WorldWideScience

Sample records for coolant inventory reduction

  1. ISP 33. OECD/NEA/CSNI International Standard Problem n. 33. Pactel natural circulation stepwise coolant inventory reduction experiment. Comparison report. Volume 1 + 2

    International Nuclear Information System (INIS)

    Purhonen, H.; Kouhia, J.; Holmstrom, H.

    1994-12-01

    This is the comparison report of the CSNI ISP n.33, which is based on a natural circulation experiment with various coolant inventories conducted in Pactel facility (Finland), a 1/305 volumetrically scaled, full-height simulator of a Russian type VVER-440 pressurized water reactor. It presents all submitted blind calculational results from different countries, using various codes (Athlet, Cathare2, etc.) and compares them with the experimental data. The Pactel facility and the ISP 33 experiment are described, and the summaries of the participants, the computer codes and the nodalizations used for the blind calculations are presented

  2. Thermal effect of periodical bakeout on tritium inventory in first wall and permeation to coolant in reactor life

    International Nuclear Information System (INIS)

    Nakahara, Katsuhiko

    1989-01-01

    In view of safety, it is very important to control the tritium inventory in first walls and permeation to the coolant. A time-dependent diffusion and temperature calculation code, TPERM, was developed. Using this code, a numerical study on the long term effects of the bakeout temperature on tritium inventory and tritium permeation to the coolant was made. In this study, an FER type first wall (stainless steel) was considered and a cyclic operation (one cycle includes a plasma burn phase and a bakeout phase) was assumed. The results are as follows: (i) There is almost no difference in the tritium inventory in the first wall between the operation with 150 0 C-bakeout and the continuous burning operation (without bakeout). In both cases there is not tritium permeation to the coolant at 5 years' integrated burn time. The 150 0 C-bakeout is effective to release tritium in the surface (to 0.1 mm depth) region on the plasma side, but it is not effective to decrease the tritium inventory over the reactor life. (ii) To decrease the tritium inventory, a bakeout at a temperature higher than 150 0 C is necessary. But a high temperature bakeout causes earlier tritium permeation to the coolant. (iii) From these results it is suggested that the decrease the tritium inventory over the reactor life by bakeout, some form of protection against tritium permeation or a decontamination device in the cooling (or bakeout) system becomes necessary. (orig.)

  3. Investigation of decreasing reactor coolant inventory as a mechanism to reduce power during a BWR ATWS

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Layman, W.; Hentzen, R.D.; Gose, G.C.

    1985-01-01

    A best-estimate analysis was performed to evaluate the technique of intentionally reducing reactor coolant inventory in order to reduce power during a BWR ATWS event. The ATWS was initiated by closure of the main steam isolation valves. The analysis was performed with the RETRAN-02 computer code utilizing the one-dimensional kinetics option. The one-dimensional cross sections were developed using the SIMULATE-E and SIMTRAN-E computer codes. The MSIV closure transient provides some of the more severe conditions following a postulated failure to scram. In this transient, the only mechanism for removing energy from the vessel is through the safety relief valve system which results in a heating up of the suppression pool fluid. Consequently, the reactor power must be reduced so that the suppression pool temperature limits are not exceeded. Under the proposed emergency procedure guidelines for the ATWS event, the reactor vessel water level will be lowered to reduce system power. This analysis evaluated the dynamic response of the system as the water level was lowered to the top of active fuel evaluation. Correlating the system power and flow patterns to water level was of particular interest in the analysis. Under natural circulating conditions, the system flows, core power, and pressure responses are extremely tightly coupled and the analysis results proved to be very sensitive to the modeling of downcomer, upper plenum, and core regions

  4. Optimization of reactor coolant shutdown chemistry practices for crud inventory management

    International Nuclear Information System (INIS)

    Fellers, B.; Barnette, J.; Stevens, J.; Perkins, D.

    2002-01-01

    This report describes reactor coolant shutdown chemistry control practices at Comanche Peak Steam Electric Station (CPSES, TXU-Generation, USA). The shutdown evolution is managed from a process control perspective to achieve conditions most favorable to crud decomposition and to avoiding re-precipitation of metals. The report discusses the evolution of current industry practices and the necessity for greater emphasis on shutdown chemistry control in response to Axial Offset Anomaly and growth of ex-core radiation fields during outage conditions. Nuclear Industry experience with axial offset anomaly (AOA), radiation field growth and unexpected behavior of crud during reactor shutdowns has encouraged the refinement of chemistry control practices during plant shutdown and startup. The strong implication of nickel rich crud as a cause of AOA and unexpected crud behavior has resulted in a focus on nickel inventory management. The goals for Comanche Peak Steam Electric Station (CPSES) include maintaining solubility of metals and radioisotopes, maximizing nickel removal and effective cleanup with demineralizers. This paper provides results and lessons learned from long term efforts to optimize the shutdown process. (authors)

  5. Analysis of risk reduction methods for interfacing system LOCAs [loss-of-coolant accidents] at PWRs

    International Nuclear Information System (INIS)

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1988-01-01

    The Reactor Safety Study (WASH-1400) predicted that Interfacing System Loss-of-Coolant Accidents (ISL) events were significant contributors to risk even though they were calculated to be relatively low frequency events. However, there are substantial uncertainties involved in determining the probability and consequences of the ISL sequences. For example, the assumed valve failure modes, common cause contributions and the location of the break/leak are all uncertain and can significantly influence the predicted risk from ISL events. In order to provide more realistic estimates for the core damage frequencies (CDFs) and a reduction in the magnitude of the uncertainties, a reexamination of ISL scenarios at PWRs has been performed by Brookhaven National Laboratory. The objective of this study was to investigate the vulnerability of pressurized water reactor designs to ISLs and identify any improvements that could significantly reduce the frequency/risk of these events

  6. Establishing a greenhouse gas inventory and reduction goal: case study

    International Nuclear Information System (INIS)

    Carli, G.A.; Richardson, S.L.

    2009-01-01

    'Full text:' Since 1976, Conestoga-Rovers & Associates (CRA) has grown from a small, regional engineering company, to one of the world's most sought-after, multi-disciplinary engineering and consulting firms with over 90 offices and more than 2,700 people working on projects worldwide. CRA is committed to helping its clients meet or exceed their environmental performance goals while achieving its own sustainability objectives. CRA is continuously striving to implement social and environmental performance improvements in each and every work place where CRA conducts business. CRA's Corporate Sustainability, Social Responsibility, and Environmental Policy reflects this commitment. CRA is working to reduce its environmental footprint and invest in the communities in which we live and conduct business. CRA undertook a corporate-wide greenhouse gas (GHG) inventory and set aggressive GHG reduction goals. This presentation provides an overview of the steps CRA has taken to quantify corporate GHG emissions, including establishing boundary conditions, data collection activities, calculation of GHG emissions, and development of and inventory management plant consistent with the U.S. EPA Climate Leaders program. The presentation discusses the primary challenges addressed in developing a GHG inventory for multiple facilities located throughout North America, including obtaining verifiable data, addressing corporate travel, and communicating climate change goals within the organization. The presentation concludes with an overview of the key considerations necessary to establish a credible reduction goal. (author)

  7. Quality Improvement, Inventory Management, Lead Time Reduction and Production Scheduling in High-Mix Manufacturing Environments

    Science.gov (United States)

    2017-01-13

    Quality Improvement , Inventory Management, Lead Time Reduction and Production Scheduling in High-mix Manufacturing Environments by Sean Daigle B.S...Mechanical Engineering Chairman, Department Committee on Graduate Theses 2 Quality Improvement , Inventory Management, Lead Time Reduction and... Production Scheduling in High-mix Manufacturing Environments by Sean Daigle Submitted to the Department of Mechanical Engineering on January 13, 2017, in

  8. Direct vessel inclined injection system for reduction of emergency core coolant direct bypass in advanced reactors

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Lee, Jong G.; Suh, Kune Y.

    2006-01-01

    Multidimensional thermal hydraulics in the APR1400 (Advanced Power Reactor 1400 MWe) downcomer during a large-break loss-of-coolant accident (LBLOCA) plays a pivotal role in determining the capability of the safety injection system. APR1400 adopts the direct vessel injection (DVI) method for more effective core penetration of the emergency core cooling (ECC) water than the cold leg injection (CLI) method in the OPR1000 (Optimized Power Reactor 1000 MWe). The DVI method turned out to be prone to occasionally lack in efficacious delivery of ECC to the reactor core during the reflood phase of a LBLOCA, however. This study intends to demonstrate a direct vessel inclined injection (DVII) method, one of various ideas with which to maximize the ECC core penetration and to minimize the direct bypass through the break during the reflood phase of a LBLOCA. The 1/7 scaled down THETA (Transient Hydrodynamics Engineering Test Apparatus) tests show that a vertical inclined nozzle angle of the DVII system increases the downward momentum of the injected ECC water by reducing the degree of impingement on the reactor downcomer, whereby lessening the extent of the direct bypass through the break. The proposed method may be combined with other innovative measures with which to ensure an enough thermal margin in the core during the course of a LBLOCA in APR1400

  9. Landslide risk reduction strategies: an inventory for the Global South

    Science.gov (United States)

    Maes, Jan; Kervyn, Matthieu; Vranken, Liesbet; Dewitte, Olivier; Vanmaercke, Matthias; Mertens, Kewan; Jacobs, Liesbet; Poesen, Jean

    2015-04-01

    Landslides constitute a serious problem globally. Moreover, landslide impact remains underestimated especially in the Global South. It is precisely there where the largest impact is experienced. An overview of measures taken to reduce risk of landslides in the Global South is however still lacking. Because in many countries of the Global South disaster risk reduction (DRR) is at an emerging stage, it is crucial to monitor the ongoing efforts (e.g. discussions on the Post-2015 Framework for DRR). The first objective of this study is to make an inventory of techniques and strategies that are applied to reduce risk from landslides in tropical countries. The second objective is to investigate what are the main bottlenecks for implementation of DRR strategies. In order to achieve these objectives, a review of both scientific and grey literature was conducted, supplemented with expert knowledge. The compilation of recommended and implemented DRR measures from landslide-prone tropical countries is based on an adapted classification proposed by the SafeLand project. According to Vaciago (2013), landslide risk can be reduced by either reducing the hazard, the vulnerability, the number or value of elements at risk or by sharing the residual risk. In addition, these measures can be combined with education and/or awareness raising and are influenced by governance structures and cultural beliefs. Global landslide datasets have been used to identify landslide-prone countries, augmented with region-specific datasets. Countries located in the tropics were selected in order to include landslide-prone countries with a different Human Development Index (HDI) but with a similar climate. Preliminary results support the statement made by Anderson (2013) that although the importance of shifting from post-disaster emergency actions to pre-disaster mitigation is acknowledged, in practice this paradigm shift seems rather limited. It is expected that this is especially the case in countries

  10. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  11. Thermal neutrons core concepts for minor actinides inventory reduction

    International Nuclear Information System (INIS)

    Huang, Shio-Ling

    1996-01-01

    The goal of this thesis is to propose a solution to the problem of reducing the inventory of Minor Actinides, discharged from PWR spent fuel, in the framework of a Separation/ Transmutation strategy. The solution envisaged is based on the utilisation of Pressurised Water Reactors (PWR), of the same type as those used to produce energy. The suggested solution is original and based on a special Assembly ANDIAMO dedicated to transmutation, where Actinide incineration is performed with the help of a fissile support in a once-through strategy. During this study, we have also tackled the impact of some parameters which so far have been less carefully studied (like the unavoidable presence of Lanthanides in fuel containing Am and Cm and the consequences on the cycle parameters with Actinide recycle). Moreover, we have carried out a sensitivity study in order to analysis the impact of nuclear data uncertainties on some important parameters of the reactor (reactivity coefficients) and on the isotopic concentration. This original study allows us to assess the accuracy of the results, of the presented tendencies and of the propositions made in the present thesis. (author) [fr

  12. Research on coolant radiochemistry

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, W. H.; Park, Y. J.; Im, J. K.; Jung, Y. J.; Jee, K. Y.; Choi, K. C.

    2004-04-01

    The final objective of this study is to develop the technology on the reduction of radioactive material formed in reactor coolant circuit. The contents of this study are composed of the simulation of primary cooling system, chemistry measurement technology in the high-temperature high-pressure environments, and coolant chemistry control technology. The main results are as follows; High-temperature and high-pressure loop system was designed and fabricated, which is to inducing CRUD growth condition on the surface of cladding. The high-temperature pH measurement system was established with YSZ sensing electrode and Ag/AgCl reference electrode. The performance of pH electrode was confirmed in the temperature range 200∼280 .deg. C. Coolant chemistry control technologies such as the neutron irradiation technique of boric acid solution, the evaluation on high-temperature electrochemical behavior of coolant, and the measurement of physicochemical properties of micro-particles were developed. The results of this study can be useful for the understanding of chemical phenomena occurred in reactor coolant and for the study on the reduction of radioactive material in primary coolant, which will be carried out in the next research stage

  13. Minimizing Warehouse Space through Inventory Reduction at Reckitt Benckiser

    OpenAIRE

    KILINC, IZGI SELEN

    2009-01-01

    This dissertation represents a ten week internship at pharmaceutical plant of Reckitt Benckiser for the Warehouse Stock Reduction Project. Due to foreseeable growth by the factory, there is increasing pressure to utilise existing warehouse space by reducing the existing stock level by 50 %. Therefore, this study aims to identify the opportunities to reduce the physical stock held in raw/pack materials in the warehouse and save space for additional manufacturing resources. The analysis demo...

  14. Reduction of corrosion products in water coolant - basic way of increase in efficiency and improvement of ecological safety of NPU

    International Nuclear Information System (INIS)

    Prozorov, V.V.

    2004-01-01

    Corrosion of oxidated steel in water with additives of inhibitors or oxygen was considered. It is shown that preliminary oxidation of steel makes possible declining concentration of inhibitors or oxygen. Experiments demonstrate possibilities of the neutral-oxygen water regime for supply of the effective protection. Corrosion resistance of steel may be increased in many times through correct aqua-chemical regimes. Also concentration of corrosion products may be decreased in many times in coolant and their activation in neutron flux of nuclear reactor, amount of radioisotopes [ru

  15. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seon Oh; Cho, Yong Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Sung Joong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-08-15

    The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  16. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Directory of Open Access Journals (Sweden)

    Seon Oh Yu

    2017-08-01

    Full Text Available The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  17. Ordering Cost Reduction in Inventory Model with Defective Items and Backorder Price Discount

    Directory of Open Access Journals (Sweden)

    Karuppuchamy Annadurai

    2014-01-01

    Full Text Available In the real market, as unsatisfied demands occur, the longer the length of lead time is, the smaller the proportion of backorder would be. In order to make up for the inconvenience and even the losses of royal and patient customers, the supplier may offer a backorder price discount to secure orders during the shortage period. Also, ordering policies determined by conventional inventory models may be inappropriate for the situation in which an arrival lot contains some defective items. To compensate for the inconvenience of backordering and to secure orders, the supplier may offer a price discount on the stockout item. The purpose of this study is to explore a coordinated inventory model including defective arrivals by allowing the backorder price discount and ordering cost as decision variables. There are two inventory models proposed in this paper, one with normally distributed demand and another with distribution free demand. A computer code using the software Matlab 7.0 is developed to find the optimal solution and present numerical examples to illustrate the models. The results in the numerical examples indicate that the savings of the total cost are realized through ordering cost reduction and backorder price discount.

  18. The effect of zinc injection into PWR primary coolant on the reduction of radiation buildup and corrosion control. The solubilities of zinc, nickel and cobalt spinel oxides

    International Nuclear Information System (INIS)

    Miyajima, Kaori; Hirano, Hideo

    1999-01-01

    The use of zinc injection into PWR primary coolant to reduce radiation buildup has been widely studied, and te reduction effect has been experimentally confirmed. However, some items, such as the optimal concentration of zinc required to reduce radiation buildup, the corrosion control effect of zinc injection, and the influence of zinc injection on the integrity of fuel cladding, have not been clarified yet. In particular, the corrosion suppression effect of zinc remains unconfirmed. Therefore, it is necessary to measure and calculate the solubilities of zinc and nickel spinel oxides, which are formed on the surface of Ni-based alloys in PWR primary systems. In this study, in order to assess the effectiveness of zinc injection in the reduction of radiation buildup and the corrosion control of Ni-based alloy, the potential-pH diagrams for Zn-Cr-H 2 O, Ni-Cr-H 2 O, and Co-Cr-H 2 O systems at 300degC were constructed and the solubilities of Zn-Cr, Ni-Cr, and Co-Cr spinel oxides were calculated. It is concluded that under pH conditions for which NiCr 2 O 4 is stable, zinc injection is effective in corrosion control as well as in reducing radiation buildup. (author)

  19. Joint Decisions on Emission Reduction and Inventory Replenishment with Overconfidence and Low-Carbon Preference

    Directory of Open Access Journals (Sweden)

    Shoufeng Ji

    2018-04-01

    Full Text Available This paper presents a game-theoretical analysis of joint decisions on carbon emission reduction and inventory replenishment with overconfidence and consumer’s low-carbon preference for key supply chain players when facing effort-dependent demand. We consider respectively the overconfidence of a supplier who overestimates the impacts of his emission reduction efforts on product demand and the overconfidence of a retailer who underestimates the variability of the stochastic demand. We find, surprisingly, that the supplier’s overconfidence can mitigate “double marginalization” but hurt self-profit, while the retailer’s overconfidence can be an irrelevant factor for self-profit. The retailer aiming at short-term trading should actively seek an overconfident supplier, while the supplier should actively seek a rational retailer for whom the critical fractile is more than 0.5, whereas for an overconfident retailer, the critical fractile is less than or equal to 0.5. The study also underlines the effect of regulation parameters as an important contextual factor influencing low-carbon operations.

  20. Inventories and reduction scenarios of urban waste-related greenhouse gas emissions for management potential.

    Science.gov (United States)

    Yang, Dewei; Xu, Lingxing; Gao, Xueli; Guo, Qinghai; Huang, Ning

    2018-06-01

    Waste-related greenhouse gas (GHG) emissions have been recognized as one of the prominent contributors to global warming. Current urban waste regulations, however, face increasing challenges from stakeholders' trade-offs and hierarchic management. A combined method, i.e., life cycle inventories and scenario analysis, was employed to investigate waste-related GHG emissions during 1995-2015 and to project future scenarios of waste-driven carbon emissions by 2050 in a pilot low carbon city, Xiamen, China. The process-based carbon analysis of waste generation (prevention and separation), transportation (collection and transfer) and disposal (treatment and recycling) shows that the main contributors of carbon emissions are associated with waste disposal processes, solid waste, the municipal sector and Xiamen Mainland. Significant spatial differences of waste-related CO 2e emissions were observed between Xiamen Island and Xiamen Mainland using the carbon intensity and density indexes. An uptrend of waste-related CO 2e emissions from 2015 to 2050 is identified in the business as usual, waste disposal optimization, waste reduction and the integrated scenario, with mean annual growth rates of 8.86%, 8.42%, 6.90% and 6.61%, respectively. The scenario and sensitivity analysis imply that effective waste-related carbon reduction requires trade-offs among alternative strategies, actions and stakeholders in a feasible plan, and emphasize a priority of waste prevention and collection in Xiamen. Our results could benefit to the future modeling of urban multiple wastes and life-cycle carbon control in similar cities within and beyond China. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Coolant leakage detection device

    International Nuclear Information System (INIS)

    Ito, Takao.

    1983-01-01

    Purpose: To surely detect the coolant leakage at a time when the leakage amount is still low in the intra-reactor inlet pipeway of FBR type reactor. Constitution: Outside of the intra-reactor inlet piping for introducing coolants at low temperature into a reactor core, an outer closure pipe is furnished. The upper end of the outer closure pipe opens above the liquid level of the coolants in the reactor, and a thermocouple is inserted to the opening of the upper end. In such a structure, if the coolants in the in-reactor piping should leak to the outer closure pipe, coolants over-flows from the opening thereof, at which the thermocouple detects the temperature of the coolants at a low temperature, thereby enabling to detect the leakage of the coolants at a time when it is still low. (Kamimura, M.)

  2. HANARO secondary coolant management

    International Nuclear Information System (INIS)

    Kim, Seon Duk.

    1998-02-01

    In this report, the basic theory for management of water quality, environmental factors influencing to the coolant, chemicals and its usage for quality control of coolant are mentioned, and water balance including the loss rate by evaporation (34.3 m 3 /hr), discharge rate (12.665 m 3 /hr), concentration ratio and feed rate (54.1 m 3 /hr) are calculated at 20 MW operation. Also, the analysis data of HANSU Limited for HANARO secondary coolant (feed water and circulating coolant) - turbidity, pH, conductivity, M-alkalinity, Ca-hardness, chloride ion, total iron ion, phosphoric ion and conversion rate are reviewed. It is confirmed that the feed water has good quality and the circulating coolant has been maintained within the control specification in general, but some items exceeded the control specification occasionally. Therefore it is judged that more regular discharge of coolant is needed. (author). 6 refs., 17 tabs., 18 figs

  3. Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China

    International Nuclear Information System (INIS)

    Xi Fengming; Geng Yong; Chen Xudong; Zhang Yunsong; Wang Xinbei; Xue Bing; Dong Huijuan; Liu Zhu; Ren Wanxia; Fujita, Tsuyoshi; Zhu Qinghua

    2011-01-01

    Cities consumed 84% of commercial energy in China, which indicates cities should be the main areas for GHG emissions reduction. Our case study of Shenyang in this paper shows how a clear inventory analysis on GHG emissions at city level can help to identify the major industries and societal sectors for reduction efforts so as to facilitate low-carbon policy-making. The results showed total carbon emission in 2007 was 57 Mt CO 2 equivalents (CO 2 e), of which 41 Mt CO 2 e was in-boundary emissions and 16 Mt CO 2 e was out-of-boundary emissions. The energy sector was dominant in the emission inventory, accounting for 93.1% of total emissions. Within energy sector, emissions from energy production industry, manufacturing and construction industry accounted for 88.4% of this sector. Our analysis showed that comparing with geographical boundary, setting system boundary based on single process standard could provide better information to decision makers for carbon emission reduction. After attributing electricity and heating consumption to final users, the resident and commercial sector became the largest emitter, accounting for 28.5% of total emissions. Spatial analysis of emissions showed that industrial districts such as Shenbei and Tiexi had the large potential to reduce their carbon emissions. Implications of results are finally discussed. - Highlights: → An inventory analysis can help identify key industries and societal sectors for reduction efforts. → Setting system boundary can provide better information for carbon emission reduction. → Urban districts with heavy industrial plants have potential to reduce their carbon emissions. → Policies that support urban energy structure optimization can accelerate low-carbon development.

  4. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  5. Reduction of worldwide plutonium inventories using conventional reactors and advanced fuels: A systems study

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Bathke, C.G.; Chodak, P. III

    1997-01-01

    The potential for reducing plutonium inventories in the civilian nuclear fuel cycle through recycle in LWRs of a variety of mixed-oxide forms is examined by means of a cost-based plutonium-flow systems model that includes an approximate measure of proliferation risk. The impact of plutonium recycle in a number of forms is examined, including the introduction of nonfertile fuels into conventional (LWR) reactors to reduce net plutonium generation, to increase plutonium burnup, and to reduce exo-reactor plutonium inventories

  6. Landslides in Nicaragua - Mapping, Inventory, Hazard Assessment, Vulnerability Reduction, and Forecasting Attempts

    Science.gov (United States)

    Dévoli, G.; Strauch, W.; Álvarez, A.; Muñoz, A.; Kjekstad, O.

    2009-04-01

    access, manage, update and distribute in a short time to all sectors and users; and finally, the need of a comprehensive understanding of landslide processes. Many efforts have been made in the last 10 years to gain a more comprehensive and predictive understanding of landslide processes in Nicaragua. Since 1998, landslide inventory GIS based maps have been produced in different areas of the country, as part of international and multidisciplinary development projects. Landslide susceptibility and hazard maps are available now at INETEŔs Website for all municipalities of the country. The insights on landslide hazard have been transmitted to governmental agencies, local authorities, NGÓs, international agencies to be used in measures for risk reduction. A massive application example was the integration of hazard assessment studies in a large house building program in Nicaragua. Hazards of landslides, and other dangerous phenomena, were evaluated in more than 90 house building projects, each with 50 - 200 houses to be build, sited mainly in rural areas of the country. For more than 7000 families, this program could finally assure that their new houses were build in safe areas. Attempts have been made to develop a strategy for early warning of landslides in Nicaragua. First approaches relied on precipitation gauges with satellite based telemetry which were installed in some Nicaraguan volcanoes where lahars occur frequently. The occurrence of lahars in certain gullies could be detected by seismic stations. A software system gave acoustic alarm at INETEŔs Monitoring Centre when certain trigger levels of the accumulated precipitation were reached. The monitoring and early warning for all areas under risk would have required many rain gauges. A new concept is tested which uses near real time precipitation estimates from NOAA meteorological satellite data. A software system sends out alarm messages if strong or long lasting rains are observed over certain landslide "hot spots

  7. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  8. Reduction of the interlocking potential of sump sieves by corrosion products as consequence of loss-of-coolant accidents; Verminderung des Verblockungspotenzials von Sumpfansaugsieben durch Korrosionsprodukte nach Kuehlmittelverluststoerfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Wolfgang; Kryk, Holger [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. fuer Fluiddynamik

    2012-11-01

    In German nuclear power plants thermal insulation fragmentation as a consequence of loss-of-coolant accidents have not been identified, but recently significant pressure increase in the sump sieves due to corrosion products have been observed. The corrosion products are released from hot-galvanized steel grids by steam jet fragmentation. It was shown that critical deposition of corrosion products can occur in the long-term process of the accident. The hazard of sieve blocking could be reduced by zinc containing chemicals or an increase of the pH value (to about 6.7). The possibility of disadvantageous consequences of resulting chemical reactions has to be investigated in the future.

  9. Characterization of primary coolant purification system samples for assay of spent ion exchanger radionuclide inventor

    International Nuclear Information System (INIS)

    Sajin Prasad, S.; Pant, Amar; Sharma, Ranjit; Pal, Sanjit

    2018-01-01

    The primary coolant system water of a research reactor contains various fission and activation products and the water is circulated continuously through ion exchange resin cartridges, to reduce the radioactive ionic impurity present in it. The coolant purification system comprises of an ion exchange cooler, two micro filters, and a battery of six ion exchanger beds, associated valves, piping and instrumentation (Heavy water System Operating manual, 2014). The spent cartridge is finally disposed off as active solid waste which contains predominantly long lived fission and activation products. The heavy water coolant is also used to cool the structural assemblies after passing through primary heat exchanger and a metallic strainer, which accumulates the fission and activation products. When there is a reduction of coolant flow through these strainers, they are removed for cleaning and decontamination. This paper describes the characterization of ion exchange resin samples and liquid effluent generated during ultra sonic decontamination of strainer. The results obtained can be used as a methodology for the assay of the spent ion exchanger cartridges radionuclide inventory, during its disposal

  10. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  11. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  12. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 06-06-2016 2. REPORT TYPE Interim Report 3. DATES COVERED ... Corrosion Testing of Traditional and Extended Life Coolants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hansen, Gregory A. T...providing vehicle specific coolants. Several laboratory corrosion tests were performed according to ASTM D1384 and D2570, but with a 2.5x extended time

  13. A single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on lead time

    Science.gov (United States)

    Vijayashree, M.; Uthayakumar, R.

    2017-09-01

    Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.

  14. Inventory of pollution reduction options for an aluminium pressure die casting plant

    NARCIS (Netherlands)

    Neto, B.A.F.; Kroeze, C.; Hordijk, L.; Costa, C.

    2009-01-01

    This study presents an overview of options aiming to reduce emissions to air, soil and water from an aluminium die casting plant located in Portugal. We identify eighteen pollution reduction options and then estimate their potential to reduce the pollution, and the costs associated with their

  15. A Stackelberg Game Approach in an Integrated Inventory Model with Carbon-Emission and Setup Cost Reduction

    Directory of Open Access Journals (Sweden)

    Biswajit Sarkar

    2016-12-01

    Full Text Available This paper formulates an integrated inventory model that allows Stackelberg game policy for optimizing joint total cost of a vendor and buyer system. After receiving the lot, the buyer commences an inspection process to determine the defective items. All defective items the buyer sends to vendor during the receiving of the next lot. Due to increasing number of shipments fixed and variable transportation, as well as carbon emissions, are considered, which makes the model sustainable integrated model forever. To reduce the setup cost for the vendor, a discrete setup reduction is considered for maximization more profit. The players of the integrated model are with unequal power (as leader and follower and the Stackelberg game strategy is utilized to solve this model for obtaining global optimum solution over the finite planning horizon. An illustrative numerical example is given to understand this model clearly.

  16. Coolant leakage detecting device

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Kawai, Katsunori; Ishihara, Yoshinao.

    1995-01-01

    The device of the present invention judges an amount of leakage of primary coolants of a PWR power plant at high speed. Namely, a mass of coolants contained in a pressurizer, a volume controlling tank and loop regions is obtained based on a preset relational formula and signals of each of process amount, summed up to determine the total mass of coolants for every period of time. The amount of leakage for every period of time is calculated by a formula of Karman's filter based on the total mass of the primary coolants for every predetermined period of time, and displays it on CRT. The Karman's filter is formed on every formula for several kinds of states formed based on the preset amount of the leakage, to calculate forecasting values for every mass of coolants. An adaptable probability for every preset leakage amount is determined based on the difference between the forecast value and the observed value and the scattering thereof. The adaptable probability is compared with a predetermined threshold value, which is displayed on the CRT. This device enables earlier detection of leakage and identification of minute leakage amount as compared with the prior device. (I.S.)

  17. Reactor coolant cleanup device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To enable to introduce reactor water at high temperature and high pressure as it is, as well as effectively adsorb to eliminate cobalt in reactor water. Constitution: The coolant cleanup device comprises a vessel main body inserted to coolant pipeway circuits in a water cooled reactor power plant and filters contained within the vessel main body. The filters are prepared by coating and baking powder of metal oxides such as manganese ferrite having a function capable of adsorbing cobalt in the coolants onto the surface of supports made of metals or ceramics resistant to strong acids and alkalies in the form of three-dimensional network structure, for example, zircaloy-2, SUS 303 and the zirconia (baking) to form a basic filter elements. The basic filter elements are charged in plurality to the vessel main body. (Kawaiami, Y.)

  18. Method for controlling a coolant liquid surface of cooling system instruments in an atomic power plant

    International Nuclear Information System (INIS)

    Monta, Kazuo.

    1974-01-01

    Object: To prevent coolant inventory within a cooling system loop in an atomic power plant from being varied depending on loads thereby relieving restriction of varied speed of coolant flow rate to lowering of a liquid surface due to short in coolant. Structure: Instruments such as a superheater, an evaporator, and the like, which constitute a cooling system loop in an atomic power plant, have a plurality of free liquid surface of coolant. Portions whose liquid surface is controlled and portions whose liquid surface is varied are adjusted in cross-sectional area so that the sum total of variation in coolant inventory in an instrument such as a superheater provided with an annulus portion in the center thereof and an inner cylindrical portion and a down-comer in the side thereof comes equal to that of variation in coolant inventory in an instrument such as an evaporator similar to the superheater. which is provided with an overflow pipe in its inner cylindrical portion or down-comer, thereby minimizing variation in coolant inventory of the entire coolant due to loads thus minimizing variation in varied speed of the coolant. (Kamimura, M.)

  19. Inventory and Policy Reduction Potential of Greenhouse Gas and Pollutant Emissions of Road Transportation Industry in China

    Directory of Open Access Journals (Sweden)

    Ye Li

    2016-11-01

    Full Text Available In recent years, emissions from the road transportation industry in China have been increasing rapidly. To evaluate the reduction potential of greenhouse gas and pollutant emissions of the industry in China, its emission inventory was calculated and scenario analysis was created for the period between 2012 and 2030 in this paper. Based on the Long-range Energy Alternatives Planning System (LEAP model, the development of China’s road transportation industry in two scenarios (the business-as-usual (BAU scenario and the comprehensive-mitigation (CM scenario was simulated. In the Comprehensive Mitigation scenario, there are nine various measures which include Fuel Economy Standards, Auto Emission Standards, Energy-saving Technology, Tax Policy, Eco-driving, Logistics Informatization, Vehicle Liquidation, Electric Vehicles, and Alternative Fuels. The cumulative energy and emission reductions of these specific measures were evaluated. Our results demonstrate that China’s road transportation produced 881 million metric tons of CO2 and emitted 1420 thousand tons of CO, 2150 thousand tons of NOx, 148 thousand tons of PM10, and 745 thousand tons of HC in 2012. The reduction potential is quite large, and road freight transportation is the key mitigation subsector, accounting for 85%–92% of the total emission. For energy conservation and carbon emission mitigation, logistics informatization is the most effective method, potentially reducing 1.80 billion tons of coal equivalent and 3.83 billion tons of CO2 from 2012 to 2030. In terms of air pollutant emission mitigation, the auto emission standards measure performs best with respect to NOx, PM10, and HC emission mitigation, and logistic informatization measure is the best in CO emission reduction. In order to maximize the mitigation potential of China’s road transportation industry, the government needs to implement various measures in a timely and strict fashion.

  20. Coolant system decontamination

    International Nuclear Information System (INIS)

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P.

    1981-01-01

    An improved method for decontaminating the coolant system of water cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution. (author)

  1. Research on Coolant Radiochemistry

    International Nuclear Information System (INIS)

    Ha, Yeong Keong; Kim, W. H.; Yeon, J. W.; Jung, Y. J.; Choi, K. C.; Choi, K. S.; Park, Y. J.; Cho, Y. H.

    2007-06-01

    The final objective of this study is to develop a method for reducing radioactive materials formed in the reactor coolant circuit. This second stage research was categorized into the following three subgroups: the development of the estimation technique of microscopic chemical variation at high temperatures and pressures, the fundamental study on the thermodynamics at high temperatures and pressures, and the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD. First, in the development of the estimation technique of microscopic chemical change at high temperatures and pressures, the technique for measuring coolant chemistry such as pH, conductivity and Eh was developed to be appropriate for the high temperature and pressure condition. The coolant chemistry measuring system including the self-devised high temperature pH sensor can be applied to the field of nuclear reactor and contribute on a large scale in the automation of the coolant chemistry control and the establishment of the real-time on-line measuring technique. Secondly, the dissociation constant of water and the solubility of metal oxides were measured in the fundamental study on the thermodynamics at high temperatures and pressures. Finally, in the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD, the careful investigation of the deposition phenomena of micro particles on the cladding surface showed that subcooled boiling and the dissolved hydrogen are the main factors responsible for the growth of CRUD. In addition, the basis was provided for the construction of a new particle behavior model in the reactor coolant circuit

  2. ENVIRONMENTALLY REDUCING OF COOLANTS IN METAL CUTTING

    Directory of Open Access Journals (Sweden)

    Veijo KAUPPINEN

    2012-11-01

    Full Text Available Strained environment is a global problem. In metal industries the use of coolant has become more problematic in terms of both employee health and environmental pollution. It is said that the use of coolant forms approximately 8 - 16 % of the total production costs.The traditional methods that use coolants are now obviously becoming obsolete. Hence, it is clear that using a dry cutting system has great implications for resource preservation and waste reduction. For this purpose, a new cooling system is designed for dry cutting. This paper presents the new eco-friendly cooling innovation and the benefits gained by using this method. The new cooling system relies on a unit for ionising ejected air. In order to compare the performance of using this system, cutting experiments were carried out. A series of tests were performed on a horizontal turning machine and on a horizontal machining centre.

  3. Compartmentalized safety coolant injection system

    International Nuclear Information System (INIS)

    Johnson, F.T.

    1983-01-01

    A safety coolant injection system for nuclear reactors wherein a core reflood tank is provided to afford more reliable reflooding of the reactor core in the event of a break in one of the reactor coolant supply loops. Each reactor coolant supply loop is arranged in a separate compartment in the containment structure to contain and control the flow of spilled coolant so as to permit its use during emergency core cooling procedures. A spillway allows spilled coolant in the compartment to pass into the emergency water storage tank from where it can be pumped back to the reactor vessel. (author)

  4. Dual coolant blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Schleisiek, K.

    1994-11-01

    A self-cooled liquid metal breeder blanket with helium-cooled first wall ('Dual Coolant Blanket Concept') for a fusion DEMO reactor is described. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. Described are the design of the blankets including the ancillary loop system and the results of the theoretical and experimental work in the fields of neutronics, magnetohydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium control, safety, reliability, and electrically insulating coatings. The remaining open questions and the required R and D programme are identified. (orig.) [de

  5. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  6. Coolant channel module CCM

    International Nuclear Information System (INIS)

    Hoeld, Alois

    2007-01-01

    A complete and detailed description of the theoretical background of an '(1D) thermal-hydraulic drift-flux based mixture-fluid' coolant channel model and its resulting module CCM will be presented. The objective of this module is to simulate as universally as possible the steady state and transient behaviour of the key characteristic parameters of a single- or two-phase fluid flowing within any type of heated or non-heated coolant channel. Due to the possibility that different flow regimes can appear along any channel, such a 'basic (BC)' 1D channel is assumed to be subdivided into a number of corresponding sub-channels (SC-s). Each SC can belong to only two types of flow regime, an SC with just a single-phase fluid, containing exclusively either sub-cooled water or superheated steam, or an SC with a two-phase mixture flow. After an appropriate nodalisation of such a BC (and therefore also its SC-s) a 'modified finite volume method' has been applied for the spatial discretisation of the partial differential equations (PDE-s) which represent the basic conservation equations of thermal-hydraulics. Special attention had to be given to the possibility of variable SC entrance or outlet positions (which describe boiling boundaries or mixture levels) and thus the fact that an SC can even disappear or be created anew. The procedure yields for each SC type (and thus the entire BC), a set of non-linear ordinary 1st order differential equations (ODE-s). To link the resulting mean nodal with the nodal boundary function values, both of which are present in the discretised differential equations, a special quadratic polygon approximation procedure (PAX) had to be constructed. Together with the very thoroughly tested packages for drift-flux, heat transfer and single- and two-phase friction factors this procedure represents the central part of the here presented 'Separate-Region' approach, a theoretical model which provides the basis to the very effective working code package CCM

  7. Secondary coolant purification system

    International Nuclear Information System (INIS)

    Stiteler, F.Z.; Donohue, J.P.

    1978-01-01

    The present invention combines the attributes of volatile chemical addition, continuous blowdown, and full flow condensate demineralization. During normal plant operation (defined as no primary to secondary leakage) condensate from the condenser is pumped through a full flow condensate demineralizer system by the condensate pumps. Volatile chemical additions are made. Dissolved and suspended solids are removed in the condensate polishers by ion exchange and/or filtration. At the same time a continuous blowdown of approximately 1 percent of the main steaming rate of the steam generators is maintained. Radiation detectors monitor the secondary coolant. If these monitors indicate no primary to secondary leakage, the blowdown is cooled and returned directly to the condensate pump discharge. If one of the radiation monitors should indicate a primary to secondary leak, when the temperature of the effluent exiting from the blowdown heat exchanger is compatible with the resin specifications of the ion exchangers, the bypass valve causes the blowdown flow to pass through the blowdown ion exchangers

  8. Impact evaluation of the accident with release of a PWR coolant. Case study: Angra 3

    International Nuclear Information System (INIS)

    Aguiar, Andre Silva de; Simoes Filho, Francisco Fernando Lamego; Soares, Abner Duarte; Lapa, Celso Marcelo Franklin

    2011-01-01

    It was postulated in the cooling system, a LOCA where was lost 431 m 3 of coolant. The inventory was 1.87 x 10 10 Bq/m 3 of tritium, 2.22 x 10 7 Bp/m 3 of cobalt and 3.48 x 10 8 Bq/m 3 of cesium and was launched near tue Itaorna beach, Angra dos Reis, RJ, Brazil. By applying the model in the proposed scenery (Angra 1 and 2 functioning and Angra 3 with variation of water taking and discharge with a progressive reduction after the accident), the dilution of specific activity of the radionuclides reached inferior values after 22 hours, to the reference values. After 54 hours, the levels of radionuclides, in the indirect influence are already below the minimum values of activity detected by the laboratory of environmental monitoring of the CNAAA

  9. Decontamination of main coolant pumps

    International Nuclear Information System (INIS)

    Roofthooft, R.

    1988-01-01

    Last year a number of main coolant pumps in Belgian nuclear power plants were decontaminated. A new method has been developed to reduce the time taken for decontamination and the volume of waste to be treated. The method comprises two phases: Oxidation with permanganate in nitric acid and dissolution in oxalic acid. The decontamination of main coolant pumps can now be achieved in less than one day. The decontamination factors attained range between 15 and 150. (orig.) [de

  10. FY 2000 report on the results of the technology development of energy use reduction of machine tools, etc. Technology development of environmental load reduction related to water soluble lubricating oil, etc. (R and D of low energy coolant degradation prevention technology and waste liquid processing technology); 2000 nendo energy shiyo gorika kosaku kikai nado gijutsu kaihatsu seika hokokusho. Suiyosei junkatsuyu ni kakawaru kankyo fuka teigen nado gijutsu kanri (tei energy coolant fuhai boshi gijutsu oyobi haieki shori gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The R and D were carried out on a system by which the long life of coolant of machine tools can be achieved and a system to process waste efficiently, economically and with less environmental loads, and the FY 2000 results were summed up. In the R and D of a system to prevent degradation of low energy coolant, measurement was made of effects of the degradation prevention system at a laboratory level, and it was found out that propagation of bacteria causing the degradation can be prevented with pH kept high. Further, it was admitted that the alkali effect on metal formability was not very much. As to the coolant processing, in the present situation, most of the coolant is taken back by industrial waste processing dealers. So, the development of the low energy waste liquid processing system is earnestly desired. In the R and D of the low energy waste liquid processing system, test on characteristics evaluation was conducted about each method of systems. Subjects to be improved/solved were extracted such as the point that volatile organic matters are included in condensed water after evaporation of waste liquid and there seems to be a possibility of needing the secondary processing. (NEDO)

  11. Comparative analysis of coolants for FBR of future nuclear power

    International Nuclear Information System (INIS)

    Toshinsky, G.I.; Grigoryev, O.G.; Pylchenkov, E.H.; Skorikov, D.E.; Komkova, O.I.

    2001-01-01

    Selection of a fast reactor (FR) coolant for future nuclear reactors is a complex task that has not a single solution. Safety requirements are expected to grow in the future. The requirements to FR are reconsidered. Gradual transition from the FR as a builder up of plutonium to the FR as an economically effective energy source, is taking place. Among all types of coolants viable for FR, LMC (light molten salt coolants) cover the most complete range of requirements to advanced reactors and have a complete database. Sodium and lead-bismuth coolant (LBC) are selected because there is a complete package of technologies for their handling. Heavy liquid metal coolant (HLMC), being at a disadvantage of heat transfer rate in relation to sodium, make it possible to give the inherent safety properties to the reactor and, as a result, to simplify essentially the reactor design and its safety systems. This results in capital and costs reduction. Neutronic characteristics of HLMC cooled reactors make possible to transmute their own minor actinides (MA) safely, and LBC cooled reactors are able to transmute LWR'MA with high safety characteristics. Basing on the comparison carried out, it can be concluded, that both LBC and sodium are perspective coolants for future FR

  12. Comparative analysis of coolants for FBR of future nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, G.I.; Grigoryev, O.G.; Pylchenkov, E.H.; Skorikov, D.E.; Komkova, O.I. [State Scientific Center of Russian Federation, Institute for Physics and Power Engineering named after Academician A.I. Leipusky, Kaluga Region (Russian Federation)

    2001-07-01

    Selection of a fast reactor (FR) coolant for future nuclear reactors is a complex task that has not a single solution. Safety requirements are expected to grow in the future. The requirements to FR are reconsidered. Gradual transition from the FR as a builder up of plutonium to the FR as an economically effective energy source, is taking place. Among all types of coolants viable for FR, LMC (light molten salt coolants) cover the most complete range of requirements to advanced reactors and have a complete database. Sodium and lead-bismuth coolant (LBC) are selected because there is a complete package of technologies for their handling. Heavy liquid metal coolant (HLMC), being at a disadvantage of heat transfer rate in relation to sodium, make it possible to give the inherent safety properties to the reactor and, as a result, to simplify essentially the reactor design and its safety systems. This results in capital and costs reduction. Neutronic characteristics of HLMC cooled reactors make possible to transmute their own minor actinides (MA) safely, and LBC cooled reactors are able to transmute LWR'MA with high safety characteristics. Basing on the comparison carried out, it can be concluded, that both LBC and sodium are perspective coolants for future FR.

