Sugimoto, Jun [eds.


    The OECD/CSNI Specialists Meeting on Fuel Coolant Interactions (FCI) was held at Tokai-mura in Japan on May 19 through 21, 1997, and attended by 80 participants from 14 countries and one international organizations. In the meeting 36 papers were presented followed by active discussions in six sessions on various aspects of FCI issues, such as reactor application, premixing, propagation/trigger, experiments and code/models. At the end of the Meeting, the participants have reached to the consensus on the summary and recommendations, which consists of the following items; (1) We find no new evidence that would change or violate the conclusion of SERG-2 (1996) that alpha-mode failure is not risk significant. (2) Significant progress has been made since the Santa Barbara meeting (1993). (3) Several areas have been identified, which need further investigations to understand the basic FCI phenomena, and to improve the modeling. (4) We recommend maximizing open communication between various research groups in order to accelerate the resolution of the remaining issues. (5) We recommend that the next specialist meeting be held within 3 to 5 years in order to synthesize the activities described above. (J.P.N.)

  17. A methodology for the estimation of the radiological consequences of a Loss of Coolant Accident

    Energy Technology Data Exchange (ETDEWEB)

    Kereszturi, Andras; Brolly, Aron; Panka, Istvan; Pazmandi, Tamas; Trosztel, Istvan [Hungarian Academy of Sciences, Budapest (Hungary). MTA EK, Centre for Energy Research


    For calculation of the radiological consequences of Large Break Loss of Coolant (LBLOCA) events, a set of various computer codes modeling the corresponding physical processes, disciplines and their appropriate subsequent data exchange are necessary. For demonstrating the methodology applied in MTA EK, a LBLOCA event at shut down reactor state - when only limited configuration of the Emergency Core Cooling System (ECCS) is available - was selected. In this special case, fission gas release from a number of fuel pins is obtained from the analyses. This paper describes the initiating event and the corresponding thermal hydraulic calculations and the further physical processes, the necessary models and computer codes and their connections. Additionally the applied conservative assumptions and the Best Estimate Plus Uncertainty (B+U) evaluation applied for characterizing the pin power and burnup distribution in the core are presented. Also, the fuel behavior processes. Finally, the newly developed methodology to predict whether the fuel pins are getting in-hermetic or not is described and the the results of the activity transport and dose calculations are shown.

  18. Analysis of unmitigated large break loss of coolant accidents using MELCOR code (United States)

    Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.


    In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.

  19. Corrosion fatigue studies on F82H mod. martensitic steel in reducing water coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Maday, M.F.; Masci, A. [ENEA, Casaccia (Italy). Centro Ricerche Energia


    Load-controlled low cycle fatigue tests have been carried out on F82H martensitic steel in 240degC oxygen-free water with and without dissolved hydrogen, in order to simulate realistic coolant boundary conditions to be approached in DEMO. It was found that water independently of its hydrogen content, determined the same fatigue life reduction compared to the base-line air results. Water cracks exhibited in their first propagation stages similar fracture morphologies which were completely missing on the air cracks, and were attributed to the action of an environment related component. Lowering frequency gave rise to an increase in F82H fatigue lifetimes without any change in cracking mode in air, and to fatigue life reduction by microvoid coalescence alone in water. The data were discussed in terms of (i) frequency dependent concurrent processes for crack initiation and (ii) frequency-dependent competitive mechanisms for crack propagation induced by cathodic hydrogen from F82H corrosion. (author)

  20. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)


    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  1. Correlation of analysis with high level vibration test results for primary coolant piping

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Hofmayer, C.H. [Brookhaven National Lab., Upton, NY (United States); Costello, J.F. [Nuclear Regulatory Commission, Washington, DC (United States)


    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results.

  2. Correlation of analysis with high level vibration test results for primary coolant piping

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Hofmayer, C.H. (Brookhaven National Lab., Upton, NY (United States)); Costello, J.F. (Nuclear Regulatory Commission, Washington, DC (United States))


    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results.

  3. A probability model: Tritium release into the coolant of a light water tritium production reactor

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D N


    This report presents a probability model of the total amount of tritium that will be released from a core of tritium target rods into the coolant of a light water reactor during a tritium production cycle.The model relates the total tritium released from a core to the release characteristics of an individual target rod within the core. The model captures total tritium release from two sources-release via target rod breach and release via permeation through the target rod. Specifically, under conservative assumptions about the breach characteristics of a target rod, total tritium released from a core is modeled as a function of the probability of a target breach and the mean and standard deviation of the permeation reduction factor (PRF) of an individual target rod. Two dominant facts emerge from the analysis in this report. First, total tritium release cannot be controlled and minimized solely through the PRF characteristics of a target rod. Tritium release via breach must be abated if acceptable tritium production is to be achieved. Second, PRF values have a saturation point to their effectiveness. Specifically, in the presence of any realistic level of PRF variability, increasing PRF values above approximately 1000 wig contribute little to minimizing total tritium release.

  4. Long-term aging and loss-of-coolant accident (LOCA) testing of electrical cables

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.F.; Gauthier, G.; Carlin, F. [and others


    Experiments were performed to assess the aging degradation and loss-of-coolant accident (LOCA) behavior of electrical cables subjected to long-term aging exposures. Four different cable types were tested in both the U.S. and France: (1) U.S. 2 conductor with ethylene propylene rubber (EPR) insulation and a Hypalon jacket. (2) U.S. 3 conductor with cross-linked polyethylene (XLPE) insulation and a Hypalon jacket. (3) French 3 conductor with EPR insulation and a Hypalon jacket. (4) French coaxial with polyethylene (PE) insulation and a PE jacket. The data represent up to 5 years of simultaneous aging where the cables were exposed to identical aging radiation doses at either 40{degrees}C or 70{degrees}C; however, the dose rate used for the aging irradiation was varied over a wide range (2-100 Gy/hr). Aging was followed by exposure to simulated French LOCA conditions. Several mechanical, electrical, and physical-chemical condition monitoring techniques were used to investigate the degradation behavior of the cables. All the cables, except for the French PE cable, performed acceptably during the aging and LOCA simulations. In general, cable degradation at a given dose was highest for the lowest dose rate, and the amount of degradation decreased as the dose rate was increased.

  5. A study of the tritium behavior in coolant and moderator system of heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. P.; Song, S. S.; Chae, K. S. and others [Chosun Univ., Gwangju (Korea, Republic of)


    The objectives of this report is to present a regulatory policy on the environmental impact and personnel exposure by understanding the generation, accumulation, environmental release and management of tritium in heavy water reactors. By estimating the tritium concentration at Wolsong nuclear plant site by estimating and forecasting the generation and accumulation of tritium in coolant and moderator systems at Wolsong unit 1, we will study the management and release of tritium at Wolsong units 3 and 4 which are ready for construction. The major activities of this study are as follows : tritium generation and accumulation in heavy water reactor, a quantitative assessment of the accumulation and release of tritium at Wolsong nuclear plant site, heavy water management at Wolsong nuclear plants. The tritium concentration and accumulation trends in the systems at Wolsong unit 1 was estimated. A quantitative assessment of the tritium accumulation and release for Wolsong 2, 3 and 4 based on data from Wolsong 1 was performed. The tritium removal schemes and its long-term management plan were made.

  6. Chemical and spectroscopic characterization of a vegetable oil used as dielectric coolant in distribution transformers

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Neffer A.; Abonia, Rodrigo, E-mail: [Departamento de Quimica, Escuela de Ingenieria Electrica, Universidad del Valle, Cali (Colombia); Cadavid, Hector [Grupo GRALTA, Escuela de Ingenieria Electrica, Universidad del Valle, Cali (Colombia); Vargas, Ines H. [Area de Ingenieria de Distribucion, Empresas Publicas de Medellin (EPM), Medellin (Colombia)


    In this work, a complete UV-Vis, IR and (1H, 13C and DEPT) NMR spectroscopic analysis was performed for a FR3 vegetable oil sample used as dielectric coolant in an experimental distribution transformer. The same spectroscopic analysis was performed for three used FR3 oil samples (i.e., 4 months in use, 8 months in use and 7 years in use), removed from several operating distribution transformers. Comparison of the data indicated that no significant spectroscopic changes, and hence, no structural changes occurred to the oils by the use. Chemical transformations like catalytic hydrogenation (hardening) and hydrolysis were performed to the FR3 oil sample and the obtained products were analyzed by spectroscopic methods in order to collect further structural information about the FR3 oil. Accelerated aging tests in laboratory were also performed for three FR3 oil samples affording interesting information about the structure of the degradation products. These findings would be valuable to search for a spectroscopy-based technique for monitoring the lifetime and performance of this insulating vegetable oil. (author)

  7. Test Plans for Investigating Molten Fuel Behavior in Coolant Channel during SFR Core Melting Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Hahn, Doo Hee; Lee, Yong Bum


    The metal-fueled, sodium-cooled fast reactor system is expected to accommodate all credible malfunctions or accident initiators passively without damage to the core. However, the evaluation of the safety performance and the containment requirements for this system will most likely require consideration of postulated low-probability accident sequences that result in partial or whole core melting. For these sequences, some phenomenological uncertainties exist and experimental data are needed for modeling purposes. One such data need is concerned with the potential for freezing and plugging of molten metallic fuel in above-and below-core structures and possibly in inter subassembly spaces. The first basic data need is the properties for metallic fuel/steel mixtures such as liquidus/solidus and mobilization temperatures, as part of measurement of phenomenological data describing the relocation and freezing behavior of molten metallic fuel. Accordingly, plans for two different tests, one for determination of the liquidus/solidus temperature and another for determination of the mobilization temperature, are described in this report. Test plans are then described in the report for the investigations of the relocation and freezing behavior of molten metallic fuel in coolant channels, including possible chemical interactions of molten fuel with the channel steel structure.

  8. Aging and loss-of-coolant accident (LOCA) testing of electrical connections

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.F. [Sandia National Labs., Albuquerque, NM (United States)


    This report presents the results of an experimental program to determine the aging and loss-of-coolant accident (LOCA) behavior of electrical connections in order to obtain an initial scoping of their performance. Ten types of connections commonly used in nuclear power plants were tested. These included 3 types of conduit seals, 2 types of cable-to-device connectors, 3 types of cable-to-cable connectors, and 2 types of in-line splices. The connections were aged for 6 months under simultaneous thermal (99 C) and radiation (46 Gy/hr) conditions. A simulated LOCA consisting of sequential high dose-rate irradiation (3 kGy/hr) and high-temperature steam exposures followed the aging. Connection functionality was monitored using insulation resistance measurements during the aging and LOCA exposures. Because only 5 of the 10 connection types passed a post-LOCA, submerged dielectric withstand test, further detailed investigation of electrical connections and the effects of cable jacket integrity on the cable-connection system is warranted.

  9. Hydro-elastic calculations of the dynamic response of a reactor to a sudden loss of coolant

    Energy Technology Data Exchange (ETDEWEB)

    Dienes, J.K.; Hirt, C.W.; Stein, L.R.


    In the design of pressurized water reactors (PWRs) it is necessary to assure that a breach of the primary coolant circuit would not lead to failure of the structure supporting the core. Because of the complexity of the problem, designers have used a number of approximations in estimating the structural loadings that are generally believed to lead to conservative designs. The current research effort at the Los Alamos Scientific Laboratory is intended to take advantage of advanced computer codes and the largest computers to analyze simultaneously the fluid motion that accompanies a loss of coolant accident (LOCA), the structural motion resulting from the transient pressure differentials, and the effect of structural motion of the pressure in the fluid. Progress on the study of this problem is described.

  10. Investigations of the VVER-1000 coolant transient benchmark phase 1 with the coupled code system RELAP5/PARCS

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Espinoza, Victor Hugo


    As part of the reactor dynamics activities of FZK/IRS, the qualification of best-estimate coupled code systems for reactor safety evaluations is a key step toward improving their prediction capability and acceptability. The VVER-1000 Coolant Transient Benchmark Phase 1 represents an excellent opportunity to validate the simulation capability of the coupled code system RELAP5/PACRS regarding both the thermal hydraulic plant response (RELAP5) using measured data obtained during commissioning tests at the Kozloduy nuclear power plant unit 6 and the neutron kinetics models of PARCS for hexagonal geometries. The Phase 1 is devoted to the analysis of the switching on of one main coolant pump while the other three pumps are in operation. It includes the following exercises: (a) investigation of the integral plant response using a best-estimate thermal hydraulic system code with a point kinetics model (b) analysis of the core response for given initial and transient thermal hydraulic boundary conditions using a coupled code system with 3D-neutron kinetics model and (c) investigation of the integral plant response using a best-estimate coupled code system with 3D-neutron kinetics. Already before the test, complex flow conditions exist within the RPV e.g. coolant mixing in the upper plenum caused by the reverse flow through the loop-3 with the stopped pump. The test is initiated by switching on the main coolant pump of loop-3 that leads to a reversal of the flow through the respective piping. After about 13 s the mass flow rate through this loop reaches values comparable with the one of the other loops. During this time period, the increased primary coolant flow causes a reduction of the core averaged coolant temperature and thus an increase of the core power. Later on, the power stabilizes at a level higher than the initial power. In this analysis, special attention is paid on the prediction of the spatial asymmetrical core cooling during the test and its effects on the

  11. Status of Physics and Safety Analyses for the Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, DT


    A study has been completed to develop a new baseline core design for the liquid-salt-cooled very high-temperature reactor (LS-VHTR) that is better optimized for liquid coolant and that satisfies the top-level operational and safety targets, including strong passive safety performance, acceptable fuel cycle parameters, and favorable core reactivity response to coolant voiding. Three organizations participated in the study: Oak Ridge National Laboratory (ORNL), Idaho National Laboratory (INL), and Argonne National Laboratory (ANL). Although the intent was to generate a new reference LS-VHTR core design, the emphasis was on performing parametric studies of the many variables that constitute a design. The results of the parametric studies not only provide the basis for choosing the optimum balance of design options, they also provide a valuable understanding of the fundamental behavior of the core, which will be the basis of future design trade-off studies. A new 2400-MW(t) baseline design was established that consists of a cylindrical, nonannular core cooled by liquid {sup 7}Li{sub 2}BeF{sub 4} (Flibe) salt. The inlet and outlet coolant temperatures were decreased by 50 C, and the coolant channel diameter was increased to help lower the maximum fuel and vessel temperatures. An 18-month fuel cycle length with 156 GWD/t burnup was achieved with a two-batch shuffling scheme, while maintaining a core power density of 10 MW/m{sup 3} using graphite-coated uranium oxicarbide particle fuel enriched to 15% {sup 235}U and assuming a 25 vol-% packing of the coated particles in the fuel compacts. The revised design appears to have excellent steady-state and transient performance. The previous concern regarding the core's response to coolant voiding has been resolved for the case of Flibe coolant by increasing the coolant channel diameter and the fuel loading. Also, the LSVHTR has a strong decay heat removal performance and appears capable of surviving a loss of forced

  12. Performance Investigation of Automobile Radiator Operated with ZnFe2O4 Nano Fluid based Coolant

    Directory of Open Access Journals (Sweden)

    Tripathi Ajay


    Full Text Available The cooling system of an Automobile plays an important role in its performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. Water and ethylene glycol as conventional coolants have been widely used in radiators of an automotive industry for many years. These heat transfer fluids offer low thermal conductivity. With the advancement of nanotechnology, the new generation of heat transfer fluids called, “nanofluids” have been developed and researchers found that these fluids offer higher thermal conductivity compared to that of conventional coolants. This study focused on the preparation of Zinc based nanofluids (ZnFe2O4 using chemical co-precipitation method and its application in an automotive cooling system along with mixture of ethylene glycol and water (50:50. Relevant input data, nanofluids properties and empirical correlations were obtained from literatures to investigate the heat transfer enhancement of an automotive car radiator operated with nano fluid-based coolants. It was observed that, overall heat transfer coefficient and heat transfer rate in engine cooling system increased with the usage of nanofluids (with ethylene glycol the base-fluid compared to ethylene glycol (i.e. base-fluid alone. It is observed that, about 78% of heat transfer enhancement could be achieved with the addition of 1% ZnFe2O4 particles in a base fluid at the Reynolds number of 84.4x103 and 39.5x103 for air and coolant respectively

  13. Analysis of temperature rise and the use of coolants in the dissipation of ultrasonic heat buildup during post removal. (United States)

    Davis, Stephen; Gluskin, Alan H; Livingood, Philip M; Chambers, David W


    This study was designed to calculate probabilities for tissue injury and to measure effectiveness of various coolant strategies in countering heat buildup produced by dry ultrasonic vibration during post removal. A simulated biological model was used to evaluate the cooling efficacy of a common refrigerant spray, water spray, and air spray in the recovery of post temperatures deep within the root canal space. The data set consisted of cervical and apical measures of temperature increase at 1-second intervals from baseline during continuous ultrasonic instrumentation until a 10 °C increase in temperature at the cervical site was registered, wherein instrumentation ceased, and the teeth were allowed to cool under ambient conditions or with the assistance of 4 coolant methods. Data were analyzed with analysis of variance by using the independent variables of time of ultrasonic application (10, 15, 20 seconds) and cooling method. In addition to the customary means, standard deviations, and analysis of variance tests, analyses were conducted to determine probabilities that procedures would reach or exceed the 10 °C threshold. Both instrumentation time and cooling agent effects were significant at P posts. Cycles of short instrumentation times with active coolants were effective in reducing the probability of tissue damage when teeth were instrumented dry. With as little as 20 seconds of continuous dry ultrasonic instrumentation, the consequences of thermal buildup to an individual tooth might contribute to an injurious clinical outcome. Copyright © 2010 American Association of Endodontists. All rights reserved.

  14. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Titov, Eugene; Lustbader, Jason; Leighton, Daniel; Kiss, Tibor


    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.

  15. Experimental studies into the dependences of the axial lead coolant pump performance on the impeller cascade parameters

    Directory of Open Access Journals (Sweden)

    A.V. Beznosov


    Full Text Available The paper presents results of experimental studies into the dependences of the axial lead coolant pump performance (delivery, head, efficiency on the impeller cascade parameters, including the number of blades, the cascade blade angle and the cascade solidity. The studies were conducted as applied to conditions of small and medium sized plants based on lead cooled fast neutron reactors with horizontal steam generators. The designs of such plants are now in the process of elaboration at Nizhny Novgorod State Technical University (NNSTU. The studies were conducted at NNSTU's FT-4 test facility at a lead coolant temperature of 440–500°C. In the process of investigations, the number of blades in the form of flat plates was 3, 4, 6 and 8, the cascade blade angle was in a range of 9–43°, and the cascade solidity (0.6–1.2 was changed by changing the blade section chord length. The shaft speed of the NNSTU's NSO-01 pump, onto which changeable impellers were installed, was changed in steps of 100 rev/min in an interval of 600–1100 rev/min. The blade diameter was about 200mm, and the maximum lead coolant flow rate in the course of the tests reached ∼2000t/h. The performance of 27 impellers was investigated. It is recommended that the investigation results should be used in design of axial HLMC pumps.

  16. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors. (United States)

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos


    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  17. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.


    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  18. Method for forming a liquid cooled airfoil for a gas turbine (United States)

    Grondahl, Clayton M.; Willmott, Leo C.; Muth, Myron C.


    A method for forming a liquid cooled airfoil for a gas turbine is disclosed. A plurality of holes are formed at spaced locations in an oversized airfoil blank. A pre-formed composite liquid coolant tube is bonded into each of the holes. The composite tube includes an inner member formed of an anti-corrosive material and an outer member formed of a material exhibiting a high degree of thermal conductivity. After the coolant tubes have been bonded to the airfoil blank, the airfoil blank is machined to a desired shape, such that a portion of the outer member of each of the composite tubes is contiguous with the outer surface of the machined airfoil blank. Finally, an external skin is bonded to the exposed outer surface of both the machined airfoil blank and the composite tubes.

  19. Selection of sodium coolant for fast reactors in the US, France and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yoshihiko, E-mail: [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Ibaraki-ken 311-1393 (Japan); Garnier, Jean-Claude; Rouault, Jacques [CEA, DEN, DER, Centre de Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Grandy, Christopher; Fanning, Thomas; Hill, Robert [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Chikazawa, Yoshitaka; Kotake, Shoji [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Ibaraki-ken 311-1393 (Japan)


    Highlights: Black-Right-Pointing-Pointer Trilateral study was conducted on coolant selection of fast reactor concept. Black-Right-Pointing-Pointer Fast reactor concepts are vital for nuclear fuel cycle sustainability goals. Black-Right-Pointing-Pointer Sodium, gas and lead cooled fast reactors are capable to achieve the goals. Black-Right-Pointing-Pointer Sodium cooled fast reactor is the most matured technology. Black-Right-Pointing-Pointer Gas and lead cooled fast reactor require long term development. - Abstract: The joint paper presents a common view of fast reactor specific missions in the development of nuclear energy and a cross-analysis of merits and demerits of several Fast Reactors concepts studied worldwide and especially in the Generation-IV International Forum (GIF) framework. The paper provides the context for fast reactors development in the United States, France and Japan and focuses on the comparison on Sodium-cooled Fast Reactor (SFR), Gas-cooled Fast Reactor (GFR), and Lead-cooled Fast Reactor (LFR), i.e. the three fast reactor concepts that have the potential to meet the nuclear fuel cycle sustainability goals. The information provided in the article permits the reader to understand each country's objectives to see that not only the objectives searched for but also the technical orientations are converging. The authors underline that SFR technology evaluation relies significantly on the substantial base technology development programs within each country which is without comparison for the other two fast reactor technologies, e.g., SFR technology has already been developed to commercial or near commercial scale in each country whereas the performance of LFR and GFR technology is still uncertain. The main GFR merits are the potential for high temperatures and the easier possibilities for inspections and repairs. The main challenges are the fuel (fabrication, in-pile behavior), materials for high temperatures, and the implementation of

  20. Assessment of the heat carrier movement in the primary coolant circuit by its own momentum

    Energy Technology Data Exchange (ETDEWEB)

    Kadalev, Stoyan, E-mail:


    Highlights: • We model the heat carrier flow alteration after the circulation pump(s) stop. • The general mathematical model used is described in details. • The model is adapted and applied to a particular example research reactor. • Assessment is presented in detail, step by step with references. • The information provided is enough to apply calculations to another facility. - Abstract: In the presented paper is considered the approach to an assessment of the heat carrier flow alteration in the primary water–water reactor coolant circuit after the circulation pump(s) stop. This topic is highly relevant trough advanced and increased nuclear safety requirements because such a process is observed in case of black-out accident or damaged pump(s). The general mathematical model used is described; enabling preparation of this evaluation adapted and applied to a particular example facility namely a pool type research reactor. The factors influencing to the heat carrier movement by its own momentum are examined. The evaluation measures and includes the factors influencing the heat carrier flow rate from the moment the pump(s) stops down to a negligible value. Assessment is presented in detail, step by step and where needed with references to specific data and/or formulae from reference books to allow repetition of the calculations and/or apply to another facility. The calculations are presented utilizing all necessary data according to the design and technological documentation. No account is given to the pressure of the natural circulation caused by the residual heat generation in the fuel after the reactor scram system extinction of the fission reaction.

  1. Investigations for optimal dissolved hydrogen (DH) concentration in reactor coolant system (RCS)

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Nobuaki; Tanaka, Muneo [Shikoku Electric Power Co., Inc., Takamatsu (Japan); Nishizawa, Eiichi; Kasahara, Kazuo


    Optimal dissolved hydrogen (DH) concentration control is among the most important issues in developing program to maintain plant reliability for aging plant because it is useful in securing material integrity. Also, it is believed to be one of the most promising approaches, following pH control and Zn injection, to radiation exposure source reduction. This work involved collecting data for corrosion products in the coolant, particularly Ni (because the chemical forms of this element, parent element of {sup 58}Co, are affected by DH concentration), during the power operation at Ikata NPP, and determining the relations between DH, crud chemical forms and particle size distributions. In order to determine the optimal DH concentration for exposure source reduction, the results were evaluated in comparison with the findings about crud chemical forms from thermodynamic methods. Regarding DH dependence of crud characteristics, the results of field investigations revealed as follows: In crud chemical form, the ratio of Ni (metal) to total crud increases as the DH concentration increments. {sup 58}Co (Ni (metal) and spinel combined) median particle size grows greater as the DH concentration increments. These findings, together with other obtained findings (e.g., relations between particle size and release/deposition) and the calculations developed using thermodynamic methods, brought us to the following conclusion over the DH concentration control for the radiation exposure source reduction. Provided that the DH concentration should be controlled within the typical value (25 to 35 cc-STP/kg-H{sub 2}O), that concentration should be as close to the lower limit (25 cc-STP/kg-H{sub 2}O) as possible and the variation of DH concentration should be minimized. (J.P.N.)

  2. Development of motors and drives for main coolant pump and CEDM

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Hyun; Ha, Hoi Doo; Park, Jung Woo; Koo, Dae Hyun; Chang, Ki Chan; Kim, Jong Moo; Kim, Won Ho; Rim, Geun Hie; Baek, Ju Won; Park, Doh Young; Hwang, Don Ha; Jeon, Jeong Woo [Korea Electrotechnology Research Institute, Changwon (Korea)


    A canned type 170kW induction motor for the main coolant pump (MCP) of the integral reactor SMART was designed to minimize the eddy current loss in the can and the volume of motor. In order to verify the design and analysis methodology, a canned type 30kW induction motor and an inverter were developed and tested. The motor was designed to have two poles with squirrel cage solid rotor and open slot stator. The motor driver was designed as VVVF inverter to operate both at 900(r.p.m) and at 3600(r.p.m). The calculated design values showed a good agreement with the experimental results. The measured efficiencies of the canned motor and the inverter were 70(%) and 96(%), respectively. A variable reluctance type linear pulse motor (LPM) with double air-gaps for the Control Element Drive Mechanism (CEDM) to lift 100kg was designed, analyzed, manufactured and tested. A converter and a test facility were manufactured to verity the dynamic performance of the LPM. The mover of the LPM was welded with magnetic material(SUS430) and non-magnetic material(SUS304) to get flux path between inner stator and outer stator. The measured thrust force was about 20(%) less than the designed thrust force. As for the rotary stepping motors for CEDM-II, which have transverse flux pattern, three design options were proposed with thrust force density of 8kN/m{sup 2}, 14kN/m{sup 2} and 52kN/m{sup 2} respectively. (author). 31 refs., 219 figs., 60 tabs.

