WorldWideScience

Sample records for coolant interaction results

  1. Experimental interaction of magma and “dirty” coolants

    Science.gov (United States)

    Schipper, C. Ian; White, James D. L.; Zimanowski, Bernd; Büttner, Ralf; Sonder, Ingo; Schmid, Andrea

    2011-03-01

    The presence of water at volcanic vents can have dramatic effects on fragmentation and eruption dynamics, but little is known about how the presence of particulate matter in external water will further alter eruptions. Volcanic edifices are inherently “dirty” places, where particulate matter of multiple origins and grainsizes typically abounds. We present the results of experiments designed to simulate non-explosive interactions between molten basalt and various “coolants,” ranging from homogeneous suspensions of 0 to 30 mass% bentonite clay in pure water, to heterogeneous and/or stratified suspensions including bentonite, sand, synthetic glass beads and/or naturally-sorted pumice. Four types of data are used to characterise the interactions: (1) visual/video observations; (2) grainsize and morphology of resulting particles; (3) heat-transfer data from a network of eight thermocouples; and (4) acoustic data from three force sensors. In homogeneous coolants with ~20% sediment, heat transfer is by forced convection and conduction, and thermal granulation is less efficient, resulting in fewer blocky particles, larger grainsizes, and weaker acoustic signals. Many particles are droplet-shaped or/and “vesicular,” containing bubbles filled with coolant. Both of these particle types indicate significant hydrodynamic magma-coolant mingling, and many of them are rewelded into compound particles. The addition of coarse material to heterogeneous suspensions further slows heat transfer thus reducing thermal granulation, and variable interlocking of large particles prevents efficient hydrodynamic mingling. This results primarily in rewelded melt piles and inefficient distribution of melt and heat throughout the coolant volume. Our results indicate that even modest concentrations of sediment in water will significantly limit heat transfer during non-explosive magma-water interactions. At high concentrations, the dramatic reduction in cooling efficiency and increase in

  2. Physical model and calculation code for fuel coolant interactions

    International Nuclear Information System (INIS)

    Goldammer, H.; Kottowski, H.

    1976-01-01

    A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)

  3. The effect of coolant quantity on local fuel–coolant interactions in a molten pool

    International Nuclear Information System (INIS)

    Cheng, Songbai; Matsuba, Ken-ichi; Isozaki, Mikio; Kamiyama, Kenji; Suzuki, Tohru; Tobita, Yoshiharu

    2015-01-01

    Highlights: • We investigate local fuel–coolant interactions in a molten pool. • As water volume increases, limited pressurization and mechanical energy observed. • Only a part of water is evaporated and responsible for the pressurization. - Abstract: Studies on local fuel–coolant interactions (FCI) in a molten pool are important for severe accident analyses of sodium-cooled fast reactors (SFRs). Motivated by providing some evidence for understanding this interaction, in this study several experimental tests, with comparatively larger difference in coolant volumes, were conducted by delivering a given quantity of water into a simulated molten fuel pool (formed with a low-melting-point alloy). Interaction characteristics including the pressure-buildup as well as mechanical energy release and its conversion efficiency are evaluated and compared. It is found that as water quantity increases, a limited pressure-buildup and the resultant mechanical energy release are observable. The performed analyses also suggest that only a part of water is probably vaporized during local FCIs and responsible for the pressurization and mechanical energy release, especially for those cases with much larger water volumes

  4. Fuel-Coolant Interactions - some Basic Studies at the UKAEA Culham Laboratory

    International Nuclear Information System (INIS)

    Reynolds, J.A.; Dullforce, T.A.; Peckover, R.S.; Vaughan, G.J.

    1976-01-01

    In a hypothetical fault sequence important effects of fuel-coolant interactions include voiding and dispersion of core debris as well as the pressure damage usually discussed. The development of the fuel-coolant interaction probably depends on any pre-mixing Weber break-up that may occur, and is therefore a function of the way the fuel and coolant come together. Four contact modes are identified: jetting, shock tube, drops and static, and Culham's experiments have been mainly concerned with simulating the falling drop mode by using molten tin in water. It was observed that the fuel-coolant interaction is a short series of violent coolant oscillations centred at a localized position on the drop, generating a spray of submillimeter sized debris. The interaction started spontaneously at a specific time after the drop first contacted the water. There was a definite limited fuel-coolant interaction zone on a plot of initial coolant temperature versus initial fuel temperature outside which interactions never occurred. The. interaction time was a function of the initial temperatures. Theoretical scaling formulae are given which describe the fuel-coolant interaction zone and dwell time. Bounds of fuel and coolant temperature below which fuel-coolant interactions do not occur are explained by freezing. Upper bounds of fuel and coolant temperatures above which there were no fuel-coolant interactions are interpreted in terms of heat transfer through vapour films of various thicknesses. In conclusion: We have considered the effects of fuel-coolant interactions in a hypothetical fault sequence, emphasising that debris and vapour production as well as the pressure pulse can be important factors. The fuel-coolant interaction has been classified into types, according to possible modes of mixing in the fault sequence. Culham has been studying one type, the self-triggering of falling drops, by simulant experiments. It is found that there is a definite zone of interaction on a plot

  5. Molten fuel-coolant interactions resulting from power transients in aluminium plate/water moderated reactors

    International Nuclear Information System (INIS)

    Storr, G.J.

    1989-08-01

    The behaviour of two reactors SL1 and SPERT D12, which underwent fast nuclear power transients prior to core destruction by a molten fuel-coolant interaction (MFCI) has been analysed and the results compared with measured data. The calculated spatial melt distribution and the mechanical work done during the events leads to high (∼ 250 kJ/kg) conversion efficiencies for this type of interaction when compared with molten drop experiments. A simple model for the steam explosion, using static thermodynamic properties of high temperature and pressure steam is used to calculate the dynamics of the reactors following the MFCI. 26 refs., 5 figs., 5 tabs

  6. Fuel coolant interaction experiment by direct electrical heating method

    International Nuclear Information System (INIS)

    Takeda, Tsuneo; Hirano, Kenmei

    1979-01-01

    In the PCM (Power Cooling Mismatch) experiments, the FCI (Fuel Coolant Interaction) test is one of necessary tests in order to predict various phenomena that occur during PCM in the core. A direct electrical heating method is used for the FCI tests for fuel pellet temperature of over 1000 0 C. Therefore, preheating is required before initiating the direct electrical heating. The fuel pin used in the FCI tests is typical LWR fuel element, which is surrounded by coolant water. It is undersirable to heat up the coolant water during preheating of the fuel pin. Therefore, a zirconia (ZrO 2 ) pellet which is similar to a UO 2 pellet in physical and chemical properties is used. Electric property (electric conductivity) of ZrO 2 is particularly suitable for direct electrical heating as in the case of UO 2 . In this experiment, ZrO 2 pellet (melting point 2500 0 C) melting was achieved by use of both preheating and direct electrical heating. Temperature changes of coolant and fuel surface, as well as the pressure change of coolant water, were measured. The molten fuel interacted with the coolant and generated shock waves. A portion of this molten fuel fragmented into small particles during this interaction. The peak pressure of the observed shock wave was about 35 bars. The damaged fuel pin was photographed after disassembly. This report shows the measured coolant pressure changes and the coolant temperature changes, as well as photographs of damaged fuel pin and fuel fragments. (author)

  7. Fuel-coolant interactions: preliminary experiments on the effect of gases dissolved in the 'coolant'

    International Nuclear Information System (INIS)

    Asher, R.C.; Davies, D.; Jones, P.G.

    1976-12-01

    A simple apparatus has been used to study fuel-coolant interactions under reasonably well controlled conditions. Preliminary experiments have used water as the 'coolant' and molten tin at 800 0 C as the 'fuel' and have investigated how the violence of the interaction is affected by dissolving gases (oxygen, nitrogen, carbon dioxide and nitrous oxide) in the water. It was found that saturating the water with carbon dioxide or nitrous oxide completely suppresses the violent interaction. Experiments in which the concentrations of these gases were varied showed that a certain critical concentration was needed; below this concentration the dissolved gas has no significant effect but above it the suppression is

  8. Fuel-Coolant Interactions: Visualization and Mixing Measurements

    International Nuclear Information System (INIS)

    Loewen, Eric P.; Bonazza, Riccardo; Corradini, Michael L.; Johannesen, Robert E.

    2002-01-01

    Dynamic X-ray imaging of fuel-coolant interactions (FCI), including quantitative measurement of fuel-coolant volume fractions and length scales, has been accomplished with a novel imaging system at the Nuclear Safety Research Center at the University of Wisconsin, Madison. The imaging system consists of visible-light high-speed digital video, low-energy X-ray digital imaging, and high-energy X-ray digital imaging subsystems. The data provide information concerning the melt jet velocity, melt jet configuration, melt volume fractions, void fractions, and spatial and temporal quantification of premixing length scales for a model fuel-coolant system of molten lead poured into a water pool (fuel temperatures 500 to 1000 K; jet diameters 10 to 30 mm; coolant temperatures 20 to 90 deg. C). Overall results indicate that the FCI has three general regions of behavior, with the high fuel-coolant temperature region similar to what might be expected under severe accident conditions. It was observed that the melt jet leading edge has the highest void fraction and readily fragments into discrete masses, which then subsequently subdivide into smaller masses of length scales <10 mm. The intact jet penetrates <3 to 5 jet length/jet diameter before this breakup occurs into discrete masses, which continue to subdivide. Hydrodynamic instabilities can be visually identified at the leading edge and along the jet column with an interfacial region that consists of melt, vapor, and water. This interface region was observed to grow in size as the water pool temperature was increased, indicating mixing enhancement by boiling processes

  9. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO 2 fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm 3 /s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO 2 fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%

  10. Heat transfer and fluid flow aspects of fuel--coolant interactions

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon

  11. Molten fuel/coolant interaction studies: some results obtained with the Windscale small shock tube rig

    International Nuclear Information System (INIS)

    Higham, E.J.; Vaughan, G.J.

    1978-02-01

    Experiments are described in which water has been brought into contact with various molten metals in a shock tube, thus simulating the fall of coolant into molten uranium dioxide in a postulated reactor accident. Impact velocities of the water on to the molten material were in the range 5 to 7 m/s. Shock-pulse pressures in the water column after impact and particle size distributions of the dispersed resolidified material that was recovered were measured. The proportion of dispersed material and the size of the shock pulse (by comparison with that expected from water hammer alone) have been used as criteria for the occurrence of a molten fuel/coolant interaction and such interactions of varying degrees of violence have been found for water/aluminium, water/bismuth, water/tin, over a range of temperatures from 350 0 C to 950 0 C, for water/boric oxide, but not for water/magnesium. (author)

  12. Integrated Fuel-Coolant Interaction (IFCI 6.0) code

    International Nuclear Information System (INIS)

    Davis, F.J.; Young, M.F.

    1994-04-01

    The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User's Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks

  13. Fuel-coolant interaction-phenomena under prompt burst conditions

    International Nuclear Information System (INIS)

    Jacobs, H.; Young, M.F.; Reil, K.O.

    1979-01-01

    The Prompt Burst Energetics (PBE) experiments conducted at Sandia Laboratories are a series of in-pile tests with fresh uranium oxide or uranium carbide fuel pins in stagnant sodium. Fuel-coolant-interactions in PBE-9S (oxide/sodium system) and PBE-SG2 (carbide/sodium) have been analyzed with the MURTI parametric FCI code. The purpose is to gain insight into possible FCI scenarios in the experiments and sensitivity of results to input parameters. Results are in approximate agreement for the second (triggered) event in PBE-9S (32 MPa peak) and the initial interaction in PBE-SG2

  14. Fuel-coolant interactions in a jet contact mode

    International Nuclear Information System (INIS)

    Konishi, K.; Isozaki, M.; Imahori, S.; Kondo, S.; Furutani, A.; Brear, D.J.

    1994-01-01

    Molten fuel-coolant interactions in a jet contact mode was studied with respect to the safety of liquid-metal-cooled fast reactors (LMFRs). From a series of molten Wood's metal (melting point: 79 deg. C, density: -8400 kg/m 3 ) jet-water interaction experiments, several distinct modes of interaction behaviors were observed for various combinations of initial temperature conditions of the two fluids. A semi-empirical model for a minimum film boiling temperature criterion was developed and used to reasonably explain the different interaction modes. It was concluded that energetic jet-water interactions are only possible under relatively narrow initial thermal conditions. Preliminary extrapolation of the present results in an oxide fuel-sodium system suggests that mild interactions with short breakup length and coolable debris formation should be most likely in LMFRs. (author)

  15. Integrated Fuel-Coolant Interaction (IFCI 7.0) Code User's Manual

    International Nuclear Information System (INIS)

    Young, Michael F.

    1999-01-01

    The integrated fuel-coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, three-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a description of IFCI 7.0. The user's manual describes the hydrodynamic method and physical models used in IFCI 7.0. Appendix A is an input manual provided for the creation of working decks

  16. Fuel-coolant interaction-phenomena under prompt burst conditions. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, H.; Young, M.F.; Reil, K.O.

    1979-01-01

    The Prompt Burst Energetics (PBE) experiments conducted at Sandia Laboratories are a series of in-pile tests with fresh uranium oxide or uranium carbide fuel pins in stagnant sodium. Fuel-coolant-interactions in PBE-9S (oxide/sodium system) and PBE-SG2 (carbide/sodium) have been analyzed with the MURTI parametric FCI code. The purpose is to gain insight into possible FCI scenarios in the experiments and sensitivity of results to input parameters. Results are in approximate agreement for the second (triggered) event in PBE-9S (32 MPa peak) and the initial interaction in PBE-SG2 (190 MPa peak).

  17. Fuel cladding interaction with water coolant in power reactors

    International Nuclear Information System (INIS)

    1985-11-01

    Water coolant chemistry and corrosion processes are important factors in reliable operation of NPP's, as at elevated temperatures water is aggressive towards structural materials. Water regimes for commercial Pressurized Water Reactors and Boiling Water Reactors were developed and proved to be satisfactory. Nevertheless, studies of operation experience continue and an amount of new Research and Development work is being conducted for further improvements of technology and better understanding of the physicochemical nature of those processes. In this report information is presented on the IAEA programme on fuel element cladding interaction with water coolant. Some results of this survey and recommendations made by the group of consultants who participated in this work are given as well as recommendations for continuation of this study. Separate abstracts were prepared for 6 papers of this report

  18. Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gou, W.; Zhang, S.; Zheng, Y. [Zhejiang Univ., Hangzhou (China). Center for Engineering and Scientific Computation

    2016-07-15

    The energetic fuel-coolant interaction (FCI) has been one of the primary safety concerns in nuclear power plants. Graphical processing unit (GPU) implementation of the moving particle semi-implicit (MPS) method is presented and used to simulate the fuel coolant interaction problem. The governing equations are discretized with the particle interaction model of MPS. Detailed implementation on single-GPU is introduced. The three-dimensional broken dam is simulated to verify the developed GPU acceleration MPS method. The proposed GPU acceleration algorithm and developed code are then used to simulate the FCI problem. As a summary of results, the developed GPU-MPS method showed a good agreement with the experimental observation and theoretical prediction.

  19. The premixing and propagation phases of fuel-coolant interactions: a review of recent experimental studies and code developments

    Energy Technology Data Exchange (ETDEWEB)

    Antariksawan, A.R. [Reactor Safety Technology Research Center of BATAN (Indonesia); Moriyama, Kiyofumi; Park, Hyun-sun; Maruyama, Yu; Yang, Yanhua; Sugimoto, Jun

    1998-09-01

    A vapor explosion (or an energetic fuel-coolant interactions, FCIs) is a process in which hot liquid (fuel) transfers its internal energy to colder, more volatile liquid (coolant); thus the coolant vaporizes at high pressure and expands and does works on its surroundings. Traditionally, the energetic fuel-coolant interactions could be distinguished in subsequent stages: premixing (or coarse mixing), triggering, propagation and expansion. Realizing that better and realistic prediction of fuel-coolant interaction consequences will be available understanding the phenomenology in the premixing and propagation stages, many experimental and analytical studies have been performed during more than two decades. A lot of important achievements are obtained during the time. However, some fundamental aspects are still not clear enough; thus the works are directed to that direction. In conjunction, the model/code development is pursuit. This is aimed to provide a scaling tool to bridge the experimental results to the real geometries, e.g. reactor pressure vessel, reactor containment. The present review intends to collect the available information on the recent works performed to study the premixing and propagation phases. (author). 97 refs.

  20. The premixing and propagation phases of fuel-coolant interactions: a review of recent experimental studies and code developments

    International Nuclear Information System (INIS)

    Antariksawan, A.R.; Moriyama, Kiyofumi; Park, Hyun-sun; Maruyama, Yu; Yang, Yanhua; Sugimoto, Jun

    1998-09-01

    A vapor explosion (or an energetic fuel-coolant interactions, FCIs) is a process in which hot liquid (fuel) transfers its internal energy to colder, more volatile liquid (coolant); thus the coolant vaporizes at high pressure and expands and does works on its surroundings. Traditionally, the energetic fuel-coolant interactions could be distinguished in subsequent stages: premixing (or coarse mixing), triggering, propagation and expansion. Realizing that better and realistic prediction of fuel-coolant interaction consequences will be available understanding the phenomenology in the premixing and propagation stages, many experimental and analytical studies have been performed during more than two decades. A lot of important achievements are obtained during the time. However, some fundamental aspects are still not clear enough; thus the works are directed to that direction. In conjunction, the model/code development is pursuit. This is aimed to provide a scaling tool to bridge the experimental results to the real geometries, e.g. reactor pressure vessel, reactor containment. The present review intends to collect the available information on the recent works performed to study the premixing and propagation phases. (author). 97 refs

  1. Fuel-coolant interaction visualization test for in-vessel corium retention external reactor vessel cooling (IVR-ERVC) condition

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong Ho; Song, Jin Ho; Hong, Seong Wan [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A visualization test of the fuel-coolant interaction in the Test for Real cOrium Interaction with water (TROI) test facility was carried out. To experimentally simulate the In-Vessel corium Retention (IVR)- External Reactor Vessel Cooling (ERVC) conditions, prototypic corium was released directly into the coolant water without a free fall in a gas phase before making contact with the coolant. Corium (34.39 kg) consisting of uranium oxide and zirconium oxide with a weight ratio of 8:2 was superheated, and 22.54 kg of the 34.39 kg corium was passed through water contained in a transparent interaction vessel. An image of the corium jet behavior in the coolant was taken by a high-speed camera every millisecond. Thermocouple junctions installed in the vertical direction of the coolant were cut sequentially by the falling corium jet. It was clearly observed that the visualization image of the corium jet taken during the fuel-coolant interaction corresponded with the temperature variations in the direction of the falling melt. The corium penetrated through the coolant, and the jet leading edge velocity was 2.0 m/s. Debris smaller than 1 mm was 15% of the total weight of the debris collected after a fuel-coolant interaction test, and the mass median diameter was 2.9 mm.

  2. Integrated Fuel-Coolant Interaction (IFCI 7.0) Code User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Young, Michael F.

    1999-05-01

    The integrated fuel-coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, three-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a description of IFCI 7.0. The user's manual describes the hydrodynamic method and physical models used in IFCI 7.0. Appendix A is an input manual provided for the creation of working decks.

  3. A new thermodynamic model of energetic molten fuel-coolant interactions

    International Nuclear Information System (INIS)

    Hall, A.N.

    1987-01-01

    A new thermodynamic model of energetic molten fuel-coolant interactions is presented, in which the response of fluid around the interaction zone is treated explicitly. By assuming that this fluid is compressed reversibly and adiabatically, a qualified lower limit to the efficiency of conversion of thermal energy to mechanical work is obtained. A detailed comparison of the model predictions with the results of the SUW series of experiments at AEE Winfrith is made. The predicted efficiencies are found to be in close agreement with those determined experimentally. Model predictions for a system of infinite volume are also presented. (author)

  4. Calculational advance in the modeling of fuel-coolant interactions

    International Nuclear Information System (INIS)

    Bohl, W.R.

    1982-01-01

    A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials

  5. Evaluation of conservatism in analysis of fuel-coolant interaction

    International Nuclear Information System (INIS)

    Reynolds, A.B.; Erdman, C.A.; Garner, P.L.; Haas, P.M.; Allen, C.L.

    Using the ANL parametric model developed by Cho e.a. the following mechanisms and parameters involved in fuel-coolant interaction were examined: coherence of fuel-sodium mixing; two-phase heat transfer; sodium-to-fuel mass ratio; fuel particle size; heat transfer to plenum and core cladding; constraint geometry. Both overpower and loss-of-flow transients were studied. Main attention is given to the maximum mechanical work to be expected. As a general conclusion, it can be stated that more realistic models will result in a reduction of the estimated mechanical work

  6. Fuel-coolant interaction in a shock tube with initially-established film boiling

    International Nuclear Information System (INIS)

    Sharon, A.; Bankoff, S.G.

    1979-01-01

    A new mode of thermal interaction has been employed, in which liquid metal is melted in a crucible within a shock tube; the coolant level is raised to overflow the crucible and establish subcooled film boiling with known bulk metal temperature; and a pressure shock is then initiated. With water and lead-tin alloy an initial splash of metal may be obtained after the vapor film has collapsed, due primarily to thermal interaction, followed by a successive cycle of bubble growth and collapse. To obtain large interactions, the interfacial contact temperature must exceed the spontaneous nucleation temperature of the coolant. Other cutoff behavior is observed with respect to the initial system pressure and temperatures and with the shock pressure and rise time. Experiments with butanol and lead-tin alloy show only relatively mild interactions. Qualitative explanations are proposed for the different behaviors of the two liquids

  7. Fluid-Structure Interaction for Coolant Flow in Research-type Nuclear Reactors

    International Nuclear Information System (INIS)

    Curtis, Franklin G.; Ekici, Kivanc; Freels, James D.

    2011-01-01

    The High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), is scheduled to undergo a conversion of the fuel used and this proposed change requires an extensive analysis of the flow through the reactor core. The core consists of 540 very thin and long fuel plates through which the coolant (water) flows at a very high rate. Therefore, the design and the flow conditions make the plates prone to dynamic and static deflections, which may result in flow blockage and structural failure which in turn may cause core damage. To investigate the coolant flow between fuel plates and associated structural deflections, the Fluid-Structure Interaction (FSI) module in COMSOL will be used. Flow induced flutter and static deflections will be examined. To verify the FSI module, a test case of a cylinder in crossflow, with vortex induced vibrations was performed and validated.

  8. EXPEL - a computing module for molten fuel/coolant interactions in fast reactor sub-assemblies

    International Nuclear Information System (INIS)

    Fishlock, T.P.

    1975-10-01

    This report describes a module for computing the effects of a molten fuel/coolant interaction in a fast reactor subassembly. The module is to be incorporated into the FRAX code which calculates the consequences of hypothetical whole core accidents. Details of the interaction are unknown and in consequence the model contains a large number of parameters which must be set by assumption. By variation of these parameters the interaction may be made mild or explosive. Results of a parametric survey are included. (author)

  9. Prototypic corium oxidation and hydrogen release during the Fuel-Coolant Interaction

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, J.; Piluso, P.; Bakardjieva, Snejana; Nižňanský, D.; Rehspringer, J.L.; Bezdička, Petr; Dugne, O.