  13. Responses to Small Break Loss of Coolant Accidents for SMART

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Kim, Hee C.; Chang, Moon H.; Zee, Sung Q.; Kim, Si-Hwan; Lee, Un-Chul

    2004-01-01

    The SMART NSSS adopts the design characteristics of containing most of the primary circuit components, such as the reactor core, main coolant pumps (MCPs), steam generators (SGs), and N 2 gas pressurizer (PZR) in a single leak-tight Reactor Pressure Vessel (RPV) with a relatively large ratio of the primary coolant inventory to the core power compared to the conventional loop-type PWR. Due to these design characteristics, the SMART can fundamentally eliminate the possibility of Large Break Loss of Coolant Accidents (LBLOCAs), improve the natural circulation capability, and assure a sufficient time to mitigate the possibility of core uncover. Also, SMART adopts inherent safety improving features and passive engineered safety systems such as the substantially large negative moderator temperature coefficients, passive residual heat removal system, emergency core cooling system, and a steel-made leak-tight Safeguard Vessel (SV) housing the RPV. This paper presents the results of the safety analyses using a MARS/SMR code for the instantaneous guillotine ruptures of the major pipelines penetrating the RPV. The analysis results, employing conservative initial/boundary conditions and assumptions, show that the safety systems of the SMART basic design adequately remove the core decay heat without causing core uncover for all the cases of the Small Break Loss of Coolant Accidents (SBLOCAs). The sensitivity study results with variable SV conditions show that the reduced SV net free volume can shorten the time for reaching the thermal and mechanical equilibrium condition between the RPV and SV. Under these boundary conditions, the primary system inventory loss can be minimized and the core remains covered for a longer period of time without any makeup of the coolant. (authors)

  14. Reactor coolant pump transportation incident

    International Nuclear Information System (INIS)

    Noce, D.

    1992-01-01

    This paper reports on an incident, which occurred on August 27, 1991, in which a Reactor Coolant Pump motor en route from Surry Power Station to Westinghouse repair facilities struck the overpass at the junction of Interstate 64 and Jefferson Avenue in Newport News, Virginia. The transport container that housed the reactor coolant pump motor failed to clear the overpass. The force of the impact dislodged the container and motor from the truck bed, and it landed on the acceleration land and road shoulder. Upon impact, the container broke open and exposed the reactor coolant pump motor. Incidental radioactively contaminated water that remained in the motor coolers drained onto the road, contaminating the aggregate as well as the underlying gravel

  15. EDF PWRs primary coolant purification strategies

    International Nuclear Information System (INIS)

    Gressier, Frederic; Mascarenhas, Darren; Taunier, Stephane; Le-Calvar, Marc; Bretelle, Jean-Luc; Ranchoux, Gilles

    2012-09-01

    In order to achieve a good physico-chemical quality of the primary coolant fluid, the primary water is continuously treated by the Chemical and Volume Control System (CVCS). This system is composed of a treatment chain containing filters and ion-exchange resins. In the EDF design, an upstream filter is placed before the resin so as to prevent it from being saturated with insoluble particles. Then, the fluid passes through several resin beds (up to 3 depending on the configuration) and again through a downstream filter that prevents resin fines dissemination into the reactor coolant. Much work has been conducted in the last 5 years on the homogenisation of products and usage on French EDF NPP primary coolant treatment, while taking into account the compromise between source term reduction, liquid and solid waste, and buying and disposal costs. Two national markets have been created, and two operational documents for chemists on site have been published: a filtration guideline and an ion-exchange resin guideline. Both documents give general information about the products used, how are they characterized and selected for national market (technical requirements, standards and tests), how they should be used and what are the change-out criteria. They are also periodically updated based on feedback from sites. The positive impact on resin and filter lifetime (extension of some, limitation of others), homogenisation of products and usage will be presented. Moreover, EDF is constantly in the process of improving the current purification methods, as well as researching the use of existing and novel technologies. In this field, recent experiments on short loading of resin during reactor shutdown has been tested on site with success. In addition, work is done on silica free filters, filter consumption and filter chemical release. An overview of these optimization methods will be given. (authors)

  16. Sodium as a reactor coolant

    International Nuclear Information System (INIS)

    Cesar, S.B.G.

    1989-01-01

    This work is related to the use of sodium as a reactor coolant, to the advantages and problems related to its use, its mechanical, thermophysics, eletronical, magnetic and nuclear properties. It is mainly a bibliographic review, with the aim of gathering the necessary information to persons initiating in the study of sodium and also as reference source. (author) [pt

  17. Vertical reactor coolant pump instabilities

    International Nuclear Information System (INIS)

    Jones, R.M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corractive measures taken are also described

  18. Analyses of Decrease in Reactor Coolant Flow Rate in SMART

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Kyoo Hwan; Choi, Suhn

    2011-01-01

    SMART is a small integral reactor, which is under development at KAERI to get the standard design approval by the end of 2011. SMART works like a pressurized light-water reactor in principle though it is more compact than large commercial reactors. SMART houses major components such as steam generators, a pressurizer, and reactor coolant pumps inside the reactor pressure vessel. Due to its compact design, SMART adopts a canned-motor type reactor coolant pump which has much smaller rotational inertia than the ones used in commercial reactors. As a consequence, the reactor coolant pump has very short coastdown time and reactor coolant flow rate decreases more severely compared to commercial reactors. The transients initiated by reduction of reactor coolant flow rate have been analyzed to ensure that SMART can be safely shutdown on such transients. The design basis events in this category are complete loss of flow, single pump locked rotor with loss of offsite power, and single pump shaft break with loss of offsite power

  19. Coolant monitoring systems for PWR reactors

    International Nuclear Information System (INIS)

    Luzhnov, A.M.; Morozov, V.V.; Tsypin, S.G.

    1987-01-01

    The ways of improving information capacity of existing monitoring systems and the necessity of designing new ones for coolant monitoring are reviewed. A wide research program on development of coolant monitoring systems in PWR reactors is analyzed. The possible applications of in-core and out-of-core detectors for coolant monitoring are demonstrated

  20. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  1. Trace organics in AGR coolants

    International Nuclear Information System (INIS)

    Smith, R.; Green, L.O.; Johnson, P.A.V.

    1980-01-01

    Several analytical techniques have been employed in previous studies of the stable organic compounds arising from the radiolysis of methane/carbon monoxide/carbon dioxide coolants. The majority of this early information was collected from the Windscale AGR prototype. Analyses were also carried out on the liquors obtained from the WAGR humidryers. Three classes of compound were found in the liquors; aliphatic acids in the aqueous phase and methyl ketones and aromatic hydrocarbons in the oily phase. Acetic acid was found to be the predominant carboxylic acid. This paper outlines the major findings from a recent analytical survey of coolants taken over a wide range of dose rate, pressure, temperature and composition, from materials testing reactor facilities, WAGR and CAGR. (author)

  2. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  3. Experimental interaction of magma and “dirty” coolants

    Science.gov (United States)

    Schipper, C. Ian; White, James D. L.; Zimanowski, Bernd; Büttner, Ralf; Sonder, Ingo; Schmid, Andrea

    2011-03-01

    The presence of water at volcanic vents can have dramatic effects on fragmentation and eruption dynamics, but little is known about how the presence of particulate matter in external water will further alter eruptions. Volcanic edifices are inherently “dirty” places, where particulate matter of multiple origins and grainsizes typically abounds. We present the results of experiments designed to simulate non-explosive interactions between molten basalt and various “coolants,” ranging from homogeneous suspensions of 0 to 30 mass% bentonite clay in pure water, to heterogeneous and/or stratified suspensions including bentonite, sand, synthetic glass beads and/or naturally-sorted pumice. Four types of data are used to characterise the interactions: (1) visual/video observations; (2) grainsize and morphology of resulting particles; (3) heat-transfer data from a network of eight thermocouples; and (4) acoustic data from three force sensors. In homogeneous coolants with ~20% sediment, heat transfer is by forced convection and conduction, and thermal granulation is less efficient, resulting in fewer blocky particles, larger grainsizes, and weaker acoustic signals. Many particles are droplet-shaped or/and “vesicular,” containing bubbles filled with coolant. Both of these particle types indicate significant hydrodynamic magma-coolant mingling, and many of them are rewelded into compound particles. The addition of coarse material to heterogeneous suspensions further slows heat transfer thus reducing thermal granulation, and variable interlocking of large particles prevents efficient hydrodynamic mingling. This results primarily in rewelded melt piles and inefficient distribution of melt and heat throughout the coolant volume. Our results indicate that even modest concentrations of sediment in water will significantly limit heat transfer during non-explosive magma-water interactions. At high concentrations, the dramatic reduction in cooling efficiency and increase in

  4. Real-time analysis and display of reactor system mass inventory

    International Nuclear Information System (INIS)

    Dao, L.T.; Meachum, T.R.

    1982-01-01

    A mass inventory system (MIS) to evaluate, in real-time, the coolant distribution within the primary coolant system of the Loss-of-Fluid Test (LOFT) reactor has been developed. The computer-based system calculates and displays the coolant levels by two methods: using level measurements and performing a mass balance. The MIS is designed to provide up-to-date, intelligible information on the coolant distribution during any LOFT experiment. During LOFT experiments in which the primary coolant pumps are on, the method also provides void fraction information and the anticipated liquid level in the reactor vessel should the pumps be turned off

  5. Design criteria of primary coolant chemistry in SMART-P

    International Nuclear Information System (INIS)

    Choi, Byung Seon; Kim, Ah Young; Kim, Seong Hoon; Yoon, Ju Hyeon; Zee, Sung Qunn

    2005-01-01

    SMART-P differs significantly from commercially designed PWRs. Materials inventories used in SMART-P differ from that at PWRs. All surfaces of the primary circuit with the primary coolant are either made from or plated with stainless steel. The material of steam generator (SG) is also different from that of the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. Also, SMART-P primary coolant technology differs from that in PWRs: ammonia is used as a pH raising agent and hydrogen formed due to radiolytic processes is kept in specific range by ammonia dosing. Nevertheless, main objectives of the SMART-P primary coolant are the same as at PWRs: to assure primary system pressure boundary integrity, fuel cladding integrity and to minimize out-of-core radiation buildup. The objective of this work is to introduce the design criteria for the primary water chemistry for SMART-P from the viewpoint of the system characteristics and the chemical design concept

  6. Purchasing and inventory management techniques for optimizing inventory investment

    International Nuclear Information System (INIS)

    McFarlane, I.; Gehshan, T.

    1993-01-01

    In an effort to reduce operations and maintenance costs among nuclear plants, many utilities are taking a closer look at their inventory investment. Various approaches for inventory reduction have been used and discussed, but these approaches are often limited to an inventory management perspective. Interaction with purchasing and planning personnel to reduce inventory investment is a necessity in utility efforts to become more cost competitive. This paper addresses the activities that purchasing and inventory management personnel should conduct in an effort to optimize inventory investment while maintaining service-level goals. Other functions within a materials management organization, such as the warehousing and investment recovery functions, can contribute to optimizing inventory investment. However, these are not addressed in this paper because their contributions often come after inventory management and purchasing decisions have been made

  7. Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO2-Nanofluid Coolant

    Science.gov (United States)

    Salamon, V.; Senthil kumar, D.; Thirumalini, S.

    2017-08-01

    The use of nanoparticle dispersed coolants in automobile radiators improves the heat transfer rate and facilitates overall reduction in size of the radiators. In this study, the heat transfer characteristics of water/propylene glycol based TiO2 nanofluid was analyzed experimentally and compared with pure water and water/propylene glycol mixture. Two different concentrations of nanofluids were prepared by adding 0.1 vol. % and 0.3 vol. % of TiO2 nanoparticles into water/propylene glycol mixture (70:30). The experiments were conducted by varying the coolant flow rate between 3 to 6 lit/min for various coolant temperatures (50°C, 60°C, 70°C, and 80°C) to understand the effect of coolant flow rate on heat transfer. The results showed that the Nusselt number of the nanofluid coolant increases with increase in flow rate. At low inlet coolant temperature the water/propylene glycol mixture showed higher heat transfer rate when compared with nanofluid coolant. However at higher operating temperature and higher coolant flow rate, 0.3 vol. % of TiO2 nanofluid enhances the heat transfer rate by 8.5% when compared to base fluids.

  8. 14C Behaviour in PWR coolant

    International Nuclear Information System (INIS)

    Sims, Howard; Dickinson Shirley; Garbett, Keith

    2012-09-01

    Although 14 C is produced in relatively small amounts in PWR coolant, it is important to know its fate, for example whether it is released by gaseous discharge, removed by absorption on ion exchange (IX) resins or deposited on the fuel pin surfaces. 14 C can exist in a range of possible chemical forms: inorganic carbon compounds (probably mainly CO 2 ), elemental carbon, and organic compounds such as hydrocarbons. This paper presents results from a preliminary survey of the possible reactions of 14 C in PWR coolant. The main conclusions of the study are: - A combination of thermal and radiolytic reactions controls the chemistry of 14 C in reactor coolant. A simple chemical kinetic model predicts that CH 3 OH would be the initial product from radiolytic reactions of 14 C following its formation from 17 O. CH 3 OH is predicted to arise as a result of reactions of OH . with CH 4 and CH 3 , and it persists because there is no known radiation chemical reduction mechanism. - Thermodynamic considerations show that CH 3 OH can be thermally reduced to CH 4 in PWR conditions, although formation of CO 2 from small organics is the most thermodynamically favourable outcome. Such reactions could be catalysed on active nickel surfaces in the primary circuit. - Limited plant data would suggest that CH 4 is the dominant form in PWR and CO 2 in BWR. This implies that radiation chemistry may be important in determining the speciation. - Addition of acetate does not affect the amount of 14 C formed, but the addition of large amounts of stable carbon would lead to a large range of additional products, some of which would be expected to deposit on fuel pin surfaces as high molecular weight hydrocarbons. However, the subsequent thermal decomposition reactions of these products are not known. - Acetate addition may represent a small input of 12 C compared with organic material released from CVCS resins, although the importance of this may depend on whether that is predominantly soluble

  9. Sharp Reduction in Maximum LEU Fuel Temperatures during Loss of Coolant Accidents in a PBMR DPP-400 core by means of Optimised Placement of Neutron Poisons: Implications for Pu fuel-cycles

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.

    2013-01-01

    The optimisation of the power profiles by means of placing an optimised distribution of neutron poison concentrations in the central reflector resulted in a large reduction in the maximum DLOFC temperature, which may produce far reaching safety and licensing benefits. Unfortunately this came at the expense of losing the ability to execute effective load following. The neutron poisons also caused a large reduction of 22% in the average burn-up of the fuel. Further optimisation is required to counter this reduction in burn-up

  10. Coolant inlet device for nuclear reactors

    International Nuclear Information System (INIS)

    Ando, Hiroshi; Abe, Yasuhiro; Iwabuchi, Toshihiko; Yamamoto, Kenji.

    1969-01-01

    Herein disclosed is a coolant inlet device for liquid-metal cooled reactors which employs a coolant distributor serving also as a supporting means for the reactor core. The distributor is mounted within the reactor vessel so as to slide horizontally on supporting lugs, and is further slidably connected via a junction pipe to a coolant inlet conduit protruding through the floor of the vessel. The distributor is adapted to uniformly disperse the highly pressured coolant over the reactor core so as to reduce the stresses sustained by the reactor vessel as well as the supporting lugs. Moreover, the slidable nature of the distributor allows thermal shock and excessive coolant pressures to be prevented or alleviated, factors which posed major difficulties in conventional coolant inlet devices. (Owens, K. J.)

  11. Organic coolant for ARIES-III

    International Nuclear Information System (INIS)

    Sze, D.K.; Sviatoslavsky, I.; Sawan, M.; Gierszewski, P.; Hollies, R.; Sharafat, S.; Herring, S.

    1991-04-01

    ARIES-III is a D-He 3 reactor design study. It is found that the organic coolant is well suited for the D-He 3 reactor. This paper discusses the unique features of the D-He 3 reactor, and the reason that the organic coolant is compatible with those features. The problems associated with the organic coolant are also discussed. 8 refs., 2 figs., 6 tabs

  12. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  13. Cleaning of aluminum after machining with coolants

    International Nuclear Information System (INIS)

    Roop, B.

    1992-01-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended

  14. Coolant clean-up system in the primary coolant circuit for nuclear reactor

    International Nuclear Information System (INIS)

    Saito, Michio.

    1981-01-01

    Purpose: To maintain the quality of coolants at a prescribed level by distillating coolants in the primary coolant circuit for a BWR type reactor to remove impurities therefrom, taking out the condensates from the top of the distillation column and extracting impurities in a concentrated state from the bottom. Constitution: Coolant water for cooling the core is recycled by a recycling pump by way of a recycling pipeway in a reactor. The coolants extracted from an extraction pipeway connected to the recycling pipeway are fed into a distillation column, where distillation is taken place. Impurities in the coolants, that is, in-core corrosion products, fission products generated in the reactor core, etc. are separated by the distillation, concentrated and solidified in the bottom of the distillation column. While on the other hand, condensates removed with the impurities, that is, coolants cleaned-up are recycled to the coolant water for cooling the reactor core. (Moriyama, K.)

  15. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)

    International Nuclear Information System (INIS)

    Leong, K.Y.; Saidur, R.; Kazi, S.N.; Mamun, A.H.

    2010-01-01

    Water and ethylene glycol as conventional coolants have been widely used in an automotive car radiator for many years. These heat transfer fluids offer low thermal conductivity. With the advancement of nanotechnology, the new generation of heat transfer fluids called, 'nanofluids' have been developed and researchers found that these fluids offer higher thermal conductivity compared to that of conventional coolants. This study focused on the application of ethylene glycol based copper nanofluids in an automotive cooling system. Relevant input data, nanofluid properties and empirical correlations were obtained from literatures to investigate the heat transfer enhancement of an automotive car radiator operated with nanofluid-based coolants. It was observed that, overall heat transfer coefficient and heat transfer rate in engine cooling system increased with the usage of nanofluids (with ethylene glycol the basefluid) compared to ethylene glycol (i.e. basefluid) alone. It is observed that, about 3.8% of heat transfer enhancement could be achieved with the addition of 2% copper particles in a basefluid at the Reynolds number of 6000 and 5000 for air and coolant respectively. In addition, the reduction of air frontal area was estimated.

  16. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  17. Theoretical studying the stability of steady-state regime of a channel with a coolant condensation

    International Nuclear Information System (INIS)

    Savikhin, O.G.

    1987-01-01

    Based on the boiling channel stability theory, the channel steady-state stability with the coolant condensation is studied. Condensable coolants are used in the NPP steam-separator superheaters as well as in cryogenic technique. Under certain conditions the coolant flow rate and temperature fluctuations may be excited in the parallel channel system with coolant condensation, which produce a sufficient effect on the heat exchange equipment operation reliability. To describe unsteady processes of heat and mass transfer in the channel, a homogeneous two-phase flow one dimensional model is used. The results obtained allow one to make a conclusion concerning the effect of some parameters on condensing channel steady-state regime stability: reduction of inlet and outlet unheated communication length, pressure drop increase at the outlet plate and its reduction at the inlet one lead to the increase of stability margin

  18. Reduction - competitive tomorrow

    International Nuclear Information System (INIS)

    Worley, L.; Bargerstock, S.

    1995-01-01

    Inventory reduction is one of the few initiatives that represent significant cost-reduction potential that does not result in personnel reduction. Centerior Energy's Perry nuclear power plant has embarked on an aggressive program to reduce inventory while maintaining plant material availability. Material availability to the plant was above 98%, but at an unacceptable 1994 inventory book value of $47 million with inventory carrying costs calculated at 30% annually

  19. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  20. Reactor having coolant recycling pump

    International Nuclear Information System (INIS)

    Goto, Tadashi; Karatsuka, Shigeki; Yamamoto, Hajime.

    1991-01-01

    In a coolant recycling pump for an LMFBR type reactor, vertical grooves are formed to a static portion which surrounds a pump shaft as far as the lower end thereof. Sodium mists present in an annular gap of the pump shaft form a rotational flow, lose its centrifugal force at the grooved portion and are collected positively to the grooved portion. Further, since the rotational flow in the grooved channel is in a state of a cavity flow, the pressure is released in the grooved portion and a secondary eddy current is formed thereby providing a depressurized state. Accordingly, by a synergestic effect of the centrifugal force and the cavity flow, sodium mists can be recovered completely. (T.M.)

  1. Mathematical model of the reactor coolant pump

    International Nuclear Information System (INIS)

    Kozuh, M.

    1989-01-01

    The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)

  2. Organic coolant in Winnipeg riverbed sediments

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Acres, O.E.

    1979-03-01

    Between January and May 1977 a prolonged leak of organic coolant occurred from the Whiteshell Nuclear Research Establishment's nuclear reactor, and a minimum of 1450 kg of coolant entered the Winnipeg River and was deposited on the riverbed. The level of radioactivity associated with this coolant was low, contributing less than 0.2 μGy (0.02 mrad) a year to the natural background gamma radiation field from the riverbed. The concentration of coolant in the water samples never exceeded 0.02 mg/L, the lower limit of detection. The mortality of crayfish, held in cages where the riverbed was covered with the largest deposits of coolant, was not significantly different from that in the control cages upstream of the outfall. No evidence of fish kill was found. (author)

  3. Primary coolant circuits in FBR type reactors

    International Nuclear Information System (INIS)

    Kutani, Masushiro.

    1985-01-01

    Purpose: To eliminate the requirement of a pump for the forcive circulation of primary coolants and avoid the manufacturing difficulty of equipments. Constitution: In primary coolant circuits of an LMFBR type reactor having a recycling path forming a closed loop between a reactor core and a heat exchanger, coolants recycled through the recycling path are made of a magnetic fluid comprising liquid sodium incorporated with fine magnetic powder, and an electromagnet is disposed to the downstream of the heat exchanger. In the above-mentioned structure, since the magnetic fluid as the primary coolants losses its magnetic property when heated in the reactor core but recovers the property at a lower temperature after the completion of the heat exchange, the magnetic fluid can forcively be flown through the recycling path under the effect of the electromagnet disposed to the down stream of the heat exchanger to thereby forcively recycle the primary coolants. (Kawakami, Y.)

  4. Small break loss of coolant accident analysis of advanced PWR plant designs utilizing DVI line venturis

    International Nuclear Information System (INIS)

    Kemper, Robert M.; Gagnon, Andre F.; McNamee, Kevin; Cheung, Augustine C.

    1995-01-01

    The Westinghouse Advanced Passive and evolutionary Pressurizer Water Reactors (i.e. AP600 and APWR) incorporate direct vessel injection (DVI) of emergency core coolant as a means of minimizing the potential spilling of emergency core cooling water during a loss of coolant accident (LOCA). As a result, the most limiting small break LOCA (SBLOCA) event for these designs, with respect core inventory makeup capability, is a postulated double ended rupture of one of the DVI lines. This paper presents the results of a design optimization study that examines the installation of a venturi in the DVI line as a means of limiting the reactor coolant lost from the reactor vessel. The comparison results demonstrate that by incorporating a properly sized venturi in the DVI line, core uncovery concerns as a result of a DVI line break can be eliminated for both the AP600 and APWR plants. (author)

  5. Power supplyer for reactor coolant recycling pump

    International Nuclear Information System (INIS)

    Nara, Hiroshi; Okinaka, Yo.

    1991-01-01

    The present invention concerns a variable voltage/variable frequency static power source (static power source) used as a power source for a coolants recycling pump motor of a nuclear power plant. That is, during lower power operation such as start up or shutdown in which stoppage of the power source gives less effect to a reactor core, power is supplied from a power system, a main power generator connected thereto or a high voltage bus in the plant or a common high voltage bus to the static power source. However, during rated power operation, power is supplied from the output of an axially power generator connected with a main power generator having an extremely great inertia moment to the static power device. With such a constitution, the static power device is not stopped by the lowering of the voltage due to a thunderbolt falling accident or the like to a power-distribution line suddenly occurred in the power system. Accordingly, reactor core flowrate is free from rapid decrease caused by the reduction of rotation speed of the recycling pump. Accordingly, disadvantgages upon operation control in the reactor core is not caused. (I.S.)

  6. Speed control device for coolant recycling pump

    International Nuclear Information System (INIS)

    Kageyama, Takao.

    1992-01-01

    The present invention intends to increase a margin relative of the oscillations of neutron fluxes when the temperature of feedwater is lowered in a compulsory recycling type BWR reactor. That is, when the operation point represented by a reactor thermal power and a reactor core inlet flow rate is in a state approximate to an oscillation limit of the reactor power, the device of the present invention controls the recycling pump speed in the increasing direction depending on the lowering range of the feedwater temperature from a stationary state. With such a constitution, even if the reactor power is in the operation region near the oscillation limit in the BWR type reactor and a feedwater heating loss is caused, the speed of the coolant recycling pump is increased by 10% at the maximum depending on the extent of the reduction of the feedwater temperature, so that the oscillation of the reactor power can be prevented from lasting for a long period of time even if a reactivity external disturbance should occur in the reactor. (I.S.)

  7. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  8. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  9. Continuous surveillance of reactor coolant circuit integrity

    International Nuclear Information System (INIS)

    1986-01-01

    Continuous surveillance is important to assuring the integrity of a reactor coolant circuit. It can give pre-warning of structural degradation and indicate where off-line inspection should be focussed. These proceedings describe the state of development of several techniques which may be used. These involve measuring structural vibration, core neutron noise, acoustic emission from cracks, coolant leakage, or operating parameters such as coolant temperature and pressure. Twenty three papers have been abstracted and indexed separately for inclusion in the data base

  10. Station blackout with reactor coolant pump seal leakage

    International Nuclear Information System (INIS)

    Evinay, A.

    1993-01-01

    The U.S. Nuclear Regulatory Commission (NRC) amended its regulations in 10CFR50 with the addition of a new section, 50.63, open-quotes Loss of All Alternating Current Power.close quotes The objective of these requirements is to ensure that all nuclear plants have the capability to withstand a station blackout (SBO) and maintain adequate reactor core cooling and containment integrity for a specified period of time. The NRC also issued Regulatory Guide (RG) 1.155, open-quotes Station Blackout,close quotes to provide guidance for meeting the requirements of 10CFR50.63. Concurrent with RG-1.155, the Nuclear Utility Management and Resources Council (NUMARC) has developed NUMARC 87-00 to address SBO-coping duration and capabilities at light water reactors. Licensees are required to submit a topical report based on NUMARC 87-00 guidelines, to demonstrate compliance with the SBO rule. One of the key compliance criteria is the ability of the plant to maintain adequate reactor coolant system (RCS) inventory to ensure core cooling for the required coping duration, assuming a leak rate of 25 gal/min per reactor coolant pump (RCP) seal in addition to technical specification (TS) leak rate

  11. Condition monitoring of main coolant pumps, Dhruva

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Acharya, V.N.; Tikku, A.C.; Mishra, S.K.

    2002-01-01

    Full text: Dhruva is a 100 MW research reactor with natural uranium fuel, heavy water as moderator and primary coolant. Three Centrifugal pumps circulate the primary coolant across the core and the heat exchangers. Each pump is coupled to a flywheel (FW) assembly in order to meet operational safety requirements. All the 3 main coolant pump (MCP) sets are required to operate during operation of the reactor. The pump-sets are in operation since the year 1984 and have logged more than 1,00,000 hrs. Frequent breakdowns of its FW bearings were experienced during initial years of operation. Condition monitoring of these pumps, largely on vibration based parameters, was initiated on regular basis. Break-downs of main coolant pumps reduced considerably due to the fair accurate predictions of incipient break-downs and timely maintenance efforts. An effort is made in this paper to share the experience

  12. Coolant processing device for nuclear reactor

    International Nuclear Information System (INIS)

    Kizawa, Hideo; Funakoshi, Toshio; Izumoji, Yoshiaki

    1981-01-01

    Purpose: To reduce an entire facility cost by concentrating and isolating tritium accumulated in coolants, removing the tritium out of the system, and returning hydrogen gas generated at a reactor accident to a recombiner in a closed loop by the switching of a valve. Constitution: Coolant from a reactor cooling system processed by a chemical volume control system facility (CVCS) and coolant drain from various devices processed by a liquid waste disposing system facility (LWDS) are fed to a tritium isolating facility, in which they are isolated into concentrated tritium water and dilute tritium water. The concentrated tritium water is removed out of the system and stored. The dilute tritium water is reused as supply water for coolant. If an accident occurs to cause hydrogen to be generated, a closed loop is formed between the containment vessel and the recombiner, the hydrogen is recombined with oxygen in the air of the closed loop to be thus returned to water. (Kamimura, M.)

  13. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  14. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  15. Standardized sampling system for reactor coolants

    International Nuclear Information System (INIS)

    Divine, J.R.; Munson, L.F.; Nelson, J.L.; McDowell, R.L.; Jankowski, M.W.

    1982-09-01

    A three-pronged approach was developed to reach the objectives of acceptable coolant sampling, assessment of occupational exposure from corrosion products, and model development for the transport and buildup of corrosion products. Emphasis is on sampler design

  16. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Pothier, N.E.; Metcalfe, R.

    1986-06-01

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  17. Application of damage function analysis to reactor coolant circuits

    International Nuclear Information System (INIS)

    MacDonald, D.D.

    2002-01-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  18. Application of damage function analysis to reactor coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, D.D. [Center for Electrochemical Science and Technology, Pennsylvania State Univ., University Park, PA (United States)

    2002-07-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  19. Riparian Inventory

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset is a digital representation of the 1:24,000 Land Use Riparian Areas Inventory for the state of Kansas. The dataset includes a 100 foot buffer around all...

  20. Coolant clean up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tajima, Fumio; Iwami, Hiroshi.

    1981-01-01

    Purpose: To decrease the amount of main steams and improve the plant heat efficiency by the use of condensated water as coolants for not-regenerative heat exchangers in a coolant clean up system of a nuclear reactor. Constitution: In a coolant clean up system of a nuclear reactor, a portion of condensates is transferred to the shell of a non-regenerative heat exchanger by way of a condensate pump for non-regenerative heat exchanger through a branched pipeway provided to the outlet of a condensate desalter for using the condensates as the coolants for the shell of the heat exchanger and the condensates are then returned to the inlet of a feedwater heater after the heat exchange. The branched flow rate of the condensates is controlled by the flow rate control valve mounted in the pipeway. Condensates passed through the heat exchanger and the condensates not passed through the heat exchanger are mixed and heated in a heater and then fed to the nuclear reactor. In a case where no feedwater is necessary to the nuclear reactor such as upon shutdown of the reactor, the condensates are returned by way of feedwater bypass pipeway to the condensator. By the use of the condensates as the coolants for the heat exchanger, the main steam loss can be decreased and the thermal load for the auxiliary coolant facility can be reduced. (Kawakami, Y.)

  1. Evaluation of conservatism in analysis of fuel-coolant interaction

    International Nuclear Information System (INIS)

    Reynolds, A.B.; Erdman, C.A.; Garner, P.L.; Haas, P.M.; Allen, C.L.

    Using the ANL parametric model developed by Cho e.a. the following mechanisms and parameters involved in fuel-coolant interaction were examined: coherence of fuel-sodium mixing; two-phase heat transfer; sodium-to-fuel mass ratio; fuel particle size; heat transfer to plenum and core cladding; constraint geometry. Both overpower and loss-of-flow transients were studied. Main attention is given to the maximum mechanical work to be expected. As a general conclusion, it can be stated that more realistic models will result in a reduction of the estimated mechanical work

  2. Calculation and analysis of neutron and radiation characteristics of lead coolants with isotopic tailoring for future nuclear power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, A.I.; Ivanov, A.P.; Korobeinikov, V.V.; Lunev, V.P.; Manokhin, V.N.; Khorasanov, G.L. [SSC RF A. I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Kaluga Region (Russian Federation)

    2000-03-01

    A new type of safe fast reactor with lead coolant was proposed in Russia. The use of coolants with low moderating properties is one of the ways to get a hard neutron spectrum and an increase in the burning of Np-237, Am-243 and other miner actinides(MA) fissionable preferentially in the fast reactor. The stable lead isotope, Pb-208, is proposed as the one of such coolants. The neutron inelastic scattering cross-section of Pb-208 is 3.0-3.5 times less than the one of other lead isotopes. Calculation of the MA transmutation rates in the standard BN-type fast reactor with different coolants is performed by Monte-Carlo method using Code MMKFK. Six various models are simulated for the fast reactor blanket with different kinds of fuel and coolant. The fast reactor with natural-lead coolant practically does not differ from the reactor with sodium coolant relative to MA incineration. The use of Pb-208 as a coolant in the fast reactor results in increasing incineration of MA from 18 to 26% in comparison with a usual fast reactor. Calculation of induced radioactivity was performed using the FISPACT-3 inventory code, also. The results include total induced radioactivity and dose rate for initial material composition and selected long-lived radionuclides. The calculations show that the coolant consisting of lead isotope, Pb-206, or Pb-207, can be considered as the low-activation one because it does not practically contain long-lived toxic radionuclides. (M. Suetake)

  3. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project -2006 Update

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2006-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. This paper presents a status of the coolant stability over the past year as well as results from destructive analyses of hardware removed from the on-orbit system and the current approach to coolant remediation.

  4. LWR primary coolant pipe rupture test rig

    International Nuclear Information System (INIS)

    Yoshitoshi, Shyoji

    1978-01-01

    The rupture test rig for primary coolant pipes is constructed in the Japan Atomic Energy Research Institute to verify the reliability of the primary coolant pipes for both PWRs and BWRs. The planned test items consisted of reaction force test, restraint test, whip test, jet test and continuous release test. A pressure vessel of about 4 m 3 volume, a circulating pump, a pressurizer, a heater, an air cooler and the related instrumentation and control system are included in this test rig. The coolant test condition is 160 kg/cm 2 g, 325 deg C for PWR test, and 70 kg/cm 2 g, saturated water and steam for BWR test, 100 ton of test load for the ruptured pipe bore of 8B Schedule 160, and 20 lit/min. discharge during 20 h for continuous release of coolant. The maximum pit internal pressure was estimated for various pipe diameters and time under the PWR and BWR conditions. The spark rupturing device was adopted for the rupture mechanics in this test rig. The computer PANAFACOM U-300 is used for the data processing. This test rig is expected to operate in 1978 effectively for the improvement of reliability of LWR primary coolant pipes. (Nakai, Y.)

  5. Evaluation of primary coolant pH operation methods for the domestic PWRs

    International Nuclear Information System (INIS)

    Paek, Seung Woo; Na, Jung Won; Kim, Yong Eak; Bae, Jae Heum

    1992-01-01

    Radioactive nuclides deposited on out-of-core surface after the radiation in the core by the transport of corrosion products (CRUD) through the primary coolant system in PWR which is the major plant type in Korea, are leading sources of radiation exposure to plant maintenance personnel. Thus, the optimal chemistry operation method is required for the reduction of radiation exposure by the corrosion products. This study analysed the actual water chemistry operation data of four operating domestic PWRs. And in order to evaluate the coolant chemistry operation data, a computer code which can calculate the activity buildup in the various chemistry conditions of PWR coolant was employed. Through the analysis of comparison between the activity buildup of actual water chemistry operation mode and that of assumed Elevated Li operation mode calculated by the computer code, it was found that the out-of-core radioactivity can be reduced by diminishing the deposition of corrosion products on the core in case that the Elevated Li operation mode is applied to the coolant chemistry operation of PWR. And the higher coolant pH operation was shown to have the advantage of the reduction of out-of-core activity buildup if the integrity of system structural materials and fuel cladding is guaranteed. (Author)

  6. Nuclear reactor of pressurized liquid coolant type

    International Nuclear Information System (INIS)

    Costes, D.

    1976-01-01

    The reactor comprises a vertical concrete pressure vessel, a bell-housing having an open lower end and disposed coaxially with the interior of the pressure vessel so as to delimit therewith a space filled with gas under pressure for the thermal insulation of the internal vessel wall, a pressurizing device for putting the coolant under pressure within the bell-housing and comprising a volume of control gas in contact with a large free surface of coolant in order that an appreciable variation in volume of liquid displaced within the coolant circuit inside the bell-housing should correspond to a small variation in pressure of the control gas. 9 claims, 3 drawing figures

  7. Iron crud supply device to reactor coolant

    International Nuclear Information System (INIS)

    Baba, Takao.

    1993-01-01

    In a device for supplying iron cruds into reactor coolants in a BWR type power plant, a system in which feed water containing iron cruds is supplied to the reactor coolants after once passing through an ion exchange resin is disposed. As a result, iron cruds having characteristics similar with those of naturally occurring iron cruds in the plant are obtained and they react with ionic radioactivity, to form composite oxides. Then, iron cruds having high performance of being secured to the surface of a fuel cladding tube can be supplied to the reactor coolants, thereby enabling to greatly reduce the density of reactor water ionic radioactivity. In its turn, dose rate on the surface of pipelines can be reduced, thereby enabling to reduce operators' radiation exposure dose in the plant. Further, contamination of a condensate desalting device due to iron cruds can be prevented, and further, the density of the iron cruds supplied can easily be controlled. (N.H.)

  8. Limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.

    1985-01-01

    The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass

  9. Main coolant pump testing at Ontario Hydro

    International Nuclear Information System (INIS)

    Hartlen, R.

    1991-01-01

    This article describes Ontario Hydro Research Division's experience with a computerized data acquisition and analysis system for monitoring mechanical vibration in reactor coolant pumps. The topics covered include bench-marking of the computer system and the coolant pumps, signatures of normal and malfunctioning pumps, analysis of data collected by the monitoring system, simulation of faults, and concerns that have been expressed about data interpretation, sensor types and locations, alarm/shutdown limits and confirmation of nondestructive examination testing. This presentation consists of overheads only

  10. Comparative design study of FR plants with various coolants. 1. Studies on Na coolant FR, Pb-Bi coolant FR, gas coolant FR

    International Nuclear Information System (INIS)

    Konomura, Mamoru; Shimakawa, Yoshio; Hori, Toru; Kawasaki, Nobuchika; Enuma, Yasuhiro; Kida, Masanori; Kasai, Shigeo; Ichimiya, Masakazu

    2001-01-01

    In Phase I of the Feasibility Studies on the Commercialized Fast Reactor (FR) Cycle System, plant designs on FR were performed with various coolants. This report describes the plant designs on FR with sodium, lead-bismuth, CO 2 gas and He gas coolants. A construction cost of 0.2 million yen/kWe was set up as a design goal. The result is as follows: The sodium reactor has a capability to obtain the goal, and lead-bismuth and gas reactors may satisfy the goal with further improvements. (author)

  11. On-Line Coolant Chemistry Analysis

    International Nuclear Information System (INIS)

    LM Bachman

    2006-01-01

    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level

  12. Leak detection device for reactor coolant

    International Nuclear Information System (INIS)

    Oshima, Koichiro.

    1990-01-01

    In a light water cooled reactor, if reactor coolants are leaked from pipelines in a pipeline chamber, activated products (N-16) are diffused together to an atmosphere in the pipeline chamber. N-16 is sucked from an extracting tube which is always sucking the atmosphere in the pipeline chamber to a sucking blower. Then, β-rays released from N-16 are monitored by a radiation monitor in a measuring chamber which is radiation-shielded from the pipeline chamber. Accordingly, since the radiation monitor can detect even slight leakage, the slight leakage of reactor coolants in the pipelines can be detected at an early stage. (I.N.)

  13. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  14. Preparing US community greenhouse gas inventories for climate action plans

    International Nuclear Information System (INIS)

    Blackhurst, Michael; Scott Matthews, H; Hendrickson, Chris T; Sharrard, Aurora L; Azevedo, Ines Lima

    2011-01-01

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  15. Preparing US community greenhouse gas inventories for climate action plans

    Energy Technology Data Exchange (ETDEWEB)

    Blackhurst, Michael [Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 1 University Station C1752, Austin, TX 78712-0276 (United States); Scott Matthews, H; Hendrickson, Chris T [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Sharrard, Aurora L [Green Building Alliance, 333 East Carson Street, Suite 331, Pittsburgh, PA 15219 (United States); Azevedo, Ines Lima, E-mail: mblackhurst@gmail.com, E-mail: hsm@cmu.edu, E-mail: auroras@gbapgh.org, E-mail: cth@andrew.cmu.edu, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-07-15

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  16. Evaluation of Coolant Injection Procedure in the Severe Accident Management Strategy of APR1400

    International Nuclear Information System (INIS)

    Cho, Yongjin; Lim, Kukhee; Song, Sungchu; Lee, Sukho; Hwang, Taesuk

    2013-01-01

    A coolant injection strategy in the severe accident management guideline (SAMG) of APR1400 relates to immediate coolant injection into RCS (Reactor Coolant System) or injection following the recovery of secondary coolant inventory. This strategy could play important role in accident mitigation and radiological consequences. In this study, appropriateness of the strategy was evaluated using MELCOR1.8.6 and several sensitivity studies of the key parameters were performed. Analysis for APR1400 using MELCOR 1.8.6 was performed to evaluate the effectiveness of accident management strategies and the following conclusions were identified. Sequential operation of secondary and RCS injection may not be the best strategy and the simultaneous injection of secondary and RCS injection could be more preferable. At least, the RCS injection should start before complete drainage of water in the safety injection tank using mobile pumps. In this study, the effectiveness of timing of operator action has been examined and the amount of injection flowrate needs to be studied in the future

  17. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  18. Fission product release into the primary coolant

    International Nuclear Information System (INIS)

    Apperson, C.E.

    1977-01-01

    The analytic evaluation of steady state primary coolant activity is discussed. The reported calculations account for temperature dependent fuel failure in two particle types and arbitrary radioactive decay chains. A matrix operator technique implemented in the SUVIUS code is used to solve the simultaneous equations. Results are compared with General Atomic Company's published results

  19. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    International Nuclear Information System (INIS)

    Solyany, V.I.; Bibilashvili, Yu.K.; Sukhanov, G.I.; Pimenov, Yu.V.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-01-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness. (author)

  20. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Solyany, V I; Bibilashvili, Yu K; Sukhanov, G I; Pimenov, Yu V [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Neorganicheskikh Materialov, Moscow (USSR); Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-12-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness.

  1. A study on the sensitivity analysis of safety injection reduction

    International Nuclear Information System (INIS)

    Yoon, D. J.; Chun, H. Y.

    1998-01-01

    With SI in service, RCS pressure will tend toward an equilibrium value where SI flow matches leakage from the RCS. For subcooled conditions, the amount of leakage from the RCS is directly related to the capacity of the operating SI pumps. Hence, in order to minimize the loss of coolant from the primary system, SI flow must be reduced. On the other hand, some SI flow is necessary to maintain coolant inventory and pressurize the RCS sufficiently to promote primary-to-secondary heat transfer. A conflict arises between keeping the SI pumps running to maintain adequate coolant inventory and reducing SI flow to minimize leakage from the RCS. A program SIREPRO has been developed for calculating various pressure/temperature relationships for stopping or realigning SI pumps which ensures that the reduced SI flow will be sufficient to maintain adequate coolant inventory. This Program showed that various parameter is related to the requirement to reduce SI pump

  2. Heat transport inventory monitoring for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Hussein, E.; Luxat, J.C.

    1984-01-01

    A computer-based D 2 O coolant inventory monitoring system proposed for implementation on the digital computer controllers at Ontario Hydro's CANDU generating units is discussed. By monitoring process parameters and utilizing probabilistically-based decision algorithms, timely indication of any significant loss of D 2 O inventory will be provided to the operator. The monitoring is performed in a co-ordinated manner such that D 2 O losses from either the heat transport system or the inventory control system can be detected. (orig.)

  3. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    National Research Council Canada - National Science Library

    Can, Levent

    2006-01-01

    .... The overall focus of this study is the build up of induced radioactivity in the coolant of metal cooled reactors as well as the evaluation of other physical and chemical properties of such coolants...

  4. Optimization of Inventory

    OpenAIRE

    PROKOPOVÁ, Nikola

    2017-01-01

    The subject of this thesis is optimization of inventory in selected organization. Inventory optimization is a very important topic in each organization because it reduces storage costs. At the beginning the inventory theory is presented. It shows the meaning and types of inventory, inventory control and also different methods and models of inventory control. Inventory optimization in the enterprise can be reached by using models of inventory control. In the second part the company on which is...

  5. In-core failure of the instrumented BWR rod by locally induced high coolant temperature

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the BWR type light water loop instrumented in HBWR, a current BWR type fuel rod pre-irradiated up to 5.6 MWd/kgU was power ramped to 50 kW/m. During the ramp, the diameter of the rod was expanded significantly at the bottom end. The behaviour was different from which caused by pellet-cladding interaction (PCI). In the post-irradiation examination, the rod was found to be failed. In this paper, the cause of the failure was studied and obtained the followings. (1) The significant expansion of the rod diameter was attributed to marked oxidation of cladding outer diameter, appeared in the direction of 0 0 -180 0 degree with a shape of nodular. (2) The cladding in the place was softened by high coolant temperature. Coolant pressure, 7MPa intruded the cladding into inside chamfer void at pellet interface. (3) At the place of the significant oxidation, an instrumented transformer was existed and the coolant flow area was very little. The reduction of the coolant flow was enhanced by the bending of the cladding which was caused in pre-irradiation stage. They are considered to be a principal cause of local closure of coolant flow and resultant high temperature in the place. (author)

  6. Application of radcal gamma thermometer assemblies for coolant monitoring in Ringhals W-PWRs

    International Nuclear Information System (INIS)

    Smith, R.D.; Romslo, K.; Moen, Oe.