  3. Effect of heater material and coolant additives on CHF for a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Min, E-mail: [Department of Nuclear and Quantum Eng., Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jeong, Yong Hoon, E-mail: [Department of Nuclear and Quantum Eng., Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Heo, Sun, E-mail: [Nuclear Engineering and Technology Institute, Korea Hydro and Nuclear Power Co., 25-1, Jang-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)


    Highlights: • Critical heat flux experiment for a downward facing curved surface was conducted. • We investigate the effect of heater material and coolant additives. • Critical heat flux is affected by the steel oxidation. - Abstract: The critical heat flux (CHF) in the vicinity of an inclination angle of 90° for the reactor vessel lower head external wall was measured on a downward facing curved surface. Two test sections having radii of curvature 0.15 m and 0.5 m were used. The objective was to investigate the effect of heater material and the combined effect of the heater material and additives on flow boiling CHF to assess the CHF enhancement under accident conditions. The heater material SA508 (low alloy steel) and the additive solutions of boric acid and tri-sodium phosphate (TSP, Na{sub 3}PO{sub 4}·12H{sub 2}O) were used. An enhancement of CHF with the SA508 heater was confirmed in comparison with stainless steel reference heaters, which have negligible steel oxidation. As a result of the combined effect tests, the CHF with a TSP solution was reduced and the CHFs with a boric acid and a mixed solution (boric acid and TSP) were enhanced in comparison with the deionized water reference case. The CHF results are discussed in terms of steel oxidation according to the pH of the working fluid. Steel oxidation is also affected by local flow conditions as shown in the R = 0.5 m tests in which the boric acid and mixed solution had negligible effects on CHF enhancement. Under a relatively high concentration of boric acid (2.5 wt%), additive deposition as well as steel oxidation were observed and resulted in CHF enhancement.

  4. Coupled neutronic-thermal-hydraulics analysis in a coolant subchannel of a PWR using CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Felipe P.; Su, Jian, E-mail: [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear


    The high capacity of Computational Fluid Dynamics code to predict multi-dimensional thermal-hydraulics behaviour and the increased availability of capable computer systems are making that method a good tool to simulate phenomena of thermal-hydraulics nature in nuclear reactors. However, since there are no neutron kinetics models available in commercial CFD codes to the present day, the application of CFD in the nuclear reactor safety analyses is still limited. The present work proposes the implementation of the point kinetics model (PKM) in ANSYS - Fluent to predict the neutronic behaviour in a Westinghouse Sequoyah nuclear reactor, coupling with the phenomena of heat conduction in the rod and thermal-hydraulics in the cooling fluid, via the reactivity feedback. Firstly, a mesh convergence and turbulence model study was performed, using the Reynolds-Average Navier-Stokes method, with square arrayed rod bundle featuring pitch to diameter ratio of 1:32. Secondly, simulations using the k-! SST turbulence model were performed with an axial distribution of the power generation in the fuel to analyse the heat transfer through the gap and cladding, and its in fluence on the thermal-hydraulics behaviour of the cooling fluid. The wall shear stress distribution for the centre-line rods and the dimensionless velocity were evaluated to validate the model, as well as the in fluence of the mass flow rate variation on the friction factor. The coupled model enabled to perform a dynamic analysis of the nuclear reactor during events of insertion of reactivity and shutdown of primary coolant pumps. (author)

  5. Numerical and experimental hydrodynamic study of a coolant distributor for grinding applications

    Directory of Open Access Journals (Sweden)

    Tala Moussa


    Full Text Available In grinding, the high frictional energy is converted into heat, which may cause thermal damage and degradation of the wheel and the workpiece. Unwanted thermal effects must thus be reduced, often by external cooling using a curved-duct coolant distributor to match the wheel geometry. The performance of such a system depends strongly on the impinging jet flow properties to ensure efficient sprinkling of the hot spots. The fluid distributor, placed above the workpiece, is pierced with a certain number of identical nozzle fittings, providing multiple jets at the outlet of the nozzles. These jets sprinkle the solids over a given zone and remove the heat by convective transfer. The cooling is hence dependent on the flow structure, meaning the jet diameters, trajectories and velocities, determined up-flow by the distributor design. The present study is devoted to the hydrodynamics aspects of the fluid distributor, aiming to determine the flow-rate distribution at the different orifices and the flow-rate–pressure relationship, for a variety of nozzle diameters and feeding flow rates, under isothermal conditions. A simple hydraulic balance in the device was not able to predict with sufficient accuracy the actual measurements, even when the Venturi effect was accounted for. This discrepancy is due to the curvature of the distributor, inducing secondary flows in interaction with the nozzle outlets, which leads to a rather complex flow pattern. To overcome this issue, a computational fluid dynamics (CFD tool was used and compared with in situ experiments – global flow rate and pressure measurements were additionally taken with particle image velocimetry (PIV to gain insight into the local structure. Simulations were performed with a 3D turbulence model for Reynolds numbers up to 100,000. This model provides an efficient tool for coupling with the thermal study at a later step, allowing global sizing and energetic optimization of the grinding process.

  6. Use of coolant for high-speed tooth preparation: a survey of pediatric dentistry residency program directors in the United States. (United States)

    Kupietzky, Ari; Vargas, Karen G; Waggoner, William F; Fuks, Anna B


    To determine current teaching policies regarding the use of coolant type during tooth preparation with high-speed hand-pieces in pediatric dental residency programs in the US. A 17-question survey was electronically mailed to 63 program directors with one follow-up. Multiple-choice questions asked about school and program teaching of cavity preparation with or without water coolant, including hypothetical clinical situations. Fifty-two (83%) program directors returned the survey. Fifty-two percent taught both dry and water coolant methods, 6% taught dry cutting exclusively, and 42% did not teach the dry method and always used water coolant. Dry techniques were used primarily for special needs patients with poor swallow reflexes (50%) and for young children undergoing sedation (41%). Air coolant was taught more frequently in programs in the Midwest (77%) and South (85%) vs. the Northeast (32%) and West (50%) (P<.01). Forty-four percent of combined programs and 60% of hospital programs taught water spray use exclusively, while all university programs taught the dry cutting technique (P<.01). A majority of program directors teach the use of air coolant alone for high-speed preparation of teeth. University and combined programs were more likely to teach the method compared with hospital based ones.

  7. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [Los Alamos National Laboratory


    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  8. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic


    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  9. Subsidizing Liquidity

    DEFF Research Database (Denmark)

    Malinova, Katya; Park, Andreas


    Facing increased competition over the last decade, many stock exchanges changed their trading fees to maker-taker pricing, an incentive scheme that rewards liquidity suppliers and charges liquidity demanders. Using a change in trading fees on the Toronto Stock Exchange, we study whether and why...... the breakdown of trading fees between liquidity demanders and suppliers matters. Posted quotes adjust after the change in fee composition, but the transaction costs for liquidity demanders remain unaffected once fees are taken into account. However, as posted bid-ask spreads decline, traders (particularly...... retail) use aggressive orders more frequently, and adverse selection costs decrease....

  10. International Standard Problems and Small Break Loss-of-Coolant Accident (SBLOCA

    Directory of Open Access Journals (Sweden)

    N. Aksan


    Full Text Available Best-estimate thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants and also used in the design of advance reactors. Evaluation of the capabilities and the performance of these codes can be accomplished by comparing the code predictions with measured experimental data obtained on different test facilities. OECD/NEA Committee on the Safety of Nuclear Installations (CSNI has promoted, over the last twenty-nine years, some forty-eight international standard problems (ISPs. These ISPs were performed in different fields as in-vessel thermal-hydraulic behaviour, fuel behaviour under accident conditions, fission product release and transport, core/concrete interactions, hydrogen distribution and mixing, containment thermal-hydraulic behaviour. 80% of these ISPs were related to the working domain of principal working group no.2 on coolant system behaviour (PWG2 and were one of the major PWG2 activities for many years. A global review and synthesis on the contribution that ISPs have made to address nuclear reactor safety issues was initiated by CSNI-PWG2 and an overview on the subject of small break LOCA ISPs is given in this paper based on a report prepared by a writing group. In addition, the relevance of small break LOCA in a PWR with relation to nuclear reactor safety and the reorientation of the reactor safety program after TMI-2 accident are shortly summarized. The experiments in four integral test facilities, LOBI, SPES, BETHSY, ROSA IV/LSTF and the recorded data during a steam generator tube rupture transient in the DOEL-2 PWR (Belgium were the basis of the five small break LOCA related ISP exercises, which deal with the phenomenon typical of small break LOCAs in Western design PWRs. Some lessons learned from these small break LOCA ISPs are identified in relation to code deficiencies and capabilities, progress in the code capabilities, possibility of scaling, and various additional aspects

  11. Effect of external turbulence on the efficiency of film cooling with coolant injection into a transverse trench (United States)

    Khalatov, A. A.; Panchenko, N. A.; Severin, S. D.


    Film cooling is among the basic methods used for thermal protection of blades in modern high-temperature gas turbines. Results of computer simulation of film cooling with coolant injection via a row of conventional inclined holes or a row of holes in a trench are presented in this paper. The ANSYS CFX 14 commercial software package was used for CFD-modeling. The effect is studied of the mainstream turbulence on the film cooling efficiency for the blowing ratio range between 0.6 and 2.3 and three different turbulence intensities of 1, 5, and 10%. The mainstream velocity was 150 and 400 m/s, while the temperatures of the mainstream and the injected coolant were 1100 and 500°C, respectively. It is demonstrated that, for the coolant injection via one row of trenched holes, an increase in the mainstream turbulence intensity reduces the film cooling efficiency in the entire investigated range of blowing ratios. It was revealed that freestream turbulence had varied effects on the film cooling efficiency depending on the blowing ratio and mainstream velocity in a blade channel. Thus, an increase in the mainstream turbulence intensity from 1 to 10% decreases the surface-averaged film cooling efficiency by 3-10% at a high mainstream velocity (400 m/s) in the blade channel and by 12-23% at a moderate velocity (of 150 m/s). Here, lower film cooling efficiencies correspond to higher blowing ratios. The effect of mainstream turbulence intensity on the film cooling efficiency decreases with increasing the mainstream velocity in the modeled channel for both investigated configurations.

  12. Modeling corium jet breakup in water pool and application to ex-vessel fuel–coolant interaction analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang-Hyun, E-mail:; Kumar, Rohit; Kim, Hyoung-Tak


    Highlights: • Kelvin–Helmholtz Instability on melt–steam–water interfaces was solved numerically. • Corium jet breakup model was developed for FCI codes based on the KHI solutions. • Ex-vessel steam explosions in reactor cavity were calculated using TRACER-II code. - Abstract: In light water reactor core melt accidents, the molten fuel can be brought into contact with coolant water in the course of the melt relocation in-vessel and ex-vessel as well as in an accident mitigation action of water addition. For the last several decades, the potential risk of energetic molten fuel coolant interactions (FCIs, steam explosions) has drawn substantial attention in the safety analysis of reactor severe accidents. In this paper, an improved melt jet breakup model is presented and analyses of an energetic fuel–coolant interaction in a PWR cavity (1) partially filled (4 m deep) and (2) completely filled (7 m deep) with water are presented. The TRACER-II code was used in the analyses. For jet breakup model, the full dispersion equation of Kelvin–Helmholtz instability for the melt jet–vapor film–water was solved numerically and the solutions were correlated for use in the TRACER-II code. The new jet breakup model was benchmarked using FARO L28 test data. In reactor calculations the mixing calculations showed that the average melt drop size was much smaller in 4 m deep pool with 3 m free-fall than in 7 m deep pool. The explosion calculations showed that the peak pressure at the center of mixture was ∼90 MPa in 4 m deep pool, ∼25 MPa in 7 m deep pool. It also showed that the maximum impulse at the cavity wall was found at the lower wall in both cases and it was 50 kPa s in 4 m deep pool and 150 kPa s in 7 m deep pool.

  13. A thermodynamic model for noble metal alloy inclusions in nuclear fuel rods and application to the study of loss-of-coolant accidents (United States)

    Kaye, Matthew Haigh

    Metal alloy inclusions comprised of Mo, Pd, Rh, Ru, and Tc (the so-called "noble" metals) develop in CANDU fuel pellets as a result of fission. The thermochemical behaviour of this alloy system during severe accident conditions is of interest in connection with computations of loss of volatile compounds of these elements by reaction with steam-hydrogen gas mixtures that develop in the system as a result of water reacting with the Zircalloy cladding. This treatment focuses on the development of thermodynamic models for the Mo-Pd-Rh-Ru-Tc quinary system. A reasonable prediction was made by modelling the ten binary phase diagrams, five of these evaluations being original to this work. This process provides a complete treatment for the five solution phases (vapour, liquid, bcc-solid, fcc-solid, and cph-solid) in this alloy system, as well as self-consistent Gibbs energies of formation for the Mo 5Ru3 intermetallic phase, and two intermediate phases in the Mo-Tc system. The resulting collection of properties, when treated by Gibbs energy minimization, permits phase equilibria to be computed for specified temperatures and compositions. Experimental work in support of this treatment has been performed. Measurements of the solidus and liquidus temperatures for Pd-Rh alloys were made using differential thermal analysis. These measurements confirm that the liquid solution exhibits positive deviation from Raoult's law. Experimental work as a visiting research engineer at AECL (Chalk River) was performed using a custom developed Knudsen cell/mass spectrometer. The Pd partial pressure was measured above multi-component alloys of known composition over a range of temperatures. These are correlated to predicted activities of Pd from the developed thermodynamic model in the multi-component alloy. The thermodynamic treatment developed for the noble metal alloy inclusions has been combined with considerable other data and applied to selected loss-of-coolant-accident scenarios to

  14. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)


    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  15. Investigation of loss of coolant accidents in pressurised water reactors using the ''Dynamic Best-Estimate Safety Analysis'' (DYBESA) method for consideration of uncertainties in TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Sporn, Michael; Hurtado, Antonio [Technische Univ. Dresden (Germany)


    Loss of coolant accident must take into account uncertainties with potentially strong effects on the accident sequence prediction. In this paper, the use of the ''Dynamic Best-Estimate Safety Analysis'' (DYBESA) method to quantify the uncertainties in the TRACE thermal-hydraulic programme is demonstrated. For demonstration purposes, loss of coolant accidents with breaks of various types and sizes in a DN 700 reactor coolant pipe are used as an example application.

  16. Cooling Characteristics of the V-1650-7 Engine. 1; Coolant-Flow Distribution, Cylinder Temperatures, and Heat Rejections at Typical Operating Conditions (United States)

    Povolny, John H.; Bogdan, Louis J.


    An investigation was conducted to determine the coolant-flow distribu tion, the cylinder temperatures, and the heat rejections of the V-165 0-7 engine . The tests were run a t several power levels varying from minimum fuel consumption to war emergency power and at each power l evel the coolant flows corresponded to the extremes of those likely t o be encountered in typical airplane installations, A mixture of 30-p ercent ethylene glycol and 70-percent water was used as the coolant. The temperature of each cylinder was measured between the exhaust val ves, between the intake valves, in the center of the head, on the exh aust-valve guide, at the top of the barrel on the exhaust side, and o n each exhaust spark-plug gasket. For an increase in engine power fro m 628 to approximately 1700 brake horsepower the average temperature for the cylinder heads between the exhaust valves increased from 437 deg to 517 deg F, the engine coolant heat rejection increased from 12 ,600 to 22,700 Btu. per minute, the oil heat rejection increased from 1030 to 4600 Btu per minute, and the aftercooler-coolant heat reject ion increased from 450 to 3500 Btu -per minute.

  17. The experimental facility for investigation of MHD heat transfer in perspective coolants in nuclear energetics. (United States)

    Batenin, B. M.; Belyaev, I. A.; Birukov, D. A.; Frick, P. G.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu; Razuvanov, N. G.; Sviridov, E. V.; Sviridov, V. G.


    Paper presents the current results of work conducted by a joint research group of MPEI–JIHT RAS for experimental study of liquid metals heat transfer. The team of specialists of MPEI–JIHT RAS put into operation a new mercury MHD facility RK-3. The main components of this stand are: a unique electromagnet, created by specialists of the Budker Institute of Nuclear Physics (BINP), and a sealed liquid-metal circuit. The facility will be explored lifting and standpipe flow of liquid metal in a transverse magnetic field in channels of different forms. For the experiments on the study of heat transfer and hydrodynamics of flows for measuring characteristics such as temperature, speed, pulse characteristics, probe method is used. Presents the first experimental results obtained for a pipe in a transverse magnetic field. During the experiments with various flow parameters data was obtained and processed with constructing temperature fields, dimensionless wall temperature distributions and heat transfer coefficients along the perimeter of the work area. Modes with low frequency pulsations of temperature were discovered. The boundaries where low frequency temperature fluctuations occur were defined in a circular tube.

  18. Oxygen sensor development and low temperature corrosion study in lead-alloy coolant loop

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon; Bahn, Chi Bum; Lee, Seung Gi; Jeong, Seung Ho; Nam, Hyo On; Lim, Jun [Seoul National University, Seoul (Korea, Republic of)


    Oxygen sensor to measure dissolved oxygen concentration at liquid lead-bismuth eutectic environments have been developed. Developed oxygen sensor for application in lead-bismuth eutectic (LBE) system was based on the oxygen ion conductor made of YSZ ceramic having Bi/Bi2O3 reference joined by electro-magnetic swaging. Leakage problem, which was major problem of existing sensors, can be solved by using electro-magnetic swaging method. A new calibration strategy combining the oxygen titration with electrochemical impedance spectroscopy (EIS) was performed to increase the reliability of sensor. Another calibration was also conducted by controlling the oxygen concentration using OCS (oxygen control system). Materials corrosion tests of various metals (SS316, EP823, T91 and HT9) were conducted for up to 1,000 hours with specimen inspection after every 333hours at 450 .deg. C in HELIOS. Oxygen concentration was controlled at 10{sup -6} wt% by using the direct gas bubbling of Ar+4%H{sub 2}, Ar+5%O{sub 2} and pure Ar. The dissolved oxygen concentration in LBE was also monitored by two calibrated YSZ oxygen sensors located at different places under different temperatures within HELIOS. It shows a good performance during 1000 hours. Liquid metal embrittlement (LME) test of SS316L specimen in the LBE was performed at various temperature and strain rate. The result shows that the liquid metal embrittlement effect is not crucial at tested conditions.

  19. 10 CFR 830 Major Modification Determination for Replacement of ATR Primary Coolant Pumps and Motors

    Energy Technology Data Exchange (ETDEWEB)

    Noel Duckwitz


    The continued safe and reliable operation of the ATR is critical to the Department of Energy (DOE) Office of Nuclear Energy (NE) mission. While ATR is safely fulfilling current mission requirements, a variety of aging and obsolescence issues challenge ATR engineering and maintenance personnel’s capability to sustain ATR over the long term. First documented in a series of independent assessments, beginning with an OA Environmental Safety and Health Assessment conducted in 2003, the issues were validated in a detailed Material Condition Assessment (MCA) conducted as a part of the ATR Life Extension Program in 2007.Accordingly, near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project will replace the existent diesel-electrical bus (E-3), switchgear, and the 50-year-old obsolescent marine diesels with commercial power that is backed with safety related emergency diesel generators, switchgear, and uninterruptible power supply (UPS). The second project, the subject of this major modification determination, will replace the four, obsolete, original primary coolant pumps (PCPs) and motors. Completion of this and the two other age-related projects (replacement of the ATR diesel bus [E-3] and switchgear and replacement of the existent emergency firewater injection system) will resolve major age-related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification: 1. Evaluation Criteria #3 (Change of existing process). The proposed strategy for equipping the replacement PCPs with VFDs

  20. Managing liquidity

    DEFF Research Database (Denmark)

    Pokutta, Sebastian; Schmaltz, Christian


    Large banking groups face the question of how to optimally allocate and generate liquidity: in a central liquidity hub or in many decentralized branches. We translate this question into a facility location problem under uncertainty. We show that volatility is the key driver behind (de-)centraliza......Large banking groups face the question of how to optimally allocate and generate liquidity: in a central liquidity hub or in many decentralized branches. We translate this question into a facility location problem under uncertainty. We show that volatility is the key driver behind (de......-)centralization. We provide an analytical solution for the 2-branch model and show that a liquidity center can be interpreted as an option on immediate liquidity. Therefore, its value can be interpreted as the price of information, i.e., the price of knowing the exact demand. Furthermore, we derive the threshold...... above which it is advantageous to open a liquidity center and show that it is a function of the volatility and the characteristic of the bank network. Finally, we discuss the n-branch model for real-world banking groups (10-60 branches) and show that it can be solved with high granularity (100 scenarios...

  1. Effects of LWR coolant environments on fatigue S-N curves for carbon and low-alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Shack, W.J.


    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figure I-90 of Appendix I to Section III of the Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Recent test data indicate significant decreases in fatigue lives of carbon and low-alloy steels in LWR environments when five conditions are satisfied simultaneously: applied strain range, temperature, dissolved oxygen in the water, and S content of the steel are above minimum threshold levels, and loading strain rate is below a threshold value. Only moderate decrease in fatigue life is observed when any one of these conditions is not satisfied. This paper presents several methods that have been proposed for evaluating the effects of LWR coolant environments on fatigue S-N curves for carbon and low-alloy steels. Estimations of fatigue lives under actual loading histories are discussed.

  2. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors (United States)

    El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos


    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications. PMID:28287488

  3. Investigation of a Coolant Mixing Phenomena within the Reactor Pressure Vessel of a VVER-1000 Reactor with Different Simulation Tools

    Directory of Open Access Journals (Sweden)

    V. Sánchez


    Full Text Available The Institute of Neutron Physics and Reactor Technology (INR is involved in the qualification of coupled codes for reactor safety evaluations, aiming to improve their prediction capability and acceptability. In the frame of the VVER-1000 Coolant Transient Benchmark Phase 1, RELAP5/PARCS has been extensively assessed. Phase 2 of this benchmark was focused on both multidimensional thermal hydraulic phenomena and core physics. Plant data will be used to qualify the 3D models of TRACE and RELAP5/CFX, which were coupled for this purpose. The developed multidimensional models of the VVER-1000 reactor pressure vessel (RPV as well as the performed calculations will be described in detail. The predicted results are in good agreement with experimental data. It was demonstrated that the chosen 3D nodalization of the RPV is adequate for the description of the coolant mixing phenomena in a VVER-1000 reactor. Even though only a 3D coarse nodalization is used in TRACE, the integral results are comparable to those obtained by RELAP5/CFX.

  4. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok


    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs.

  5. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Alexandros El Sachat


    Full Text Available Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11 pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  6. Liquid explosives

    CERN Document Server

    Liu, Jiping


    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  7. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing (United States)

    Roebelen, G. J., Jr.


    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  8. Liquid Crystals (United States)


    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  9. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Heams, T J [Science Applications International Corp., Albuquerque, NM (United States); Williams, D A; Johns, N A; Mason, A [UKAEA, Winfrith, (England); Bixler, N E; Grimley, A J [Sandia National Labs., Albuquerque, NM (United States); Wheatley, C J [UKAEA, Culcheth (England); Dickson, L W [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Osborn-Lee, I [Oak Ridge National Lab., TN (United States); Domagala, P; Zawadzki, S; Rest, J [Argonne National Lab., IL (United States); Alexander, C A [Battelle, Columbus, OH (United States); Lee, R Y [Nuclear Regulatory Commission, Washington, DC (United States)


    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  10. Subchannel analysis of Al{sub 2}O{sub 3} nanofluid as a coolant in VMHWR

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Ehsan; Tashakor, Saman [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research School


    The main objective of this study is to predict the thermal hydraulic behavior of nanofluids as the coolant in the fuel assembly of variable moderation high performance light water reactor (VMHWR). VMHWR is the new version of high performance light water reactor (HPLWR) conceptual design. Light water reactors at supercritical pressure (VMHWR, HPLWR), being currently under design, are the new generation of nuclear reactors. Water-based nanofluids containing various volume fractions of Al{sub 2}O{sub 3} nanoparticles are analyzed. The conservation equations and conduction heat transfer equation for fuel and clad have been derived and discretized by the finite volume method. The transfer of mass, momentum and energy between adjacent subchannels are split into diversion crossflow and turbulent mixing components. The governed non linear algebraic equations are solved by using analytical iteration methods. Finally the nanofluid analysis results are compared with the pure water results.

  11. Correlations between the electrochemical behaviour and surface film composition of TZM alloy exposed to divertor water coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Maday, M.-F. [ENEA-CRE-Casaccia, Rome (Italy). Div. Nuovi Mater.; Giorgi, R. [ENEA-CRE-Casaccia, Rome (Italy). Div. Nuovi Mater.; Dikonimos-Makris, T. [ENEA-CRE-Casaccia, Rome (Italy). Div. Nuovi Mater.


    X-ray photoelectron spectroscopy (XPS) has been carried out on TZM alloy surfaces after short and long immersion tests in high temperature (250 C) aqueous environments simulating possible fusion reactor coolant conditions during operation. Phase identification by XPS was used in connection with the open circuit potential trends to suggest plausible hypotheses about TZM corrosion behaviour in the various chemical environments considered in this study. It was proposed that exposure of TZM to oxidizing water conditions produced poorly protective layers, which consist essentially of low (IV) and intermediate (V) valency Mo oxides/hydroxides. Conversely the results obtained in deaerated and reducing water conditions suggested that barrier films could develop in these environments: the phases exhibit a bilayered structure and consisted of an inner tetravalent Mo oxide/hydroxide and an outer hexavalent Mo oxide. The protective properties of such layers were attributed to the hexavalent Mo species. (orig.).

  12. Survey of tracking systems and rotary joints for coolant piping. Final report, August 15, 1978-August 14, 1978. [Includes patents

    Energy Technology Data Exchange (ETDEWEB)

    Furaus, J P; Gruchalla, M E; Sower, G D


    Problems were surveyed and evaluated with respect to solar tracking mechanisms and rotary joints for coolant piping. An analytical development of celestial mechanics, one- and two-axis tracking configurations and the effect of tracking accuracy versus collector efficiency are reported. Daily operational requirements and tracking modes were defined and evaluated. A literature and patent search on solar tracking technology was performed. Tracking system and control system performance specifications were determined. Alternative conceptual tracking approaches were defined and a cost and performance evaluation of a mechanical tracking concept was performed. Fluid coupling service specifications were determined. The cost and performance of several types of actuators and error detectors were evaluated with respect to solar tracking mechanisms.