    2015-01-01

    Roč. 75, JAN (2015), s. 210-218 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Corium * Fuel -Coolant Interaction * Hydrogen release * Material effect * Nuclear reactor severe accident Subject RIV: CA - Inorganic Chemistry Impact factor: 1.174, year: 2015

  10. Experimental and analytical studies of melt jet-coolant interactions: a synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R.; Green, J.A.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1998-01-01

    Instability and fragmentation of a core melt jet in water have been actively studied during the past ten years. Several models, and a few computer codes, have been developed. However, there are, still, large uncertainties, both, in interpreting experimental results and in predicting reactor-scale processes. Steam explosion and debris coolability, as reactor safety issues, are related to the jet fragmentation process. A better understanding of the physics of jet instability and fragmentation is crucial for assessments of fuel-coolant interactions (FCIs). This paper presents research, conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning molten jet-coolant interactions, as a precursor for premixing. First, observations were obtained from scoping experiments with simulant fluids. Second, the linear perturbation method was extended and applied to analyze the interfacial-instability characteristics. Third, two innovative approachs to CFD modeling of jet fragmentation were developed and employed for analysis. The focus of the studies was placed on (a) identifying potential factors, which may affect the jet instability, (b) determining the scaling laws, and (c) predicting the jet behavior for severe accidents conditions. In particular, the effects of melt physical properties, and the thermal hydraulics of the mixing zone, on jet fragmentation were investigated. Finally, with the insights gained from a synthesis of the experimental results and analysis results, a new phenomenological concept, named `macrointeractions concept of jet fragmentation` is proposed. (author)

  11. Experimental and analytical studies of melt jet-coolant interactions: a synthesis

    International Nuclear Information System (INIS)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R.; Green, J.A.; Sehgal, B.R.

    1999-01-01

    Instability and fragmentation of a core melt jet in water have been actively studied during the past 10 years. Several models, and a few computer codes, have been developed. However, there are, still, large uncertainties, both, in interpreting experimental results and in predicting reactor-scale processes. Steam explosion and debris coolability, as reactor safety issues, are related to the jet fragmentation process. A better understanding of the physics of jet instability and fragmentation is crucial for assessments of fuel-coolant interactions (FCIs). This paper presents research, conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning molten jet-coolant interactions, as a precursor for premixing. First, observations were obtained from scoping experiments with simulant fluids. Second, the linear perturbation method was extended and applied to analyze the interfacial-instability characteristics. Third, two innovative approaches to computational fluid dynamics (CFD) modeling of jet fragmentation were developed and employed for analysis. The focus of the studies was placed on (a) identifying potential factors, which may affect the jet instability, (b) determining the scaling laws, and (c) predicting the jet behavior for severe accident conditions. In particular, the effects of melt physical properties, and the thermal hydraulics of the mixing zone, on jet fragmentation were investigated. Finally, with the insights gained from a synthesis of the experimental results and analysis results, a new phenomenological concept, named 'macrointeractions concept of jet fragmentation' is proposed. (orig.)

  12. Breakup of jet and drops during premixing phase of fuel coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  13. Current status of investigations on molten fuel: Coolant interaction, material movement and relocation in LMFBRs in Russia

    International Nuclear Information System (INIS)

    Buksha, Yu.; Kuznetsov, I.

    1994-01-01

    The paper contains information on experimental studies and calculation codes, related to molten fuel-coolant interaction, material movement and relocation. Some calculation results for the BN-800 type reactor are presented. (author)

  14. The challenge of modeling fuel–coolant interaction: Part I – Premixing

    Energy Technology Data Exchange (ETDEWEB)

    Meignen, Renaud, E-mail: renaud.meignen@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES/SAG, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Picchi, Stephane; Lamome, Julien [Communication and Systèmes, 22 avenue Galilée, 92350 Le Plessis Robinson (France); Raverdy, Bruno [IRSN/PSN-RES/SAG, BP3, 92362 Fontenay aux Roses Cedex (France); Escobar, Sebastian Castrillon [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES/SAG, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Nicaise, Gregory [IRSN/PSN-RES/SAG, BP3, 92362 Fontenay aux Roses Cedex (France)

    2014-12-15

    Highlights: • We present the status modeling of the fuel–coolant interaction premixing stage in the computer code MC3D. • We also propose a general state of the art, highlighting recent improvements in understanding and modeling, remaining difficulties, controversies and needs. • We highlight the need for improving the understanding of the melt fragmentation and oxidation. • The verification basis is presented. - Abstract: Fuel–coolant interaction is a complex mixing process that can occur during the course of a severe accident in a nuclear power plant involving core melting and relocation. Under certain circumstances, a steam explosion might develop during the mixing of the melt and the water and induce a loss of integrity of the containment. Even in the absence of an explosion, studying the mixing phenomenon is also of high interest due to its strong impact on the progression of the accident (debris bed formation, hydrogen production). This article is the first of two aiming at presenting both a status of research and understanding of fuel–coolant interaction and the main characteristics of the model developed in the 3-dimensional computer code MC3D. It is devoted to the premixing phase whereas the second is related to the explosion phase. A special attention is given to major difficulties, uncertainties and needs for further improvements in knowledge and modeling. We discuss more particularly the major phenomena that are melt fragmentation and film boiling heat transfer and the challenges related to modeling melt solidification and oxidation. Some highlights related to the code verification are finally given.

  15. Modelling transient energy release from molten fuel coolant interaction debris

    International Nuclear Information System (INIS)

    Fletcher, D.F.

    1984-05-01

    A simple model of transient energy release in a Molten Fuel Coolant Interaction is presented. A distributed heat transfer model is used to examine the effect of heat transfer coefficient, time available for rapid energy heat transfer and particle size on transient energy release. The debris is assumed to have an Upper Limit Lognormal distribution. Model predictions are compared with results from the SUW series of experiments which used thermite-generated uranium dioxide molybdenum melts released below the surface of a pool of water. Uncertainties in the physical principles involved in the calculation of energy transfer rates are discussed. (author)

  16. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  17. A review of hydrodynamic instabilities and their relevance to mixing in molten fuel coolant interactions

    International Nuclear Information System (INIS)

    Fletcher, D.F.

    1984-03-01

    A review of the literature on Rayleigh-Taylor, Kelvin-Helmholtz and capillary instability is presented. The concept of Weber breakup is examined and found to involve a combination of the above instabilities. Sample calculations are given which show how these instabilities may contribute to the mixing of melt and coolant in a molten fuel coolant interaction. It is concluded that Rayleigh-Taylor instability is likely to be important as the melt falls into the coolant and that Kelvin-Helmholtz instability is likely to develop when significant vapour velocities occur. (author)

  18. Breakup of jet and drops during premixing phase of fuel coolant interactions

    International Nuclear Information System (INIS)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  19. HTGR-GT primary coolant transient resulting from postulated turbine deblading

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Deremer, R.K.

    1980-11-01

    The turbomachine is located within the primary coolant system of a nuclear closed cycle gas turbine plant (HTGR-GT). The deblading of the turbine can cause a rapid pressure equilibration transient that generates significant loads on other components in the system. Prediction of and design for this transient are important aspects of assuring the safety of the HTGR-GT. This paper describes the adaptation and use of the RATSAM program to analyze the rapid fluid transient throughout the primary coolant system during a spectrum of turbine deblading events. Included are discussions of (1) specific modifications and improvements to the basic RATSAM program, which is also briefly described; (2) typical results showing the expansion wave moving upstream from the debladed turbine through the primary coolant system; and (3) the effect on the transient results of different plenum volumes, flow resistances, times to deblade, and geometries that can choke the flow

  20. An investigation on the material effect on the result of fuel coolant interactions in the TROI experiments

    International Nuclear Information System (INIS)

    Park, I. K.; Kim, J. H.; Min, B. T.; Hong, S. W.

    2008-01-01

    One of the findings from the TROI experiments is that the results of the fuel coolant interaction (FCI) are strongly dependent on the composition of the corium, which is composed of UO 2 , ZrO 2 , Zr, steel. TEXAS- V simulation for the TROI experiments indicated that a relatively low void fraction seems to have resulted in a strong steam explosion and the low voided mixture must be induced by big size particles. The particle sizes of the non-explosive TROI tests were analyzed because the explosive tests do not represent the particles during mixing. It indicates that the debris size seems to reflect the material difference, and the trend is the same as the debris size in the TEXAS-V simulation. TEXAS-V calculation for the alumina/water system indicates that the conductivity is also related to the material effect on the FCI result. The heat loss evaluation using a single sphere film boiling model shows that a reasonable conductivity and particle size give a reliable estimation for the FCI result. Thus reliable values for the physical properties such as the surface tension and a better understanding for the breakup process would be necessary for a more convincible nuclear safety analysis. (authors)

  1. The effect of constraint on fuel-coolant interactions in a confined geometry

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    A Fuel-Coolant Interaction (FCI or vapor explosion) is the phenomena in which a hot liquid rapidly transfers its internal energy into a surrounding colder and more volatile liquid. The energetics of such a complex multi-phase and multi-component phenomenon is partially determined by the surrounding boundary conditions. As one of the boundary conditions, we studied the effect of constraint on FCIs. The WFCI-D series of experiments were performed specifically to observe this effect. The results from these and our previous WFCI tests as well as those of other investigators are compared.

  2. Recent results from the MIT in-core experiments on coolant chemistry

    International Nuclear Information System (INIS)

    Harling, O.K.; Kohse, G.E.; Cabello, E.C.; Bernard, J.A.

    1993-01-01

    This paper reports results from an ongoing series of in-core experiments that have been conducted at the 5-MW(thermal) MIT Research Reactor (MITR-II) for optimizing coolant chemistries in light water reactors. Four experiments are in progress, including a pressurized coolant chemistry loop (PCCL), a boiling coolant chemistry loop (BCCL), a facility for the study of irradiation-assisted stress-corrosion cracking, and one for the evaluation of in situ sensors for the monitoring of crack propagation in metal (SENSOR). The first two have now been fully operational for several years. The latter two are scheduled to begin regular operation later this year

  3. Triboengineering problems of lead coolant in innovative fast reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Novozhilova, O.O.; Shumilkov, A.I.; Lvov, A.V.; Bokova, T.A.; Makhov, K.A.

    2013-01-01

    Graphical abstract: Models of experimental sites for research of processes tribology in heavy liquid metal coolant. -- Highlights: • The contact a pair of heavy liquid metal coolant for reactors on fast neutrons. • The hydrostatic bearings main circulation pumps. • Oxide coating and degree of wear of friction surfaces in heavy liquid metal coolant. -- Abstract: So far, there are plenty of works dedicated to studying the phenomenon of friction. However, there are none dedicated to functioning of contact pairs in heavy liquid-metal coolants for fast neutron, reactor installations (Kogaev and Drozdov, 1991; Modern Tribology, 2008; Drozdov et al., 1986). At the Nizhny Novgorod State Technical University, such research is conducted in respect to friction, bearings of main circulating pumps, interaction of sheaths of neutron absorber rods with their covers, of the reactor control and safety system, refueling systems, and interaction of coolant flows with, channel borders. As a result of experimental studies, the characteristic of friction pairs in the heavy, liquid metal coolant shows the presence dependences of oxide film on structural materials of the wear. The inapplicability of existing calculation methods for assessing the performance of the bearing nodes, in the heavy liquid metal coolant is shown

  4. FARO test L-14 on fuel coolant interaction and quenching. Comparison report, volume 1 + 2, analysis of the results

    International Nuclear Information System (INIS)

    Annunziato, A.; Addabbo, C.; Yerkess, A.; Silverii, R.; Brewka, W.; Leva, G.

    1997-01-01

    This report provides a comparative analysis of the results from the ISP-39 exercise promoted by OECD-CSNI in the frame of the NEA activities. ISP-39 has been conceived to benchmark the predictive capabilities of computer codes used in the evaluation of fuel-coolant interaction (FCI) and quenching phenomenologies of relevance in water cooled reactors severe accidents safety analysis. The ISP-39 reference case is FARO test L-14, a non-energetic FCI test performed under realistic melt composition and prototypical accident conditions in the FARO experimental installation (Ispra, Italy). Thirteen research organizations from ten countries participated in the exercise submitting 15 prediction calculations with 8 different codes or code versions (COMETA, MC3D, IVA, IFCI, JASMINE, TEXAS, THIRMAL, VAPEX). ISP-39 was conducted as an open exercise. Conclusions are given concerning code capabilities, users effect and sensitivity analyses, numerical accuracy quantification of the predictions, code improvements, general considerations

  5. A Dynamic Behavior of the Nuclear Test Rig with Coolant using the Fluid-Structural interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tae-Ho; Hong, Jintae; Ahn, Sung-Ho; Joung, Chang-Young; Jang, Seo-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yeon, Kon-Whi [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the dynamic behavior of the test rig in the coolant flow simulator is evaluated by using the 2-way fluid-structural interaction analysis. The maximum value and location of the deformation and equivalent stress in the test rig is confirmed. The fluid-structural interaction analysis is applied to perform the fluid and structural analysis A fluid-structure interaction analysis is used to simulate the relationship between the deformation and hydraulic pressure. There are two types of fluid-structural interaction analysis. One is a 1-way direction analysis in which the hydraulic pressure is calculated by a CFD and transmitted to the surface of the structure, and a structural analysis is then performed. The other is a 2-way direction analysis that is performed by changing the data between the deformation of the structural and pressure of the coolant water for every time step. The location of the maximum deformation of the test rig is the bottom parts of the test rig. It is expected that the equivalent stress of the test rig is occurred. The maximum equivalent stress in the test rig under the circulation of the coolant is 90.1 MPa. The location of the maximum stress in the test rig is the connect part between the fuel rod and flow divider. A safety factor on the test rig is 3, approximately. The deformation motion of the test rig at the bottom part of the test rig is caused about the fluid-induced vibration. A test on the fluid-induced vibration of the test rig will be performed and compared with results of the analysis in further paper.

  6. The origin and magnitude of pressures in fuel-coolant interactions

    International Nuclear Information System (INIS)

    Heer, W.; Jakeman, D.; Smith, B.L.

    1987-01-01

    A number of small scale experiments to simulate fuel coolant interaction (FCI) effects have been carried out using Freon and water. Contrary to the predictions of most current FCI models, only modest pressure transients are observed within the interaction region itself but large pressure spikes, near to or above critical Freon pressure, are seen at the boundaries of the region. Similar pressure amplification effects have been noticed in parallel experiments involving two phase mixtures. It is suggested that in both cases a water hammer type effect is the cause of the pressure spikes. These observations could form the basis of new thinking in FCI modelling. (author)

  7. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    International Nuclear Information System (INIS)

    1994-01-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned

  8. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned.

  9. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  10. SIMMER-III applications to fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Kondo, Sa.; Tobita, Y.; Brear, D.J. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-01-01

    The main purpose of the SIMMER-III code is to provide a numerical simulation of complex multiphase, multicomponent flow problems essential to investigate core disruptive accidents in liquid-metal fast reactors (LMFRs). However, the code is designed to be sufficiently flexible to be applied to a variety of multiphase flows, in addition to LMFR safety issues. In the present study, some typical experiments relating to fuel-coolant interactions (FCIs) have been analyzed by SIMMER-III to demonstrate that the code is applicable to such complex and highly transient multiphase flow situations. It is shown that SIMMER-III can reproduce the premixing phase both in water and sodium systems as well as the propagation of steam explosion. It is thus demonstrated the code is basically capable of simulating integral multiphase thermal-hydraulic problems included in FCI experiments. (author)

  11. Reactor water chemistry relevant to coolant-cladding interaction

    International Nuclear Information System (INIS)

    1987-09-01

    The report is a summary of the work performed in a frame of a Coordinated Research Program organized by the IAEA and carried out from 1981 till 1986. It consists of a survey on our knowledge on coolant-cladding interaction: the basic phenomena, the relevant parameters, their control and the modelling techniques implemented for their assessment. Based upon the results of this Coordinated Research Program, the following topics are reviewed on the report: role of water chemistry in reliable operation of nuclear power plants; water chemistry specifications and their control; behaviour of fuel cladding materials; corrosion product behaviour and crud build-up in reactor circuits; modelling of corrosion product behaviour. This report should be of interest to water chemistry supervisors at the power plants, to experts in utility engineering departments, to fuel designers, to R and D institutes active in the field and to the consultants of these organizations. A separate abstract was prepared for each of the 3 papers included in the Annex of this document. Refs, figs, tabs

  12. Introduction to the modified TROI test facility for fuel coolant interaction under a submerged reactor vessel

    International Nuclear Information System (INIS)

    Na, Young Su; Hong, Seong-Wan; Song, Jin Ho; Hong, Seong-Ho

    2014-01-01

    The molten Fuel-Coolant Interaction (FCI) can threaten the integrity of the reactor cavity under a severe accident. A steam explosion can be occurred by the rapid energy transfer in the high-temperature corium melt jet penetrating into water, which makes the dynamic load applying to the surrounding structure. Before a steam explosion, the corium melt jet breaks into small-sized particles, and the steam is generated continuously by the film boiling on the hot surface of the melt contacting with water. The premixing phase consisting of the corium melt, water, and steam can determine the intensity of the steam explosion. Unfortunately, the previous experimental studies on the FCI phenomena have carried out under a free fall of the corium melt jet in a gas phase before interacting with water. The previous TROI (Test for Real cOrium Interaction with water) test facility, that is a well-known test facility for the FCI phenomena in the world, has observed a steam explosion under a free fall of a corium melt jet in a gas phase before contacting a coolant since 2000, which is changing to simulate the FCI phenomena under a submerged reactor vessel. This study introduces the modified TROI test facility as shown in Fig. 1 and the considerations for the experiment with success. The previous TROI test facility, that has observed the molten Fuel-Coolant Interaction (FCI) with a free fall of the prototypic corium melt in a gas phase before contacting a coolant, was modified to simulate the FCI phenomena under a submerged reactor vessel for the assessment of the In-Vessel Retention (IVR) concept, i.e., without a free-fall distance of the corium melt before contacting water. The superheated prototypic corium melt created by the cold crucible melting method moves on a releasing valve newly installed just above the water level in the interaction vessel. The corium melt will stay on a releasing valve in less than 0.2 seconds to reduce heat loss for preventing the solidification, and

  13. Laboratory simulation of rod-to-rod mechanical interactions during postulated loss-of-coolant accidents in a PWR involving cladding oxidation

    International Nuclear Information System (INIS)

    Hindle, E.D.; Haste, T.J.; Harrison, W.R.

    1987-01-01

    Creep deformation of Zircaloy cladding in postulated PWR loss-of-coolant accidents may lead to rod-to-rod mechanical interactions. Tests have been performed in the electrically heated FOURSQUARE rig at 750 0 C and 850 0 C in steam to investigate this effect. Conservatisms inherent in a simple 'square with rounded corners' coolant channel blockage model have been quantified; about 5-10% flow area may remain even at strains which in ideal circumstances would give total blockage. Reduction of average burst strains produced by an oxide layer (up to 13 μm) has been demonstrated, resulting from strain concentration at oxide cracks. (author)

  14. The particle size distribution of fragmented melt debris from molten fuel coolant interactions

    International Nuclear Information System (INIS)

    Fletcher, D.F.

    1984-04-01

    Results are presented of a study of the types of statistical distributions which arise when examining debris from Molten Fuel Coolant Interactions. The lognormal probability distribution and the modifications of this distribution which result from the mixing of two distributions or the removal of some debris are described. Methods of fitting these distributions to real data are detailed. A two stage fragmentation model has been developed in an attempt to distinguish between the debris produced by coarse mixing and fine scale fragmentation. However, attempts to fit this model to real data have proved unsuccessful. It was found that the debris particle size distributions from experiments at Winfrith with thermite generated uranium dioxide/molybdenum melts were Upper Limit Lognormal. (U.K.)

  15. Analysis of material effect in molten fuel-coolant interaction, comparison of thermodynamic calculations and experimental observations

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, Václav; Piluso, P.

    2012-01-01

    Roč. 46, AUGUST (2012), s. 197-203 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Nuclear reactor severe accident * Fuel -Coolant Interaction * Material effect * Steam explosion Subject RIV: CA - Inorganic Chemistry Impact factor: 0.800, year: 2012

  16. Simulation of thermal phenomena expected in fuel coolant interactions in LMFBRs

    International Nuclear Information System (INIS)

    Yasin, J.

    1976-12-01

    High pressures and mechanical work may result when thermal energy is transferred from molten fuel to the coolant in a Liquid Metal Fast Breeder Reactor core meltdown accident. Two aspects of the interaction are examined in the thesis. First, the formation of high pressure pulses termed ''Vapor Explosions,'' and second, the distribution of the molten material into smaller particles, termed ''Fragmentation'', are studied. To understand the nature of the interaction simulant materials were used. Molten bismuth, molten tin and molten glass were dropped into water under various conditions. The interactions were recorded using multiflash and high speed photographing techniques. The pressure pulses were measured using transducers and the debris was examined by photographing them with an electron microscope. It was observed that vapor explosions have thresholds which depend on the material being dropped, its temperature and the bath conditions. The vapor explosions were enhanced by stratifying the bath. It was also noticed that the intensity of the vapor explosion depends on the way the molten drop fragmented in the initial stages of the interaction. The experiments with glass showed that the mode of fragmentation is important in determining when and if a vapor explosion is to be expected. The glass fragmented extensively but without any accompanying vapor explosion. The electron microscope photographs of the glass debris showed that thermal stress and surface tension phenomenon are apparently the cause of the fragmentation

  17. Proceedings of the CSNI specialists meeting on fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-03-01

    A specialists meeting on fuel-coolant interactions was held in Santa Barbara, CA from January 5-7, 1993. The meeting was sponsored by the United States Nuclear Regulatory Commission in collaboration with the Committee on the Safety of Nuclear Installation (CSNI) of the OECD Nuclear Energy Agency (NEA) and the University of California at Santa Barbara. The objectives of the meeting are to cross-fertilize on-going work, provide opportunities for mutual check points, seek to focus the technical issues on matters of practical significance and re-evaluate both the objectives as well as path of future research. Individual papers have been cataloged separately.

  18. Proceedings of the CSNI specialists meeting on fuel-coolant interactions

    International Nuclear Information System (INIS)

    1994-03-01

    A specialists meeting on fuel-coolant interactions was held in Santa Barbara, CA from January 5--7, 1993. The meeting was sponsored by the United States Nuclear Regulatory Commission in collaboration with the Committee on the Safety of Nuclear Installation (CSNI) of the OECD Nuclear Energy Agency (NEA) and the University of California at Santa Barbara. The objectives of the meeting are to cross-fertilize on-going work, provide opportunities for mutual check points, seek to focus the technical issues on matters of practical significance and re-evaluate both the objectives as well as path of future research. Individual papers have been cataloged separately

  19. Research on coolant radiochemistry

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, W. H.; Park, Y. J.; Im, J. K.; Jung, Y. J.; Jee, K. Y.; Choi, K. C.