    1982-07-01

    A study has been carried out investigating how Radcal Gamma Thermometers (RGTs) can be used for coolant inventory and core cooling monitoring in the Ringhals Westinghouse PWRs. The study concludes that two types of RGT rods would be required to come up with a complete solution covering both coolant inventory and core cooling monitoring. Above-core RGT rods will be installed in the guide tubes housing the outlet thermocouples. The Above-Core RGT rod is designed with 8 sensors where 4 are located in the upper head and 4 in the plenum. This rod will give an early warning about loss of coolant or void formation in the space from top of fuel to the reactor lid. A ninth thermocouple in this rod will measure the core outlet temperature as did the thermocouple the RGT rod replaced. The Above-Core RGT rods will give an early warning about approach to Inadequate Core Cooling (ICC) by measuring the collapsed water level inside the thermocouple guide tube. Four such rods are recommended per reactor. In-Core RGT rods are inserted from the seal table. These rods will give the information required for intelligent accident management in case ICC has developed. The signals obtainable from the rods will give direct information about fuel decay heat, core heat transfer conditions, core temperature and core coolant water level. The In-Core RGT rods can be used for local power monitoring during normal operation. Such a system can be shown to be economically motivated from a reactor operation point of view due to increased sensor lifetime, more accurate local power measurements, simpler physics corrections to signals, lower exposure to maintenance personnel. The signal transmission to the control room has been discussed, and ways have been indicated for presenting the information available to the operators. (Authors)

  7. Inventory Abstraction

    International Nuclear Information System (INIS)

    Leigh, C.

    2000-01-01

    The purpose of the inventory abstraction as directed by the development plan (CRWMS M and O 1999b) is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M and O 1999c, 1999d). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) (NRC 1999) key technical issue (KTI): ''The rate at which radionuclides in SNF [Spent Nuclear Fuel] are released from the EBS [Engineered Barrier System] through the oxidation and dissolution of spent fuel'' (Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the accessible environment. The inventory abstraction is important in assessing system performance because

  8. INVENTORY ABSTRACTION

    International Nuclear Information System (INIS)

    Ragan, G.

    2001-01-01

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M andO 2000e for/ICN--02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M andO 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release

  9. Improvements of primary coolant shutdown chemistry and reactor coolant system cleanup

    International Nuclear Information System (INIS)

    Gaudard, G.; Gilles, B.; Mesnage, F.; Cattant, F.

    2002-01-01

    In the framework of a radiation exposure management program entitled >, EDF aims at decreasing the mass dosimetry of nuclear power plants workers. So, the annual dose per unit, which has improved from 2.44 m.Sv in 1991 to 1.08 in 2000, should target 0.8 mSv in the year 2005 term in order to meet the results of the best nuclear operators. One of the guidelines for irradiation source term reduction is the optimization of operation parameters, including reactor coolant system (RCS) chemistry in operation, RCS shutdown chemistry and RCS cleanup improvement. This paper presents the EDF strategy for the shutdown and start up RCS chemistry optimization. All the shutdown modes have been reviewed and for each of them, the chemical specifications will be fine tuned. A survey of some US PWRs shutdown practices has been conducted for an acid and reducing shutdown chemistry implementation test at one EDF unit. This survey shows that deviating from the EPRI recommended practice for acid and reducing shutdown chemistry is possible and that critical path impact can be minimized. The paper also presents some investigations about soluble and insoluble species behavior and characterization; the study focuses here on 110m Ag, 122 Sb, 124 Sb and iodine contamination. Concerning RCS cleanup improvement, the paper presents two studies. The first one highlights some limited design modifications that are either underway or planned, for an increased flow rate during the most critical periods of the shutdown. The second one focuses on the strategy EDF envisions for filters and resins selection criteria. Matching the study on contaminants behavior with the study of filters and resins selection criteria should allow improving the cleanup efficiency. (authors)

  10. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  11. Freeform Deposition Method for Coolant Channel Closeout

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)

    2017-01-01

    A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.

  12. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  13. Recovery studies for plutonium machining oil coolant

    International Nuclear Information System (INIS)

    Navratil, J.D.; Baldwin, C.E.

    1977-01-01

    Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tetrachloride. Appropriate methods then could be developed to remove the plutonium and to recycle the oil and carbon tetrachloride. Studies showed that the mixtures of spent oil and carbon tetrachloride contained particulate plutonium and plutonium species that are soluble in water or in oil and carbon tetrachloride. The particulate plutonium was removed by filtration; the nonfilterable plutonium was removed by adsorption on various materials. Laboratory-scale tests indicated the lathe-coolant oil mixture could be separated by distilling the carbon tetrachloride to yield recyclable products

  14. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the 13 N content in the containment atmosphere. 13 N is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/ 13 N+ 4 He. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium 13 N concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  15. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/Nl3+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  16. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1979-08-01

    The present paper deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process H1+016 → N13+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m -3 and 7 kBq m -3 for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge (Li) flow detector assembly operated at elevated pressure. (Auth.)

  17. Impact evaluation of the accident with release of a PWR coolant. Case study: Angra 3; Avaliacao do impacto de acidente com liberacao do refrigerante de reator PWR. Estudo de caso: Angra 3

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Andre Silva de; Simoes Filho, Francisco Fernando Lamego; Soares, Abner Duarte; Lapa, Celso Marcelo Franklin, E-mail: flamego@ien.gov.b, E-mail: asoares@cnen.gov.b, E-mail: lapa@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-10-26

    It was postulated in the cooling system, a LOCA where was lost 431 m{sup 3} of coolant. The inventory was 1.87 x 10{sup 10} Bq/m{sup 3} of tritium, 2.22 x 10{sup 7} Bp/m{sup 3} of cobalt and 3.48 x 10{sup 8} Bq/m{sup 3} of cesium and was launched near tue Itaorna beach, Angra dos Reis, RJ, Brazil. By applying the model in the proposed scenery (Angra 1 and 2 functioning and Angra 3 with variation of water taking and discharge with a progressive reduction after the accident), the dilution of specific activity of the radionuclides reached inferior values after 22 hours, to the reference values. After 54 hours, the levels of radionuclides, in the indirect influence are already below the minimum values of activity detected by the laboratory of environmental monitoring of the CNAAA

  18. Reactor coolant pump seal leakage monitoring

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; James, W.; Shugars, H.G.

    1986-01-01

    Problems with reactor coolant pump seals have historically accounted for a large percentage of unscheduled outages. Studies performed for the Electric Power Research Institute (EPRI) have shown that the replacement of coolant pump seals has been one of the leading causes of nuclear plant unavailability over the last ten years. Failures of coolant pump seals can lead to primary coolant leakage rates of 200-500 gallons per minute into the reactor building. Airborne activity and high surface contamination levels following these failures require a major cleanup effort and increases the time and personnel exposure required to refurbish the pump seals. One of the problems in assessing seal integrity is the inability to accurately measure seal leakage. Because seal leakage flow is normally very small, it cannot be sensed directly with normal flow instrumentation, but must be inferred from several other temperature and flow measurements. In operating plants the leakage rate has been quantified with a tipping-bucket gauge, a device which indicates when one quart of water has been accumulated. The tipping-bucket gauge has been used for most rainfall-intensity monitoring. The need for a more accurate and less expensive gauge has been addressed. They have developed a drop-counter precipitation sensor has been developed and optimized. The applicability of the drop-counter device to the problem of measuring seal leakage is being investigated. If a review of system specification and known drop-counter performance indicates that this method is feasible for measuring seal leak rates, a drop-counter gauge will be fabricated and tested in the laboratory. If laboratory tests are successful the gauge will be demonstrated in a pump test loop at Ontario Hydro and evaluated under simulated plant conditions. 3 references, 2 figures

  19. Enhancing resistance to burnout via coolant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tu, J. P.; Dinh, T. N.; Theofanous, T. G. [Univ. of California, Santa Barbara (United States)

    2003-07-01

    Boiling Crisis (BC) on horizontal, upwards-facing copper and steel surfaces under the influence of various coolant chemistries relevant to reactor containment waters is considered. In addition to Boric Acid (BA) and TriSodium Phosphate (TSP), pure De-Ionized Water (DIW) and Tap Water (TW) are included in experiments carried out in the BETA facility. The results are related to a companion paper on the large scale ULPU facility.

  20. Minimizing secondary coolant blowdown in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Ryu, J. S.; Cho, Y. G.; Lim, N. Y.

    2000-01-01

    There is about 80m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30MW research reactor. The evaporation and the windage is necessary loss to maintain the performance of cooling tower, but the blowdown is artificial lose to get rid of the foreign material and to maintain the quality of the secondary cooling water. Therefore, minimizing the blowdown loss was studied. It was confirmed, through the relation of the number of cycle and the loss rate of secondary coolant, that the number of cycle is saturated to 12 without blowdown because of the windage loss. When the secondary coolant is treated by high Ca-hardness treatment program (the number of cycle > 10) to maintain the number of cycle around 12 without blowdown, only the turbidity exceeds the limit. By adding filtering system it was confirmed, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2% of filtering rate without blowdown. And it was verified, through the performance test of back-flow filtering unit, that this unit gets rid of foreign material up to 95% of the back-flow and that the water can be reused as coolant. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  1. Reactor coolant pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Harand, E.; Richter, G.; Tschoepel, G.

    1975-01-01

    A brake for the pump rotor of a main coolant pump or a shutoff member on the pump are provided in order to prevent excess speeds of the pump rotor. Such excess speeds may occur in PWR type reactors with water at a pressure below, e.g., 150 bars if there is leakage from a coolant line associated with the main coolant pump. As a brake, a centrifugal brake depending upon the pump speed or a brake ring arranged on the pump housing and acting on the pump rotor, which ring would be activated by pressure differentials in the pump, may be used. If the pressure differences between suction and pressure sockets are very small, a controlled hydraulic increase of the pressure force on the brake may also be provided. Furthermore, a turbine brake may be provided. A slide which is automatically movable in closing position along the pump rotor axis is used as a shutoff element. It is of cylindrical configuration and is arranged concentrically with the rotor axis. (DG) [de

  2. Design of automotive engine coolant hoses

    Directory of Open Access Journals (Sweden)

    Hrishikesh D BACHCHHAV

    2018-03-01

    Full Text Available In this paper, we are present the performance of engine coolant hoses (radiator hoses used in passenger cars by checking various physical behaviours such as hose leakage, hose burst, hose collapse or any mechanical damage as studied-thru design guidelines, CFD analysis and product validation testing and also check pressure drop of the hoses when engine will be running. The design term is more likely used for technical part modelling using CAD tool. Later on, we will focus on the transformation of the part design to process design. The process design term is more likely used for "tooling design" for manufacturing of the product using CAD Tool. Then inlet hose carries coolant from engine to radiator inlet tank, then coolant circulated in radiator and passed through radiator outlet tank to water pump of engine with the help of outlet hose. After that …nding any leakage, Burst, damage or collapse of hose and pressure drop of the hose with the help of design checklist, CFD Analysis and product validation testing.

  3. Safety and environmental impact of the dual coolant blanket concept. SEAL subtask 6.2, final report

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Dammel, F.; Gabel, K.; Jordan, T.; Schmuck, I.

    1996-03-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four concepts under development, namely two of the solid breeder type and two of the liquid breeder type. At the Forschungszentrum Karlsruhe one blanket concept of each line has been pursued so far with the so-called dual coolant type representing the liquid breeder line. In the dual coolant concept the breeder material (Pb-17Li) is circulated to external heat exchangers to carry away the bulk of the generated heat and to extract the tritium. Additionally, the heavily loaded first wall is cooled by high pressure helium gas. The safety and environmental impact of the dual coolant blanket concept has been assessed as part of the blanket concept selection excercise, a European concerted action, aiming at selecting the two most promising concepts for futher development. The topics investigated are: (a) Blanket materials and toxic materials inventory, (b) energy sources for mobilisation, (c) fault tolerance, (d) tritium and activation products release, and (e) waste generation and management. No insurmountable safety problems have been identified for the dual coolant blanket. The results of the assessment are described in this report. The information collected is also intended to serve as input to the EU 'Safety and Environmental Assessment of Fusion longterm Programme' (SEAL). The unresolved issues pertaining to the dual coolant blanket which would need further investigations in future programmes are outlined herein. (orig.) [de

  4. New method for NPP sodium coolant pipeline austenization

    International Nuclear Information System (INIS)

    Malashonok, V.A.; Rotshtejn, A.V.; Gotshalk, A.L.; Miryushchenko, E.F.

    1980-01-01

    Heat treatment technology is considered for pipelines intended for the NPP cooling systems employing sodium coolant. Various techniques are discussed which are used for protecting the pipeline internal surfaces against oxidation in the process of heat treatment. It is noted that the austenite formation of welded joints of steel 12Kh18N9 and steel Kh16N11M3 at temperatures of 1050 and 1100 deg C releases welding-induced stresses and reduces a possibility of local damages. Evacuation down to 1 mm Hg appears to be the most rational protective technique. The considered procedure of the pipeline heat treatment has been utilized for mounting the equipment of the BN-600 reactor at the Beloyarskaya NPP. The economic gain resulting from the use of the procedure, owing to decrease in argon consumption and reduction of labour input, makes up 150 000 roubles

  5. CANDU with supercritical water coolant: conceptual design features

    International Nuclear Information System (INIS)

    Spinks, N.

    1997-01-01

    An advanced CANDU reactor, with supercritical water as coolant, has many attractive design features. The pressure exceeds 22 MPa but coolant temperatures in excess of 370 degrees C can be reached without encountering the two-phase region with its associated fuel-dry-out and flow-instability problems. Increased coolant temperature leads to increased plant thermodynamic efficiency reducing unit energy cost through reduced specific capital cost and reduced fueling cost. Increased coolant temperature leads to reduced void reactivity via reduced coolant in-core density. Light water becomes a coolant option. To preserve neutron economy, an advanced fuel channel is needed and is described below. A supercritical-water-cooled CANDU can evolve as fuel capabilities evolve to withstand increasing coolant temperatures. (author)

  6. Development of Coolant Radioactivity Interpretation Code

    International Nuclear Information System (INIS)

    Kim, Kiyoung; Jung, Youngsuk; Kim, Kyounghyun; Kim, Jangwook

    2013-01-01

    In Korea, the coolant radioactivity analysis has been performed by using the computer codes of foreign companies such as CADE (Westinghouse), IODYNE and CESIUM (ABB-CE). However, these computer codes are too conservative and have involved considerable errors. Furthermore, since these codes are DOS-based program, their easy operability is not satisfactory. Therefore it is required development of an enhanced analysis algorithm applying an analytical method reflecting the change of operational environments of domestic nuclear power plants and a fuel failure evaluation software considering user' conveniences. We have developed a nuclear fuel failure evaluation code able to estimate the number of failed fuel rods and the burn-up of failed fuels during nuclear power plant operation cycle. A Coolant Radio-activity Interpretation Code (CRIC) for LWR has been developed as the output of the project 'Development of Fuel Reliability Enhanced Technique' organized by Korea Institute of Energy Technology Evaluation and Planning (KETEP). The CRIC is Windows based-software able to evaluate the number of failed fuel rods and the burn-up of failed fuel region by analyzing coolant radioactivity of LWR in operation. The CRIC is based on the model of fission products release commonly known as 'three region model' (pellet region, gap region, and coolant region), and we are verifying the CRIC results based on the cases of domestic fuel failures. CRIC users are able to estimate the number of failed fuel rods, burn-up and regions of failed fuel considered enrichment and power distribution of fuel region by using operational cycle data, coolant activity data, fuel loading pattern, Cs-134/Cs-137 ratio according to burn-up and U-235 enrichment provided in the code. Due to development of the CRIC, it is secured own unique fuel failure evaluation code. And, it is expected to have the following significant meaning. This is that the code reflecting a proprietary technique for quantitatively

  7. Transmutation performance analysis on coolant options in a hybrid reactor system design for high level waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong-Hee; Siddique, Muhammad Tariq; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2015-11-15

    Highlights: • Waste transmutation performance was compared and analyzed for seven different coolant options. • Reactions of fission and capture showed big differences depending on coolant options. • Moderation effect significantly affects on energy multiplication, tritium breeding and waste transmutation. • Reduction of radio-toxicities of TRUs showed different trend to coolant choice from performance of waste transmutation. - Abstract: A fusion–fission hybrid reactor (FFHR) is one of the most attractive candidates for high level waste transmutation. The selection of coolant affects the transmutation performance of a FFHR. LiPb coolant, as a conventional coolant for a FFHR, has problems such as reduction in neutron economic and magneto-hydro dynamics (MHD) pressure drop. Therefore, in this work, transmutation performance is evaluated and compared for various coolant options such as LiPb, H{sub 2}O, D{sub 2}O, Na, PbBi, LiF-BeF{sub 2} and NaF-BeF{sub 2} applicable to a hybrid reactor for waste transmutation (Hyb-WT). Design parameters measuring performance of a hybrid reactor were evaluated by MCNPX. They are k{sub eff}, energy multiplication factor, neutron absorption ratio, tritium breeding ratio, waste transmutation ratio, support ratio and radiotoxicity reduction. Compared to LiPb, H{sub 2}O and D{sub 2}O are not suitable for waste transmutation because of neutron moderation effect. Waste transmutation performances with Na and PbBi are similar to each other and not different much from LiPb. Even though molten salt such as LiF-BeF{sub 2} and NaF-BeF{sub 2} is good for avoiding MHD pressure drop problem, waste transmutation performance is dropped compared with LiPb.

  8. Hydrodynamics of heavy liquid metal coolant processes and filtering apparatus

    International Nuclear Information System (INIS)

    Albert K Papovyants; Yuri I Orlov; Pyotr N Martynov; Yuri D Boltoev

    2005-01-01

    to S ≤ 0,2 d p . It is demonstrated that the filtration efficiency can be significantly influenced by the properties of the capillary-porous structure of the filter material: the fiber diameter, type of braiding providing the availability of stagnant zones, porosity and wetting angle. With some simplifying prerequisites, the evaluation of the dynamics of the sedimentation growth on the porous partition has been performed as a function of time. Analysis of the conditions of the hydrodynamic separation of filter entrained particles (d p ≅ 2 μm) by the coolant flow revealed that to realize this process, it is necessary that the wall flow velocity be about V = 0,2 m/s. The object of investigations was a broad class of filter materials, including metallo-ceramics, metallic grids, carbon cloth, glass-fibers, needle-pierced cloth made of metallic fibers, grainy materials (made of aluminium oxides). By the complex of technical characteristics, with the thermal stability, cleaning efficiency (fineness), impurity retention capacity and hydraulic resistance considered, the multi-layer siliceous textured cloth (SiO 2 >95%, t 400 deg. C) and needle-pierced cloth made of 40 μm-d. metallic fibers (X18H10T steel, t ≤ 400-550 deg. C) are recommended for HLMC cleaning. The routine monitoring of the filter operation is implemented based on its resistance and the reduction of the flow rate through the filter, induced by its clogging by impurities, the clogging being dependent on the concentration of suspensions in coolant. The investigations as conducted made it possible to construct high temperature filter specimens, including those for an output capacity of 900 m 3 /h, in reference to operation and maintenance conditions of heavy liquid metal cooled nuclear power installations. (authors)

  9. Automated Interactive Storeroom Inventory System.

    Science.gov (United States)

    Sapp, Albert L.; Hess, Larry G.

    1989-01-01

    The inventory system designed for six storerooms in three buildings at the University of Illinois at Urbana-Champaign's School of Chemical Sciences replaced an issue-slip and transactions record system with barcode technology. Data collection error reductions have been significant, making it easier to determine stock levels and plan purchases.…

  10. Fuel-coolant interactions: preliminary experiments on the effect of gases dissolved in the 'coolant'

    International Nuclear Information System (INIS)

    Asher, R.C.; Davies, D.; Jones, P.G.

    1976-12-01

    A simple apparatus has been used to study fuel-coolant interactions under reasonably well controlled conditions. Preliminary experiments have used water as the 'coolant' and molten tin at 800 0 C as the 'fuel' and have investigated how the violence of the interaction is affected by dissolving gases (oxygen, nitrogen, carbon dioxide and nitrous oxide) in the water. It was found that saturating the water with carbon dioxide or nitrous oxide completely suppresses the violent interaction. Experiments in which the concentrations of these gases were varied showed that a certain critical concentration was needed; below this concentration the dissolved gas has no significant effect but above it the suppression is

  11. Method of determination of thermo-acoustic coolant instability boundaries in reactor core at NPPs with WWER

    International Nuclear Information System (INIS)

    Skalozubov, Volodymyr; Kolykhanov, Viktor; Kovryzhkin, Yuriy

    2007-01-01

    The regulatory body of Ukraine, the National Atomic Energy Company and the Scientific and Production Centre have led team-works concerned with previously unstudied factors or phenomena affecting reactor safety. As a result it is determined that the thermo-acoustic coolant instability conditions can appear in the core at definite operating WWER regimes. Considerable cyclic dynamic loads affect fuel claddings over thermo-acoustic pressure oscillations. These loads can result in inadmissible cassette design damage and containment damage. Taking into account calculation and experimental research authors submit a method of on-line assessment of WWER core state concerning thermo-acoustic coolant instability. According to this method, the thermo-acoustic coolant instability appearance conditions can be estimated using normal registered parameters (pressure, temperature, heat demand etc.). At operative modes, a WWER-1000 core is stable to tracheotomies oscillations, but reduction of coolant discharge through the core for some times can result in thermo-acoustic coolant instability. Thermo-acoustic instability appears at separate transitional modes concerned with reactor scram and unloading/loading at all power units. When thermo-acoustic instability begins in transitional modes, core elements are under influence of high-frequency coolant pressure pulsations for a long time (tens of hours)

  12. Coolant Void Reactivity Analysis of CANDU Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.

  13. Coolant degassing device for PWR type reactors

    International Nuclear Information System (INIS)

    Kita, Kaoru; Takezawa, Kazuaki; Minemoto, Masaki.

    1982-01-01

    Purpose: To efficiently decrease the rare gas concentration in primary coolants, as well as shorten the degassing time required for the periodical inspection in the waste gas processing system of a PWR type reactor. Constitution: Usual degassing method by supplying hydrogen or nitrogen to a volume control tank is replaced with a method of utilizing a degassing tower (method of flowing down processing liquid into the filled tower from above while uprising streams from the bottom of the tower thereby degassing the gases dissolved in the liquid into the steams). The degassing tower is combined with a hydrogen separator or hydrogen recombiner to constitute a waste gas processing system. (Ikeda, J.)

  14. Microstructural characterization of primary coolant pipe steel

    International Nuclear Information System (INIS)

    Miller, M.K.; Bentley, J.

    1986-01-01

    Atom probe field-ion microscopy, analytical electron microscopy, and optical microscopy have been used to investigate the changes that occur in the microstructure of cast CF 8 primary coolant pipe stainless steel after long term thermal aging. The cast duplex microstructure consisted of austenite with 15% delta-ferrite. Investigation of the aged material revealed that the ferrite spinodally decomposed into a fine scaled network of α and α'. A fine G-phase precipitate was also observed in the ferrite. The observed degradation in mechanical properties is probably a consequence of the spinodal decomposition in the ferrite

  15. Calorimetric and reactor coolant system flow uncertainty

    International Nuclear Information System (INIS)

    Bates, L.; McLean, T.

    1991-01-01

    This paper describes a methodology for the quantification of errors associated with the determination of a feedwater flow, secondary power, and Reactor Coolant System (RCS) flow used at the Trojan Nuclear Plant to ensure compliance with regulatory requirements. The sources of error in Plant indications and process measurement are identified and tracked, using examples, through the mathematical processes necessary to calculate the uncertainty in the RCS flow measurement. An error of approximately 1.4 percent is calculated for secondary power. This error results, along with the consideration of other errors, in an uncertainty of approximately 3 percent in the RCS flow determination

  16. Multirods burst tests under loss-of-coolant conditions

    International Nuclear Information System (INIS)

    Kawasaki, S.; Uetsuka, H.; Furuta, T.

    1983-01-01

    In order to know the upper limit of coolant flow area restriction in a fuel assembly under loss-of-coolant accidents in LWRs, burst tests of fuel bundles were performed. Each bundle consisted of 49 rods(7x7 rods), and bursts were conducted in flowing steam. In some cases, 4 rods were replaced by control rods with guide tubes in a bundle. After the burst, the ballooning behavior of each rod and the degree of coolant flow area restriction in the bundle were measured. Ballooning behavior of rods and degree of coolant flow channel restriction in bundles with control rods were not different from those without control rods. The upper limit of coolant flow channel restriction under loss-of-coolant conditions was estimated to be about 80%. (author)

  17. Reactor auxiliary cooling facility and coolant supplying method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1996-06-07

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  18. Reactor auxiliary cooling facility and coolant supplying method therefor

    International Nuclear Information System (INIS)

    Ando, Koji; Kinoshita, Shoichiro.

    1996-01-01

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  19. Effect of parameter variation of reactor coolant pump on loss of coolant accident consequence

    International Nuclear Information System (INIS)

    Dang Gaojian; Huang Daishun; Gao Yingxian; He Xiaoqiang

    2015-01-01

    In this paper, the analyses were carried out on Ling'ao nuclear power station phase II to study the consequence of the loss of coolant accident when the homologous characteristic curves and free volumes of the reactor coolant pump changed. Two different pumps used in the analysis were 100D (employed on Ling'ao nuclear power station phase II) and ANDRITZ. The thermal characteristics in the large break LOCA accident were analyzed using CATHRE GB and CONPATE4, and the reactor coolant system hydraulics load during blow-clown phase of LOCA accident was analyzed using ATHIS and FORCET. The calculated results show that the homologous characteristic curves have great effect on the thermal characteristics of reactor core during the reflood phase of the large break LOCA accident. The maximum cladding surface temperatures are quite different when the pump's homologous characteristic curves change. On the other hand, the pump's free volume changing results in the variation of the LOCA rarefaction wave propagation, and therefore, the reactor coolant system hydraulic load in LOCA accident would be different. (authors)

  20. Tritium transport modeling at system level for the EUROfusion dual coolant lithium-lead breeding blanket

    Science.gov (United States)

    Urgorri, F. R.; Moreno, C.; Carella, E.; Rapisarda, D.; Fernández-Berceruelo, I.; Palermo, I.; Ibarra, A.

    2017-11-01

    The dual coolant lithium lead (DCLL) breeding blanket is one of the four breeder blanket concepts under consideration within the framework of EUROfusion consortium activities. The aim of this work is to develop a model that can dynamically track tritium concentrations and fluxes along each part of the DCLL blanket and the ancillary systems associated to it at any time. Because of tritium nature, the phenomena of diffusion, dissociation, recombination and solubilisation have been modeled in order to describe the interaction between the lead-lithium channels, the structural material, the flow channel inserts and the helium channels that are present in the breeding blanket. Results have been obtained for a pulsed generation scenario for DEMO. The tritium inventory in different parts of the blanket, the permeation rates from the breeder to the secondary coolant and the amount of tritium extracted from the lead-lithium loop have been computed. Results present an oscillating behavior around mean values. The obtained average permeation rate from the liquid metal to the helium is 1.66 mg h-1 while the mean tritium inventory in the whole system is 417 mg. Besides the reference case results, parametric studies of the lead-lithium mass flow rate, the tritium extraction efficiency and the tritium solubility in lead-lithium have been performed showing the reaction of the system to the variation of these parameters.

  1. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  2. CFD analyses of coolant channel flowfields

    Science.gov (United States)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  3. Efficiency of water coolant for DEMO divertor

    International Nuclear Information System (INIS)

    Fetzer, Renate; Igitkhanov, Yuri; Bazylev, Boris

    2015-01-01

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  4. Chemistry of liquid metal coolants and sensors

    International Nuclear Information System (INIS)

    Gnanasekaran, T.

    2015-01-01

    Liquid sodium is the coolant of choice for the current generation fast breeder reactors. When sodium contains low levels of dissolved non-metallic impurities, it is highly compatible with structural steels. When the dissolved oxygen level is high, corrosion and mass transfer in sodium-steel circuits are enhanced and this involves formation of NaxMyOz type of species (M = alloying components in steels). Experience has shown that this enhancement of corrosion in a sodium circuit with all austenitic steel structural materials would not be encountered if oxygen level in sodium is below ~ 5ppm. For understanding this observation, a complete knowledge on the phase diagrams of Na-M-O systems and the thermochemical data of all relevant NaxMyOz compounds is essential. This presentation would highlight the work carried out at IGCAR on the chemistry of liquid sodium and heavy liquid metal coolants. Work carried out on various sensors for their use in these liquid metal circuits would be described and their current status would be discussed

  5. Efficiency of water coolant for DEMO divertor

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu; Igitkhanov, Yuri; Bazylev, Boris

    2015-10-15

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  6. Requirements of coolants in nuclear reactors

    International Nuclear Information System (INIS)

    Abass, O. A. M.

    2014-11-01

    This study discussed the purposes and types of coolants in nuclear reactors to generate electricity. The major systems and components associated with nuclear reactors are cooling system. There are two major cooling systems utilized to convert the heat generated in the fuel into electrical power. The primary system transfers the heat from the fuel to the steam generator, where the secondary system begins. The steam formed in the steam generator is transferred by the secondary system to the main turbine generator, where it s converted into electricity after passing through the low pressure turbine. There are various coolants used in nuclear reactors-light water, heavy water and liquid metal. The two major types of water-cooled reactors are pressurized water reactors (PWR) and boiling water reactors (BWR) but pressurized water reactors are more in the world. Also discusses this study the reactors and impact of the major nuclear accidents, in the April 1986 disaster at the Chernobyl nuclear power plant in Ukraine was the product operators, and in the March 2011 at the Fukushima nuclear power plant in Japan was the product of earthquake of magnitude 9.0, the accidents caused the largest uncontrolled radioactive release into the environment.(Author)

  7. Upper internals of PWR with coolant flow separator

    International Nuclear Information System (INIS)

    Chevereau, G.; Heuze, A.

    1989-01-01

    The upper internals for a PWR has a collecting volume for the coolant merging from the core and an apparatus for separating the flow of coolant. This apparatus has a guide for the control rods, a lower plate perforated to allow the coolant through from the core, an upper plate also perforated to allow the coolant through to the collecting volume and a peripheral binding ring joining the two plates. Each guide comprises an envelope without holes and joined perceptibly tight to the plates [fr

  8. Coolant make-up device for BWR type reactor

    International Nuclear Information System (INIS)

    Sasagawa, Hiroshi.

    1994-01-01

    In a coolant make-up device, an opening of a pressure equalizing pipeline in a pressure vessel is disposed in coolants above a reactor core and below a usual fluctuation range of a reactor vessel water level. Further, a float check valve is disposed to the pressure equalizing pipeline for preventing coolants in the pressure vessel flowing into the pipeline. If the water level in the pressure vessel is lowered than the setting position for the float check valve, the float drops by its own weight to open the opening of the pressure equalizing pipeline. Then, steams in the pressure vessel are flown into the pipeline, to equalize the pressure between a coolant storage tank and the pressure vessel of the reactor. Coolants in the coolant storage tank is injected to the pressure vessel by way of the water injection pipeline due to the difference of the pressure head between the water level in the coolants storage tank and the water level in the pressure vessel. If the coolants are lowered than the setting position for the float check value, the float check valve does not close unless the water level is recovered to the setting position for the float valve and, accordingly, the coolant make-up is continued. (N.H.)

  9. Forest inventory in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Sit [Forest Resource Div., Forest Department (Myanmar)

    1993-10-01

    Forest inventory in Myanmar started in 1850s. Up till 1975, Myanmar Forest Department conducted forest inventories covering approximately one forest division every year. The National Forest Survey and Inventory Project funded by UNDP and assisted by FAO commenced in 1981 and the National Forest Management and Inventory project followed in 1986. Up till end March 1993, pre-investment inventory has covered 26.7 million acres, reconnaissance inventory 5.4 million acres and management inventory has carried out in 12 townships

  10. Forest inventory in Myanmar

    International Nuclear Information System (INIS)

    Sit Bo

    1993-01-01

    Forest inventory in Myanmar started in 1850s. Up till 1975, Myanmar Forest Department conducted forest inventories covering approximately one forest division every year. The National Forest Survey and Inventory Project funded by UNDP and assisted by FAO commenced in 1981 and the National Forest Management and Inventory project followed in 1986. Up till end March 1993, pre-investment inventory has covered 26.7 million acres, reconnaissance inventory 5.4 million acres and management inventory has carried out in 12 townships

  11. Tritium inventory prediction in a CANDU plant

    International Nuclear Information System (INIS)

    Song, M.J.; Son, S.H.; Jang, C.H.

    1995-01-01

    The flow of tritium in a CANDU nuclear power plant was modeled to predict tritium activity build-up. Predictions were generally in good agreement with field measurements for the period 1983--1994. Fractional contributions of coolant and moderator systems to the environmental tritium release were calculated by least square analysis using field data from the Wolsong plant. From the analysis, it was found that: (1) about 94% of tritiated heavy water loss came from the coolant system; (2) however, about 64% of environmental tritium release came from the moderator system. Predictions of environmental tritium release were also in good agreement with field data from a few other CANDU plants. The model was used to calculate future tritium build-up and environmental tritium release at Wolsong site, Korea, where one unit is operating and three more units are under construction. The model predicts the tritium inventory at Wolsong site to increase steadily until it reaches the maximum of 66.3 MCi in the year 2026. The model also predicts the tritium release rate to reach a maximum of 79 KCi/yr in the year 2012. To reduce the tritium inventory at Wolsong site, construction of a tritium removal facility (TRF) is under consideration. The maximum needed TRF capacity of 8.7 MCi/yr was calculated to maintain tritium concentration effectively in CANDU reactors

  12. Conceptual design of primary coolant purification system using cylindrical membrane for nuclear energy system base on HTGR

    International Nuclear Information System (INIS)

    Piping Supriatna

    2011-01-01

    The recent progress of reactor technology design for next generation reactor will be implemented on cogeneration reactor, which the aim of reactor operation not only for generating electrical energy, but also for other application like desalination, industrial manufacturing process, hydrogen production, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor concept developed for generate energy effectively, efficiently and sustainable, which reserve of uranium and thorium nuclear fuel for cogeneration reactor is supply able for world energy demand until next thousand years. The cogeneration reactor produce temperature output higher than commonly Nuclear Power Plant (NPP), and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this research has been designed modeling and assessment of primary coolant gas purification system with purify and fill up helium gas continuously, by using Cylindrical Helium Splitting Membrane and helium gas inventory system. The result of flow rate helium assessment for the purification system is 0.844x10 -3 kg/sec, where helium flow rate of reactor primary coolant is 120 kg/sec. The result of study show that the Primary Coolant Gas Purification System is enable to be implemented on Cogeneration Reactor HTGR200C. (author)

  13. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T; Grunwald, G

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  14. Slow coolant phaseout could worsen warming

    Science.gov (United States)

    Reese, April

    2018-03-01

    In the summer of 2016, temperatures in Phalodi, an old caravan town on a dry plain in northwestern India, reached a blistering 51°C—a record high during a heat wave that claimed more than 1600 lives across the country. Wider access to air conditioning (AC) could have prevented many deaths—but only 8% of India's 249 million households have AC. As the nation's economy booms, that figure could rise to 50% by 2050. And that presents a dilemma: As India expands access to a life-saving technology, it must comply with international mandates—the most recent imposed just last fall—to eliminate coolants that harm stratospheric ozone or warm the atmosphere.

  15. Automated surveillance of reactor coolant pump performance

    International Nuclear Information System (INIS)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.

    1992-01-01

    An artificial intelligence based expert system has been developed for continuous surveillance and diagnosis of centrifugal-type reactor coolant pump (RCP) performance and operability. The expert system continuously monitors digitized signals from a variety of physical variables (speed, vibration level, motor power, discharge pressure) associated with RCP performance for annunciation of the incipience or onset of off-normal operation. The system employs an extremely sensitive pattern-recognition technique, the sequential probability ratio test (SPRT) for rapid identification of pump operability degradation. The sequential statistical analysis of the signal noise has been shown to provide the theoretically shortest sampling time to detect disturbances and thus has the potential of providing incipient fault detection information to operators sufficiently early to avoid forced plant shutdowns. The sensitivity and response time of the expert system are analyzed in this paper using monte carlo simulation techniques

  16. Power module assemblies with staggered coolant channels

    Science.gov (United States)

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  17. Reactor coolant flow measurements at Point Lepreau

    International Nuclear Information System (INIS)

    Brenciaglia, G.; Gurevich, Y.; Liu, G.

    1996-01-01

    The CROSSFLOW ultrasonic flow measurement system manufactured by AMAG is fully proven as reliable and accurate when applied to large piping in defined geometries for such applications as feedwater flows measurement. Its application to direct reactor coolant flow (RCF) measurements - both individual channel flows and bulk flows such as pump suction flow - has been well established through recent work by AMAG at Point Lepreau, with application to other reactor types (eg. PWR) imminent. At Point Lepreau, Measurements have been demonstrated at full power; improvements to consistently meet ±1% accuracy are in progress. The development and recent customization of CROSSFLOW to RCF measurement at Point Lepreau are described in this paper; typical measurement results are included. (author)

  18. Reactor coolant system and containment aqueous chemistry

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1986-01-01

    Fission products released from fuel during reactor accidents can be subject to a variety of environments that will affect their ultimate behavior. In the reactor coolant system (RCS), for example, neutral or reducing steam conditions, radiation, and surfaces could all have an effect on fission product retention and chemistry. Furthermore, if water is encountered in the RCS, the high temperature aqueous chemistry of fission products must be assessed to determine the quantity and chemical form of fission products released to the containment building. In the containment building, aqueous chemistry will determine the longer-term release of volatile fission products to the containment atmosphere. Over the past few years, the principles of physical chemistry have been rigorously applied to the various chemical conditions described above. This paper reviews the current state of knowledge and discusses the future directions of chemistry research relating to the behavior of fission products in the RCS and containment

  19. Coolant rate distribution in horizontal steam generator under natural circulation

    International Nuclear Information System (INIS)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A.

    1997-01-01

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered

  20. Channel type reactors with supercritical water coolant. Russian experience

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Gabaraev, B.A.

    2003-01-01

    Transition to coolant of supercritical parameters allows for principle engineering-andeconomic characteristics of light-water nuclear power reactors to be substantially enhanced. Russian experience in development of channel-type reactors with supercritical water coolant has demonstrated advantages and practical feasibility of such reactors. (author)

  1. Automatic coolant flow control device for a nuclear reactor assembly

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  2. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)

    1997-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  3. Fuel coolant interaction experiment by direct electrical heating method

    International Nuclear Information System (INIS)

    Takeda, Tsuneo; Hirano, Kenmei

    1979-01-01

    In the PCM (Power Cooling Mismatch) experiments, the FCI (Fuel Coolant Interaction) test is one of necessary tests in order to predict various phenomena that occur during PCM in the core. A direct electrical heating method is used for the FCI tests for fuel pellet temperature of over 1000 0 C. Therefore, preheating is required before initiating the direct electrical heating. The fuel pin used in the FCI tests is typical LWR fuel element, which is surrounded by coolant water. It is undersirable to heat up the coolant water during preheating of the fuel pin. Therefore, a zirconia (ZrO 2 ) pellet which is similar to a UO 2 pellet in physical and chemical properties is used. Electric property (electric conductivity) of ZrO 2 is particularly suitable for direct electrical heating as in the case of UO 2 . In this experiment, ZrO 2 pellet (melting point 2500 0 C) melting was achieved by use of both preheating and direct electrical heating. Temperature changes of coolant and fuel surface, as well as the pressure change of coolant water, were measured. The molten fuel interacted with the coolant and generated shock waves. A portion of this molten fuel fragmented into small particles during this interaction. The peak pressure of the observed shock wave was about 35 bars. The damaged fuel pin was photographed after disassembly. This report shows the measured coolant pressure changes and the coolant temperature changes, as well as photographs of damaged fuel pin and fuel fragments. (author)

  4. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A; Leontieva, V; Mitrioukhin, A [St. Petersburg State Technical Univ. (Russian Federation)

    1998-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  5. Stress Analysis of Fuel Rod under Axial Coolant Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)

    2010-05-15

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  6. Method of charging instruments into liquid metal coolant

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi

    1980-01-01

    Purpose: To alleviate the thermal shock of a reactor charging machine when charging the machine into liquid metal coolant after the machine is preheated in cover gas. Method: When a reactor fueling machine reaches at the lowermost portion the position immediately above liquid metal coolant surface level, the machine is stopped moving down. The reactor fueling machine is heated at the lowermost portion by thermal radiation from the surface of the liquid metal coolant. After the machine is thus preheated in cover gas, it is again steadily moved down by a winch and charged into the liquid metal coolant. Therefore, the thermal shock of the machine becomes low when charging the machine into the liquid metal coolant to eliminate the damage and deformation at the machine. (Yoshihara, H.)

  7. Stress Analysis of Fuel Rod under Axial Coolant Flow

    International Nuclear Information System (INIS)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok

    2010-01-01

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  8. Device for preventing coolant in a reactor from being lost

    International Nuclear Information System (INIS)

    Maruyama, Hiromi; Matsumoto, Tomoyuki.

    1975-01-01

    Object: To prevent all of coolant from being lost from the core at the time of failure in rupture of pipe in a recirculation system to cool the core with the coolant remained within the reactor. Structure: A valve, which will be closed when a water level of the coolant within the core is in a level less than a predetermined level, is provided on a recirculating water outlet nozzle in a pressure vessel to thereby prevent the coolant from being lost when the pipe is broken, thus cooling the core by means of reduced-pressure boiling of coolant remained within the core and boiling due to heat, and restraining core reactivity by means of void produced at that time. (Kamimura, M.)

  9. The effect of coolant quantity on local fuel–coolant interactions in a molten pool

    International Nuclear Information System (INIS)

    Cheng, Songbai; Matsuba, Ken-ichi; Isozaki, Mikio; Kamiyama, Kenji; Suzuki, Tohru; Tobita, Yoshiharu

    2015-01-01

    Highlights: • We investigate local fuel–coolant interactions in a molten pool. • As water volume increases, limited pressurization and mechanical energy observed. • Only a part of water is evaporated and responsible for the pressurization. - Abstract: Studies on local fuel–coolant interactions (FCI) in a molten pool are important for severe accident analyses of sodium-cooled fast reactors (SFRs). Motivated by providing some evidence for understanding this interaction, in this study several experimental tests, with comparatively larger difference in coolant volumes, were conducted by delivering a given quantity of water into a simulated molten fuel pool (formed with a low-melting-point alloy). Interaction characteristics including the pressure-buildup as well as mechanical energy release and its conversion efficiency are evaluated and compared. It is found that as water quantity increases, a limited pressure-buildup and the resultant mechanical energy release are observable. The performed analyses also suggest that only a part of water is probably vaporized during local FCIs and responsible for the pressurization and mechanical energy release, especially for those cases with much larger water volumes

  10. Evaluation of alternate secondary (and tertiary) coolants for the molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Kelmers, A.D.; Baes, C.F.; Bettis, E.S.; Brynestad, J.; Cantor, S.; Engel, J.R.; Grimes, W.R.; McCoy, H.E.; Meyer, A.S.

    1976-04-01

    The three most promising coolant selections for an MSBR have been identified and evaluated in detail from the many coolants considered for application either as a secondary coolant in 1000-MW(e) MSBR configurations using only one coolant, or as secondary and tertiary coolants in an MSBR dual coolant configuration employing two different coolants. These are, as single secondary coolants: (1) a ternary sodium--lithium--beryllium fluoride melt; (2) the sodium fluoroborate--sodium fluoride eutectic melt, the present reference design secondary coolant. In the case of the dual coolant configuration, the preferred system is molten lithium--beryllium fluoride (Li 2 BeF 4 ) as the secondary coolant and helium gas as the tertiary coolant

  11. Full system decontamination (FSD) for sustainable dose reduction

    International Nuclear Information System (INIS)

    Stiepani, Christoph; Sempere-Belda, Luis; Topf, Christian; Basu, Ashim

    2012-09-01

    Nuclear power plants experience an increase in dose rates during operation due to the build-up of the activity inventory. The activity build-up is influenced by the construction materials, past and present water chemistries, and the individual operating history of the plant. Depending on these factors the dose levels in an operating plant may reach a point in which concrete actions to reduce the overall radiation exposure become necessary. In the past dose reduction plans were performed, based on - Modification in coolant water chemistry - Substitution of Cobalt containing materials - Outage optimization program - Installation of permanent shielding - Decontamination The dose rate reduction took several years and today a stagnation of further dose rate reduction can be seen. Therefore AREVA has developed the Concept for Sustainable Dose Reduction in Operating BWRs and PWRs. This is a program of joint corrective measures to minimize dose levels rapidly and keep them low for continued operation. It can be applied in plants from all constructors and designs. The concept is based fully on the application of proven technologies, including: - Full System Decontamination with AREVA's decontamination process HP/CORD UV to minimize the activity inventory - The formation of new, very stable protective oxides on the system surfaces including injection of depleted zinc - Introduction of advanced water chemistry for maintaining the low dose levels achieved during ongoing operation The implementation of this program is particularly interesting for plants with a long operation history, especially when considering life extension. The latest application was performed successfully at the German PWR Grafenrheinfeld in 2010. In this paper the concept for sustainable dose reduction will be outlined and the site application detailed and the achieved results at PWR Grafenrheinfeld will be described. The recontamination after one cycle will be outlined in a second paper. (authors)

  12. Coolant mixing in pressurized water reactors. Proceedings

    International Nuclear Information System (INIS)

    Hoehne, T.; Grunwald, G.; Rohde, U.