  13. ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) simulation of a loss of coolant accident in a space reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roth, P.A.; Shumway, R.W.


    The Advanced Thermal Hydraulic Energy Network Analyzer (ATHENA) code was used to simulate a loss-of-coolant accident (LOCA) in a conceptual space reactor design. ATHENA provides the capability of simulating the thermal-hydraulic behavior of the wide variety of systems which are being considered for use in space reactors. Flow loops containing any one of several available working fluids may interact through thermal connections with other loops containing the same or a different working fluid. The code can be used to model special systems such as: heat pipes, point reactor kinetics, plant control systems, turbines, valves, and pumps. This work demonstrates the application of the thermal radiation model which has been recently incorporated into ATHENA and verifies the need for supplemental reactor cooling to prevent reactor fuel damage in the event of a LOCA.

  14. High Pressure Coolant Injection (HPCI) System Risk-Based Inspection Guide for Browns Ferry Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Wong, S.; DiBiasio, A.; Gunther, W. [Brookhaven National Lab., Upton, NY (United States)


    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A System Risk-Based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Browns Ferry Nuclear Power Plant, Units 1, 2 and 3. The role of. the HPCI system in mitigating accidents is discussed in this S-RIG, along with insights on identified risk-based failure modes which could prevent proper operation of the system. The S-RIG provides a review of industry-wide operating experience, including plant-specific illustrative examples to augment the PRA and operational considerations in identifying a catalogue of basic PRA failure modes for the HPCI system. It is designed to be used as a reference for routine inspections, self-initiated safety system functional inspections (SSFIs), and the evaluation of risk significance of component failures at the nuclear power plant.

  15. Determination of the turbulence integral model parameters for a case of a coolant angular flow in regular rod-bundle (United States)

    Bayaskhalanov, M. V.; Vlasov, M. N.; Korsun, A. S.; Merinov, I. G.; Philippov, M. Ph


    Research results of “k-ε” turbulence integral model (TIM) parameters dependence on the angle of a coolant flow in regular smooth cylindrical rod-bundle are presented. TIM is intended for the definition of efficient impulse and heat transport coefficients in the averaged equations of a heat and mass transfer in the regular rod structures in an anisotropic porous media approximation. The TIM equations are received by volume-averaging of the “k-ε” turbulence model equations on periodic cell of rod-bundle. The water flow across rod-bundle under angles from 15 to 75 degrees was simulated by means of an ANSYS CFX code. Dependence of the TIM parameters on flow angle was as a result received.

  16. Transformations of Liquid Metals in Ionic Liquid


    Liu, Fujun; Yu, Yongze; Liu, Jing


    Experimental studies were carried out on the motions and transformations of liquid metal in ionic liquid under applied electric field. The induced vortex rings and flows of ionic liquid were determined via the photographs taken sequentially over the experiments. The polarization of electric double layer of liquid metals was employed to explain the flow of ionic liquid with the presence of liquid metal. Unlike former observation of liquid metal machine in conventional solution, no gas bubble w...

  17. New experimental device for VHTR structural material testing and helium coolant chemistry investigation - High Temperature Helium Loop in NRI Rez

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Jan, E-mail: [Research Centre Rez, Ltd, Husinec-Rez 130, 25068 Rez (Czech Republic); Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Matecha, Josef, E-mail: [Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic); Cerny, Michal [Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Viden, Ivan, E-mail: [Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Sus, Frantisek [Research Centre Rez, Ltd, Husinec-Rez 130, 25068 Rez (Czech Republic); Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic); Hajek, Petr [Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic)


    The High Temperature Helium Loop (HTHL) is an experimental device for simulation of VHTR helium coolant conditions. The purpose of the HTHL is structural materials testing and helium coolant chemistry investigation. In the HTHL pure helium will be used as working medium and its main physical parameters are 7 MPa, max. temperature in the test section 900 Degree-Sign C and flow rate 37.8 kg/h. The HTHL consists of an active channel, the helium purification system, the system of impurities dosage (e.g. CO, CO{sub 2}, H{sub 2}, H{sub 2}O, O{sub 2}, N{sub 2}, and CH{sub 4}) and the helium chemistry monitoring system (sampling and on-line analysis and determination of impurities in the helium flow). The active channel is planned to be placed into the core of the experimental reactor LVR-15 which will serve as a neutron flux source (max. 2.5 Multiplication-Sign 10{sup 18} n/m{sup 2} s for fast neutrons). The HTHL is now under construction. Some of its main parts are finished, some are still being produced (active channel internals, etc.), some should be improved to work correctly (the helium circulatory compressor); certain sub-systems are planned to be integrated to the loop (systems for the determination of moisture and other impurities in helium, etc.). The start of the HTHL operation is expected during 2011 and the integration of the active channel into the LVR-15 core during 2012.

  18. Simulation of a loss of coolant accident: Results of a standard problem exercise of the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, S.M.; Hassan, Y. (Texas A M Univ., College Station (USA))


    The purpose of this study was to compare the results generated from the IBM version of RELAP5/MOD2 to the experimental data of an International Atomic Energy Agency (IAEA) standard problem exercise. The standard problem exercise data were that of a 7.4% break loss-of-coolant accident conducted at a test facility in Hungary. The United States did not formally participate in this exercise whose aim was to assess the capabilities of computer codes and modeling techniques and in which a total of 17 organizations from 12 countries participated. The results obtained using the IBM version of RELAP5/MOD2 compared favorably with the experimental data. The experimental facility, PMK-NVH (Paks Model Circuit), is a scaled-down model of a Hungarian reactor, the VVER-440 Paks nuclear power plant. A volume and power scaling ratio of 1:2070 is used. The six loops of the actual reactor are modeled by one active loop called the PMK. The secondary loop in the experimental facility is the NVH loop. The coolant in the facility is water, and the operating conditions are the same as in the actual reactor. The orientation of the steam generator is horizontal, as opposed to the vertical design of once-through and U-tube steam generators. The parameters of the accident are that it starts at full power, a 3-mm cold-side break occurs at the upper head of the downcomer, there is no injection from hydroaccumulators, the high-pressure injection system corresponds to the case in which one-third of the pumps are available, and isolation of the secondary occurs immediately after transient initiation.

  19. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment (United States)

    Baird, Michael J.


    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  20. Cross sectional: use of coolant for high-speed tooth preparation: a survey of pediatric dentist members of the American Academy of Pediatric Dentistry. (United States)

    Kupietzky, Ari; Fuks, Anna B; Vargas, Kaaren G; Waggoner, William F


    To report the findings of a survey to determine the educational experiences, opinions and clinical practices relative to the use of coolant during cavity preparation of pediatric dentist members of the American Academy of Pediatric Dentistry (AAPD) and to determine whether teaching policies influenced the type of coolant used in private practice. Four thousand fifty surveys were emailed to AAPD members and included questions regarding demographics and predoctoral, graduate, and current practice policies for the use of dry cutting. Returned survey numbered 1730 for a response rate of 43%. Fifteen percent were taught the concept of dry cutting in their predoctoral programs and 34% in their specialty, programs. Sixty percent never or rarely prepare teeth without water coolant. Slightly more than 40% prepared teeth with air coolant alone. Patient behavior (25%) and sedation (21%) were reported as determining factors for cutting dry. Thirty-one percent of private practice clinicians and 34% of part time academics use dry cutting, while only 15% of full time academicians use the technique (P<0.0001). Respondents tend to use the technique they were taught during their residency. Use of dry cutting was more likely to be utilized during sedations or general anesthesia to avoid airway compromise.

  1. Combined numerical and experimental investigation into the coolant flow hydrodynamics and mass transfer behind the spacer grid in fuel assemblies of the floating power unit reactor

    Directory of Open Access Journals (Sweden)

    S.M. Dmitriev


    Full Text Available The results of experimental investigations into the local hydrodynamics and inter-cell mass transfer of the coolant flow in representative zones of the KLT-40C reactor FAs behind the plate-type spacer grid are presented. The investigations were conducted on an aerodynamic rig using the admixture diffusion method (the tracer-gas method. A study into the spatial dispersion of the absolute flow velocity projections and into the distribution of the tracer concentration allowed specify the coolant flow pattern behind the FA plate-type spacer grid of the KLT-40C reactor. The results of measuring the flow friction coefficient in the plate-type spacer grid, depending on the Reynolds number, are presented. Based on the obtained experimental data, recommendations have been provided for updating the procedures to calculate the coolant flow rates for the KLT-40C reactor core by-channel codes. The results of investigating the coolant flow local hydrodynamics and mass transfer in the KLT-40C reactor FAs have been adopted for practical use by Afrikantov OKBM for estimating the heat-engineering reliability of the KLT-40C reactor cores and have been data based for verification of CFD codes and detailed by-channel calculation of the KLT-40C reactor core.

  2. Experimental study of local coolant hydrodynamics in TVS-Kvadrat PWR reactor fuel assembly using mixing spacer grids with different types of deflectors

    Directory of Open Access Journals (Sweden)

    S.M. Dmitriev


    Full Text Available Results of experimental studies of local hydrodynamic characteristics of coolant flow in fuel assemblies of RWR reactors using different types of mixing spacer grids are presented. Specific features and regularities of coolant flow in fuel pin bundles of TVS-KVADRAT fuel assemblies with different types of mixing spacer grids were revealed in the course of experiments. Analysis of space distribution of projections of absolute flow velocity allowed detailed description of coolant flow beyond the spacer grid with installation of three different types of deflectors. Optimal design of deflector for spacer grid of the TVS-KVADRAT fuel assembly in the standard cell in the area of guiding channels was identified. Results of studies of local hydrodynamics of coolant flow in the TVS-KVADRAT fuel assembly are accepted for subsequent practical application by the JSC Afrikantov Experimental Design Bureau for Mechanical Engineering (OKBM in the evaluations of thermal engineering reliability of PWR reactor cores and were included in the database for verification of computational fluid dynamic codes (CFD-codes and implementation of detailed cell array calculations of PWR reactor cores.

  3. Correlating activity incorporation with properties of oxide films formed on material samples exposed to BWR and PWR coolants in Finnish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bojinov, M.; Kinnunen, P.; Laitinen, T.; Maekelae, K.; Saario, T.; Sirkiae, P. [VTT Industrial Systems, Espoo (Finland); Buddas, T.; Halin, M.; Kvarnstroem, R.; Tompuri, K. [Fortum Power and Heat Oy, Loviisa Power Plant, Loviisa (Finland); Helin, M.; Muttilainen, E.; Reinvall, A. [Teollisuuden Voima Oy, Olkiluoto (Finland)


    The extent of activity incorporation on primary circuit surfaces in nuclear power plants is connected to the chemical composition of the coolant, to the corrosion behaviour of the material surfaces and to the structure and properties of oxide films formed on circuit surfaces due to corrosion. Possible changes in operational conditions may induce changes in the structure of the oxide films and thus in the rate of activity incorporation. To predict these changes, experimental correlations between water chemistry, oxide films and activity incorporation, as well as mechanistic understanding of the related phenomena need to be established. In order to do this, flow-through cells with material samples and facilities for high-temperature water chemistry monitoring have been installed at Olkiluoto unit 1 (BWR) and Loviisa unit 1 (PWR) in spring 2000. The cells are being used for two major purposes: To observe the changes in the structure and activity levels of oxide films formed on material samples exposed to the primary coolant. Correlating these observations with the abundant chemical and radiochemical data on coolant composition, dose rates etc. collected routinely by the plant, as well as with high-temperature water chemistry monitoring data such as the corrosion potentials of relevant material samples, the redox potential and the high-temperature conductivity of the primary coolant. We describe in this paper the scope of the work, give examples of the observations made and summarize the results on oxide films that have been obtained during one full fuel cycle at both plants. (authors)


    Directory of Open Access Journals (Sweden)

    Yusha V.L.


    Full Text Available The paper presents results of theoretical analysis of the effectiveness of an ideal thermodynamic cycle internal combustion engine combined with an external utilization of exhaust heat. The influence of the properties of the coolant circuit of utilization on its operational parameters and characteristics of the power plant.

  5. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid (United States)

    Lee, A. Y.


    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  6. Calculation of the VVER-1000 coolant transient benchmark using the coupled code systems DYN3D/RELAP5 and DYN3D/ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Kozmenkov, Y. [Forschungszentrum Dresden-Rossendorf, Institute of Safety Research, P.O.B. 510119, D-01314 Dresden (Germany); Kliem, S. [Forschungszentrum Dresden-Rossendorf, Institute of Safety Research, P.O.B. 510119, D-01314 Dresden (Germany)]. E-mail:; Grundmann, U. [Forschungszentrum Dresden-Rossendorf, Institute of Safety Research, P.O.B. 510119, D-01314 Dresden (Germany); Rohde, U. [Forschungszentrum Dresden-Rossendorf, Institute of Safety Research, P.O.B. 510119, D-01314 Dresden (Germany); Weiss, F.-P. [Forschungszentrum Dresden-Rossendorf, Institute of Safety Research, P.O.B. 510119, D-01314 Dresden (Germany)


    Plant-measured data provided by the OECD/NEA VVER-1000 coolant transient benchmark programme were used to validate the DYN3D/RELAP5 and DYN3D/ATHLET coupled code systems. Phase 1 of the benchmark (V1000CT-1) refers to an experiment that was conducted during the commissioning of the Kozloduy NPP Unit 6 in Bulgaria. In this experiment, the fourth main coolant pump was switched on whilst the remaining three were running normal operating conditions. The experiment was conducted at 27.5% of the nominal level of the reactor power. The transient is characterized by a rapid increase in the primary coolant flow through the core, and as a consequence, a decrease of the space-dependent core inlet temperature. The control rods were kept in their original positions during the entire transient. The coupled simulations performed on both DYN3D/RELAP5 and DYN3D/ATHLET were based on the same reactor model, including identical main coolant pump characteristics, boundary conditions, benchmark-specified nuclear data library and nearly identical nodalization schemes. In addition to validation of the coupled code systems against measured data, a code-to-code comparison between simulation results has also been performed to evaluate the respective thermal hydraulic models of the system codes RELAP5 and ATHLET.

  7. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Conboy, Thomas M.


    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  8. Liquid Marbles

    KAUST Repository

    Khalil, Kareem


    Granulation, the process of formation of granules from a combination of base powders and binder liquids, has been a subject of research for almost 50 years, studied extensively for its vast applications, primarily to the pharmaceutical industry sector. The principal aim of granulation is to form granules comprised of the active pharmaceutical ingredients (API’s), which have more desirable handling and flowability properties than raw powders. It is also essential to ensure an even distribution of active ingredients within a tablet with the goal of achieving time‐controlled release of drugs. Due to the product‐specific nature of the industry, however, data is largely empirical [1]. For example, the raw powders used can vary in size by two orders of magnitude with narrow or broad size distributions. The physical properties of the binder liquids can also vary significantly depending on the powder properties and required granule size. Some significant progress has been made to better our understanding of the overall granulation process [1] and it is widely accepted that the initial nucleation / wetting stage, when the binder liquid first wets the powders, is key to the whole process. As such, many experimental studies have been conducted in attempt to elucidate the physics of this first stage [1], with two main mechanisms being observed – classified by Ivenson [1] as the “Traditional description” and the “Modern Approach”. See Figure 1 for a graphical definition of these two mechanisms. Recent studies have focused on the latter approach [1] and a new, exciting development in this field is the Liquid Marble. This interesting formation occurs when a liquid droplet interacts with a hydrophobic (or superhydrophobic) powder. The droplet can become encased in the powder, which essentially provides a protective “shell” or “jacket” for the liquid inside [2]. The liquid inside is then isolated from contact with other solids or liquids and has some

  9. The effect of saline coolant on temperature levels during decortication with a Midas Rex: An in vitro model using sheep cervical vertebrae.

    Directory of Open Access Journals (Sweden)

    Asher eLivingston


    Full Text Available Decortication of bone with a high speed burr in the absence of coolant may lead to local thermal necrosis and decreased healing ability which may negatively impact clinical outcome. Little data is available on the impact of applying a coolant during the burring process. This study aims to establish an in vitro model to quantitatively assess peak temperatures during endplate preparation with a high speed burr.Six sheep cervical vertebrae were dissected and mounted. Both end plates were used to give a total of 12 sites. Two thermocouples were inserted into each vertebra, 2mm below the end plate surface and a thermal-camera set up to measure surface temperature. A high speed burr (Midas Rex, Medtronic, Fort Worth, TX was used to decorticate the bone in a side to side sweeping pattern, using a matchstick burr (M-8/9MH30 with light pressure. This procedure was repeated while dripping saline onto the burr and bone. Data was compared between groups using a student t-test.Application of coolant at the bone-burr interface during decortication resulted in a significant decrease in final temperature. Without coolant, maximum temperatures 2mm from the surface were not sufficient to cause thermal osteonecrosis, although peak surface temperatures would cause local damage. The use of a high speed burr provides a quick and effective method of vertebral end plate preparation. Thermal damage to the bone can be minimised through the use of light pressure and saline coolant. This has implications for any bone preparation performed with a high speed burr.

  10. The Effect of Saline Coolant on Temperature Levels during Decortication with a Midas Rex: An in Vitro Model Using Sheep Cervical Vertebrae. (United States)

    Livingston, Asher; Wang, Tian; Christou, Chris; Pelletier, Matthew H; Walsh, William R


    Decortication of bone with a high-speed burr in the absence of coolant may lead to local thermal necrosis and decreased healing ability, which may negatively impact clinical outcome. Little data are available on the impact of applying a coolant during the burring process. This study aims to establish an in vitro model to quantitatively assess peak temperatures during endplate preparation with a high-speed burr. Six sheep cervical vertebrae were dissected and mounted. Both end plates were used to give a total of 12 sites. Two thermocouples were inserted into each vertebra, 2 mm below the end plate surface and a thermal camera set up to measure surface temperature. A 3 mm high-pneumatic speed burr (Midas Rex, Medtronic, Fort Worth, TX, USA) was used to decorticate the bone in a side to side sweeping pattern, using a matchstick burr (M-8/9MH30) with light pressure. This procedure was repeated while dripping saline onto the burr and bone. Data were compared between groups using a Student's t-test. Application of coolant at the bone-burr interface during decortication resulted in a significant decrease in final temperature. Without coolant, maximum temperatures 2 mm from the surface were not sufficient to cause thermal osteonecrosis, although peak surface temperatures would cause local damage. The use of a high-speed burr provides a quick and an effective method of vertebral end plate preparation. Thermal damage to the bone can be minimized through the use of light pressure and saline coolant. This has implications for any bone preparation performed with a high-speed burr.

  11. Liquid/liquid heat exchanger (United States)

    Miller, C. G.


    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  12. Heavy liquid metals: Research programs at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y.


    The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futher decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.

  13. Liquid helium

    CERN Document Server

    Atkins, K R


    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  14. Preliminary experimental study of liquid lithium water interaction

    Energy Technology Data Exchange (ETDEWEB)

    You, X.M.; Tong, L.L.; Cao, X.W., E-mail:


    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  15. Effect of sintering columns on the heat transfer and flow characteristics of the liquid cooling vapor chambers (United States)

    Naphon, Paisarn; Wiriyasart, Songkran


    The results of the heat and flow characteristics of working fluid inside the vapor chamber with different sintering columns of 20, 81, 225 are presented. The vapor chambers with one inlet port and four outlet ports are tested by using water as coolant. Parametric studies including different heat fluxes, number and size of wick columns, and flow rate of coolants on the cooling performance are considered. A three-dimensional heat and mass transfer model for vapor chamber with wick and without sintering plate and sintering columns are developed. The numerical simulation results show the velocity and pressure distribution of liquid and vapor phases of the working fluid inside the vapor chamber. It is found that the number of wick column have an important influence to the velocity and pressure phenomena of working fluid which results in thermal performance of vapor chamber. Reasonable agreement is obtained from the comparison between the measured data and the predicted results.

  16. Numerical Simulation of the Pressure Distribution in the Reactor Vessel Downcomer Region Fluctuated by the Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dong Hwa; Jung, Byung Ryul; Jang, Ho Cheol; Yune, Seok Jeong; Kim, Eun Kee [KEPCO EnC, Daejeon (Korea, Republic of)


    In this study the numerical simulation of the pressure distribution in the downcomer region resulting from the pressure pulsation by the Reactor Coolant Pump (RCP) is performed using the Finite Difference Method (FDM). Simulation is carried out for the cylindrical shaped 2-dimensional model equivalent to the outer surface of the Core Support Barrel (CSB) of APR1400 and a 1/2 model is adopted based on the bilateral symmetry by the inlet nozzle. The fluid temperature is 555 .deg. F and the forcing frequencies are 120Hz, 240Hz, 360Hz and 480Hz. Simulation results of the axial pressure distributions are provided as the Root Mean Square (RMS) values at the five locations of 0°, 45°, 90°, 135° and 180° in the circumferential direction from the inlet nozzle location. In the study, the numerical simulation of pressure distributions in the downcomer region induced by the RCP was performed using FDM and the results were reviewed. The interference of the waves returned from both boundaries in the axial direction and the source of the sinusoidal wave is shown on the inlet nozzle interface pressure point. It seems that the maximum pressures result from the superposition of the waves reflected from the seating surface and the waves newly arrived from the inlet nozzle interface pressure location.

  17. Heat transfer in a two-pass internally ribbed turbine blade coolant channel with cylindrical vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, R.; Chen, Y.; Nikitopoulos, D. [Louisiana State Univ., Baton Rouge, LA (United States)] [and others


    The effect of vortex generators on the mass (heat) transfer from the ribbed passage of a two pass turbine blade coolant channel is investigated with the intent of optimizing the vortex generator geometry so that significant enhancements in mass/heat transfer can be achieved. In the experimental configuration considered, ribs are mounted on two opposite walls; all four walls along each pass are active and have mass transfer from their surfaces but the ribs are non-participating. Mass transfer measurements, in the form of Sherwood number ratios, are made along the centerline and in selected inter-rib modules. Results are presented for Reynolds number in the range of 5,000 to 40,000, pitch to rib height ratios of 10.5 and 21, and vortex generator-rib spacing to rib height ratios of 0.55, and 1.5. Centerline and spanwise averaged Sherwood number ratios are presented along with contours of the Sherwood number ratios. Results indicate that the vortex generators induce substantial increases in the local mass transfer rates, particularly along the side walls, and modest increases in the average mass transfer rates. The vortex generators have the effect of making the inter-rib profiles along the ribbed walls more uniform. Along the side walls, horse-shoe vortices that characterize the vortex generator wake are associated with significant mass transfer enhancements. The wake effects and the levels of enhancement decrease somewhat with increasing Reynolds number and decreasing pitch.

  18. Effects of a hypothetical loss-of-coolant accident on a Mark I Boiling Water Reactor pressure-suppression system

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, J.H.; McCauley, E.W.


    A loss-of-coolant accident (LOCA) in a boiling-water-reactor (BWR) power plant has never occurred. However, because this type of accident could be particularly severe, it is used as a principal theoretical basis for design. A series of consistent, versatile, and accurate air-water tests that simulate LOCA conditions has been completed on a /sup 1///sub 5/-scale Mark I BWR pressure-suppression system. Results from these tests are used to quantify the vertical-loading function and to study the associated fluid dynamics phenomena. Detailed histories of vertical loads on the wetwell are shown. In particular, variation of hydrodynamic-generated vertical loads with changes in drywell-pressurization rate, downcomer submergence, and the vent-line loss coefficient are established. Initial drywell overpressure, which partially preclears the downcomers of water, substantially reduces the peak vertical loads. Scaling relationships, developed from dimensional analysis and verified by bench-top experiments, allow the /sup 1///sub 5/-scale results to be applied to a full-scale BWR power plant. This analysis leads to dimensionless groupings that are invariant. These groupings show that, if water is used as the working fluid, the magnitude of the forces in a scaled facility is reduced by the cube of the scale factor and occurs in a time reduced by the square root of the scale factor.

  19. Regulatory instrument review: Aging management of LWR cables, containment and basemat, reactor coolant pumps, and motor-operated valves

    Energy Technology Data Exchange (ETDEWEB)

    Werry, E.V.; Somasundaram, S.


    The results of Stage 2 of the Regulatory Instrument Review are presented in this volume. Selected regulatory instruments, such as the Code of Federal Regulations (CFR), US Nuclear Regulatory Commission (NRC), Regulatory Guides, and ASME Codes, were investigated to determine the extent to which these regulations apply aging management to selected safety-related components in nuclear power plants. The Regulatory Instrument Review was funded by the NRC under the Nuclear Plant Aging Research (NPAR) program. Stage 2 of the review focused on four safety-related structures and components; namely, cables, containment and basemat, reactor coolant pumps, and motor-operated valves. The review suggests that the primary-emphasis of the regulatory instruments was on the design, construction, start-up, and operation of a nuclear power plant, and that aging issues were primarily addressed after an aging-related problem was recognized. This Stage 2 review confirms the results of the prior review; (see Regulatory Instrument Review: Management of Aging of LWR Major Safety-Related Components NUREG/CR-5490. The observations indicate that the regulations generally address management of age-related degradation indirectly. Specific age-related degradation phenomena frequently are dealt with in bulletins and notices or through generic issues, letters, etc. The major recommendation of this report, therefore, is that the regulatory instruments should more directly and explicitly address the aging phenomenon and the management of the age-related degradation process.

  20. A fracture mechanics approach for estimating fatigue crack initiation in carbon and low-alloy steels in LWR coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Park, H. B.; Chopra, O. K.


    A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of {Delta}J and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack tests had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values.

  1. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun, E-mail:; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun


    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility. - Highlights: • Cr and FeCrAl were coated onto Zr fuel cladding for light water nuclear reactors. • Mo layer between FeCrAl and Zr prevented inter-diffusion at high temperatures. • Coated claddings were tested under loss-of-cooling accident conditions. • Coating improved high-temperature oxidation resistance and mechanical properties.