    2004-04-01

    The final objective of this study is to develop the technology on the reduction of radioactive material formed in reactor coolant circuit. The contents of this study are composed of the simulation of primary cooling system, chemistry measurement technology in the high-temperature high-pressure environments, and coolant chemistry control technology. The main results are as follows; High-temperature and high-pressure loop system was designed and fabricated, which is to inducing CRUD growth condition on the surface of cladding. The high-temperature pH measurement system was established with YSZ sensing electrode and Ag/AgCl reference electrode. The performance of pH electrode was confirmed in the temperature range 200∼280 .deg. C. Coolant chemistry control technologies such as the neutron irradiation technique of boric acid solution, the evaluation on high-temperature electrochemical behavior of coolant, and the measurement of physicochemical properties of micro-particles were developed. The results of this study can be useful for the understanding of chemical phenomena occurred in reactor coolant and for the study on the reduction of radioactive material in primary coolant, which will be carried out in the next research stage

  20. Dynamic response of INTOR/NET blankets after coolant tube rupture

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1985-01-01

    The dynamic response of different water-cooled liquid Li 17 Pb 83 breeder blanket modules has been calculated to study the potential of these modules in case of coolant tube rupture. Numerical calculations with the code PISCES have been carried out taking into account the fluid-structure interaction and the elasto-plastic behaviour of the structural material. The results show that for inert coolant characteristics the proposed conceptual designs for NET and INTOR have sufficient resistance against coolant tube rupture but when taking into account energy release due to chemical reaction of water with LiPb-alloy up to doubling of the wall thickness has to be envisaged to guarantee structural reliability. (orig.)

  1. Material effect in the fuel-coolant interaction: structural characterization of the steam explosion debris and solidification mechanism

    International Nuclear Information System (INIS)

    Tyrpekl, V.

    2012-01-01

    This work has been performed under joint supervision between Charles University in Prague (Czech Republic) and Strasbourg University (France). It also profited from the background and cooperation of Institute of Inorganic Chemistry Academy of Science of the Czech Republic and French Commission for Atomic and Alternative energies (CEA Cadarache). Results of the work contribute to the OECD/NEA project Serena 2 (Program on Steam Explosion Resolution for Nuclear Applications). Presented thesis can be classed in the scientific field of nuclear safety and material science. It is aimed on the so-called 'molten nuclear Fuel - Coolant Interaction' (FCI) that belongs among the recent issues of the nuclear reactor severe accident R and D. During the nuclear reactor melt down accident the melted reactor load can interact with the coolant (light water). This interaction can be located inside the vessel or outside in the case of vessel break-up. These two scenarios are commonly called in- and ex-vessel FCI and they differ in the conditions such as initial pressure of the system, water sub-cooling etc. The Molten fuel - coolant interaction can progress into thermal detonation called 'steam explosion' that can challenge the reactor or containment integrity. Recent experiments have shown that the melt composition has a major effect on the occurrence and yield of such explosion. In particular, different behaviors have been observed between simulant material (alumina), which has important explosion efficiency, and some prototypic corium compositions (80 w. % UO 2 , 20% w. % ZrO 2 . This 'material effect' has launched a new interest in the post-test analyses of FCI debris in order to estimate the processes occurring during these extremely rapid phenomena. The thesis is organized in nine chapters. The chapter 1 gives the general introduction and context of the nuclear reactor accident. Major nuclear accidents (Three Miles Island 1979, Chernobyl 1986 and Fukushima 2011) are briefly

  2. Study of core characteristics on fuel and coolant type. Results of F/S phase-I

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo; Hayashi, Hideyuki; Sasaki, Makoto; Mizuno, Tomoyasu; Yamadate, Megumi; Takaki, Naoyuki; Kurosawa, Norifumi; Sakashita, Yoshiaki; Naganuma, Masayuki

    2001-03-01

    The phase-I of the Feasibility Study of Commercialized Fast Reactor Cycle Systems (F/S) were started from July, 1999 and terminated at the end of FY2000 in order to executed examination about technology alternatives of various commercialized fast reactor (FR) recycle concepts, in response to the JNC middle long term enterprise plan. In the phase-I of this F/S, a number of conceptual candidates have been selected from the following 5 viewpoints: a) ensuring safety, b) economic competitiveness to future LWRs, c) efficient utilization of resources, d) reduction of environmental burden, e) enhancement of nuclear non-proliferation. As for this study from the above viewpoints, core characteristics of many kinds of reactors have been investigated, analyzed and examined a core / a fuel characteristic in the combinations of fuel and coolant types and power output scales. Based on these results, R and D plans of the phase-II to be performed have been proposed, and a database to select candidate reactor concepts has been prepared. The conclusions have been obtained in the phase-I are as follows: (1) Evaluation of a fuel form in every each coolant was compared. A promising fuel form was extracted as follows: an oxide and a metal fuel for sodium coolant cores, a metal and a nitride fuel for heavy metal coolant cores, an oxide and a nitride fuel for carbon dioxide coolant cores and a nitride fuel for He gas coolant cores. (2) As the general idea that performance of a core nucleus can be compatible with re-criticality evasion in sodium coolant large-sized oxide fuel cores, a axial blanket particle elimination radial heterogeneous core is one influential candidate. (3) In case of Pb-Bi coolant nature circulation medium size core with an oxide fuel, it is difficult to simultaneously achieve higher discharged burn-up and higher breeding ratio according to the viewpoints of the phase-I. (4) Core characteristics of a carbon dioxide coolant core shows to be almost equivalent to that of

  3. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  4. Mechanical energy yields and pressure volume and pressure time curves for whole core fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, P [United Kingdom Atomic Energy Authority, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1979-10-15

    In determining the damage consequences of a whole core Fuel-Coolant Interaction (FCI), one measure of the strength of a FCI that can be used and is independent of the system geometry is the constant volume mixing mechanical yield (often referred to as the Hicks-Menzies yield), which represents a near upper limit to the mechanical work of a FCI. This paper presents a recalculation of the Hicks-Menzies yields for UO{sub 2} and sodium for a range of initial fuel temperatures and fuel to coolant mass ratios, using recently published UO{sub 2} and sodium equation of state data. The work presented here takes a small number of postulated FCIs with as wide range as possible of thermal interaction parameters and determines their pressure-volume P(V) and pressure-time P(t) relations, using geometrical constraints representative of the reactor. Then by examining these P(V) and P(t) curves a representative pressure-relative volume curve or range of possible curves, for use in containment analysis, is recommended

  5. Material effect in the nuclear fuel-coolant interaction: Analyses of prototypic melt fragmentation and solidification in the KROTOS facility

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, V.; Piluso, P.; Bakardjieva, Snejana; Dugne, O.

    2014-01-01

    Roč. 186, č. 2 (2014), s. 229-240 ISSN 0029-5450 Institutional support: RVO:61388980 Keywords : fuel-coolant interaction * melt fragmentation * KROTOS facility Subject RIV: CA - Inorganic Chemistry Impact factor: 0.725, year: 2014

  6. Thermochemical aspects of fuel-cladding and fuel-coolant interactions in LMFBR oxide fuel pins

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.; Potter, P.E.; Mignanelli, M.A.

    1979-01-01

    This paper examines several thermochemical aspects of the fuel-cladding, fuel-coolant and fuel-fission product interactions that occur in LMFBR austenitic stainless steel-clad mixed (U,Pu)-oxide fuel pins during irradiation under normal operating conditions. Results are reported from a variety of high temperature EMF cell experiments in which continuous oxygen activity measurements on reacting and equilibrium mixtures of metal oxides and (excess) liquid alkali metal (Na, K, Cs) were performed. Oxygen potential and 0:M thresholds for Na-fuel reactions are re-evaluated in the light of new measurements and newly-assessed thermochemical data, and the influence on oxygen potential of possible U-Pu segregation between oxide and urano-plutonate (equilibrium) phases has been analyzed. (orig./RW) [de

  7. Coolant system decontamination

    International Nuclear Information System (INIS)

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P.

    1981-01-01

    An improved method for decontaminating the coolant system of water cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution. (author)

  8. Comparative design study of FR plants with various coolants. 1. Studies on Na coolant FR, Pb-Bi coolant FR, gas coolant FR

    International Nuclear Information System (INIS)

    Konomura, Mamoru; Shimakawa, Yoshio; Hori, Toru; Kawasaki, Nobuchika; Enuma, Yasuhiro; Kida, Masanori; Kasai, Shigeo; Ichimiya, Masakazu

    2001-01-01

    In Phase I of the Feasibility Studies on the Commercialized Fast Reactor (FR) Cycle System, plant designs on FR were performed with various coolants. This report describes the plant designs on FR with sodium, lead-bismuth, CO 2 gas and He gas coolants. A construction cost of 0.2 million yen/kWe was set up as a design goal. The result is as follows: The sodium reactor has a capability to obtain the goal, and lead-bismuth and gas reactors may satisfy the goal with further improvements. (author)

  9. Status of molten fuel coolant interaction studies and theoretical modelling work at IGCAR

    International Nuclear Information System (INIS)

    Rao, P.B.; Singh, Om Pal; Singh, R.S.

    1994-01-01

    The status of Molten Fuel Coolant Interaction (MFCI) studies is reviewed and some of the important observations made are presented. A new model for MFCI that is developed at IGCAR by considering the various mechanisms in detail is described. The model is validated and compared with the available experimental data and theoretical work at different stages of its development. Several parametric studies that are carried using this model are described. The predictions from this model have been found to be satisfactory, considering the complexity of the MFCI. A need for more comprehensive and MFCI-specific experimental tests is brought out. (author)

  10. Bulk coolant cavitation in LMFBR containment loading following a whole-core explosion

    International Nuclear Information System (INIS)

    Jones, A.V.

    1977-01-01

    An LMFBR core undergoing an explosion transmits energy to the containment in a series of pressure waves and the containment loading is determined by their cumulative effect. These pressure waves are modified by their interaction with the coolant through which they propagate. It is necessary to model both the induction of bulk cavitation by tension waves and the interaction of pressure waves with cavitated liquid in realistic containment loading calculations. This paper sets out the progress which has been achieved in such modelling and first indications for the effect of bulk coolant cavitation in LMFBR containment loading. Conclusions may be briefly summarised: 1) Bulk cavitation must be included in realistic containment loading calculations. 2) Phenomenological models of cavitated liquid without memory are inappropriate. The best approach is to model bubble dynamics directly, including at least momentum conservation and surface tension. 3) The containment loading resulting from a given explosion is sensitive to the state of preparation of the coolant. The number density of nucleation sites should therfore accompany the results of model tests. (Auth.)

  11. Sound velocity in the coolant of boiling nuclear reactors

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Parshin, D.A.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    To prevent resonant interaction between acoustic resonance and natural frequencies of FE, FA and RI oscillations, it is necessary to determine the value of EACPO. Based on results of calculations of EACPO and natural frequencies of FR, FA and RI oscillations values, it would be possible to reveal the dynamical loadings on metal that are dangerous for the initiation of cracking process in the early stage of negative condition appearance. To calculate EACPO it is necessary to know the Speed Velocity in Coolant. Now we do not have any data about real values of such important parameter as pressure pulsations propagation velocity in two phase environments, especially in conditions with variations of steam content along the length of FR, with taking into account the type of local resistances, flow geometry etc. While areas of resonant interaction of the single-phase liquid coolant with equipment and internals vibrations are estimated well enough, similar estimations in the conditions of presence of a gas and steam phase in the liquid coolant are inconvenient till now. Paper presents results of calculation of velocity of pressure pulsations distribution in two-phase flow formed in core of RBMK-1000 reactors. Feature of the developed techniques is that not only thermodynamic factors and effect of a speed difference between water and steam in a two phase flow but also geometrical features of core, local resistance, non heterogeneity in the two phase environment and power level of a reactor are considered. Obtained results evidence noticeable decreasing of velocity propagation of pressure pulsations in the presence of steam actions in the liquids. Such estimations for real RC of boiling nuclear reactors with steam-liquid coolant are obtained for the first time. (author)

  12. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  13. Mixing Characteristics during Fuel Coolant Interaction under Reactor Submerged Conditions

    International Nuclear Information System (INIS)

    Hong, S. W.; Na, Y. S.; Hong, S. H.; Song, J. H.

    2014-01-01

    A molten material is injected into an interaction chamber by free gravitation fall. This type of fuel coolant interaction could happen to operating plants. However, the flooding of a reactor cavity is considered as SAM measures for new PWRs such as APR-1400 and AP1000 to assure the IVR of a core melt. In this case, a molten corium in a reactor is directly injected into water surrounding the reactor vessel without a free fall. KAERI has carried out fuel coolant interaction tests without a free fall using ZrO 2 and corium to simulate the reactor submerged conditions. There are four phases in a steam explosion. The first phase is a premixing phase. The premixing is described in the literature as follows: during penetration of melt into water, hydrodynamic instabilities, generated by the velocities and density differences as well as vapor production, induce fragmentation of the melt into particles; the particles fragment in turn into smaller particles until they reach a critical size such that the cohesive forces (surface tension) balance exactly the disruptive forces (inertial); and the molten core material temperature (>2500 K) is such that the mixing always occurs in the film boiling regime of the water: It is very important to qualify and quantify this phase because it gives the initial conditions for a steam explosion This paper mainly focuses on the observation of the premixing phase between a case with 1 m free fall and a case without a free fall to simulate submerged reactor condition. The premixing behavior between a 1m free fall case and reactor case submerged without a free fall is observed experimentally. The average velocity of the melt front passing through 1m water pool; - Case without a free fall: The average velocity of corium, 2.7m/s, is faster than ZrO 2 , 2.3m/s, in water. - Cases of with a 1 m free fall and without a free fall : The case without a free fall is about two times faster than a case with a 1 m free fall. Bubble characteristics; - Case

  14. Analysis of a water-coolant leak into a very high-temperature vitrification chamber

    International Nuclear Information System (INIS)

    Felicione, F. S.

    1998-01-01

    A coolant-leakage incident occurred during non-radioactive operation of the Plasma Hearth Process waste-vitrification development system at Argonne National Laboratory when a stray electric arc ruptured az water-cooling jacket. Rapid evaporation of the coolant that entered the very high-temperature chamber pressurized the normally sub-atmospheric system above ambient pressure for over 13 minutes. Any positive pressurization, and particularly a lengthy one, is a safety concern since this can cause leakage of contaminants from the system. A model of the thermal phenomena that describe coolant/hot-material interactions was developed to better understand the characteristics of this type of incident. The model is described and results for a variety of hypothetical coolant-leak incidents are presented. It is shown that coolant leak rates above a certain threshold will cause coolant to accumulate in the chamber, and evaporation from this pool can maintain positive pressure in the system long after the leak has been stopped. Application of the model resulted in reasonably good agreement with the duration of the pressure measured during the incident. A closed-form analytic solution is shown to be applicable to the initial leak period in which the peak pressures are generated, and is presented and discussed

  15. Flat plate film cooling at the coolant supply into triangular and cylindrical craters

    Directory of Open Access Journals (Sweden)

    Khalatov Artem A.

    2017-01-01

    Full Text Available The results are given of the film cooling numerical simulation of three different schemes including single-array of the traditional round inclined holes, as well as inclined holes arranged in the cylindrical or triangular dimples (craters. The results of simulation showed that at the medium and high values of the blowing ratio (m > 1.0 the scheme with coolant supply into triangular craters improves the adiabatic film cooling efficiency by 1.5…2.7 times compared to the traditional array of inclined holes, or by 1.3…1.8 times compared to the scheme with coolant supply into cylindrical craters. The greater film cooling efficiency with the coolant supply into triangular craters is explained by decrease in the intensity of secondary vortex structures (“kidney” vortex. This is due to the partial destruction and transformation of the coolant jets structure interacting with front wall of the crater. Simultaneously, the film cooling uniformity is increased in the span-wise direction.

  16. Fuel -coolant interactions in LWRs and LMFBRs: relationships and distinctions

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, R B; Lellouche, G S [Nuclear Safety and Analysis Department, Electric Power Research Institute, Palo Alto, CA (United States)

    1979-10-15

    The question of fuel-coolant interaction and of potential vapor explosion is raised here. lt is the contention of the authors that there is in fact no need to study this question vis a vis Light Water Reactors (LWR) except from an academic point of view since it does not impact on safety considerations. As for LMFBRs, the design basis whole core accidents for LWRs are derived from the fundamental concern of maintaining core geometry to provide for convective cooling. However, the important distinction is that the core is in its most reactive configuration, and core and fuel rearrangement is therefore not of such concern. The author's thesis is that even if the probability of steam explosion following core melt were two orders of magnitude greater than currently assumed (10{sup -2}) the total LWR risk would increase only by a factor of 2-6 for BWRs and less a factor of 10 for PWRs

  17. Prediction of the amount of hydrogen generated during a molten fuel-coolant interaction

    International Nuclear Information System (INIS)

    Matthern, G.E.; Neuman, J.E.; Madsen, W.W.; Close, J.A.

    1990-01-01

    The model in development predicts the production of hydrogen as a result of a molten fuel-coolant interaction in a water-cooled nuclear reactor. It has three interrelated modules: kinetics, heat transfer, and hydrodynamics. Second and third order rates are assumed for uranium and aluminum respectively, the chosen fuel and cladding. Heat is generated by chemical reaction and radioactive decay and dissipated through radiation and convection. Dispersion of the melt as it descends through a pool of water is modeled using the Weber number, which ratios the shear forces due to the relative velocities of the fluid and the metal to the surface tension of the metal. Hydrogen generation is sensitive to the initial melt temperature and to the assumptions made about the modes of heat transfer, but not the the impact velocity of the metal particle. The hydrogen generation per unit mass of uranium generally increases as the initial particle size decreases suggesting that the kinetics rather than the heat transfer controls the energy balance

  18. Coolant clean-up system in the primary coolant circuit for nuclear reactor

    International Nuclear Information System (INIS)

    Saito, Michio.

    1981-01-01

    Purpose: To maintain the quality of coolants at a prescribed level by distillating coolants in the primary coolant circuit for a BWR type reactor to remove impurities therefrom, taking out the condensates from the top of the distillation column and extracting impurities in a concentrated state from the bottom. Constitution: Coolant water for cooling the core is recycled by a recycling pump by way of a recycling pipeway in a reactor. The coolants extracted from an extraction pipeway connected to the recycling pipeway are fed into a distillation column, where distillation is taken place. Impurities in the coolants, that is, in-core corrosion products, fission products generated in the reactor core, etc. are separated by the distillation, concentrated and solidified in the bottom of the distillation column. While on the other hand, condensates removed with the impurities, that is, coolants cleaned-up are recycled to the coolant water for cooling the reactor core. (Moriyama, K.)

  19. Stress Analysis of Fuel Rod under Axial Coolant Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)

    2010-05-15

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  20. Stress Analysis of Fuel Rod under Axial Coolant Flow

    International Nuclear Information System (INIS)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok

    2010-01-01

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  1. Interfacing systems loss of coolant accident (ISLOCA) pressure capacity methodology and Davis-Besse results

    International Nuclear Information System (INIS)

    Wesley, D.A.

    1991-01-01

    A loss of coolant accident resulting from the overpressurization by reactor coolant fluid of a system designed for low-pressure, low-temperature service has been identified as a potential contributor to nuclear power plant risk. In this paper, the methodology developed to assess the probability of failure as a function of internal pressure is presented, and sample results developed for the controlling failure modes and locations of four fluid systems at the Davis-Besse Plant are shown. Included in this evaluation are the tanks, heat exchangers, filters, pumps, valves, and flanged connections for each system. The variability in the probability of failure is included, and the estimated leak rates or leak areas are given for the controlling modes of failure. For this evaluation, all failures are based on quasistatic pressures since the probability of dynamic effects resulting from such causes as water hammer have been initially judged to be negligible for the Davis-Besse plant ISLOCA

  2. Stresses imposed by coolant channel end shield interaction in 200 MWe PHWR

    International Nuclear Information System (INIS)

    Mehra, V.K.; Singh, R.K.; Soni, R.S.; Kushwaha, H.S.; Kakodkar, A.

    1983-01-01

    End shield of 200 MWe Pressurised Heavy Water Reactor (PHWR) is a composite tube sheet structure consisting of two circular tube sheets joined together by lattice tubes. Each lattice tube houses a coolant channel assembly which is connected to the end shield through shock absorber device. End shield assembly is suspended in the vault by hanger rods and its horizontal position is controlled by a set of pre-compressed springs. Coolant channel assemblies elongate due to their exposure to fast neutron flux in the reactor. This permanent elongation is monitored periodically. When growth of the channel exceeds a present value, it is prevented from further elongation by the shock absorbing device. Resultant force exerted on the end shield makes it move. This paper describes a numerical method used for evaluating these forces and movement of the end shield. Stresses produced by these forces are calculated by using finite element method. Typical stress values are verified by strain gauge measurements. (orig.)

  3. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.

    2013-08-01

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  4. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  5. Molten fuel-coolant interaction behaviours of various fast reactor fuels (Paper No. HMT-45-87)

    International Nuclear Information System (INIS)

    Doshi, J.B.

    1987-01-01

    A parametric computational model of molten fuel-coolant interaction (MFCI) including a particle size distribution is developed and employed to analyse behaviours of various possible reactor fuels, such as oxide, carbide and metal in MFCI scenario. It is observed that while higher thermal conductivity and lower specific heat of carbide compared to oxide is responsible for higher peak pressure and work done per unit mass, the trend is not observed in the metal fuel. The reason for this is the lower operation temperature and latent heat of metallic fuel. (author). 9 refs., 1 fig

  6. Effect of parameter variation of reactor coolant pump on loss of coolant accident consequence

    International Nuclear Information System (INIS)

    Dang Gaojian; Huang Daishun; Gao Yingxian; He Xiaoqiang

    2015-01-01

    In this paper, the analyses were carried out on Ling'ao nuclear power station phase II to study the consequence of the loss of coolant accident when the homologous characteristic curves and free volumes of the reactor coolant pump changed. Two different pumps used in the analysis were 100D (employed on Ling'ao nuclear power station phase II) and ANDRITZ. The thermal characteristics in the large break LOCA accident were analyzed using CATHRE GB and CONPATE4, and the reactor coolant system hydraulics load during blow-clown phase of LOCA accident was analyzed using ATHIS and FORCET. The calculated results show that the homologous characteristic curves have great effect on the thermal characteristics of reactor core during the reflood phase of the large break LOCA accident. The maximum cladding surface temperatures are quite different when the pump's homologous characteristic curves change. On the other hand, the pump's free volume changing results in the variation of the LOCA rarefaction wave propagation, and therefore, the reactor coolant system hydraulic load in LOCA accident would be different. (authors)

  7. Coolant leakage detection device

    International Nuclear Information System (INIS)

    Ito, Takao.

    1983-01-01

    Purpose: To surely detect the coolant leakage at a time when the leakage amount is still low in the intra-reactor inlet pipeway of FBR type reactor. Constitution: Outside of the intra-reactor inlet piping for introducing coolants at low temperature into a reactor core, an outer closure pipe is furnished. The upper end of the outer closure pipe opens above the liquid level of the coolants in the reactor, and a thermocouple is inserted to the opening of the upper end. In such a structure, if the coolants in the in-reactor piping should leak to the outer closure pipe, coolants over-flows from the opening thereof, at which the thermocouple detects the temperature of the coolants at a low temperature, thereby enabling to detect the leakage of the coolants at a time when it is still low. (Kamimura, M.)