    1998-10-01

    For the analysis of boron dilution transients and main steam like break scenarios the modelling of the coolant mixing inside the reactor vessel is important. The reactivity insertion due to overcooling or deboration depends strongly on the coolant temperature and boron concentration. The three-dimensional flow distribution in the downcomer and the lower plenum of PWR's was calculated with a computational fluid dynamics (CFD) code (CFX-4). Calculations were performed for the PWR's of SIEMENS KWU, Westinghouse and VVER-440 / V-230 type. The following important factors were identified: exact representation of the cold leg inlet region (bend radii etc.), extension of the downcomer below the inlet region at the PWR Konvoi, obstruction of the flow by the outlet nozzles penetrating the downcomer, etc. The k-ε turbulence model was used. Construction elements like perforated plates in the lower plenum have large influence on the velocity field. It is impossible to model all the orifices in the perforated plates. A porous region model was used to simulate perforated plates and the core. The porous medium is added with additional body forces to simulate the pressure drop through perforated plates in the VVER-440. For the PWR Konvoi the whole core was modelled with porous media parameters. The velocity fields of the PWR Konvoi calculated for the case of operation of all four main circulation pumps show a good agreement with experimental results. The CFD-calculation especially confirms the back flow areas below the inlet nozzles. The downcomer flow of the Russian VVER-440 has no recirculation areas under normal operation conditions. By CFD calculations for the downcomer and the lower plenum an analytical mixing model used in the reactor dynamic code DYN3D was verified. The measurements, the analytical model and the CFD-calculations provided very well agreeing results particularly for the inlet region. The difficulties of analytical solutions and the uncertainties of turbulence

  13. On a specific feature of heat transfer to organic coolants

    International Nuclear Information System (INIS)

    Kafengauz, N.L.; Gladkikh, V.A.

    1986-01-01

    Heat transfer to organic coolants, which is accompanied by solid carbon deposit formation, is experimentally studied. Polished and rough steel tubes with 3 mm outside diameter and 0.5 mm wall thickness, heated by electric current, were used as fuel elements. Results of experiments with kerosene T-1 are presented under the following regime parameters: pressure - 45 b; flow rate - 3.75 m/s; temperature - 25-40 deg C; fuel element temperature - 400-900 deg C. In experiments on fuel elements with natural roughness deposit formation caused a smooth increase of the wall temperature. In fuel elements with polished surface, deposit formation caused during the first minutes the reduction of the wall temperature and after that it increased. Intensity of solid deposit formation in fuel elements with polished and rough surface was the same. Similar results were observed not only in experiments with kerosene T-1, but with other organic fluids as well: with toluene, n-heptane, diisopropylcyclohexane etc. The results obtained can be explained in the following way. Solid deposits on a smooth surface create roughness which improves heat exchange and reduces, respectively, the heating surface temperature. But deposits possess weak heat conductivity and create additional thermal resistance, which aggravates heat exchange. Interaction of these two factors causes the complicated time dependence of wall temperature

  14. Triboengineering problems of lead coolant in innovative fast reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Novozhilova, O.O.; Shumilkov, A.I.; Lvov, A.V.; Bokova, T.A.; Makhov, K.A.

    2013-01-01

    Graphical abstract: Models of experimental sites for research of processes tribology in heavy liquid metal coolant. -- Highlights: • The contact a pair of heavy liquid metal coolant for reactors on fast neutrons. • The hydrostatic bearings main circulation pumps. • Oxide coating and degree of wear of friction surfaces in heavy liquid metal coolant. -- Abstract: So far, there are plenty of works dedicated to studying the phenomenon of friction. However, there are none dedicated to functioning of contact pairs in heavy liquid-metal coolants for fast neutron, reactor installations (Kogaev and Drozdov, 1991; Modern Tribology, 2008; Drozdov et al., 1986). At the Nizhny Novgorod State Technical University, such research is conducted in respect to friction, bearings of main circulating pumps, interaction of sheaths of neutron absorber rods with their covers, of the reactor control and safety system, refueling systems, and interaction of coolant flows with, channel borders. As a result of experimental studies, the characteristic of friction pairs in the heavy, liquid metal coolant shows the presence dependences of oxide film on structural materials of the wear. The inapplicability of existing calculation methods for assessing the performance of the bearing nodes, in the heavy liquid metal coolant is shown

  15. Device for preventing coolant outflow in a reactor

    International Nuclear Information System (INIS)

    Nemoto, Kiyomitsu; Mochizuki, Keiichi.

    1975-01-01

    Object: To prevent outflow of coolant from a reactor vessel even in an occurrence of leaking trouble at a low position in a primary cooling system or the like in the reactor vessel. Structure: An inlet at the foremost end of a coolant inlet pipe inserted into a reactor vessel is arranged at a level lower than a core, and a check valve is positioned at a level higher than the core in a rising portion of the inlet. In normal condition, the check valve is pushed up by discharge pressure of a main circulating pump and remains closed, and hence, producing no flow loss of coolant, sodium. However, when a trouble such as rupture occurs at the lower position in the primary cooling system, the attractive force for allowing the coolant to back-flow outside the reactor vessel and the load force of the coolant within the reactor vessel cause the check valve to actuate, as a consequence of which a liquid level of the coolant downwardly moves to the position of the check valve to intake the cover gases into a gas intake, thereby cutting off a flow passage of the coolant to stop outflow thereof. (Kamimura, M.)

  16. Development of lead-bismuth coolant technology for nuclear device

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Kitano, Teruaki; Ono, Mikinori

    2004-01-01

    Liquid lead-bismuth is a promising material as a future fast reactor coolant or an intensive neutron source material for accelerator driven transmutation system (ADS). To develop nuclear plants and their installations using lead-bismuth coolant for practical use, both coolant technologies, inhabitation process of steels and quality control of coolant, and total operation system for liquid lead-bismuth plants are required. Based on the experience of liquid metal coolant, Mitsui Engineering and Shipbuilding Co., Ltd. (MES) has completed the liquid lead-bismuth forced circulation loop and has acquired various engineering data on main components including economizer. As a result of tis operation, MES has developed key technologies of lead-bismuth coolant such as controlling of oxygen content in lead-bismuth and a purification of lead-bismuth coolant. MES participated in the national project, ''The Development of Accelerator Driven Transmutation System'', together with JAERI (Japan Atomic Energy Research Institute) and started corrosion test for beam window of ADS. (author)

  17. Liquid metal coolant disposal from UKAEA reactors at Dounreay

    International Nuclear Information System (INIS)

    Adam, E.R.

    1997-01-01

    As part of the United Kingdom's Fast Reactor Development programme two reactors were built and operated at Dounreay in the North of Scotland. DFR (Dounreay Fast Reactor) was operated from 1959-1977 and PFR (Prototype Fast Reactor) was operated from 1974-1994. Both reactors are currently undergoing Stage 1 Decommissioning and are installing plant to dispose of the bulk coolant (DFR ∼ 60 tonne; PFR ∼ 1500 tonne). The coolant (NaK) remaining at DFR is mainly in the primary circuit which contains in excess of 500 TBq of Cs137. Disposal of 40 tonnes of secondary coolant has already been carried out. The paper will describe the processes used to dispose of this secondary circuit coolant and how it is intended the remaining primary circuit coolant will be handled. The programme to process the primary coolant will also be described which involves the conversion of the liquid metal to caustic and its decontamination. No PFR coolant Na has been disposed off to date. The paper will describe the current decommissioning programme activities relating to liquid metal disposal and treatment describing the materials to be disposed of and the issue of decontamination of the effluents. (author)

  18. Housing Inventory Count

    Data.gov (United States)

    Department of Housing and Urban Development — This report displays the data communities reported to HUD about the nature of their dedicated homeless inventory, referred to as their Housing Inventory Count (HIC)....

  19. Integrated inventory information system

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.; Kunte, P.D.

    The nature of oceanographic data and the management of inventory level information are described in Integrated Inventory Information System (IIIS). It is shown how a ROSCOPO (report on observations/samples collected during oceanographic programme...

  20. World Glacier Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Glacier Inventory (WGI) contains information for over 130,000 glaciers. Inventory parameters include geographic location, area, length, orientation,...

  1. HHS Enterprise Data Inventory

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Enterprise Data Inventory (EDI) is the comprehensive inventory listing of agency data resources including public, restricted public, and non-public datasets.

  2. Science Inventory | US EPA

    Science.gov (United States)

    The Science Inventory is a searchable database of research products primarily from EPA's Office of Research and Development. Science Inventory records provide descriptions of the product, contact information, and links to available printed material or websites.

  3. National Wetlands Inventory Polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland area features mapped as part of the National Wetlands Inventory (NWI). The National Wetlands Inventory is a national program sponsored by the US Fish and...

  4. Characterization of reactor coolant by XRF

    Energy Technology Data Exchange (ETDEWEB)

    Legreid, G.; Beverskog, B. [OECD Halden Reactor Project (Norway)

    2002-07-01

    The analyzes of membrane filters is of utmost importance in characterizing the coolant chemistry in nuclear power plants. Traditional analyzes of filters includes oxidative digestion followed by instrumental analyzes. XRF (X-ray Fluorescence spectrometry) can analyze without digestion of the filters. The method is much faster and demands only a cutting step as sample preparation. By use of XRF the analytical laboratory at the Halden Reactor Project will get increased capacity, which makes it possible to analyze more samples and improve the characterization of the water. The method has shown to give more stable results than other methods in use, and has proved to have good precision. New calibration methods have been developed and tested successfully against other methods. A round robin test, attending seven laboratories from nuclear power plants, was initiated by the Halden Project to verify the instrument. The test of standard cation exchange filters showed that conventional filter digestion results in too low values. The XRF methodology shows very good agreement with the standard values. The round robin test for particle filters could not confirm that filter digestion results in too low values. This was mainly due to lack of standard particle filters and large scatter in the reported data. (author)

  5. Characterization of reactor coolant by XRF

    International Nuclear Information System (INIS)

    Legreid, G.; Beverskog, B.

    2002-01-01

    The analyzes of membrane filters is of utmost importance in characterizing the coolant chemistry in nuclear power plants. Traditional analyzes of filters includes oxidative digestion followed by instrumental analyzes. XRF (X-ray Fluorescence spectrometry) can analyze without digestion of the filters. The method is much faster and demands only a cutting step as sample preparation. By use of XRF the analytical laboratory at the Halden Reactor Project will get increased capacity, which makes it possible to analyze more samples and improve the characterization of the water. The method has shown to give more stable results than other methods in use, and has proved to have good precision. New calibration methods have been developed and tested successfully against other methods. A round robin test, attending seven laboratories from nuclear power plants, was initiated by the Halden Project to verify the instrument. The test of standard cation exchange filters showed that conventional filter digestion results in too low values. The XRF methodology shows very good agreement with the standard values. The round robin test for particle filters could not confirm that filter digestion results in too low values. This was mainly due to lack of standard particle filters and large scatter in the reported data. (author)

  6. Numerical model simulation of atmospheric coolant plumes

    International Nuclear Information System (INIS)

    Gaillard, P.

    1980-01-01

    The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr

  7. Reactor coolant pump monitoring and diagnostic system

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; Walsh, M.; Humenik, K.E.

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs

  8. Reactor Coolant Temperature Measurement using Ultrasonic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon [KEPCO International Nuclear graduate School, Ulsan (Korea, Republic of); Seo, YongSun; Bechue, Nicholas [Krohne Messtechnik GmbH, Duisburg (Germany)

    2016-10-15

    In NPP, the primary piping temperature is detected by four redundant RTDs (Resistance Temperature Detectors) installed 90 degrees apart on the RCS (Reactor Coolant System) piping circumferentially. Such outputs however, if applied to I and C systems would not give balanced results. The discrepancy can be explained by either thermal stratification or improper arrangement of thermo-wells and RTDs. This phenomenon has become more pronounced in the hot-leg piping than in the cold-leg. Normally, the temperature difference among channels is in the range of 1°F in Korean nuclear power Plants. Consequently, a more accurate pipe average temperate measurement technique is required. Ultrasonic methods can be used to measure average temperatures with relatively higher accuracy than RTDs because the sound wave propagation in the RCS pipe is proportional to the average temperature around pipe area. The inaccuracy of RCS temperature measurement worsens the safety margin for both DNBR and LPD. The possibility of this discrepancy has been reported with thermal stratification effect. Proposed RCS temperature measurement system based on ultrasonic technology offers a countermeasure to cope with thermal stratification effect on hot-leg piping that has been an unresolved issue in NPPs. By introducing ultrasonic technology, the average internal piping temperature can be measured with high accuracy. The inaccuracy can be decreased less than ±1℉ by this method.

  9. Alternative protections for loss of coolant accidents

    International Nuclear Information System (INIS)

    Estevez, E.A.

    1997-01-01

    One way to mitigate a small loss of coolant accident (LOCA) is by depressurizing the primary system, in order to turn the accident into a sequence where water is fed to a low pressure system. It can be achieved by two different ways: by incorporating a valve system (ADS - Automatic Depressurization System) to the design, which helps to diminish the pressure, obtaining a bigger LOCA, or by extracting heat from the system. Our analysis is centered in integrated reactors. The first characterization performed was on CAREM reactor. The idea was then to observe its behavior with LOCAs for different thermal power relations, water volume and rupture area. A simple depressurization model is presented, which enables us to find the parameter relationships which characterize this process, from which some particular cases will arise. ADS implementation is then analyzed, giving the criteria for the triggering time. A study on its reliability and the probability of a spurious opening is made, taking into account independent and dependent failures. An analysis on heat extraction as alternative for depressurizing is also made. Finally, the different reasons to choose between ADS or heat extraction as alternative are given, and the meaning of the parameters found are discussed. An alternative to classify LOCAs, instead of the traditional classification, by fracture size, is suggested. (author)

  10. Method of decontaminating primary coolant circuits

    International Nuclear Information System (INIS)

    Ishibashi, Masaru; Sumi, Masao.

    1981-01-01

    Purpose: To eliminate hard contaminated layers as well as soft contaminated layers without injuring substrate materials, upon decontamination of radiation contaminated portions in equipments and pipeways constituting primary coolant circuits. Constitution: High pressure water from a high pressure pump is jetted out from the nozzle of a spray gun to the radiation contaminated portions in equipments, for example, to the surface of water chamber in a vapor evaporator. High pressure pure water or aqueous boric acid is jetted out from the periphery and boric oxide particles (of about 1 - 100 μ particle size) are jetted out from the center of the nozzle of the spray gun. The particles (blasting material) jetted out together with the high pressure water impinge on the contaminated surfaces to remove the contaminated layers. Upon impingement, the high pressure water acts as the shock absorber for the blasting material and, after the impingement, it flows down to the bottom of the water chamber, and the blasting material is dissolved in the high pressure water. (Horiuchi, T.)

  11. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States)

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  12. Evaluation of primary coolant leaks and assessment of detection methods

    International Nuclear Information System (INIS)

    Cassette, P.; Giroux, C.; Roche, H.; Seveon, J.J.

    1984-11-01

    A review of French PWR situation concerning primary coolant leaks is presented, including a description of operating technical specifications, of the collecting system of primary coolant leakage into the containment and of the detection methods. It is mainly based on a compilation over three years, 1981 to 1983, of almost all occurred leaks, their natures, causes, consequences and methods used for their detection. By analysing these data it is possible to evaluate the efficiency of the primary coolant leak detection system and the problems raised by the compliance with the criteria defined in the operating technical specifications

  13. Evaluation of primary coolant leaks and assessment of detection methods

    International Nuclear Information System (INIS)

    Cassette, P.; Giroux, C.; Roche, H.; Seveon, J.J.

    1986-01-01

    A review of the French PWR situation concerning primary coolant leaks is presented, including a description of operating technical specifications, of the collecting system of primary coolant leakage into the containment and of the detection methods. It is mainly based on a compilation over three years, 1981 to 1983, of almost all actual leaks, their natures, causes, consequences and methods used for their detection. By analysing these data it is possible to evaluate the efficiency of the primary coolant leak detection system and the problems raised by compliance with the criteria defined in the operating technical specifications

  14. Evaluation of filtration and distillation methods for recycling automotive coolant

    International Nuclear Information System (INIS)

    Randall, P.M.; Gavaskar, A.R.

    1992-01-01

    Government regulations and high waste disposal cost of spent automotive coolant have driven the vehicle maintenance industry to explore on-site recycling. The USEPA in cooperation with the New Jersey Department of Environmental Protection (NJDEP) and the New Jersey Department of Transportation (NJDOT) evaluated two commercially available technologies that have potential for reducing the volume of spent automotive coolant. The objective of this study was to evaluate the quality of the recycled coolant, the pollution prevention potential, and the economic feasibility of the technologies

  15. Low-activation lead coolant for advanced small modular NPP

    International Nuclear Information System (INIS)

    Khorasanov, G.L.; Ivanov, A.P.; Blokhin, A.I.

    2001-01-01

    The purpose of the paper is in studying perspectives of a new heavy liquid metal coolant for a small fast reactor (FR) concept. To reduce the post irradiation activity of the coolant the using of lead isotope, Pb-206, instead of natural lead, Pb-nat, is offered. In this case the accumulation of such hazardous radionuclides, as Po-210, Bi-208, Bi-207, essentially decreases. The interval of the lead-206 coolant cost which does not exceed 20% of the overall FR cost is estimated. The possibility of lead-206 obtaining for FR needs with the centrifugal separation technique is pointed out. (author)

  16. Functional Assessment Inventory Manual.

    Science.gov (United States)

    Crewe, Nancy M.; Athelstan, Gary T.

    This manual, which provides extensive new instructions for administering the Functional Assessment Inventory (FAI), is intended to enable counselors to begin using the inventory without undergoing any special training. The first two sections deal with the need for functional assessment and issues in the development and use of the inventory. The…

  17. Analysis of accidental loss of pool coolant due to leakage in a PWR SFP

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2015-01-01

    Highlights: • Accidental loss of pool coolant due to leakage in a PWR SFP was studied using MAAP5. • The effect of emergency ventilation on the accident progression was investigated. • The effect of emergency injection on the accident progression was discussed. - Abstract: A large loss of pool coolant/water accident may be caused by extreme accidents such as the pool wall or bottom floor punctures due to a large aircraft strike. The safety of SFP under this circumstance is very important. Large amounts of radioactive materials would be easily released into the environment if a severe accident happened in the SFP, because the spent fuel pool (SFP) in a PWR nuclear power station (NPS) is often located in the fuel handing building outside the reactor containment. To gain insight into the loss of pool coolant accident progression for a pressurized water reactor (PWR) SFP, a computational model was established by using the Modular Accident Analysis Program (MAAP5). Important factors such as Zr oxidation by air, air natural circulation and thermal radiation were considered for partial and complete drainage accidents without mitigation measures. The calculation indicated that even if the residual water level was in the active fuel region, there was a chance to effectively remove the decay heat through axial heat conduction (if the pool cooling system failed) or steam cooling (if the pool cooling system was working). For sensitivity study, the effects of emergency ventilation and water injection on the accident progression were analyzed. The analysis showed that for the current configuration of high-density storage racks, it was difficult to cool the spent fuels by air natural circulation. Enlarging the space between the adjacent assemblies was a way of increasing air natural circulation flow rate and maintaining the coolability of SFP. Water injection to the bottom of the SFP helped to recover water inventory, quenching the high temperature assemblies to prevent

  18. Optimization of mass flow rate in RGTT200K coolant purification for Carbon Monoxide conversion process

    International Nuclear Information System (INIS)

    Sumijanto; Sriyono

    2016-01-01

    Carbon monoxide is a species that is difficult to be separated from the reactor coolant helium because it has a relatively small molecular size. So it needs a process of conversion from carbon monoxide to carbondioxide. The rate of conversion of carbon monoxide in the purification system is influenced by several parameters including concentration, temperature and mass flow rate. In this research, optimization of the mass flow rate in coolant purification of RGTT200K for carbon monoxide conversion process was done. Optimization is carried out by using software Super Pro Designer. The rate of reduction of reactant species, the growth rate between the species and the species products in the conversion reactions equilibrium were analyzed to derive the mass flow rate optimization of purification for carbon monoxide conversion process. The purpose of this study is to find the mass flow rate of purification for the preparation of the basic design of the RGTT200K coolant helium purification system. The analysis showed that the helium mass flow rate of 0.6 kg/second resulted in an un optimal conversion process. The optimal conversion process was reached at a mass flow rate of 1.2 kg/second. A flow rate of 3.6 kg/second – 12 kg/second resulted in an ineffective process. For supporting the basic design of the RGTT200K helium purification system, the mass flow rate for carbon monoxide conversion process is suggested to be 1.2 kg/second. (author)

  19. Noise and DC balanced outlet temperature signals for monitoring coolant flow in LMFBR fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1977-01-01

    Local cooling disturbances in LMFBR fuel elements may have serious safety implications for the whole reactor core. They have to be detected reliably in an early stage of their formation therefore. This can be accomplished in principle by individual monitoring of the coolant flow rate or the coolant outlet temperature of the sub-assemblies with high precision. In this paper a method is proposed to increase the sensitivity of outlet temperature signals to cooling disturbances. Using balanced temperature signals provides a means for eliminating the normal variations from the original signals which limit the sensitivity and speed of response to cooling disturbances. It is shown that a balanced signal can be derived easily from the original temperature signal by subtracting an inlet temperature and a neutron detector signal with appropriate time shift. The method was tested with tape-recorded noise signals of the KNK I reactor at Karlsruhe. The experimental results confirm the theoretical predictions. A significant reduction of the uncertainty of measured outlet temperatures was achieved. This enables very sensitive and fast response monitoring of coolant flow. Furthermore, it was found that minimizing the variance of the balanced signal offers the possibility for a rough determination of the heat transfer coefficient of the fuel rods during normal reactor operation at power. (author)

  20. Mission impossible? The boss wants to double our inventory turns.

    Science.gov (United States)

    Gips, J

    1998-11-01

    Despite the prolific implementation of manufacturing systems, JIT principles, Kaizen events, and cycle time reduction programs over the past few years, high inventories still plague many companies. The assumption that implementing these principles and techniques will automatically result in inventory levels that satisfy management frequently proves to be false. Events like mergers, introduction of new competition, and a dropoff in business often trigger edicts to cut inventories. The cost of inventories also extends beyond the traditional accounting measurements to include hidden operating costs that everyone should want to eliminate. This article looks at the reasons for inventories and explores strategies for reducing them.

  1. Primary coolant feed and bleed operating regions for the Midland Plant

    International Nuclear Information System (INIS)

    Tsai, M.S.

    1985-01-01

    Operating regions for primary coolant feed and bleed cooling are developed for the Midland Plant using core decay heat, the high-pressure injection (HPI) system capacity, and flow rate relief through the power-operated relief valve (PORV). This mode of cooling is used for accident scenarios in which the normal core cooling means of a nuclear power plant is lost because of loss of water inventory in the steam generators. The HPI flow is based on the capacities of one and two pumps. Saturated steam, saturated water, and subcooled water are considered to be possible states of the fluid being relieved through the PORV. In estimating the PORV relief rate, flow equations are derived from the Electric Power Research Institute test data obtained from the same model and size valve that is used in the Midland Plant. For easy reference by operators, the operating region is displayed on a plane of reactor coolant system pressure and temperature. The technique developed for the Midland Plant provides a convenient method for examining the feed and bleed cooling capability for a nuclear power plant that employs a pressurized water reactor system

  2. An investigation of core liquid level depression in small break loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Schultz, R.R.; Watkins, J.C.; Motley, F.E.; Stumpf, H.; Chen, Y.S.

    1991-08-01

    Core liquid level depression can result in partial core dryout and heatup early in a small break loss-of-coolant accident (SBLOCA) transient. Such behavior occurs when steam, trapped in the upper regions of the reactor primary system (between the loop seal and the core inventory), moves coolant out of the core region and uncovers the rod upper elevations. The net result is core liquid level depression. Core liquid level depression and subsequent core heatups are investigated using subscale data from the ROSA-IV Program's 1/48-scale Large Scale Test Facility (LSTF) and the 1/1705-scale Semiscale facility. Both facilities are Westinghouse-type, four-loop, pressurized water reactor simulators. The depression phenomena and factors which influence the minimum core level are described and illustrated using examples from the data. Analyses of the subject experiments, conducted using the TRAC-PF1/MOD1 (Version 12.7) thermal-hydraulic code, are also described and summarized. Finally, the response of a typical Westinghouse four-loop plant (RESAR-3S) was calculated to qualitatively study coal liquid level depression in a full-scale system. 31 refs., 37 figs., 6 tabs

  3. Improving Coolant Effectiveness through Drill Design Optimization in Gundrilling

    Science.gov (United States)

    Woon, K. S.; Tnay, G. L.; Rahman, M.

    2018-05-01

    Effective coolant application is essential to prevent thermo-mechanical failures of gun drills. This paper presents a novel study that enhances coolant effectiveness in evacuating chips from the cutting zone using a computational fluid dynamic (CFD) method. Drag coefficients and transport behaviour over a wide range of Reynold numbers were first established through a series of vertical drop tests. With these, a CFD model was then developed and calibrated with a set of horizontal drilling tests. Using this CFD model, critical drill geometries that lead to poor chip evacuation including the nose grind contour, coolant hole configuration and shoulder dub-off angle in commercial gun drills are identified. From this study, a new design that consists a 20° inner edge, 15° outer edge, 0° shoulder dub-off and kidney-shaped coolant channel is proposed and experimentally proven to be more superior than all other commercial designs.

  4. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  5. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  6. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1981-01-01

    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  7. Self-cooled blanket concepts using Pb-17Li as liquid breeder and coolant

    International Nuclear Information System (INIS)

    Malang, S.; Deckers, H.; Fischer, U.; John, H.; Meyder, R.; Norajitra, P.; Reimann, J.; Reiser, H.; Rust, K.

    1991-01-01

    A blanket design concept using Pb-17Li eutectic alloy as both breeder material and coolant is described. Such a self-cooled blanket for the boundary conditions of a DEMO-reactor is under development at the Kernforschungszentrum Karlsruhe (KfK) in the frame of the European blanket development program. Results of investigations in the areas of design, neutronics, magneto-hydrodynamics, thermo-mechanics, ancillary loop systems, and safety are reported. Based on recent progress, it can be concluded that the boundary conditions of a DEMO-reactor can be met, tritium self-sufficiency can be obtained without using beryllium as an additional neutron multiplier, and tritium inventory and permeation are acceptably low. However, to complete judge the feasibility of the proposed concept, further studies are necessary to obtain a better understanding of the magneto-hydrodynamic phenomena and their effects on the thermal-hydraulic performance of a fusion reactor blanket. (orig.)

  8. Simulation of a loss of coolant accident

    International Nuclear Information System (INIS)

    1987-06-01

    An essential component of nuclear safety activities is the analysis of postulated accidents which are taken as a design basis for a facility. This analysis is usually carried out by using complex computer codes to simulate the behaviour of the plant and to calculate vital plant parameters, which are then compared with the design limits. Since these simulations cannot be verified at the plant itself, computer codes must be validated by comparing the results of calculations with experimental data obtained in test facilities. With this objective in mind, the Central Research Institute for Physics (CRIP) of the Hungarian Academy of Sciences designed and constructed the PMK-NVH (Paks Model Circuit) test facility, a scaled down model of the WWER-440 Paks nuclear power plant. Hungary with the aim of strengthening the international co-operation on nuclear safety, made the PMK-NVH facility available to the IAEA to conduct a standard problem exercise. In this exercise, experimental data from the simulation of a 7.4% break loss of coolant accident were compared with analytical predictions of the behaviour of the facility calculated with computer codes. This document presents a complete overview of the Standard Problem Exercise, including description of the facility, the experiment, the codes and models used by the participants and a detailed intercomparison of calculated and experimental results. It is recognized that code assessment is a long process which involves many inter-related steps, therefore, no general conclusion on optimum code or best model was reached. However, the exercise was recognized as an important contributor to code validation

  9. Inventory - Dollars and sense

    International Nuclear Information System (INIS)

    Samson, J.R.

    1992-01-01

    Nuclear utilities are becoming more aware of the importance of having an inventory investment that supports two opposing philosophies. The business philosophy wants a minimal inventory investment to support a better return on invested dollars. This increase in return comes from having the dollars available to invest versus having the money tied up in inventory sitting on the shelf. The opposing viewpoint is taken by maintenance/operations organizations, which desire the maximum inventory available on-site to repair any component at any time to keep the units on-line at all times. Financial managers also want to maintain cash flow throughout operations so that plants run without interruptions. Inventory management is therefore a mixture of financial logistics with an operation perspective in mind. A small amount of common sense and accurate perception also help. The challenge to the materials/inventory manager is to optimize effectiveness of the inventory by having high material availability at the lowest possible cost

  10. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  11. Review on research of small break loss of coolant accident

    International Nuclear Information System (INIS)

    Bo Jinhai; Wang Fei

    1998-01-01

    The Small Break Loss of Coolant Accident (SBLOCA) and its research art-of -work are reviewed. A typical SBLOCA process in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) and the influence of break size, break location and reactor coolant pump on the process are described. The existing papers are classified in two categories: experimental and numerical modeling, with the primary experimental apparatuses in the world listed and the research works on SBLOCA summarized

  12. Analysis of an ultrasonic level device for in-core Pressurized Water Reactor coolant detection

    International Nuclear Information System (INIS)

    Johnson, K.R.

    1981-01-01

    A rigorous semi-empirical approach was undertaken to model the response of an ultrasonic level device (ULD) for application to in-core coolant detection in Pressurized Water Reactors (PWRs). An equation is derived for the torsional wave velocity v/sub t phi/ in the ULD. Existing data reduction techniques were analyzed and compared to results from use of the derived equation. Both methods yield liquid level measurements with errors of approx. 5%. A sensitivity study on probe performance at reactor conditions predicts reduced level responsivity from data at lower temperatures

  13. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  14. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  15. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level

  16. Study of core characteristics on fuel and coolant type. Results of F/S phase-I

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo; Hayashi, Hideyuki; Sasaki, Makoto; Mizuno, Tomoyasu; Yamadate, Megumi; Takaki, Naoyuki; Kurosawa, Norifumi; Sakashita, Yoshiaki; Naganuma, Masayuki

    2001-03-01

    The phase-I of the Feasibility Study of Commercialized Fast Reactor Cycle Systems (F/S) were started from July, 1999 and terminated at the end of FY2000 in order to executed examination about technology alternatives of various commercialized fast reactor (FR) recycle concepts, in response to the JNC middle long term enterprise plan. In the phase-I of this F/S, a number of conceptual candidates have been selected from the following 5 viewpoints: a) ensuring safety, b) economic competitiveness to future LWRs, c) efficient utilization of resources, d) reduction of environmental burden, e) enhancement of nuclear non-proliferation. As for this study from the above viewpoints, core characteristics of many kinds of reactors have been investigated, analyzed and examined a core / a fuel characteristic in the combinations of fuel and coolant types and power output scales. Based on these results, R and D plans of the phase-II to be performed have been proposed, and a database to select candidate reactor concepts has been prepared. The conclusions have been obtained in the phase-I are as follows: (1) Evaluation of a fuel form in every each coolant was compared. A promising fuel form was extracted as follows: an oxide and a metal fuel for sodium coolant cores, a metal and a nitride fuel for heavy metal coolant cores, an oxide and a nitride fuel for carbon dioxide coolant cores and a nitride fuel for He gas coolant cores. (2) As the general idea that performance of a core nucleus can be compatible with re-criticality evasion in sodium coolant large-sized oxide fuel cores, a axial blanket particle elimination radial heterogeneous core is one influential candidate. (3) In case of Pb-Bi coolant nature circulation medium size core with an oxide fuel, it is difficult to simultaneously achieve higher discharged burn-up and higher breeding ratio according to the viewpoints of the phase-I. (4) Core characteristics of a carbon dioxide coolant core shows to be almost equivalent to that of

  17. Vendor-managed inventory

    DEFF Research Database (Denmark)

    Govindan, Kannan

    2013-01-01

    Vendor-managed inventory (VMI) represents the methodology through which the upstream stage of a supply chain (vendor) takes responsibility for managing the inventories at the downstream stage (customer) based on previously agreed limits. VMI is another method by which supply chains can be managed...... review, we have identified six dimensions of VMI: namely, inventory, transportation, manufacturing, general benefits, coordination/collaboration, and information sharing. In addition, there are, three methodological classifications: modelling, simulation, and case studies. Finally, we will consider...

  18. National Wetlands Inventory Lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Linear wetland features (including selected streams, ditches, and narrow wetland bodies) mapped as part of the National Wetlands Inventory (NWI). The National...

  19. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)

    2010-07-01

    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  20. Primary coolant recycling device for FBR type reactor

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru; Tokiwai, Moriyasu

    1998-01-01

    A primary coolants (liquid sodium) recycling device comprises a plurality of recycling pumps. The recycling pumps are operated while using, as a power source, electric power generated by a thermoelectric power generation system by utilizing heat stored in the coolants. The thermoelectric power generation system comprises a thermo-electric conversion module, heat collecting heat pipes as a high temperature side heat conduction means and heat dissipating pipes as a low temperature side heat conduction means. The heat of coolants is transferred to the surface of the high temperature side of each thermo-electric conversion elements of the thermal power generation system by the heat collecting heat pipes. The heat on the low temperature side of each of the thermo-electric conversion elements is removed by the heat dissipating pipes. Accordingly, temperature difference is caused between both surfaces of the thermo-electric conversion elements. Even upon loss of a main power source due to stoppage of electricity, electric power is generated by utilizing heat of coolants, so that the recycling pumps circulate coolants to cool a reactor core continuously. (I.N.)

  1. Full reactor coolant system chemical decontamination qualification programs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-03-01

    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systems leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.

  2. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  3. Tritium inventory and permeation in the ITER breeding blanket

    International Nuclear Information System (INIS)

    Violante, V.; Tosti, S.; Sibilia, C.; Felli, F.; Casadio, S.; Alvani, C.

    2000-01-01

    A model has allowed us to perform the analysis of the tritium inventory and permeation in the international thermonuclear experimental reactor (ITER) breeding blanket under the hypothesis of steady state conditions. Li 2 ZrO 3 (reference) and Li 2 TiO 3 (alternative) have been studied as breeding materials. The total breeder inventory assessed is 7.64 g for the Li 2 ZrO 3 at reference temperature. The model has also been used for a parametric analysis of the tritium permeation. At reference temperature and purge helium velocity of 0.01 m/s, the HT partial pressure is ranging from 10 to 30 Pa in the breeder and 1.5x10 -3 Pa in the beryllium. At 0.1 m/s of purge helium velocity, the HT partial pressure is reduced of one order by magnitude in the breeder and becomes 5x10 -5 Pa in the beryllium. The tritium permeation into the coolant for the whole blanket is ranging from 100 to 250 mCi per day for purge helium velocity of 0.01 m/s. The analysis of the tritium inventory and permeation for the alternative Li 2 TiO 3 breeding material has been carried out too. The tritium inventory in the breeder is in the range from 6 to 375 g larger than in Li 2 ZrO 3 by about a factor 5; the tritium permeation into coolant is comparable to the Li 2 ZrO 3 one. This analysis provides indications on the influence of the operating parameters on the tritium control in the ITER breeding blanket; particularly the control of the tritium inventory by the temperature and the tritium permeation by the purge gas velocity

  4. Denmark's National Inventory Report

    DEFF Research Database (Denmark)

    Illerup, J. B.; Lyck, E.; Winther, M.

    This report is Denmark's National Inventory Report reported to the Conference of the Parties under the United Nations Framework Convention on Climate Change (UNFCCC) due by 15 April 2001. The report contains information on Denmark's inventories for all years' from 1990 to 1999 for CO2, CH4, N2O, CO...

  5. Uncertainties in emission inventories

    NARCIS (Netherlands)

    Aardenne, van J.A.

    2002-01-01

    Emission inventories provide information about the amount of a pollutant that is emitted to the atmosphere as a result of a specific anthropogenic or natural process at a given time or place. Emission inventories can be used for either policy or scientific purposes. For

  6. Denmark's National Inventory Report

    DEFF Research Database (Denmark)

    Illerup, J. B.; Lyck, E.; Winther, M.

    This report is Denmark's National Inventory Report reported to the Conference of the Parties under the United Nations Framework Convention on Climate Change (UNFCCC) due by 15 April 2001. The report contains information on Denmark's inventories for all years' from 1990 to 1999 for CO2, CH4, N2O, ......, NMVOC, SO2, HFCs, PFCs and SF6....

  7. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  8. Actively controlling coolant-cooled cold plate configuration

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  9. Sloshing of coolant in a seismically isolated reactor

    International Nuclear Information System (INIS)

    Wu, T.S.; Guildys, J.; Seidensticker, R.W.

    1988-01-01

    During a seismic event, the liquid coolant inside the reactor vessel has sloshing motion which is a low-frequency phenomenon. In a reactor system incorporated with seismic isolation, the isolation frequency usually is also very low. There is concern on the potential amplification of sloshing motion of the liquid coolant. This study investigates the effects of seismic isolation on the sloshing of liquid coolant inside the reactor vessel of a liquid metal cooled reactor. Based on a synthetic ground motion whose response spectra envelop those specified by the NRC Regulator Guide 1.60, it is found that the maximum sloshing wave height increases from 18 in. to almost 30 in. when the system is seismically isolated. Since higher sloshing wave may introduce severe impact forces and thermal shocks to the reactor closure and other components within the reactor vessel, adequate design considerations should be made either to suppress the wave height or to reduce the effects caused by high waves

  10. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    International Nuclear Information System (INIS)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years

  11. Design and development of remotely operated coolant channel cutting machine

    International Nuclear Information System (INIS)

    Suthar, R.L.; Sinha, A.K.; Srikrishnamurty, G.

    1994-01-01

    One of the coolant tubes of Narora Atomic Power Station (NAPS) reactor needs to be removed. To remove a coolant tube, four cutting operations, (liner tube cutting, end-fitting cutting, machining of seal weld of bellow ring and finally coolant tube cutting) are required to be carried out. A remotely operated cutting machine to carry out all these operations has been designed and developed by Central Workshops. This machine is able to cut at the exact location because of numerically controlled axial and radial travel of tool. Only by changing the tool head and tool holder, same machine can be used for various types of cutting/machining operations. This report details the design, manufacture, assembly and testing work done on the machine. (author). 4 figs

  12. Radioactivity analysis of KAMINI reactor coolant from regulatory perspectives

    International Nuclear Information System (INIS)

    Srinivasan, T.K.; Sulthan, Bajeer; Sarangapani, R.; Jose, M.T.; Venkatraman, B.; Thilagam, L.

    2016-01-01

    KAMINI (a 30kWt) research reactor is operated for neutron radiography of fuel subassemblies and pyro devices and activation analysis of various samples. The reactor is fueled by 233 U and DM water is used as the coolant. During reactor operation, fission product noble gasses (FPNGs) such as 85m Kr, 87 Kr, 88 Kr, 135 Xe, 135m Xe and 138 Xe are detected in the coolant water. In order to detect clad failure, the water is sampled during reactor operation at regular intervals as per the technical specifications. In the present work, analysis of measured activities in coolant samples collected during reactor operation at 25 kWt are presented and compared with computed values obtained using ORIGEN (Isotope Generation) code

  13. Method of eliminating cruds in the primary coolants of reactors

    International Nuclear Information System (INIS)

    Tamura, Takaaki.

    1984-01-01

    Purpose: To eliminate cruds in the primary coolants by using rind of onions or peanuts. Method: Since cruds contained in the reactor primary coolants increase the radioactive exposure to reactor operators, they have been intended to remove by ion exchange resins. In this invention, rind of onions or peanuts are crushed into an adequate particle size and packed into an absorption column instead of ion exchange resins into which primary coolants are circulated. The powderous onions or peanuts rind contain glucoside such as cosmosiin and has an effect of cationic exchanger, they satisfactorily catch heavy metals such as Fe and Cu. They have an excellent filtering effect even under a high pH condition and are excellent in economical point of view. They can be decrease the volume of the absorption column, reduce their devolume after use through corrosion and easily subjected to waste procession through oxidizing combustion in liquid. (Nakamoto, H.)

  14. Physical model and calculation code for fuel coolant interactions

    International Nuclear Information System (INIS)

    Goldammer, H.; Kottowski, H.

    1976-01-01

    A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)

  15. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  16. Coolant circuit water chemistry of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tilky, Peter; Doma, Arpad

    1985-01-01

    The numerous advantages of the proper selection of water chemistry parameters including low corrosion rate of the structural materials, hence the low-level activity build-up, depositions, radiation doses were emphasized. Major characteristics of water chemistry applied to the primary coolant of pressurized water reactors including neutral, slightly basic and strong basic ones are discussed. Boric acid is widely used to control reactivity. Primary coolant water chemistry of WWER type reactors which is based on the addition of ammonia and potassium hydroxide to boric acid is compared with that of other reactors. The demineralization of the total condensate of the steam turbines became a general trend in the water chemistry of the secondary coolant circuits. (V.N.)

  17. LOFT advanced densitometer for nuclear loss-of-coolant experiments

    International Nuclear Information System (INIS)

    Johnson, L.O.; Lassahn, G.D.; Wood, D.B.

    1979-01-01

    A ''nuclear hardened'' gamma densitometer, a device which uses radiation attenuation to measure fluid density in the presence of a background radiation field, is described. Data from the nuclear hardened gamma densitometer are acquired by time sampling the coolant fluid piping and fluid attenuated source energy spectrum. The data are used to calculate transient coolant fluid cross sectional average density to analyze transient mass flow and other thermal-hydraulic characteristics during the Loss-of-Fluid Test (LOFT) loss-of-coolant experiments. The nuclear hardened gamma densitometer uses a pulse height analysis or energy discrimination, pulse counting technique which makes separation of the gamma radiation source signal from the reactor generated gamma radiation background noise signal possible by processing discrete pulses which retain their pulse amplitude information

  18. Inventory control strategies

    International Nuclear Information System (INIS)

    Primrose, D.

    1998-01-01

    Finning International Inc. is in the business of selling, financing and servicing Caterpillar and complementary equipment. Its main markets are in western Canada, Britain and Chile. This paper discusses the parts inventory strategies system for Finning (Canada). The company's territory covers British Columbia, Alberta, the Yukon and the Northwest Territories. Finning's parts inventory consists of 80,000 component units valued at more than $150 M. Distribution centres are located in Langley, British Columbia and Edmonton, Alberta. To make inventory and orders easier to control, Finning has designed a computer-based system, with software written exclusively for Caterpillar dealers. The system makes use of a real time electronic interface with all Finning locations, plus all Caterpillar facilities and other dealers in North America. Details of the system are discussed, including territorial stocking procedures, addition to stock, exhaustion of stock, automatic/suggest order controls, surplus inventory management, and procedures for jointly managed inventory. 3 tabs., 1 fig

  19. Optimal fuel inventory strategies

    International Nuclear Information System (INIS)

    Caspary, P.J.; Hollibaugh, J.B.; Licklider, P.L.; Patel, K.P.

    1990-01-01

    In an effort to maintain their competitive edge, most utilities are reevaluating many of their conventional practices and policies in an effort to further minimize customer revenue requirements without sacrificing system reliability. Over the past several years, Illinois Power has been rethinking its traditional fuel inventory strategies, recognizing that coal supplies are competitive and plentiful and that carrying charges on inventory are expensive. To help the Company achieve one of its strategic corporate goals, an optimal fuel inventory study was performed for its five major coal-fired generating stations. The purpose of this paper is to briefly describe Illinois Power's system and past practices concerning coal inventories, highlight the analytical process behind the optimal fuel inventory study, and discuss some of the recent experiences affecting coal deliveries and economic dispatch

  20. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Patel, R J [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs.

  1. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    International Nuclear Information System (INIS)

    Mukherjee, S.; Ghosh, J.K.; Patel, R.J.

    1994-01-01

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs

  2. Inventory Control System by Using Vendor Managed Inventory (VMI)

    OpenAIRE

    Dona Sabila Alzena; Mustafid Mustafid; Suryono Suryono

    2018-01-01

    The inventory control system has a strategic role for the business in managing inventory operations. Management of conventional inventory creates problems in the stock of goods that often runs into vacancies and excess goods at the retail level. This study aims to build inventory control system that can maintain the stability of goods availability at the retail level. The implementation of Vendor Managed Inventory (VMI) method on inventory control system provides transparency of sales data an...

  3. Integrated Fuel-Coolant Interaction (IFCI 6.0) code

    International Nuclear Information System (INIS)

    Davis, F.J.; Young, M.F.

    1994-04-01

    The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User's Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks

  4. Reactor coolant pump shaft seal behavior during blackout conditions

    International Nuclear Information System (INIS)

    Mings, W.J.