    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Conder; Richard Skifton; Ralph Budwig


    Core bypass flow is one of the key issues with the prismatic Gas Turbine-Modular Helium Reactor, and it refers to the coolant that navigates through the interstitial, non-cooling passages between the graphite fuel blocks instead of traveling through the designated coolant channels. To determine the bypass flow, a double scale representative model was manufactured and installed in the Matched Index-of-Refraction flow facility; after which, stereo Particle Image Velocimetry (PIV) was employed to measure the flow field within. PIV images were analyzed to produce vector maps, and flow rates were calculated by numerically integrating over the velocity field. It was found that the bypass flow varied between 6.9-15.8% for channel Reynolds numbers of 1,746 and 4,618. The results were compared to computational fluid dynamic (CFD) pre-test simulations. When compared to these pretest calculations, the CFD analysis appeared to under predict the flow through the gap.

  3. Seismic Safety Margins Research Programs. Assessment of potential increases in risk due to degradation of steam generator and reactor coolant pump supports. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, M. P.; Wells, J. E.; Shieh, L. C.; Cover, L. E.; Streit, R. L.


    During the NRC licensing review for the North Anna Units 1 and 2 pressurized-water reactors (PWRs), questions were raised regarding the potential for low-fracture toughness of steam-generator and reactor-coolant-pump supports. Because other PWRs may face similar problems, this issue was incorporated into the NRC Program for Resolution of Generic Issues. The work described in this report was performed to provide the NRC with a quantitative evaluation of the value/impact implications of the various options of resolving the fracture-toughness question. This report presents an assessment of the probabilistic risk associated with nil-ductility failures of steam-generator and reactor-coolant-pump structural-support systems during seismic events, performed using the Seismic Safety Margins Research Program codes and data bases.

  4. An analytical method for determining heat transfer from power plant coolant in the Florida 'Boulder Zone'. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, M.; Van den Berg, A.J.


    An analytical solution to the heat transfer problem of dissipating the heat from 83F power plant coolant to 60F rock and sea water is presented. The problem considers the concept of injecting the coolant into the 'Boulder Zone,' the cavernous geological strata underlying all of South Florida, allowing a fresh water 'bubble' to form, and cool for 30 days, before being recirculated back to the plant. The solution revealed that the average temperature of the 'bubble' would be 68.3F with approximately 37% of the total water discharged at 61F and 17% at 83F. The remaining water, or approximately 46% would be a mixture at about 73.5F. (GRA)

  5. Post test calculation of the experiment `small break loss-of- coolant test` SBL-22 at the Finnish integral test facility PACTEL with the thermohydraulic code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Lischke, W.; Vandreier, B. [Univ. for Applied Sciences, Zittau/Goerlitz (Germany). Dept. of Nuclear Technology


    At the University for Applied Sciences Zittau/Goerlitz (FH) calculations for the verification of the ATHLET-code for reactors of type VVER are carried out since 1991, sponsored by the German Ministry for Education, Science and Technology (BMBF). The special features of these reactors in comparison to reactors of western countries are characterized by the duct route of reactor coolant pipes and the horizontal steam generators. Because of these special features, a check of validity of the ATHLET-models is necessary. For further verification of the ATHLET-code the post test calculation of the experiment SBL-22 (Small break loss-of-coolant test) realized at the finnish facility PACTEL was carried out. The experiment served for the examination of the natural circulation behaviour of the loop over a continuous range of primary side water inventory. 5 refs.

  6. Performance Evaluation of AI2O3/Water Nanofluid as Coolant in a Double-Tube Heat Exchanger Flowing under a Turbulent Flow Regime

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan


    Full Text Available Nanofluids are expected to be a promising coolant candidate in chemical processes for water waste remediation and heat transfer system size reduction. This paper focuses on the potential mass flowrate reduction in exchanger with a given heat exchange capacity using nanofluids. Al2O3 nanoparticles with diameters of 7 nm dispersed in water with volume concentrations up to 2% are selected as a coolant, and their performance in a horizontal double-tube counterflow heat exchanger under turbulent flow conditions is numerically studied. The results show that the flowrate of nanofluid coolant decreases with the increase of concentration of nanoparticles in the exchanger with a given heat exchange capacity. The mass flowrate of the nanofluid at a volume concentration of 2 vol.% is approximately 24.5% lower than that of pure water (base fluid for given conditions. For the pressure drop, the results show that the pressure drop of nanofluid is slightly higher than water and increases with increase of volume concentrations. In addition, the reduction of wall temperature and heat transfer area is estimated.

  7. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks (United States)

    Fesmire, J. E.; Sass, J.


    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  8. Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.

    Energy Technology Data Exchange (ETDEWEB)

    Tzanos, C. P.; Dionne, B. (Nuclear Engineering Division)


    To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D

  9. The radionuclides of primary coolant in HANARO and the recent activities performed to reduce the radioactivity or reactor pool water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [HANARO Research Reactor Centre, Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)


    In HANARO reactor, there have been activities to identify the principal radionuclides and to quantify them under the normal operation. The purposes of such activities were to establish the measure by which we can reduce the radioactivity of the reactor pool water and detect, in early stage, the abnormal symptoms due to the leakage of radioactive materials from the irradiation sample or the damage of the nuclear fuel, etc. The typical radionuclides produced by the activation of reactor coolant are N{sup 16} and Ar{sup 41}. The radionuclides produced by the activation of the core structural material consist of Na{sup 24}, Mn{sup 56}, and W{sup 187}. Of the various radionuclides, governing the radiation level at the pool surface are Na{sup 24}, Ar{sup 41}, Mn{sup 58}, and W{sup 187}. By establishing the hot water layer system on the pool surface, we expected that the radionuclides such as Ar{sup 41} and Mn{sup 56} whose half-life are relatively short could be removed to a certain extent. Since the content of radioactivity of Na{sup 24} occupies about 60% of the total radioactivity, we assumed that the total radiation level would be greatly reduced if we could decrease the radiation level of Na{sup 24}. However the actual radiation level has not been reduced as much as we expected. Therefore, some experiments have been carried out to find the actual causes afterwards. What we learned through the experiments are that any disturbance in reactor pool water layer causes increase of the pool surface radiation level and even if we maintain the hot water layer well, reactor shutdown will be very much likely to happen once the hot water layer is disturbed. (author)

  10. A study on removal of cobalt from the primary coolant by continuous electrode-ionization with various conducting spacers

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, K.H.; Song, J.H.; Moon, S.H. [Department of Environmental Science and Engineering, Kwangju Inst. of Science and Technology (K-JIST) (Korea, Republic of)


    CEDI is a hybrid separation system of electrodialysis and ion exchange processes. This system does not require chemicals to regenerate the ion exchange resin and to concentrate the wastewater. In a CEDI system, the ion exchange resin bed plays a major role in the reduction of the high electrical resistance in the dilute compartment, while the ion exchange membranes lead to depletion and concentration of the solutions in the dilute compartment and concentrate compartment, respectively. The production of high purity water in the primary coolant of a nuclear power plant was investigated using a CEDI process along with various ion-conducting spacers, such as an ion exchange resin (IX), polyurethane-coated ion exchange beads (IEPU), and an ion exchange textile (IET). The ion exchange resin was introduced into the ion-depleting compartments of an electrodialysis (ED) stack, and has been used to reduce the electrical resistance of the stack since ED cannot be applied economically to the treatment of dilute solutions due to their high electrical resistances and the development of the polarization phenomena. However, packing the resin beads in the compartment and assembling the stack is laborious work, while attaining a free flowing solution is difficult because the resin beads are driven downward by gravity in the diluted compartment. Nevertheless, a resin-packed ED stack has recently been developed by Millipore, and is now commercially available from U.S. Filter as industrial units. We set out to prepare improved ion-conducting materials suitable for use in CEDI stacks. To this end, IEPU was prepared using a blending method that produces mixtures of resin beads and powder by allophanate/biuret cross-linking. IET was prepared by the radiation grafting of styrene-fulfonic acid or trimethyl-ammonium chloride onto polypropylene non-woven fabric. (authors)

  11. Structural safety of coolant channel components under excessively high pressure tube diametral expansion rate at garter spring location

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, M. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sinha, S.K., E-mail: [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)


    Structural safety of coolant channel assembly in the event of high diametral expansion of pressure tube in a 220 MWe pressurised heavy water reactor was investigated using axisymmetric and 3-D finite element models. The axisymmetric analyses were performed and stresses were evaluated for pressure tube, girdle wire and calandria tube at different point of time for diametral expansion rates of 0.2%, 0.25% and 0.3% per year of the pressure tube inside diameter. The results of this study indicated that for the case of 0.3% per year of diametral expansion rate (worst case scenario), occurrence of complete circumferential interference of garter spring with calandria tube at the location of maximum expansion would take place much earlier at around 14 years or 4.2% of the total expansion of pressure tube as opposed to its anticipated design life (30 years). This fact was further corroborated by 3-D finite element analysis performed for the actual assembly configuration under actual loadings. The latter analysis revealed that net section yielding of calandria tube occurs in just 1 year after the occurrence of total circumferential interference between calandria tube and garter spring spacer. It has also been observed that the maximum stress intensity in girdle wire does not increase beyond the ultimate tensile strength even when maximum stress intensity in calandria tube reaches its yield strength. These analyses also revealed that the structural as well as functional integrity of pressure tube and the garter spring is not affected as result of this interference.

  12. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, S. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, A. D. [US Nuclear Regulatory Commission (NRC), Washington, DC (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, M. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  13. Extended Life Coolant Testing (United States)


    commercial company, product, process, or service by trade name, trademark , manufacturer, or otherwise, does not necessarily constitute or imply its...improper Army association or emblem usage considerations. All other legal considerations are the responsibility of the author and his/her/their...1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law , no

  14. CFD analysis of the impingement cooling effect of the coolant jet caused by the T56 1st stage disc metering hole

    CSIR Research Space (South Africa)

    Snedden, Glen C


    Full Text Available the cavities via metering holes drilled through the curvic-coupling web. As a result of physical restrictions during the manufacturing process these holes are angled toward the face of the disc and result in flow impinging on the rear surface of the 1st... in the life assessment process, which was being redone as a result of user concern over the reduction in life of the disc assembly components. In order to determine the effect of the coolant impingement on the back of the 1st stage disc a CFD analysis...

  15. Predicting the conditions under which vibroacoustic resonances with external periodic loads occur in the primary coolant circuits of VVER-based NPPs (United States)

    Proskuryakov, K. N.; Fedorov, A. I.; Zaporozhets, M. V.


    The accident at the Japanese Fukushima Daiichi nuclear power plant (NPP) caused by an earthquake showed the need of taking further efforts aimed at improving the design and engineering solutions for ensuring seismic resistance of NPPs with due regard to mutual influence of the dynamic processes occurring in the NPP building structures and process systems. Resonance interaction between the vibrations of NPP equipment and coolant pressure pulsations leads to an abnormal growth of dynamic stresses in structural materials, accelerated exhaustion of equipment service life, and increased number of sudden equipment failures. The article presents the results from a combined calculation-theoretical and experimental substantiation of mutual amplification of two kinds of external periodic loads caused by rotation of the reactor coolant pump (RCP) rotor and an earthquake. The data of vibration measurements at an NPP are presented, which confirm the predicted multiple amplification of vibrations in the steam generator and RCP at a certain combination of coolant thermal-hydraulic parameters. It is shown that the vibration frequencies of the main equipment may fall in the frequency band corresponding to the maximal values in the envelope response spectra constructed on the basis of floor accelerograms. The article presents the results from prediction of conditions under which vibroacoustic resonances with external periodic loads take place, which confirm the occurrence of additional earthquake-induced multiple growth of pressure pulsation intensity in the steam generator at the 8.3 Hz frequency and additional multiple growth of vibrations of the RCP and the steam generator cold header at the 16.6 Hz frequency. It is shown that at the elastic wave frequency equal to 8.3 Hz in the coolant, resonance occurs with the frequency of forced vibrations caused by the rotation of the RCP rotor. A conclusion is drawn about the possibility of exceeding the design level of equipment vibrations

  16. Effect of Proton Irradiation on the Corrosion Behaviors of Ferritic/Martensitic Steel in Liquid Metal Environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeonghyeon; Kim, Tae Yong; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)


    Liquid metal fast breeder reactors (LMFBRs) such as sodium-cooled fast reactor (SFR) and lead-cooled fast reactor (LFR) are the candidates of GEN-IV nuclear energy systems. Among various liquid metals that can be used as primary coolant material, sodium is a world widely used coolant for GEN-IV reactors. In this study, as-received Gr.92 and irradiated Gr.92 specimen in the oxygen-saturated liquid sodium were examined at high temperature for 300h. The microstructure results reveal the information of the effect of irradiation and effect of the chrome concentration in specimen. From the SRIM result, penetration distance of 40 μm in stainless steel and nominal sample thickness of 30 μm was used to avoid the damage peak and any proton implantation and From the microstructural evaluation, chromium-rich zones existed under the surface of the both of non-irradiated and irradiated materials. The irradiated materials showed chromium-rich zones with larger depths than the non-irradiated specimens.

  17. Development of a liquid Pb-Bi target for high-power ISOL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Houngbo, D., E-mail: [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Department of Flow, Heat and Combustion Mechanics, Ghent University (UGent), St.-Pietersnieuwstraat 41, B-9000 Gent (Belgium); Bernardes, A.P. [CERN, 1211 Geneva 23 (Switzerland); David, J.C. [CEA/Saclay, 91191 Gif-sur-Yvette cedex (France); Delonca, M. [CERN, 1211 Geneva 23 (Switzerland); IRTES-M3M & IRTES-LERMPS, Université de Technologie de Belfort-Montbeliard, 90010 Belfort Cedex (France); Kravalis, K. [Institute of Physics of University of Latvia (IPUL), 32 Miera iela, Salaspils LV-2169 (Latvia); Lahiri, S. [Saha Institute of Nuclear Physics 1/AF Bidhannagar, Kolkata 700064 (India); Losito, R.; Maglioni, C. [CERN, 1211 Geneva 23 (Switzerland); Marchix, A. [CEA/Saclay, 91191 Gif-sur-Yvette cedex (France); Mendonca, T.M. [CERN, 1211 Geneva 23 (Switzerland); Popescu, L. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Schumann, D. [Paul Scherrer Institute (PSI), 5232 Villigen PSI (Switzerland); Schuurmans, P. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Stora, T.; Vollaire, J. [CERN, 1211 Geneva 23 (Switzerland); Vierendeels, J. [Department of Flow, Heat and Combustion Mechanics, Ghent University (UGent), St.-Pietersnieuwstraat 41, B-9000 Gent (Belgium)


    This paper describes some R&D activities conducted in support of the design and safe operation of a high-power liquid Pb-Bi target within the LIEBE (Liquid Eutectic Lead Bismuth Loop Target for EURISOL) project. The target material is lead bismuth eutectic (LBE) which also acts as a primary coolant. As a consequence of interaction of the highly pulsed 1.4-GeV protons at ISOLDE with the target, heat powers of the order of 2 GW would be instantaneously deposited in the target during a bunch. Considerable R&D effort is thus required to demonstrate its continued coolability and structural integrity. This paper mainly reports on the conjugate flow (CFD) and heat deposition (Monte Carlo) calculations, not accounting for Fluid–Structure Interactions.

  18. Optimal estimate of the coolant flow in the assemblies of a BWR of natural circulation in real time; Estimacion optima del flujo de refrigerante en los ensambles de un BWR de circulacion natural en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, Facultad de Ingenieria, Division de Estudios de Posgrado, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)


    The present work exposes the design and the implementation of an advanced controller that allows estimating the coolant flow in the fuel assemblies of a BWR reactor of natural circulation in real time. To be able to reduce the penalizations that are established in the calculations of the operation limits due to the magnitude of the uncertainties in the coolant flows of a natural circulation reactor, is the objective of this research. In this work the construction of the optimal controller that allows estimating the coolant flows in a fuel channels group of the reactor is shown, as well as the operation of this applied to a reduced order model that simulates the dynamics of a natural circulation reactor. The controller design required of an estimator of the valuation variables not directly of the plant and of the estimates use of the local distributions of the coolant flow. The controller construction of the estimator was based mathematically in the filter Kalman whose algorithm allows to be carried out an advanced control of the system. To prove the estimator operation was development a simplified model that reproduces the basic dynamics of the flowing coolant in the reactor, which works as observer of the system, this model is coupled by means of the estimator controller to a detail model of the plant. The results are presented by means of graphics of the interest variables and the estimate flow, and they are documented in the chart that is presented at the end of this article. (Author)

  19. Specifics of high-temperature sodium coolant purification technology in fast reactors for hydrogen production and other innovative applications

    Directory of Open Access Journals (Sweden)

    F.A. Kozlov


    Full Text Available In creating a large-scale atomic-hydrogen power industry, the resolution of technological issues associated with high temperatures in reactor plants (900°C and large hydrogen concentrations intended as long-term resources takes on particular importance. The paper considers technological aspects of removing impurities from high-temperature sodium used as a coolant in the high-temperature fast reactor (BN-HT 600MW (th. intended for the production of hydrogen as well as other innovative applications. The authors examine the behavior of impurities in the BN-HT circuits associated with the mass transfer intensification at high temperatures (Arrhenius law in different operating modes. Special attention is given to sodium purification from hydrogen, tritium and corrosion products in the BN-HT. Sodium purification from hydrogen and tritium by their evacuation through vanadium or niobium membranes will make it possible to develop compact highly-efficient sodium purification systems. It has been shown that sodium purification from tritium to concentrations providing the maximum permissible concentration of the produced hydrogen (3.6Bq/l according to NRB-99/2009 specifies more stringent requirements to the hydrogen removal system, i.e., the permeability index of the secondary tritium removal system should exceed 140kg/s. Provided that a BN-HN-type reactor meets these conditions, the bulk of tritium (98% will be accumulated in the compact sodium purification system of the secondary circuit, 0.6% (∼ 4·104Bq/s, will be released into the environment and 1.3% will enter the product (hydrogen. The intensity of corrosion products (CPs coming into sodium is determined by the corrosion rate of structural materials: at a high temperature level, a significant amount of corrosion products flows into sodium. The performed calculations showed that, for the primary BN-HT circuit, the amount of corrosion products formed at the oxygen concentration in sodium of 1mln

  20. Research of the fluid flow in a radially orientated coolant channel of a turbine blade; Untersuchung der Stroemung in einem radial gerichteten Kuehlkanal eines Turbinenlaufrades

    Energy Technology Data Exchange (ETDEWEB)

    Hein, O.


    Due to rotation (Coriolis forces) in a coolant channel a secondary flow is superimposed to the basic flow. This leads to a change in the local heat transfer over the surface of the coolant channel as well as a change in the overall value of the heat transfer. Also the pressure loss over the channel length will change by rotation. By means of computational fluid dynamics (Finite Element Method) it was achieved to figure out the interaction between changing fluid flow and heat transfer. To validate the results obtained by a numerical flow simulation, a new measurement technique was developed. A laser-two-focus velocimeter has been combined with a rotation prism which allows continued measurements in a rotating scaled up channel. (orig.) [German] Bedingt durch die Rotationsbewegung eines Kuehlkanals wird die Grundstroemung von einem Sekundaerwirbel ueberlagert (Corioliskraefte). Durch diese Einfluesse aendert sich sowohl der lokale Waermeuebergang ueber der Kanaloberflaeche als auch die globalen Waermeuebertragungsraten ueber dem gesamten Kanal. Ebenfalls aendert sich durch die Rotation der Druckverlust ueber der Kanallaenge. Durch eine numerische Stroemungssimulation (Finite-Element-Methode) war es moeglich, einen detaillierten Zusammenhang zwischen dem veraenderten Stroemungsverhalten und dem Waermeuebertragungsverhalten darzustellen. Um die numerisch gewonnenen Ergebnisse experimentell abzusichern, wurde eine neuartige Messtechnik entwickelt. Ein Laser-2-Fokus-Velozimeter wurde mit einem Bilddrehprisma kombiniert, und dies erlaubte eine kontinuierliche Messung in einem rotierenden vergroesserten Modellkanal. (orig.)

  1. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seon Oh; Cho, Yong Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Sung Joong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)


    The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  2. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Directory of Open Access Journals (Sweden)

    Seon Oh Yu


    Full Text Available The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  3. Conducting water chemistry of the secondary coolant circuit of VVER-based nuclear power plant units constructed without using copper containing alloys (United States)

    Tyapkov, V. F.


    The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.

  4. Effects of Specific Fuel Consumption and Exhaust Emissions of Four Stroke Diesel Engine with CuO/Water Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Senthilraja S.


    Full Text Available This article reports the effects of CuO/water based coolant on specific fuel consumption and exhaust emissions of four stroke single cylinder diesel engine. The CuO nanoparticles of 27 nm were used to prepare the nanofluid-based engine coolant. Three different volume concentrations (i.e 0.05%, 0.1%, and 0.2% of CuO/water nanofluids were prepared by using two-step method. The purpose of this study is to investigate the exhaust emissions (NOx, exhaust gas temperature and specific fuel consumption under different load conditions with CuO/water nanofluid. After a series of experiments, it was observed that the CuO/water nanofluids, even at low volume concentrations, have a significant influence on exhaust emissions. The experimental results revealed that, at full load condition, the specific fuel consumption was reduced by 8.6%, 15.1% and 21.1% for the addition of 0.05%, 0.1% and 0.2% CuO nanoparticles with water, respectively. Also, the emission tests were concluded that 881 ppm, 853 ppm and 833 ppm of NOx emissions were observed at high load with 0.05%, 0.1% and 0.2% volume concentrations of CuO/water nanofluids, respectively.

  5. PACER -- A fast running computer code for the calculation of short-term containment/confinement loads following coolant boundary failure. Volume 2: User information

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J.J. [Argonne National Lab., IL (United States). Reactor Engineering Div.


    A fast running and simple computer code has been developed to calculate pressure loadings inside light water reactor containments/confinements under loss-of-coolant accident conditions. PACER was originally developed to calculate containment/confinement pressure and temperature time histories for loss-of-coolant accidents in Soviet-designed VVER reactors and is relevant to the activities of the US International Nuclear Safety Center. The code employs a multicompartment representation of the containment volume and is focused upon application to early time containment phenomena during and immediately following blowdown. PACER has been developed for FORTRAN 77 and earlier versions of FORTRAN. The code has been successfully compiled and executed on SUN SPARC and Hewlett-Packard HP-735 workstations provided that appropriate compiler options are specified. The code incorporates both capabilities built around a hardwired default generic VVER-440 Model V230 design as well as fairly general user-defined input. However, array dimensions are hardwired and must be changed by modifying the source code if the number of compartments/cells differs from the default number of nine. Detailed input instructions are provided as well as a description of outputs. Input files and selected output are presented for two sample problems run on both HP-735 and SUN SPARC workstations.

  6. From Funding Liquidity to Market Liquidity

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Lund, Jesper; Gyntelberg, Jacob

    This paper shows empirically that funding liquidity drives market liquidity. As it becomes harder to secure term funding in the money markets, liquidity deteriorates in the Danish bond market. We show that the first principal component of bond market liquidity is driven by the market makers......' ability to obtain funding. This effect holds true across both long and short term, government and covered bonds. We use MiFID data which provides a complete transaction level dataset for the Danish market covering both the subprime crisis and the Euro sovereign crisis. Furthermore, we verify the findings...... for other European government bonds using MTS data. The findings suggest that regulatory bond based liquidity buffers for banks will have limited effectiveness....

  7. Liquid Effluent Retention Facility (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  8. Generic study on the relation between contamination if primary coolants and occupational radiation exposure in nuclear power plants with PWR. Final report; Generische Studie zum Zusammenhang zwischen Kontamination von Primaerkreislaufmedien und beruflicher Strahlenexposition bei Kernkraftwerken mit Druckwasserreaktor. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Andreas; Bruhn, Gerd; Schneider, Sebastian [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany); Strub, Erik [Koeln Univ. (Germany)


    A generic model for the primary cooling system contamination in pressurized water reactors and the resulting radiological consequences has been developed. The functional capability was demonstrated by means of three examples concerning manipulation procedures during revision outages. Activities at the main reactor coolant pumps were studied and the influence of the coolant contamination on the resulting dose rates and collective doses were calculated. The effect of a Co-90 hot spot in a more remote area on the radiation exposure during the specific action at the reactor pumps was considered.

  9. Instantaneous Liquid Interfaces


    Willard, Adam P.; Chandler, David


    We describe and illustrate a simple procedure for identifying a liquid interface from atomic coordinates. In particular, a coarse grained density field is constructed, and the interface is defined as a constant density surface for this coarse grained field. In applications to a molecular dynamics simulation of liquid water, it is shown that this procedure provides instructive and useful pictures of liquid-vapor interfaces and of liquid-protein interfaces.

  10. Basic research on nonlinear instability phenomena of liquid surface. Fiscal year 1996 report on preceding basic engineering field

    Energy Technology Data Exchange (ETDEWEB)

    Madarame, Haruki; Okamoto, Koji [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Iida, Masao


    Various nonlinear behaviors caused by nonlinear boundary conditions have been observed, and it is feared that in large vessels like FBRs, the instability phenomena such as self-exciting sloshing may occur in the free liquid surface of coolant. In this research, the nonlinear instability phenomena in free liquid surface were examined by the basic experiment and the analysis. As to the self-exciting oscillation `jet flutter` of upward plane jet that collides against liquid surface, in order to know the mechanism of determining the frequency and supplying energy, the amplitude and phase relation of various variable quantities were investigated. The simplified model for calculating the displacement of jet was made, and compared with the experiment. The jet flutter phenomena are explained. The interaction of free liquid surface and turbulent flow, which is important for considering the nonlinearity in free liquid surface, was measured by LDV and visualization, and the turbulent flow phenomena in free liquid surface were investigated. In the experiment, turbulent flow energy was given to the free liquid surfaces of water and polymers, and the effect that the Toms effect exerted to interface turbulent flow was observed. The results of these studies are reported. (K.I.)

  11. Crystalline Kitaev spin liquids (United States)

    Yamada, Masahiko G.; Dwivedi, Vatsal; Hermanns, Maria


    Frustrated magnetic systems exhibit many fascinating phases. Prime among them are quantum spin liquids, where the magnetic moments do not order even at zero temperature. A subclass of quantum spin liquids called Kitaev spin liquids are particularly interesting, because they are exactly solvable, can be realized in certain materials, and show a large variety of gapless and gapped phases. Here we show that nonsymmorphic symmetries can enrich spin liquid phases, such that the low-energy spinon degrees of freedom form three-dimensional Dirac cones or nodal chains. In addition, we suggest a realization of such Kitaev spin liquids in metal-organic frameworks.