  8. Analysis of water hammer-structure interaction in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; Yang Jinglong; He Feng; Wang Xuefang

    2000-01-01

    The conventional analysis of water hammer and dynamics response of structure in piping system is divided into two parts, and the interaction between them is neglected. The mechanism of fluid-structure interaction under the double-end break pipe in piping system is analyzed. Using the characteristics method, the numerical simulation of water hammer-structure interaction in piping system is completed based on 14 parameters and 14 partial differential equations of fluid-piping cell. The calculated results for a loss of coolant accident (LOCA) in primary loop of pressurized water reactor show that the waveform and values of pressure and force with time in piping system are different from that of non-interaction between water hammer and structure in piping system, and the former is less than the later

  9. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  10. Conservatism of loss-of-coolant accident licensing analysis compared to experimental results and best-estimate calculation

    International Nuclear Information System (INIS)

    Winkler, F.; Friedmann, P.

    1986-01-01

    The paper compares results of loss-of-coolant accident licensing analysis with experimental results and results of best-estimate calculations. The large safety margins resulting from the more realistic best-estimate results are used to show the high conservatism inherent in the licensing process of pressurized water reactors. (orig.) [de

  11. HANARO secondary coolant management

    International Nuclear Information System (INIS)

    Kim, Seon Duk.

    1998-02-01

    In this report, the basic theory for management of water quality, environmental factors influencing to the coolant, chemicals and its usage for quality control of coolant are mentioned, and water balance including the loss rate by evaporation (34.3 m 3 /hr), discharge rate (12.665 m 3 /hr), concentration ratio and feed rate (54.1 m 3 /hr) are calculated at 20 MW operation. Also, the analysis data of HANSU Limited for HANARO secondary coolant (feed water and circulating coolant) - turbidity, pH, conductivity, M-alkalinity, Ca-hardness, chloride ion, total iron ion, phosphoric ion and conversion rate are reviewed. It is confirmed that the feed water has good quality and the circulating coolant has been maintained within the control specification in general, but some items exceeded the control specification occasionally. Therefore it is judged that more regular discharge of coolant is needed. (author). 6 refs., 17 tabs., 18 figs

  12. LWR and HTGR coolant dynamics: the containment of severe accidents

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Gherson, P.; Nourbakhsh, H.P.; Hu, K.; Iyer, K.; Viskanta, R.; Lommers, L.

    1983-07-01

    This is the final report of a project containing three major tasks. Task I deals with the fundamental aspects of energetic fuel/coolant interactions (steam explosions) as they pertain to LWR core melt accidents. Task II deals with the applied aspects of LWR core melt accident sequences and mechanisms important to containment response, and includes consideration of energetic fuel/coolant interaction events, as well as non-explosive ones, corium material disposition and eventual coolability, and containment pressurization phenomena. Finally, Task III is concerned with HTGR loss of forced circulation accidents. This report is organized into three major parts corresponding to these three tasks respectively

  13. Limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.

    1985-01-01

    The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass

  14. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  15. An assessment of ex-vessel fuel-coolant interaction energetics for advanced light water reactors

    International Nuclear Information System (INIS)

    Murphy, J.G.; Corradini, M.L.

    1997-01-01

    The occurrence of an energetic fuel/coolant interaction (FCI) below the reactor pressure vessel in the cavity of advanced light water reactors (ALWRs) are analyzed to determine the possible hazard to structural walls as a result of dynamic liquid phase pressures. Such analyses are important to demonstrate that these cavity walls will maintain their integrity so that ex-vessel core debris coolability is possible. Past studies that have examined this or related issues are reviewed, and a methodology is proposed to analyze the occurrence of this physical event using the IFCI and TEXAS models for the FCI as well as dynamic shock wave propagation estimates using hand calculations as well as the CTH hydro model. Scenarios for the ALWRs are reviewed, and one severe accident scenario is used as an example to demonstrate the methodology. Such methodologies are recommended for consideration in future safety studies. These methodologies should be verified with direct comparison to energetic FCI data such as that being produced in KROTOS at the Joint Research Centre, Ispra

  16. OECD/CSNI specialist meeting on fuel coolant interactions: summary and conclusions

    International Nuclear Information System (INIS)

    1997-01-01

    Research activities and interest on fuel-coolant interaction (FCI) have been increased and broadened since the last CSNI Specialist Meeting held in January 1993. Significant experimental and analytical research has been performed in many OECD countries and others. The growing international interest is, in large part, due to the emphasis on broader aspects of FCI ranging from melt quenching and coolability to energetic explosions (both in- and ex-vessel), and their relevance and applications to next-generation reactor design as well as accident management strategies. The objectives of the meeting are to review the knowledge and to obtain consensus on the phenomenology of FCI and in predicting FCI behavior in LWRs severe accidents; to identify those areas of FCI phenomena and prediction which are important for reactor safety but still poorly understood and require further study with clear methodologies; to inform the community and the regulatory agencies of the status of FCI issues, especially in the application to accident management and future reactor designs. The various sessions are: reactor applications, pre-mixing, propagation / trigger, experiments

  17. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  18. Compartmentalized safety coolant injection system

    International Nuclear Information System (INIS)

    Johnson, F.T.

    1983-01-01

    A safety coolant injection system for nuclear reactors wherein a core reflood tank is provided to afford more reliable reflooding of the reactor core in the event of a break in one of the reactor coolant supply loops. Each reactor coolant supply loop is arranged in a separate compartment in the containment structure to contain and control the flow of spilled coolant so as to permit its use during emergency core cooling procedures. A spillway allows spilled coolant in the compartment to pass into the emergency water storage tank from where it can be pumped back to the reactor vessel. (author)

  19. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    International Nuclear Information System (INIS)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V.; Korolev, Alexander S.

    2017-01-01

    The JSC ''Atomtechenergo'' experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

  20. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V.; Korolev, Alexander S. [JSC ' ' Atomtechenergo' ' , Novovoronezh (Russian Federation). Novovoronezh Filial ' ' Novovoronezhatomtechenergo' ' ; Ryasny, Sergei I. [JSC ' ' Atomtechenergo' ' , Moscow (Russian Federation)

    2017-09-15

    The JSC ''Atomtechenergo'' experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

  1. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  2. Uranium dioxide-sodium interactions. Development of a theoretical model. Fitting of this model to the experimental results

    International Nuclear Information System (INIS)

    Syrmalenios, Panayotis

    1973-01-01

    This research thesis addresses the issue of safety of fast neutron reactors, and more particularly is a contribution of the study of mechanisms of interaction between molten fuel and sodium. It aims at developing tools of prediction of consequences of three main types of accidents: local fusion of a fuel rod and contact of the fuel with the surrounding sodium, failure of an assembly due to the fusion of several rods and fuel-coolant interaction within the assembly, and fuel-coolant interaction at the level of the reactor core. The author first proposes a bibliographical analysis of experimental and theoretical studies related to this issue of interaction between a hot body and a cold liquid, and of its consequences. Then, he introduces a mathematical model and its resolution method, and reports the use of the associated code (Corfou) for the interpretation of experimental results: expulsion of cold sodium column by expansion of an overheated sodium mass, fusion of a rod by Joule effect, interaction between UO_2 molten by high frequency with liquid sodium. Finally, the author discusses a comparison between the Corfou code and other models which are being currently developed [fr

  3. In-core failure of the instrumented BWR rod by locally induced high coolant temperature

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the BWR type light water loop instrumented in HBWR, a current BWR type fuel rod pre-irradiated up to 5.6 MWd/kgU was power ramped to 50 kW/m. During the ramp, the diameter of the rod was expanded significantly at the bottom end. The behaviour was different from which caused by pellet-cladding interaction (PCI). In the post-irradiation examination, the rod was found to be failed. In this paper, the cause of the failure was studied and obtained the followings. (1) The significant expansion of the rod diameter was attributed to marked oxidation of cladding outer diameter, appeared in the direction of 0 0 -180 0 degree with a shape of nodular. (2) The cladding in the place was softened by high coolant temperature. Coolant pressure, 7MPa intruded the cladding into inside chamfer void at pellet interface. (3) At the place of the significant oxidation, an instrumented transformer was existed and the coolant flow area was very little. The reduction of the coolant flow was enhanced by the bending of the cladding which was caused in pre-irradiation stage. They are considered to be a principal cause of local closure of coolant flow and resultant high temperature in the place. (author)

  4. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  5. Development of lead-bismuth coolant technology for nuclear device

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Kitano, Teruaki; Ono, Mikinori

    2004-01-01

    Liquid lead-bismuth is a promising material as a future fast reactor coolant or an intensive neutron source material for accelerator driven transmutation system (ADS). To develop nuclear plants and their installations using lead-bismuth coolant for practical use, both coolant technologies, inhabitation process of steels and quality control of coolant, and total operation system for liquid lead-bismuth plants are required. Based on the experience of liquid metal coolant, Mitsui Engineering and Shipbuilding Co., Ltd. (MES) has completed the liquid lead-bismuth forced circulation loop and has acquired various engineering data on main components including economizer. As a result of tis operation, MES has developed key technologies of lead-bismuth coolant such as controlling of oxygen content in lead-bismuth and a purification of lead-bismuth coolant. MES participated in the national project, ''The Development of Accelerator Driven Transmutation System'', together with JAERI (Japan Atomic Energy Research Institute) and started corrosion test for beam window of ADS. (author)

  6. Corrosion phenomena in sodium-potassium coolant resulting from solute interaction in multicomponent solution

    Science.gov (United States)

    Krasin, V. P.; Soyustova, S. I.

    2018-03-01

    The solubility of Fe, Cr, Ni, V, Mn and Mo in sodium-potassium melt has been calculated using the mathematical framework of pseudo-regular solution model. The calculation results are compared with available published experimental data on mass transfer of components of austenitic stainless steel in sodium-potassium loop under non-isothermal conditions. It is shown that the parameters of pair interaction of oxygen with transition metal can be used to predict the corrosion behavior of structural materials in sodium-potassium melt in the presence of oxygen impurity. The results of calculation of threshold concentration of oxygen of ternary oxide formation of sodium with transitional metals (Fe, Cr, Ni, V, Mn, Mo) are given in conditions when pure solid metal comes in contact with sodium-potassium melt.

  7. Proceedings of the OECD/CSNI specialists meeting on fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Mamoru; Yamano, Norihiro; Sugimoto, Jun [eds.

    1998-01-01

    The OECD/CSNI Specialists Meeting on Fuel Coolant Interactions (FCI) was held at Tokai-mura in Japan on May 19 through 21, 1997, and attended by 80 participants from 14 countries and one international organizations. In the meeting 36 papers were presented followed by active discussions in six sessions on various aspects of FCI issues, such as reactor application, premixing, propagation/trigger, experiments and code/models. At the end of the Meeting, the participants have reached to the consensus on the summary and recommendations, which consists of the following items; (1) We find no new evidence that would change or violate the conclusion of SERG-2 (1996) that alpha-mode failure is not risk significant. (2) Significant progress has been made since the Santa Barbara meeting (1993). (3) Several areas have been identified, which need further investigations to understand the basic FCI phenomena, and to improve the modeling. (4) We recommend maximizing open communication between various research groups in order to accelerate the resolution of the remaining issues. (5) We recommend that the next specialist meeting be held within 3 to 5 years in order to synthesize the activities described above. (J.P.N.)

  8. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meier, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frantoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reyes, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  9. The Effect of the UO2/ZrO2 Composition on Fuel/Coolant Interaction

    International Nuclear Information System (INIS)

    Song, Jin Ho; Kim, Jong Hwan

    2005-01-01

    A series of experiments on fuel/coolant interaction (FCI) was performed in the TROI facility, where the composition of the mixture was varied. The compositions of the UO 2 and ZrO 2 mixture in weight percent were 50:50, 70:30, 80:20, and pure ZrO 2 . The responses of the system including the temperature of the pool of water in the test vessel, pressure and temperature of the containment vessel, and dynamic pressures and force were measured. In addition, high-speed movies were taken through the windows. The tests using corium with a 70:30 composition and pure zirconia resulted in a spontaneous energetic steam explosion, while the tests with other compositions did not lead to an energetic FCI. The debris size distribution and pressure and temperature responses clearly indicated the cases with an energetic explosion and the cases without an explosion. The high-speed movie taken during the FCI through the visible window clearly disclosed the outstanding phases of the FCI, which were the melt entry phase, the triggering phase, and the continued melt jet and expansion of the mixing zone phase

  10. Results of thermal interaction tests for various materials performed in the Ispra tank facility

    International Nuclear Information System (INIS)

    Fasoli-Stella, P.; Holtbecker, H.; Jorzik, E.; Schlittenhardt, P.; Thoma, U.

    A test facility for fuel/coolant thermal interaction measurements is described together with recent improvements of the melting oven design, the instrumentation and the collection and cleaning of the debris. The formation of a UO 2 crust on the melting crucible is investigated theoretically taking into account the heat losses during transport of the crucible from the oven to the reaction chamber. Experimental results for the systems steel-sodium, steel-water and UO 2 -sodium are presented and discussed with respect to particle size distribution and appearence of the debris. A sodium/fuel interaction model is introduced in the hydrodynamic REXCO-H-code. The results of test calculations are dealt with

  11. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  12. Contact condensation effects in the main coolant pipe

    International Nuclear Information System (INIS)

    Haefner, W.; Fischer, K.

    1990-01-01

    Contact condensation effects may occur in a pressurized water reactor (PWR) after a loss of coolant accident (LOCA) when emergency core cooling (ECC) water is injected contact with escaping steam which is generated within the core. The condensation which takes place may cause a sudden depressurization leading to the formation of water slugs. The interaction between the transient condensation and the inertia of the flow may also result in large amplitude flow and pressure oscillations. These contact condensation effects are of great importance for the mass flow distribution and the coolant water supply to the reactor core. To examine those complex processes, large computer codes are necessary. The development and verification of analytical models requires greatly simplified flow boundary conditions from experiments and a sufficiently large base of experimental data. Separate models have been developed for interfacial exchange of mass, momentum and energy with respect to the associated flow regime. Therefore, an adequate description of the condensation process requires the modeling of two different topics: the prediction of the flow regime and the calculation of the interfacial exchange. (author)

  13. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  14. Vapour explosions (fuel-coolant interactions) resulting from the sub-surface injection of water into molten metals: preliminary results

    International Nuclear Information System (INIS)

    Asher, R.C.; Bullen, D.; Davies, D.

    1976-03-01

    Preliminary experiments are reported on the relationship between the injection mode of contact and the occurrence and magnitude of vapour explosions. Water was injected beneath the surface of molten metals, chiefly tin at 250 to 900 0 C. Vapour explosions occurred in many, but not all, cases. The results are compared with Dullforce's observations (Culham Report (CLM-P424) on the dropping mode of contact and it appears that rather different behaviour is found; in particular, the present results suggest that the Temperature Interaction Zone is different for the two modes of contact. (author)

  15. Bandwidth of reactor internals vibration resonance with coolant pressure oscillations

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    In a few decades a significant increase in a part of an electricity development on the NPP will require NPP to be operated in non full capacity modes and increase in operation time in transitive modes. Operating in such conditions as compared to the operation on a constant mode will lead to the increase in cyclic dynamical loading. In water cooled water moderated reactors these loading are realized as low-cyclic and high-cyclic loadings. High-cyclic loadings increases are caused by a raised vibration in non stationary modes of operation. It is known, that in some modes of a non full capacity reactor high-cyclic dynamic loadings can increase. It is obvious, that the development of management technologies is necessary for the life time management operation. In the context of this problem one of the main tasks are revealing and the prevention of the conditions of the occurrence of the operation leading to the resonant interaction of the coolant fluctuations and the equipment, reactor vessel (RV), fuel assemblies (FA) and reactor internals (RI) vibration. To prevent the appearance of the conditions for resonance interaction between the fluid flow and the equipments, it is necessary to provide the different frequencies for the self oscillations in the separated elements of the circulating system and also in the parts of the system formed by the comprising of these elements. While solving these problems it is necessary to have a theoretical and settlement substantiation of an oscillation frequency band of coolant outside of which there is no resonant interaction. The presented work is devoted to finding the solution of this problem. There are results of theoretical an estimation of width of such band as well as the examples of a preliminary quantitative estimation of Q - factors of coolant acoustic oscillatory circuit formed by the equipment of the NPP. The accordance of results had been calculated with had been measured are satisfied for practical purposes. These

  16. Coolant leakage detecting device

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Kawai, Katsunori; Ishihara, Yoshinao.

    1995-01-01

    The device of the present invention judges an amount of leakage of primary coolants of a PWR power plant at high speed. Namely, a mass of coolants contained in a pressurizer, a volume controlling tank and loop regions is obtained based on a preset relational formula and signals of each of process amount, summed up to determine the total mass of coolants for every period of time. The amount of leakage for every period of time is calculated by a formula of Karman's filter based on the total mass of the primary coolants for every predetermined period of time, and displays it on CRT. The Karman's filter is formed on every formula for several kinds of states formed based on the preset amount of the leakage, to calculate forecasting values for every mass of coolants. An adaptable probability for every preset leakage amount is determined based on the difference between the forecast value and the observed value and the scattering thereof. The adaptable probability is compared with a predetermined threshold value, which is displayed on the CRT. This device enables earlier detection of leakage and identification of minute leakage amount as compared with the prior device. (I.S.)

  17. Coolant inlet device for nuclear reactors

    International Nuclear Information System (INIS)

    Ando, Hiroshi; Abe, Yasuhiro; Iwabuchi, Toshihiko; Yamamoto, Kenji.

    1969-01-01

    Herein disclosed is a coolant inlet device for liquid-metal cooled reactors which employs a coolant distributor serving also as a supporting means for the reactor core. The distributor is mounted within the reactor vessel so as to slide horizontally on supporting lugs, and is further slidably connected via a junction pipe to a coolant inlet conduit protruding through the floor of the vessel. The distributor is adapted to uniformly disperse the highly pressured coolant over the reactor core so as to reduce the stresses sustained by the reactor vessel as well as the supporting lugs. Moreover, the slidable nature of the distributor allows thermal shock and excessive coolant pressures to be prevented or alleviated, factors which posed major difficulties in conventional coolant inlet devices. (Owens, K. J.)

  18. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  19. Organic coolant for ARIES-III

    International Nuclear Information System (INIS)

    Sze, D.K.; Sviatoslavsky, I.; Sawan, M.; Gierszewski, P.; Hollies, R.; Sharafat, S.; Herring, S.

    1991-04-01

    ARIES-III is a D-He 3 reactor design study. It is found that the organic coolant is well suited for the D-He 3 reactor. This paper discusses the unique features of the D-He 3 reactor, and the reason that the organic coolant is compatible with those features. The problems associated with the organic coolant are also discussed. 8 refs., 2 figs., 6 tabs

  20. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  1. A simulation experiment and analysis on the effects of in-coherence in fuel coolant interaction

    International Nuclear Information System (INIS)

    Kondo, S.; Togo, Y.; Iwamura, T.

    1976-01-01

    Experimental and analytical studies were conducted to investigate effects of incoherence (space time behavior of molten fuel) on molten fuel coolant interaction. In experiments, a 2 mm diameter molten tin jet was injected upward into the water in a slender tank. The results were analyzed based on the pressure records and high speed photographs. The pressure records indicated that there were two types of interaction between molten jet and water, intermittent explosion mode and continuous one. The explosion mode appeared when the temperature of molten tin was above 350 0 C or so and that of water was below 70 0 C or so. The high speed photograph indicated that an establishment of a stable jet column was necessary for an explosive interaction and that a bubble like region grew and collapsed at the root of the jet in accordance with the generation of pressure pulse. It was found that the mass of metal which contributed to the vapor explosion was only a small part of the injected metal in the case of jet injection type contact mode and this was the reason why the gross thermal to mechanical energy conversion ratio was around 0.03% in this type of contact mode, though this ratio was around 2% if only the part of record around the pressure pulse was taken into consideration. In the analysis part, a multi-channel FCI model was developed to evaluate the spatial incoherence effect on pressure at subassembly exit. The calculated pressure trace indicated that the spatial incoherence has considerable effects for an evaluation of structure response under FCI pressure loading. (auth.)

  2. Sodium coolant of fast reactors: Experience and problems

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Volchkov, L.G.; Drobyshev, A.V.; Nikulin, M.P.; Kochetkov, L.A.; Alexeev, V.V.

    1997-01-01

    In present report the following subjects are considered: state of the coolant and sodium systems under normal operating condition as well as under decommissioning, disclosing of sodium circuits and liquidation of its consequences, cleaning from sodium and decontamination under repairing works of equipment and circuits. Cleaning of coolant and sodium systems under normal operating conditions and under accident contamination. Cleaning of the equipment under repairing works and during decommissioning from sodium and products of its interaction with water and air. Treatment of sodium waste, taking into account a possibility of sodium fires. It is shown that the state of coolant, cover gas, surfaces of constructive materials which are in contact with them, cleaning systems, formed during installation operation require development of specific technologies. Developed technologies ensured safety operation of sodium cooled installations as in normal operating conditions so in abnormal situations. R and D activities in this field and experience gained provided a solid base for coping with problems arising during decommissioning. Prospective research problems are emphasized where the future efforts should be concentrated in order to improve characteristics of sodium cooled reactors and to make their decommissioning optimal and safe. (author)

  3. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-01-01

    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  4. Coolant monitoring systems for PWR reactors

    International Nuclear Information System (INIS)

    Luzhnov, A.M.; Morozov, V.V.; Tsypin, S.G.

    1987-01-01

    The ways of improving information capacity of existing monitoring systems and the necessity of designing new ones for coolant monitoring are reviewed. A wide research program on development of coolant monitoring systems in PWR reactors is analyzed. The possible applications of in-core and out-of-core detectors for coolant monitoring are demonstrated

  5. Advances in Forecasting and Prevention of Resonances Between Coolant Acoustical Oscillations and Fuel Rod Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, Konstantin Nicolaevich [NPP, NPEI, 14, Krasnokazarmennaya str. Moscow, 111250 (Russian Federation)

    2009-06-15

    To prevent the appearance of the conditions for resonance interaction between the fluid flow and the reactor internals (RI), fuel rod (FR ) and fuel assemblies (FA) it is necessary to de-tune Eigen frequency of coolant pressure oscillations (EFCPO) and natural frequency of mechanical element's oscillations and also of the system which is formed by the comprising of these elements. Other words it is necessary to de-tune acoustic resonance frequency and natural frequencies of RI, FR and FA. While solving these problems it is necessary to have a theoretical and settlement substantiation of an oscillation frequency band of the coolant outside of which there is no resonant interaction with structure vibrations. The presented work is devoted to finding the solution of this problem. There are results of an estimation of width of such band as well as the examples of a preliminary quantitative estimation of Q - factors of coolant acoustic oscillatory circuit formed by the equipment of the NPP. Abnormal growth of intensity of pressure pulsations in a mode with definite value of reactor capacity have been found out by measurements on VVER - 1000 reactor. This phenomenon has been found out casually and its original reason had not been identified. Paper shows that disappearance of this effect could be reached by realizing outlet of EFCPO from so-called, pass bands of frequencies (PBF). PBF is located symmetrical on both parties from frequency of own oscillations of FA. Methods, algorithms of calculations and quantitative estimations are developed for EFCPO, Q and PBF in various modes of operation NPP with VVER-1000. Results of calculations allow specifying area of resonant interaction EFCPO with vibrations of FR, FA and a basket of reactor core. For practical realization of the received results it is offered to make corresponding additions to the design documentation and maintenance instructions of the equipment of the NPP with VVER-1000. The improvement of these documents

  6. Organic coolant in Winnipeg riverbed sediments

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Acres, O.E.