    1985-01-01

    The United States Nuclear Regulatory Commission has classified the problem of reactor coolant pump seal failures as an unresolved safety issue. This decision was made in large part due to experimental results obtained from a research program developed to study shaft seal performance during station blackout and reported in this paper. Testing and analysis indicated a potential for pump seal failure under postulated blackout conditions leading to a loss of primary coolant with a concomitant danger of core uncovery. The work to date has not answered all the concerns regarding shaft seal failure but it has helped scope the problem and focus future research needed to completely resolve this issue

  5. Effects of different rod spacers (helical types) on coolant crossmixing

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sviridenko, E.Ya.; Matyukhin, N.M.; Rymkevich, K.S.; Ushakov, P.A.

    1981-11-01

    The results of investigations (electromagnetic measuring method) on coolant cross mixing in rod clusters with spiral wire spacers with different winding directions, with alternating unfinned and finned rods (case 'fin to rod'), as well as in rod clusters with much space between the rods, (case 'fin to fin') are reported. The local fluid dynamics parameters (distribution of the transversal and longitudinal velocity component) that define the physical processes of the coolant exchange in the rod clusters with helical spacers are explained. The investigation results for different helical spacer types are compared with each other. (orig.) [de

  6. The 1994 loss of coolant incident at Pickering NGS

    Energy Technology Data Exchange (ETDEWEB)

    Charlebois, P R; Clarke, T R; Goodman, R M; McEwan, W F [Ontario Hydro, Pickering, ON (Canada). Pickering Generating Station; Cuttler, J M [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    Fracture of the rubber diaphragm in a liquid relief valve initiated events leading to a loss of coolant in Unit 2, on December 10. The valve failed open, filling the bleed condenser. The reactor shut itself down. When pressure recovered, two spring-loaded safety relief valves opened and one of them chattered. The shock and pulsations cracked the inlet pipe to the chattering valve, and the subsequent loss of coolant triggered the emergency core cooling system. The incident was terminated by operator action. No abnormal radioactivity was released. The four reactor units of Pickering A remained shut down until the corrective actions were completed in April/May 1995. (author). 4 figs.

  7. LWR and HTGR coolant dynamics: the containment of severe accidents

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Gherson, P.; Nourbakhsh, H.P.; Hu, K.; Iyer, K.; Viskanta, R.; Lommers, L.

    1983-07-01

    This is the final report of a project containing three major tasks. Task I deals with the fundamental aspects of energetic fuel/coolant interactions (steam explosions) as they pertain to LWR core melt accidents. Task II deals with the applied aspects of LWR core melt accident sequences and mechanisms important to containment response, and includes consideration of energetic fuel/coolant interaction events, as well as non-explosive ones, corium material disposition and eventual coolability, and containment pressurization phenomena. Finally, Task III is concerned with HTGR loss of forced circulation accidents. This report is organized into three major parts corresponding to these three tasks respectively

  8. Knock-limited performance of several internal coolants

    Science.gov (United States)

    Bellman, Donald R; Evvard, John C

    1945-01-01

    The effect of internal cooling on the knock-limited performance of an-f-28 fuel was investigated in a CFR engine, and the following internal coolants were used: (1) water, (2), methyl alcohol-water mixture, (3) ammonia-methyl alcohol-water mixture, (4) monomethylamine-water mixture, (5) dimethylamine-water mixture, and (6) trimethylamine-water mixture. Tests were run at inlet-air temperatures of 150 degrees and 250 degrees F. to indicate the temperature sensitivity of the internal-coolant solutions.

  9. Impedance calculations for power cables to primary coolant pump motors

    International Nuclear Information System (INIS)

    Hegerhorst, K.B.

    1977-01-01

    The LOFT primary system motor generator sets are located in Room B-239 and are connected to the primary coolant pumps by means of a power cable. The calculated average impedance of this cable is 0.005323 ohms per unit resistance and 0.006025 ohms per unit reactance based on 369.6 kVA and 480 volts. The report was written to show the development of power cable parameters that are to be used in the SICLOPS (Simulation of LOFT Reactor Coolant Loop Pumping System) digital computer program as written in LTR 1142-16 and also used in the pump coastdowns for the FSAR Analysis

  10. Steam generator for a pressurized-water coolant nuclear reactor

    International Nuclear Information System (INIS)

    Schroeder, H.J.; Berger, W.

    1975-01-01

    A description is given of a steam generator which has a vertical cylindrical housing having a steam output outlet, a horizontal tube sheet closing the lower end of this housing, and an inverted U-shaped tube bundle inside of the housing and having vertical inlet and outlet legs with their ends mounted in the tube sheet. Beneath the tube sheet there are inlet and outlet manifolds for the respective ends of the tube bundle so that pressurized-water coolant from a pressurized-water coolant nuclear reactor can be circulated through the tube bundle

  11. Probabilistic analyses of failure in reactor coolant piping

    International Nuclear Information System (INIS)

    Holman, G.S.

    1984-01-01

    LLNL is performing probabilistic reliability analyses of PWR and BWR reactor coolant piping for the NRC Office of Nuclear Regulatory Research. Specifically, LLNL is estimating the probability of a double-ended guillotine break (DEGB) in the reactor coolant loop piping in PWR plants, and in the main stream, feedwater, and recirculation piping of BWR plants. In estimating the probability of DEGB, LLNL considers two causes of pipe break: pipe fracture due to the growth of cracks at welded joints (direct DEGB), and pipe rupture indirectly caused by the seismically-induced failure of critical supports or equipment (indirect DEGB)

  12. Sensitivity calculation of the coolant temperature regarding the thermohydraulic parameters

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de; Silva, F.C. da; Thome Filho, Z.D.; Alvim, A.C.M.; Oliveira Barroso, A.C. de.

    1985-01-01

    It's studied the application of the Generalized Perturbation Theory (GPT) in the sensitivity calculation of thermalhydraulic problems, aiming at verifying the viability of the extension of the method. For this, the axial distribution, transient, of the coolant temperature in a PWR channel are considered. Perturbation expressions are developed using the GPT formalism, and a computer code (Tempera) is written, to calculate the channel temperature distribution and the associated importance function, as well as the effect of the thermalhydraulic parameters variations in the coolant temperature (sensitivity calculation). The results are compared with those from the direct calculation. (E.G.) [pt

  13. Control rod drive mechanism stator loss of coolant test

    International Nuclear Information System (INIS)

    Besel, L.; Ibatuan, R.

    1977-04-01

    This report documents the stator loss of coolant test conducted at HEDL on the lead unit Control Rod Drive Mechanism (CRDM) in February, 1977. The purpose of the test was to demonstrate scram capability of the CRDM with an uncooled stator and to obtain a time versus temperature curve of an uncooled stator under power. Brief descriptions of the test, hardware used, and results obtained are presented in the report. The test demonstrated that the CRDM could be successfully scrammed with no anomalies in both the two-phase and three-phase stator winding hold conditions after the respective equilibrium stator temperatures had been obtained with no stator coolant

  14. Showcasing Sustainability in Your Toxics Release Inventory Report

    Science.gov (United States)

    From a June 2012 webinar, these slides contain guidance for reporting Pollution Prevention and Source Reduction data on the Toxics Release Inventory Form R and a synopsis of EPA's use of this information.

  15. Interactive Inventory Monitoring

    Science.gov (United States)

    Garud, Sumedha

    2013-01-01

    Method and system for monitoring present location and/or present status of a target inventory item, where the inventory items are located on one or more inventory shelves or other inventory receptacles that communicate with an inventory base station through use of responders such as RFIDs. A user operates a hand held interrogation and display (lAD) module that communicates with, or is part of the base station to provide an initial inquiry. lnformation on location(s) of the larget invenlory item is also indicated visibly and/or audibly on the receptacle(s) for the user. Status information includes an assessment of operation readiness and a time, if known, that the specified inventory item or class was last removed or examined or modified. Presentation of a user access level may be required for access to the target inventgory item. Another embodiment provides inventory informatin for a stack as a sight-impaired or hearing-impaired person adjacent to that stack.

  16. Methodologies and technologies for life assessment and management of coolant channels of Indian pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Rupani, B.B.; Sinha, S.K.; Sinha, R.K.

    2002-01-01

    Zirconium alloy coolant channels are central to the design of Indian Pressurised Heavy Water Reactors (PHWRs) and form the individual pressure boundaries. These coolant channels consist of horizontal pressure tubes made of zirconium alloys, which are separated from cold calandria tubes using garter spring spacers. High temperature heavy water coolant flows through the pressure tube which supports the fuel bundles. A typical coolant channel in a PHWR is shown. These pressure tubes are subjected to several life limiting degradation mechanisms like creep and growth, hydrogen pick-up, reduction in fracture toughness and delayed hydride cracking phenomena because of their operation under high temperature, high stress and high fast neutron flux environment. Considering the early onset of these degradation mechanisms in Zircaloy-2 pressure tubes used in the early generation of Indian PHWRs, the life management of these coolant channels becomes a challenging task, involving multidisciplinary R and D efforts in areas like analytical modelling of degradation mechanisms, evolution of methodologies for assessment of fitness for service and, tools and techniques for remote on line monitoring of integrity, maintenance and replacement. The degradation mechanisms have been modelled and incorporated into specially developed computer codes, such as SCAPCA for irradiation induced creep and growth deformation modelling, HYCON for hydrogen pick-up modelling, BLIST for hydrogen diffusion, blister nucleation and growth modelling and CEAL for assessment of leak before break behaviour. These codes have been validated with respect to the results of in-service inspection and post irradiation examination. Development of analytical models actually paved the way for the evolution of more refined methodologies for assessing the safe residual life of coolant channel. Information gathered from various experiments simulating the degradation mechanisms, results of post-irradiation examination of the

  17. Breakup of jet and drops during premixing phase of fuel coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Haraldur Oskar

    2000-05-01

    performed. The coolant temperature was found to significantly affect the shape and size of the debris. The maximum fragment size was found to increase with reduction in coolant temperature. No effect of coolant voiding on the fragment size distribution was observed. A series of high temperature melt jet experiments were performed, in the MIRA-20L experimental facility. Three types of oxidic melts, namely; CaO-B{sub 2}O{sub 3}, MnO-TiO{sub 2} and WO{sub 3}-CaO were employed as melt jet liquid. The melt jet fragmentation was classified into two regimes, the hydrodynamic-controlled regime and the solidification-controlled regime. The delineation between those regimes was observed from the size characteristic and morphology of the solidified debris which was formed. The temperature of the coolant was the primary parameter in determining which regime the jet fragmentation would fall into. It was found, at low subcooling, the fragments are relatively large and irregular compared to smaller particles produced at higher subcooling. The melt density was found to have significant effect on the particle size. The mass mean size of the debris changes proportional to the square root of the coolant to melt density ratio. A systematic investigation of the performance of statistical distributions which may be used to describe the size distributions of fragments obtained from molten fuel coolant interaction (MFCI) experiments was performed. The statistical analysis of the debris produced in both experiments showed that the sequential fragmentation theory fits best the particle distribution produced during the jet fragmentation process. In the second part of the second chapter, analysis of the jet breakup experiments are performed. The low temperature jet fragmentation experiments are simulated with a recently developed Multiphase Eulerian Lagrangian Method. The effect of particle diameter and particle drag on the jet dynamics and penetration behavior is investigated. The third part of the

  18. Some experimental justifications of constructions of nuclear reactors with the use of solid coolant

    International Nuclear Information System (INIS)

    Deniskin, V.; Nalivaev, V.; Fedik, I.; Vishnevski, U.; Dmitriev, A.

    2003-01-01

    the solid coolant are: 1. Pressure in the primary circuit of the reactor is below the atmospheric one and, as a consequence, there is small steel intensity and cost of the facility. There is a possibility to build a large-power capacity reactor with a low specific power density of the core and high critical margins, which would spare efforts and money to manufacture a complicated and costly equipment and augmented equipment. It means that it is feasible to reduce a possibility of emergency state, to augment safety during all possible accidents, including depressurisation. 2. High temperature of the reactor primary circuit allows obtaining a high thermal efficiency coefficient. 3. A circumstance of importance is that there are no practically any corrosion related problems while using the solid coolant and the erosion issue may be minimised. In its turn, this means that the system for the coolant treatment and recovery may be simple in design, cheap and cost-efficient in operation. 4. The reactor plant may be designed in such a way that its cost and dismalting complexity would be significantly lower than that of existing PWRs. Radioactive waste generated in the course of dismalting of such a reactor would have a specific radioactivity level and total radioactivity hundreds of times less than that of the existing reactor systems. This does not pose a problem with building a new reactor on the decommissioned site and allows reduction of the number of NPP sites. 5. Such reactor practically does not generate liquid waste, and degasifiers may dispose of the minimum amount of gaseous waste generated. The solid low activity operational waste does not incur large storage costs. 6. The reactor will have good neutron and physical properties. (author)

  19. Breakup of jet and drops during premixing phase of fuel coolant interactions

    International Nuclear Information System (INIS)

    Haraldsson, Haraldur Oskar

    2000-05-01

    performed. The coolant temperature was found to significantly affect the shape and size of the debris. The maximum fragment size was found to increase with reduction in coolant temperature. No effect of coolant voiding on the fragment size distribution was observed. A series of high temperature melt jet experiments were performed, in the MIRA-20L experimental facility. Three types of oxidic melts, namely; CaO-B 2 O 3 , MnO-TiO 2 and WO 3 -CaO were employed as melt jet liquid. The melt jet fragmentation was classified into two regimes, the hydrodynamic-controlled regime and the solidification-controlled regime. The delineation between those regimes was observed from the size characteristic and morphology of the solidified debris which was formed. The temperature of the coolant was the primary parameter in determining which regime the jet fragmentation would fall into. It was found, at low subcooling, the fragments are relatively large and irregular compared to smaller particles produced at higher subcooling. The melt density was found to have significant effect on the particle size. The mass mean size of the debris changes proportional to the square root of the coolant to melt density ratio. A systematic investigation of the performance of statistical distributions which may be used to describe the size distributions of fragments obtained from molten fuel coolant interaction (MFCI) experiments was performed. The statistical analysis of the debris produced in both experiments showed that the sequential fragmentation theory fits best the particle distribution produced during the jet fragmentation process. In the second part of the second chapter, analysis of the jet breakup experiments are performed. The low temperature jet fragmentation experiments are simulated with a recently developed Multiphase Eulerian Lagrangian Method. The effect of particle diameter and particle drag on the jet dynamics and penetration behavior is investigated. The third part of the second chapter

  20. SBA Network Components & Software Inventory

    Data.gov (United States)

    Small Business Administration — SBA’s Network Components & Software Inventory contains a complete inventory of all devices connected to SBA’s network including workstations, servers, routers,...

  1. Laboratory simulation of rod-to-rod mechanical interactions during postulated loss-of-coolant accidents in a PWR involving cladding oxidation

    International Nuclear Information System (INIS)

    Hindle, E.D.; Haste, T.J.; Harrison, W.R.

    1987-01-01

    Creep deformation of Zircaloy cladding in postulated PWR loss-of-coolant accidents may lead to rod-to-rod mechanical interactions. Tests have been performed in the electrically heated FOURSQUARE rig at 750 0 C and 850 0 C in steam to investigate this effect. Conservatisms inherent in a simple 'square with rounded corners' coolant channel blockage model have been quantified; about 5-10% flow area may remain even at strains which in ideal circumstances would give total blockage. Reduction of average burst strains produced by an oxide layer (up to 13 μm) has been demonstrated, resulting from strain concentration at oxide cracks. (author)

  2. Coolant flow monitoring in a PWR core using noise analysis

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1992-01-01

    Experimental investigations of the neutron and temperature noise field have been performed in the 1350 MW PWR nuclear power plant. Evaluation in the low frequency range, where both feedback effects and different thermohydraulics phenomena are dominant, succeeded in measuring the coolant velocity. This is important for determination and localization of essential deviations and possible anomalies. (author)

  3. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  4. Nanofluid as coolant for grinding process: An overview

    Science.gov (United States)

    Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.

    2018-04-01

    This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.

  5. Numerical experimentation on convective coolant flow in Ghana ...

    African Journals Online (AJOL)

    Numerical experiments on one dimensional convective coolant flow during steady state operation of the Ghana Research Reactor-1 (GHARR-I) were performed to determine the thermal hydraulic parameters of temperature, density and flow rate. The computational domain was the reactor vessel, including the reactor core.

  6. Reactor coolant and associated systems in nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide outlines the design requirements for the reactor coolant and associated systems (RCAS) and the features required in order to achieve their safety functions. It covers design considerations for various reactor types and encompasses the safety aspects of the functions of the RCAS both during normal operation and following postulated initiating events, and to some extent also for decommissioning

  7. National Emission Inventory (NEI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data exchange allows states to submit data to the US Environmental Protection Agency's National Emissions Inventory (NEI). NEI is a national database of air...

  8. National Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Emission Inventory contains measured, modeled, and estimated data for emissions of all known source categories in the US (stationary sources, fires,...

  9. Toxics Release Inventory (TRI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) is a dataset compiled by the U.S. Environmental Protection Agency (EPA). It contains information on the release and waste...

  10. Business Process Inventory

    Data.gov (United States)

    Office of Personnel Management — Inventory of maps and descriptions of the business processes of the U.S. Office of Personnel Management (OPM), with an emphasis on the processes of the Office of the...

  11. National Wetlands Inventory Points

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland point features (typically wetlands that are too small to be as area features at the data scale) mapped as part of the National Wetlands Inventory (NWI). The...

  12. Asset Inventory Database

    Data.gov (United States)

    US Agency for International Development — AIDM is used to track USAID assets such as furniture, computers, and equipment. Using portable bar code readers, receiving and inventory personnel can capture...

  13. NCRN Hemlock Inventory Data

    Data.gov (United States)

    Department of the Interior — ​Data associated with the 2015 hemlock inventory project in NCR. Eastern hemlock (Tsuga canadensis) is a coniferous tree native to the NE and Appalachian regions of...

  14. Logistics and Inventory System -

    Data.gov (United States)

    Department of Transportation — The Logistics and Inventory System (LIS) is the agencys primary supply/support automation tool. The LIS encompasses everything from order entry by field specialists...

  15. Public Waters Inventory Maps

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme is a scanned and rectified version of the Minnesota DNR - Division of Waters "Public Waters Inventory" (PWI) maps. DNR Waters utilizes a small scale...

  16. VA Enterprise Data Inventory

    Data.gov (United States)

    Department of Veterans Affairs — The Department of Veterans Affairs Enterprise Data Inventory accounts for all of the datasets used in the agency's information systems. This entry was approved for...

  17. Coolant controls of a PEM fuel cell system

    Science.gov (United States)

    Ahn, Jong-Woo; Choe, Song-Yul

    When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops. Therefore, proper design of a control for the coolant flow plays an important role in ensuring highly reliable and efficient operations of the fuel cell system. Herein, we propose a new temperature control strategy based on a thermal circuit. The proposed thermal circuit consists of a bypass valve, a radiator with a fan, a reservoir and a coolant pump, while a blower and inlet and outlet manifolds are components of the air supply system. Classic proportional and integral (PI) controllers and a state feedback control for the thermal circuit were used in the design. In addition, the heat source term, which is dependent upon the load current, was feed-forwarded to the closed loop and the temperature effects on the air flow rate were minimized. The dynamics and performance of the designed controllers were evaluated and analyzed by computer simulations using developed dynamic fuel cell system models, where a multi-step current and an experimental current profile measured at the federal urban driving schedule (FUDS) were applied. The results show that the proposed control strategy cannot only suppress a temperature rise in the catalyst layer and prevent oxygen starvation, but also reduce the

  18. Organic coolants and their applications to fusion reactors

    International Nuclear Information System (INIS)

    Gierszewski, P.; Hollies, B.

    1986-08-01

    Organic coolants offer a unique set of characteristics for fusion applications. Their advantages include high-temperature (670 K or 400 degrees C) but low-pressure (2 MPa) operation, limited reactivity with lithium and lithium-lead, reduced corrosion and activation, good heat-transfer capabilities, no magnetohydrodynamic (MHD) effects, and an operating temperature range that extends to room temperature. The major disadvantages are decomposition and flammability. However, organic coolants have been extensively studied in Canada, including nineteen years with an operating 60-MW organic-cooled reactor. Proper attention to design and coolant chemistry controlled these potential problems to acceptable levels. This experience provides an extensive data base for design under fusion conditions. The organic fluid characteristics are described in sufficient detail to allow fusion system designers to evaluate organic coolants for specific applications. To illustrate and assess the potential applications, analyses are presented for organic-cooled blankets, first walls, high heat flux components and thermal power cycles. Designs are identified that take advantage of organic coolant features, yet have fluid decomposition related costs that are a small fraction of the overall cost of electricity. For example, organic-cooled first walls make lithium/ferritic steel blankets possible in high-field, high-surface-heat-flux tokamaks, and organic-cooled limiters (up to about 8 MW/m 2 surface heating) are a safer alternative to water cooling for liquid metal blanket concept. Organics can also be used in intermediate heat exchanger loops to provide efficient heat transfer with low reactivity and a large tritium barrier. 55 refs

  19. Fuel-Coolant Interactions: Visualization and Mixing Measurements

    International Nuclear Information System (INIS)

    Loewen, Eric P.; Bonazza, Riccardo; Corradini, Michael L.; Johannesen, Robert E.

    2002-01-01

    Dynamic X-ray imaging of fuel-coolant interactions (FCI), including quantitative measurement of fuel-coolant volume fractions and length scales, has been accomplished with a novel imaging system at the Nuclear Safety Research Center at the University of Wisconsin, Madison. The imaging system consists of visible-light high-speed digital video, low-energy X-ray digital imaging, and high-energy X-ray digital imaging subsystems. The data provide information concerning the melt jet velocity, melt jet configuration, melt volume fractions, void fractions, and spatial and temporal quantification of premixing length scales for a model fuel-coolant system of molten lead poured into a water pool (fuel temperatures 500 to 1000 K; jet diameters 10 to 30 mm; coolant temperatures 20 to 90 deg. C). Overall results indicate that the FCI has three general regions of behavior, with the high fuel-coolant temperature region similar to what might be expected under severe accident conditions. It was observed that the melt jet leading edge has the highest void fraction and readily fragments into discrete masses, which then subsequently subdivide into smaller masses of length scales <10 mm. The intact jet penetrates <3 to 5 jet length/jet diameter before this breakup occurs into discrete masses, which continue to subdivide. Hydrodynamic instabilities can be visually identified at the leading edge and along the jet column with an interfacial region that consists of melt, vapor, and water. This interface region was observed to grow in size as the water pool temperature was increased, indicating mixing enhancement by boiling processes

  20. Coolant voiding analysis following SGTR for an HLMC reactor

    International Nuclear Information System (INIS)

    Farmer, M.T.; Spencer, B.W.; Sienicki, J.J.

    2000-01-01

    Concepts are under development at Argonne National Laboratory for a small, modular, proliferation-resistant nuclear power steam supply system. Of primary interest here is the simplified system design, featuring steam generators that are directly immersed in the lead-bismuth eutectic (LBE) coolant of the primary system. To support the safety case for this design approach, model development and analysis of transient coolant voiding during a postulated guillotine-type steam generator tube rupture event has been carried out. For the current design, the blowdown will occur from the steam generator shell into the ruptured 12.7-mm-inside-diameter tube through which the LBE coolant passes. The steam will expand biaxially in the tube, with a portion of the flow vented upward to eventually expand into the cover-gas region, while the balance of the flow is vented downward as a jet into the surrounding downward-flowing LBE. Coolant freezing is not an issue in this case because of high feedwater temperature in relation to the freezing point of the LBE. The specific objectives of the current work are to (a) determine the penetration behavior of the steam jet into the lower cold-leg region, (b) characterize the resultant void behavior in terms of coherent bubble versus breakup into a size distribution of small bubbles, and (c) characterize the motion of the bubbles with regard to rise to the cover-gas region (via the liner-to-coolant vessel gap) versus downward transport with the flowing LBE and subsequent upflow through the core to the cover-gas region

  1. Modular Porous Plate Sublimator /MPPS/ requires only water supply for coolant

    Science.gov (United States)

    Rathbun, R. J.

    1966-01-01

    Modular porous plate sublimators, provided for each location where heat must be dissipated, conserve the battery power of a space vehicle by eliminating the coolant pump. The sublimator requires only a water supply for coolant.

  2. Post test calculation of the experiment `small break loss-of- coolant test` SBL-22 at the Finnish integral test facility PACTEL with the thermohydraulic code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Lischke, W.; Vandreier, B. [Univ. for Applied Sciences, Zittau/Goerlitz (Germany). Dept. of Nuclear Technology

    1997-12-31

    At the University for Applied Sciences Zittau/Goerlitz (FH) calculations for the verification of the ATHLET-code for reactors of type VVER are carried out since 1991, sponsored by the German Ministry for Education, Science and Technology (BMBF). The special features of these reactors in comparison to reactors of western countries are characterized by the duct route of reactor coolant pipes and the horizontal steam generators. Because of these special features, a check of validity of the ATHLET-models is necessary. For further verification of the ATHLET-code the post test calculation of the experiment SBL-22 (Small break loss-of-coolant test) realized at the finnish facility PACTEL was carried out. The experiment served for the examination of the natural circulation behaviour of the loop over a continuous range of primary side water inventory. 5 refs.

  3. Post test calculation of the experiment 'small break loss-of- coolant test' SBL-22 at the Finnish integral test facility PACTEL with the thermohydraulic code ATHLET

    International Nuclear Information System (INIS)

    Lischke, W.; Vandreier, B.

    1997-01-01

    At the University for Applied Sciences Zittau/Goerlitz (FH) calculations for the verification of the ATHLET-code for reactors of type VVER are carried out since 1991, sponsored by the German Ministry for Education, Science and Technology (BMBF). The special features of these reactors in comparison to reactors of western countries are characterized by the duct route of reactor coolant pipes and the horizontal steam generators. Because of these special features, a check of validity of the ATHLET-models is necessary. For further verification of the ATHLET-code the post test calculation of the experiment SBL-22 (Small break loss-of-coolant test) realized at the finnish facility PACTEL was carried out. The experiment served for the examination of the natural circulation behaviour of the loop over a continuous range of primary side water inventory

  4. Post test calculation of the experiment `small break loss-of- coolant test` SBL-22 at the Finnish integral test facility PACTEL with the thermohydraulic code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Lischke, W; Vandreier, B [Univ. for Applied Sciences, Zittau/Goerlitz (Germany). Dept. of Nuclear Technology

    1998-12-31

    At the University for Applied Sciences Zittau/Goerlitz (FH) calculations for the verification of the ATHLET-code for reactors of type VVER are carried out since 1991, sponsored by the German Ministry for Education, Science and Technology (BMBF). The special features of these reactors in comparison to reactors of western countries are characterized by the duct route of reactor coolant pipes and the horizontal steam generators. Because of these special features, a check of validity of the ATHLET-models is necessary. For further verification of the ATHLET-code the post test calculation of the experiment SBL-22 (Small break loss-of-coolant test) realized at the finnish facility PACTEL was carried out. The experiment served for the examination of the natural circulation behaviour of the loop over a continuous range of primary side water inventory. 5 refs.

  5. Loss-of-coolant accident analysis of the Savannah River new production reactor design

    International Nuclear Information System (INIS)

    Maloney, K.J.; Pryor, R.J.

    1990-11-01

    This document contains the loss-of-coolant accident analysis of the representative design for the Savannah River heavy water new production reactor. Included in this document are descriptions of the primary system, reactor vessel, and loss-of-coolant accident computer input models, the results of the cold leg and hot leg loss-of-coolant accident analyses, and the results of sensitivity calculations for the cold leg loss-of-coolant accident. 5 refs., 50 figs., 4 tabs

  6. Analysis on transient hydrodynamic characteristics of cavitation process for reactor coolant pump

    International Nuclear Information System (INIS)

    Wang Xiuli; Wang Peng; Yuan Shouqi; Zhu Rongsheng; Fu Qiang

    2014-01-01

    The reactor coolant pump hydrodynamic characteristics at different cavitation conditions were studied by using flow field analysis software ANSYS CFX, and the corresponding data were processed and analyzed by using Morlet wavelet transform and fast Fourier transform. The results show that gas content presents the law of exponential function with the pressure reduction or time increase. In the cavitation primary condition, the pulsation frequency of head for the reactor coolant pump is mainly low frequency, and the main frequency of pressure pulsation is still rotation frequency while the effect of the pressure pulsation caused by cavitation on main frequency is not obvious. With the development of cavitation, the pressure fluctuation induced by cavitation becomes more serious especially for the main frequency, secondary frequency and pulsating amplitude while the head pulsation frequency is given priority to low frequency pulse. Under serious cavitation condition, the head pulsation frequency is given priority to irregular changes of pulse high frequency, and also contains almost regular changes of low frequency. (authors)

  7. RETRAN code analysis of Tsuruga-2 plant chemical volume control system (CVCS) reactor coolant leakage incident

    International Nuclear Information System (INIS)

    Kawai, Hiroshi

    2002-01-01

    In the Chemical Volume Control System (CVCS) reactor primary coolant leakage incident, which occurred in Tsuruga-2 (4-loop PWR, 3,423 MWt, 1,160 MWe) on July 12, 1999, it took about 14 hours before the leakage isolation. The delayed leakage isolation and a large amount of leakage have become a social concern. Effective procedure modification was studied. Three betterments were proposed based on a qualitative analysis to reduce the pressure and temperature of the primary loop as fast as possible by the current plant facilities while maintaining enough subcooling of the primary loop. I analyzed the incident with RETRAN code in order to quantitatively evaluate the leakage reduction when these betterments are adopted. This paper is very new because it created a typical analysis method for PWR plant behavior during plant shutdown procedure which conventional RETRAN transient analyses rarely dealt with. Also the event time is very long. To carry out this analysis successfully, I devised new models such as an Residual Heat Removal System (RHR) model etc. and simplified parts of the conventional model. Based on the analysis results, I confirmed that leakage can be reduced by about 30% by adopting these betterments. Then the Japan Atomic Power Company (JAPC) modified the operational procedure for reactor primary coolant leakage events adopting these betterments. (author)

  8. Detailed CATHENA Model of the Wolsong 1 Pressure and Inventory Control System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, K.H. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    The Detailed CATHENA model of Wolsong 1 is development to be able to simulate a theramal hydraulic behavior of heat transport system(HTS) Pressure and Inventory Control System(PNIC) at any power operation condition and during transient events such as mall LOCA(small loss of coolant inventory and small breaks in the primary system piping) and non-LOCA(loss of reactivity regulation, loss of flow, loss if Class IV power, loss of PNIC). (author). 12 refs., 7 figs., 6 tabs.

  9. Enriched boric acid as an optimized neutron absorber in the EPR primary coolant

    International Nuclear Information System (INIS)

    Cosse, Christelle; Jolivel, Fabienne; Berger, Martial

    2012-09-01

    This paper focuses on one of the most important EPR PWR reactor design optimizations, through primary coolant conditioning by enriched boric acid (EBA). On PWRs throughout the world, boric acid has already been implemented in primary coolant and associated auxiliary systems for criticality control, due to its high Boron 10 neutron absorption cross section. Boric acid also allows primary coolant pH 300C control in combination with lithium hydroxide in many PWRs. The boric acid employed in the majority of existing PWRs is the 'natural' one, with a typical isotopic atomic abundance in Boron 10 about 19.8 at.%. However, EPR requirements for neutron management are more important, due to its fully optimized design compared to older PWRs. From the boron point of view, it means that criticality could be controlled either by increased 'natural' Boron concentrations or by using EBA. Comparatively to 'natural' boric acid, EBA allows for: - the use of smaller storage volumes for an identical total Boron concentration, or lower total Boron concentration if the tank volumes are kept identical. The latter also reduces the risks of boric acid crystallization, in spite of increased neutron-absorbing properties - the application of an evolutionary chemistry operating regime called Advanced pH Control, making it possible to maintain a constant pH 300C value at 7.2 in the primary coolant at nominal conditions throughout entire cycles. This optimized stability of pH 300C will contribute to reduce the consequences of contamination of the reactor coolant system by corrosion products, and consequently, all related issues - the reduction of borated liquid wastes, thanks to maximal recycling resulting from EPR design. The increased design costs associated with EBA are consequently compensated by a reduced total consumption of this chemical. Therefore, the basic design choice for the EPR is the use of EBA. For the Flamanville 3 EPR, according to the above

  10. A comparative neutronic analysis of KALIMER breeder core using Na or Pb-Bi coolant

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic study has been conducted on KALIMER breeder core according to the replacement of sodium coolant by Pb-Bi coolant. Since the atomic weight of Pb and Bi is about 9 times heavier than that of Na, the energy loss by neutron colliding with Pb-Bi nucleus will be very small. Therefore, the reactor with Pb-Bi coolant will have a harder neutron spectrum than that with Na coolant. Consequently, the breeding ratio and burnup reactivity swing is expected to be enhanced. In addition, when Pb-Bi coolant is voided, a negative coolant void coefficient can be obtained by the net effects of smaller spectrum hardening and large neutron leakage. As a result, the breeding ratio was increased from 1.18 to 1.23 and burnup reactivity swing was reduced from 631 pcm to 150 pcm. When the coolant in the whole region of active core is voided, the coolant void coefficient was found to be -539 and -264 pcm at BOEC and EOEC, respectively. In the local voided case, the smaller coolant void coefficient was obtained than that of Na coolant. Accordingly, the use of Pb-Bi coolant in KALIMER gives an advantage of higher breeding ratio, smaller burnup reactivity swing and negative coolant void coefficient without any significant degradation of nuclear performance

  11. Method and apparatus for suppressing water-solid overpressurization of coolant in nuclear reactor power apparatus

    International Nuclear Information System (INIS)

    Aanstad, O.J.; Sklencar, A.M.

    1983-01-01

    A reactor-coolant relief valve is opened for increase in mass influx if the rate of change of coolant pressure exceeds a setpoint during a predetermined interval, if, during this interval, the coolant temperature is less than a setpoint and if the level of the fluid in the pressurizer is above a predetermined setpoint (water-solid state). (author)

  12. Tritium recovery from fusion blankets using solid lithium compounds. I. Design and minimization of tritium inventory

    International Nuclear Information System (INIS)

    Powell, J.R.

    1975-01-01

    Tritium blanket inventories of 100 curies/MW(e) are readily achievable, and inventories as low as 10 curies/MW(e) are possible for blankets with small lithium compound particulates (less than or equal to 50μ) at T greater than or equal to 800 0 C. Of the three release modes [A - to the main coolant (e.g., He) stream; B - to a separate processing circuit; and C - to the plasma region], mode A appears optimum for blankets using gas-cooled metallic structures (e.g., Al, stainless), while mode C appears optimum for high temperature refractory (e.g., C, SiC) structures. The greater structural complexity of mode B makes it less attractive than modes A and C. No recovery method is required for mode C release. With mode A release, tritium inventory in the coolant circuits ranges from 1 to 10 curies/MW(e), depending on processing parameters. Tritium leak rates to the environment during normal operation can be kept to less than or equal to 10 -3 curies/MW(e) per day with low permeability barriers. In general, a mixture of T 2 and T 2 O is present in the coolant stream. Three methods of tritium recovery are examined: (1) Conversion to T 2 followed by absorption in a metal hydride bed. (2) Conversion to T 2 followed by condensation at approximately 6 0 K. (3) Conversion to T 2 O followed by condensation at approximately 100 0 K

  13. LOFT data reduction

    International Nuclear Information System (INIS)

    Norman, N.L.

    1975-08-01

    The Loss-of-Fluid Test (LOFT) Facility is an experimental facility built around a ''scaled'' version of a large pressurized water reactor (LPWR). LOFT will be used to run loss-of-coolant experiments (LOCEs) and to acquire the necessary data required ''to evaluate the adequacy and improve the analytical methods currently used to predict the loss-of-coolant accident (LOCA) response of LPWRs'' and ''to identify and investigate any unexpected event(s) or threshold(s) in the response of either the plant or the engineered safety features and develop analytical techniques that adequately describe and account for the unexpected behavior(s)''. During the LOCE this required data will be acquired and recorded in both analog and digital modes. Subsequent to the test the analog data will also be converted to the raw digital mode. This raw digital data will be converted to the desired engineering units using the LOFT Data Reduction System. This system is implemented on the IBM 360/75 and is a part of a commercially available data processing program called MAC/RAN III. The theory of reducing LOFT data to engineering units and the application of the MAC/ RAN III system to accomplish this reduction is given. (auth)

  14. Fuel gases generation in the primary contention during a coolant loss accident in a nuclear power plant with reactor type BWR

    International Nuclear Information System (INIS)

    Salaices, M.; Salaices, E.; Ovando, R.; Esquivias, J.

    2011-11-01

    During an accident design base of coolant loos, the hydrogen gas can accumulate inside the primary contention as a result of several generation mechanisms among those that are: 1) the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant, 2) the metals corrosion for the solutions used in the emergency cooling and dew of the contention, and 3) the radio-decomposition of the cooling solutions of post-accident emergency. In this work the contribution of each generation mechanism to the hydrogen total in the primary contention is analyzed, considering typical inventories of zirconium, zinc, aluminum and fission products in balance cycle of a reactor type BWR. In the analysis the distribution model of fission products and hydrogen production proposed in the regulator guide 1.7, Rev. 2 of the US NRC was used. The results indicate that the mechanism that more contributes to the hydrogen generation at the end of a period of 24 hours of initiate the accident is the radio-decomposition of the cooling solutions of post-accident emergency continued by the reaction metal-water involving the zirconium of the fuel cladding with the reactor coolant, and lastly the aluminum and zinc oxidation present in the primary contention. However, the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant is the mechanism that more contributes to the hydrogen generation in the first moments after the accident. This study constitutes the first part of the general analysis of the generation, transport and control of fuel gases in the primary contention during a coolant loss accident in BWRs. (Author)

  15. Final report of the project. Emission of nitrogen oxides by the soils. Measures, modelization, land registry and inventory. Impact on the air quality, the climatic change and the evaluation of possibilities of these emissions reduction

    International Nuclear Information System (INIS)

    Serca, D.; Cortinovis, J.; Laville, P.; Gabrielle, B.; Beekmann, M.; Ravetta, F.; Henault, C.

    2007-01-01

    This project deals with NOx biosphere-atmosphere exchanges, NOx being considered as an indirect greenhouse gases (tropospheric O 3 precursor). It relies on four laboratory specialized both on the soil-plant-atmosphere interface, and on the atmospheric chemistry. Methodology used bear on a set of in situ and laboratory measurements aiming at improving existing emission parameterization, or building new ones for the agro-ecosystems encountered in France or Europe. In situ measurements allowed to study the emission phenology in relation with relevant environmental parameters (meteorological, soil characteristics, and agricultural). Laboratory measurements allowed to establish an emission algorithm related to the three main parameters, that is, soil temperature, water and ammonia content. This algorithm has been adapted and simplified to spatialize the emissions at the France level. This spatialization was performed using environmental parameters accessible through data base (ECMWF) or agricultural statistics (such as nitrogen inputs, land use, crops). Spatial and temporal extrapolation allowed reaching the main objective, that is, to build a national inventory for a reference year (2002). This inventory allowed determining the contribution of NOx emitted by soil as compared to total emitted NOx, and the proportion of NOx emitted by soil due to fertilizer use. Our study, based on 57% of the French used agricultural area, and extrapolated to the whole arable surface, shows that soils would be responsible of about 5% of the total NOx emissions. On these 5%, 20%, which finally is a rather low percentage, would be linked to fertilizer use. The impact of these emissions on the atmospheric chemistry has been evaluated using the CHIMERE chemistry-transport model. We found that NOx emissions from soil would be of minor importance when compared to the industrial emissions, being a factor of ten lower in France. As a matter of consequence, the impact of the emissions on the

  16. Hydrogen inventory in gallium

    International Nuclear Information System (INIS)

    Mazayev, S.N.; Prokofiev, Yu.G.

    1994-01-01

    Investigations of hydrogen inventory in gallium (99.9%) were carried out after saturation both from molecular phase and from glow discharge plasma at room temperature, 370 and 520 K. Saturation took place during 3000 s under hydrogen pressure of 20 Pa, and ion flux was about 1x10 15 ions/cm 2 s with an energy about 400 eV during discharge. Hydrogen concentration in Ga at room temperature and that for 370 K by the saturation from gaseous phase was (2-3)x10 14 cm -3 Pa -1/2 . Hydrogen concentration at temperature 520 K increased by five times. Inventory at room temperature for irradiation from discharge was 7x10 16 cm -3 at the dose about 3x10 18 ions/cm 2 . It was more than inventory at temperature 520 K by four times and more than maximum inventory from gaseous phase at 520 K by a factor of 10. Inventory increased when temperature decreased. Diffusion coefficient D=0.003 exp(-2300/RT) cm 2 /s, was estimated from temperature dependence. ((orig.))

  17. Nuclear materials inventory plan

    International Nuclear Information System (INIS)

    Doerr, R.W.; Nichols, D.H.

    1982-03-01

    In any processing, manufacturing, or active storage facility it is impractical to assume that any physical security system can prevent the diversion of Special Nuclear Material (SNM). It is, therefore, the responsibility of any DOE Contractor, Licensee, or other holder of SNM to provide assurance that loss or diversion of a significant quantity of SNM is detectable. This ability to detect must be accomplishable within a reasonable time interval and can be accomplished only by taking physical inventories. The information gained and decisions resulting from these inventories can be no better than the SNM accounting system and the quality of measurements performed for each receipt, removal and inventory. Inventories interrupt processing or production operations, increase personnel exposures, and can add significantly to the cost of any operation. Therefore, realistic goals for the inventory must be defined and the relationship of the inherent parameters used in its validation be determined. Purpose of this document is to provide a statement of goals and a plan of action to achieve them

  18. Fuel cladding interaction with water coolant in power reactors

    International Nuclear Information System (INIS)

    1985-11-01

    Water coolant chemistry and corrosion processes are important factors in reliable operation of NPP's, as at elevated temperatures water is aggressive towards structural materials. Water regimes for commercial Pressurized Water Reactors and Boiling Water Reactors were developed and proved to be satisfactory. Nevertheless, studies of operation experience continue and an amount of new Research and Development work is being conducted for further improvements of technology and better understanding of the physicochemical nature of those processes. In this report information is presented on the IAEA programme on fuel element cladding interaction with water coolant. Some results of this survey and recommendations made by the group of consultants who participated in this work are given as well as recommendations for continuation of this study. Separate abstracts were prepared for 6 papers of this report

  19. Vision system for precision alignment of coolant channels

    International Nuclear Information System (INIS)

    Kar, S.; Rao, Y.V.; Valli Kumar; Joshi, D.G.; Chadda, V.K.; Nigam, R.K.; Kayal, J.N.; Panwar, S.; Sinha, R.K.

    1997-01-01

    This paper describes a vision system which has been developed for precision alignment of Coolant Channel Replacement Machine (CCRM) with respect to the front face of the coolant channel under repair/replacement. It has provisions for automatic as well as semi-automatic alignment. A special lighting scheme has been developed for providing illumination to the front face of the channel opening. This facilitates automatic segmentation of the digitized image. The segmented image is analysed to obtain the centre of the front face of the channel opening and thus the extent of misalignment i.e. offset of the camera with respect to the front face of the channel opening. The offset information is then communicated to the PLC to generate an output signal to drive the DC servo motors for precise positioning of the co-ordinate table. 2 refs., 5 figs

  20. Nonlinear dynamic analysis of nuclear reactor primary coolant systems

    International Nuclear Information System (INIS)

    Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.

    1979-01-01

    The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development

  1. N13 - based reactor coolant pressure boundary leakage system

    International Nuclear Information System (INIS)

    Dissing, E.; Marbaeck, L.; Sandell, S.; Svansson, L.

    1980-05-01

    A system for the monitoring of leakage of coolant from the reactor coolant pressure boundary and auxiliary systems to the reactor containment, based on the detection of the N13 content in the atmosphere, has been tested. N13 is produced from the oxyegen of the reactor water via the recoil photon nuclear process H1 + 016 + He4. The generation of N13 is therefore independent of fuel element leakage and of the corrosion product content in the water. In the US AEC regulatory guide 1.45 has a leakage increase of 4 liter/ min been suggested as the response limit. The experiments carried out in Ringhals indicate, that with the accomplishment of minor improvements in the installation, a 4 liter/min leakage to the containment will give rise to a signal with a random error range of +- 0.25 liter/min, 99.7 % confidence level. (author)

  2. Rapid thermal transient in a reactor coolant channel

    International Nuclear Information System (INIS)

    Cherubini, A.

    1986-01-01

    This report deals with the problem of one-dimensional thermo-fluid-dynamics in a reactor coolant channel, with the aim of determining the evolution in time of the coolant (H*L2O), in one-and/or two-phase regimes, subjected to a great and rapid increase in heat flux (accident conditions). To this aim, the following are set out: a) the physical model used; b) the equations inherent in the above model; c) the numerical methods employed to solve them by means of a computer programme called CABO (CAnale BOllente). Next a typical problem of rapid thermal transient resolved by CABO is reported. The results obtained, expressed in form of graphs, are fully discussed. Finally comments on possible developments of CABO follow

  3. Coolant Chemistry Control: Oxygen Mass Transport in Lead Bismuth Eutectic

    International Nuclear Information System (INIS)

    Weisenburger, A.; Mueller, G.; Bruzzese, C.; Glass, A.