  12. Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

    Directory of Open Access Journals (Sweden)

    Sergey Perevoznikov


    Full Text Available In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium–water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas–liquid flow model (sodium–hydrogen–sodium hydroxide. Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

  13. Overview of the Use of ATHENA for Thermal-Hydraulic Analysis of Systems with Lead-Bismuth Coolant

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee; Shieh, Arthur Shan Luk


    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  14. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis; A. S. Shieh


    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  15. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety


    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  16. Experimental and numerical investigation of coolant mixing in a model of reactor pressure vessel down-comer and in cold leg inlets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin


    Full Text Available Thermal fatigue and pressurized thermal shock phenomena are the main problems for the reactor pressure vessel and the T-junctions both of them depend on the mixing of the coolant. The mixing process, flow and temperature distribution has been investigated experimentally using particle image velocimetry, laser induced fluorescence, and simulated by CFD tools. The obtained results showed that the ratio of flow rate between the main pipe and the branch pipe has a big influence on the mixing process. The particle image velocimetry/planar laser-induced fluorescence measurements technologies proved to be suitable for the investigation of turbulent mixing in the complicated flow system: both velocity and temperature distribution are important parameters in the determination of thermal fatigue and pressurized thermal shock. Results of the applied these techniques showed that both of them can be used as a good provider for data base and to validate CFD results.

  17. Potential for low fracture toughness and lamellar tearing on PWR steam generator and reactor coolant pump supports. Resolution of generic technical activity A-12

    Energy Technology Data Exchange (ETDEWEB)

    Snaider, R.P.; Hodge, J.M.; Levin, H.A.; Zudans, J.J.


    This report summarizes work performed by the Nuclear Regulatory Commission staff and its contractor, Sandia Laboratories, in the resolution of Generic Technical Activity A-12, ''Potential for Low Fracture Toughness and Lamellar Tearing in PWR Steam Generator and Reactor Coolant Pump Supports.'' The report describes the technical issues, the technical studies performed by Sandia describes the technical issues, the technical studies performed by Sandia Laboratories, the NRC staff's technical positions based on these studies, and the staff's plan for implementing its technical positions. It also provides recommendations for further work. The complete technical input from Sandia Laboratories is appended to the report.

  18. Effect of Coolant Inventories and Parallel Loop Interconnections on the Natural Circulation in Various Heat Transport Systems of a Nuclear Power Plant during Station Blackout

    Directory of Open Access Journals (Sweden)

    Avinash J. Gaikwad


    Full Text Available Provision of passive means to reactor core decay heat removal enhances the nuclear power plant (NPP safety and availability. In the earlier Indian pressurised heavy water reactors (IPHWRs, like the 220 MWe and the 540 MWe, crash cooldown from the steam generators (SGs is resorted to mitigate consequences of station blackout (SBO. In the 700 MWe PHWR currently being designed an additional passive decay heat removal (PDHR system is also incorporated to condense the steam generated in the boilers during a SBO. The sustainability of natural circulation in the various heat transport systems (i.e., primary heat transport (PHT, SGs, and PDHRs under station blackout depends on the corresponding system's coolant inventories and the coolant circuit configurations (i.e., parallel paths and interconnections. On the primary side, the interconnection between the two primary loops plays an important role to sustain the natural circulation heat removal. On the secondary side, the steam lines interconnections and the initial inventory in the SGs prior to cooldown, that is, hooking up of the PDHRs are very important. This paper attempts to open up discussions on the concept and the core issues associated with passive systems which can provide continued heat sink during such accident scenarios. The discussions would include the criteria for design, and performance of such concepts already implemented and proposes schemes to be implemented in the proposed 700 MWe IPHWR. The designer feedbacks generated, and critical examination of performance analysis results for the added passive system to the existing generation II & III reactors will help ascertaining that these safety systems/inventories in fact perform in sustaining decay heat removal and augmenting safety.


    Directory of Open Access Journals (Sweden)

    S. T. Antipov


    Full Text Available The technical task of the process is to improve the drying quality of the final product, increasing the precision and reliability of control, the reduction of specific energy consumption. One of the ways to improve the process is complex and i ts local automation. This paper deals with the problems of development and creation of a new control algorithm drying process of the particulate material. Identified a number of shortcomings of the existing methods of automatic control of the process. As a result, the authors proposed a method for drying particulate materials in the device with swirling flow and the microwave energy supply and its automatic control algorithm. The description of the operating principle of the drying apparatus consists in that the particulate material is wet by using a tangential flow of coolant supplied to the cylinder-drying apparatus which also serves the axial coolant flow, whereby the heat transfer fluid with the particulate material begins to undergo a complex circular movement along the circumference apparatus, thereby increasing its speed and its operation control algorithm. The work of this scheme is carried out at three levels of regulation on the basis of determining the coefficient of efficiency of the dryer, which makes it possible to determine the optimal value of the power equipment and to forecast the cost of electricity. All of the above allows you to get ready for a high quality product while minimizing thermal energy and material costs by optimizing the operating parameters of the drying of the particulate material in the dryer with a combined microwave energy supply and ensure the rational use of heat energy by varying their quantity depending on the characteristics to be dried particulate material and the course of the process.

  20. Comparison of MCNP4B and WIMS-AECL calculations of coolant-void-reactivity effects for uniform lattices of CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S


    This paper compares the results of coolant-void reactivity (CVR) reactor-physics calculations performed using the Monte Carlo N-particle transport code, MCNP version 4B, with those obtained using Atomic Energy of Canada Limited's (AECL's) latest version of the Winfrith improved multigroup scheme (WIMS) code, WIMS-AECL version 2-5c. Cross sections derived from the evaluated nuclear data file version B-VI (ENDF/B-VI) are used for both the WIMS-AECL and MCNP4B calculations. The comparison is made for uniform lattices at room temperature containing either fresh natural uranium or mixed oxide (MOX) 37-element CANDU fuel. The MOX fuel composition corresponds roughly to that of irradiated CANDU fuel at a burnup of about 4500 MWd/tU. The level of agreement between the CVR predictions of WIMS-AECL and MCNP4B is studied as a function of lattice buckling (a measure of the curvature of the neutron-flux distribution) over the range from 0.0 to 4.1 m{sup -2} . For the cases studied, it is found that the absolute k values calculated by WIMS-AECL are higher than those of MCNP4B by several mk (1 mk is a change of 0.001 in k), amounts that depend on the fuel type being modelled and the particular cross-section data used. However, the agreement between WIMS-AECL and MCNP4B is much better for the CVR (i.e., the {delta}k on coolant voiding), and is relatively insensitive to the fuel type. (author)

  1. Commissioning of the STAR test section for experimental simulation of loss of coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maprelian, Eduardo; Torres, Walmir M.; Prado, Adelk C.; Umbehaun, Pedro E.; Franca, Renato L.; Santos, Samuel C.; Macedo, Luiz A.; Sabundjian, Gaiane, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SO (Brazil)


    The three basic safety functions of Research Reactors (RR) are the safe shutdown of the reactor, the proper cooling of the decay heat of the fuel elements and the confinement of radioactive materials. Compared to Nuclear Power Reactors, RR power release is small, yet its three safety functions must be met to ensure the integrity of the reactor. During a loss of coolant accident (LOCA) in pool type RR, partial or complete loss of pool water may occur, with consequent partial or complete uncovering of the fuel assemblies. In such an accident, the decay heat removal safety function must not be compromised. The Test Section for Experimental Simulation of Loss of Coolant Accident (STAR) is in commissioning phase. This test section will provide experimental data on partial and total uncovering of the EC-208 instrumented fuel assembly (IFA) irradiated in the IEA-R1. Experimental results will be useful in validation of computer codes for RR safety analysis, particularly on heat removal efficiency aspects (safety function) in accident conditions. STAR comprises a base on which is installed the IFA, the cylindrical stainless steel hull, the compressed air system for the test section emptying and refilling, and the instrumentation for temperature and level measurements. The commissioning tests or pre-operational check, consist of several preliminary tests to verify experimental procedures, the difficulties during assembling of STAR in the pool, the difficulties in control the emptying and refilling velocities, as well as, the repeatability capacity, tests of equipment, valves and systems and tests of instrumentation and data acquisition system. Safety, accuracy and easiness of operation will be checked. (author)

  2. Development of preliminary design program for combustor of regenerative cooled liquid rocket engine (United States)

    Cho, Won Kook; Seol, Woo Seok; Son, Min; Seo, Min Kyo; Koo, Jaye


    An integrated program was established to design a combustor for a liquid rocket engine and to analyze regenerative cooling results on a preliminary design level. Properties of burnt gas from a kerosene-LOx mixture in the combustor and rocket performance were calculated from CEA which is the code for the calculation of chemical equilibrium. The heat transfer of regenerative cooling was analyzed by using SUPERTRAPP code for coolant properties and by one-dimensional correlations of the heat transfer coefficient from the combustor liner to the coolant. Profiles of the combustors of F-1 and RS-27A engines were designed from similar input data and the present results were compared to actual data for validation. Finally, the combustors of 30 tonf class, 75 tonf class and 150 tonf class were designed from the required thrust, combustion chamber, exit pressure and mixture ratio of propellants. The wall temperature, heat flux and pressure drop were calculated for heat transfer analysis of regenerative cooling using the profiles.


    Whatley, M.E.; Woods, W.M.


    This invention relates to liquid-liquid extraction systems. The invention, an improved hydroclone system, comprises a series of serially connected, axially aligned hydroclones, each of which is provided with an axially aligned overflow chamber. The chambers are so arranged that rotational motion of a fluid being passed through the system is not lost in passing from chamber to chamber; consequently, this system is highly efficient in contacting and separating two immiscible liquids. (AEC)

  4. Quantum Spin Liquids


    Savary, Lucile; Balents, Leon


    Quantum spin liquids may be considered "quantum disordered" ground states of spin systems, in which zero point fluctuations are so strong that they prevent conventional magnetic long range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local e...

  5. Remotely controllable liquid marbles

    KAUST Repository

    Zhang, Lianbin


    Liquid droplets encapsulated by self-organized hydrophobic particles at the liquid/air interface - liquid marbles - are prepared by encapsulating water droplets with novel core/shell-structured responsive magnetic particles, consisting of a responsive block copolymer-grafted mesoporous silica shell and magnetite core (see figure; P2VP-b-PDMS: poly(2-vinylpyridine-b- dimethylsiloxane)). Desirable properties of the liquid marbles include that they rupture upon ultraviolet illumination and can be remotely manipulated by an external magnetic field. 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development


    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  7. A thermal-hydraulic drift-flux based mixture-fluid model for the description of single- and two-phase flow along a general coolant channel

    Energy Technology Data Exchange (ETDEWEB)

    Alois Hoeld [Bernaysstr. 16A, D-80937 Munich (Germany)


    Full text of publication follows: Different to the very simple class of homogeneous non-equilibrium models (HEM) an one dimensional thermal-hydraulic theoretical drift-flux based and thus non-homogeneous coolant channel model and, as a result, an in itself complete thermal-hydraulic coolant channel module CCM have been established allowing to simulate in a very general way the steady state and transient behaviour of the most important parameters of a single- or two-phase fluid flowing within any type of heated or non-heated coolant channel (with an eventually varying cross flow area). To avoid mathematical discontinuities at the transition from single- to two-phase flow the coolant channel will, in its general form, be split into different regions, i.e. be looked as a basic channel (BC) which can consist of a number of different flow regimes and can, accordingly, be subdivided into a number of sub-channels (SC-s). All of them belong, obviously, to only two types of SC-s, a SC with an only single-phase or two-phase flow regime separated by corresponding time-dependent phase boundaries. After a nodalization of the BC (and thus the corresponding SC-s) and applying a 'modified finite element method' for the spatial discretization of the partial differential eqs. (PDE-s) representing the conservation equations of thermal-hydraulics and after taking into account the initial and boundary conditions together with the additional constitutive equations a set of non-linear ordinary differential equations (ODE-s) of 1-st order can be derived for each SC type (and thus also the entire BC). Since during a transient a SC boundary can cross the BC node boundaries (so that a SC can eventually shrink to an only single node or even disappear or be created anew) special attention had to be given to the possibility of variable entrance or outlet positions (representing boiling boundaries or mixture levels). A special quadratic polygon approximation procedure (PAX) had to be

  8. An overview of IPPE research on liquid metal fast reactor thermohydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A. P.; Efanov, A. D.; Zhukov, A. V.; Bogoslovskaia, G. P. [SSC RF-IPPE, Kaluga (Russian Federation)


    The paper presents brief information on the most significant researches in the fields of liquid metal hydrodynamics and heat transfer performed in the State Scientific Center of Russian Federation 'Institute for Physics and Power Engineering' named after A.I.Leypunski applied to sodium-cooled fast reactors. Experimental methods for studying liquid metal thermohydraulics and applied measurement techniques are overviewed briefly in the paper. Some results of fundamental thermohydraulic investigations, such as quasi-universal character of velocity and temperature profile in liquid metals, if considered normally to the channel wall etc. are presented. Specific features of heat transfer in liquid metal cooled fuel subassembly are mentioned, among them there are: high level of coolant temperature; significant influence of an interchannel exchange on velocity and temperature distribution; an availability of contact thermal resistance; large azimuthal non-uniformity of velocity and temperature; 'conjugate' problem of heat transfer in combined geometry of fuel pin; an absence of stabilization of heat transfer in non-standard channels; an influence of non-uniform heat generation. Special attention is given to the temperature fields in fuel subassembly subjected to deformation because of radioactive swelling and creeping, as well as in case of blockage of a part of subassembly cross section. Some results of thermohydraulic investigation are demonstrated for intermediate heat exchangers, pressurized head collectors. Also the developed methods and codes of thermohydraulic calculations applied to fast reactor core are considered: subchannel approach, porous body model.

  9. Thermotropic Ionic Liquid Crystals


    Sabine Laschat; Axenov, Kirill V


    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  10. Decimalization and market liquidity


    Craig Furfine


    This study examines the stocks of 1, 339 companies that began decimal trading on the NYSE on January 29, 2001. Using the price impact of a trade as a measure of liquidity, the author finds that decimalization typically led to an improvement in liquidity.

  11. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage


    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  12. Enantioseparation with liquid membranes

    NARCIS (Netherlands)

    Gössi, Angelo; Riedl, Wolfgang; Schuur, Boelo


    Chiral resolution of racemic products is a challenging and important task in the pharmaceutical, agrochemical, flavor, polymer and fragrances industries. One of the options for these challenging separations is to use liquid membranes. Although liquid membranes have been known for almost four decades

  13. The TIPS Liquidity Premium

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Christensen, Jens H.E.; Simon Riddell, Simon

    We introduce an arbitrage-free term structure model of nominal and real yields that accounts for liquidity risk in Treasury inflation-protected securities (TIPS). The novel feature of our model is to identify liquidity risk from individual TIPS prices by accounting for the tendency that TIPS, lik...

  14. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg


    applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  15. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.


    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  16. Diet - full liquid (United States)

    ... to your drinks Instant breakfast powder added to milk, puddings, custards, and milkshakes Strained meats (like the ones in baby food) added to broths Butter or margarine added to hot cereal and soups Sugar or syrup added to beverages Alternative Names Full liquid diet; Surgery - full liquid diet; ...

  17. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones (United States)

    Peterson, Per F.


    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  18. Experimental elaboration of liquid droplet cooler-radiator models under microgravity and deep vacuum conditions (United States)

    Koroteev, A. A.; Nagel, Yu. A.; Filatov, N. I.


    The basic results of space tests of liquid droplet cooler-radiator models as the main elements of frameless systems for low-grade heat rejection are considered. The studies carried out have been analyzed and intermediate elaboration's results are summarized, which concern (1) the development of generators of droplet propellant flows, (2) revealing an operational behavior of fluid collectors of various types and analysis of unsolved problems associated with droplet collection upon the open trajectory's section passage, and (3) provision of the coolant circulation contour's closing. The necessity is substantiated for the activization of works directed to carrying out space experiments with improved radiator models and new promising propellants in order to provide a possibility of creating new space power plants characterized by megawatt power levels.

  19. Liquid marbles: Physics and applications

    Indian Academy of Sciences (India)

    hydrophobic. Abstract. Liquid marbles are formed by encapsulating microscale volume of liquid in a particulate sheath. The marble thus formed is robust and resists rupture if the particulate layer covers the entire volume of liquid and prevents ...

  20. Effect of stratified coolant voiding on the reactivity and distribution of neutron flux of a CANDU-6 cell; Effet d'une vidange stratifiee du caloporteur sur la reactivite et la distribution du flux neutronique d'une cellule CANDU-6

    Energy Technology Data Exchange (ETDEWEB)

    Massicotte, M. [Ecole Polytechnique de Montreal, Dept. de genie physique, Montreal, Quebec (Canada)


    The fuel bundles of CANDU-6 reactor are inserted into horizontal tubes where heavy water coolant circulates. In case of a breach in the coolant circuit, coolant in the tube empties from the top to the bottom. This results in a rapid rise in the fuel temperature that can exceed the safety limits. Furthermore, the presence of a vacuum in the tube will affect the safety of the reactor. The computer code DRAGON developed at the Ecole Polytechnique de Montreal allows the analysis and simulations of such a scenario.

  1. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric Richard; Durbin, Samuel G


    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program provided data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.

  2. Effects of addition glycerol co-product of biodiesel in the thermophysical properties of water-glycerol solution applied as secondary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Pedro Samuel Gomes; Barbosa, Cleiton Rubens Formiga; Fontes, Francisco de Assis Oliveira [Federal University of Rio Grande do Norte, Natal, RN (Brazil). Energy Laboratory. Thermal Systems Studies Group], e-mail:


    This paper evaluates the effects of glycerol concentration on thermophysical properties of water-glycerol solution applied as a secondary coolant in refrigeration systems by expansion-indirect. The processing of triglycerides for biodiesel production generates glycerol as co-product and there are concerns of environmental and economic order on the surplus of glycerol. The addition of glycerol in water alters the colligative and thermophysical properties (melting point, mass, specific heat, thermal conductivity and dynamic viscosity). There are studies that prove the feasibility of using glycerol as an additive and this paper has the goal to verify the changes on properties compared with pure water. This comparison was made from data obtained by the software simulation and they analyzed using graphs and tables. It was shown that glycerol increases the density and dynamic viscosity, and reduces the specific heat and thermal conductivity. This behavior of water-glycerol solution is proportional to the mass concentration of glycerol and it is justified because the glycerol has low values of specific heat, thermal conductivity and high viscosity when compared with water. Despite the losses in the thermophysical properties, glycerol shows its potential application, because of the cryoscopic effect and it is a non-toxic substance at low cost. (author)

  3. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant. (United States)

    Yeon, Kyeong-Ho; Song, Jung-Hoon; Moon, Seung-Hyeon


    This study investigated the production of high-purity water in the primary coolant of a nuclear power plant via the continuous electrodeionization (CEDI) process, using ion exchange resins as ion-conducting media between ion exchange membranes. The effectiveness of this method was examined with respect to the removal of heavy metals. The study was carried out on a laboratory scale with an effective area of 20 cm(2). The CEDI system was operated with a layered bed of cation exchange resins, anion exchange resins, and mixed-bed ion exchange resins. The stack configuration was designed to prevent a reaction between metal ions and hydroxide ions. The CEDI operation with the layered bed removed more than 99% of the ions at 30% of the current efficiency. The results showed that, with an inlet conductivity of 40 microScm(-1), a linear velocity of 4.17 cms(-1), and an applied current density of 17 mAcm(-2), the CEDI process yielded an outlet conductivity of 0.5 microScm(-1), thereby preventing the precipitation of metal ions. This study therefore successfully demonstrated the feasibility of the CEDI operation for the removal of heavy metals at a very low concentration.

  4. Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

    Directory of Open Access Journals (Sweden)

    Omid Noori-Kalkhoran


    Full Text Available Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model. In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code’s results.

  5. Hydride precipitation, fracture and plasticity mechanisms in pure zirconium and Zircaloy-4 at temperatures typical for the postulated loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnikov, Anton, E-mail:; Stuckert, Juri; Walter, Mario


    Highlights: • All δ-hydrides in Zr and Zircaloy-4 have basal or pyramidal types of habit planes. • Seven orientation relationships for δ-hydrides in Zr matrix were detected. • Decohesion fracture mechanism of hydrogenated Zr was investigated by fractography. - Abstract: The results of investigations of samples of zirconium and its alloy Zircaloy-4, hydrogenated at temperatures 900–1200 K (typical temperatures for loss-of-coolant accidents) are presented. The analyses, based on a range of complementary techniques (X-ray diffraction, scanning electron microscopy, electron backscatter diffraction) reveals the direct interrelation of internal structure transformation and hydride distribution with the degradation of mechanical properties. Formation of small-scale zirconium hydrides and their bulk distribution in zirconium and Zircaloy-4 were investigated. Fractographical analysis was performed on the ruptured samples tested in a tensile machine at room temperature. The already-known hydrogen embrittlement mechanisms based on hydride formation and hydrogen-enhanced decohesion and the applicability of them in the case of zirconium and its alloys is discussed.

  6. Liquid Nicotine Toxicity. (United States)

    Kim, Ji Won; Baum, Carl R


    E-cigarettes, also known as electronic nicotine delivery systems and electronic cigarettes, are advertised as a healthier alternative product to tobacco cigarettes despite limited data on the consequences of e-cigarette use. Currently, there are no US Food and Drug Administration or other federal regulations of e-cigarettes, and calls to poison control centers regarding liquid nicotine toxicity, especially in children, are on the rise. This article presents the background and mechanism of action of e-cigarettes as well as up-to-date details of the toxicity of liquid nicotine. We also present management strategies in the setting of liquid nicotine toxicity.

  7. Liquid crystals fundamentals

    CERN Document Server

    Singh, Shri


    Liquid crystals are partially ordered systems without a rigid, long-range structure. The study of these materials covers a wide area: chemical structure, physical properties and technical applications. Due to their dual nature - anisotropic physical properties of solids and rheological behavior of liquids - and easy response to externally applied electric, magnetic, optical and surface fields liquid crystals are of greatest potential for scientific and technological applications. The subject has come of age and has achieved the status of being a very exciting interdisciplinary field of scienti

  8. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)


    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  9. Corrosion resistance investigation of vanadium alloys in liquid lithium (United States)

    Borovitskaya, I. V.; Lyublinskiy, I. E.; Bondarenko, G. G.; Paramonova, V. V.; Korshunov, S. N.; Mansurova, A. N.; Lyakhovitskiy, M. M.; Zharkov, M. Yu.


    A major concern in using vanadium alloys for first wall/blanket systems in fusion reactors is their activity with regard to nonmetallic impurities in the coolants. This paper presents the results of studying the corrosion resistance in high-purity liquid lithium (with the nitrogen and carbon content of less than 10-3 wt %) of vanadium and vanadium alloys (V-1.86Ga, V-3.4Ga-0.62Si, V-4.81Ti-4.82Cr) both in the initial state and preliminarily irradiated with Ar+ ions with energy of 20 keV to a dose of 1022 m-2 at an irradiation temperature of 400°C. The degree of corrosion was estimated by measuring the changes in the weight and microhardness. Corrosion tests were carried out under static isothermal conditions at a temperature of 600°C for 400 h. The identity of corrosion mechanisms of materials both irradiated with Ar ions and not irradiated, which consisted in an insignificant penetration of nitrogen into the materials and a substantial escape of oxygen from the materials, causing the formation of a zone with a reduced microhardness near the surface, was established. The influence of the corrosive action of lithium on the surface morphology of the materials under study was found, resulting in the manifestation of grain boundaries and slip lines on the sample surface, the latter being most clearly observed in the case of preliminary irradiation with Ar ions.

  10. Design analyses of self-cooled liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.


    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations.

  11. Qualification of tritium permeation barriers in liquid Pb-17Li

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, A. E-mail:; Ricapito, I.; Benamati, G.; Ciampichetti, A


    The reduction of tritium permeation from the Pb-17Li, or plasma, into the coolant is of crucial importance in order to reduce the radiological hazard in the steam generator vault as well as in the turbine/condenser area and to optimise the tritium balance in the reactor. The use of aluminium rich coatings has been selected as reference solution for the water cooled lithium lead (WCLL) blanket in order to produce reliable tritium permeation barriers (TPB). TPB qualification activities performed in the past allowed the selection of two reference deposition techniques, the chemical vapour deposition (CVD) process developed on laboratory scale by CEA, and the hot dipping (HD) process developed by FZK. On the basis of the results obtained in the past with the Corelli I-II devices, a new apparatus named Vivaldi was designed to perform comparative tests on two hollow cylindrical specimens in the same operating conditions. The performance of alumina coating on EUROFER 97 steel has been tested in gas and liquid metal phase. The obtained results in terms of permeated fluxes and permeation reduction factors (PRF) are herein presented and discussed. A post experiment examination of coatings was performed by use of optical and SEM microscopy.

  12. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae


    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  13. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hwang; Ryu, Sung Uk; Yi, Sung Jae; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dong Eok [Dept. of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)


    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  14. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine


    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  15. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant; Contribution a l'optimisation de la purification chimique et radiochimique du fluide primaire des centrales nucleaires a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Elain, L


    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag{sup +} ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH){sub 4}){sub 2}, LiB(OH){sub 4} and AgB(OH){sub 4} in medium B(OH){sub 3})), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  16. Liquid for plugging wells

    Energy Technology Data Exchange (ETDEWEB)

    Chernysheva, T.L.; Bal' tser, V.V.; Shul' gina, V.A.


    The purpose of the invention is to increase the viscosity of liquid used for plugging wells. The goal is achieved by the fact that the liquid also contains commercial-grade glycerine and mono-ethanolamide, with the following relations between the components (wt.-%): carboxymethylcellulose, 58.7-69; surfactant, 0.3-0.7; commercial-grade glycerine, 30-40; monethanolamide, 0.3-1; the butethal P /SUB 12-14/2/ is contained in the liquid as the surfactant. The liquid was tested for its ability to plug up wells. For this purpose, a compound prepared from a mixture of 4-% carboxymethylcellulose, commercial-grade glycerine, monoethanolamide, and the butethal P /SUB 12-14// solution was tested for viscosity. The results of the studies are presented in a table.