    1979-03-01

    Between January and May 1977 a prolonged leak of organic coolant occurred from the Whiteshell Nuclear Research Establishment's nuclear reactor, and a minimum of 1450 kg of coolant entered the Winnipeg River and was deposited on the riverbed. The level of radioactivity associated with this coolant was low, contributing less than 0.2 μGy (0.02 mrad) a year to the natural background gamma radiation field from the riverbed. The concentration of coolant in the water samples never exceeded 0.02 mg/L, the lower limit of detection. The mortality of crayfish, held in cages where the riverbed was covered with the largest deposits of coolant, was not significantly different from that in the control cages upstream of the outfall. No evidence of fish kill was found. (author)

  7. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Pothier, N.E.; Metcalfe, R.

    1986-06-01

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  8. Numerical computation of underwater explosions due to fuel-coolant interactions

    International Nuclear Information System (INIS)

    Lee, J.H.S.; Frost, D.L.; Knystautas, R.; Teodorczyk, A.; Ciccarelli, G.; Thibault, P.; Penrose, J.

    1989-03-01

    If coarse molten material is released into a coolant the possibility exists for a violent steam explosion. A detailed quantitative description of the processes involved in steam explosions is currently beyond the capabilities of the scientific community. However, a conservative estimate of the pressure transients resulting from a steam explosion can be obtained by studying the dynamics of the shock associated with the expansion of a high-pressure vapour bubble. In this study, the hydrodynamic equations governing the shock propagation of an expanding bubble were integrated numerically using the Flux Corrected Transport code. Simpler acoustic models based on experience with underwater explosions were also developed and used to estimate pressure transients and to calculate the peak pressures for benchmark cases. The results were found to be an order of magnitude higher than the corresponding pressures obtained using a complex model developed by Henry. A simplified version of the Henry model was developed by neglecting the complex description of the two-phase flow inside the ruptured tube and the arbitrarily assumed heat transfer and condensation rates. Results from the simplified model were found to be generally similar to, but had higher peak pressures than those obtained using the Henry model. It is concluded that the results produced by simple acoustic models, or by a simplified Henry model, are more conservative than the corresponding results obtained with the original Henry model

  9. Technical findings related to Generic Issue 23: Reactor coolant pump seal failure

    International Nuclear Information System (INIS)

    Ruger, C.J.; Luckas, W.J. Jr.

    1989-03-01

    Reactor coolant pumps contain mechanical seals to limit the leakage of pressurized coolant from the reactor coolant system to the containment. These seals have the potential to leak, and a few have degraded and even failed resulting in a small break loss of coolant accident (LOCA). As a result, ''Reactor Coolant Pump Seal Failure,'' Generic Issue 23 was established. This report summarizes the findings of a technical investigation generated as part of the program to resolve this issue. These technical findings address the various fact-finding issue tasks developed for the action plan associated with the generic issue, namely background information on seal failure, evaluation of seal cooling, and mechanical- and maintenance-induced failure mechanisms. 46 refs., 15 figs., 14 tabs

  10. Comparative analysis of coolants for FBR of future nuclear power

    International Nuclear Information System (INIS)

    Toshinsky, G.I.; Grigoryev, O.G.; Pylchenkov, E.H.; Skorikov, D.E.; Komkova, O.I.

    2001-01-01

    Selection of a fast reactor (FR) coolant for future nuclear reactors is a complex task that has not a single solution. Safety requirements are expected to grow in the future. The requirements to FR are reconsidered. Gradual transition from the FR as a builder up of plutonium to the FR as an economically effective energy source, is taking place. Among all types of coolants viable for FR, LMC (light molten salt coolants) cover the most complete range of requirements to advanced reactors and have a complete database. Sodium and lead-bismuth coolant (LBC) are selected because there is a complete package of technologies for their handling. Heavy liquid metal coolant (HLMC), being at a disadvantage of heat transfer rate in relation to sodium, make it possible to give the inherent safety properties to the reactor and, as a result, to simplify essentially the reactor design and its safety systems. This results in capital and costs reduction. Neutronic characteristics of HLMC cooled reactors make possible to transmute their own minor actinides (MA) safely, and LBC cooled reactors are able to transmute LWR'MA with high safety characteristics. Basing on the comparison carried out, it can be concluded, that both LBC and sodium are perspective coolants for future FR

  11. Comparative analysis of coolants for FBR of future nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, G.I.; Grigoryev, O.G.; Pylchenkov, E.H.; Skorikov, D.E.; Komkova, O.I. [State Scientific Center of Russian Federation, Institute for Physics and Power Engineering named after Academician A.I. Leipusky, Kaluga Region (Russian Federation)

    2001-07-01

    Selection of a fast reactor (FR) coolant for future nuclear reactors is a complex task that has not a single solution. Safety requirements are expected to grow in the future. The requirements to FR are reconsidered. Gradual transition from the FR as a builder up of plutonium to the FR as an economically effective energy source, is taking place. Among all types of coolants viable for FR, LMC (light molten salt coolants) cover the most complete range of requirements to advanced reactors and have a complete database. Sodium and lead-bismuth coolant (LBC) are selected because there is a complete package of technologies for their handling. Heavy liquid metal coolant (HLMC), being at a disadvantage of heat transfer rate in relation to sodium, make it possible to give the inherent safety properties to the reactor and, as a result, to simplify essentially the reactor design and its safety systems. This results in capital and costs reduction. Neutronic characteristics of HLMC cooled reactors make possible to transmute their own minor actinides (MA) safely, and LBC cooled reactors are able to transmute LWR'MA with high safety characteristics. Basing on the comparison carried out, it can be concluded, that both LBC and sodium are perspective coolants for future FR.

  12. Loss-of-coolant accident analysis of the Savannah River new production reactor design

    International Nuclear Information System (INIS)

    Maloney, K.J.; Pryor, R.J.

    1990-11-01

    This document contains the loss-of-coolant accident analysis of the representative design for the Savannah River heavy water new production reactor. Included in this document are descriptions of the primary system, reactor vessel, and loss-of-coolant accident computer input models, the results of the cold leg and hot leg loss-of-coolant accident analyses, and the results of sensitivity calculations for the cold leg loss-of-coolant accident. 5 refs., 50 figs., 4 tabs

  13. CANDU with supercritical water coolant: conceptual design features

    International Nuclear Information System (INIS)

    Spinks, N.

    1997-01-01

    An advanced CANDU reactor, with supercritical water as coolant, has many attractive design features. The pressure exceeds 22 MPa but coolant temperatures in excess of 370 degrees C can be reached without encountering the two-phase region with its associated fuel-dry-out and flow-instability problems. Increased coolant temperature leads to increased plant thermodynamic efficiency reducing unit energy cost through reduced specific capital cost and reduced fueling cost. Increased coolant temperature leads to reduced void reactivity via reduced coolant in-core density. Light water becomes a coolant option. To preserve neutron economy, an advanced fuel channel is needed and is described below. A supercritical-water-cooled CANDU can evolve as fuel capabilities evolve to withstand increasing coolant temperatures. (author)

  14. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  15. Cleaning of aluminum after machining with coolants

    International Nuclear Information System (INIS)

    Roop, B.

    1992-01-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended

  16. Sudden contact of a hot liquid with a volatile coolant: instability of the created vapour film

    International Nuclear Information System (INIS)

    Pion, Agnes

    1983-01-01

    As the sudden contact of a hot body with a coolant which may evaporate, results, after some delay, in an explosive evaporation, this research thesis proposes an interpretation based on the study of the destabilization of the vapour film which forms at the surface of the hot body. The author reports the modelling of the evolution of the average thickness of the film before the explosion. The possible chemical reactions at the surface of the hot body are taken into account. A base flow is obtained which allows the calculation of the evolution of Rayleigh-Taylor instabilities which may occur at the gas-coolant interface. This study is applied to the interaction between liquid sodium and water [fr

  17. Fuel Coolant Interaction Results in the Fuel Pins Melting Facility (PMF)

    International Nuclear Information System (INIS)

    Urunashi, H.; Hirabayashi, T.; Mizuta, H.

    1976-01-01

    The experimental work related to FCI at PNC has been concentrated into the molten UO 2 dropping test. After the completion of molten UO 2 drop experiments, emphasis is directed toward the FCI phenomena of the initiating conditions of the accident under the more realistic geometry. The experiments are conducted within the Pin Melt Facility (PMF) in which UO 2 pellets clad in stainless steel are melted by direct electric heating under the stagnant or flowing sodium. The primary objectives of the PMF test are to: - obtain detail experimental results (heat-input, clad temperature, sodium temperature, etc.) on the FCI under TOP and LOF conditions; - observe the movement of the fuel before and after the pin failure by the X-ray cinematography; - observe the degree of coherence of the pin failures; - accumulate the experience of the FCI experiment which is applicable to the subassembly or more larger scale; - simulate the fuel behavior of the in-pile test (GETR, CABRI). The preliminary conclusions can be drawn from the foregoing observations are as follows: - Although the fuel motion and FCI of the closed test section appeared to be different from those of the open test section, the conclusion of the effect of the inside pressure on FCI needs more experimental data. - The best heating condition of the UO 2 pellet for the FCI study with PMF is established as 40 w/cm at the steady state and 1680 J/g of UO 2 during the additional transient state. The total energy deposition of the UO 2 pellet is thus estimated in the range of 2400 J/g of UO 2 -2600 J/g of UO 2 . The analytical model of the fuel pin failure and the subsequent FCI are suggested to count the following parameters: - The fuel pin failure due to the fuel vaporization due to the rapid energy deposition; - Molten fuel, clad and sodium interaction in the fuel pin after the pin failure; - The upward flow of molten fuel with molten clad or vapor sodium, as well as the slumping of molten fuel

  18. Liquid metal coolants for fusion-fission hybrid system: A neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Renato V.A.; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L., E-mail: claubia@nuclear.ufmg.br [Universidade de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany P. [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on a work already published by the UFMG Nuclear Engineering Department, it was suggested to use different coolant materials in a fusion-fission system after a fuel burnup simulation, including that one used in reference work. The goal is to compare the neutron parameters, such as the effect multiplication factor and actinide amounts in transmutation layer, for each used coolant and find the best(s) coolant material(s) to be applied in the considered system. Results indicate that the lead and lead-bismuth coolant are the most suitable choices to be applied to cool the system. (author)

  19. Coolant make-up device for BWR type reactor

    International Nuclear Information System (INIS)

    Sasagawa, Hiroshi.

    1994-01-01

    In a coolant make-up device, an opening of a pressure equalizing pipeline in a pressure vessel is disposed in coolants above a reactor core and below a usual fluctuation range of a reactor vessel water level. Further, a float check valve is disposed to the pressure equalizing pipeline for preventing coolants in the pressure vessel flowing into the pipeline. If the water level in the pressure vessel is lowered than the setting position for the float check valve, the float drops by its own weight to open the opening of the pressure equalizing pipeline. Then, steams in the pressure vessel are flown into the pipeline, to equalize the pressure between a coolant storage tank and the pressure vessel of the reactor. Coolants in the coolant storage tank is injected to the pressure vessel by way of the water injection pipeline due to the difference of the pressure head between the water level in the coolants storage tank and the water level in the pressure vessel. If the coolants are lowered than the setting position for the float check value, the float check valve does not close unless the water level is recovered to the setting position for the float valve and, accordingly, the coolant make-up is continued. (N.H.)

  20. Research on Coolant Radiochemistry

    International Nuclear Information System (INIS)

    Ha, Yeong Keong; Kim, W. H.; Yeon, J. W.; Jung, Y. J.; Choi, K. C.; Choi, K. S.; Park, Y. J.; Cho, Y. H.

    2007-06-01

    The final objective of this study is to develop a method for reducing radioactive materials formed in the reactor coolant circuit. This second stage research was categorized into the following three subgroups: the development of the estimation technique of microscopic chemical variation at high temperatures and pressures, the fundamental study on the thermodynamics at high temperatures and pressures, and the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD. First, in the development of the estimation technique of microscopic chemical change at high temperatures and pressures, the technique for measuring coolant chemistry such as pH, conductivity and Eh was developed to be appropriate for the high temperature and pressure condition. The coolant chemistry measuring system including the self-devised high temperature pH sensor can be applied to the field of nuclear reactor and contribute on a large scale in the automation of the coolant chemistry control and the establishment of the real-time on-line measuring technique. Secondly, the dissociation constant of water and the solubility of metal oxides were measured in the fundamental study on the thermodynamics at high temperatures and pressures. Finally, in the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD, the careful investigation of the deposition phenomena of micro particles on the cladding surface showed that subcooled boiling and the dissolved hydrogen are the main factors responsible for the growth of CRUD. In addition, the basis was provided for the construction of a new particle behavior model in the reactor coolant circuit

  1. Reactor coolant cleanup device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To enable to introduce reactor water at high temperature and high pressure as it is, as well as effectively adsorb to eliminate cobalt in reactor water. Constitution: The coolant cleanup device comprises a vessel main body inserted to coolant pipeway circuits in a water cooled reactor power plant and filters contained within the vessel main body. The filters are prepared by coating and baking powder of metal oxides such as manganese ferrite having a function capable of adsorbing cobalt in the coolants onto the surface of supports made of metals or ceramics resistant to strong acids and alkalies in the form of three-dimensional network structure, for example, zircaloy-2, SUS 303 and the zirconia (baking) to form a basic filter elements. The basic filter elements are charged in plurality to the vessel main body. (Kawaiami, Y.)

  2. RETRAN analysis of inter-system LOCA within the primary coolant pump

    International Nuclear Information System (INIS)

    Gangadharan, A.; Pratt, G.F.

    1992-01-01

    One example of an inter-system loss of coolant accident is the failure of the tubing within the primary coolant pump (PCP) thermal barrier heat exchanger. Such a failure would result in the entry of primary coolant into the component cooling water (CCW) system. The primary coolant flowrate through the break would rapidly pressurize the CCW system when the relief valves are too small. The piping in the CCW system at Palisades has a low pressure rating. Failures in this system outside the containment boundary could lead to primary coolant release to the atmosphere. RETRAN-02 was used to perform a simulation of the break in the PCP integral heat exchanger. The model included a detailed nodalization of the Byron-Jackson primary coolant pump internals leading up to the CCW system relief valves. Preliminary studies show the need for increased relief capacity in the CCW system. A case was run using a larger relief valve. Critical flow in the system upstream of the relief valves maintains the pressures in those volumes above the CCW design pressure. The pressures downstream from the relief valves and outside containment will be at or below the design pressure. This paper presents the results of the transient analysis

  3. Multirods burst tests under loss-of-coolant conditions

    International Nuclear Information System (INIS)

    Kawasaki, S.; Uetsuka, H.; Furuta, T.

    1983-01-01

    In order to know the upper limit of coolant flow area restriction in a fuel assembly under loss-of-coolant accidents in LWRs, burst tests of fuel bundles were performed. Each bundle consisted of 49 rods(7x7 rods), and bursts were conducted in flowing steam. In some cases, 4 rods were replaced by control rods with guide tubes in a bundle. After the burst, the ballooning behavior of each rod and the degree of coolant flow area restriction in the bundle were measured. Ballooning behavior of rods and degree of coolant flow channel restriction in bundles with control rods were not different from those without control rods. The upper limit of coolant flow channel restriction under loss-of-coolant conditions was estimated to be about 80%. (author)

  4. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 06-06-2016 2. REPORT TYPE Interim Report 3. DATES COVERED ... Corrosion Testing of Traditional and Extended Life Coolants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hansen, Gregory A. T...providing vehicle specific coolants. Several laboratory corrosion tests were performed according to ASTM D1384 and D2570, but with a 2.5x extended time

  5. Preliminary design of reactor coolant pump canned motor for AC600

    International Nuclear Information System (INIS)

    Deng Shaowen

    1998-01-01

    The reactor coolant pump canned motor of AC600 PWR is the kind of shielded motors with high moment of inertia, high reliability, high efficiency and nice starting performance. The author briefly presents the main feature, design criterion and technical requirements, preliminary design, computation results and analysis of performance of AC600 reactor coolant pump canned motor, and proposes some problems to be solved for study and design of AC600 reactor coolant pump canned motor

  6. Radioactive corrosion products in circuit of fast reactor loop with dissociating coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.

    1982-01-01

    The results of experimental investigation into depositions of radionuclides of corrosion origin on the surfaces of a reactor-in-pile loop facility with a dissociating coolant are presented. It is stated that the ratio of radionuclides in fixed depositions linearly decreases with decrease of the coolant temperature at the core-condenser section. The element composition of non-fixed compositions quantitatively and qualitatively differs from the composition of structural material, and it is more vividly displayed for the core-condenser section. The main mechanism of circuit contamination with radioactive corrosion products is substantiated: material corrosion in the zones of coolant phase transfer, their remove by the coolant in the core, deposition, activation and wash-out by the coolant from the core surfaces

  7. Iron crud supply device to reactor coolant

    International Nuclear Information System (INIS)

    Baba, Takao.

    1993-01-01

    In a device for supplying iron cruds into reactor coolants in a BWR type power plant, a system in which feed water containing iron cruds is supplied to the reactor coolants after once passing through an ion exchange resin is disposed. As a result, iron cruds having characteristics similar with those of naturally occurring iron cruds in the plant are obtained and they react with ionic radioactivity, to form composite oxides. Then, iron cruds having high performance of being secured to the surface of a fuel cladding tube can be supplied to the reactor coolants, thereby enabling to greatly reduce the density of reactor water ionic radioactivity. In its turn, dose rate on the surface of pipelines can be reduced, thereby enabling to reduce operators' radiation exposure dose in the plant. Further, contamination of a condensate desalting device due to iron cruds can be prevented, and further, the density of the iron cruds supplied can easily be controlled. (N.H.)

  8. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  9. Reactor coolant pump transportation incident

    International Nuclear Information System (INIS)

    Noce, D.

    1992-01-01

    This paper reports on an incident, which occurred on August 27, 1991, in which a Reactor Coolant Pump motor en route from Surry Power Station to Westinghouse repair facilities struck the overpass at the junction of Interstate 64 and Jefferson Avenue in Newport News, Virginia. The transport container that housed the reactor coolant pump motor failed to clear the overpass. The force of the impact dislodged the container and motor from the truck bed, and it landed on the acceleration land and road shoulder. Upon impact, the container broke open and exposed the reactor coolant pump motor. Incidental radioactively contaminated water that remained in the motor coolers drained onto the road, contaminating the aggregate as well as the underlying gravel

  10. Break-up and quench behavior of molten material in coolant

    International Nuclear Information System (INIS)

    Abe, Y.; Kizu, T.; Arai, T.; Nariai, H.; Chitose, K.; Koyama, K.

    2003-01-01

    In a Core Disruptive Accident (CDA) of a Fast Breeder Reactor, the Post Accident Heat Removal(PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. The material, being fragmented while solidification and forming debris bed, will be cooled in the coolant. In the experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation and boiling phenomena during PAHR in CDA. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The experimental results are compared with the existing theories. Consequently, the marginal wavelength on the surface of a water jet is close to the value estimated based on the Rayleigh-Taylor instability. Moreover, the fragmented droplet diameter obtained from the interaction of molten material and water is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass of the molten particle with some appropriate heat transfer model

  11. Improvement of Measurement Accuracy of Coolant Flow in a Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Jong-Bum; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seoyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, to improve the measurement accuracy of coolant flow in a coolant flow simulator, elimination of external noise are enhanced by adding ground pattern in the control panel and earth around signal cables. In addition, a heating unit is added to strengthen the fluctuation signal by heating the coolant because the source of signals are heat energy. Experimental results using the improved system shows good agreement with the reference flow rate. The measurement error is reduced dramatically compared with the previous measurement accuracy and it will help to analyze the performance of nuclear fuels. For further works, out of pile test will be carried out by fabricating a test rig mockup and inspect the feasibility of the developed system. To verify the performance of a newly developed nuclear fuel, irradiation test needs to be carried out in the research reactor and measure the irradiation behavior such as fuel temperature, fission gas release, neutron dose, coolant temperature, and coolant flow rate. In particular, the heat generation rate of nuclear fuels can be measured indirectly by measuring temperature variation of coolant which passes by the fuel rod and its flow rate. However, it is very difficult to measure the flow rate of coolant at the fuel rod owing to the narrow gap between components of the test rig. In nuclear fields, noise analysis using thermocouples in the test rig has been applied to measure the flow velocity of coolant which circulates through the test loop.

  12. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project -2006 Update

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2006-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. This paper presents a status of the coolant stability over the past year as well as results from destructive analyses of hardware removed from the on-orbit system and the current approach to coolant remediation.

  13. Primary coolant circuits in FBR type reactors

    International Nuclear Information System (INIS)

    Kutani, Masushiro.

    1985-01-01

    Purpose: To eliminate the requirement of a pump for the forcive circulation of primary coolants and avoid the manufacturing difficulty of equipments. Constitution: In primary coolant circuits of an LMFBR type reactor having a recycling path forming a closed loop between a reactor core and a heat exchanger, coolants recycled through the recycling path are made of a magnetic fluid comprising liquid sodium incorporated with fine magnetic powder, and an electromagnet is disposed to the downstream of the heat exchanger. In the above-mentioned structure, since the magnetic fluid as the primary coolants losses its magnetic property when heated in the reactor core but recovers the property at a lower temperature after the completion of the heat exchange, the magnetic fluid can forcively be flown through the recycling path under the effect of the electromagnet disposed to the down stream of the heat exchanger to thereby forcively recycle the primary coolants. (Kawakami, Y.)

  14. A comparative neutronic analysis of KALIMER breeder core using Na or Pb-Bi coolant

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic study has been conducted on KALIMER breeder core according to the replacement of sodium coolant by Pb-Bi coolant. Since the atomic weight of Pb and Bi is about 9 times heavier than that of Na, the energy loss by neutron colliding with Pb-Bi nucleus will be very small. Therefore, the reactor with Pb-Bi coolant will have a harder neutron spectrum than that with Na coolant. Consequently, the breeding ratio and burnup reactivity swing is expected to be enhanced. In addition, when Pb-Bi coolant is voided, a negative coolant void coefficient can be obtained by the net effects of smaller spectrum hardening and large neutron leakage. As a result, the breeding ratio was increased from 1.18 to 1.23 and burnup reactivity swing was reduced from 631 pcm to 150 pcm. When the coolant in the whole region of active core is voided, the coolant void coefficient was found to be -539 and -264 pcm at BOEC and EOEC, respectively. In the local voided case, the smaller coolant void coefficient was obtained than that of Na coolant. Accordingly, the use of Pb-Bi coolant in KALIMER gives an advantage of higher breeding ratio, smaller burnup reactivity swing and negative coolant void coefficient without any significant degradation of nuclear performance

  15. Upper internals of PWR with coolant flow separator

    International Nuclear Information System (INIS)

    Chevereau, G.; Heuze, A.