    2015-01-01

    In lead-bismuth cooled transmutation systems, oxygen, dissolved in the coolant at defined quantities, is required for stable long-term operation by assuring the formation of protective oxide scales on structural steel surfaces. Extracted oxygen must be permanently delivered to the system and distributed in the entire core. Therefore, coolant chemistry control involves detailed knowledge on oxygen mass transport. Beside the different flow regimes a core might have stagnant areas at which oxygen delivery can only be realised by diffusion. The difference between oxygen transport in flow paths and in stagnant zones is one of the targets of such experiments. To investigate oxygen mass transport in flowing and stagnant conditions, a dedicated facility was designed based on computational fluid dynamics (CFD). CFD also was applied to define the position of oxygen sensors and ultrasonic Doppler velocimetry transducers for flow measurements. This contribution will present the test facility, design relevant CFD calculations and results of first tests performed. (authors)

  4. Health physics aspects of processing EBR-I coolant

    International Nuclear Information System (INIS)

    Burke, L.L.; Thalgott, J.O.; Poston, J.W. Jr.

    1998-01-01

    The sodium-potassium reactor coolant removed from the Experimental Breeder Reactor Number One after a partial reactor core meltdown had been stored at the Idaho National Engineering and Environmental Laboratory for 40 years. The State of Idaho considered this waste the most hazardous waste stored in the state and required its processing. The reactor coolant was processed in three phases. The first phase converted the alkali metal into a liquid sodium-potassium hydroxide. The second phase converted this caustic to a liquid sodium-potassium carbonate. The third phase solidified the sodium-potassium carbonate into a form acceptable for land disposal. Health physics aspects and dose received during each phase of the processing are discussed

  5. Qualification test of a main coolant pump for SMART pilot

    International Nuclear Information System (INIS)

    Park, Sang Jin; Yoon, Eui Soo; Oh, Hyong Woo

    2006-01-01

    SMART Pilot is a multipurpose small capacity integral type reactor. Main Coolant Pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of 310 .deg. C and 14.7 MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present work, a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and life-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP

  6. Pressurized-water coolant nuclear reactor steam generator

    International Nuclear Information System (INIS)

    Mayer, H.; Schroder, H.J.

    1975-01-01

    A description is given of a pressurized-water coolant nuclear reactor steam generator having a vertical housing for the steam generating water and containing an upstanding heat exchanger to which the pressurized-water coolant passes and which is radially surrounded by a guide jacket supporting a water separator on its top. By thermosiphon action the steam generating water flows upward through and around the heat exchanger within the guide chamber to the latter's top from which it flows radially outwardly and downwardly through a down draft space formed between the outside of the jacket and the housing. The water separator discharges separated water downwardly. The housing has a feedwater inlet opening adjacent to the lower portion of the heat exchanger, providing preheating of the introduced feedwater. This preheated feedwater is conveyed by a duct upwardly to a location where it mixes with the water discharged from the water separator

  7. Device for preventing leakage of coolant in nuclear fuel assembly

    International Nuclear Information System (INIS)

    Kobayashi, Yukio; Sekiguchi, Mamoru; Yoshida, Hideo.

    1975-01-01

    Object: To prevent leakage of coolant from between lower tie plate and channel box without causing deformation of the channel box and also without the possibility of disturbing the installation and removal of the box by the provision of a thin plate provided with leakage holes for the lower tie plate. Structure: Static water pressure within the lower tie plate is adapted to act upon the bear side of a flat plate for leakage prevention through leakage holes formed in the tie plate, thus urging the flat plate against the channel box inner surface. Meanwhile, static water pressure having been led through the leakage holes in the flat plate is adapted to press the flat plate in the vertical direction, thus urging the flat plate against the channel box inner surface and thereby preventing leakage of the coolant through a gap between the channel box and lower tie plate. (Yoshino, Y.)

  8. Sound velocity in the coolant of boiling nuclear reactors

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Parshin, D.A.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    To prevent resonant interaction between acoustic resonance and natural frequencies of FE, FA and RI oscillations, it is necessary to determine the value of EACPO. Based on results of calculations of EACPO and natural frequencies of FR, FA and RI oscillations values, it would be possible to reveal the dynamical loadings on metal that are dangerous for the initiation of cracking process in the early stage of negative condition appearance. To calculate EACPO it is necessary to know the Speed Velocity in Coolant. Now we do not have any data about real values of such important parameter as pressure pulsations propagation velocity in two phase environments, especially in conditions with variations of steam content along the length of FR, with taking into account the type of local resistances, flow geometry etc. While areas of resonant interaction of the single-phase liquid coolant with equipment and internals vibrations are estimated well enough, similar estimations in the conditions of presence of a gas and steam phase in the liquid coolant are inconvenient till now. Paper presents results of calculation of velocity of pressure pulsations distribution in two-phase flow formed in core of RBMK-1000 reactors. Feature of the developed techniques is that not only thermodynamic factors and effect of a speed difference between water and steam in a two phase flow but also geometrical features of core, local resistance, non heterogeneity in the two phase environment and power level of a reactor are considered. Obtained results evidence noticeable decreasing of velocity propagation of pressure pulsations in the presence of steam actions in the liquids. Such estimations for real RC of boiling nuclear reactors with steam-liquid coolant are obtained for the first time. (author)

  9. Calculation of coolant temperature sensitivity related to thermohydraulic parameters

    International Nuclear Information System (INIS)

    Silva, F.C. da; Andrade Lima, F.R. de

    1985-01-01

    It is verified the viability to apply the generalized Perturbation Theory (GPT) in the calculation of sensitivity for thermal-hydraulic problems. It was developed the TEMPERA code in FORTRAN-IV to transient calculations in the axial temperature distribution in a channel of PWR reactor and the associated importance function, as well as effects of variations of thermalhydraulic parameters in the coolant temperature. The results are compared with one which were obtained by direct calculation. (M.C.K.) [pt

  10. Structural integrity analysis of reactor coolant pump flywheel(I)

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1986-01-01

    A reactor coolant pump flywheel is an important machine element to provide the necessary rotational inertia in the event of loss of power to the pumps. This paper attempts to assess the influence of keyways on flywheel stresses and fracture behaviour in detail. The finite element method was used to determine stresses near keyways, including residual stresses, and to establish stress intensity factors for keyway cracks for use in fracture mechanics assessments. (Author)

  11. Evaluation of organic moderator/coolants for fusion breeder blankets

    International Nuclear Information System (INIS)

    Romero, J.B.

    1980-03-01

    Organic coolants have several attractive features for fusion breeder blanket design. Their apparent compatibility with lithium and their ideal physical and nuclear properties allows straight-forward, high performance designs. Radiolytic damage can be reduced to about the same order as comparable fission systems by using multiplier/stripper blanket designs. Tritium recovery from the organic should be straightforward, but additional data is needed to make a better assessment of the economics of the process

  12. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  13. Design of Reactor Coolant Pump Seal Online Monitoring System

    International Nuclear Information System (INIS)

    Ah, Sang Ha; Chang, Soon Heung; Lee, Song Kyu

    2008-01-01

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation

  14. Detection of coolant void in lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Wolniewicz, Peter; Håkansson, Ane; Jansson, Peter

    2015-01-01

    Highlights: • We model the ALFRED LFR using different Monte-Carlo codes. • We study the impact on coolant void on the fission cross section in fission chambers. • We develop a methodology to detect coolant void. • We study the impact of detector fissile coating burn-up. • We conclude that the developed methodology may be an attractive complement to LFR monitoring. - Abstract: Previous work (Wolniewicz et al., 2013) has indicated that using fission chambers coated with 242 Pu and 235 U, respectively, can provide the means of detecting changes in the neutron flux that are connected to coolant density changes in a small lead-cooled fast reactor. Such density changes may be due to leakages of gas into the coolant, which, over time, may coalesce to large bubbles implying a high risk of causing severe damage of the core. By using the ratio of the information provided by the two types of detectors a quantity is obtained that is sensitive to these density changes and, to the first order approximation, independent of the power level of the reactor. In this work we continue the investigation of this proposed methodology by applying it to the Advanced LFR European Demonstrator (ALFRED) and using realistic modelling of the neutron detectors. The results show that the methodology may be used to detect density changes indicating the initial stages of a coalescence process that may result in a large bubble. Also, it is shown that under certain circumstances, large bubbles passing through the core could be detected with this methodology

  15. Trends and experiences in reactor coolant pump motors

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A review of the requirements and features of these motors is given as background along with a discussion of trends and experiences. Included are a discussion of thrust bearings and a review of safety related requirements and design features. Primary coolant pump motors are vertical induction motors for pumps that circulate huge quantities of water through the reactor core to carry the heat generated there to steam generator heat exchangers. 4 refs

  16. Fukushima Daiichi Radionuclide Inventories

    Energy Technology Data Exchange (ETDEWEB)

    Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jankovsky, Zachary Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Radionuclide inventories are generated to permit detailed analyses of the Fukushima Daiichi meltdowns. This is necessary information for severe accident calculations, dose calculations, and source term and consequence analyses. Inventories are calculated using SCALE6 and compared to values predicted by international researchers supporting the OECD/NEA's Benchmark Study on the Accident at Fukushima Daiichi Nuclear Power Station (BSAF). Both sets of inventory information are acceptable for best-estimate analyses of the Fukushima reactors. Consistent nuclear information for severe accident codes, including radionuclide class masses and core decay powers, are also derived from the SCALE6 analyses. Key nuclide activity ratios are calculated as functions of burnup and nuclear data in order to explore the utility for nuclear forensics and support future decommissioning efforts.

  17. Shortening the Xerostomia Inventory

    Science.gov (United States)

    Thomson, William Murray; van der Putten, Gert-Jan; de Baat, Cees; Ikebe, Kazunori; Matsuda, Ken-ichi; Enoki, Kaori; Hopcraft, Matthew; Ling, Guo Y

    2011-01-01

    Objectives To determine the validity and properties of the Summated Xerostomia Inventory-Dutch Version in samples from Australia, The Netherlands, Japan and New Zealand. Study design Six cross-sectional samples of older people from The Netherlands (N = 50), Australia (N = 637 and N = 245), Japan (N = 401) and New Zealand (N = 167 and N = 86). Data were analysed using the Summated Xerostomia Inventory-Dutch Version. Results Almost all data-sets revealed a single extracted factor which explained about half of the variance, with Cronbach’s alpha values of at least 0.70. When mean scale scores were plotted against a “gold standard” xerostomia question, statistically significant gradients were observed, with the highest score seen in those who always had dry mouth, and the lowest in those who never had it. Conclusion The Summated Xerostomia Inventory-Dutch Version is valid for measuring xerostomia symptoms in clinical and epidemiological research. PMID:21684773

  18. Method of injecting iron ion into reactor coolant

    International Nuclear Information System (INIS)

    Ito, Kazuyuki; Sawa, Toshio; Nishino, Yoshitaka; Adachi, Tetsuro; Osumi, Katsumi.

    1988-01-01

    Purpose: To form iron ions stably and inject them into nuclear reactor coolants with no substantial degradation of the severe water quality conditions for reactor coolants. Method: Iron ions are formed by spontaneous corrosion of iron type materials and electroconductivity is increased with the iron ions. Then, the liquids are introduced into an electrolysis vessel using iron type material as electrodes and, thereafter, incorporation of newly added ions other than the iron ions are prevented by supplying electric current. Further, by retaining the iron type material in the packing vessel by the magnetic force therein, only the iron ions are flow out substantially from the packing vessel while preventing the discharge of iron type materials per se or solid corrosion products and then introduced into the electrolysis vessel. Powdery or granular pure iron or carbon steel is used as the iron type material. Thus, iron ions and hydroxides thereof can be injected into coolants by using reactor water at low electroconductivity and incapable of electrolysis. (Kamimura, M.)

  19. Coolant Design System for Liquid Propellant Aerospike Engines

    Science.gov (United States)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  20. On-line real time gamma analysis of primary coolant

    International Nuclear Information System (INIS)

    Kalechstein, W.; Kupca, S.; Lipsett, J.J.

    1985-10-01

    The evolution of failed fuel monitoring at CANDU power stations is briefly summarized and the design of the latest system for failed fuel detection at a multi-unit power station is described. At each reactor, the system employs a germanium spectrometer combined with a novel spectrum analyzer that simultaneously accumulates the gamma-ray spectrum of the coolant and provides the control room with the concentration of radioisotope activity in the coolant for the gaseous fission products Xe-133, Xe-135, Kr-88 and I-131 in real time and with statistical precision independent of count rate. A gross gamma monitor is included to provide independent information on the level of radioactivity in the coolant and extend the measurement range at very high count rates. A central computer system archives spectra received from all four spectrum analyzers and provides both the activity concentrations and the release rates of specified isotopes. Compared with previous systems the current design offers improvements in that the activity concentrations are updated much more frequently, improved tools are provided for long term surveillance of the heat transport system and the monitor is more reliable and less costly

  1. Labelling Of Coolant Flow Anomaly Using Fractal Structure

    International Nuclear Information System (INIS)

    Djainal, Djen Djen

    1996-01-01

    This research deals with the instrumentation of the detection and characterization of vertical two-phase flow coolant. This type of work is particularly intended to find alternative method for the detection and identification of noise in vertical two-phase flow in a nuclear reactor environment. Various new methods have been introduced in the past few years, an attempt to developed an objective indicator off low patterns. One of new method is Fractal analysis which can complement conventional methods in the description of highly irregular fluctuations. In the present work, Fractal analysis was applied to analyze simulated boiling coolant signal. This simulated signals were built by sum random elements in small subchannels of the coolant channel. Two modes are defined and both are characterized by their void fractions. In the case of uni modal -PDF signals, the difference between these modes is relatively small. On other hand, bimodal -PDF signals have relative large range. In this research, Fractal dimension can indicate the characters of that signals simulation

  2. Radiolytic reactions in the coolant of helium cooled reactors

    International Nuclear Information System (INIS)

    Tingey, G.L.; Morgan, W.C.

    1975-01-01

    The success of helium cooled reactors is dependent upon the ability to prevent significant reaction between the coolant and the other components in the reactor primary circuit. Since the thermal reaction of graphite with oxidizing gases is rapid at temperatures of interest, the thermal reactions are limited primarily by the concentration of impurity gases in the helium coolant. On the other hand, the rates of radiolytic reactions in helium are shown to be independent of reactive gas concentration until that concentration reaches a very low level. Calculated steady-state concentrations of reactive species in the reactor coolant and core burnoff rates are presented for current U. S. designed, helium cooled reactors. Since precise base data are not currently available for radiolytic rates of some reactions and thermal reaction rate data are often variable, the accuracy of the predicted gas composition is being compared with the actual gas compositions measured during startup tests of the Fort Saint Vrain high temperature gas-cooled reactor. The current status of these confirmatory tests is discussed. 12 references

  3. Sodium coolant of fast reactors: Experience and problems

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Volchkov, L.G.; Drobyshev, A.V.; Nikulin, M.P.; Kochetkov, L.A.; Alexeev, V.V.

    1997-01-01

    In present report the following subjects are considered: state of the coolant and sodium systems under normal operating condition as well as under decommissioning, disclosing of sodium circuits and liquidation of its consequences, cleaning from sodium and decontamination under repairing works of equipment and circuits. Cleaning of coolant and sodium systems under normal operating conditions and under accident contamination. Cleaning of the equipment under repairing works and during decommissioning from sodium and products of its interaction with water and air. Treatment of sodium waste, taking into account a possibility of sodium fires. It is shown that the state of coolant, cover gas, surfaces of constructive materials which are in contact with them, cleaning systems, formed during installation operation require development of specific technologies. Developed technologies ensured safety operation of sodium cooled installations as in normal operating conditions so in abnormal situations. R and D activities in this field and experience gained provided a solid base for coping with problems arising during decommissioning. Prospective research problems are emphasized where the future efforts should be concentrated in order to improve characteristics of sodium cooled reactors and to make their decommissioning optimal and safe. (author)

  4. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  5. The operating reliability of the reactor coolant pump

    International Nuclear Information System (INIS)

    Grancy, W.

    1996-01-01

    There is a strong tendency among operating companies and manufacturers of nuclear power stations to further increase safety and operating availability of the plant and of its components. This applies also and particularly to reactor coolant pumps for the primary circuit of nuclear power stations of the type PWR. For 3 decades, ANDRITZ has developed and built such pumps and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as bearing and shaft seal. Apart from questions connected with design functioning of the pump there is one question of top priority: the operating reliability of the reactor coolant pump. The pump rotor (together with the rotor of the drive motor) is the only component within the primary system that permanently rotates at high speed during operation of the reactor plant. Many questions concerning design and configuration of such components cannot be answered purely theoretically, or they can only be answered partly. Therefore comprehensive development work and testing was necessary to increase the operating reliability of the pump rotor itself and of its surrounding elements. This contribution describes the current status of development and, as a focal point, discusses shaft sealing solutions elaborated so far. In this connection also a sealing system will be presented which aims for the first time at using a two-stage mechanical seal in reactor coolant pumps

  6. Feasibility study on the type of KALIMER coolant circulation pump

    International Nuclear Information System (INIS)

    Nam, H. Y.; Kim, Y. K.; Lee, Y. B.; Hwang, J. S.; Choi, S. K.

    1997-07-01

    The characteristics of mechanical pump and electromagnetic (EM) pump for liquid sodium coolant in a liquid metal reactor are compared and analysed as a design concept of KALIMER coolant pumps. The type of coolant circulation pump affects the selection of reactor type, economics, and reliability of reactor. Though the mechanical pump has much application experience and give satisfaction to the reliability of developed reactor type, the possibility of development is limited and its large weight and volume have a negative effect on the design of the economical liquid metal reactor. The large scale electromagnetic pump has not been verified yet, but it is expected to be demonstrated in time. Because the size of EM pump is small relative to the mechanical pump, the compact reactor design is possible. Therefore the selection of EM pump can be one of the methods to improve the economics. Since the shape of EM pump can be varied according to the arrangement of electromagnet coils, a new or unique reactor type can be developed easily in the process of KALIMER development. In the view point of economic LMR development, it is desirable to adopt the electromagnetic pump. (author). 50 refs., 11 tabs., 24 figs

  7. A open-quotes zero wasteclose quotes coolant management strategy

    International Nuclear Information System (INIS)

    Kennicott, M.A.

    1994-01-01

    In June of 1992 the Waste Minimization Program at Rocky Flats Plant (RFP) began a study to determine the best methods of managing water-based industrial metalworking fluids in the plant's Tool Manufacturing Shop. The shop was faced with the challenge of managing fluids that could no longer be disposed of in the traditional manner, through the plant's liquid process waste drains, due to a problem they, were having causing in the Liquid Waste Operations Evaporator. The study's goal was to reduce the waste coolants being generated and to reduce worker exposure to a serious health risk. Results of this study and those of a subsequent study to determine relative compatibilities of various coolants and metals, led to the application of a open-quotes zero wasteclose quotes machine coolant management program. This program is currently saving the generation of 10,000 gallons of liquid waste annually, has eliminated worker exposure to harmful bacteria and biocides, and should result in extended machine tool life, increased product quality, fewer rejected parts, and decreases labor costs

  8. Operating experience feedback report: Experience with pump seals installed in reactor coolant pumps manufactured by Byron Jackson

    International Nuclear Information System (INIS)

    Bell, L.G.; O'Reilly, P.D.

    1992-09-01

    This report examines the reactor coolant pump (RCP) seal operating experience through August 1990 at plants with Byron Jackson (B-J) RCPs. ne operating experience examined in this analysis included a review of the practice of continuing operation with a degraded seal. Plants with B-J RCPs that have had relatively good experience with their RCP seals attribute this success to a combination of different factors, including: enhanced seal QA efforts, modified/new seal designs, improved maintenance procedures and training, attention to detail, improved seal operating procedures, knowledgeable personnel involved in seal maintenance and operation, reduction in frequency of transients that stress the seals, seal handling and installation equipment designed to the appropriate precision, and maintenance of a clean seal cooling water system. As more plants have implemented corrective measures such as these, the number of B-J RCP seal failures experienced has tended to decrease. This study included a review of the practice of continued operation with a degraded seal in the case of PWR plants with Byron Jackson reactor coolant pumps. Specific factors were identified which should be addressed in order to safety manage operation of a reactor coolant pump with indications of a degrading seal

  9. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO 2 fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm 3 /s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO 2 fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%

  10. Reduction of nuclear waste with ALMRS

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1993-10-01

    The Advanced Liquid Metal Reactor (ALMR) can operate on LWR discharged material. In the calculation of the reduction of this material in the ALMR the inventory of the core should be taken into account. A high reduction can only be obtained if this inventory is reduced during operation of ALMRs. Then, it is possible to achieve a high reduction upto a factor 100 within a few hundred years. (orig.)

  11. Analysis of actual status of works on technology of heavy liquid metal coolants

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Orlov, Yu.I.; Storozhenko, A.N.

    2014-01-01

    Principle duties in heavy liquid metal coolant technology (HLMC) are provision of the purity of coolant and surfaces of circulation loop for maintenance of design thermohydraulic characteristics, prevention of structural materials corrosion and erosion during long service life and present-day safety precautions on different stages of reactor facility operation. For this reason, current HLMC (Pb-Bi, Pb) technology must include coolant pre-operation and charging; monitoring and regulating of coolant oxygen potential; hydrogen purification of coolant and surfaces of circulation loop from lead oxides-based slags; coolant filtration; reactor cover gas purification from coolant aerosols. The current topical problem is personnel training on the questions of HLMC technology [ru

  12. RELAP5/MOD2 code assessment using a LOFT L2-3 loss of coolant experiment

    International Nuclear Information System (INIS)

    Bang, Young Seok; Chung, Bub Dong; Kim, Hho Jung

    1990-01-01

    The LOFT LOCE L2-3 was simulated using the RELAP5/MOD2 Cycle 36.04 code to assess its capability in predicting the thermal-hydraulic phenomena in LBLOCA of the PWR. The reactor vessel was simulated with two core channels and split downcomer modeling for a base case calculation using the frozen code. The result of the base calculation showed that the code predicted the hydraulic behavior, and the blowdown thermal response at high power region of the core in a reasonable range and that the code had deficiencies in the critical flow model during subcooled-two-phase transition period, in the CHF correlation at high mass flux and in the blowdown rewet criteria. An overprediction of coolant inventory due to the deficiencies yielded the poor prediction of reflood thermal response. A Sensitivity calculation with an updated version from RELAP5/MOD2 Cycle 36.04 improved the prediction of the rewet phenomena

  13. Feeding and purge systems of coolant primary circuit and coolant secondary circuit control of the I sup(123) target

    International Nuclear Information System (INIS)

    Almeida, G.L. de.

    1986-01-01

    The Radiation Protection Service of IEN (Brazilian-CNEN) detected three faults in sup(123)I target cooling system during operation process for producing sup(123)I: a) non hermetic vessel containing contaminated water from primary coolant circuit; possibility of increasing radioactivity in the vessel due to accumulation of contaminators in cooling water and; situation in region used for personnels to arrange and adjust equipments in nuclear physics area, to carried out maintenance of cyclotron and target coupling in irradiation room. The primary circuit was changed by secondary circuit for target coolant circulating through coil of tank, which receive weater from secondary circuit. This solution solved the three problems simultaneously. (M.C.K.)

  14. Membrane technology for treating of waste nanofluids coolant: A review

    Science.gov (United States)

    Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi

    2017-09-01

    The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide

  15. Source term and behavioural parameters for a postulated HIFAR loss-of-coolant accident

    International Nuclear Information System (INIS)

    May, F.G.

    1987-01-01

    The fraction of the fission product inventory which might be released into the atmosphere of the HIFAR reactor containment building (RCB) during a postulated loss-of-coolant accident (LOCA) has been evaluated as a function of time, for each classification of airborne radioactivity. This appraisal will be used as the source term for a computer program, which uses realistic attenuation of the fission product aerosol in a single compartment model with a defined leakrate to predict possible radioactive releases into the environment in a hypothetical bounding case reactor accident which is rather more severe in all major aspects than any single LOCA. Also given are the parameters governing the attenuation of the aerosol and vapours in the atmosphere of the RCB so that their behaviour may be accurately modelled. The source terms for several other types of accident involving the meltdown of fuel elements have also been considered but in less detail than the LOCA case. In some of the cases, the fission products are released directly to atmosphere, so there is no attenuation of the release by deposition within the RCB

  16. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant

    International Nuclear Information System (INIS)

    Elain, L.

    2004-12-01

    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag + ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH) 4 ) 2 , LiB(OH) 4 and AgB(OH) 4 in medium B(OH) 3 )), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  17. Rapid inventory taking system

    International Nuclear Information System (INIS)

    Marsden, P.S.S.F.

    1980-01-01

    A data processing system designed to facilitate inventory taking is described. The process depends upon the earliest possible application of computer techniques and the elimination of manual operations. Data is recorded in optical character recognition (OCR) 'A' form and read by a hand held wand reader. Limited validation checks are applied before recording on mini-tape cassettes. 5 refs

  18. Experimental inventory verification system

    International Nuclear Information System (INIS)

    Steverson, C.A.; Angerman, M.I.

    1991-01-01

    As Low As Reasonably Achievable (ALARA) goals and Department of Energy (DOE) inventory requirements are frequently in conflict at facilities across the DOE complex. The authors wish, on one hand, to verify the presence of correct amounts of nuclear materials that are in storage or in process; yet on the other hand, we wish to achieve ALARA goals by keeping individual and collective exposures as low as social, technical, economic, practical, and public policy considerations permit. The Experimental Inventory Verification System (EIVSystem) is a computer-based, camera-driven system that utilizes image processing technology to detect change in vault areas. Currently in the test and evaluation phase at Idaho National Engineering Laboratory, this system guards personnel. The EIVSystem continually monitors the vault, providing proof of changed status for objects sorted within the vault. This paper reports that these data could provide the basis for reducing inventory requirements when no change has occurred, thus helping implement ALARA policy; the data will also help describe there target area of an inventory when change has been shown to occur

  19. Marine Education Knowledge Inventory.

    Science.gov (United States)

    Hounshell, Paul B.; Hampton, Carolyn

    This 35-item, multiple-choice Marine Education Knowledge Inventory was developed for use in upper elementary/middle schools to measure a student's knowledge of marine science. Content of test items is drawn from oceanography, ecology, earth science, navigation, and the biological sciences (focusing on marine animals). Steps in the construction of…

  20. Calculating Optimal Inventory Size

    Directory of Open Access Journals (Sweden)

    Ruby Perez

    2010-01-01

    Full Text Available The purpose of the project is to find the optimal value for the Economic Order Quantity Model and then use a lean manufacturing Kanban equation to find a numeric value that will minimize the total cost and the inventory size.

  1. Life Cycle Inventory Analysis

    DEFF Research Database (Denmark)

    Bjørn, Anders; Moltesen, Andreas; Laurent, Alexis

    2018-01-01

    of different sources. The output is a compiled inventory of elementary flows that is used as basis of the subsequent life cycle impact assessment phase. This chapter teaches how to carry out this task through six steps: (1) identifying processes for the LCI model of the product system; (2) planning...

  2. The Danish CORINAIR Inventories

    DEFF Research Database (Denmark)

    Winther, M.; Illerup, J. B.; Fenhann, J.

    CORINAIR is the most comprehensive European air emission inventory programme. It consists of a defined emission calculation methodology and software for storing and further data processing. In CORINAIR 28 different emission species are estimated in 11 main sectors which are further sub-divided, a...

  3. Shortening the xerostomia inventory

    NARCIS (Netherlands)

    Thomson, W.M.; Putten, G.J. van der; Baat, C. de; Ikebe, K.; Matsuda, K.; Enoki, K.; Hopcraft, M.S.; Ling, G.Y.

    2011-01-01

    OBJECTIVES: The aim of this study was to determine the validity and properties of the Summated Xerostomia Inventory-Dutch Version in samples from Australia, The Netherlands, Japan, and New Zealand. STUDY DESIGN: Six cross-sectional samples of older people from The Netherlands (n = 50), Australia (n

  4. Student Attitude Inventory - 1971.

    Science.gov (United States)

    Gillmore, Gerald M.; Aleamoni, Lawrence M.

    This 42-item Student Attitude Inventory (SAI) was administered to entering college freshmen at the University of Illinois (see TM 001 015). The SAI items are divided into nine categories on the basis of content as follows: voting behavior, drug usage, financial, Viet Nam war, education, religious behavior, pollution, housing, and alienation. A…

  5. Initial Radionuclide Inventories

    Energy Technology Data Exchange (ETDEWEB)

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement

  6. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    exhibit better heat transfer and nuclear performance metrics. Lighter salts also tend to have more favorable (larger) moderating ratios, and thus should have a more favorable coolant-voiding behavior in-core. Heavy (high-Z) salts tend to have lower heat capacities and thermal conductivities and more significant activation and transmutation products. However, all of the salts are relatively good heat-transfer agents. A detailed discussion of each property and the combination of properties that served as a heat-transfer metric is presented in the body of this report. In addition to neutronic metrics, such as moderating ratio and neutron absorption, the activation properties of the salts were investigated (Table C). Again, lighter salts tend to have more favorable activation properties compared to salts with high atomic-number constituents. A simple model for estimating the reactivity coefficients associated with a reduction of salt content in the core (voiding or thermal expansion) was also developed, and the primary parameters were investigated. It appears that reasonable design flexibility exists to select a safe combination of fuel-element design and salt coolant for most of the candidate salts. Materials compatibility is an overriding consideration for high-temperature reactors; therefore the question was posed whether any one of the candidate salts was inherently, or significantly, more corrosive than another. This is a very complex subject, and it was not possible to exclude any fluoride salts based on the corrosion database. The corrosion database clearly indicates superior container alloys, but the effect of salt identity is masked by many factors which are likely more important (impurities, redox condition) in the testing evidence than salt identity. Despite this uncertainty, some reasonable preferences can be recommended, and these are indicated in the conclusions. The reasoning to support these conclusions is established in the body of this report.

  7. Behaviour of radiation fields in the Spanish PWR by the changes in coolant chemistry and primary system materials

    International Nuclear Information System (INIS)

    Llovet, R.; Fernandez Lillo, E.

    1995-01-01

    The Spanish PWR Owners Group established a program to evaluate the behavior of ex-core radiation fields and discriminate the effects of changes in coolant chemistry and primary system materials. Data from Vandellos, Asco, Almaraz and Trillo NPPs were analyzed Vandellos 2 was chosen as the lead plant and its data were thoroughly studied. The dose-rates evolution could be explained at each plant as a consequence of this sucessful program.Actions derived from the developed knowledge on this field have produced the stabilization or even reduction of radiation fields at these plants

  8. Use of microPCM fluids as enhanced liquid coolants in automotive EV and HEV vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, James C.; Gould, Richard D.

    2001-10-31

    Proof-of-concept experiments using a specific microPCM fluid that potentially can have an impact on the thermal management of automotive EV and HEV systems have been conducted. Samples of nominally 20-micron diameter microencapsulated octacosane and glycol/water coolant were prepared for testing. The melting/freezing characteristics of the fluid, as well as the viscosity, were determined. A bench scale pumped-loop thermal system was used to determine heat transfer coefficients and wall temperatures in the source heat exchanged. Comparisons were made which illustrate the enhancements of thermal performance, reductions of pumping power, and increases of heat transfer which occur with the microPCM fluid.

  9. Analysis of an Advanced Test Reactor Small-Break Loss-of-Coolant Accident with an Engineered Safety Feature to Automatically Trip the Primary Coolant Pumps

    International Nuclear Information System (INIS)

    Polkinghorne, Steven T.; Davis, Cliff B.; McCracken, Richard T.

    2000-01-01

    A new engineered safety feature that automatically trips the primary coolant pumps following a low-pressure reactor scram was recently installed in the Advanced Test Reactor (ATR). The purpose of this engineered safety feature is to prevent the ATR's surge tank, which contains compressed air, from emptying during a small-break loss-of-coolant accident (SBLOCA). If the surge tank were to empty, the air introduced into the primary coolant loop could potentially cause the performance of the primary and/or emergency coolant pumps to degrade, thereby reducing core thermal margins. Safety analysis performed with the RELAP5 thermal-hydraulic code and the SINDA thermal analyzer shows that adequate thermal margins are maintained during an SBLOCA with the new engineered safety feature installed. The analysis also shows that the surge tank will not empty during an SBLOCA even if one of the primary coolant pumps fails to trip

  10. Analysis of proposed gamma-ray detection system for the monitoring of core water inventory in a pressurized water reactor

    International Nuclear Information System (INIS)

    Markoff, D.M.

    1987-12-01

    An initial study has been performed of the feasibility of employing an axial array of gamma detectors located outside the pressure vessel to monitor the coolant in a PWR. A one-dimensional transport analysis model is developed for the LOFT research reactor and for a mock-PWR geometry. The gamma detector response to coolant voiding in the core and downcomer has been determined for both geometries. The effects of various conditions (for example, time after shutdown, materials in the transport path, and the relative void fraction in different water regions) on the detector response are studied. The calculational results have been validated by a favorable comparison with LOFT experimental data. Within the limitations and approximations considered in the analysis, the results indicate that the gamma-ray detection scheme is able to unambiguously respond to changes in the coolant inventory within any vessel water region

  11. Denmark's National Inventory Report 2010

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Lyck, Erik; Mikkelsen, Mette Hjorth

    2010-01-01

    This report is Denmark's National Inventory Report 2010. The report contains information on Denmark's emission inventories for all years' from 1990 to 2008 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2.......This report is Denmark's National Inventory Report 2010. The report contains information on Denmark's emission inventories for all years' from 1990 to 2008 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2....

  12. Inventory of radioactive corrosion products on the primary surfaces and release during shutdown in Ringhals 2

    International Nuclear Information System (INIS)

    Aronsson, O.

    1994-01-01

    In Ringhals 2 a retrospective study using gamma scans of system surfaces, fuel crud sampling and reactor coolant analyses during operation and shutdown has been done. The data have been used to prepare a balance of activity inventory. The inventory has been fairly stable from 1986 to 1993, expressed as a gamma source term. The steam generator replacement in 1989 removed some 40-50% of the Co-60 inventory in the reactor system. After the steam generator replacement, the gamma source term has got an increasing contribution from Co-58, absolutely as well as relatively. The reason for this is probably the switch from high pH operation to modified pH operation. Corrosion from fresh alloy 690 surfaces in the new steam generators is probably another contributing factor. The inventory and production rate of Co-60 is decreasing over the years. It has also been found that clean-up of the reactor coolant during start-up, operation, and shutdown as well as the fuel pool during refuelling removes about the same amounts of Co-60. (author). 11 figs., 15 refs

  13. Coolant Mixing in a Pressurized Water Reactor: Deboration Transients, Steam-Line Breaks, and Emergency Core Cooling Injection

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael; Grunwald, Gerhard; Hoehne, Thomas; Kliem, Soeren; Rohde, Ulrich; Weiss, Frank-Peter

    2003-01-01

    The reactor transient caused by a perturbation of boron concentration or coolant temperature at the inlet of a pressurized water reactor (PWR) depends on the mixing inside the reactor pressure vessel (RPV). Initial steep gradients are partially lessened by turbulent mixing with coolant from the unaffected loops and with the water inventory of the RPV. Nevertheless the assumption of an ideal mixing in the downcomer and the lower plenum of the reactor leads to unrealistically small reactivity inserts. The uncertainties between ideal mixing and total absence of mixing are too large to be acceptable for safety analyses. In reality, a partial mixing takes place. For realistic predictions it is necessary to study the mixing within the three-dimensional flow field in the complicated geometry of a PWR. For this purpose a 1:5 scaled model [the Rossendorf Coolant Mixing Model (ROCOM) facility] of the German PWR KONVOI was built. Compared to other experiments, the emphasis was put on extensive measuring instrumentation and a maximum of flexibility of the facility to cover as much as possible different test scenarios. The use of special electrode-mesh sensors together with a salt tracer technique provided distributions of the disturbance within downcomer and core entrance with a high resolution in space and time. Especially, the instrumentation of the downcomer gained valuable information about the mixing phenomena in detail. The obtained data were used to support code development and validation. Scenarios investigated are the following: (a) steady-state flow in multiple coolant loops with a temperature or boron concentration perturbation in one of the running loops, (b) transient flow situations with flow rates changing with time in one or more loops, such as pump startup scenarios with deborated slugs in one of the loops or onset of natural circulation after boiling-condenser-mode operation, and (c) gravity-driven flow caused by large density gradients, e.g., mixing of cold

  14. Applications of inventory difference tool at Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Hench, K.W.; Longmire, V.; Yarbro, T.F.; Zardecki, A.

    1998-01-01

    A prototype computer program reads the inventory entries directly from the Microsoft Access database. Based on historical data, the program then displays temporal trends and constructs a library of rules that encapsulate the system behavior. The analysis of inventory data is illustrated using a combination of realistic and simulated facility examples. Potential payoffs of this methodology include a reduction in time and resources needed to perform statistical tests and a broad applicability to DOE needs such as treaty verification

  15. Analysis of the VVER-1000 coolant transient benchmark phase 1 with the code system RELAP5/PARCS

    International Nuclear Information System (INIS)

    Victor Hugo Sanchez Espinoza

    2005-01-01

    Full text of publication follows: As part of the reactor dynamics activities of FZK/IRS, the qualification of best-estimate coupled code systems for reactor safety evaluations is a key step toward improving their prediction capability and acceptability. The VVER-1000 Coolant Transient Benchmark Phase 1 represents an excellent opportunity to validate the simulation capability of the coupled code system RELAP5/PACRS regarding both the thermal hydraulic plant response (RELAP5) using measured data obtained during commissioning tests at the Kozloduy nuclear power plant unit 6 and the neutron kinetics models of PARCS for hexagonal geometries. The Phase 1 is devoted to the analysis of the switching on of one main coolant pump while the other three pumps are in operation. It includes the following exercises: (a) investigation of the integral plant response using a best-estimate thermal hydraulic system code with a point kinetics model (b) analysis of the core response for given initial and transient thermal hydraulic boundary conditions using a coupled code system with 3D-neutron kinetics model and (c) investigation of the integral plant response using a best-estimate coupled code system with 3D-neutron kinetics. Already before the test, complex flow conditions exist within the RPV e.g. coolant mixing in the upper plenum caused by the reverse flow through the loop-3 with the stopped pump. The test is initiated by switching on the main coolant pump of loop-3 that leads to a reversal of the flow through the respective piping. After about 13 s the mass flow rate through this loop reaches values comparable with the one of the other loops. During this time period, the increased primary coolant flow causes a reduction of the core averaged coolant temperature and thus an increase of the core power. Later on, the power stabilizes at a level higher than the initial power. In this analysis, special attention is paid on the prediction of the spatial asymmetrical core cooling during

  16. Investigations of the VVER-1000 coolant transient benchmark phase 1 with the coupled code system RELAP5/PARCS

    International Nuclear Information System (INIS)

    Sanchez-Espinoza, Victor Hugo

    2008-07-01

    As part of the reactor dynamics activities of FZK/IRS, the qualification of best-estimate coupled code systems for reactor safety evaluations is a key step toward improving their prediction capability and acceptability. The VVER-1000 Coolant Transient Benchmark Phase 1 represents an excellent opportunity to validate the simulation capability of the coupled code system RELAP5/PACRS regarding both the thermal hydraulic plant response (RELAP5) using measured data obtained during commissioning tests at the Kozloduy nuclear power plant unit 6 and the neutron kinetics models of PARCS for hexagonal geometries. The Phase 1 is devoted to the analysis of the switching on of one main coolant pump while the other three pumps are in operation. It includes the following exercises: (a) investigation of the integral plant response using a best-estimate thermal hydraulic system code with a point kinetics model (b) analysis of the core response for given initial and transient thermal hydraulic boundary conditions using a coupled code system with 3D-neutron kinetics model and (c) investigation of the integral plant response using a best-estimate coupled code system with 3D-neutron kinetics. Already before the test, complex flow conditions exist within the RPV e.g. coolant mixing in the upper plenum caused by the reverse flow through the loop-3 with the stopped pump. The test is initiated by switching on the main coolant pump of loop-3 that leads to a reversal of the flow through the respective piping. After about 13 s the mass flow rate through this loop reaches values comparable with the one of the other loops. During this time period, the increased primary coolant flow causes a reduction of the core averaged coolant temperature and thus an increase of the core power. Later on, the power stabilizes at a level higher than the initial power. In this analysis, special attention is paid on the prediction of the spatial asymmetrical core cooling during the test and its effects on the

  17. Investigations of the VVER-1000 coolant transient benchmark phase 1 with the coupled code system RELAP5/PARCS

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Espinoza, Victor Hugo

    2008-07-15

    As part of the reactor dynamics activities of FZK/IRS, the qualification of best-estimate coupled code systems for reactor safety evaluations is a key step toward improving their prediction capability and acceptability. The VVER-1000 Coolant Transient Benchmark Phase 1 represents an excellent opportunity to validate the simulation capability of the coupled code system RELAP5/PACRS regarding both the thermal hydraulic plant response (RELAP5) using measured data obtained during commissioning tests at the Kozloduy nuclear power plant unit 6 and the neutron kinetics models of PARCS for hexagonal geometries. The Phase 1 is devoted to the analysis of the switching on of one main coolant pump while the other three pumps are in operation. It includes the following exercises: (a) investigation of the integral plant response using a best-estimate thermal hydraulic system code with a point kinetics model (b) analysis of the core response for given initial and transient thermal hydraulic boundary conditions using a coupled code system with 3D-neutron kinetics model and (c) investigation of the integral plant response using a best-estimate coupled code system with 3D-neutron kinetics. Already before the test, complex flow conditions exist within the RPV e.g. coolant mixing in the upper plenum caused by the reverse flow through the loop-3 with the stopped pump. The test is initiated by switching on the main coolant pump of loop-3 that leads to a reversal of the flow through the respective piping. After about 13 s the mass flow rate through this loop reaches values comparable with the one of the other loops. During this time period, the increased primary coolant flow causes a reduction of the core averaged coolant temperature and thus an increase of the core power. Later on, the power stabilizes at a level higher than the initial power. In this analysis, special attention is paid on the prediction of the spatial asymmetrical core cooling during the test and its effects on the

  18. Procedure for taking physical inventories

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This session is intended to apprise one of the various aspects of procedures and routines that Exxon Nuclear uses with respect to its nuclear materials physical inventory program. The presentation describes how plant physical inventories are planned and taken. The description includes the planning and preparation for taking the inventory, the clean-out procedures for converting in-process material to measurable items, the administrative procedures for establishing independent inventory teams and for inventorying each inventory area, the verification procedures used to include previously measured tamper-safed items in the inventory, and lastly, procedures used to reconcile the inventory and calculate MUF (materials unaccounted for). The purpose of the session is to enable participants to: (1) understand the planning and pre-inventorty procedures and their importance; (2) understand the need for and the required intensity of clean-out procedures; (3) understand how inventory teams are formed, and how the inventory is conducted; (4) understand the distinction between inventory previously measured tamper-safed items and other materials not so characterized; (5) understand the reconciliation procedures; and (6) calculate a MUF given the book and inventory results

  19. Numerical FEM Analyses of primary coolant system at NPP Temelin

    International Nuclear Information System (INIS)

    Junek, L.; Slovacek, M.; Ruzek, L.; Moulis, P.

    2003-01-01

    The main goal of this paper is to inform about the beginning and first steps of implementation of an aging management system at the Temelin NPP. The aging management system is important not only for achieving the current safety level but also for reaching operational reliability of a production unit equipment above the life time assumed by the original design, typically over 40 years. A method to locate the most prominent degradation regions is described. A global shell model of the primary coolant system including all loops and their components - reactor pressure vessel (RPV), steam generator (SG), main coolant pump (MCP), pressurizer, feed water and steam pipelines system is presented. The results of stress-strain analysis on the measured service parameters base are given. Validation of the results is very important and the method to compare the service measurement data with the numerical results is described. The global/local approach is mentioned and discussed. The effects of the complete global system on the individual components under monitoring are transformed into more accurate local spatial models. The local spatial models are used to analyze the gradual lifetime exhaustion of a facility during its service operation. Two spatial local models are presented, viz. feed water nozzle of SG and main coolant piping system T-brunch. The results of analysis of the local spatial models are processed by the neural network computing method, which is also described. The actual gradual damage of the material of the components under monitoring can be obtained based on the analyses performed and on the results from the neural network in combination with the knowledge of the real material characteristics. The procedures applied are included in the DIALIFE diagnostic system

  20. Inventory Control System by Using Vendor Managed Inventory (VMI

    Directory of Open Access Journals (Sweden)

    Dona Sabila Alzena

    2018-01-01

    Full Text Available The inventory control system has a strategic role for the business in managing inventory operations. Management of conventional inventory creates problems in the stock of goods that often runs into vacancies and excess goods at the retail level. This study aims to build inventory control system that can maintain the stability of goods availability at the retail level. The implementation of Vendor Managed Inventory (VMI method on inventory control system provides transparency of sales data and inventory of goods at retailer level to supplier. Inventory control is performed by calculating safety stock and reorder point of goods based on sales data received by the system. Rule-based reasoning is provided on the system to facilitate the monitoring of inventory status information, thereby helping the process of inventory updates appropriately. Utilization of SMS technology is also considered as a medium of collecting sales data in real-time due to the ease of use. The results of this study indicate that inventory control using VMI ensures the availability of goods ± 70% and can reduce the accumulation of goods ± 30% at the retail level.