  17. Liquid fuel cells

    National Research Council Canada - National Science Library

    Soloveichik, Grigorii L


    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety...

  18. Corporate governance and liquidity

    DEFF Research Database (Denmark)

    Farooq, Omar; Derrabi, Mohamed; Naciri, Monir


    difference in liquidity between the two periods. Furthermore, our results indicate that more than 50% of this difference between the two periods can be explained by operational and informational complexity of a firm – proxy for transparency. We argue that poor corporate governance mechanisms increase......This paper examines the impact of corporate governance mechanisms on liquidity in the MENA region, i.e. Morocco, Egypt, Saudi Arabia, United Arab Emirates, Jordan, Kuwait, and Bahrain. Using turnover as a proxy for liquidity, we document significant difference in liquidity between the pre......- and the post-crisis periods in the MENA region. In addition, our results show that bulk of this reduction in turnover can be explained due to weaknesses of corporate governance mechanisms. For example, that dividend payout ratio and choice of auditors – proxies for agency problems – can explain the entire...

  19. Liquid Modernity & Late Capitalism

    DEFF Research Database (Denmark)

    Hansen, Claus D.

    In Liquid Modernity, Bauman portrays Adorno and the rest of the early Frankfurt School as sociologists and thinkers belonging to the ‘heavy’ phase of modernity. In other words, they are deemed irrelevant to the discussion of current sociological time diagnoses and the purpose of critique under...... conditions of such liquid modernity. In this paper, I want to argue that this picture of Adorno is mistaken and extend the view proposed by Frederic Jameson that Adorno was not only the philosopher of 1990’s but is also very useful in the 2010’s. In fact, the critique of critical theory and emancipation...... as a crucial goal of such critique raised by Bauman in Liquid Modernity fails to acknowledge the complexity of Adorno’s theoretical apparatus. Adorno’s idea of pseudo-individualisation is laid out and compared to the critique Bauman points to with individualization processes in the liquid phase of modernity...

  20. Ionic liquids in tribology. (United States)

    Minami, Ichiro


    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  1. Chiral separation by enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Schuur, B.; Verkuijl, B. J. V.; Minnaard, A. J.; De Vries, J. G.; Heeres, H. J.; Feringa, B. L.


    The literature on enantioselective liquid-liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid-liquid extraction is a technology of interest for a wide range of chemists and

  2. Liquid Crystal Airborne Display (United States)


    with the drive capability of the present state-of-the- art microm.ziiaturized integi ated circuits. The impact of microminiaturizing the drive circuits...7 Advantages /Disadvantages of Prior Art .........- 8 Performance of the Liquid Crystal Matrix Display . . .. 8 Liquid Crystal...Holographic HUD Light Source ...................... .... 99 Design of a Special Purpose Mercury Art - Plo.?hcr La np . 104 V LARGE SCALE INTEGRATION FOR DISPLAY

  3. Liquid Rocket Engine Testing (United States)


    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL... Rocket Lab Distribution A: Approved for Public Release; Distribution Unlimited. PA Clearance 16493 2Distribution A: Approved for Public Release

  4. Gas to liquids

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Pat


    Sasol, a South African company, along with the Canadian company Talisman, are looking at gas to liquid process opportunities in North America. Sasol decided to launch a study into the feasibility of gas to liquid (GTL) operation in western Canada, and according to previous studies GTL would need a crude barrel price of $85 or higher combined with a gas price of $4 or less to be economical. Sasol is already operating a GTL plant in Qatar.

  5. Evaluation of the fuel rod integrity in PWR reactors from the spectrometric analysis of the primary coolant; Avaliacao da integridade de varetas combustiveis em reatores PWR a partir da analise espectrometrica da agua do primario

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Iara Arraes


    The main objective of this thesis is to provide a better comprehension of the phenomena involved in the transport of fission products, from the fuel rod to the coolant of a PWR reactor. To achieve this purpose, several steps were followed. Firstly, it was presented a description of the fuel elements and the main mechanisms of fuel rod failure, indicating the most important nuclides and their transport mechanisms. Secondly, taking both the kinetic and diffusion models for the transport of fission products as a basis, a simple analytical and semi-empirical model was developed. This model was also based on theoretical considerations and measurements of coolant's activity, according to internationally adopted methodologies. Several factors are considered in the modelling procedures: intrinsic factors to the reactor itself, factors which depend on the reactor's operational mode, isotope characteristic factors, and factors which depend on the type of rod failure. The model was applied for different reactor's operational parameters in the presence of failed rods. The main conclusions drawn from the analysis of the model's output are relative to the variation on the coolant's water activity with the fuel burnup, the linear operation power and the primary purification rate and to the different behaviour of iodine and noble gases. The model was saturated from a certain failure size and showed to be unable to distinguish between a single big fail and many small ones. (author)

  6. Liquid developer jetting device

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Jun-ichi; Sasahara, Toshihiko; Nakamura, Manabu


    The liquid developer jetting device of the present invention comprises an air jetting nozzle for jetting pressurized air to an object to be tested. A liquid developer jetting nozzle is disposed near the air jetting nozzle for jetting a developer upwardly. The liquid developer jetting nozzle is situated in front of the air jetting nozzle for jetting the liquid developer in the direction perpendicular to the pressurized air jetted from the air jetting nozzle. In order to perform an penetration flaw detection test for an abut-welded portion of a drain nozzle disposed to the bottom of a reactor pressure vessel, the liquid developer jetting device is disposed in adjacent with the welded portion. Since the liquid developer jetted while dispersed from the developer jetting nozzle is further dispersed by the pressurized air from the air jetting nozzle, the density of the jetted the developer is made uniform despite of the short distance to the object to be tested. Accordingly, developing processing can be performed even in a restricted space. (I.N.).

  7. Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator. (United States)

    Ye, Zhibin; Liu, Chong; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Cai, Zhen


    A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

  8. The processes of vaporization in the porous structures working with the excess of liquid

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.


    Full Text Available The processes of vaporization in porous structures, working with the excess of liquid are investigated. With regard to the thermal power plants new porous cooling system is proposed and investigated, in which the supply of coolant is conducted by the combined action of gravity and capillary forces. The cooling surface is made of stainless steel, brass, copper, bronze, nickel, alundum and glass, with wall thickness of (0.05-2•10-3 m. Visualizations of the processes of vaporization were carried out using holographic interferometry with the laser system and high speed camera. The operating conditions of the experiments were: water pressures (0.01-10 MPa, the temperature difference of sub-cooling (0-20°C, an excess of liquid (1-14 of the steam flow, the heat load (1-60•104 W/m2, the temperature difference (1-60°C and orientation of the system (± 0 - ± 90 degrees. Studies have revealed three areas of liquid vaporization process (transitional, developed and crisis. The impact of operating and design parameters on the integrated and thermal hydraulic characteristics was defined. The optimum (minimum flow rate of cooling fluid and the most effective type of mesh porous structure were also defined.

  9. Lightning impulse breakdown voltage of liquid nitrogen under the influence of heating (United States)

    Fink, S.; Noe, M.; Zwecker, V.; Leibfried, T.


    For application of high voltage superconducting apparatus liquid nitrogen is often not only used as coolant but also for electrical insulation. A temperature increase, e. g. during a quench of a fault current limiter, may cause a considerable decrease of the breakdown voltage within the apparatus. A cryostat was equipped with an adjustable sphere to plate electrode arrangement for the examination of the breakdown and withstand voltages of liquid nitrogen depending on the gap length. The sphere was connected to high voltage and the plate electrode was grounded. Standard lightning impulses till 360 kV were applied to the arrangement. First investigations with a non heatable plane for pressures till 0.3 MPa (absolute) showed no technical relevant gain by pressure increase especially for negative impulses. Hence the dielectric strength of liquid nitrogen in the heated case in comparison to the not heated mode was only examined at 0.1 MPa (absolute). Approximately a doubling of the gap length was necessary in case of a 0.5 kW heating in order to achieve the same 16% breakdown voltage or the same withstand voltage as in the case with no heating.

  10. Direct conversion of fission energy into electricity in liquid gallium contact potential cell

    Energy Technology Data Exchange (ETDEWEB)

    Soh, T., E-mail: [Univ. of Saskatchewan, Dept. of Mechanical Engineering, Saskatoon, Saskatchewan (Canada); Sohtech R& D Inc., Saskatoon, Saskatchewan (Canada)


    Nuclear fission of uranium releases about 93% of its energy in the form of highly charged (up to 20+) and highly energetic fission fragment (83.5MeV average) and other ionizing radiations, including beta and gamma radiations. Liquid gallium is a semimetal that had been previously explored as a self recovering ionization media for alphavoltiac contact potential cell (CPC), and had been evaluated as a suitable replacement coolant for the next generation of fast reactor. By improving the neutronic aspect of a Liquid Gallium CPC (LGaCPC) with low neutron absorption construction materials, and by using a heterogeneous mixture of CANDU fuel grade uranium oxide powder (provided by CAMECO Inc.) and liquid gallium as its junction material, the direct conversion of fission energy to electricity has been observed when irradiated by the thermal neutron flux of the SLOWPOKE-II Research Reactor at the Saskatchewan Research Council. To further explore the effect of temperature on the operation of the LGaCPC, a High Temperature LGaCPC (HTLGaCPC), and a 6 meter high monolithic Large Volume Submersible Neutron Irradiation Chamber (LVSNIC) have been designed and constructed, which allow high temperature fission experiment up to 623K with a thermal neutron flux of 1.18 x 10{sup 10} n/cm{sup 2}/s and the result is presented here, along with discussions on the operating principle of the LGaCPC, and on the construction and measurement techniques used in this study. (author)

  11. Asset Pricing with Liquidity Risk


    Acharya, Viral V.; Lasse Heje Pedersen


    This Paper solves explicitly a simple equilibrium asset pricing model with liquidity risk – the risk arising from unpredictable changes in liquidity over time. In our liquidity-adjusted capital asset pricing model, a security’s required return depends on its expected liquidity as well as on the covariances of its own return and liquidity with market return and market liquidity. In addition, the model shows how a negative shock to a security’s liquidity, if it is persistent, results in low con...

  12. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    Energy Technology Data Exchange (ETDEWEB)

    Ariani, Menik, E-mail:; Satya, Octavianus Cakra; Monado, Fiber [Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, jl Palembang-Prabumulih km 32 Indralaya OganIlir, South of Sumatera (Indonesia); Su’ud, Zaki [Nuclear and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, jlGanesha 10, Bandung (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, 2-12-11N1-17 Ookayama, Meguro-Ku, Tokyo (Japan)


    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on “Region-8” and “Region-10” core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  13. Operation with three liquid phases in a staged liquid-liquid contactor

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, R.A.; Ziegler, A.A.; Wigeland, R.A.; Bane, R.W.; Steindler, M.J.


    Operation with three liquid phases was demonstrated in a staged liquid-liquid contactor. The possibility that three liquid phases could be handled in a liquid-liquid contactor normally used with two liquid phases was initially established using a laboratory batch test. Tht three liquid phases were obtained using a thorium flow sheet having high concentrations of both acid and thorium. To analyze the batch test, the concept of a dimensionless dispersion number for use with two liquid phases was extended so that it could be applied to three liquid phases. Based on the batch tests, continuous flow tests were run in a staged liquid-liquid contactor used for solvent extraction. A critical factor in the success of these tests was determining the position of the liquid-liquid interface in the contactor. Thus, a contactor was used which allows the position of the liquid-liquid interface to be adjusted. Actual three-phase operation was demonstrated using a 4-cm annular centrifugal contactor, albeit with a somewhat greater (3 to 4 vol. %) aqueous-phase contamination of the organic exit stream than normal (< 1 vol. %).

  14. Silicon microchannel cooling panel for NA62 Giga-Tracker, proposal G.Nuessle : a first thermo-hydraulic layout attempt for use with monophase, liquid C6F14 circulation

    CERN Document Server

    Wertelaers, P


    In this proposal, where the hydraulic regime (laminar) of the liquid (monophase) is simple, analytical recipes can be worked out. They show clearly the scaling laws in the relation from coolant pressure budget to panel temperature chart. If the line length is irreducible, then the individual channels cannot become arbitrarily small, even if, then, there can be many to take the total thermal load. The reason is that the "capacitive" component would explode. Apart from showing this, the Note also discusses cross-coupling effects between adjacent U-shaped channels.

  15. Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning (United States)

    Ryerson, F. J.; Hess, P. C.


    In order to evaluate the influence of a silicate liquid structure on mineral-liquid partitioning, element partitioning data is obtained for coexisting anhydrous immiscible granitic and ferrobasaltic magmas. It is found that: (1) mineral-liquid distribution coefficients indicate the competition of crystal and liquid for cation incorporation, (2) increased polymerization of the residual liquid during crystal-liquid fractionation increases the mineral-liquid distribution coefficients for high-charge-density cations, (3) incompatible element ratios of low- and high-charge-density cations may vary during crystal-liquid fractionation because of changes in the melt composition and structure, (4) relative solubilities of REE's in melts do not vary with melt polymerization, (5) the changes of Sm/Eu ratios during crystal-liquid fractionation depend on the melt composition, and (6) minor components and volatiles can significantly influence the silicate melt structure and the mineral-liquid distribution coefficients.

  16. Development of liquid metal type TBM technology for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; Kwak, J. G.; Kim, Y. (and others)


    The objectives of the ITER project for the construction and operation are to perform the test related to the neutronics, blanket module, tritium treatment technology, advanced plasma technology, and to test the heat extraction and tritium breeding in the test blanket for the fusion reactor. Other parties have been developing the Test Blanket Module (TBM) for testing in the ITER for these purposes. Through this project, we can secure the TBM design and related technology, which will be used as the core technology for the DEMO construction, our own fusion reactor development. In 1st year, the optimized design procedure was established with the existing tools, which have been used in nuclear reactor design, and the optimized HCML TBM design was obtained through iteration method according to the developed design procedure. He cooling system as a TBM auxiliary system was designed considering the final design of the KO HCML TBM such as coolant capacity and operation pressure. Layout for this system was prepared to be installed in the ITER TCWS vault. MHD effect of liquid Li breeder by magnetic flux in ITER such as much higher pressure drop was evaluated with CFD-ACE and it was concluded that the Li breeder should have a slow velocity to reduce this effect. Most results were arranged in the form of DDD including preliminary safety analysis report. In 2nd year, the optimized design procedure was complemented and updated. In performance analysis on thermal-hydraulic and thermo-mechanical one, full 3D meshes were generated and used in this analysis in order to obtain the more exact temperature, deformation, and stress solution. For liquid Li breeder system, design parameters were induced before the detailed design of the system and were used in the design of the liquid Li test loop. LOCA analysis, activation analysis in LOCA, EM analysis were performed as a preliminary safety analysis. In order to develop the manufacturing technology, Be+FMS and FMS to FMS joining conditions

  17. Laser imaging in liquid-liquid flows (United States)

    Abidin, M. I. I. Zainal; Park, Kyeong H.; Voulgaropoulos, Victor; Chinaud, Maxime; Angeli, Panagiota


    In this work, the flow patterns formed during the horizontal flow of two immiscible liquids are studied. The pipe is made from acrylic, has an ID of 26 mm and a length of 4 m. A silicone oil (5cSt) and a water/glycerol mixture are used as test fluids. This set of liquids is chosen to match the refractive indices of the phases and enable laser based flow pattern identification. A double pulsed Nd:Yag laser was employed (532mm) with the appropriate optics to generate a laser sheet at the middle of the pipe. The aqueous phase was dyed with Rhodamine 6G, to distinguish between the two phases. Experiments were carried out for mixture velocities ranging from 0.15 to 2 m/s. Different inlet designs were used to actuate flow patterns in a controlled way and observe their development downstream the test section. A static mixer produced dispersed flow at the inlet which separated downstream due to enhanced coalescence. On the other hand, the use of a cylindrical bluff body at the inlet created non-linear interfacial waves in initially stratified flows from which drops detached leading to the transition to dispersed patterns. From the detailed images important flow parameters were measured such as wave characteristics and drop size. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  18. Droplets As Liquid Robots. (United States)

    Čejková, Jitka; Banno, Taisuke; Hanczyc, Martin M; Štěpánek, František


    Liquid droplets are very simple objects present in our everyday life. They are extremely important for many natural phenomena as well as for a broad variety of industrial processes. The conventional research areas in which the droplets are studied include physical chemistry, fluid mechanics, chemical engineering, materials science, and micro- and nanotechnology. Typical studies include phenomena such as condensation and droplet formation, evaporation of droplets, or wetting of surfaces. The present article reviews the recent literature that employs droplets as animated soft matter. It is argued that droplets can be considered as liquid robots possessing some characteristics of living systems, and such properties can be applied to unconventional computing through maze solving or operation in logic gates. In particular, the lifelike properties and behavior of liquid robots, namely (i) movement, (ii) self-division, and (iii) group dynamics, will be discussed.

  19. Liquid crystals in tribology. (United States)

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores


    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  20. Macromolecular sensing at the liquid-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Flynn, Shane [Tyndall National Institute, Lee Maltings, University College, Cork (Ireland); Arrigan, Damien W M, E-mail: [Nanochemistry Research Institute, Department of Chemistry, Curtin University, Perth (Australia)


    We report here the electrochemical sensing of macromolecules, such as polyLysine dendrimers, at the polarised liquid | liquid interface. Electrochemistry at the liquid | liquid interface is a powerful analytical technique which allows the detection of non-redox active molecules via ion transfer reactions at a polarised water - oil interface. We demonstrate here that different parameters of the polyLysine dendrimers (charge number, molecular weight) have a strong influence on the sensitivity and limit of detection of these macromolecules. This work will help to the development of sensors based on charge transfer at the liquid | liquid interface.

  1. Quantum spin liquid states (United States)

    Zhou, Yi; Kanoda, Kazushi; Ng, Tai-Kai


    This is an introductory review of the physics of quantum spin liquid states. Quantum magnetism is a rapidly evolving field, and recent developments reveal that the ground states and low-energy physics of frustrated spin systems may develop many exotic behaviors once we leave the regime of semiclassical approaches. The purpose of this article is to introduce these developments. The article begins by explaining how semiclassical approaches fail once quantum mechanics become important and then describe the alternative approaches for addressing the problem. Mainly spin-1 /2 systems are discussed, and most of the time is spent in this article on one particular set of plausible spin liquid states in which spins are represented by fermions. These states are spin-singlet states and may be viewed as an extension of Fermi liquid states to Mott insulators, and they are usually classified in the category of so-called S U (2 ), U (1 ), or Z2 spin liquid states. A review is given of the basic theory regarding these states and the extensions of these states to include the effect of spin-orbit coupling and to higher spin (S >1 /2 ) systems. Two other important approaches with strong influences on the understanding of spin liquid states are also introduced: (i) matrix product states and projected entangled pair states and (ii) the Kitaev honeycomb model. Experimental progress concerning spin liquid states in realistic materials, including anisotropic triangular-lattice systems [κ -(ET )2Cu2(CN )3 and EtMe3Sb [Pd (dmit )2]2 ], kagome-lattice system [ZnCu3(OH )6Cl2 ], and hyperkagome lattice system (Na4 Ir3 O8 ), is reviewed and compared against the corresponding theories.

  2. Are Ionic Liquids Chemically Stable? (United States)

    Wang, Binshen; Qin, Li; Mu, Tiancheng; Xue, Zhimin; Gao, Guohua


    Ionic liquids have attracted a great deal of interest in recent years, illustrated by their applications in a variety of areas involved with chemistry, physics, biology, and engineering. Usually, the stabilities of ionic liquids are highlighted as one of their outstanding advantages. However, are ionic liquids really stable in all cases? This review covers the chemical stabilities of ionic liquids. It focuses on the reactivity of the most popular imidazolium ionic liquids at structural positions, including C2 position, N1 and N3 positions, and C4 and C5 positions, and decomposition on the imidazolium ring. Additionally, we discuss decomposition of quaternary ammonium and phosphonium ionic liquids and hydrolysis and nucleophilic reactions of anions of ionic liquids. The review aims to arouse caution on potential decomposition of ionic liquids and provides a guide for better utilization of ionic liquids.

  3. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.


    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...... to the DHA where the alignment is maintained. The systematic structural variation has revealed that a biaryl spacer between the DHA and the alkyl chain is needed for liquid crystallinity and that the one aromatic ring in the spacer cannot be substituted by a triazole. This work presents an important step...

  4. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken


    this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency......This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  5. Theory of simple liquids

    CERN Document Server

    Hansen, Jean-Pierre


    This book gives a comprehensive and up-to-date treatment of the theory of ""simple"" liquids. The new second edition has been rearranged and considerably expanded to give a balanced account both of basic theory and of the advances of the past decade. It presents the main ideas of modern liquid state theory in a way that is both pedagogical and self-contained. The book should be accessible to graduate students and research workers, both experimentalists and theorists, who have a good background in elementary mechanics.Key Features* Compares theoretical deductions with experimental r

  6. Modeling of liquid phases

    CERN Document Server

    Soustelle, Michel


    This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This second volume in the set is devoted to the study of liquid phases.

  7. Neutron scattering in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica


    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  8. Improved Capacitive Liquid Sensor (United States)

    Waldman, Francis A.


    Improved capacitive sensor used to detect presence and/or measure thickness of layer of liquid. Electrical impedance or admittance of sensor measured at prescribed frequency, and thickness of liquid inferred from predetermined theoretical or experimental relationship between impedance and thickness. Sensor is basically a three-terminal device. Features interdigitated driving and sensing electrodes and peripheral coplanar ground electrode that reduces parasitic effects. Patent-pending because first to utilize ground plane as "shunting" electrode. System less expensive than infrared, microwave, or refractive-index systems. Sensor successfully evaluated in commercial production plants to characterize emulsions, slurries, and solutions.

  9. Bicontinuous liquid crystals

    CERN Document Server

    Lynch, Mathew L


    PrefaceIntroduction AcknowledgmentsBicontinuous Cubic Liquid Crystalline Materials: A Historical Perspective and Modern Assessment; Kr̄e LarssonIntermediate Phases; Michael C. Holmes and Marc S. LeaverCubic Phases and Human Skin: Theory and Practice; Steven Hoath and Lars NorlňThe Relationship between Bicontinuous Inverted Cubic Phases and Membrane Fusion; D.P. SiegelAspects of the Differential Geometry and Topology of Bicontinuous Liquid-Crystalline Phases; Robert W. CorkeryNovel L3 Phases and Their Macroscopic Properties; R. Beck and H. HoffmannBicontinuous Cubic Phases of Lipids with Entra

  10. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre


    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  11. Handbook of liquid metals (United States)

    Ukanwa, A. O.


    Metals are described by physical appearance followed by atomic weight, atomic number, and valence. Data includes laboratory handling and safety procedures, heat transfer correlations, diffusion coefficients in liquid gallium/indium solution, melting and boiling points, thermal conductivity, heat capacity, and electrical resistivity.

  12. The Liquid State

    Indian Academy of Sciences (India)

    gas laws when the gases are compressed and cooled. Otherwise, one cannot account for liquefaction of gases. The picture of intermolecular interaction which emerged from the study of gases is shown in Figure 1. Even in liquids molecules move in random directions with random velocities. This movement of molecules in a ...

  13. The Liquid State

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 6. The Liquid State - The Arrangement of Atoms. K R Rao. General Article Volume 2 Issue 6 June 1997 pp 54-59. Fulltext. Click here to view fulltext PDF. Permanent link: Author Affiliations.

  14. performance liquid chromatography

    African Journals Online (AJOL)



    Nov 22, 2010 ... This study is aimed to determine the concentration of acrylamide in processed food products available in open market. In order to determine the acrylamide concentration, three bakery items and three fried chips from three different brands were analyzed. High-performance liquid chromatography (HPLC) ...

  15. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab


    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  16. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.


    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes


    Energy Technology Data Exchange (ETDEWEB)



    Excess electrons can be introduced into liquids by absorption of high energy radiation, by photoionization, or by photoinjection from metal surfaces. The electron's chemical and physical properties can then be measured, but this requires that the electrons remain free. That is, the liquid must be sufficiently free of electron attaching impurities for these studies. The drift mobility as well as other transport properties of the electron are discussed here as well as electron reactions, free-ion yields and energy levels, Ionization processes typically produce electrons with excess kinetic energy. In liquids during thermalization, where this excess energy is lost to bath molecules, the electrons travel some distance from their geminate positive ions. In general the electrons at this point are still within the coulombic field of their geminate ions and a large fraction of the electrons recombine. However, some electrons escape recombination and the yield that escapes to become free electrons and ions is termed G{sub fi}. Reported values of G{sub fi} for molecular liquids range from 0.05 to 1.1 per 100 eV of energy absorbed. The reasons for this 20-fold range of yields are discussed here.

  18. Time-resolved potentiometry on liquid-liquid interface


    Mansfeldová, Věra


    MSc. Věra Mansfeldová Dissertation thesis: Time-resolved potentiometry on liquid-liquid interface Abstract The aim of this work is to explore the method of temporal resolution in potentiometry as a new prospective electrochemical analytical technique. In connection with interface of two immiscible electrolyte solutions (ITIES) it may find utilization in analytical chemistry. This technique up to my knowledge has not been published yet. Potential response of analyte on liquid/liquid interface ...

  19. Complex risk analysis for loss of electric power in liquid metal nuclear reactor by system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering


    The power stabilization of the nuclear power plants (NPPs) is investigated in the aspect of the liquid metal coolant. The quantification of the risk analysis is performed by the system dynamics (SD) method which is processed by the feedback and accumulation complex algorithms. The Vensim software package is used for the simulations, which is supported by the Monte-Carlo method. There are 2 kinds of considerations as the economic and safety properties. The result shows the stability of the operations when the power can be decided. This shows the higher efficiency of the reactor. The failure frequency is 16/60 = 27%. In the event of Power Stabilized, the failure event is in the quite lower frequency rate. The commercial use of the reactor is important in the operations. (orig.)

  20. Bubble wake dynamics in liquids and liquid-solid suspensions

    CERN Document Server

    Fan, Liang-Shih; Brenner, Howard


    This book is devoted to a fundamental understanding of the fluid dynamic nature of a bubble wake, more specifically the primary wake, in liquids and liquid-solid suspensions, an dto the role it plays in various important flow phenomena of multiphase systems. Examples of these phenomena are liquid/solids mixing, bubble coalescence and disintergration, particle entrainment to the freeboard, and bed contraction.