    1989-01-01

    The upper internals for a PWR has a collecting volume for the coolant merging from the core and an apparatus for separating the flow of coolant. This apparatus has a guide for the control rods, a lower plate perforated to allow the coolant through from the core, an upper plate also perforated to allow the coolant through to the collecting volume and a peripheral binding ring joining the two plates. Each guide comprises an envelope without holes and joined perceptibly tight to the plates [fr

  16. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  17. Multi-state reliability for coolant pump based on dependent competitive failure model

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Zhao Xinwen; Chen Ling

    2013-01-01

    By taking into account the effect of degradation due to internal vibration and external shocks. and based on service environment and degradation mechanism of nuclear power plant coolant pump, a multi-state reliability model of coolant pump was proposed for the system that involves competitive failure process between shocks and degradation. Using this model, degradation state probability and system reliability were obtained under the consideration of internal vibration and external shocks for the degraded coolant pump. It provided an effective method to reliability analysis for coolant pump in nuclear power plant based on operating environment. The results can provide a decision making basis for design changing and maintenance optimization. (authors)

  18. Coolant processing device for nuclear reactor

    International Nuclear Information System (INIS)

    Kizawa, Hideo; Funakoshi, Toshio; Izumoji, Yoshiaki

    1981-01-01

    Purpose: To reduce an entire facility cost by concentrating and isolating tritium accumulated in coolants, removing the tritium out of the system, and returning hydrogen gas generated at a reactor accident to a recombiner in a closed loop by the switching of a valve. Constitution: Coolant from a reactor cooling system processed by a chemical volume control system facility (CVCS) and coolant drain from various devices processed by a liquid waste disposing system facility (LWDS) are fed to a tritium isolating facility, in which they are isolated into concentrated tritium water and dilute tritium water. The concentrated tritium water is removed out of the system and stored. The dilute tritium water is reused as supply water for coolant. If an accident occurs to cause hydrogen to be generated, a closed loop is formed between the containment vessel and the recombiner, the hydrogen is recombined with oxygen in the air of the closed loop to be thus returned to water. (Kamimura, M.)

  19. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  20. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  1. Device for preventing coolant outflow in a reactor

    International Nuclear Information System (INIS)

    Nemoto, Kiyomitsu; Mochizuki, Keiichi.

    1975-01-01

    Object: To prevent outflow of coolant from a reactor vessel even in an occurrence of leaking trouble at a low position in a primary cooling system or the like in the reactor vessel. Structure: An inlet at the foremost end of a coolant inlet pipe inserted into a reactor vessel is arranged at a level lower than a core, and a check valve is positioned at a level higher than the core in a rising portion of the inlet. In normal condition, the check valve is pushed up by discharge pressure of a main circulating pump and remains closed, and hence, producing no flow loss of coolant, sodium. However, when a trouble such as rupture occurs at the lower position in the primary cooling system, the attractive force for allowing the coolant to back-flow outside the reactor vessel and the load force of the coolant within the reactor vessel cause the check valve to actuate, as a consequence of which a liquid level of the coolant downwardly moves to the position of the check valve to intake the cover gases into a gas intake, thereby cutting off a flow passage of the coolant to stop outflow thereof. (Kamimura, M.)

  2. Method of charging instruments into liquid metal coolant

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi

    1980-01-01

    Purpose: To alleviate the thermal shock of a reactor charging machine when charging the machine into liquid metal coolant after the machine is preheated in cover gas. Method: When a reactor fueling machine reaches at the lowermost portion the position immediately above liquid metal coolant surface level, the machine is stopped moving down. The reactor fueling machine is heated at the lowermost portion by thermal radiation from the surface of the liquid metal coolant. After the machine is thus preheated in cover gas, it is again steadily moved down by a winch and charged into the liquid metal coolant. Therefore, the thermal shock of the machine becomes low when charging the machine into the liquid metal coolant to eliminate the damage and deformation at the machine. (Yoshihara, H.)

  3. Evaluation of stress histories of reactor coolant loop piping for pipe rupture prediction

    International Nuclear Information System (INIS)

    Lu, S.C.; Larder, R.A.; Ma, S.M.

    1981-01-01

    This paper describes the analyses used to evaluate stress histories in the primary coolant loop piping of a selected four-loop PNR power station. In order to make the simulation as realistic as possible, best estimates rather than conservative assumptions were considered throughout. The best estimate solution, however, was aided by a sensitivity study to assess the possible variation of outcomes resulted from uncertainties associated with these assumptions. Sources of stresses considered in the evaluation were pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, pump vibrations, and finally seismic excitations. The best estimates of pressure and thermal transient histories arising from plant operations were based on actual plant operation records supplemented by specified plant design conditions. Seismic motions were generated from response spectrum curves developed specifically for the region surrounding the plant site. Stresses due to dead weight and thermal expansion were computed from a three dimensional finite element model which used a combination of pipe, truss, and beam elements to represent the coolant loop piping, the pressure vessel, coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients were obtained by closed form solutions. Seismic stress calculations considered the soil structure interaction, the coupling effect between the containment structure and the reactor coolant system. A time history method was employed for the seismic analysis. Calculations of residual stresses accounted for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation were estimated by a dynamic analysis using existing measurements of pump vibrations. (orig./HP)

  4. Reactor auxiliary cooling facility and coolant supplying method therefor

    International Nuclear Information System (INIS)

    Ando, Koji; Kinoshita, Shoichiro.

    1996-01-01

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  5. Reactor auxiliary cooling facility and coolant supplying method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1996-06-07

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  6. Coolant clean up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tajima, Fumio; Iwami, Hiroshi.

    1981-01-01

    Purpose: To decrease the amount of main steams and improve the plant heat efficiency by the use of condensated water as coolants for not-regenerative heat exchangers in a coolant clean up system of a nuclear reactor. Constitution: In a coolant clean up system of a nuclear reactor, a portion of condensates is transferred to the shell of a non-regenerative heat exchanger by way of a condensate pump for non-regenerative heat exchanger through a branched pipeway provided to the outlet of a condensate desalter for using the condensates as the coolants for the shell of the heat exchanger and the condensates are then returned to the inlet of a feedwater heater after the heat exchange. The branched flow rate of the condensates is controlled by the flow rate control valve mounted in the pipeway. Condensates passed through the heat exchanger and the condensates not passed through the heat exchanger are mixed and heated in a heater and then fed to the nuclear reactor. In a case where no feedwater is necessary to the nuclear reactor such as upon shutdown of the reactor, the condensates are returned by way of feedwater bypass pipeway to the condensator. By the use of the condensates as the coolants for the heat exchanger, the main steam loss can be decreased and the thermal load for the auxiliary coolant facility can be reduced. (Kawakami, Y.)

  7. Effect of spacer grid mixing vanes on coolant outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Raemae, Tommi; Lahtinen, Tuukka; Brandt, Tellervo; Toppila, Timo [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2012-08-15

    In Loviisa VVER-440-type NPP the coolant outlet temperature of the hot subchannel is constantly monitored during the operation. According to the authority requirement the maximum subchannel outlet temperature must not exceed the saturation temperature. Coolant temperature distribution inside the fuel assembly is affected by the efficiency of the coolant mixing. In order to enhance the coolant mixing the fuel manufacturer is introducing the additional mixing vanes on the fuel bundle spacer grids. In the paper the effect of the different mixing vane modifications is studied with computational fluid dynamics (CFD) simulation. Goal of the modelling is to find vane modifications with which sufficient mixing is reached with acceptable increase in the spacer grid pressure loss. The results of the studies are discussed in the paper. (orig.)

  8. Basic experimental study with visual observation on elimination of the re-criticality issue using the MELT-II facility. Simulated fuel-escape behavior through a coolant channel

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Imahori, Shinji; Isozaki, Mikio

    2004-11-01

    In a core disruptive accident of fast reactors, fuel escape from the reactor core is a key phenomenon for prevention of re-criticality with significant mechanical-energy release subsequent to formation of a large-scale fuel pool with high mobility. Therefore, it is effective to study possibility of early fuel escape through probable escape paths such as a control-rod-guide-tube space well before high-mobility-pool formation. The purpose of the present basic experimental study is to clarify the mechanism of fuel-escape under a condition expected in the reactor situation, in which some amount of coolant may be entrapped into the molten-fuel pool. The following results have been obtained through basic experiments in which molten Wood's metal (components: 60wt%Bi-20wt%Sn-20wt%In, density at the room temperature: 8700 kg/m 3 , melting point: 78.8degC) is ejected into an coolant channel filled with water. (1) In the course of melt ejection, a small quantity of coolant is forced to be entrapped into the melt pool as a result of thermal interactions leading to high-pressure rise within the coolant channel. (2) Melt ejection is accelerated by pressure build-up which results from vapor pressure of entrapped coolant within the melt pool. (3) Average melt-ejection rate tends to increase in lower coolant-subcooling conditions, in which pressure build-up within the melt pool is enhanced. These results indicate a probability of a phenomenon in which melt ejection is accelerated by entrapment of coolant within a melt pool. Through application of the mechanism of confirmed phenomenon into the reactor condition, it is suggested that fuel escape is enhanced by entrapment of coolant within a fuel pool. (author)

  9. Continuous surveillance of reactor coolant circuit integrity

    International Nuclear Information System (INIS)

    1986-01-01

    Continuous surveillance is important to assuring the integrity of a reactor coolant circuit. It can give pre-warning of structural degradation and indicate where off-line inspection should be focussed. These proceedings describe the state of development of several techniques which may be used. These involve measuring structural vibration, core neutron noise, acoustic emission from cracks, coolant leakage, or operating parameters such as coolant temperature and pressure. Twenty three papers have been abstracted and indexed separately for inclusion in the data base

  10. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  11. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  12. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1997-01-01

    This paper presents results of experimental studies on the heat transfer and solidifcation of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleight number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer

  13. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    International Nuclear Information System (INIS)

    Peng, Wei; Sun, Xiaokai; Jiang, Peixue; Wang, Jie

    2017-01-01

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  14. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  15. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970's and early 1980's raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  16. Reactor coolant pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at U.S. operating plants during the 1970's and early 1980's raised concerns from the U.S. Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  17. Decontamination of main coolant pumps

    International Nuclear Information System (INIS)

    Roofthooft, R.

    1988-01-01

    Last year a number of main coolant pumps in Belgian nuclear power plants were decontaminated. A new method has been developed to reduce the time taken for decontamination and the volume of waste to be treated. The method comprises two phases: Oxidation with permanganate in nitric acid and dissolution in oxalic acid. The decontamination of main coolant pumps can now be achieved in less than one day. The decontamination factors attained range between 15 and 150. (orig.) [de

  18. Responses to Small Break Loss of Coolant Accidents for SMART

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Kim, Hee C.; Chang, Moon H.; Zee, Sung Q.; Kim, Si-Hwan; Lee, Un-Chul

    2004-01-01

    The SMART NSSS adopts the design characteristics of containing most of the primary circuit components, such as the reactor core, main coolant pumps (MCPs), steam generators (SGs), and N 2 gas pressurizer (PZR) in a single leak-tight Reactor Pressure Vessel (RPV) with a relatively large ratio of the primary coolant inventory to the core power compared to the conventional loop-type PWR. Due to these design characteristics, the SMART can fundamentally eliminate the possibility of Large Break Loss of Coolant Accidents (LBLOCAs), improve the natural circulation capability, and assure a sufficient time to mitigate the possibility of core uncover. Also, SMART adopts inherent safety improving features and passive engineered safety systems such as the substantially large negative moderator temperature coefficients, passive residual heat removal system, emergency core cooling system, and a steel-made leak-tight Safeguard Vessel (SV) housing the RPV. This paper presents the results of the safety analyses using a MARS/SMR code for the instantaneous guillotine ruptures of the major pipelines penetrating the RPV. The analysis results, employing conservative initial/boundary conditions and assumptions, show that the safety systems of the SMART basic design adequately remove the core decay heat without causing core uncover for all the cases of the Small Break Loss of Coolant Accidents (SBLOCAs). The sensitivity study results with variable SV conditions show that the reduced SV net free volume can shorten the time for reaching the thermal and mechanical equilibrium condition between the RPV and SV. Under these boundary conditions, the primary system inventory loss can be minimized and the core remains covered for a longer period of time without any makeup of the coolant. (authors)

  19. Liquid metal coolant disposal from UKAEA reactors at Dounreay

    International Nuclear Information System (INIS)

    Adam, E.R.

    1997-01-01

    As part of the United Kingdom's Fast Reactor Development programme two reactors were built and operated at Dounreay in the North of Scotland. DFR (Dounreay Fast Reactor) was operated from 1959-1977 and PFR (Prototype Fast Reactor) was operated from 1974-1994. Both reactors are currently undergoing Stage 1 Decommissioning and are installing plant to dispose of the bulk coolant (DFR ∼ 60 tonne; PFR ∼ 1500 tonne). The coolant (NaK) remaining at DFR is mainly in the primary circuit which contains in excess of 500 TBq of Cs137. Disposal of 40 tonnes of secondary coolant has already been carried out. The paper will describe the processes used to dispose of this secondary circuit coolant and how it is intended the remaining primary circuit coolant will be handled. The programme to process the primary coolant will also be described which involves the conversion of the liquid metal to caustic and its decontamination. No PFR coolant Na has been disposed off to date. The paper will describe the current decommissioning programme activities relating to liquid metal disposal and treatment describing the materials to be disposed of and the issue of decontamination of the effluents. (author)

  20. Evaluation of alternate secondary (and tertiary) coolants for the molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Kelmers, A.D.; Baes, C.F.; Bettis, E.S.; Brynestad, J.; Cantor, S.; Engel, J.R.; Grimes, W.R.; McCoy, H.E.; Meyer, A.S.

    1976-04-01

    The three most promising coolant selections for an MSBR have been identified and evaluated in detail from the many coolants considered for application either as a secondary coolant in 1000-MW(e) MSBR configurations using only one coolant, or as secondary and tertiary coolants in an MSBR dual coolant configuration employing two different coolants. These are, as single secondary coolants: (1) a ternary sodium--lithium--beryllium fluoride melt; (2) the sodium fluoroborate--sodium fluoride eutectic melt, the present reference design secondary coolant. In the case of the dual coolant configuration, the preferred system is molten lithium--beryllium fluoride (Li 2 BeF 4 ) as the secondary coolant and helium gas as the tertiary coolant

  1. Condition monitoring of main coolant pumps, Dhruva

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Acharya, V.N.; Tikku, A.C.; Mishra, S.K.

    2002-01-01

    Full text: Dhruva is a 100 MW research reactor with natural uranium fuel, heavy water as moderator and primary coolant. Three Centrifugal pumps circulate the primary coolant across the core and the heat exchangers. Each pump is coupled to a flywheel (FW) assembly in order to meet operational safety requirements. All the 3 main coolant pump (MCP) sets are required to operate during operation of the reactor. The pump-sets are in operation since the year 1984 and have logged more than 1,00,000 hrs. Frequent breakdowns of its FW bearings were experienced during initial years of operation. Condition monitoring of these pumps, largely on vibration based parameters, was initiated on regular basis. Break-downs of main coolant pumps reduced considerably due to the fair accurate predictions of incipient break-downs and timely maintenance efforts. An effort is made in this paper to share the experience

  2. Thermodynamic Data to Model the Interaction Between Coolant and Fuel in Gen IV Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Dinsdale, Alan; Gisby, John; Davies, Hugh; Konings, Rudy; Benes, Ondrej

    2013-06-01

    Understanding the behaviour of nuclear fuels in various environments is vital to the design and safe operation of nuclear reactors. While this is true if the reactor is operating within its design specification, it is even more so if accidents occur and the fuel is exposed to unexpected temperatures, pressures or chemical environments. It is clearly hazardous and costly to explore all such scenarios experimentally and therefore it is necessary to undertake modelling where possible using well-grounded theoretical approaches. This paper will show examples of where calculations of chemical and phase equilibria have been applied successfully to the long term storage of nuclear waste, phase formation during core meltdown and prediction of fission product release into the atmosphere. It will also highlight the development of thermodynamic data carried out during the European Metrology Research Project Metrofission required to model the potential interaction between the coolant, nuclear fuel, containment materials and atmosphere of a sodium cooled fast reactor. (authors)

  3. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  4. A open-quotes zero wasteclose quotes coolant management strategy

    International Nuclear Information System (INIS)

    Kennicott, M.A.

    1994-01-01

    In June of 1992 the Waste Minimization Program at Rocky Flats Plant (RFP) began a study to determine the best methods of managing water-based industrial metalworking fluids in the plant's Tool Manufacturing Shop. The shop was faced with the challenge of managing fluids that could no longer be disposed of in the traditional manner, through the plant's liquid process waste drains, due to a problem they, were having causing in the Liquid Waste Operations Evaporator. The study's goal was to reduce the waste coolants being generated and to reduce worker exposure to a serious health risk. Results of this study and those of a subsequent study to determine relative compatibilities of various coolants and metals, led to the application of a open-quotes zero wasteclose quotes machine coolant management program. This program is currently saving the generation of 10,000 gallons of liquid waste annually, has eliminated worker exposure to harmful bacteria and biocides, and should result in extended machine tool life, increased product quality, fewer rejected parts, and decreases labor costs

  5. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Patel, R J [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs.

  6. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    International Nuclear Information System (INIS)

    Mukherjee, S.; Ghosh, J.K.; Patel, R.J.

    1994-01-01

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs

  7. LWR primary coolant pipe rupture test rig

    International Nuclear Information System (INIS)

    Yoshitoshi, Shyoji

    1978-01-01

    The rupture test rig for primary coolant pipes is constructed in the Japan Atomic Energy Research Institute to verify the reliability of the primary coolant pipes for both PWRs and BWRs. The planned test items consisted of reaction force test, restraint test, whip test, jet test and continuous release test. A pressure vessel of about 4 m 3 volume, a circulating pump, a pressurizer, a heater, an air cooler and the related instrumentation and control system are included in this test rig. The coolant test condition is 160 kg/cm 2 g, 325 deg C for PWR test, and 70 kg/cm 2 g, saturated water and steam for BWR test, 100 ton of test load for the ruptured pipe bore of 8B Schedule 160, and 20 lit/min. discharge during 20 h for continuous release of coolant. The maximum pit internal pressure was estimated for various pipe diameters and time under the PWR and BWR conditions. The spark rupturing device was adopted for the rupture mechanics in this test rig. The computer PANAFACOM U-300 is used for the data processing. This test rig is expected to operate in 1978 effectively for the improvement of reliability of LWR primary coolant pipes. (Nakai, Y.)

  8. Coolant material effect on the heat transfer rates of the molten metal pool with solidification

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Y.; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1998-01-01

    Experimental studies on heat transfer and solidification of the molten metal pool with overlying coolant with boiling were performed. The simulant molten pool material is tin (Sn) with the melting temperature of 232 degree C. Demineralized water and R113 are used as the working coolant. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The Nusselt number and the Rayleigh number in the molten metal pool region of this study are compared between the water coolant case and the R113 coolant case. The experimental results for the water coolant are higher than those for R113. Also, the empirical relationship of the Nusselt number and the Rayleigh number is compared with the literature correlations measured from mercury. The present experimental results are higher than the literature correlations. It is believed that this discrepancy is caused by the effect of the heat loss to the environment on the natural convection heat transfer in the molten pool

  9. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level

  10. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  11. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  12. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  13. Coolant voiding analysis following SGTR for an HLMC reactor

    International Nuclear Information System (INIS)

    Farmer, M.T.; Spencer, B.W.; Sienicki, J.J.

    2000-01-01

    Concepts are under development at Argonne National Laboratory for a small, modular, proliferation-resistant nuclear power steam supply system. Of primary interest here is the simplified system design, featuring steam generators that are directly immersed in the lead-bismuth eutectic (LBE) coolant of the primary system. To support the safety case for this design approach, model development and analysis of transient coolant voiding during a postulated guillotine-type steam generator tube rupture event has been carried out. For the current design, the blowdown will occur from the steam generator shell into the ruptured 12.7-mm-inside-diameter tube through which the LBE coolant passes. The steam will expand biaxially in the tube, with a portion of the flow vented upward to eventually expand into the cover-gas region, while the balance of the flow is vented downward as a jet into the surrounding downward-flowing LBE. Coolant freezing is not an issue in this case because of high feedwater temperature in relation to the freezing point of the LBE. The specific objectives of the current work are to (a) determine the penetration behavior of the steam jet into the lower cold-leg region, (b) characterize the resultant void behavior in terms of coherent bubble versus breakup into a size distribution of small bubbles, and (c) characterize the motion of the bubbles with regard to rise to the cover-gas region (via the liner-to-coolant vessel gap) versus downward transport with the flowing LBE and subsequent upflow through the core to the cover-gas region

  14. Primary coolant recycling device for FBR type reactor

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru; Tokiwai, Moriyasu

    1998-01-01

    A primary coolants (liquid sodium) recycling device comprises a plurality of recycling pumps. The recycling pumps are operated while using, as a power source, electric power generated by a thermoelectric power generation system by utilizing heat stored in the coolants. The thermoelectric power generation system comprises a thermo-electric conversion module, heat collecting heat pipes as a high temperature side heat conduction means and heat dissipating pipes as a low temperature side heat conduction means. The heat of coolants is transferred to the surface of the high temperature side of each thermo-electric conversion elements of the thermal power generation system by the heat collecting heat pipes. The heat on the low temperature side of each of the thermo-electric conversion elements is removed by the heat dissipating pipes. Accordingly, temperature difference is caused between both surfaces of the thermo-electric conversion elements. Even upon loss of a main power source due to stoppage of electricity, electric power is generated by utilizing heat of coolants, so that the recycling pumps circulate coolants to cool a reactor core continuously. (I.N.)

  15. Fission product release into the primary coolant

    International Nuclear Information System (INIS)

    Apperson, C.E.

    1977-01-01

    The analytic evaluation of steady state primary coolant activity is discussed. The reported calculations account for temperature dependent fuel failure in two particle types and arbitrary radioactive decay chains. A matrix operator technique implemented in the SUVIUS code is used to solve the simultaneous equations. Results are compared with General Atomic Company's published results

  16. Blade-to-coolant heat-transfer results and operating data from a natural-convection water-cooled single-stage turbine

    Science.gov (United States)

    Diaguila, Anthony J; Freche, John C

    1951-01-01

    Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.

  17. Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO2-Nanofluid Coolant

    Science.gov (United States)

    Salamon, V.; Senthil kumar, D.; Thirumalini, S.

    2017-08-01

    The use of nanoparticle dispersed coolants in automobile radiators improves the heat transfer rate and facilitates overall reduction in size of the radiators. In this study, the heat transfer characteristics of water/propylene glycol based TiO2 nanofluid was analyzed experimentally and compared with pure water and water/propylene glycol mixture. Two different concentrations of nanofluids were prepared by adding 0.1 vol. % and 0.3 vol. % of TiO2 nanoparticles into water/propylene glycol mixture (70:30). The experiments were conducted by varying the coolant flow rate between 3 to 6 lit/min for various coolant temperatures (50°C, 60°C, 70°C, and 80°C) to understand the effect of coolant flow rate on heat transfer. The results showed that the Nusselt number of the nanofluid coolant increases with increase in flow rate. At low inlet coolant temperature the water/propylene glycol mixture showed higher heat transfer rate when compared with nanofluid coolant. However at higher operating temperature and higher coolant flow rate, 0.3 vol. % of TiO2 nanofluid enhances the heat transfer rate by 8.5% when compared to base fluids.