  1. Inventory Control System by Using Vendor Managed Inventory (VMI)

    Science.gov (United States)

    Sabila, Alzena Dona; Mustafid; Suryono

    2018-02-01

    The inventory control system has a strategic role for the business in managing inventory operations. Management of conventional inventory creates problems in the stock of goods that often runs into vacancies and excess goods at the retail level. This study aims to build inventory control system that can maintain the stability of goods availability at the retail level. The implementation of Vendor Managed Inventory (VMI) method on inventory control system provides transparency of sales data and inventory of goods at retailer level to supplier. Inventory control is performed by calculating safety stock and reorder point of goods based on sales data received by the system. Rule-based reasoning is provided on the system to facilitate the monitoring of inventory status information, thereby helping the process of inventory updates appropriately. Utilization of SMS technology is also considered as a medium of collecting sales data in real-time due to the ease of use. The results of this study indicate that inventory control using VMI ensures the availability of goods ± 70% and can reduce the accumulation of goods ± 30% at the retail level.

  2. Fuel-coolant interaction-phenomena under prompt burst conditions

    International Nuclear Information System (INIS)

    Jacobs, H.; Young, M.F.; Reil, K.O.

    1979-01-01

    The Prompt Burst Energetics (PBE) experiments conducted at Sandia Laboratories are a series of in-pile tests with fresh uranium oxide or uranium carbide fuel pins in stagnant sodium. Fuel-coolant-interactions in PBE-9S (oxide/sodium system) and PBE-SG2 (carbide/sodium) have been analyzed with the MURTI parametric FCI code. The purpose is to gain insight into possible FCI scenarios in the experiments and sensitivity of results to input parameters. Results are in approximate agreement for the second (triggered) event in PBE-9S (32 MPa peak) and the initial interaction in PBE-SG2

  3. Modelling transient energy release from molten fuel coolant interaction debris

    International Nuclear Information System (INIS)

    Fletcher, D.F.

    1984-05-01

    A simple model of transient energy release in a Molten Fuel Coolant Interaction is presented. A distributed heat transfer model is used to examine the effect of heat transfer coefficient, time available for rapid energy heat transfer and particle size on transient energy release. The debris is assumed to have an Upper Limit Lognormal distribution. Model predictions are compared with results from the SUW series of experiments which used thermite-generated uranium dioxide molybdenum melts released below the surface of a pool of water. Uncertainties in the physical principles involved in the calculation of energy transfer rates are discussed. (author)

  4. In-operation diagnostic system for reactor coolant pump

    International Nuclear Information System (INIS)

    Sugiyama, Mitsunobu; Hasegawa, Ichiro; Kitahara, Hiromichi; Shimamura, Kazuo; Yasuda, Chiaki; Ikeda, Yasuhiro; Kida, Yasuo.

    1996-01-01

    A reactor coolant pump (RCP) is one of the most important rotating machines in the primary loop nuclear power plants. To improve the reliability and of nuclear power plants, a new diagnostic system that enables early detection of RCP faults has been developed. This system is based on continuous monitoring of vibration and other process data. Vibration is an important indicator of mechanical faults providing information on physical phenomena such as changes in dynamic characteristics and excitation forces changes that signal failure or incipient failure. This new system features comparative vibration analysis and simulation to anticipate equipment failure. (author)

  5. PUMP: analog-hybrid reactor coolant hydraulic transient model

    International Nuclear Information System (INIS)

    Grandia, M.R.

    1976-03-01

    The PUMP hybrid computer code simulates flow and pressure distribution; it is used to determine real time response to starting and tripping all combinations of PWR reactor coolant pumps in a closed, pressurized, four-pump, two-loop primary system. The simulation includes the description of flow, pressure, speed, and torque relationships derived through pump affinity laws and from vendor-supplied pump zone maps to describe pump dynamic characteristics. The program affords great flexibility in the type of transients that can be simulated

  6. Graphite beds for coolant filtration at high temperature

    International Nuclear Information System (INIS)

    Heathcock, R.E.; Lacy, C.S.

    1978-01-01

    High temperature filtration will be provided for new Ontario Hydro CANDU heat transport systems. Filtration has been shown to effectively reduce the concentration of circulating corrosion products in our heat transport systems, hence, minimizing the processes of activity transport. This paper will present one option we have for this application; Deep Bed Granular Graphite Filters. The filter system is described by discussing pertinent aspects of its development programme. The compatibility of the filter and the heat transport coolant are demonstrated by results from loop tests, both out- and in-reactor, and by subsequent results from a large filter installation in the NPD NGS heat transport system. (author)

  7. Effects contributing to positive coolant void reactivity in CANDU

    International Nuclear Information System (INIS)

    Whitlock, J.J.; Garland, W.J.; Milgram, M.S.

    1995-01-01

    The lattice cell code WIMS-AECL (Ref. 3) is used to model a typical CANDU lattice cell, using nominal geometric bucklings, the PIJ option, and 69-group Winfrith library. The effect of cell voiding is modeled as a 100% instantaneous removal of coolant from the lattice. This is conservative because of the neglect of time dependence and partial core voiding, considered more plausible in CANDU. Results are grouped into three spectral groups: fast neutrons (0.821 to 10 MeV), epithermal neutrons (0.625 eV to 0.821 MeV), and thermal neutrons (<0.625 eV)

  8. COPDIRC - calculation of particle deposition in reactor coolants

    International Nuclear Information System (INIS)

    Reeks, M.W.

    1982-06-01

    A description is given of a computer code COPDIRC intended for the calculation of the deposition of particulate onto smooth perfectly sticky surfaces in a gas cooled reactor coolant. The deposition is assumed to be limited by transport in the boundary layer adjacent to the depositing surface. This implies that the deposition velocity normalised with respect to the local friction velocity, is an almost universal function of the normalised particle relaxation time. Deposition is assumed similar to deposition in an equivalent smooth perfectly absorbing pipe. The deposition is calculated using 2 models. (author)

  9. Use of flow models to analyse loss of coolant accidents

    International Nuclear Information System (INIS)

    Pinet, Bernard

    1978-01-01

    This article summarises current work on developing the use of flow models to analyse loss-of-coolant accident in pressurized-water plants. This work is being done jointly, in the context of the LOCA Technical Committee, by the CEA, EDF and FRAMATOME. The construction of the flow model is very closely based on some theoretical studies of the two-fluid model. The laws of transfer at the interface and at the wall are tested experimentally. The representativity of the model then has to be checked in experiments involving several elementary physical phenomena [fr

  10. Time-dependent coolant velocity measurements in an operating BWR

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Crowe, R.D.

    1980-01-01

    A method to measure time-dependent fluid velocities in BWR-bundle elements by noise analysis of the incore-neutron-detector signals is shown. Two application examples of the new method are given. The time behaviour of the fluid velocity in the bundle element during a scheduled power excursion of the plant. The change of power was performed by changing the coolant flow through the core The apparent change of the fluid velocity due to thermal elongation of the helix-drive of the TIP-system. A simplified mathematical model was derived for this elongation to use as a reference to check the validity of the new method. (author)

  11. Definition of loss-of-coolant accident radiation source

    International Nuclear Information System (INIS)

    1978-02-01

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist

  12. Comparison of thermohydraulic characteristics in the use of various coolants

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Suda, Kazunori; Yamaguchi, Akira

    2000-11-01

    Numerical calculations were carried out for a free surface sloshing, a thermal stratification, a thermal striping, and a natural convection as key phenomena of in-vessel thermohydraulics in future fast reactor systems with various fluids as coolants. This numerical work was initiated based on a recognition that the fundamental characteristics of the phenomena have been unsolved quantitatively in the use of various coolants. From the analysis for the phenomena, the following results were obtained. [Free Surface Sloshing phenomena] (1) There is no remarkable difference between liquid sodium and liquid Pb-Bi in characteristics of internal flows and free surface characteristics based on Fr number. (2) The AQUA-VOF code has a potential enough to evaluate gas entrainment behavior from the free surface including the internal flow characteristics. [Thermal Stratification Phenomena] (1) On-set position of thermal entrainment process due to dynamic vortex flows was moved to downstream direction with decreasing of Ri number. On the other hand, the position in the case of CO 2 gas was shifted to upstream side with decreasing of Ri number. (2) Destruction speed of the thermal stratification interface was dependent on thermal diffusivity as fluid properties. Therefore it was concluded that an elimination method is necessary for the interface generated in CO 2 gas. [Thermal Striping Phenomena] (1) Large amplitudes of fluid temperature fluctuations was reached to down stream area in the use of CO 2 gas, due to larger fluid viscosity and smaller thermal diffusivity, compared with liquid sodium and liquid Pb-Bi cases. (2) To simulate thermal striping conditions such as amplitude and frequency of the fluid temperature fluctuations, it is necessary for coincidences of Re number for the amplitude and of velocity value for the frequency, in various coolants. [Natural Convection Phynomlena] (1) Fundamental behavior of the natural convection in various coolant follows buoyant jet

  13. Calculational advance in the modeling of fuel-coolant interactions

    International Nuclear Information System (INIS)

    Bohl, W.R.

    1982-01-01

    A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials

  14. Water vapor as a perspective coolant for fast reactors

    International Nuclear Information System (INIS)

    Kalafati, D.D.; Petrov, S.I.

    1978-01-01

    Based on analysis of foreign projects of nuclear power plants with steam-cooled fast reactors, it is shown that low breeding ratio and large doubling time were caused by using nickel alloys, high vapor pressure and small volume heat release. The possibility is shown of obtaining doubling time in the necessary limits of T 2 =10-12 years when the above reasons for steam-cooled reactors are eliminated. Favourable combination of thermophysical and thermodynamic properties of water vapor makes it perspective coolant for power fast reactors

  15. Burnup dependence of coolant void reactivity for ACR-1000 cell

    International Nuclear Information System (INIS)

    Le Tellier, R.; Marleau, G.; Hebert, A.; Roubstov, D.; Altiparmakov, D.; Irish, D.

    2008-01-01

    The Advanced Candu Reactor (ACR-1000) is light water cooled, fueled with enriched uranium and has a smaller lattice pitch than the Candu-6. As a result, the neutronic behavior of the ACR-1000 cell is expected to be somewhat different from that of the Candu-6 leading to a negative coolant void reactivity (CVR). Here we evaluate the CVR for the ACR-1000 cell using the lattice code DRAGON and compare our results with those obtained using the code WIMS-AECL. The differences observed between these two codes for the burnup dependence of the CVR is mainly explained in terms of the specific cell leakage model used by both codes. (authors)

  16. Some observations on simulated molten debris-coolant layer dynamics

    International Nuclear Information System (INIS)

    Greene, G.A.; Klein, J.; Klages, J.; Schwarz, E.; Sanborn, Y.

    1983-04-01

    Experiments are being performed to investigate high temperature liquid-liquid film boiling between a pool of liquid metal and an overlying coolant pool of R-11 or water. Film boiling has been observed to be stable for R-11; however, considerable liquid-liquid contact has been observed with water well beyond the minimum film boiling temperature. Unstable liquid-liquid film boiling of water has been observed to escalate into dispersive, non-energetic vapor explosions when the interface contact temperature exceeded the spontaneous nucleation temperature. Other parametric trends in the data are discussed

  17. Loss of coolant accident at boiling water reactors

    International Nuclear Information System (INIS)

    Ramirez G, R.

    1975-01-01

    A revision is made with regard to the methods of thermohydraulic analysis which are used at present in order to determine the efficiency of the safety systems against loss of coolant at boiling water reactors. The object is to establish a program of work in the INEN so that the personnel in charge of the safety of the nuclear plants in Mexico, be able to make in a near future, independent valuations of the safety systems which mitigate the consequences of the above mentioned accident. (author)

  18. Void fraction calculation in a channel containing boiling coolant

    International Nuclear Information System (INIS)

    Norelli, F.

    1978-01-01

    The problem of void fraction calculation was studied for a channel containing boiling coolant, when a slip ratio correlation is used. Use of fitting (e.g. polinomial or rational algebraic) for slip ratio correlation and the characteristic method are proposed in this work. In this way we are reduced to some elementary quadrature problem. Another problem discussed in the present work concerns what we must consider as ''initial condition'' in any initial value problem, in order to take into account different error distributions in steady state and in successive time-dependent calculations

  19. DETERMINATION OF THE 129I IN PRIMARY COOLANT OF PWR

    Directory of Open Access Journals (Sweden)

    KE CHON CHOI

    2013-02-01

    In this report, the effect of the boron content in a pressurized-water reactor primary coolant on the separation process of 129I was examined, as was the effect of 3H on the measurement of the activity of iodine. As a result, no influence of the boron content and of the simultaneous 3H presence was found with activity concentrations of 3H lower than 50 Bq/mL, and with a boron concentration of less than 2,000 μg/mL.

  20. Reactor coolant pump shaft seal stability during station blackout

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Hill, R.C.; Wensel, R.G.

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries

  1. Reactor coolant pump shaft seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, D B; Hill, R C; Wensel, R G

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries.

  2. National Biological Monitoring Inventory

    International Nuclear Information System (INIS)

    Burgess, R.L.

    1979-01-01

    The National Biological Monitoring Inventory, initiated in 1975, currently consists of four computerized data bases and voluminous manual files. MAIN BIOMON contains detailed information on 1,021 projects, while MINI BIOMON provides skeletal data for over 3,000 projects in the 50 states, Puerto Rico, the Virgin Islands, plus a few in Canada and Mexico. BIBLIO BIOMON and DIRECTORY BIOMON complete the computerized data bases. The structure of the system provides for on-line search capabilities to generate details of agency sponsorship, indications of funding levels, taxonomic and geographic coverage, length of program life, managerial focus or emphasis, and condition of the data. Examples of each of these are discussed and illustrated, and potential use of the Inventory in a variety of situations is emphasized

  3. Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dehjourian, Mehdi; Rahgoshay, Mohmmad; Jahanfamia, Gholamreza [Dept. of Nuclear Engineering, Science and Research Branch, Islamic Azad University of Tehran, Tehran (Iran, Islamic Republic of); Sayareh, Reza [Faculty of Electrical and Computer Engineering, Kerman Graduate University of Technology, Kerman (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

  4. Resolving inventory differences

    International Nuclear Information System (INIS)

    Weber, J.H.; Clark, J.P.

    1991-01-01

    Determining the cause of an inventory difference (ID) that exceeds warning or alarm limits should not only involve investigation into measurement methods and reexamination of the model assumptions used in the calculation of the limits, but also result in corrective actions that improve the quality of the accountability measurements. An example illustrating methods used by Savannah River Site (SRS) personnel to resolve an ID is presented that may be useful to other facilities faced with a similar problem. After first determining that no theft or diversion of material occurred and correcting any accountability calculation errors, investigation into the IDs focused on volume and analytical measurements, limit of error of inventory difference (LEID) modeling assumptions, and changes in the measurement procedures and methods prior to the alarm. There had been a gradual gain trend in IDs prior to the alarm which was reversed by the alarm inventory. The majority of the NM in the facility was stored in four large tanks which helped identify causes for the alarm. The investigation, while indicating no diversion or theft, resulted in changes in the analytical method and in improvements in the measurement and accountability that produced a 67% improvement in the LEID

  5. Procedure for taking physical inventories

    International Nuclear Information System (INIS)

    Boston, R.A.

    1984-01-01

    Physical inventories are taken periodically to meet Company, State and IAEA requirements. Those physical inventories may be verified by IAEA and/or State inspectors. This presentation describes in an introductory but detailed manner the approaches and procedures used in planning, preparing, conducting, reconciling and reporting physical inventories for the Model Plant. Physical inventories are taken for plant accounting purposes to provide an accurate basis for starting and closing the plant material balance. Physical inventories are also taken for safeguards purposes to provide positive assurance that the nuclear materials of concern are indeed present and accounted for

  6. Design technology development of the main coolant pump for an integral reactor

    International Nuclear Information System (INIS)

    Park, J. S.; Lee, J. S.; Kim, M. H.; Kim, D. W.; Kim, J. I.

    2004-01-01

    All of the reactor coolant pump currently used in commercial nuclear power plant were imported from foreign country. Now, the developing program of design technology for the reactor coolant pump will be started in a few future by domestic researchers. At this stage, the design technology of the main coolant pump for an integral reactor is developed based on the regulation of domestic nuclear power plant facilities. The main coolant pump is a canned motor axial pump, which accommodates all constraints required from the integral reactor system. The main coolant pump does not have mechanical seal device because the rotor of motor and the shaft of impeller are the same one. There is no flywheel on the rotating shaft of main coolant pump so that the coastdown duration time is short when the electricity supply is cut off

  7. Analysis of fuel rod behaviour within a rod bundle of a pressurized water reactor under the conditions of a loss of coolant accident (LOCA) using probabilistic methodology

    International Nuclear Information System (INIS)

    Sengpiel, W.

    1980-12-01

    The assessment of fuel rod behaviour under PWR LOCA conditions aims at the evaluation of the peak cladding temperatures and the (final) maximum circumferential cladding strains. Moreover, the estimation of the amount of possible coolant channel blockages within a rod bundle is of special interest, as large coplanar clad strains of adjacent rods may result in strong local reductions of coolant channel areas. Coolant channel blockages of large radial extent may impair the long-term coolability of the corresponding rods. A model has been developed to describe these accident consequences using probabilistic methodology. This model is applied to study the behaviour of fuel rods under accident conditions following the double-ended pipe rupture between collant pump and pressure vessel in the primary system of a 1300 MW(el)-PWR. Specifically a rod bundle is considered consisting of 236 fuel rods, that is subjected to severe thermal and mechanical loading. The results obtained indicate that plastic clad deformations with circumferential clad strains of more than 30% cannot be excluded for hot rods of the reference bundle. However, coplanar coolant channel blockages of significant extent seem to be probable within that bundle only under certain boundary conditions which are assumed to be pessimistic. (orig./RW) [de

  8. A model for calculation of RCS pressure during reflux boiling under reduced inventory conditions and its assessment against PKL data

    International Nuclear Information System (INIS)

    Palmrose, D.E.; Mandl, R.

    1991-01-01

    Based on the occurrence of a number of plant incidents during low power and shutdown operating conditions, the Nuclear Regulatory Commission (NRC) has initiated several programs to better quantify risk during these periods. One specific issue of interest is the loss of residual heat removal (RHR) under reduced coolant inventory conditions. This issue is also of interest in the Federal Republic of Germany and an experiment was performed in the integral PKL-3 experimental facility at Siemens-KWU to supply applicable data. Recently, an effort has been undertaken at the Idaho National Engineering Laboratory (INEL) to identify and analyze the important thermal-hydraulic phenomena in pressurized water reactors following loss of vital AC power and consequent loss of the RHR system during reduced inventory operation. The thermal-hydraulic response of a nuclear steam supply system (NSSS) with a closed reactor coolant system (RCS) to loss of residual heat removal cooling capability is investigated in this report. The specific processes investigated include: boiling of the coolant in the core and reflux condensation in the steam generators, the corresponding pressure increase in the reactor coolant system, the heat transfer mechanisms on the primary and secondary sides of the steam generators, the effects of air or other noncondensible gas on the heat transfer processes, and void fraction distributions on the primary side of the system. Mathematical models of these physical processes were developed and validated against experimental data from the PKL 3B 4.5 Experiment

  9. Utilization of the RELAP4/MOD5/SAS code version in loss of coolant accident in the Angra 1 nuclear power station

    International Nuclear Information System (INIS)

    Sabundjian, G.; Freitas, R.L.

    1991-09-01

    A new version of computer code RELAP4/MOD5 was developed to improve the output. The new version, called RELAP4/MOD5/SAS, prints the main variables in graphical form. In order to check the program, a 36 - volume simulation of the Loss-of-Coolant Accident for Angra - I was performed and the results compared to those of a existing 44 - volume simulation showed a satisfactory agreement with a substantial reduction in computing time. (author)

  10. Preliminary design of reactor coolant pump canned motor for AC600

    International Nuclear Information System (INIS)

    Deng Shaowen

    1998-01-01

    The reactor coolant pump canned motor of AC600 PWR is the kind of shielded motors with high moment of inertia, high reliability, high efficiency and nice starting performance. The author briefly presents the main feature, design criterion and technical requirements, preliminary design, computation results and analysis of performance of AC600 reactor coolant pump canned motor, and proposes some problems to be solved for study and design of AC600 reactor coolant pump canned motor

  11. Experiments for simulating a great leak in the primary coolant circuit of a PWR type reactor

    International Nuclear Information System (INIS)

    Liebig, E.

    1977-01-01

    A loss of coolant accident is to be simulated on a high pressure test rig. The accident is initiated by an externally induced rupture of a pair of rupture-disks installed in a coolant ejection device. Several problems of simulating leaks in the primary coolant circuit of PWR type reactors are dealt with. The selection of appropriate rupture-disks for such experiments is described

  12. Determination of temperature distributions in fast reactor core coolants

    International Nuclear Information System (INIS)

    Tillman, M.

    1975-04-01

    An analytical method of determination of a temperature distribution in the coolant medium in a fuel assembly of a liquid-metal-fast-breeder-reactor (LMFBR) is presented. The temperature field obtained is applied for a constant velocity (slug flow) fluid flowing, parallel to the fuel pins of a square and hexagonal array assembly. The coolant subchannels contain irregular boundaries. The geometry of the channel due to the rod adjacent to the wall (edge rod) differs from the geometry of the other channels. The governing energy equation is solved analytically, assuming series solutions for the Poisson and diffusion equations, and the total solution is superposed by the two. The boundary conditions are specified by symmetry considerations, assembly wall insulation and a continuity of the temperature field and heat fluxes. The initial condition is arbitrary. The method satisfies the boundary conditions on the irregular boundaries and the initial condition by a least squares technique. Computed results are presented for various geometrical forms, with ratio of rod pitch-to-diameter typical for LMFBR cores. These results are applicable for various fast-reactors, and thus the influence of the transient solution (which solves the diffusion equation) on the total depends on the core parameters. (author)

  13. Contact condensation effects in the main coolant pipe

    International Nuclear Information System (INIS)

    Haefner, W.; Fischer, K.

    1990-01-01

    Contact condensation effects may occur in a pressurized water reactor (PWR) after a loss of coolant accident (LOCA) when emergency core cooling (ECC) water is injected contact with escaping steam which is generated within the core. The condensation which takes place may cause a sudden depressurization leading to the formation of water slugs. The interaction between the transient condensation and the inertia of the flow may also result in large amplitude flow and pressure oscillations. These contact condensation effects are of great importance for the mass flow distribution and the coolant water supply to the reactor core. To examine those complex processes, large computer codes are necessary. The development and verification of analytical models requires greatly simplified flow boundary conditions from experiments and a sufficiently large base of experimental data. Separate models have been developed for interfacial exchange of mass, momentum and energy with respect to the associated flow regime. Therefore, an adequate description of the condensation process requires the modeling of two different topics: the prediction of the flow regime and the calculation of the interfacial exchange. (author)

  14. Multi-objective optimization of the reactor coolant system

    International Nuclear Information System (INIS)

    Chen Lei; Yan Changqi; Wang Jianjun

    2014-01-01

    Background: Weight and size are important criteria in evaluating the performance of a nuclear power plant. It is of great theoretical value and engineering significance to reduce the weight and volume of the components for a nuclear power plant by the optimization methodology. Purpose: In order to provide a new method for the optimization of nuclear power plant multi-objective, the concept of the non-dominated solution was introduced. Methods: Based on the parameters of Qinshan I nuclear power plant, the mathematical models of the reactor core, the reactor vessel, the main pipe, the pressurizer and the steam generator were built and verified. The sensitivity analyses were carried out to study the influences of the design variables on the objectives. A modified non-dominated sorting genetic algorithm was proposed and employed to optimize the weight and the volume of the reactor coolant system. Results: The results show that the component mathematical models are reliable, the modified non-dominated sorting generic algorithm is effective, and the reactor inlet temperature is the most important variable which influences the distribution of the non-dominated solutions. Conclusion: The optimization results could provide a reference to the design of such reactor coolant system. (authors)

  15. Loss of Coolant Accidents (LOCA): Study of CAREM Reactor Response

    International Nuclear Information System (INIS)

    Gonzalez, Jose; Gimenez, Marcelo

    2000-01-01

    We analyzed the neutronic and thermohydraulic response of CAREM25 reactor and the safety systems involved in a Loss Of Coolant Accident (LOCA).This parametric analysis considers several break diameters (1/2inch, 3/4inch, 1inch, 1.1/2inch and 2inches) in the vapor zone of the Reactor Pressure Vessel.For each accidental sequence, the successful operation of the following safety systems is modeled: Second Safety System (SSS), Residual Heat Removal System (RHRS) and Safety Injection System (SIS). Availability of only one module is postulated for each system.On the other hand, the unsuccessful operation of all safety systems is postulated for each accidental sequence.In both cases the First Shutdown System (FSS) actuates, and the loss of Steam Generator secondary flow and Chemical and Control of Volume System (CCVS) unavailability are postulated.Maximum loss of coolant flow, reactor power and time for safety systems operation are analyzed, as well as its set point parameters.We verified that safety systems are dimensioned to satisfy the 48 hours cooling criteria

  16. Reactor coolant purification system circulation pumps (CUW pumps)

    International Nuclear Information System (INIS)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  17. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  18. Measuring device for the coolant flowrate in a reactor core

    International Nuclear Information System (INIS)

    Sawa, Toshihiko.

    1983-01-01

    Purpose: To improve the operation performance by enabling direct and accurate measurement for the reactor core recycling flowrate. Constitution: A control rod guide is disposed to the upper end of a control rod drive mechanism housing passing through the bottom of a reactor pressure vessel and it is inserted into the through hole of a reactor core support plate. A water flow passage is formed through the reactor core support plate for the flowrate measurement of coolants recycled within the reactor core. The static pressure difference between the upper and the lower sides of the reactor core support plate is measured by a pressure difference detector of a pressure difference measuring mechanism, and an output signal from the pressure different detector is inputted to a calculation means, in which the amount of the coolants passing through the water flow passage is calculated based on the output signal corresponding to the pressure difference. Then, the total recycling flowrate in the reactor core is determined in the calculation means based on the relation between the measured flowrate and a predetermined total reactor core recycling flowrate. (Horiuchi, T.)

  19. Reactor Coolant Pump Motor Maintenance Experience in Krsko NPP

    International Nuclear Information System (INIS)

    Vukovic, J.; Besirevic, A.; Boljat, Z.

    2016-01-01

    After thirty years of service as well as maintenance in Krsko NPP both original Reactor Coolant Pump (RCP) motors are remanufactured by original vendor Westinghouse and a new one was purchased. Design function of the RCP motor is to drive Reactor Coolant Pump and for coast-down feature during Design Basis Accident. This paper will give a view on maintenance issues of RCP motor during the thirty years of service and maintenance in Krsko NPP to be kept functionally operational. During the processes of remanufacturing inspection and disassembly it was made possible to get a deeper perspective in the motor condition and the wear or fatigue of the motor parts. Parameters like bearing & winding temperature, absolute and relative vibration greatly affect motor operation if not kept inside design margins. Rotational speed causes heat generation at the bearings which is then associated with oil temperatures and as a consequence bearing temperatures. That is why the most critical parts of the motor are the components of upper and lower bearing assembly. The condition of motor stator and rotor assembly technical characteristics shall be explained with respect to influence of demanding environmental conditions that the motor is exposed. Assessment shall be made how does the wear of critical RCP motor parts can influence reliable performance of the motor if not maintained in proper way. Information on upgrades that were done on RCP motor shall be shared: Oil Spillage Protection System (OSPS), Stator upgrades, Dynamic Port, etc. (author).

  20. Heat transfer properties of organic coolants containing high boiling residues

    International Nuclear Information System (INIS)

    Debbage, A.G.; Driver, M.; Waller, P.R.

    1964-01-01

    Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 10 4 to 10 5 . The data was correlated with the equation Nu = 0.015 Re b 0.85 Pr b 0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)

  1. Loss of Coolant Accident Simulation for the Top-Slot break at Cold Leg Focusing on the Loop Seal Reformation under Long Term Cooling with the ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Rok; Park, Yu Sun; Bae, Byoung Uhn; Choi, Nam Hyun; Kang, Kyoung Ho; Choi, Ki Yong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In the present paper, loss of coolant accident for the top-slot break at cold leg was simulated with the ATLAS, which is a thermal-hydraulic integral effect test facility for evolutionary pressurized water reactors (PWRs) of an advanced power reactor of 1400 MWe (APR1400). The simulation was focused on the loop seal reformation under long term cooling condition. During a certain class of Loss of Coolant Accident (LOCA) in a PWR like an advanced power reactor of 1400 MWe (APR1400), the steam volume in the reactor vessel upper plenum and/or upper head may continue expanding until steam blows liquid out of the intermediate leg (U-shaped pump suction cold leg), called loop seal clearing (LSC), opening a path for the steam to be relieved from the break. Prediction of the LSC phenomena is difficult because they are varies for many parameters, which are break location, type, size, etc. This LSC is the major factor that affects the coolant inventory in the small break LOCA (SBLOCA) or intermediate break LOCA (IBLOCA). There is an issue about the loop seal reformation that liquid refills intermediate leg and blocks the steam path after LSC. During the SBLOCA or IBLOCA, the Emergency Core Cooling System (ECCS) is operated. For long term of the top slot small or intermediate break at cold leg, the primary steam condensation by SG heat transfer or SIP, SIT water flooding (reverse flow to loop seal) make loop seal reformation possibly. The primary pressure increase at the top core region due to the steam release blockage by loop seal reformation. And then core level decreases and partial core uncover may occur. The loss of coolant accident for the top-slot break at cold leg was simulated with the ATLAS. The loop seal clearing and loop seal reformation were occurred repeatedly.

  2. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  3. Multi-state reliability for coolant pump based on dependent competitive failure model

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Zhao Xinwen; Chen Ling

    2013-01-01

    By taking into account the effect of degradation due to internal vibration and external shocks. and based on service environment and degradation mechanism of nuclear power plant coolant pump, a multi-state reliability model of coolant pump was proposed for the system that involves competitive failure process between shocks and degradation. Using this model, degradation state probability and system reliability were obtained under the consideration of internal vibration and external shocks for the degraded coolant pump. It provided an effective method to reliability analysis for coolant pump in nuclear power plant based on operating environment. The results can provide a decision making basis for design changing and maintenance optimization. (authors)

  4. Fuel-Coolant Interactions - some Basic Studies at the UKAEA Culham Laboratory

    International Nuclear Information System (INIS)

    Reynolds, J.A.; Dullforce, T.A.; Peckover, R.S.; Vaughan, G.J.

    1976-01-01

    In a hypothetical fault sequence important effects of fuel-coolant interactions include voiding and dispersion of core debris as well as the pressure damage usually discussed. The development of the fuel-coolant interaction probably depends on any pre-mixing Weber break-up that may occur, and is therefore a function of the way the fuel and coolant come together. Four contact modes are identified: jetting, shock tube, drops and static, and Culham's experiments have been mainly concerned with simulating the falling drop mode by using molten tin in water. It was observed that the fuel-coolant interaction is a short series of violent coolant oscillations centred at a localized position on the drop, generating a spray of submillimeter sized debris. The interaction started spontaneously at a specific time after the drop first contacted the water. There was a definite limited fuel-coolant interaction zone on a plot of initial coolant temperature versus initial fuel temperature outside which interactions never occurred. The. interaction time was a function of the initial temperatures. Theoretical scaling formulae are given which describe the fuel-coolant interaction zone and dwell time. Bounds of fuel and coolant temperature below which fuel-coolant interactions do not occur are explained by freezing. Upper bounds of fuel and coolant temperatures above which there were no fuel-coolant interactions are interpreted in terms of heat transfer through vapour films of various thicknesses. In conclusion: We have considered the effects of fuel-coolant interactions in a hypothetical fault sequence, emphasising that debris and vapour production as well as the pressure pulse can be important factors. The fuel-coolant interaction has been classified into types, according to possible modes of mixing in the fault sequence. Culham has been studying one type, the self-triggering of falling drops, by simulant experiments. It is found that there is a definite zone of interaction on a plot

  5. Liquid metal coolants for fusion-fission hybrid system: A neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Renato V.A.; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L., E-mail: claubia@nuclear.ufmg.br [Universidade de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany P. [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on a work already published by the UFMG Nuclear Engineering Department, it was suggested to use different coolant materials in a fusion-fission system after a fuel burnup simulation, including that one used in reference work. The goal is to compare the neutron parameters, such as the effect multiplication factor and actinide amounts in transmutation layer, for each used coolant and find the best(s) coolant material(s) to be applied in the considered system. Results indicate that the lead and lead-bismuth coolant are the most suitable choices to be applied to cool the system. (author)

  6. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1997-01-01

    This paper presents results of experimental studies on the heat transfer and solidifcation of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleight number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer

  7. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  8. Inventory of armourstone

    Directory of Open Access Journals (Sweden)

    Le Turdu Valéry

    2016-01-01

    Full Text Available Natural armourstone is widely used for hydraulic works, both in the coastal domain and in border of rivers and torrents, especially to protect against flood and the effects of waves and currents. To meet the expectations associated with this resource, an inventory of armourstone quarries was realized on a national scale in France. This inventory informs not only about the localization of quarries but also about the quality and the availability of materials. To fully optimize this inventory in a dynamic format, the association of all actors of the sector was preferred to archival research. This partnership approach led to project deliverables that can constitute durably a shared reference. The database can indeed be updated regularly thanks to the contacts established with the professionals of quarries. The access to this database is offered to a wide public: maritime and fluvial ports, local authorities in charge of planning and managing structures that protect against flood and other hydraulic hazards. This new database was organized considering its importance on the operational plan. This led to a hierarchical organization at two levels for each quarry face: first level, a synthesis sheet brings the essential information to realize choices upstream to the operational phases. Second level, a detailed specification sheet presents the technical characteristics observed in the past on the considered face. The atlas has two information broadcasting formats: a pdf file with browsing functions and a geographical information system that allows remote request of the database. These two media have their own updating rhythms, annual for the first and continue for the second.

  9. Corrosion fatigue studies on F82H mod. martensitic steel in reducing water coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Maday, M F; Masci, A [ENEA, Casaccia (Italy). Centro Ricerche Energia

    1998-03-01

    Load-controlled low cycle fatigue tests have been carried out on F82H martensitic steel in 240degC oxygen-free water with and without dissolved hydrogen, in order to simulate realistic coolant boundary conditions to be approached in DEMO. It was found that water independently of its hydrogen content, determined the same fatigue life reduction compared to the base-line air results. Water cracks exhibited in their first propagation stages similar fracture morphologies which were completely missing on the air cracks, and were attributed to the action of an environment related component. Lowering frequency gave rise to an increase in F82H fatigue lifetimes without any change in cracking mode in air, and to fatigue life reduction by microvoid coalescence alone in water. The data were discussed in terms of (i) frequency dependent concurrent processes for crack initiation and (ii) frequency-dependent competitive mechanisms for crack propagation induced by cathodic hydrogen from F82H corrosion. (author)

  10. RELAP5/MOD 3.3 analysis of Reactor Coolant Pump Trip event at NPP Krsko

    International Nuclear Information System (INIS)

    Bencik, V.; Debrecin, N.; Foretic, D.

    2003-01-01

    In the paper the results of the RELAP5/MOD 3.3 analysis of the Reactor Coolant Pump (RCP) Trip event at NPP Krsko are presented. The event was initiated by an operator action aimed to prevent the RCP 2 bearing damage. The action consisted of a power reduction, that lasted for 50 minutes, followed by a reactor and a subsequent RCP 2 trip when the reactor power was reduced to 28 %. Two minutes after reactor trip, the Main Steam Isolation Valves (MSIV) were isolated and the steam dump flow was closed. On the secondary side the Steam Generator (SG) pressure rose until SG 1 Safety Valve (SV) 1 opened. The realistic RELAP5/MOD 3.3 analysis has been performed in order to model the particular plant behavior caused by operator actions. The comparison of the RELAP5/MOD 3.3 results with the measurement for the power reduction transient has shown small differences for the major parameters (nuclear power, average temperature, secondary pressure). The main trends and physical phenomena following the RCP Trip event were well reproduced in the analysis. The parameters that have the major influence on transient results have been identified. In the paper the influence of SG 1 relief and SV valves on transient results was investigated more closely. (author)

  11. Danish emission inventory for agriculture. Inventories 1985 - 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hjorth Mikkelsen, M; Albrektsen, R; Gyldenkaerne, S

    2011-02-15

    By regulations given in international conventions Denmark is obliged to work out an annual emission inventory and document the methodology. The National Environmental Research Institute (NERI) at Aarhus University (AU) in Denmark is responsible for calculating and reporting the emissions. This report contains a description of the emissions from the agricultural sector from 1985 to 2009. Furthermore, the report includes a detailed description of methods and data used to calculate the emissions, which is based on national methodologies as well as international guidelines. For the Danish emissions calculations and data management an Integrated Database model for Agricultural emissions (IDA) is used. The emission from the agricultural sector includes emission of the greenhouse gases methane (CH{sub 4}), nitrous oxide (N{sub 2}O), ammonia (NH{sub 3}), particulate matter (PM), non-methane volatile organic compounds (NMVOC) and other pollutants related to the field burning of agricultural residue such as NO{sub x}, CO{sub 2}, CO, SO{sub 2}, heavy metals, dioxin and PAH. The ammonia emission from 1985 to 2009 has decreased from 119 300 tonnes of NH{sub 3} to 73 800 tonnes NH{sub 3}, corresponding to a 38 % reduction. The emission of greenhouse gases has decreased by 25 % from 12.9 M tonnes CO{sub 2} equivalents to 9.6 M tonnes CO{sub 2} equivalents from 1985 to 2009. Improvements in feed efficiency and utilisation of nitrogen in livestock manure are the most important reasons for the reduction of both the ammonia and greenhouse gas emissions. (Author)

  12. Perishable Inventory Challenges

    DEFF Research Database (Denmark)

    Damgaard, Cecilie Maria; Nguyen, Vivi Thuy; Hvolby, Hans-Henrik

    2012-01-01

    in the retail supply chains. The goal is to find and evaluate the parameters which affect the decision making process, when finding the optimal order quantity and order time. The paper takes a starting point in the retail industry but links to other industries.......The paper investigates how inventory control of perishable items is managed and line up some possible options of improvement. This includes a review of relevant literature dealing with the challenges of determining ordering policies for perishable products and a study of how the current procedures...

  13. Natural circulation under variable primary mass inventories at BETHSY facility

    International Nuclear Information System (INIS)

    Bazin, P.; Clement, P.; Deruaz, R.

    1989-01-01

    BETHSY is a high pressure integral test facility which models a 3 loop Framatome PWR with the intent of studying PWR accidents. The BETHSY programme includes both accident transients and tests under successive steady state conditions. So far, tests of the latter type have been especially devoted to situations where natural circulation takes place in the primary coolant system (PCS). Tests 4.1a and 4.1a TC, the results of which are introduced, deal with PCS natural circulation patterns and related heat transport mechanisms under two different core power levels (2 and 5% of nominal power), variable primary mass inventory (100% to 30-40% according to core power) and at two different steam generator liquid levels (standard value and 1 meter). (orig.)

  14. Bandwidth of reactor internals vibration resonance with coolant pressure oscillations

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    In a few decades a significant increase in a part of an electricity development on the NPP will require NPP to be operated in non full capacity modes and increase in operation time in transitive modes. Operating in such conditions as compared to the operation on a constant mode will lead to the increase in cyclic dynamical loading. In water cooled water moderated reactors these loading are realized as low-cyclic and high-cyclic loadings. High-cyclic loadings increases are caused by a raised vibration in non stationary modes of operation. It is known, that in some modes of a non full capacity reactor high-cyclic dynamic loadings can increase. It is obvious, that the development of management technologies is necessary for the life time management operation. In the context of this problem one of the main tasks are revealing and the prevention of the conditions of the occurrence of the operation leading to the resonant interaction of the coolant fluctuations and the equipment, reactor vessel (RV), fuel assemblies (FA) and reactor internals (RI) vibration. To prevent the appearance of the conditions for resonance interaction between the fluid flow and the equipments, it is necessary to provide the different frequencies for the self oscillations in the separated elements of the circulating system and also in the parts of the system formed by the comprising of these elements. While solving these problems it is necessary to have a theoretical and settlement substantiation of an oscillation frequency band of coolant outside of which there is no resonant interaction. The presented work is devoted to finding the solution of this problem. There are results of theoretical an estimation of width of such band as well as the examples of a preliminary quantitative estimation of Q - factors of coolant acoustic oscillatory circuit formed by the equipment of the NPP. The accordance of results had been calculated with had been measured are satisfied for practical purposes. These

  15. Zero waste machine coolant management strategy at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Carlson, B.; Algarra, F.; Wilburn, D.

    1998-01-01

    Machine coolants are used in machining equipment including lathes, grinders, saws and drills. The purpose of coolants is to wash away machinery debris in the form of metal fines, lubricate, and disperse heat between the part and the machine tool. An effective coolant prolongs tool life and protects against part rejection, commonly due to scoring or scorching. Traditionally, coolants have a very short effective life in the machine, often times being disposed of as frequently as once per week. The cause of coolant degradation is primarily due to the effects of bacteria, which thrive in the organic rich coolant environment. Bacteria in this environment reproduce at a logarithmic rate, destroying the coolant desirable aspects and causing potential worker health risks associated with the use of biocides to control the bacteria. The strategy described in this paper has effectively controlled bacterial activity without the use of biocides, avoided disposal of a hazardous waste, and has extended coolant life indefinitely. The Machine Coolant Management Strategy employed a combination of filtration, heavy lubricating oil removal, and aeration, which maintained the coolant peak performance without the use of biocides. In FY96, the Laboratory generated and disposed of 19,880 kg of coolants from 9 separate sites at a cost of $145K. The single largest generator was the main machine shop producing an average 14,000 kg annually. However, in FY97, the waste generation for the main machine shop dropped to 4,000 kg after the implementation of the zero waste strategy. It is expected that this value will be further reduced in FY98

  16. Energy Education Materials Inventory

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The two volumes of the Energy Education Materials Inventory (EEMI) comprise an annotated bibliography of widely available energy education materials and reference sources. This systematic listing is designed to provide a source book which will facilitate access to these educational resources and hasten the inclusion of energy-focused learning experiences in kindergarten through grade twelve. EEMI Volume II expands Volume I and contains items that have become available since its completion in May, 1976. The inventory consists of three major parts. A core section entitled Media contains titles and descriptive information on educational materials, categorized according to medium. The other two major sections - Grade Level and Subject - are cross indexes of the items for which citations appear in the Media Section. These contain titles categorized according to grade level and subject and show the page numbers of the full citations. The general subject area covered includes the following: alternative energy sources (wood, fuel from organic wastes, geothermal energy, nuclear power, solar energy, tidal power, wind energy); energy conservation, consumption, and utilization; energy policy and legislation, environmental/social aspects of energy technology; and fossil fuels (coal, natural gas, petroleum). (RWR)

  17. NRC inventory of dams

    International Nuclear Information System (INIS)

    Lear, G.E.; Thompson, O.O.

    1983-01-01

    The NRC Inventory of Dams has been prepared as required by the charter of the NRC Dam Safety Officer. The inventory lists 51 dams associated with nuclear power plant sites and 14 uranium mill tailings dams (licensed by NRC) in the US as of February 1, 1982. Of the 85 listed nuclear power plants (148 units), 26 plants obtain cooling water from impoundments formed by dams. The 51 dams associated with the plants are: located on a plant site (29 dams at 15 plant sites); located off site but provide plant cooling water (18 dams at 11 additional plant sites); and located upstream from a plant (4 dams) - they have been identified as dams whose failure, and ensuing plant flooding, could result in a radiological risk to the public health and safety. The dams that might be considered NRC's responsibility in terms of the federal dam safety program are identified. This group of dams (20 on nuclear power plant sites and 14 uranium mill tailings dams) was obtained by eliminating dams that do not pose a flooding hazard (e.g., submerged dams) and dams that are regulated by another federal agency. The report includes the principal design features of all dams and related useful information

  18. Strategic Inventories in Vertical Contracts

    OpenAIRE

    Krishnan Anand; Ravi Anupindi; Yehuda Bassok

    2008-01-01

    Classical reasons for carrying inventory include fixed (nonlinear) production or procurement costs, lead times, nonstationary or uncertain supply/demand, and capacity constraints. The last decade has seen active research in supply chain coordination focusing on the role of incentive contracts to achieve first-best levels of inventory. An extensive literature in industrial organization that studies incentives for vertical controls largely ignores the effect of inventories. Does the ability to ...