  1. Ionic liquids in chemical engineering. (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter


    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  2. Liquid Phase Equilibria for Habitability (United States)

    Tan, S. P.


    The existence of liquid phase, which amplifies habitability, can be predicted using an equation of state from atmospheric composition, pressure, and temperature. If solid is also present, density inversion that keeps liquid from freezing is examined.

  3. Black Liquid Solar Collector Demonstrator. (United States)

    Weichman, F. L.; Austen, D. J.


    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  4. Engine restart aid

    Energy Technology Data Exchange (ETDEWEB)

    Fedewa, Andrew


    A system is disclosed comprising an engine having coolant passages defined therethrough, a first coolant pump, and a first radiator. The system additionally comprises a second coolant pump, a second radiator, and a liquid-to-air heat exchanger configured to condition the temperature of intake air to the engine. The system further includes a coolant valve means. For a first configuration of the coolant valve means the first coolant pump is configured to urge coolant through the coolant passages in the engine and through the first radiator, and the second coolant pump is configured to urge coolant through the liquid-to-air heat exchanger and through the second radiator. For a second configuration of the coolant valve means the second coolant pump is configured to urge coolant through the coolant passages in the engine and through the liquid-to-air heat exchanger. A method for controlling the system is also disclosed.

  5. Stock Liquidity and Investment Efficiency




    This PhD study investigates the implications of stock liquidity on firm investments efficiency. The study finds that high stock liquidity has a positive impact on investment efficiency and shows that the beneficial effect of stock liquidity on investment efficiency is stronger among firms with higher information asymmetry and higher monitoring institutional investors. These findings suggest that high stock liquidity plays important informational and governance roles in mitigating information ...

  6. Liquidity regulation and bank behavior


    Bonner, C.


    In response to the 2007-08 financial crisis, the Basel Committee on Banking Supervision proposed two liquidity standards to reinforce banks’ resilience to liquidity risks. The purpose of this thesis is to analyze the impact of liquidity regulation on bank behavior. The first of four main chapters analyzes the development of global liquidity standards, their objectives as well as their interaction with capital standards. The analysis suggests that regulating capital is associated with declinin...

  7. Experimental investigation of the impulse gas injection into liquid and the use of experimental data for verification of the HYDRA-IBRAE/LM thermohydraulic code (United States)

    Lobanov, P. D.; Usov, E. V.; Butov, A. A.; Pribaturin, N. A.; Mosunova, N. A.; Strizhov, V. F.; Chukhno, V. I.; Kutlimetov, A. E.


    Experiments with impulse gas injection into model coolants, such as water or the Rose alloy, performed at the Novosibirsk Branch of the Nuclear Safety Institute, Russian Academy of Sciences, are described. The test facility and the experimental conditions are presented in details. The dependence of coolant pressure on the injected gas flow and the time of injection was determined. The purpose of these experiments was to verify the physical models of thermohydraulic codes for calculation of the processes that could occur during the rupture of tubes of a steam generator with heavy liquid metal coolant or during fuel rod failure in water-cooled reactors. The experimental results were used for verification of the HYDRA-IBRAE/LM system thermohydraulic code developed at the Nuclear Safety Institute, Russian Academy of Sciences. The models of gas bubble transportation in a vertical channel that are used in the code are described in detail. A two-phase flow pattern diagram and correlations for prediction of friction of bubbles and slugs as they float up in a vertical channel and of two-phase flow friction factor are presented. Based on the results of simulation of these experiments using the HYDRA-IBRAE/LM code, the arithmetic mean error in predicted pressures was calculated, and the predictions were analyzed considering the uncertainty in the input data, geometry of the test facility, and the error of the empirical correlation. The analysis revealed major factors having a considerable effect on the predictions. The recommendations are given on updating of the experimental results and improvement of the models used in the thermohydraulic code.

  8. Liquidity regulation and bank behavior

    NARCIS (Netherlands)

    Bonner, C.


    In response to the 2007-08 financial crisis, the Basel Committee on Banking Supervision proposed two liquidity standards to reinforce banks’ resilience to liquidity risks. The purpose of this thesis is to analyze the impact of liquidity regulation on bank behavior. The first of four main chapters

  9. Liquidity coinsurance and bank capital

    NARCIS (Netherlands)

    Castiglionesi, F.; Feriozzi, F.; Lóránth, G.; Pelizzon, L.

    Banks can deal with their liquidity risk by holding liquid assets (self-insurance), by participating in interbank markets (coinsurance), or by using flexible financing instruments, such as bank capital (risk sharing). We use a simple model to show that undiversifiable liquidity risk, that is, the

  10. Premixing of corium into water during a Fuel-Coolant Interaction. The models used in the 3 field version of the MC3D code and two examples of validation on Billeau and FARO experiments

    Energy Technology Data Exchange (ETDEWEB)

    Berthoud, G.; Crecy, F. de; Duplat, F.; Meignen, R.; Valette, M. [CEA/Grenoble, DRN/DTP, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France)


    This paper presents the <> application of the multiphasic 3D computer code MC3D. This application is devoted to the premixing phase of a Fuel Coolant Interaction (FCI) when large amounts of molten corium flow into water and interact with it. A description of the new features of the model is given (a more complete description of the full model is given in annex). Calculations of Billeau experiments (cold or hot spheres dropped into water) and of a FARO test (<> corium dropped into 5 MPa saturated water) are presented. (author)

  11. Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen (United States)

    Jurns, John M.; McQuillen, John B.


    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.

  12. Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids – A Review

    National Research Council Canada - National Science Library

    Artur Kubiczek; Władysław Kamiński


    Room-temperature ionic liquids (RTILs) are a moderately new class of liquid substances that are characterized by a great variety of possible anion-cation combinations giving each of them different properties...

  13. DNB heat flux in forced convection of liquid hydrogen for a wire set in central axis of vertically mounted flow channel (United States)

    Matsumoto, T.; Shirai, Y.; Shiotsu, M.; Fujita, K.; Kainuma, T.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.


    Liquid hydrogen has excellent physical properties, high latent heat and low viscosity of liquid, as a coolant for superconductors like MgB2. The knowledge of Departure from Nucleate Boiling (DNB) heat flux of liquid hydrogen is necessary for designing and cooling analysis of high critical temperature superconducting devices. In this paper, DNB heat fluxes of liquid hydrogen were measured under saturated and subcooled conditions at absolute pressures of 400, 700 and 1100 kPa for various flow velocities. Two wire test heaters made by Pt-Co alloy with the length of 200 mm and the diameter of 0.7 mm were used. And these round heaters were set in central axis of a flow channel made of Fiber Reinforced Plastic (FRP) with inner diameters of 8 mm and 12 mm. These test bodies were vertically mounted and liquid hydrogen flowed upward through the channel. From these experimental values, the correlations of DNB heat flux under saturated and subcooled conditions are presented in this paper.

  14. Liquid crystal dimers

    CERN Document Server

    Kumar Pal, Santanu


    This book covers in-depth discussion of design principles, synthesis and thermal behavior of all types of liquid crystal (LC) dimers. The text presents recent advances in the field of LC dimers consisting of different mesogenic units such as calamitic, discotic and bent-core molecules. It starts with a chapter on the introduction of liquid crystal dimers, including their odd-even behavior, basic classification of dimers and common mesophases in dimers. The text shows how the molecular architectures are being used to develop new materials to study a range of interesting phenomena such as the biaxial nematic phase containing rod-like and disc-like mesogenic units. Finally, the text presents perspectives related to technological relevance of these dimers such as dopants in LC display mixtures exhibiting faster relaxation time, strong flexoelectric coupling and others to effect control over the properties of these materials.

  15. Liquid filtration simulation

    Energy Technology Data Exchange (ETDEWEB)

    Corey, I.; Bergman, W.


    We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

  16. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor


    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  17. Weyl spin liquids. (United States)

    Hermanns, M; O'Brien, K; Trebst, S


    The fractionalization of quantum numbers in interacting quantum many-body systems is a central motif in condensed-matter physics with prominent examples including the fractionalization of the electron in quantum Hall liquids or the emergence of magnetic monopoles in spin-ice materials. Here, we discuss the fractionalization of magnetic moments in three-dimensional Kitaev models into Majorana fermions (and a Z_{2} gauge field) and their emergent collective behavior. We analytically demonstrate that the Majorana fermions form a Weyl superconductor for the Kitaev model on the recently synthesized hyperhoneycomb structure of β-Li_{2}IrO_{3} when applying a magnetic field. We characterize the topologically protected bulk and surface features of this state, which we dub a Weyl spin liquid, including thermodynamic and transport signatures.

  18. Liquid immersion blanket design for use in a compact modular fusion reactor (United States)

    Sorbom, Brandon; Ball, Justin; Barnard, Harold; Haakonsen, Christian; Hartwig, Zachary; Olynyk, Geoffrey; Sierchio, Jennifer; Whyte, Dennis


    Traditional tritium breeding blankets in fusion reactor designs include a large amount of structural material. This results in complex engineering requirements, complicated sector maintenance, and marginal tritium breeding ratios (TBR). We present a conceptual design of a fully liquid blanket. To maximize tritium breeding volume, the vacuum vessel is completely immersed in a continuously recycled FLiBe blanket, with the exception of small support posts. FLiBe has a wide liquid temperature window (459 C to 1430 C), low electrical conductivity to minimize MHD effects, similar thermal/fluid characteristics to water, and is chemically inert. While tritium breeding with FLiBe in traditional blankets is poor, we use MCNP neutronics analysis to show that the immersion blanket design coupled with a beryllium neutron multiplier results in TBR > 1. FLiBe is shown to be a sufficient radiation shield for the toroidal field magnets and can be used as a coolant for the vacuum vessel and divertor, allowing for a simplified single-phase, low-pressure, single-fluid cooling scheme. When coupled with a high-field compact reactor design, the immersion blanket eliminates the need for complex sector maintenance, allows the vacuum vessel to be a replaceable component, and reduces financial cost.

  19. Innovative radiation-based direct heat exchanger (DHX) for liquid metal cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    De Santis, Andrea, E-mail: [“SAPIENZA” University of Rome, DIAEE, Corso Vittorio Emanuele II 244, 00186 Rome (Italy); Vitale Di Maio, Damiano; Caruso, Gianfranco [“SAPIENZA” University of Rome, DIAEE, Corso Vittorio Emanuele II 244, 00186 Rome (Italy); Manni, Fabio [S.R.S. Servizi di Ricerche e Sviluppo S.r.l., Rome (Italy)


    Highlights: • An innovative DHRS for liquid metal fast breeder reactors has been proposed. • A parametric CFD analyses of the DHX performances have been performed. • A comparison between SFR and LFR applications has been performed. -- Abstract: Considering the importance of safety features in the development of Generation IV nuclear reactors, an innovative and passive decay heat removal system (DHRS) has been proposed for liquid metal cooled reactors. The attention is here focused on the direct heat exchanger (DHX) of the system constituted by a bayonet tube that allows to remove the decay heat from the primary coolant; both primary and secondary fluids flow in natural circulation. Since each bayonet tube is equipped with a vacuum gap, the most important heat transfer mechanism characterizing the DHX is radiation. Furthermore, the presence of the vacuum gap guarantees a physical separation and a complete decoupling between primary and secondary fluids, enhancing the safety features of the whole system. Several CFD analyses have been carried out in order to obtain a characterization of the DHX both for sodium and lead cooled fast reactors, in order to optimize the DHX geometry on the basis of the specific application, and the results are discussed in the paper.

  20. Present understanding of MHD and heat transfer phenomena for liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, I.R. [Institute of Electrophysical, St. Petersburg (Russian Federation); Barleon, L. [IATF, Karlsruhe (Germany); Reed, C.B. [Argonne National Lab., IL (United States)] [and others


    Liquid metals (Li, Li17Pb83, Pb) are considered as coolants in many designs of fusion reactor blankets. To estimate their potential and to make an optimal design, one has to know the magnetohydrodynamic (MHD) and heat transfer characteristics of liquid metal flow in the magnetic field. Such flows with high characteristic parameter values (Hartmann number M and interaction parameter N) open up a relatively new field in Magnetohydrodynamics requiring both theoretical and experimental efforts. A review of experimental work done for the last ten years in different countries shows that there are some data on MHD/HT characteristics in straight channels of simple geometry under fusion reactor relevant conditions (M>>1, N>>1) and not enough data for complex flow geometries. Future efforts should be directed to investigation of MHD/HT in straight channels with perfect and imperfect electroinsulated walls, including those with controlled imperfections, and in channels of complex geometry. The experiments are not simple, since the fusion relevant conditions require facilities with magnetic fields at, or even higher than, 5-7 T in comparatively large volumes. International cooperation in constructing and operating these facilities may be of great help.

  1. Functionalized ionic liquids and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Hariprakasha, Humcha Krishnamurthy; Rangan, Krishnaswamy Kasthuri; Sudarshan, Tirumalai Srinivas


    Disclosure of functionalized ionic liquids. Use of disclosed ionic liquids as solvent for carbon dioxide. Use of disclosed ionic liquids as flame retardant. Use of disclosed ionic liquids for coating fabric to obtain flame retardant fabric.

  2. Pyrrolidinium Ionic Liquid Crystals


    Goossens, Karel; Lava, Kathleen; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Driesen, Kris; Görller-Walrand, Christiane; Binnemans, Koen; Cardinaels, Thomas


    N-Alkyl-N-methylpyrrolidinium cations have been used for the design of ionic liquid crystals, including a new type of uranium-containing metallomesogen. Pyrrolidinium salts with bromide, bis(trifluoromethylsulfonyl)-imide, tetrafluoroborate, hexafluorophosphate, thiocyanate, tetrakis(2-thenoyltrifluoroacetonato)europate(III) and tetrabromouranyl] counteranions were prepared. For the bromide salts and tetrabromouranyl compounds, the chain length of the alkyl group CnH2n+1 was varied from eight...

  3. Liquid fuel cells

    Directory of Open Access Journals (Sweden)

    Grigorii L. Soloveichik


    Full Text Available The advantages of liquid fuel cells (LFCs over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  4. Liquid Silicon Pouch Anode (United States)


    Docket No. 300139 1 of 13 LIQUID SILICON POUCH ANODE STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured... silicon -based anodes during cycling, lithium insertion and deinsertion. Mitigation of this problem has long been sought and will result in improved...with other potential lithium alloy materials such as gallium and tin. Silicon -based solid state anodes are typically composed of small particles of

  5. Liquid fuel cells (United States)


    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  6. Methane to liquid

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, B.E.; Shock, R.N.; Taylor, R.T.


    We are investigating the structure/activity relationships of the bacterial enzyme methane monooxygenase, which catalyzes the the specific oxidation of methane to methanol. We then utilize this information to design and synthesize inorganic coordination complexes that mimic the function of the native enzyme but more robust and have higher catalytic site density. We envision these catalysts to be useful in process catalytic reactors in the conversion of methane in natural gas to liquid methanol.

  7. Liquid fuel cells. (United States)

    Soloveichik, Grigorii L


    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  8. Liquids with permanent porosity (United States)

    Giri, Nicola; Del Pópolo, Mario G.; Melaugh, Gavin; Greenaway, Rebecca L.; Rätzke, Klaus; Koschine, Tönjes; Pison, Laure; Gomes, Margarida F. Costa; Cooper, Andrew I.; James, Stuart L.


    Porous solids such as zeolites and metal-organic frameworks are useful in molecular separation and in catalysis, but their solid nature can impose limitations. For example, liquid solvents, rather than porous solids, are the most mature technology for post-combustion capture of carbon dioxide because liquid circulation systems are more easily retrofitted to existing plants. Solid porous adsorbents offer major benefits, such as lower energy penalties in adsorption-desorption cycles, but they are difficult to implement in conventional flow processes. Materials that combine the properties of fluidity and permanent porosity could therefore offer technological advantages, but permanent porosity is not associated with conventional liquids. Here we report free-flowing liquids whose bulk properties are determined by their permanent porosity. To achieve this, we designed cage molecules that provide a well-defined pore space and that are highly soluble in solvents whose molecules are too large to enter the pores. The concentration of unoccupied cages can thus be around 500 times greater than in other molecular solutions that contain cavities, resulting in a marked change in bulk properties, such as an eightfold increase in the solubility of methane gas. Our results provide the basis for development of a new class of functional porous materials for chemical processes, and we present a one-step, multigram scale-up route for highly soluble ‘scrambled’ porous cages prepared from a mixture of commercially available reagents. The unifying design principle for these materials is the avoidance of functional groups that can penetrate into the molecular cage cavities.

  9. Instabilities in liquid crystals

    CERN Document Server

    Barclay, G J


    and we examine the differences which occur for differing dielectric anisotropies. Finally, in Chapter 7 we study how a sample of smectic C liquid crystal behaves when it is subjected to a uniform shear flow within the smectic plane. We find travelling wave solutions for the behaviour of the c-director and adapt these solutions to incorporate the effects of an applied field. This thesis contains theoretical work dealing with the effects of magnetic and electric fields on samples of nematic, smectic A and smectic C liquid crystals. Some background material along with the continuum theory is introduced in Chapter 2. In Chapter 3 we consider the effect on the director within an infinite sample of nematic liquid crystal which is subjected to crossed electric and magnetic fields. In particular we examine the stability of the travelling waves which describe the director motion by considering the behaviour of the stable perturbations as time increases. The work of Chapter 4 examines a bounded sample of smectic A liqu...

  10. Safe and Liquid Mortgage Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper

    eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system......This paper shows that strict match pass-through funding of covered bonds provides safe and liquid mortgage bonds. Despite a 30% drop in house prices during the 2008 global crisis Danish mortgage bonds remained as liquid as most European government bonds. The Danish pass-through system effectively...... and for the treatment of covered bonds in capital regulation....

  11. Ternary liquid-liquid equilibria for mixtures of toluene + n-heptane + an ionic liquid

    NARCIS (Netherlands)

    Meindersma, G.W.; Podt, J.G.; de Haan, A.B.


    This research has been focused on a study of sulfolane and four ionic liquids as solvents in liquid–liquid extraction. Liquid–liquid equilibria data were obtained for mixtures of (sulfolane or 4-methyl-N-butylpyridinium tetrafluoroborate ([mebupy]BF4) or 1-ethyl-3-methylimidazolium ethylsulfate

  12. Some Cavitation Properties of Liquids

    Directory of Open Access Journals (Sweden)

    K. D. Efremova


    Full Text Available Cavitation properties of liquid must be taken into consideration in the engineering design of hydraulic machines and hydro devices when there is a possibility that in their operation an absolute pressure in the liquid drops below atmospheric one, and for a certain time the liquid is in depression state. Cold boiling, which occurs at a comparatively low temperature under a reduced absolute pressure within or on the surface of the liquid is regarded as hydrostatic cavitation if the liquid is stationary or as hydrodynamic cavitation, if the liquid falls into conditions when in the flow cross-section there is a sharply increasing dynamic pressure and a dropping absolute pressure.In accordance with the theory of cavitation, the first phase of cavitation occurs when the absolute pressure of the degassed liquid drops to the saturated vapour pressure, and the air dissolved in the liquid, leaving the intermolecular space, is converted into micro-bubbles of combined air and becomes a generator of cavitation “nuclei”. A quantitative estimate of the minimum allowable absolute pressure in a real, fully or partially degassed liquid at which a hydrostatic cavitation occurs is of practical interest.Since the pressure of saturated vapour of a liquid is, to a certain extent, related to the forces of intermolecular interaction, it is necessary to have information on the cavitation properties of technical solutions, including air solution in a liquid, as a solute may weaken intermolecular bonds and affect the pressure value of the saturated solvent vapour. In the experiment to carry out vacuum degassing of liquids was used a hydraulic air driven vacuum pump.The paper presents hydrostatic and hydrodynamic degassing liquid processes used in the experiment.The experimental studies of the cavitation properties of technical liquids (sea and distilled water, saturated NaCl solution, and pure glycerol and as a 49/51% solution in water, mineral oil and jet fuel enabled

  13. Corrosion resistance investigation of vanadium alloys in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Borovitskaya, I. V., E-mail: [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Lyublinskiy, I. E. [JSC Red Star (Russian Federation); Bondarenko, G. G. [National Research University Higher School of Economics (Russian Federation); Paramonova, V. V. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Korshunov, S. N.; Mansurova, A. N. [National Research Center Kurchatov Institute (Russian Federation); Lyakhovitskiy, M. M. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Zharkov, M. Yu. [JSC Red Star (Russian Federation)


    A major concern in using vanadium alloys for first wall/blanket systems in fusion reactors is their activity with regard to nonmetallic impurities in the coolants. This paper presents the results of studying the corrosion resistance in high-purity liquid lithium (with the nitrogen and carbon content of less than 10{sup –3} wt %) of vanadium and vanadium alloys (V–1.86Ga, V–3.4Ga–0.62Si, V–4.81Ti–4.82Cr) both in the initial state and preliminarily irradiated with Ar+ ions with energy of 20 keV to a dose of 10{sup 22} m{sup –2} at an irradiation temperature of ~400°C. The degree of corrosion was estimated by measuring the changes in the weight and microhardness. Corrosion tests were carried out under static isothermal conditions at a temperature of 600°C for 400 h. The identity of corrosion mechanisms of materials both irradiated with Ar ions and not irradiated, which consisted in an insignificant penetration of nitrogen into the materials and a substantial escape of oxygen from the materials, causing the formation of a zone with a reduced microhardness near the surface, was established. The influence of the corrosive action of lithium on the surface morphology of the materials under study was found, resulting in the manifestation of grain boundaries and slip lines on the sample surface, the latter being most clearly observed in the case of preliminary irradiation with Ar ions.

  14. Thermal-Hydraulic Integral Effect Test with ATLAS for an Intermediate Break Loss of Coolant Accident at a Pressurizer Surge Line

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung Ho; Seok Cho; Park, Hyun Sik; Choi, Nam Hyun; Park, Yu Sun; Kim, Jong Rok; Bae, Byoung Uhn; Kim, Yeon Sik; Kim, Kyung Doo; Choi, Ki Yong; Song, Chul Hwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The main objectives of this test were not only to provide physical insight into the system response of the APR1400 during the pressurizer surge line break accident but also to produce an integral effect test data to validate the SPACE code. In order to simulate a double-ended guillotine break of a pressurizer surge line in the APR1400, the IB-SUR-01R test was performed with ATLAS. The major thermal-hydraulic phenomena such as the system pressures, the collapsed water levels, and the break flow rate were presented and discussed. Despite the core was uncovered, no excursion in the cladding temperature was observed. The pressurizer surge line break can be classified as a hot leg break from a break location point of view. Compared with a cold leg break, coolability in the core may be better in case of a hot leg break due to the enhanced flow in the core region. This integral effect test data will be used to evaluate the prediction capability of existing safety analysis codes of the MARS and the RELAP5 as well as the SPACE code. Furthermore, this data can be utilized to identify any code deficiency for an IBLOCA simulation, especially for DVI-adapted plants. Redefinition of break size for design basis accident (DBA) based on risk information is being extensively investigated due to the potential for safety benefits and unnecessary burden reduction from current LBLOCA (large break loss of coolant accident)-based ECC (Emergency Core Cooling) Acceptance Criteria. As a transition break size (TBS), the rupture of medium-size pipe is considered to be more important than ever in risk-informed regulation (RIR)-relevant safety analysis. As plants age, are up-rated, and continue to seek improved operating efficiencies, the small break and intermediate break LOCA (IBLOCA) can become a concern. In particular, IBLOCA with DVI (Direct Vessel Injection) features will be addressed to support redefinition of a design-basis LOCA. With an aim of expanding code validation to address small

  15. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 3—Calcium

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Sterling; Ali, Amir; LaBrier, Daniel [Department of Nuclear Engineering, University of New Mexico (United States); Blandford, Edward D, E-mail: [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry [Department of Civil Engineering, University of New Mexico (United States)


    Highlights: • Calcium leaching from NUKON fiberglass in borated TSP-buffered solution is independent of the level of fiberglass destruction. • The initial calcium release rate and the maximum calcium concentration increases with increased fiber concentration. • The calcium release in solution has a repeatable pattern of four distinct regions (prompt release, metastable, autocatalytic drop, and stable region) for all experiments. • Magnesium plays a significant role in initiating calcium precipitation in TSP-buffered environment. • Head loss through multi-constituents debris beds was found to increase progressively in all calcium concentration regions. - Abstract: Calcium that leaches from damaged or destroyed NUKON fiberglass in containment post a loss of coolant accident (LOCA) could lead to the formation of chemical precipitates. These precipitates could be filtered through the accumulated fibrous debris on the sump screen and compromising the emergency core cooling system (ECCS) sump pump performance. Reduced-scale leaching experiments were conducted on three solution inventory scales—bench (0.5 L), vertical column (31.5 L), and tank (1136 L) using three different flow conditions, and fiberglass concentrations (1.18–8 g/L) to investigate calcium release from NUKON fiber. All experiments were conducted in simulated post-LOCA water chemistry. (∼220 mM boric acid with ∼5.8 mM trisodium phosphate (TSP) buffer). Prior to the leaching tests, a preliminary experiment was carried out on the bench scale to determine the effect of the fiber preparation (unaltered and blended) method on calcium leaching. Results indicate that the extent of fiberglass destruction does not affect the amount of calcium released from fiberglass. Long-term calcium leach testing at constant temperature (80 °C) in borated TSP-buffered solution had repeatable behavior on all solution scales for different fiberglass concentrations. The calcium-leaching pattern can be divided into

  16. Recent development of ionic liquid stationary phases for liquid chromatography. (United States)

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang


    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Measuring liquidity on stock market: impact on liquidity ratio


    Siniša Bogdan; Suzana Bareša; Saša Ivanović


    The purpose – It is important to emphasize that liquidity on Croatian stock market is low, the purpose of this paper is to test empirically and find out which variables make crucial role in decision making process of investing in stocks. Design – This paper explores the impact of various liquidity variables on liquidity ratio since it is still insufficiently researched topic. Methodology –This research uses secondary and primary data available from Croatian stock market. Considering pri...