  18. Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant, Phase 2

    Science.gov (United States)

    Wilson, Mark E.; Cole, Harold; Weir, Natalee; Oehler, Bill; Steele, John; Varsik, Jerry; Lukens, Clark

    2004-01-01

    The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously. Criteria for that down-select included: the need for safe, non-intrusive implementation and operation in a functioning system; the ability to control existing planktonic and biofilm residing microorganisms; a negligible impact on system-wetted materials of construction; and a negligible reactivity with existing coolant additives. Candidate testing to provide data for the selection of an optimal alternate biocide is now in the final stages. That testing has included rapid biocide effectiveness screening using Biolog MT2 plates to determine minimum inhibitory concentration (amount that will inhibit visible growth of microorganisms), time kill studies to determine the exposure time required to completely eliminate organism growth, materials compatibility exposure evaluations, coolant compatibility studies, and bench-top simulated coolant testing. This paper reports the current status of the effort to select an alternate biocide for the ISS ITCS coolant. The results of various test results to select the optimal candidate are presented.

  19. Development of Coolant Radioactivity Interpretation Code

    International Nuclear Information System (INIS)

    Kim, Kiyoung; Jung, Youngsuk; Kim, Kyounghyun; Kim, Jangwook

    2013-01-01

    In Korea, the coolant radioactivity analysis has been performed by using the computer codes of foreign companies such as CADE (Westinghouse), IODYNE and CESIUM (ABB-CE). However, these computer codes are too conservative and have involved considerable errors. Furthermore, since these codes are DOS-based program, their easy operability is not satisfactory. Therefore it is required development of an enhanced analysis algorithm applying an analytical method reflecting the change of operational environments of domestic nuclear power plants and a fuel failure evaluation software considering user' conveniences. We have developed a nuclear fuel failure evaluation code able to estimate the number of failed fuel rods and the burn-up of failed fuels during nuclear power plant operation cycle. A Coolant Radio-activity Interpretation Code (CRIC) for LWR has been developed as the output of the project 'Development of Fuel Reliability Enhanced Technique' organized by Korea Institute of Energy Technology Evaluation and Planning (KETEP). The CRIC is Windows based-software able to evaluate the number of failed fuel rods and the burn-up of failed fuel region by analyzing coolant radioactivity of LWR in operation. The CRIC is based on the model of fission products release commonly known as 'three region model' (pellet region, gap region, and coolant region), and we are verifying the CRIC results based on the cases of domestic fuel failures. CRIC users are able to estimate the number of failed fuel rods, burn-up and regions of failed fuel considered enrichment and power distribution of fuel region by using operational cycle data, coolant activity data, fuel loading pattern, Cs-134/Cs-137 ratio according to burn-up and U-235 enrichment provided in the code. Due to development of the CRIC, it is secured own unique fuel failure evaluation code. And, it is expected to have the following significant meaning. This is that the code reflecting a proprietary technique for quantitatively

  20. Design of channel experiment equipment for measuring coolant velocity of innovative research reactor

    International Nuclear Information System (INIS)

    Muhammad Subekti; Endiah Puji Hastuti; Dedi Heriyanto

    2014-01-01

    The design of innovative high flux research reactor (RRI) requires high power so that the capability core cooling requires to be improved by designing the faster core coolant velocity near to the critical velocity limit. Hence, the critical coolant velocity as the one of the important parameter of the reactor safety shall be measured by special equipment to the velocity limit that may induce fuel element degradation. The research aims is to calculate theoretically the critical coolant velocity and to design the special experiment equipment namely EXNal for measuring the critical coolant velocity in fuel element subchannel of the RRI. EXNal design considers the critical velocity calculation result of 20.52 m/s to determine the variation of flow rate of 4.5-29.2 m 3 /h, in which the experiment could simulate the 1-4X standard coolant velocity of RSG-GAS as well as destructive test of RRI's fuel plate. (author)

  1. Infrared thermal measurements of laser soft tissue ablation as a function of air/water coolant for Nd:YAG and diode lasers

    Science.gov (United States)

    Gekelman, Diana; Yamamoto, Andrew; Oto, Marvin G.; White, Joel M.

    2003-06-01

    The purpose of this investigation was to measure the maximum temperature at the Nd:YAG and Diode lasers fiberoptic tips as a function of air/water coolant, during soft tissue ablation in pig jaws. A pulsed Nd:YAG laser (1064nm) and a Diode laser (800-830 nm) were used varying parameters of power, conditioning or not of the fiber tip, under 4 settings of air/water coolant. The maximum temperature at the fiber tip was measured using an infra-red camera and the interaction of the fiber with the porcine soft tissue was evaluated. A two-factor ANOVA was used for statistical analysis (plaser interaction with soft tissues produced temperatures levels directly proportional to power increase, but the conditioning of the fiber tip did not influence the temperature rise. On the other hand, conditioning of the fiber tip did influence the temperature rise for Diode laser. The addition of air/water coolant, for both lasers, did not promote temperature rise consistent with cutting and coagulation of porcine soft tissue. Laser parameters affect the fiberoptic surface temperature, and the addition of air/water coolant significantly lowered surface temperature on the fiberoptic tip for all lasers and parameters tested.

  2. Effects of different rod spacers (helical types) on coolant crossmixing

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sviridenko, E.Ya.; Matyukhin, N.M.; Rymkevich, K.S.; Ushakov, P.A.

    1981-11-01

    The results of investigations (electromagnetic measuring method) on coolant cross mixing in rod clusters with spiral wire spacers with different winding directions, with alternating unfinned and finned rods (case 'fin to rod'), as well as in rod clusters with much space between the rods, (case 'fin to fin') are reported. The local fluid dynamics parameters (distribution of the transversal and longitudinal velocity component) that define the physical processes of the coolant exchange in the rod clusters with helical spacers are explained. The investigation results for different helical spacer types are compared with each other. (orig.) [de

  3. Zero waste machine coolant management strategy at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Carlson, B.; Algarra, F.; Wilburn, D.

    1998-01-01

    Machine coolants are used in machining equipment including lathes, grinders, saws and drills. The purpose of coolants is to wash away machinery debris in the form of metal fines, lubricate, and disperse heat between the part and the machine tool. An effective coolant prolongs tool life and protects against part rejection, commonly due to scoring or scorching. Traditionally, coolants have a very short effective life in the machine, often times being disposed of as frequently as once per week. The cause of coolant degradation is primarily due to the effects of bacteria, which thrive in the organic rich coolant environment. Bacteria in this environment reproduce at a logarithmic rate, destroying the coolant desirable aspects and causing potential worker health risks associated with the use of biocides to control the bacteria. The strategy described in this paper has effectively controlled bacterial activity without the use of biocides, avoided disposal of a hazardous waste, and has extended coolant life indefinitely. The Machine Coolant Management Strategy employed a combination of filtration, heavy lubricating oil removal, and aeration, which maintained the coolant peak performance without the use of biocides. In FY96, the Laboratory generated and disposed of 19,880 kg of coolants from 9 separate sites at a cost of $145K. The single largest generator was the main machine shop producing an average 14,000 kg annually. However, in FY97, the waste generation for the main machine shop dropped to 4,000 kg after the implementation of the zero waste strategy. It is expected that this value will be further reduced in FY98

  4. Method of determination of thermo-acoustic coolant instability boundaries in reactor core at NPPs with WWER

    International Nuclear Information System (INIS)

    Skalozubov, Volodymyr; Kolykhanov, Viktor; Kovryzhkin, Yuriy

    2007-01-01

    The regulatory body of Ukraine, the National Atomic Energy Company and the Scientific and Production Centre have led team-works concerned with previously unstudied factors or phenomena affecting reactor safety. As a result it is determined that the thermo-acoustic coolant instability conditions can appear in the core at definite operating WWER regimes. Considerable cyclic dynamic loads affect fuel claddings over thermo-acoustic pressure oscillations. These loads can result in inadmissible cassette design damage and containment damage. Taking into account calculation and experimental research authors submit a method of on-line assessment of WWER core state concerning thermo-acoustic coolant instability. According to this method, the thermo-acoustic coolant instability appearance conditions can be estimated using normal registered parameters (pressure, temperature, heat demand etc.). At operative modes, a WWER-1000 core is stable to tracheotomies oscillations, but reduction of coolant discharge through the core for some times can result in thermo-acoustic coolant instability. Thermo-acoustic instability appears at separate transitional modes concerned with reactor scram and unloading/loading at all power units. When thermo-acoustic instability begins in transitional modes, core elements are under influence of high-frequency coolant pressure pulsations for a long time (tens of hours)

  5. Design on Hygrometry System of Primary Coolant Circuit of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yanfei; Zhong Shuoping; Huang Xiaojin

    2014-01-01

    Helium is the primary coolant in HTR-PM. If vapor get into the helium in primary coolant circuit because of some special reasons, such as the broken of steam-generator tube, chemical reaction will take effect between the graphite in reactor core and vapor in primary coolant circuit, and the safety of the reactor operation will be influenced. So the humidity of the helium in primary coolant circuit is one key parameter of HTR-PM to be monitored in-line. Once the humidity is too high, trigger signal of turning off the reactor must be issued. The hygrometry system of HTR-PM is consisting of filter, cooler, hygrometry sensor, flow meter, and some valves and tube. Helium with temperature of 250℃ is lead into the hygrometry system from the outlet of the main helium blower. After measuring, the helium is re-injected back to the primary circuit. No helium loses in this processing, and no other pump is needed. Key factors and calculations in design on hygrometry system of HTR-PM are described. A sample instrument has been made. Results of experiments proves that this hygrometry system is suitable for monitoring the humidity of the primary coolant of HTR-PM. (author)

  6. Detection of coolant void in lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Wolniewicz, Peter; Håkansson, Ane; Jansson, Peter

    2015-01-01

    Highlights: • We model the ALFRED LFR using different Monte-Carlo codes. • We study the impact on coolant void on the fission cross section in fission chambers. • We develop a methodology to detect coolant void. • We study the impact of detector fissile coating burn-up. • We conclude that the developed methodology may be an attractive complement to LFR monitoring. - Abstract: Previous work (Wolniewicz et al., 2013) has indicated that using fission chambers coated with 242 Pu and 235 U, respectively, can provide the means of detecting changes in the neutron flux that are connected to coolant density changes in a small lead-cooled fast reactor. Such density changes may be due to leakages of gas into the coolant, which, over time, may coalesce to large bubbles implying a high risk of causing severe damage of the core. By using the ratio of the information provided by the two types of detectors a quantity is obtained that is sensitive to these density changes and, to the first order approximation, independent of the power level of the reactor. In this work we continue the investigation of this proposed methodology by applying it to the Advanced LFR European Demonstrator (ALFRED) and using realistic modelling of the neutron detectors. The results show that the methodology may be used to detect density changes indicating the initial stages of a coalescence process that may result in a large bubble. Also, it is shown that under certain circumstances, large bubbles passing through the core could be detected with this methodology

  7. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  8. Full reactor coolant system chemical decontamination qualification programs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-03-01

    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systems leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.

  9. Nuclear reactor of pressurized liquid coolant type

    International Nuclear Information System (INIS)

    Costes, D.

    1976-01-01

    The reactor comprises a vertical concrete pressure vessel, a bell-housing having an open lower end and disposed coaxially with the interior of the pressure vessel so as to delimit therewith a space filled with gas under pressure for the thermal insulation of the internal vessel wall, a pressurizing device for putting the coolant under pressure within the bell-housing and comprising a volume of control gas in contact with a large free surface of coolant in order that an appreciable variation in volume of liquid displaced within the coolant circuit inside the bell-housing should correspond to a small variation in pressure of the control gas. 9 claims, 3 drawing figures

  10. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States)

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  11. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  12. Device for preventing coolant in a reactor from being lost

    International Nuclear Information System (INIS)

    Maruyama, Hiromi; Matsumoto, Tomoyuki.

    1975-01-01

    Object: To prevent all of coolant from being lost from the core at the time of failure in rupture of pipe in a recirculation system to cool the core with the coolant remained within the reactor. Structure: A valve, which will be closed when a water level of the coolant within the core is in a level less than a predetermined level, is provided on a recirculating water outlet nozzle in a pressure vessel to thereby prevent the coolant from being lost when the pipe is broken, thus cooling the core by means of reduced-pressure boiling of coolant remained within the core and boiling due to heat, and restraining core reactivity by means of void produced at that time. (Kamimura, M.)

  13. Assessment of Loss-of-Coolant Effect on Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Won Young; Park, Joo Hwan; Kim, Bong Ghi

    2009-01-01

    A CANDU reactor is a heavy-water-moderated, natural uranium fuelled reactor with a pressure tube. The reactor contains a horizontal cylindrical vessel (calandria) and each pressure tube is isolated from the heavy-water moderator in a calandria. This allows the moderator system to be operated of a high-pressure and of a high-temperature coolant in pressure tube. This causes the pressurized liquid coolant in the channel to void and therefore give rise to a reactivity transient in the event of a break or fault in the coolant circuit. In particular, all CANDU reactors are well known to have a positive void reactivity coefficient and thus this phenomenon may lead to a positive feedback, which can cause a large power pulse. We assess the loss-of-coolant effect by coolant void reactivity versus fuel burnup, four factor parameters for fresh fuel and equilibrium fuel, reactivity change due to the change of coolant density and reactivity change in the case of half- and full-core coolant

  14. Monitoring of coolant temperature stratification on piping components in WWER-440 NPPs

    International Nuclear Information System (INIS)

    Hudcovsky, S.; Slanina, M.; Badiar, S.

    2001-01-01

    The presentation deals with the aims of non-standard temperature measurements installed on primary and secondary circuit in WWER-440 NPPs, explains reasons of coolant temperature stratification on the piping components. It describes methods of the measurements on pipings, range of installation of the temperature measurements in EBO and EMO units and illustrates results of measurements of coolant temperature stratification. (Authors)

  15. A {open_quotes}zero waste{close_quotes} coolant management strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kennicott, M.A.

    1994-04-01

    In June of 1992 the Waste Minimization Program at Rocky Flats Plant (RFP) began a study to determine the best methods of managing water-based industrial metalworking fluids in the plant`s Tool Manufacturing Shop. The shop was faced with the challenge of managing fluids that could no longer be disposed of in the traditional manner, through the plant`s liquid process waste drains, due to a problem they, were having causing in the Liquid Waste Operations Evaporator. The study`s goal was to reduce the waste coolants being generated and to reduce worker exposure to a serious health risk. Results of this study and those of a subsequent study to determine relative compatibilities of various coolants and metals, led to the application of a {open_quotes}zero waste{close_quotes} machine coolant management program. This program is currently saving the generation of 10,000 gallons of liquid waste annually, has eliminated worker exposure to harmful bacteria and biocides, and should result in extended machine tool life, increased product quality, fewer rejected parts, and decreases labor costs.

  16. Mathematical model of the reactor coolant pump

    International Nuclear Information System (INIS)

    Kozuh, M.

    1989-01-01

    The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)

  17. Coolant controls of a PEM fuel cell system

    Science.gov (United States)

    Ahn, Jong-Woo; Choe, Song-Yul

    When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops. Therefore, proper design of a control for the coolant flow plays an important role in ensuring highly reliable and efficient operations of the fuel cell system. Herein, we propose a new temperature control strategy based on a thermal circuit. The proposed thermal circuit consists of a bypass valve, a radiator with a fan, a reservoir and a coolant pump, while a blower and inlet and outlet manifolds are components of the air supply system. Classic proportional and integral (PI) controllers and a state feedback control for the thermal circuit were used in the design. In addition, the heat source term, which is dependent upon the load current, was feed-forwarded to the closed loop and the temperature effects on the air flow rate were minimized. The dynamics and performance of the designed controllers were evaluated and analyzed by computer simulations using developed dynamic fuel cell system models, where a multi-step current and an experimental current profile measured at the federal urban driving schedule (FUDS) were applied. The results show that the proposed control strategy cannot only suppress a temperature rise in the catalyst layer and prevent oxygen starvation, but also reduce the

  18. Coolant void effect investigation - case of a na-cooled fast reactor

    International Nuclear Information System (INIS)

    Glinatsis, G.; Gugiu, D.

    2013-01-01

    In the frame of the last EURATOM-FP7 Program, a large sized Sodium-cooled FR (SFR) has been studied. Mixed carbides fuel (U, Pu)C has been adopted for the backup core solution and important work has been also performed in order to obtain an ''optimised'' backup configuration ''close'' to the reference one, which is fueled by mixed oxides fuel (U, Pu)Ox. The peculiarity of both core designs (the reference configuration and the optimised backup configuration) is the adoption of a 60 cm Plenum zone in the upper part of each fuel assembly (FA), that is filled by coolant, in order to mitigate (when emptied) the core positive coolant void effect. This paper presents some results of a detailed study of the coolant void effect for the above SFR with mixed carbides core. Many aspects, like geometric heterogeneity, the burnup state, the operating conditions, etc., have been taken into consideration in order to obtain information about the ''propagation'' and the behaviour of the coolant void effect itself. The performed study investigates also the coolant void effect consequences on some reactivity coefficients, which are important for a safe behaviour of the reactor. The investigation consisted in the steady state simulations of the reactor on different operating conditions in Monte Carlo approach. (authors)

  19. On-Line Coolant Chemistry Analysis

    International Nuclear Information System (INIS)

    LM Bachman

    2006-01-01

    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level

  20. A comparative neutronic analysis of 150MWe TRU burner according to the coolant alteration

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic analysis has been conducted for the small TRU burner according to their coolant material. The use of Pb-Bi coolant gave a low burnup reactivity swing and negative or less positive coolant void coefficient with harder neutron spectrum. By a lower burnup reactivity swing and higher conversion ratio of Pb-Bi cooled core, the total amount of TRU consumption was found to be small compared with Na cooled core despite of the higher MA consumption ratio of Pb-Bi cooled core. However, Pb-Bi cooled reactor have a lager margin in the coolant void coefficient, so that a variable MA composition can be loaded in the core. Accordingly, even though the Pb-Bi cooled TRU burner has not effectiveness on TRU burning in the same geometry and material condition, a flexible MA loading is envisaged to result in 10 times larger MA burning amount, still preserving a low coolant void worth

  1. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    International Nuclear Information System (INIS)

    Glazer, S.; Todreas, N.; Rohsenow, W.; Sonin, A.

    1981-02-01

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  2. Analysis of an Advanced Test Reactor Small-Break Loss-of-Coolant Accident with an Engineered Safety Feature to Automatically Trip the Primary Coolant Pumps

    International Nuclear Information System (INIS)

    Polkinghorne, Steven T.; Davis, Cliff B.; McCracken, Richard T.

    2000-01-01

    A new engineered safety feature that automatically trips the primary coolant pumps following a low-pressure reactor scram was recently installed in the Advanced Test Reactor (ATR). The purpose of this engineered safety feature is to prevent the ATR's surge tank, which contains compressed air, from emptying during a small-break loss-of-coolant accident (SBLOCA). If the surge tank were to empty, the air introduced into the primary coolant loop could potentially cause the performance of the primary and/or emergency coolant pumps to degrade, thereby reducing core thermal margins. Safety analysis performed with the RELAP5 thermal-hydraulic code and the SINDA thermal analyzer shows that adequate thermal margins are maintained during an SBLOCA with the new engineered safety feature installed. The analysis also shows that the surge tank will not empty during an SBLOCA even if one of the primary coolant pumps fails to trip

  3. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  4. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  5. Rapid thermal transient in a reactor coolant channel

    International Nuclear Information System (INIS)

    Cherubini, A.

    1986-01-01

    This report deals with the problem of one-dimensional thermo-fluid-dynamics in a reactor coolant channel, with the aim of determining the evolution in time of the coolant (H*L2O), in one-and/or two-phase regimes, subjected to a great and rapid increase in heat flux (accident conditions). To this aim, the following are set out: a) the physical model used; b) the equations inherent in the above model; c) the numerical methods employed to solve them by means of a computer programme called CABO (CAnale BOllente). Next a typical problem of rapid thermal transient resolved by CABO is reported. The results obtained, expressed in form of graphs, are fully discussed. Finally comments on possible developments of CABO follow

  6. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  7. Reactor coolant pump shaft seal behavior during blackout conditions

    International Nuclear Information System (INIS)

    Mings, W.J.

    1985-01-01

    The United States Nuclear Regulatory Commission has classified the problem of reactor coolant pump seal failures as an unresolved safety issue. This decision was made in large part due to experimental results obtained from a research program developed to study shaft seal performance during station blackout and reported in this paper. Testing and analysis indicated a potential for pump seal failure under postulated blackout conditions leading to a loss of primary coolant with a concomitant danger of core uncovery. The work to date has not answered all the concerns regarding shaft seal failure but it has helped scope the problem and focus future research needed to completely resolve this issue

  8. Control rod drive mechanism stator loss of coolant test

    International Nuclear Information System (INIS)

    Besel, L.; Ibatuan, R.

    1977-04-01

    This report documents the stator loss of coolant test conducted at HEDL on the lead unit Control Rod Drive Mechanism (CRDM) in February, 1977. The purpose of the test was to demonstrate scram capability of the CRDM with an uncooled stator and to obtain a time versus temperature curve of an uncooled stator under power. Brief descriptions of the test, hardware used, and results obtained are presented in the report. The test demonstrated that the CRDM could be successfully scrammed with no anomalies in both the two-phase and three-phase stator winding hold conditions after the respective equilibrium stator temperatures had been obtained with no stator coolant

  9. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mao, H.; Yang, B.W.; Han, B. [Xi' an Jiaotong Univ., Shaanxi (China). Science and Technology Center for Advanced Nuclear Fuel Research

    2016-07-15

    Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.

  10. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis

    International Nuclear Information System (INIS)

    Mao, H.; Yang, B.W.; Han, B.

    2016-01-01

    Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.

  11. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)

    International Nuclear Information System (INIS)

    Leong, K.Y.; Saidur, R.; Kazi, S.N.; Mamun, A.H.

    2010-01-01

    Water and ethylene glycol as conventional coolants have been widely used in an automotive car radiator for many years. These heat transfer fluids offer low thermal conductivity. With the advancement of nanotechnology, the new generation of heat transfer fluids called, 'nanofluids' have been developed and researchers found that these fluids offer higher thermal conductivity compared to that of conventional coolants. This study focused on the application of ethylene glycol based copper nanofluids in an automotive cooling system. Relevant input data, nanofluid properties and empirical correlations were obtained from literatures to investigate the heat transfer enhancement of an automotive car radiator operated with nanofluid-based coolants. It was observed that, overall heat transfer coefficient and heat transfer rate in engine cooling system increased with the usage of nanofluids (with ethylene glycol the basefluid) compared to ethylene glycol (i.e. basefluid) alone. It is observed that, about 3.8% of heat transfer enhancement could be achieved with the addition of 2% copper particles in a basefluid at the Reynolds number of 6000 and 5000 for air and coolant respectively. In addition, the reduction of air frontal area was estimated.

  12. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  13. Analysis of actual status of works on technology of heavy liquid metal coolants

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Orlov, Yu.I.; Storozhenko, A.N.