  19. SIMMER-III applications to fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Kondo, Sa.; Tobita, Y.; Brear, D.J. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-01-01

    The main purpose of the SIMMER-III code is to provide a numerical simulation of complex multiphase, multicomponent flow problems essential to investigate core disruptive accidents in liquid-metal fast reactors (LMFRs). However, the code is designed to be sufficiently flexible to be applied to a variety of multiphase flows, in addition to LMFR safety issues. In the present study, some typical experiments relating to fuel-coolant interactions (FCIs) have been analyzed by SIMMER-III to demonstrate that the code is applicable to such complex and highly transient multiphase flow situations. It is shown that SIMMER-III can reproduce the premixing phase both in water and sodium systems as well as the propagation of steam explosion. It is thus demonstrated the code is basically capable of simulating integral multiphase thermal-hydraulic problems included in FCI experiments. (author)

  20. Condensing heat transfer following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Krotiuk, W.J.; Rubin, M.B.

    1978-01-01

    A new method for calculating the steam mass condensation energy removal rates on cold surfaces in contact with an air-steam mixture has been developed. This method is based on the principles of mass diffusion of steam from an area of high concentration to the condensing surface, which is an area of low steam concentration. This new method of calculating mass condensation has been programmed into the CONTEMPT-LT Mod 26 computer code, which calculates the pressure and temperature transients inside a light water reactor containment following a loss-of-coolant accident. The condensing heat transfer coefficient predicted by the mass diffusion method is compared to existing semi-empirical correlations and to the experimental results of the Carolinas Virginia Tube Reactor Containment natural decay test. Closer agreement with test results is shown in the calculation of containment pressure, temperature, and heat sink surface temperature using the mass diffusion condensation method than when using any existing semi-empirical correlation

  1. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.

    1985-07-01

    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs

  2. Loss of coolant analysis for the tower shielding reactor 2

    International Nuclear Information System (INIS)

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs

  3. Reactor coolant pump shaft seal behavior during station blackout

    International Nuclear Information System (INIS)

    Kittmer, C.A.; Wensel, R.G.; Rhodes, D.B.; Metcalfe, R.; Cotnam, B.M.; Gentili, H.; Mings, W.J.

    1985-04-01

    A testing program designed to provide fundamental information pertaining to the behavior of reactor coolant pump (RCP) shaft seals during a postulated nuclear power plant station blackout has been completed. One seal assembly, utilizing both hydrodynamic and hydrostatic types of seals, was modeled and tested. Extrusion tests were conducted to determine if seal materials could withstand predicted temperatures and pressures. A taper-face seal model was tested for seal stability under conditions when leaking water flashes to steam across the seal face. Test information was then used as the basis for a station blackout analysis. Test results indicate a potential problem with an elastomer material used for O-rings by a pump vendor; that vendor is considering a change in material specification. Test results also indicate a need for further research on the generic issue of RCP seal integrity and its possible consideration for designation as an unresolved safety issue

  4. Fatigue check of nuclear safety class 1 reactor coolant pipe

    International Nuclear Information System (INIS)

    Wang Qing; Fang Yonggang; Chu Qibao; Xu Yu; Li Hailong

    2015-01-01

    Fatigue and thermal ratcheting analyses of nuclear safety Class 1 reactor coolant pipe in a nuclear power plant were independently carried out in this paper. The software used for calculation is ROCOCO, which is based on RCC-M code. The difference of nuclear safety Class 1 pipe fatigue evaluation between RCC-M code and ASME code was compared. The main aspects of comparison include the calculation scoping of fatigue design, the calculation method of primary plus secondary stress intensity, the elastic-plastic correction coefficient calculation, and the dynamic load combination method etc. By correcting inconsistent algorithm of ASME code within ROCOCO, the fatigue usage factor and thermal ratcheting design margin of 65 mm and 55 mm wall thickness of the pipe were obtained. The results show that the minimum wall thickness of the pipe must exceed 55 mm and the design value of the thermal ratcheting of 55 mm wall thickness reaches 95% of the allowable value. (authors)

  5. Fuel -coolant interactions in LWRs and LMFBRs: relationships and distinctions

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, R B; Lellouche, G S [Nuclear Safety and Analysis Department, Electric Power Research Institute, Palo Alto, CA (United States)

    1979-10-15

    The question of fuel-coolant interaction and of potential vapor explosion is raised here. lt is the contention of the authors that there is in fact no need to study this question vis a vis Light Water Reactors (LWR) except from an academic point of view since it does not impact on safety considerations. As for LMFBRs, the design basis whole core accidents for LWRs are derived from the fundamental concern of maintaining core geometry to provide for convective cooling. However, the important distinction is that the core is in its most reactive configuration, and core and fuel rearrangement is therefore not of such concern. The author's thesis is that even if the probability of steam explosion following core melt were two orders of magnitude greater than currently assumed (10{sup -2}) the total LWR risk would increase only by a factor of 2-6 for BWRs and less a factor of 10 for PWRs

  6. Small break LOCA [loss of coolant accident] mitigation for Bellefonte

    International Nuclear Information System (INIS)

    Bayless, P.D.; Dobbe, C.A.

    1986-01-01

    Several 5-cm (2-in.) diameter cold leg break loss coolant accidents for the Bellefonte nuclear plant were analyzed as part of the Severe Accident Sequence Analysis Program. The transients assumed various system failures, and included the S 2 D sequence. Operator actions to mitigate the S 2 D transient were also investigated. The transients were analyzed until either core damage began or long-term decay heat removal was established. The S 2 D sequence was analyzed into the core damage phase of the transient. The analyses showed that the flow from one high pressure injection pump was necessary and sufficient to prevent core damage in the absence of operator actions. Operator actions were also able to prevent core damage for the S 2 D sequence

  7. Fuel-coolant interactions in a jet contact mode

    International Nuclear Information System (INIS)

    Konishi, K.; Isozaki, M.; Imahori, S.; Kondo, S.; Furutani, A.; Brear, D.J.

    1994-01-01

    Molten fuel-coolant interactions in a jet contact mode was studied with respect to the safety of liquid-metal-cooled fast reactors (LMFRs). From a series of molten Wood's metal (melting point: 79 deg. C, density: -8400 kg/m 3 ) jet-water interaction experiments, several distinct modes of interaction behaviors were observed for various combinations of initial temperature conditions of the two fluids. A semi-empirical model for a minimum film boiling temperature criterion was developed and used to reasonably explain the different interaction modes. It was concluded that energetic jet-water interactions are only possible under relatively narrow initial thermal conditions. Preliminary extrapolation of the present results in an oxide fuel-sodium system suggests that mild interactions with short breakup length and coolable debris formation should be most likely in LMFRs. (author)

  8. A new inexpensive electrochemical meter for oxygen in sodium coolant

    International Nuclear Information System (INIS)

    Periaswami, G.; Rajan Babu, S.S.; Mathews, C.K.

    1987-01-01

    This report describes the development of an inexpensive oxygen meter for sodium coolant and gives the results of the test experiments. Calcia stabilized zirconia has been found to have necessary domain boundary characteristics at low temperatures for use as oxygen sensor in liquid sodium system. It is possible to obtain acceptable sensor cell resistance at temperatures as low as 230 C if K, K 2 O or Na, Na 2 O is used as reference electrode. The performance of these cells has been tested in bench top sodium loops over long periods. Their performance in terms of cell-out put variation with change in oxygen concentration in sodium has been found to be satisfactory. They also have sufficiently long life times since the kinetics of sodium attack on the electrolyte is slow at low temperatures. (author). 17 refs., 6 figs

  9. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meier, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frantoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reyes, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  10. On-line monitoring of main coolant pump seals

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; Glass, S.W.; Sommerfield, G.A.; Harrison, D.

    1984-06-01

    The Babcock and Wilcox Company has developed and implemented a Reactor Coolant Pump Monitoring and Diagnostic System (RCPM and DS). The system has been installed at Toledo Edison Company's Davis-Besse Nuclear Power Station Unit 1. The RCPM and PS continuously monitors a number of indicators of pump performance and notifies the plant operator of out-of-tolerance conditions or pump performance trending toward out-of-tolerance conditions. Pump seal parameters being monitored include pump internal pressures, temperatures, and flow rates. Rotordynamic performanvce and plant operating conditions are also measured with a variety of dynamic sensors. This paper describes the implementation of the system and the results of on-line monitoring of four RC pumps

  11. Environmental radiological consequences of a loss of coolant accident

    International Nuclear Information System (INIS)

    Guimaraes, A.C.F.

    1981-01-01

    The elaboration of a calculation model to determine safety areas, named Exclusion Zone and Low Population Zone for nuclear power plants, is dealt with. These areas are determined from a radioactive doses calculation for the population living around the NPP after occurence of a postulated ' Maximum Credible Accident' (MCA). The MCA is defined as an accident with complete loss of primary coolant and consequent fusion of a substantial portion of the reactor core. In the calculations carried out, data from NPP Angra I were used and the assumptions made were conservative, to be compatible with licensing requirements. Under the most pessimistic assumption (no filters) the values of 410m and 1000m were obtained for the Exclusion Zone and Low Population Zone radii, respectivily. (Author) [pt

  12. Failure probability of PWR reactor coolant loop piping

    International Nuclear Information System (INIS)

    Lo, T.; Woo, H.H.; Holman, G.S.; Chou, C.K.

    1984-02-01

    This paper describes the results of assessments performed on the PWR coolant loop piping of Westinghouse and Combustion Engineering plants. For direct double-ended guillotine break (DEGB), consideration was given to crack existence probability, initial crack size distribution, hydrostatic proof test, preservice inspection, leak detection probability, crack growth characteristics, and failure criteria based on the net section stress failure and tearing modulus stability concept. For indirect DEGB, fragilities of major component supports were estimated. The system level fragility was then calculated based on the Boolean expression involving these fragilities. Indirect DEGB due to seismic effects was calculated by convolving the system level fragility and the seismic hazard curve. The results indicate that the probability of occurrence of both direct and indirect DEGB is extremely small, thus, postulation of DEGB in design should be eliminated and replaced by more realistic criteria

  13. Reactor coolant pump seal response to loss of cooling

    International Nuclear Information System (INIS)

    Graham, T.; Metcalfe, R.; Burchett, P.

    2000-01-01

    This paper describes the results of a test done to determine the performance of a reactor coolant pump seal for a water cooled nuclear reactor under loss of all cooling conditions. Under these conditions, seal faces can lose their liquid lubricating film and elastomers can rapidly degrade. Temperatures in the seal-cartridge tester reached 230 o C in three hours, at which time the tester was stopped and the temperature increased to 265 o C for a further five hours before cooling was restored. Seal leakage was 'normal' throughout the test. Parts sustained minor damage with no effect on seal integrity. Plant operators were shown to have ample margin beyond their 15 minute allowable reaction time. (author)

  14. Fatigue cycles evaluation of 500 MWe PHWR coolant channel sealdisc

    International Nuclear Information System (INIS)

    Chawla, D.S.; Vaze, K.K.; Kushwaha, H.S.; Gupta, K.S.; Bhambra, H.S.

    1998-07-01

    At each end of coolant channel there is one sealing plug assembly. The sealdisc is a part of sealing plug assembly. The sealdisc is used to avoid leakage of heavy water. The importance of sealdisc can be understood by the fact that there are 784 sealdiscs in one 500 MWe PHWR unit. During the life time of reactor the sealdisc will be subjected to cyclic loads due to reactor startup, shutdown, power setback and also due to refuelling operations. Excessive reversal of stresses may lead to fatigue failure. The sealdisc failure may cause loss of coolant accidents. Since sealdisc is safety class 1 component, it has to be qualified according to ASME Section III Division 1 NB. For cyclic loads, the fatigue analysis is essential to assess the allowable number of cycles and also to check the total usage factor due to different cyclic loads. To evaluate the allowable fatigue cycles, the analysis is carried out using finite element method. The present report deals with the fatigue cycles evaluation of 500 MWe PHWR sealdisc. The finite element model having eight noded axisymmetric elements is used for the analysis. The various loads considered in the analysis are mechanical loads arising due to refuelling operations and number of temperature-pressure transients. During refuelling, the sealdisc is removed and reinstalled back by use of fuelling machine ram which applies load at centre as well as at rocker point of sealdisc. The stress analysis is carried out for each stage of loading during refuelling and fatigue cycles are evaluated. For temperature transient, decoupled thermal analysis is carried out. At various instants of time, the stresses are computed using temperatures calculated in thermal analysis. The pressure variation is also considered along with temperature variation. The fatigue cycles are evaluated for each transient using maximum alternating stress intensities. The usage factors are calculated for various temperature/pressure transients and refuelling loads

  15. Diesel engine coolant analysis, new application for established instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D P; Lukas, M; Lynch, B K [Spectro Incorporated, Littleton, MA (United States)

    1998-12-31

    Rotating disk electrode (RDE) arc emission spectrometers are user` many commercial, industrial and military laboratories throughout the world to analyze millions of oil and fuel samples each year. In fact, RDE spectrometers have been used exclusively for oil and fuel analysis for so long that it has nearly been forgotten by most practitioners that when RDE spectrometers were first introduced more than 40 years ago, they were routinely used for aqueous samples as well. This presentation reviews early methods of aqueous sample analysis using RDE technology. This presentation also describes recent work to calibrate an RDE spectrometer for both water samples and for engine coolant samples which are a mixture of approximately 50 % water and 50 % ethylene or propylene glycol. Limits of detection determined for aqueous standards are comparable to limits of detection for oil standards. Repeatability of aqueous samples is comparable to the repeatability achieved for oil samples. A comparison of results for coolant samples measured by both inductively coupled plasma (ICP) and rotating disk electrode (RDE) spectrometers is presented. Not surprisingly, RDE results are significantly higher for samples containing particles larger than a few micrometers. Although limits of detection for aqueous samples are not as low as can be achieved using the more modern ICP spectrometric method or the more cumbersome atomic absorption (AA) method, this presentation suggests that RDE spectrometers may be appropriate for certain types of aqueous samples in situations where the more sensitive ICP or AA spectrometers and the laboratory environment and skilled personnel needed for them to operate are not conveniently available. (orig.) 4 refs.

  16. Diesel engine coolant analysis, new application for established instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.P.; Lukas, M.; Lynch, B.K. [Spectro Incorporated, Littleton, MA (United States)

    1997-12-31

    Rotating disk electrode (RDE) arc emission spectrometers are user` many commercial, industrial and military laboratories throughout the world to analyze millions of oil and fuel samples each year. In fact, RDE spectrometers have been used exclusively for oil and fuel analysis for so long that it has nearly been forgotten by most practitioners that when RDE spectrometers were first introduced more than 40 years ago, they were routinely used for aqueous samples as well. This presentation reviews early methods of aqueous sample analysis using RDE technology. This presentation also describes recent work to calibrate an RDE spectrometer for both water samples and for engine coolant samples which are a mixture of approximately 50 % water and 50 % ethylene or propylene glycol. Limits of detection determined for aqueous standards are comparable to limits of detection for oil standards. Repeatability of aqueous samples is comparable to the repeatability achieved for oil samples. A comparison of results for coolant samples measured by both inductively coupled plasma (ICP) and rotating disk electrode (RDE) spectrometers is presented. Not surprisingly, RDE results are significantly higher for samples containing particles larger than a few micrometers. Although limits of detection for aqueous samples are not as low as can be achieved using the more modern ICP spectrometric method or the more cumbersome atomic absorption (AA) method, this presentation suggests that RDE spectrometers may be appropriate for certain types of aqueous samples in situations where the more sensitive ICP or AA spectrometers and the laboratory environment and skilled personnel needed for them to operate are not conveniently available. (orig.) 4 refs.

  17. Denmark's National Inventory Report 2013

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    This report is Denmark’s National Inventory Report 2013. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2011 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2.......This report is Denmark’s National Inventory Report 2013. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2011 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2....

  18. Denmark's National Inventory Report 2017

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    This report is Denmark’s National Inventory Report 2017. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2015 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2......This report is Denmark’s National Inventory Report 2017. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2015 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2...

  19. Denmark's National Inventory Report 2014

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    This report is Denmark’s National Inventory Report 2014. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2012 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2......This report is Denmark’s National Inventory Report 2014. The report contains information on Denmark’s emission inventories for all years’ from 1990 to 2012 for CO2, CH4, N2O, HFCs, PFCs and SF6, NOx, CO, NMVOC, SO2...

  20. Six ways to reduce inventory.

    Science.gov (United States)

    Lunn, T

    1996-05-01

    The purpose of this presentation is to help you reduce the inventory in your operation. We will accomplish that task by discussing six specific methods that companies have used successfully to reduce their inventory. One common attribute of these successes is that they also build teamwork among the people. Every business operation today is concerned with methods to improve customer service. The real trick is to accomplish that task without increasing inventory. We are all concerned with improving our skills at keeping inventory low.

  1. VTrans Small Culvert Inventory - Culverts

    Data.gov (United States)

    Vermont Center for Geographic Information — Vermont Agency of Transportation Small Culvert Inventory: Culverts. This data contains small culverts locations along VTrans maintained roadways. The data was...

  2. Hanford inventory program user's manual

    International Nuclear Information System (INIS)

    Hinkelman, K.C.

    1994-01-01

    Provides users with instructions and information about accessing and operating the Hanford Inventory Program (HIP) system. The Hanford Inventory Program is an integrated control system that provides a single source for the management and control of equipment, parts, and material warehoused by Westinghouse Hanford Company in various site-wide locations. The inventory is comprised of spare parts and equipment, shop stock, special tools, essential materials, and convenience storage items. The HIP replaced the following systems; ACA, ASP, PICS, FSP, WSR, STP, and RBO. In addition, HIP manages the catalog maintenance function for the General Supplies inventory stocked in the 1164 building and managed by WIMS

  3. Dioxin air emission inventory 1990-2004

    Energy Technology Data Exchange (ETDEWEB)

    Capral Henriksen, T; Illerup, J B; Nielsen, Ole-Kenneth [DMU, Dept. of Policy Analysis (Denmark)

    2006-12-15

    The present Danish dioxin air emission inventory shows that the emission has been reduced from 68.6 g I-TEQ in 1990 to 22.0 g I-TEQ in 2004, or about 68% over this period. Most of the significant reductions have been achieved in the industrial sector, where emissions have been reduced from 14.67 g I-TEQ in 1990 to 0.17 g I-TEQ in 2004; a reduction of almost 99%. Lower emissions from steel and aluminium reclamation industries form the major part of the reduction within industry. Emissions from waste incineration reduced from 32.5 g I-TEQ in 1990 to 2.1 g ITEQ in 2004; which is approx. 94%. This is due to installation of dioxin abatement equipment in incineration plants. The most important source of emission in 2004 is residential wood combustion, at 8.5 g I-TEQ, or around 40% of the total emission. In 2004, accidental fires, which are estimated to emit 6.1 g I-TEQ/year, are the second most important source, contributing with around 28% of the total emission. The present dioxin emission inventory for Denmark shows how emissions in 2004 come from sources other than waste incineration plants and industry, which were the largest sources in 1990. (au)

  4. Use of Russian technology of ship reactors with lead-bismuth coolant in nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Chitaykin, V.I.; Gromov, B.F.; Grigoryv, O.G.; Dedoul, A.V.; Toshinsky, G.I.; Dragunov, Yu.G.; Stepanov, V.S.

    2000-01-01

    The experience of using lead-bismuth coolant in Russian nuclear submarine reactors has been presented. The fundamental statements of the concept of using the reactors cooled by lead-bismuth alloy in nuclear power have been substantiated. The results of developments for using lead bismuth coolant in nuclear power have been presented. (author)

  5. Radiolysis of the VVER-1000 reactor coolant: An experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Bugaenko, V.L.; Kabakchi, S.A.

    1995-01-01

    Variations in the composition of the coolant for the primary circuit of a VVER-1000 reactor of the Kalinin nuclear power plant upon transition from power-level operation to shutdown was studied experimentally. The data obtained were used for verification of the MORAVA-H2 program developed earlier for simulation of the coolant state in pressurized-water power reactors

  6. Improvement of Measurement Accuracy of Coolant Flow in a Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Jong-Bum; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seoyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, to improve the measurement accuracy of coolant flow in a coolant flow simulator, elimination of external noise are enhanced by adding ground pattern in the control panel and earth around signal cables. In addition, a heating unit is added to strengthen the fluctuation signal by heating the coolant because the source of signals are heat energy. Experimental results using the improved system shows good agreement with the reference flow rate. The measurement error is reduced dramatically compared with the previous measurement accuracy and it will help to analyze the performance of nuclear fuels. For further works, out of pile test will be carried out by fabricating a test rig mockup and inspect the feasibility of the developed system. To verify the performance of a newly developed nuclear fuel, irradiation test needs to be carried out in the research reactor and measure the irradiation behavior such as fuel temperature, fission gas release, neutron dose, coolant temperature, and coolant flow rate. In particular, the heat generation rate of nuclear fuels can be measured indirectly by measuring temperature variation of coolant which passes by the fuel rod and its flow rate. However, it is very difficult to measure the flow rate of coolant at the fuel rod owing to the narrow gap between components of the test rig. In nuclear fields, noise analysis using thermocouples in the test rig has been applied to measure the flow velocity of coolant which circulates through the test loop.

  7. The corrosion products in the coolant circuits of pressurized water nuclear power plants

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of the corrosion products formed in the primary and secondary coolant circuits of light-water pressurized reactors are reviewed. The problem induced by the pollution of coolants and metallic surface are examined. Then, the recommendations to follow to minimize the disturbing effects of this pollution by the corrosion products are indicated [fr

  8. Operation diagnostics of the reactor coolant pumps in the Jaslovske Bohunice nuclear power plant, CSSR

    International Nuclear Information System (INIS)

    Bahna, J.; Jaros, I.; Oksa, G.

    1990-01-01

    The state of the art of the materials basis, the diagnostics methods used, organization of data collection and processing, and some results of routine and specific investigations concerned with diagnosis of the reactor coolant pump in the Jaslovske Bohunice NPP V-1 are presented. Some information is given about the reactor coolant pump monitor developed in the VUJE. (author)

  9. Monitoring of coolant temperature stratification on piping components in WWER-440 NPPs

    International Nuclear Information System (INIS)

    Hudcovsky, S.; Slanina, M.; Badiar, S.

    2001-01-01

    The presentation deals with the aims of non-standard temperature measurements installed on primary and secondary circuit in WWER-440 NPPs, explains reasons of coolant temperature stratification on the piping components. It describes methods of the measurements on pipings, range of installation of the temperature measurements in EBO and EMO units and illustrates results of measurements of coolant temperature stratification. (Authors)

  10. Experimental investigation of void distribution in suppression pool over the duration of a loss of coolant accident using steam–water two-phase mixture

    International Nuclear Information System (INIS)

    Rassame, Somboon; Griffiths, Matthew; Yang, Jun; Ju, Peng; Sharma, Subash; Hibiki, Takashi; Ishii, Mamoru

    2015-01-01

    Highlights: • Experiments were conducted to study void fraction distribution in SP during blowdown. • 3 Experimental phases, namely, an initial and a quasi-steady phase, chugging were observed. • The maximum void penetration depth was experienced during the initial phase. • The quasi-steady phase provided less void penetration depth with oscillations. • The chugging phase was experienced at the end of experimental phase. - Abstract: Studies are underway to determine if a large amount gas discharged through the downcomer pipes in the pressure suppression chamber during the blowdown of Loss of Coolant Accident (LOCA) can potentially be entrained into the Emergency Core Cooling System (ECCS) suction piping of BWR. This may result in degraded ECCS pumps performance which could affect the ability to maintain or recover the water inventory level in the Reactor Pressure Vessel (RPV) during a LOCA. Therefore, it is very important to understand the void behavior in the pressure suppression chamber during the blowdown period of a LOCA. To address this issue, a set of experiments is conducted using the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR applications (PUMA-E) facility. The geometry of the test apparatus is determined based on the basic geometrical scaling analysis from a prototypical BWR containment (MARK I) with a consideration of downcomer size, downcomer water submergence depth and Suppression Pool (SP) water level. Several instruments are installed in the test facility to measure the required experimental data such as the steam mass flow rate, void fraction, pressure and temperature. In the experiments, sequential flows of air, steam–air mixture and pure steam-each with the various flow rate conditions are injected from the Drywell (DW) through a downcomer pipe in the SP. Eight tests with two different downcomer sizes, various initial gas volumetric fluxes at the downcomer, and two different initial non-condensable gas

  11. Advanced Thermal Storage for Central Receivers with Supercritical Coolants

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Bruce D.

    2010-06-15

    The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Low temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above

  12. On possibility of application of the parallel-mixed type coolant flow scheme to NPP steam generators linked with superheaters

    International Nuclear Information System (INIS)

    Malkis, V.A.; Lokshin, V.A.

    1983-01-01

    Optimum distribution of the coolant straight-through flow between the superheater, evaporator and economizer is determined and the parallel-mixed type flow scheme is compared with other schemes. The calculations are performed for the 250 MW(e) steam generator for the WWER-1000 reactor unit the inlet and outlet primary coolant temperature of which is 324 and 290 deg C, respectively, while the feed water and saturation temperatures are 220 and 278.5 deg C, respectively. The rated superheating temperature is 300 deg C. The comparison of different schemes has been performed according to the average temperature head value at the steam-generator under the condition of equality as well as essential difference in the heat transfer coefficients in certain steam-generator sections. The calculations have shown that the use of parallel-mixed type flow permits to essentially increase the temperature head of the steam generator. At a constant heat transfer coefficient in all steam generator sections the highest temperature head is reached. At relative flow rates in the steam generator, economizer and evaporator equal to 6, 8 and 86%, respectively. The superheated steam generator temperature head in this case by 12% exceeds the temperature head of the WWER-1000 reactor unit wet steam generator. In case of heat transfer coefficient reduction in the superheater by a factor of three, the choice of the primary coolant, optimum distribution permits to maintain the steam generator temperature head at the level of the WWER-1000 reactor unit wet-steam steam generator. The use of the parallel-mixed type flow scheme permits to design a steam generator of slightly superheated steam for the parameters of the WWER-1000 unit

  13. Design of channel experiment equipment for measuring coolant velocity of innovative research reactor

    International Nuclear Information System (INIS)

    Muhammad Subekti; Endiah Puji Hastuti; Dedi Heriyanto

    2014-01-01

    The design of innovative high flux research reactor (RRI) requires high power so that the capability core cooling requires to be improved by designing the faster core coolant velocity near to the critical velocity limit. Hence, the critical coolant velocity as the one of the important parameter of the reactor safety shall be measured by special equipment to the velocity limit that may induce fuel element degradation. The research aims is to calculate theoretically the critical coolant velocity and to design the special experiment equipment namely EXNal for measuring the critical coolant velocity in fuel element subchannel of the RRI. EXNal design considers the critical velocity calculation result of 20.52 m/s to determine the variation of flow rate of 4.5-29.2 m 3 /h, in which the experiment could simulate the 1-4X standard coolant velocity of RSG-GAS as well as destructive test of RRI's fuel plate. (author)

  14. A comparative neutronic analysis of 150MWe TRU burner according to the coolant alteration

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic analysis has been conducted for the small TRU burner according to their coolant material. The use of Pb-Bi coolant gave a low burnup reactivity swing and negative or less positive coolant void coefficient with harder neutron spectrum. By a lower burnup reactivity swing and higher conversion ratio of Pb-Bi cooled core, the total amount of TRU consumption was found to be small compared with Na cooled core despite of the higher MA consumption ratio of Pb-Bi cooled core. However, Pb-Bi cooled reactor have a lager margin in the coolant void coefficient, so that a variable MA composition can be loaded in the core. Accordingly, even though the Pb-Bi cooled TRU burner has not effectiveness on TRU burning in the same geometry and material condition, a flexible MA loading is envisaged to result in 10 times larger MA burning amount, still preserving a low coolant void worth

  15. Radioactive corrosion products in circuit of fast reactor loop with dissociating coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.

    1982-01-01

    The results of experimental investigation into depositions of radionuclides of corrosion origin on the surfaces of a reactor-in-pile loop facility with a dissociating coolant are presented. It is stated that the ratio of radionuclides in fixed depositions linearly decreases with decrease of the coolant temperature at the core-condenser section. The element composition of non-fixed compositions quantitatively and qualitatively differs from the composition of structural material, and it is more vividly displayed for the core-condenser section. The main mechanism of circuit contamination with radioactive corrosion products is substantiated: material corrosion in the zones of coolant phase transfer, their remove by the coolant in the core, deposition, activation and wash-out by the coolant from the core surfaces

  16. Technical findings related to Generic Issue 23: Reactor coolant pump seal failure

    International Nuclear Information System (INIS)

    Ruger, C.J.; Luckas, W.J. Jr.

    1989-03-01

    Reactor coolant pumps contain mechanical seals to limit the leakage of pressurized coolant from the reactor coolant system to the containment. These seals have the potential to leak, and a few have degraded and even failed resulting in a small break loss of coolant accident (LOCA). As a result, ''Reactor Coolant Pump Seal Failure,'' Generic Issue 23 was established. This report summarizes the findings of a technical investigation generated as part of the program to resolve this issue. These technical findings address the various fact-finding issue tasks developed for the action plan associated with the generic issue, namely background information on seal failure, evaluation of seal cooling, and mechanical- and maintenance-induced failure mechanisms. 46 refs., 15 figs., 14 tabs

  17. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    International Nuclear Information System (INIS)

    Glazer, S.; Todreas, N.; Rohsenow, W.; Sonin, A.

    1981-02-01

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  18. Building greenhouse gas inventories in China

    Energy Technology Data Exchange (ETDEWEB)

    Green-Weiskel, Lucia; Camp, Robyn; Schuchard, Ryan; Fang, Fang; Xueyu, Li; An, Feng; Cheng, Yufu; Ediger, Laura; Huang, Su-Anne

    2010-09-15

    The goal of the Energy and Climate Registry (ECR) is to produce reliable, consistent and verifiable information on energy consumption and carbon emissions on the corporation and local municipality levels in China. By reporting their energy use to the ECR, companies operating in China will be able to measure their energy use and GHG emissions as well as identify opportunities for reduction. Multinational and domestic corporations will be encouraged to voluntarily sign up to report input parameters to calculate energy consumptions and produce GHG emission inventories, which will be verified by a certified third party.

  19. Applying inventory classification to a large inventory management system

    Directory of Open Access Journals (Sweden)

    Benjamin Isaac May

    2017-06-01

    Full Text Available Inventory classification aims to ensure that business-driving inventory items are efficiently managed in spite of constrained resources. There are numerous single- and multiple-criteria approaches to it. Our objective is to improve resource allocation to focus on items that can lead to high equipment availability. This concern is typical of many service industries such as military logistics, airlines, amusement parks and public works. Our study tests several inventory prioritization techniques and finds that a modified multi-criterion weighted non-linear optimization (WNO technique is a powerful approach for classifying inventory, outperforming traditional techniques of inventory prioritization such as ABC analysis in a variety of performance objectives.

  20. RELAP5 simulation of a large break Loss of Coolant Accident (LOCA) in the hot leg of the primary system in Angra 2 nuclear power plant

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de; Sabundjian, Gaiane

    2004-01-01

    The objective of this work is to present the simulation of a large break loss of coolant accident - LBLOCA in the hot leg of the primary loop in Angra 2, with RELAP5/MOD3.2.2g code. This accident is described in the Final Safety Report Analysis of Angra 2 - FSAR and consists basically of the hot leg total break, in loop 20 of the plant. The area considered for the rupture is 4480 cm 2 , which corresponds to 100% of the pipe flow area. Besides, this work also has the objective of verifying the efficiency of the emergency core coolant system - ECCS in case of accidents and transients. The thermal-hydraulic processes inherent to the accident phenomenology, such as hot leg vaporization and consequently core vaporization causing an inappropriate flow distribution in the reactor core, can lead to a reduction in the liquid level, until the ECCS is capable to reflood it

  1. Revisiting the analysis of passive plasma shutdown during an ex-vessel loss of coolant accident in ITER blanket

    International Nuclear Information System (INIS)

    Rivas, J.C.; Dies, J.; Fajarnés, X.

    2015-01-01

    Laboratory (FEEL) in Barcelona. It uses a 0D/1D architecture, similar to that used for past analyses. Initial results show good agreement with previous studies, plasma shutdown happens before significant melting occurs in first wall. However, after a parametric survey a new scenario was identified with the potential not only to melt beryllium but also the copper heat sink. If the coolant tubes were compromised in such scenario, the in-vessel radioactive inventory could be mobilized. (http://nerg.upc.edu/)

  2. 21 CFR 1304.11 - Inventory requirements.

    Science.gov (United States)

    2010-04-01

    ... the inventory of the registered location to which they are subject to control or to which the person... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Inventory requirements. 1304.11 Section 1304.11... REGISTRANTS Inventory Requirements § 1304.11 Inventory requirements. (a) General requirements. Each inventory...

  3. Optimization of inventory management in furniture manufacturing

    OpenAIRE

    Karkauskas, Justinas

    2017-01-01

    Aim of research - to present inventory management optimization guidelines for furniture manufacturing company, based on analysis of scientific literature and empirical research. Tasks of the Issue: • Disclose problems of inventory management in furniture manufacturing sector; • To analyze theoretical inventory management decisions; • To develop theoretical inventory management optimization model; • Do empirical research of inventory management and present offers for optimizatio...

  4. Controlling Inventory: Real-World Mathematical Modeling

    Science.gov (United States)

    Edwards, Thomas G.; Özgün-Koca, S. Asli; Chelst, Kenneth R.

    2013-01-01

    Amazon, Walmart, and other large-scale retailers owe their success partly to efficient inventory management. For such firms, holding too little inventory risks losing sales, whereas holding idle inventory wastes money. Therefore profits hinge on the inventory level chosen. In this activity, students investigate a simplified inventory-control…

  5. Denmark's national inventory report 2006

    DEFF Research Database (Denmark)

    Illerup, Jytte Boll; Lyck, Erik; Nielsen, Ole-Kenneth

    This report is Denmark's National Inventory Report reported to the Conference of the Parties under the United Nations Framework Convention on Climate Change (UNFCCC) due by April 2006. The report contains information on Denmark's inventories for all years' from 1990 to 2004 for CO....

  6. Demand differentiation in inventory systems

    NARCIS (Netherlands)

    Kleijn, M.J.

    1998-01-01

    This book deals with inventory systems where customer demand is categorised into different classes. Most inventory systems do not take into account individual customer preferences for a given product, and therefore handle all demand in a similar way. Nowadays, market segmentation has become a

  7. Student-Life Stress Inventory.

    Science.gov (United States)

    Gadzella, Bernadette M.; And Others

    The reliability of the Student-Life Stress Inventory of B. M. Gadzella (1991) was studied. The inventory consists of 51 items listed in 9 sections indicating different types of stressors (frustrations, conflicts, pressures, changes, and self-imposed stressors) and reactions to the stressors (physiological, emotional, behavioral, and cognitive) as…

  8. Automation of Space Inventory Management

    Science.gov (United States)

    Fink, Patrick W.; Ngo, Phong; Wagner, Raymond; Barton, Richard; Gifford, Kevin

    2009-01-01

    This viewgraph presentation describes the utilization of automated space-based inventory management through handheld RFID readers and BioNet Middleware. The contents include: 1) Space-Based INventory Management; 2) Real-Time RFID Location and Tracking; 3) Surface Acoustic Wave (SAW) RFID; and 4) BioNet Middleware.

  9. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  10. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hwang; Ryu, Sung Uk; Yi, Sung Jae; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dong Eok [Dept. of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2017-08-15

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  11. ANALYSIS MODEL FOR INVENTORY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    CAMELIA BURJA

    2010-01-01

    Full Text Available The inventory represents an essential component for the assets of the enterprise and the economic analysis gives them special importance because their accurate management determines the achievement of the activity object and the financial results. The efficient management of inventory requires ensuring an optimum level for them, which will guarantee the normal functioning of the activity with minimum inventory expenses and funds which are immobilised. The paper presents an analysis model for inventory management based on their rotation speed and the correlation with the sales volume illustrated in an adequate study. The highlighting of the influence factors on the efficient inventory management ensures the useful information needed to justify managerial decisions, which will lead to a balancedfinancial position and to increased company performance.

  12. Method for investigation of various iodine species in the primary coolant of the nuclear power plant in Paks

    International Nuclear Information System (INIS)

    Volent, G.; Gimesi, O.; Solymosi, J.

    1996-01-01

    Iodine isotopes formed in the course of fission in nuclear reactors may be present in the primary coolant in different oxidation states, i.e., in different chemical forms. It is important to know the chemical forms and their proportions in order to asses the environmental effect of the emitted iodine and the performance of air filters used in the primary circuit for binding iodine, species, since both depend on the chemical forms in which it is present. Volatile components were separated from water samples taken separately from each block of the nuclear power station by purging with inert gas, then the aerosol, iodine vapour and alkyl iodides were selectively bound on the filter system of the 'KOMBI' sampler. I 3 - , I - , IO - , IO 3 - and IO 4 - left in the aqueous phase after purging were separated by consecutive physical and chemical procedures (extraction, isotope exchange, reduction). The results of the investigations have shown that the water technology used in the Nuclear Power Plant in Paks is appropriate with respect to the radioiodine balance. Iodine was found to be predominant species, and no volatile iodine species were found to be present in the primary coolant. Volatile iodine species sometimes appearing in emissions may be formed from leaching waters due to secondary effects. (author)

  13. Mixing Characteristics during Fuel Coolant Interaction under Reactor Submerged Conditions

    International Nuclear Information System (INIS)

    Hong, S. W.; Na, Y. S.; Hong, S. H.; Song, J. H.

    2014-01-01

    A molten material is injected into an interaction chamber by free gravitation fall. This type of fuel coolant interaction could happen to operating plants. However, the flooding of a reactor cavity is considered as SAM measures for new PWRs such as APR-1400 and AP1000 to assure the IVR of a core melt. In this case, a molten corium in a reactor is directly injected into water surrounding the reactor vessel without a free fall. KAERI has carried out fuel coolant interaction tests without a free fall using ZrO 2 and corium to simulate the reactor submerged conditions. There are four phases in a steam explosion. The first phase is a premixing phase. The premixing is described in the literature as follows: during penetration of melt into water, hydrodynamic instabilities, generated by the velocities and density differences as well as vapor production, induce fragmentation of the melt into particles; the particles fragment in turn into smaller particles until they reach a critical size such that the cohesive forces (surface tension) balance exactly the disruptive forces (inertial); and the molten core material temperature (>2500 K) is such that the mixing always occurs in the film boiling regime of the water: It is very important to qualify and quantify this phase because it gives the initial conditions for a steam explosion This paper mainly focuses on the observation of the premixing phase between a case with 1 m free fall and a case without a free fall to simulate submerged reactor condition. The premixing behavior between a 1m free fall case and reactor case submerged without a free fall is observed experimentally. The average velocity of the melt front passing through 1m water pool; - Case without a free fall: The average velocity of corium, 2.7m/s, is faster than ZrO 2 , 2.3m/s, in water. - Cases of with a 1 m free fall and without a free fall : The case without a free fall is about two times faster than a case with a 1 m free fall. Bubble characteristics; - Case

  14. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jun; Kim, Jae Shin; Ryu, In Wan; Ko, Bok Seong; Song, Keun Myung [Samjin Ind. Co., Seoul (Korea, Republic of)

    2010-01-15

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 3115m{sup 3}/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 539.4m{sup 3}/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m{sup 3}/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m{sup 3}/h, total head; 42.0m, motor output; 190kw

  15. Study on the VFD (Variable Frequency Drive) for RCP (Reactor Coolant Pump) Motors of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Ha; Robert, M. Field; Kim, Tae Ryong [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    Most industrial facilities are continually searching for ways to reduce energy costs while increasing or maintaining current production. In terms of electric motors, Variable Frequency Drive (VFD) units represent a critical opportunity for energy savings. Currently, VFDs are used on about ten (10) percent of industrial process motors, and this percentage is increasing every year. Properly applied VFDs have been documented to save as much as fifty percent of the energy consumed by certain industrial processes. Nuclear Power - Power plants in general and Nuclear Power Plants (NPPs) in particular are slow to adopt new technology. The nuclear power industry requires a nearly absolute demonstration through operating experience in other industries in which the new approach will result in a net improvement in plant reliability without any surprises. Only recently has the nuclear industry begun to adapt VFD units for large motors. Specifically, there are several examples in the Boiling Water Reactor (BWR) fleet of replacing Motor-Generator (M-G) sets with VFD units for Reactor Recirculation (RR) pump motor service. At one station, VFD units were introduced upstream of the Circulating Water (CWP) pump motors to address environmental issues. They units are taking advantage of VFD technology whose benefits include increased reliability, reduction in electrical house load, improved flow control, and reduced maintenance. RCP Application - In the case of new generation, it has been reported that the Westinghouse AP1000 will make use of VFD units for the Reactor Coolant Pump (RCP) motors.

  16. Interfacing systems LOCAs [Loss of Coolant Accidents] at boiling water reactors

    International Nuclear Information System (INIS)

    Chu, Tsong-Lun; Fitzpatrick, R.; Stoyanov, S.

    1987-01-01

    The work presented in this paper was performed by Brookhaven National Laboratory (BNL) in support of Nuclear Regulatory Commission's (NRC) effort towards the resolution of Generic Issue 105 ''Interfacing System Loss of Coolant Accidents (LOCAs) at Boiling Water Reactors (BWRs).'' For BWRs, intersystem LOCA have typically either not been considered in probabilistic risk analyses, or if considered, were judged to contribute little to the risk estimates because of their perceived low frequency of occurrence. However, recent operating experience indicates that the pressure isolation valves (PIVs) in BWRs may not adequately protect against overpressurization of low pressure systems. The objective of this paper is to present the results of a study which analyzed interfacing system LOCA at several BWRs. The BWRs were selected to best represent a spectrum of BWRs in service using industry operating event experience and plant-specific information/configurations. The results presented here include some possible changes in test requirements/practices as well as an evaluation of their reduction potential in terms of core damage frequency

  17. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gavenda, D.J.

    1997-01-01

    The ASME Boiler and Pressure Vessel Code fatigue design curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue life of pressure vessel and piping materials in light water reactor (LWR) environments. Fatigue tests have been conducted on Types 304 and 316NG stainless steel in air and LWR environments to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on fatigue lives of these steels. The results confirm the significant decrease in fatigue life in water. The environmentally assisted decrease in fatigue life depends both on strain rate and DO content in water. A decrease in strain rate from 0.4 to 0.004%/s decreases fatigue life by a factor of ∼ 8. However, unlike carbon and low-alloy steels, environmental effects are more pronounced in low-DO than in high-DO water. At ∼ 0.004%/s strain rate, reduction in fatigue life in water containing <10 ppb D is greater by a factor of ∼ 2 than in water containing ≥ 200 ppb DO. Experimental results have been compared with estimates of fatigue life based on the statistical model. The formation and growth of fatigue cracks in austenitic stainless steels in air and LWR environments are discussed

  18. Performance comparison of various coolants for louvered fin tube automotive radiator

    Directory of Open Access Journals (Sweden)

    Sahoo Rashmi Rekha

    2017-01-01

    Full Text Available In the present study, screening of various coolants (water, ethylene glycol, propylene glycol, brines, nanofluid, and sugarcane juice for louvered fin automotive radiator has been done based on different energetic and exergetic performance parameters. Effects on radiator size, weight and cost as well as engine efficiency and fuel consumption are discussed as well. Results show that the sugarcane juice seems to be slightly better in terms of both heat transfer and pumping power than water and nanofluid, whereas significantly better than ethylene glycol and propylene glycol. For same heat transfer capacity, the pumping power requirement is minimum and vice-versa with sugarcane juice, followed by nanofluid, water, EG and PG. Study on brines shows an opportunity to use water+25% PG based nanofluids for improvement of performance as well as operating range. Replacement of water or brines by using sugarcane juice and water or wa-ter+25% PG based nanofluids will reduce the radiator size, weight and pumping power, which may lead to increase in compactness and overall engine efficiency or reduction in radiator cost and engine fuel consumption. In overall, both sugarcane juice and nanofluid seem to be potential substitutes of water. However, both have some challenges such as long term stability for practical use.

  19. Advancement in reactor coolant chemistry management programs and related technology development in Taiwan

    International Nuclear Information System (INIS)

    Huang, C.S.; Lin, Chien C.

    2000-01-01

    Taiwan Power Company (TPC) has three nuclear power plants in operation with a total capacity of 51 GWe, contributing about 30% of electricity generation in Taiwan. The first two plants, Chinshan (CSNPP) and Kuosheng (KSNPP), are boiling water reactor plants, and the third one, Maanshan (MASNPP), is a pressurized water reactor plant. Each plant has two identical reactors. As many nuclear power plant operators worldwide, TPC is committed to operate the plants efficiently, economically, and safely. TPC has developed and implemented several chemistry improvement programs in recent years to improve the coolant chemistry in order to ( l ) protect structure materials from corrosion, (2) reduce radiation exposures to workers and (3) reduce radwaste production and radiation release to the environment. This paper describes TPC's experience in some water chemistry management, radwaste reduction and radiation exposure control programs. Future programs under planning, including implementation of hydrogen water chemistry (HWC) in BWRs, installation of condensate pre-filters, and development of on-line water chemistry monitoring system, are also be briefly discussed. In addition, some material related research and development programs will also be presented. (author)

  20. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In