  18. Harnessing Poly(ionic liquid)s for Sensing Applications


    Guterman, Ryan; Ambrogi, Martina; Yuan, Jiayin


    The interest in poly(ionic liquids) for sensing applications are derived from their strong interactions to a variety of analytes. By combining the desirable mechanical properties of polymers with the physical and chemical properties of ILs, new materials can be created. The tunable nature of both ionic liquids and polymers allows for incredible diversity, which is exemplified in their broad applicability. In this article we examine the new field of poly(ionic liquid) sensors by providing a de...

  19. Molecular Relaxation in Liquids

    CERN Document Server

    Bagchi, Biman


    This book brings together many different relaxation phenomena in liquids under a common umbrella and provides a unified view of apparently diverse phenomena. It aligns recent experimental results obtained with modern techniques with recent theoretical developments. Such close interaction between experiment and theory in this area goes back to the works of Einstein, Smoluchowski, Kramers' and de Gennes. Development of ultrafast laser spectroscopy recently allowed study of various relaxation processes directly in the time domain, with time scales going down to picosecond (ps) and femtosecond (fs

  20. Water: The Strangest Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Anders


    Water, H2O, is familiar to everyone - it shapes our bodies and our planet. But despite its abundance, water has remained a mystery, exhibiting many strange properties that are still not understood. Why does the liquid have an unusually large capacity to store heat? And why is it denser than ice? Now, using the intense X-ray beams from particle accelerators, investigations into water are leading to fundamental discoveries about the structure and arrangement of water molecules. This lecture will elucidate the many mysteries of water and discuss current studies that are revolutionizing the way we see and understand one of the most fundamental substances of life.

  1. Liquidity, welfare and distribution

    Directory of Open Access Journals (Sweden)

    Martín Gil Samuel


    Full Text Available This work presents a dynamic general equilibrium model where wealth distribution is endogenous. I provide channels of causality that suggest a complex relationship between financial markets and the real activity which breaks down the classical dichotomy. As a consequence, the Friedman rule does not hold. In terms of the current events taking place in the world economy, this paper provides a rationale to advert against the perils of an economy satiated with liquidity. Efficiency and distribution cannot thus be considered as separate attributes once we account for the interactions between financial markets and the economic performance.

  2. Impulse breakdown of liquids

    CERN Document Server

    Ushakov, Vasily Y


    The book describes the main physical processes and phenomena in pulsed electric breakdown. The knowledge and the control of the electric breakdown of liquids is important not only for the insulation inside power systems but it is also used for the creation and information of high voltage and high current pulses. Such high-voltage micro- and nanosecond pulses find wide application in experimental physics, electro discharge technology, physics of dielectrics, radar detection and ranging, high-speed photography. The nature of charge carriers, mechanism of formation and evolution of the gas phase,

  3. Cavitation in liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Finch, R. D.; Kagiwada, R.; Barmatz, M.; Rudnick, I.


    Ultrasonic cavitation was induced in liquid helium over the temperature range 1.2 to 2.3 deg K, using a pair of identical transducers. The transducers were calibrated using a reciprocity technique and the cavitation threshold was determined at 90 kc/s. It was found that this threshold has a sharp peak at the lambda point, but is, at all temperatures quite low, with an approximate range of 0.001 to 0.01 atm. The significance of the results is discussed. (auth)

  4. Levitation in paramagnetic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.A. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)]. E-mail:; Hilton, J. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland); Coey, J.M.D. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)


    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated.

  5. Directed Line Liquids (United States)

    Kamien, Randall David

    This thesis is devoted to the study of ensembles of dense directed lines. These lines are principally to be thought of as polymers, though they also have the morphology of flux lines in high temperature superconductors, strings of colloidal spheres in electrorheological fluids and the world lines of quantum mechanical bosons. We first study nematic polymers dissolved in a nematic solvent. We show that in the dense phase nematic polymers interacting directly through excluded volume and indirectly through nematic solvent fluctuations are, at long wavelengths, identical to nematic polymers in an isotropic solvent, interacting through, again, excluded volume as well as their nematic degrees of freedom. By including the effects of free ends we study ferro- and electrorheological fluids and finite chain length polymers. In the dilute phase, near the transition to the semi-dilute phase, a renormalization group treatment is performed, in the physical and critical dimension 3. For sufficiently dilute systems we find logarithmic corrections to polymer wandering, predicted by de Gennes. However, at higher densities, the logarithmic enhancement is suppressed, and the polymers execute conventional random walks along the preferred axis. We then study the isotropic to nematic transition in this same system of liquid-crystalline polymers. Using the replica technique introduced by de Gennes to study isotropic polymers, we formulate a fully isotropic theory of liquid-crystalline polymers dissolved in a liquid crystal matrix. The first order transition from isotropic to nematic ordering occurs, and leads to the original directed polymer theory previously studied. In agreement with physical expectations, the nematic ordering temperature is depressed by polymerization. Finally, we go back to directed systems, in this case directed by an explicit symmetry violation instead of spontaneously. We discuss how directed polymer melts, string-like formations in electrorheological and ferro

  6. High Performance Liquid Chromatography (United States)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  7. Vaporization of Kitaev spin liquids. (United States)

    Nasu, Joji; Udagawa, Masafumi; Motome, Yukitoshi


    The quantum spin liquid is an exotic quantum state of matter in magnets. This state is a spin analog of liquid helium that does not solidify down to the lowest temperature due to strong quantum fluctuations. In conventional fluids, the liquid and gas possess the same symmetry and adiabatically connect to each other by bypassing the critical end point. We find that the situation is qualitatively different in quantum spin liquids realized in a three-dimensional Kitaev model; both gapless and gapped quantum spin liquid phases at low temperatures are always distinguished from the high-temperature paramagnet (spin gas) by a phase transition. The results challenge the common belief that the absence of thermodynamic singularity down to the lowest temperature is a symptom of a quantum spin liquid.

  8. Posters of liquid protests

    Directory of Open Access Journals (Sweden)

    Helcius Batista Pereira


    Full Text Available This article aims to analyze a corpus formed by sample of posters used in the Brazilian protests, called "Passe Livre”, in 2013. Our study intents understand the posters under the multi-systemic perspective (Castilho, 2010. The posters are a kind of textual genre (Bakhtin, 2011. This work explores the mutual interactions between the language and the social facts, performing quantitative analysis of the posters at various levels (from the lexical to the pragmatic-discursive level. Our methodological pillars are the concepts of habitus and linguistic market (Bourdieu, 2003 and the concept of “liquid modernity” (Bauman, 2001. Our analysis showed that: 1 the most common theme of the posters refer to the act of protest, 2 only 40% of the posters are argumentative or injunctive texts, 3 the posters have, in general, only once sentence, 4 in low frequency, the posters have elements of the non-verbal languages, 5 the posters have, more often, simple phrases period, 6 imperative verbs are rare on those posters, and, finally, 7 most of the posters are for declaring something and do another reflect, but not to demand something. All these features indicate that posters have a relationship with the texts of social networks, to which are connected in real time, and are a linguistic product of the generation that has in your habitus the rules of the "liquid modernity".

  9. Liquid spray experiments (United States)

    Lapham, Gary; McHugh, John

    When waves on the ocean surface interact with a solid object, the result is often a complex pattern of spray. The solid object may be a coastal barrier such as a breakwater, or a ship or drilling rig. Another spray-related case is the presence of large industrial tanks of liquid, and often dangerous liquids, that exist around the world. Tens of thousands of such tanks are rapidly becoming obsolete. Recent experience has shown that when such tanks burst, the resulting spray may shoot several hundreds of meters from the tank. These tanks often have a wall or dam (barrier) surrounding them in an attempt to contain any leakage, catastrophic or otherwise. When the tank bursts it is akin to the dam-break problem. A wall of water rushes forth and impinges on the barrier creating spray. Previous experiments (McHugh and Watt, 1998) considered the related configuration of a solitary wave impinging on a vertical wall. The present experiments more closely model the bursting tank case, and treat the effect of the distance between the tank and barrier. Results show that there is a sweet spot where height and horizontal distance of spray droplets are maximized. This ideal distance between tank and barrier is constant when scaled by the initial tank depth.

  10. Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids – A Review

    Directory of Open Access Journals (Sweden)

    Kubiczek Artur


    Full Text Available Room-temperature ionic liquids (RTILs are a moderately new class of liquid substances that are characterized by a great variety of possible anion-cation combinations giving each of them different properties. For this reason, they have been termed as designer solvents and, as such, they are particularly promising for liquid-liquid extraction, which has been quite intensely studied over the last decade. This paper concentrates on the recent liquid-liquid extraction studies involving ionic liquids, yet focusing strictly on the separation of n-butanol from model aqueous solutions. Such research is undertaken mainly with the intention of facilitating biological butanol production, which is usually carried out through the ABE fermentation process. So far, various sorts of RTILs have been tested for this purpose while mostly ternary liquid-liquid systems have been investigated. The industrial design of liquid-liquid extraction requires prior knowledge of the state of thermodynamic equilibrium and its relation to the process parameters. Such knowledge can be obtained by performing a series of extraction experiments and employing a certain mathematical model to approximate the equilibrium. There are at least a few models available but this paper concentrates primarily on the NRTL equation, which has proven to be one of the most accurate tools for correlating experimental equilibrium data. Thus, all the presented studies have been selected based on the accepted modeling method. The reader is also shown how the NRTL equation can be used to model liquid-liquid systems containing more than three components as it has been the authors’ recent area of expertise.

  11. Graphene-ionic liquid composites

    Energy Technology Data Exchange (ETDEWEB)

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian


    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  12. Solute diffusion in liquid metals (United States)

    Bhat, B. N.


    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  13. Forces in Liquid Metal Contacts

    DEFF Research Database (Denmark)

    Duggen, Lars; Mátéfi-Tempfli, Stefan


    Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review...... of the necessary theory and find numerically the forces to be in the 100μN range for liquid metals as mercury and liquid Gallium suspended between electrodes of 20μm radius....

  14. Bank Mergers, Competition and Liquidity


    Carletti, Elena; Hartmann, Philipp; Spagnolo, Giancarlo


    We model the impact of bank mergers on loan competition, reserve holdings and aggregate liquidity. A merger changes the distribution of liquidity shocks and creates an internal money market, leading to financial cost efficiencies and more precise estimates of liquidity needs. The merged banks may increase their reserve holdings through an internalization effect or decrease them because of a diversification effect. The merger also affects loan market competition, which in turn modifies the dis...

  15. Market liquidity and financial stability.


    Crockett, A.


    Stability in financial institutions and in financial markets are closely intertwined. Banks and other financial institutions need liquid markets through which to conduct risk management. And markets need the back-up liquidity lines provided by financial institutions. Market liquidity depends not only on objective, exogenous factors, but also on endogenous market dynamics. Central banks responsible for systemic stability need to consider how far their traditional responsibility for the health ...

  16. Liquid monobenzoxazine based resin system (United States)

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark


    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  17. Storage of liquid, radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hesky, H.; Wunderer, A.


    When reprocessing spent nuclear fuel, liquid radioactive wastes are obtained and, is generated from fission within the waste, and oxyhydrogen may be set free by radiolysis. The fission heat generated within the liquid wastes is carried off by evaporation cooling and, the vapor so formed condensed and recycled into the storage vessel for the liquid wastes. The oxyhydrogen is then diluted with the vapor formed during evaporation cooling and converted catalytically.

  18. Liquidity Determinants of Moroccan Banking Industry


    FERROUHI, El Mehdi; LEHADIRI, Abderrassoul


    This paper analyzes the behavior of Moroccan bank’s liquidity during the period 2001 – 2012. The research aims to identify the determinants of Moroccan bank’s liquidity. We first evaluate Moroccan banks’ liquidity positions through different liquidity ratios to determine the effects of financial crisis on bank’s liquidity. We then highlight the effect of banks’ size on banks’ liquidity. Finally, we identify determinants of Moroccan bank’s liquidity using panel data regression. ...


    Directory of Open Access Journals (Sweden)

    Dzulkefly Kuang Abdullah


    Full Text Available Ionic liquids are considered as an ideal alternative to volatile organic solvents and chemical industries in the future,because they are non-volatile. Ionic liquids are also considered as new novel chemical agents and widely regarded as agreener alternative to many commonly used solvents. Ionic liquids have been studied for a wide range of syntheticapplications and have attracted considerable interest for use as electrolytes in the areas of organic synthesis, catalysis,solar cell, fuel cells, electrodeposition and supercapacitors. However, some ionic liquids suffer from more or less somedrawbacks such as toxicity, preparation and high cost in the process for use. Most recently, three types of ionic liquidsare attracted much attentions specifically traditional ionic liquid, protic ionic liquid and deep eutectic solvent, wheretheir preparation, mechanism and limitation were differentiated. However, those liquids are having their ownadvantages and limitations based on applications. Traditional ionic liquid and protic ionic liquid are highly cost andtoxic for applied engineering research, but they consist of micro-biphasic systems composed of ionic compounds whichhave more varieties in the applications. The deep eutectic solvent is very economic for large-scale possessing but thereare only limited ionic mixtures to certain application such as electrochemistry.

  20. Shallow Water Tuned Liquid Dampers

    DEFF Research Database (Denmark)

    Krabbenhøft, Jørgen

    The use of sloshing liquid as a passive means of suppressing the rolling motion of ships was proposed already in the late 19th century. Some hundred years later the use of liquid sloshing devices, often termed Tuned Liquid Dampers (TLD), began to find use in the civil engineering community...... that for realistic roughness parameters the bottom friction has very limited effect on the liquid sloshing behavior and can be neglected. Herby the postulate is verified. Based on the mathematical model three dimensionless parameters are derived showing that the response of the damper depends solely on ratio...

  1. Liquid-liquid interfacial tension of electrolyte solutions

    NARCIS (Netherlands)

    Bier, Markus; Zwanikken, J.W.; van Roij, R.H.H.G.


    It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte solutions as a function of the ionic strength I behaves asymptotically as (-) for small I and as (±I) for large I. The former regime is dominated by the electrostatic potential due to an unequal


    African Journals Online (AJOL)

    B. S. Chandravanshi

    indicating a purer extract. KEY WORDS: Khat alkaloids, Solid phase extraction, Liquid-liquid extraction, HPLC, Genevac. INTRODUCTION. Khat (Catha edulis Vahl. Endl.) is an evergreen shrub or tree belonging to the Celastraceae family. Although the plant originates from Ethiopia, it occurs in Kenya, Malawi, Uganda,.

  3. Redox-active Crosslinkable Poly(ionic liquid)s

    NARCIS (Netherlands)

    Sui, Xiaofeng; Hempenius, Mark A.; Vancso, Gyula J.


    The synthesis of a new class of cross-linkable redox-responsive poly(ferrocenylsilane)-based poly(ionic liquid)s (PFS-PILs) is reported. PFS-PILs self-cross-link at low concentrations into nanogels or form macroscopic hydrogel networks at higher concentrations. PFS-PILs proved to be efficient

  4. Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, Yusuke; Ito, Satoshi; Hashizume, Hidetoshi [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan)


    A remountable high-temperature superconducting magnet, whose segments can be mounted and demounted repeatedly, has been proposed for construction and maintenance of superconducting magnet and inner reactor components of a fusion reactor. One of the issues in this design is that the performance of the magnet deteriorates by a local temperature rise due to Joule heating in jointing regions. In order to prevent local temperature rise, a cooling system using a cryogenic coolant and metal porous media was proposed and experimental studies have been carried out using liquid nitrogen. In this study, flow and heat transfer characteristics of cooling system using subcooled liquid nitrogen and bronze particle sintered porous media are evaluated through experiments in which the inlet degree of subcooling and flow rate of the liquid nitrogen. The flow characteristics without heat input were coincided with Ergun’s equation expressing single-phase flow in porous materials. The obtained boiling curve was categorized into three conditions; convection region, nucleate boiling region and mixed region with nucleate and film boiling. Wall superheat did not increase drastically with porous media after departure from nucleate boiling point, which is different from a situation of usual boiling curve in a smooth tube. The fact is important characteristic to cooling superconducting magnet to avoid its quench. Heat transfer coefficient with bronze particle sintered porous media was at least twice larger than that without the porous media. It was also indicated qualitatively that departure from nucleate boiling point and heat transfer coefficient depends on degree of subcooling and mass flow rate. The quantitative evaluation of them and further discussion for the cooling system will be performed as future tasks.

  5. Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poddubnyi, I. I., E-mail: [Joint Stock Company Dollezhal Research and Development Institute of Power Engineering (JSC NIKIET) (Russian Federation); Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, V. G.; Sviridov, E. V. [Russian Academy of Science, Joint Institute of High Temperatures (Russian Federation); Leshukov, A. Yu. [Joint Stock Company Dollezhal Research and Development Institute of Power Engineering (JSC NIKIET) (Russian Federation); Aleskovskiy, K. V. [National Research University Moscow Power Engineering Institute (MPEI) (Russian Federation); Obukhov, D. M. [Joint Stock Company Efremov Institute of Electrophysical Apparatus (Russian Federation)


    The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in the majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational

  6. Green Liquid Monopropellant Thruster (United States)

    Joshi, Prakash B.


    Physical Sciences, Inc. (PSI), and Orbital Technologies Corporation (ORBITEC) are developing a unique chemical propulsion system for next-generation NASA science spacecraft and missions. The system is compact, lightweight, and can operate with high reliability over extended periods of time and under a wide range of thermal environments. The system uses a new storable, low-toxicity liquid monopropellant as its working fluid. In Phase I, the team demonstrated experimentally the critical ignition and combustion processes for the propellant and used the data to develop thruster design concepts. In Phase II, the team developed and demonstrated in the laboratory a proof-of-concept prototype thruster. A Phase III project is envisioned to develop a full-scale protoflight propulsion system applicable to a class of NASA missions.

  7. Simulation methods of rocket fuel refrigerating with liquid nitrogen and intermediate heat carrier

    Directory of Open Access Journals (Sweden)

    O. E. Denisov


    Full Text Available Temperature preparation of liquid propellant components (LPC before fueling the tanks of rocket and space technology is the one of the operations performed by ground technological complexes on cosmodromes. Refrigeration of high-boiling LPC is needed to increase its density and to create cold reserve for compensation of heat flows existing during fueling and prelaunch operations of space rockets.The method and results of simulation of LPC refrigeration in the recuperative heat exchangers with heat carrier which is refrigerated by-turn with liquid nitrogen sparging. The refrigerating system consists of two tanks (for the chilled coolant and LPC, LPC and heat carrier circulation loops with heat exchanger and system of heat carrier refrigeration in its tank with bubbler. Application of intermediate heat carrier between LPC and liquid nitrogen allows to avoid LPC crystallization on cold surfaces of the heat exchanger.Simulation of such systems performance is necessary to determine its basic design and functional parameters ensuring effective refrigerating of liquid propellant components, time and the amount of liquid nitrogen spent on refrigeration operation. Creating a simulator is quite complicated because of the need to take into consideration many different heat exchange processes occurring in the system. Also, to determine the influence of various parameters on occurring processes it is necessary to take into consideration the dependence of all heat exchange parameters on each other: heat emission coefficients, heat transfer coefficients, heat flow amounts, etc.The paper offers an overview of 10 references to foreign and Russian publications on separate issues and processes occurring in liquids refrigerating, including LPC refrigeration with liquid nitrogen. Concluded the need to define the LPC refrigerating conditions to minimize cost of liquid nitrogen. The experimental data presented in these publications is conformed with the application of

  8. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing


    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power...

  9. Drying a liquid paint layer

    NARCIS (Netherlands)

    Susanto, H.; van de Fliert, B.W.


    Subject of this study is the free boundary problem of a liquid layer that is dried by evaporation. Using a Stefan type problem, we model the diffusion driven drying of a layer of liquid paint consisting of resin and solvent. The effect of a small perturbation of the flat boundary is considered. We

  10. Liquid marbles: Physics and applications

    Indian Academy of Sciences (India)

    ity of actuating liquid marbles using electric and magnetic stimuli promises other exciting new applications in the future. These applications will be discussed later. .... because it holds the key to determining the rupture strength and robustness of liquid marbles. Experimental methods such as the measurement of the height of ...

  11. The liquidity of energy stocks

    NARCIS (Netherlands)

    Sklavos, Konstantinos; Dam, Lammertjan; Scholtens, Bert

    This study investigates the dynamics of stock market liquidity in the energy industry in the US for 130 firms for the period 2006-2011. We use a (structural) vector autoregression approach to model the simultaneous relationships between three liquidity measures, namely turnover, price impact and

  12. Mass transfer. Liquid-liquid extraction with chemical reaction; Transfert de matiere. Extraction liquide-liquide avec reaction chimique

    Energy Technology Data Exchange (ETDEWEB)

    Buch, A.; Rakib, M.; Stambouli, M. [Ecole Centrale de Paris, 75 (France)


    The coupling between the mass transfer and the chemical reaction is in the heart of the processes carried out in liquid-liquid extraction called reactive extraction. This coupling is in particular used in industrial applications such as nuclear industry (Purex process..). (O.M.)

  13. Stabilization of supported liquid membranes

    NARCIS (Netherlands)

    Kemperman, Antonius Josephus Bernardus


    Membrane processes provide a relatively new and economically attractive separation technique. One type of membrane processes, i.e. the use of facilitated transport in liquid membranes, is particularly attractive. Compared to other membrane processes, liquid membranes show high selectivities, high

  14. Bio-Liquid Morphological Analysis


    S. N. Shatokhina; Shabalin, V.N.; Buzoverya, M.E.; V.T. Punin


    Information is presented on the new scientific line in medicine and biology: bio-liquid morphology. The interdisciplinary character of the given research area is emphasized. The problems and prospects of bio-liquid morphological analysis development both in applied and fundamental aspects are discussed.

  15. Argon solubility in liquid steel

    NARCIS (Netherlands)

    Boom, R; Dankert, O; Van Veen, A; Kamperman, AA


    Experiments have been performed to establish the solubility of argon in liquid interstitial-free steel. The solubility appears to be lower than 0.1 at ppb, The results are in line with argon solubilities reported in the literature on liquid iron. Semiempirical theories and calculations based on the

  16. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.


    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  17. Structure of simple liquids and of liquid metal alloys; La structure des liquides simples et des alliages liquides metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, V. [Laboratoire Louis Neel, UPR 5051 du CNRS, 38 (France); Bellissent, R. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)


    Liquid metals and liquid metal alloys have long been considered as aleatory orderings of hard spheres. Today techniques such as neutron or X-ray diffraction allow us to get more accurate partial structure factors, so the hard sphere model is no longer sufficient and has to be upgraded in order to take into account the nature of local order and the degree of isotropy in interactions between atoms. A local icosahedral structure has been put in evidence for 2 types of metal liquids: under-cooled liquids in which a local icosahedral structure was expected in order to explain its under-cooling properties, and liquids that are in equilibrium with quasi-crystals (Al-Pd-Mn alloys)

  18. Development of analytical model for evaluating temperature fluctuation in coolant. 12. Investigation of stationary random temperature fluctuation characteristics in frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center


    Thermal striping phenomena characterized by stationary random temperature fluctuations are observed in the region immediately above the core exit of liquid-metal-cooled fast breeder reactors (LMFBRs) due to the interactions of cold sodium flowing out of a control rod (C/R) assembly and hot sodium flowing out of adjacent fuel assemblies (F/As). Therefore the in-vessel components located in the core outlet region, such as upper core structure (UCS), flow guide tube, C/R upper guide tube, etc., must be protected against the stationary random thermal process which might induce high-cycle fatigue. In this study, frequency characteristics of stationary random temperature fluctuations were investigated by the use of the time-series data from parallel impinging jet experiments, TIFFSS-I. (J.P.N.)

  19. Impact evaluation of the accident with release of a PWR coolant. Case study: Angra 3; Avaliacao do impacto de acidente com liberacao do refrigerante de reator PWR. Estudo de caso: Angra 3

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Andre Silva de; Simoes Filho, Francisco Fernando Lamego; Soares, Abner Duarte; Lapa, Celso Marcelo Franklin, E-mail:, E-mail:, E-mail: [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)


    It was postulated in the cooling system, a LOCA where was lost 431 m{sup 3} of coolant. The inventory was 1.87 x 10{sup 10} Bq/m{sup 3} of tritium, 2.22 x 10{sup 7} Bp/m{sup 3} of cobalt and 3.48 x 10{sup 8} Bq/m{sup 3} of cesium and was launched near tue Itaorna beach, Angra dos Reis, RJ, Brazil. By applying the model in the proposed scenery (Angra 1 and 2 functioning and Angra 3 with variation of water taking and discharge with a progressive reduction after the accident), the dilution of specific activity of the radionuclides reached inferior values after 22 hours, to the reference values. After 54 hours, the levels of radionuclides, in the indirect influence are already below the minimum values of activity detected by the laboratory of environmental monitoring of the CNAAA

  20. Specialist gelator for ionic liquids. (United States)

    Hanabusa, Kenji; Fukui, Hiroaki; Suzuki, Masahiro; Shirai, Hirofusa


    Cyclo(l-beta-3,7-dimethyloctylasparaginyl-L-phenylalanyl) (1) and cyclo(L-beta-2-ethylhexylasparaginyl-L-phenylalanyl) (2), prepared from L-asparaginyl-L-phenylalanine methyl ester, have been found to be specialist gelators for ionic liquids. They can gel a wide variety of ionic liquids, including imizazolium, pyridinium, pyrazolidinium, piperidinium, morpholinium, and ammonium salts. The mean minimum gel concentrations (MGCs) necessary to make gels at 25 degrees C were determined for ionic liquids. The gel strength increased at a rate nearly proportional to the concentration of added gelator. The strength of the transparent gel of 1-butylpyridinium tetrafluoroborate ([C(4)py]BF(4)), prepared at a concentration of 60 g L(-1) (gelator 1/[C(4)py]BF(4)), was ca. 1500 g cm(-2). FT-IR spectroscopy indicated that a driving force for gelation was intermolecular hydrogen bonding between amides and that the phase transition from gel to liquid upon heating was brought about by the collapse of hydrogen bonding. The gels formed from ionic liquids were very thermally stable; no melting occurs up to 140 degrees C when the gels were prepared at a concentration of 70 g L(-1) (gelator/ionic liquid). The ionic conductivities of the gels were nearly the same as those of pure ionic liquids. The gelator had electrochemical stability and a wide electrochemical window. When the gels were prepared from ionic liquids containing propylene carbonate, the ionic conductivities of the resulting gels increased to levels rather higher than those of pure ionic liquids. The gelators also gelled ionic liquids containing supporting electrolytes.