    2014-01-01

    Principle duties in heavy liquid metal coolant technology (HLMC) are provision of the purity of coolant and surfaces of circulation loop for maintenance of design thermohydraulic characteristics, prevention of structural materials corrosion and erosion during long service life and present-day safety precautions on different stages of reactor facility operation. For this reason, current HLMC (Pb-Bi, Pb) technology must include coolant pre-operation and charging; monitoring and regulating of coolant oxygen potential; hydrogen purification of coolant and surfaces of circulation loop from lead oxides-based slags; coolant filtration; reactor cover gas purification from coolant aerosols. The current topical problem is personnel training on the questions of HLMC technology [ru

  14. Experimental and numerical investigation of the coolant mixing during fast deboration transients

    International Nuclear Information System (INIS)

    Hoehne, T.; Rohde, U.; Weiss, F.P.

    1999-01-01

    For the analysis of boron dilution transients and main steam line break scenarios the modeling of the coolant mixing inside the reactor vessel is important, because the reactivity insertion strongly depends on boron acid concentration or the coolant temperature distribution. Calculations for steady state flow conditions for the VVER-440 were performed with a CFD code (CFX-4). The comparison with experimental data and an analytical mixing model which is implemented in the neutron-kinetic code DYN3D showed a good agreement for near-nominal conditions. First experiments at the Rossendorf Mixing Test Facility ROCOM were performed simulating the start-up of the first main coolant pump. The reference reactor for the geometrically 1:5 scaled Plexiglas model is the German Konvoi type PWR. After demonstrating the capability of the CFD code to simulate these complicated flow transients, calculations were performed for the start-up of the first pump in a VVER-440 type reactor. These calculations are a first step of understanding the coolant mixing in the RPV of a VVER-440 type reactor under transient conditions. The results of the calculation show a very complex flow in the downcomer. A high downcomer of VVER-440 and the existence of the lower control rod chamber support coolant mixing is concluded. (author)

  15. Loss-of-coolant accident analyses of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Yoder, G.L.; Wendel, M.W.

    1991-01-01

    Currently in the conceptual design stage, the Advanced Neutron Source Reactor (ANSR) will operate at a high heat flux, a high mass flux, an a high degree of coolant subcooling. Loss-of-coolant accident (LOCA) analyses using RELAP5 have been performed as part of an early evaluation of ANSR safety issues. This paper discusses the RELAP5 ANSR conceptual design system model and preliminary LOCA simulation results. Some previous studies were conducted for the preconceptual design. 12 refs., 7 figs

  16. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  17. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    International Nuclear Information System (INIS)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years

  18. Correlation of analysis with high level vibration test results for primary coolant piping

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1992-01-01

    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results

  19. Models for coolant void reactivity evaluation in Candu Generation II and III+

    International Nuclear Information System (INIS)

    Popov, Alexi V.; Chambon, Richard P.; Le Tellier, Romain; Marleau, Guy; Hebert, Alain

    2008-01-01

    In the simulation of large-break loss-of-coolant accidents, homogenised cross-sections from trans- port calculations are used. These are usually computed in single cells or lattices representative for an infinite repeated pattern. Large coolant accidents in Candu, however, usually exhibit a checkerboard pattern of cooled and voided channels represented by lattices. It is reasonable, therefore, that homogenised cross-sections be produced in assemblies of lattices. This allows simulating the checkerboard voiding pat- tern and more realistically reproducing the lattice boundary conditions. The result is better simulation of the accident and more precise evaluation of coolant-void reactivity. For the present study, homogenised cross-sections are generated in a 2x2 heterogeneous assembly of four lattices for Generation II and III+ Candu designs. Results of reactivity calculations with the reactor code are compared to those using the traditional method. The difference is significant for Generation III+ Candu. (authors)

  20. Application of heat-resistant non invasive acoustic transducers for coolant control in the NPP pipelines

    International Nuclear Information System (INIS)

    Melnikov, V.; Nigmatulin, B.

    1997-01-01

    The use of ultrasonic waves enables remote testing of the coolant flow, detection of solid and gaseous occlusions and measuring of the water velocity and level. Analysis of the acoustic noise makes it possible to detect coolant leaks and diagnose the state and operation of the rotating mechanisms and bearings. Results are given of the research in the development of highly reliable waveguide-type non-invasive acoustic transducers with a long service life. Examples are given of the use of transducers in various fields of nuclear technology: detection of gas in coolant, indication of the coolant level, control of pipe filling and drainage, measurement of liquid film velocity at the pipe inner surface. (M.D.)

  1. BWR fuel assembly bottom nozzle with one-way coolant flow valve

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1987-01-01

    In a nuclear reactor having a flow of coolant/moderator fluid therein, at least one fuel assembly installed in the fluid flow, the fuel assembly is described comprising in combination: a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods; an outer tubular flow channel surrounding the fuel rods so as to direct the flow of coolant/moderator fluid along the fuel rods; bottom and top nozzles mounted at opposite ends of the flow channel and having an inlet and outlet respectively for allowing entry and exit of the flow of coolant/moderator fluid into and from the flow channel and along the fuel rods therein; and a coolant flow direction control device operatively disposed in the bottom nozzle so as to open the inlet thereof to the flow of coolant/moderator fluid in an inflow direction into the flow channel through the bottom nozzle inlet but close the inlet to the flow of coolant/moderator fluid from the flow channel through the bottom nozzle inlet upon reversal of coolant/moderator fluid flow from the inflow direction

  2. Radionuclide buildup in BWR [boiling water reactor] reactor coolant recirculation piping

    International Nuclear Information System (INIS)

    Duce, S.W.; Marley, A.W.; Freeman, A.L.

    1989-12-01

    Since the spring of 1985, thermoluminescent dosimeter, dose rate, and gamma spectral data have been acquired on the contamination of boiling water reactor primary coolant recirculation systems as part of a Nuclear Regulatory Commission funded study. Data have been gathered for twelve facilities by taking direct measurements and/or obtaining plant and vendor data. The project titled, ''Effectiveness and Safety Aspects of Selected Decontamination Processes'' (October 1983) initially reviewed the application of chemical decontamination processes on primary coolant recirculation system piping. Recontamination of the system following pipe replacement or chemical decontamination was studied as a second thrust of this program. During the course of this study, recontamination measurements were made at eight different commercial boiling water reactors. At four of the reactors the primary coolant recirculation system piping was chemically decontaminated. At the other four the piping was replaced. Vendor data were obtained from two boiling water reactors that had replaced the primary coolant recirculation system piping. Contamination measurements were made at two newly operating boiling water reactors. This report discusses the results of these measurements as they apply to contamination and recontamination of boiling water reactor recirculation piping. 16 refs., 29 figs., 9 tabs

  3. Fuel-Coolant-Interaction modeling and analysis work for the High Flux Isotope Reactor Safety Analysis Report

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Chang, S.J.; Freels, J.; Gat, U.; Lepard, B.L.; Gwaltney, R.C.; Luttrell, C.; Kirkpatrick, J.

    1993-07-01

    A brief historical background and a description of short- and long-term task plan development for effective closure of this important safety issue for the HFIR are given. Short-term aspects deal with Fuel-Coolant-Interaction (FCI) issues experimentation, modeling, and analysis for the flow-blockage-induced steam explosion events in direct support of the SAR. Long-term aspects deal with addressing FCI issues resulting from other accidents in conjunction with issues dealing with aluminum ignition, which can result in an order of magnitude increase in overall energetics. Problem formulation, modeling, and computer code simulation for the various phases of steam explosions are described. The evaluation of core melt initiation propagation, and melt superheat are described. Core melt initiation and propagation have been studied using simple conservative models as well as from modeling and analysis using RELAP5. Core debris coolability, heatup, and melting/freezing aspects have been studied by use of the two-dimensional melting/freezing analysis code 2DKO, which was also benchmarked with MELCOR code predictions. Descriptions are provided for the HM, BH, FCIMOD, and CTH computer codes that have been implemented for studying steam explosion energetics from the standpoint of evaluating bounding loads by thermodynamic models or best-estimate loads from one- and two-dimensional simulations of steam explosion energetics. Vessel failure modeling and analysis was conducted using the principles of probabilistic fracture mechanics in conjunction with ADINA code calculations. Top head bolts failure modeling has also been conducted where the failure criterion was based upon stresses in the bolts exceeding the material yield stress for a given time duration. Missile transport modeling and analysis was conducted by setting up a one-dimensional mathematical model that accounts for viscous dissipation, virtual mass effects, and material inertia

  4. Actively controlling coolant-cooled cold plate configuration

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  5. CFD analyses of coolant channel flowfields

    Science.gov (United States)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  6. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  7. Sensitivity calculation of the coolant temperature regarding the thermohydraulic parameters

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de; Silva, F.C. da; Thome Filho, Z.D.; Alvim, A.C.M.; Oliveira Barroso, A.C. de.

    1985-01-01

    It's studied the application of the Generalized Perturbation Theory (GPT) in the sensitivity calculation of thermalhydraulic problems, aiming at verifying the viability of the extension of the method. For this, the axial distribution, transient, of the coolant temperature in a PWR channel are considered. Perturbation expressions are developed using the GPT formalism, and a computer code (Tempera) is written, to calculate the channel temperature distribution and the associated importance function, as well as the effect of the thermalhydraulic parameters variations in the coolant temperature (sensitivity calculation). The results are compared with those from the direct calculation. (E.G.) [pt

  8. Reactor coolant pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Harand, E.; Richter, G.; Tschoepel, G.

    1975-01-01

    A brake for the pump rotor of a main coolant pump or a shutoff member on the pump are provided in order to prevent excess speeds of the pump rotor. Such excess speeds may occur in PWR type reactors with water at a pressure below, e.g., 150 bars if there is leakage from a coolant line associated with the main coolant pump. As a brake, a centrifugal brake depending upon the pump speed or a brake ring arranged on the pump housing and acting on the pump rotor, which ring would be activated by pressure differentials in the pump, may be used. If the pressure differences between suction and pressure sockets are very small, a controlled hydraulic increase of the pressure force on the brake may also be provided. Furthermore, a turbine brake may be provided. A slide which is automatically movable in closing position along the pump rotor axis is used as a shutoff element. It is of cylindrical configuration and is arranged concentrically with the rotor axis. (DG) [de

  9. Design of automotive engine coolant hoses

    Directory of Open Access Journals (Sweden)

    Hrishikesh D BACHCHHAV

    2018-03-01

    Full Text Available In this paper, we are present the performance of engine coolant hoses (radiator hoses used in passenger cars by checking various physical behaviours such as hose leakage, hose burst, hose collapse or any mechanical damage as studied-thru design guidelines, CFD analysis and product validation testing and also check pressure drop of the hoses when engine will be running. The design term is more likely used for technical part modelling using CAD tool. Later on, we will focus on the transformation of the part design to process design. The process design term is more likely used for "tooling design" for manufacturing of the product using CAD Tool. Then inlet hose carries coolant from engine to radiator inlet tank, then coolant circulated in radiator and passed through radiator outlet tank to water pump of engine with the help of outlet hose. After that …nding any leakage, Burst, damage or collapse of hose and pressure drop of the hose with the help of design checklist, CFD Analysis and product validation testing.

  10. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  11. Use of Russian technology of ship reactors with lead-bismuth coolant in nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Chitaykin, V.I.; Gromov, B.F.; Grigoryv, O.G.; Dedoul, A.V.; Toshinsky, G.I.; Dragunov, Yu.G.; Stepanov, V.S.

    2000-01-01

    The experience of using lead-bismuth coolant in Russian nuclear submarine reactors has been presented. The fundamental statements of the concept of using the reactors cooled by lead-bismuth alloy in nuclear power have been substantiated. The results of developments for using lead bismuth coolant in nuclear power have been presented. (author)

  12. Analyses of Decrease in Reactor Coolant Flow Rate in SMART

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Kyoo Hwan; Choi, Suhn

    2011-01-01

    SMART is a small integral reactor, which is under development at KAERI to get the standard design approval by the end of 2011. SMART works like a pressurized light-water reactor in principle though it is more compact than large commercial reactors. SMART houses major components such as steam generators, a pressurizer, and reactor coolant pumps inside the reactor pressure vessel. Due to its compact design, SMART adopts a canned-motor type reactor coolant pump which has much smaller rotational inertia than the ones used in commercial reactors. As a consequence, the reactor coolant pump has very short coastdown time and reactor coolant flow rate decreases more severely compared to commercial reactors. The transients initiated by reduction of reactor coolant flow rate have been analyzed to ensure that SMART can be safely shutdown on such transients. The design basis events in this category are complete loss of flow, single pump locked rotor with loss of offsite power, and single pump shaft break with loss of offsite power

  13. Two-phase coolant pump model of pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos; Freitas, R.L.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  14. Transient heat transfer phenomena of the liquid metal layer cooled by overlying R113 coolant

    International Nuclear Information System (INIS)

    Cho, J. S.; Seo, K. R.; Jung, C. H.; Park, R. J.; Kim, S. B.

    1999-01-01

    To understand the fundamental relationship of the natural convection heat transfer in the molten metal pool and the boiling mechanism of the overlying coolant, experiments were performed for the transient heat transfer of the liquid metal pool with overlying R113 coolant with boiling. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. The metal pool is heated from the bottom surface and the coolant is injected onto the molten metal pool. Tests were conducted by changing the bottom surface boundary condition. The bottom heating condition was varied from 8kW to 14kW. As a result the boiling mechanism of the R113 coolant is changed from the nuclear boiling to film boiling. The Nusselt number and the Rayleigh number in the molten metal pool region obtained as functions of time. Analysis was made for the relationship between the heat flux and the temperature difference of the metal layer surface temperature and the boiling coolant bulk temperature

  15. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  16. Trace organics in AGR coolants

    International Nuclear Information System (INIS)

    Smith, R.; Green, L.O.; Johnson, P.A.V.

    1980-01-01

    Several analytical techniques have been employed in previous studies of the stable organic compounds arising from the radiolysis of methane/carbon monoxide/carbon dioxide coolants. The majority of this early information was collected from the Windscale AGR prototype. Analyses were also carried out on the liquors obtained from the WAGR humidryers. Three classes of compound were found in the liquors; aliphatic acids in the aqueous phase and methyl ketones and aromatic hydrocarbons in the oily phase. Acetic acid was found to be the predominant carboxylic acid. This paper outlines the major findings from a recent analytical survey of coolants taken over a wide range of dose rate, pressure, temperature and composition, from materials testing reactor facilities, WAGR and CAGR. (author)

  17. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  18. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  19. Knock-limited performance of several internal coolants

    Science.gov (United States)

    Bellman, Donald R; Evvard, John C

    1945-01-01

    The effect of internal cooling on the knock-limited performance of an-f-28 fuel was investigated in a CFR engine, and the following internal coolants were used: (1) water, (2), methyl alcohol-water mixture, (3) ammonia-methyl alcohol-water mixture, (4) monomethylamine-water mixture, (5) dimethylamine-water mixture, and (6) trimethylamine-water mixture. Tests were run at inlet-air temperatures of 150 degrees and 250 degrees F. to indicate the temperature sensitivity of the internal-coolant solutions.

  20. ENVIRONMENTALLY REDUCING OF COOLANTS IN METAL CUTTING

    Directory of Open Access Journals (Sweden)

    Veijo KAUPPINEN

    2012-11-01

    Full Text Available Strained environment is a global problem. In metal industries the use of coolant has become more problematic in terms of both employee health and environmental pollution. It is said that the use of coolant forms approximately 8 - 16 % of the total production costs.The traditional methods that use coolants are now obviously becoming obsolete. Hence, it is clear that using a dry cutting system has great implications for resource preservation and waste reduction. For this purpose, a new cooling system is designed for dry cutting. This paper presents the new eco-friendly cooling innovation and the benefits gained by using this method. The new cooling system relies on a unit for ionising ejected air. In order to compare the performance of using this system, cutting experiments were carried out. A series of tests were performed on a horizontal turning machine and on a horizontal machining centre.

  1. The upgrade of intense pulsed neutron source (IPNS) through the change of coolant and reflector

    CERN Document Server

    Baek, I C; Iverson, E B

    2002-01-01

    The current intense pulsed neutron source (IPNS) depleted uranium target is cooled by light water. The inner reflector material is graphite and the outer reflector material is beryllium. The presence of H sub 2 O in the target moderates neutrons and leads to a higher absorption loss in the target than is necessary. D sub 2 O coolant in the small quantities required minimizes this effect. We have studied the possible improvement in IPNS beam fluxes that would result from changing the coolant from H sub 2 O to D sub 2 O and the inner reflector from graphite to beryllium. Neutron intensities were calculated for directions normal to the viewed surface of each moderator for four different cases of combinations of target coolant and reflector materials. The simulations reported here were performed using the MCNPX (version 2.1.5) computer program. Our results show that substantial gains in neutron beam intensities can be achieved by appropriate combination of target coolant and reflector materials. The combination o...

  2. Improving Coolant Effectiveness through Drill Design Optimization in Gundrilling

    Science.gov (United States)

    Woon, K. S.; Tnay, G. L.; Rahman, M.

    2018-05-01

    Effective coolant application is essential to prevent thermo-mechanical failures of gun drills. This paper presents a novel study that enhances coolant effectiveness in evacuating chips from the cutting zone using a computational fluid dynamic (CFD) method. Drag coefficients and transport behaviour over a wide range of Reynold numbers were first established through a series of vertical drop tests. With these, a CFD model was then developed and calibrated with a set of horizontal drilling tests. Using this CFD model, critical drill geometries that lead to poor chip evacuation including the nose grind contour, coolant hole configuration and shoulder dub-off angle in commercial gun drills are identified. From this study, a new design that consists a 20° inner edge, 15° outer edge, 0° shoulder dub-off and kidney-shaped coolant channel is proposed and experimentally proven to be more superior than all other commercial designs.

  3. Design technology development of the main coolant pump for an integral reactor

    International Nuclear Information System (INIS)

    Park, J. S.; Lee, J. S.; Kim, M. H.; Kim, D. W.; Kim, J. I.

    2004-01-01

    All of the reactor coolant pump currently used in commercial nuclear power plant were imported from foreign country. Now, the developing program of design technology for the reactor coolant pump will be started in a few future by domestic researchers. At this stage, the design technology of the main coolant pump for an integral reactor is developed based on the regulation of domestic nuclear power plant facilities. The main coolant pump is a canned motor axial pump, which accommodates all constraints required from the integral reactor system. The main coolant pump does not have mechanical seal device because the rotor of motor and the shaft of impeller are the same one. There is no flywheel on the rotating shaft of main coolant pump so that the coastdown duration time is short when the electricity supply is cut off

  4. Channel type reactors with supercritical water coolant. Russian experience

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Gabaraev, B.A.

    2003-01-01

    Transition to coolant of supercritical parameters allows for principle engineering-andeconomic characteristics of light-water nuclear power reactors to be substantially enhanced. Russian experience in development of channel-type reactors with supercritical water coolant has demonstrated advantages and practical feasibility of such reactors. (author)

  5. Low-activation lead coolant for advanced small modular NPP

    International Nuclear Information System (INIS)

    Khorasanov, G.L.; Ivanov, A.P.; Blokhin, A.I.

    2001-01-01

    The purpose of the paper is in studying perspectives of a new heavy liquid metal coolant for a small fast reactor (FR) concept. To reduce the post irradiation activity of the coolant the using of lead isotope, Pb-206, instead of natural lead, Pb-nat, is offered. In this case the accumulation of such hazardous radionuclides, as Po-210, Bi-208, Bi-207, essentially decreases. The interval of the lead-206 coolant cost which does not exceed 20% of the overall FR cost is estimated. The possibility of lead-206 obtaining for FR needs with the centrifugal separation technique is pointed out. (author)

  6. Main coolant pump testing at Ontario Hydro

    International Nuclear Information System (INIS)

    Hartlen, R.

    1991-01-01

    This article describes Ontario Hydro Research Division's experience with a computerized data acquisition and analysis system for monitoring mechanical vibration in reactor coolant pumps. The topics covered include bench-marking of the computer system and the coolant pumps, signatures of normal and malfunctioning pumps, analysis of data collected by the monitoring system, simulation of faults, and concerns that have been expressed about data interpretation, sensor types and locations, alarm/shutdown limits and confirmation of nondestructive examination testing. This presentation consists of overheads only

  7. Numerical simulations on a high-temperature particle moving in coolant

    International Nuclear Information System (INIS)

    Li Xiaoyan; Shang Zhi; Xu Jijun

    2006-01-01

    This study considers the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Taking momentum and energy equations of the vapor film into account, a transient single particle model under FCI conditions has been established. The numerical simulations on a high-temperature particle moving in coolant have been performed using Gear algorithm. Adaptive dynamic boundary method is adopted during simulating to matching the dynamic boundary that is caused by vapor film changing. Based on the method presented above, the transient process of high-temperature particles moving in coolant can be simulated. The experimental results prove the validity of the HPMC model. (authors)

  8. Simulation of small break loss of coolant accident using relap 5/ MOD 2 computer code

    International Nuclear Information System (INIS)

    Megahed, M.M.

    1992-01-01

    An assessment of relap 5 / MOD 2/Cycle 36.05 best estimate computer code capabilities in predicting the thermohydraulic response of a PWR following a small break loss of coolant accident is presented. The experimental data base for the evaluation is the results of Test S-N H-3 performed in the semi scale MOD-2 c Test facility which modeled a 0.5% small break loss of coolant accident with an accompanying failure of the high pressure injection emergency core cooling system. A conclusion was reached that the code is capable of making small break loss of coolant accident calculations efficiently. However, some of the small break loss of coolant accident related phenomena were not properly predicted by the code, suggesting a need for code improvement.9 fig., 3 tab

  9. Nonlinear dynamic analysis of nuclear reactor primary coolant systems

    International Nuclear Information System (INIS)

    Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.

    1979-01-01

    The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development

  10. Fuel-coolant interactions in a shock-tube geometry

    International Nuclear Information System (INIS)

    Segev, A.; Henry, R.E.; Bankoff, S.G.

    1978-01-01

    Thermal interactions were studied in a shock tube configuration using different pairs of liquids. Large pressures were obtained for systems of water-Wood's metal and butanol-Wood's metal. Different types of interactions were observed, depending on the hot liquid temperature. It was found that thehydrodynamic component alone may account for the measured pressure in the lower temperature range. A combination of thermal and hydrodynamic interactions accounts for the pressures at high temperatures. Experiments with water and molten salt (LiCl + KCl) produced small scale explosions. All interactions were suppressed when driving pressure increased. (author)

  11. Organic coolants and their applications to fusion reactors

    International Nuclear Information System (INIS)

    Gierszewski, P.; Hollies, B.

    1986-08-01

    Organic coolants offer a unique set of characteristics for fusion applications. Their advantages include high-temperature (670 K or 400 degrees C) but low-pressure (2 MPa) operation, limited reactivity with lithium and lithium-lead, reduced corrosion and activation, good heat-transfer capabilities, no magnetohydrodynamic (MHD) effects, and an operating temperature range that extends to room temperature. The major disadvantages are decomposition and flammability. However, organic coolants have been extensively studied in Canada, including nineteen years with an operating 60-MW organic-cooled reactor. Proper attention to design and coolant chemistry controlled these potential problems to acceptable levels. This experience provides an extensive data base for design under fusion conditions. The organic fluid characteristics are described in sufficient detail to allow fusion system designers to evaluate organic coolants for specific applications. To illustrate and assess the potential applications, analyses are presented for organic-cooled blankets, first walls, high heat flux components and thermal power cycles. Designs are identified that take advantage of organic coolant features, yet have fluid decomposition related costs that are a small fraction of the overall cost of electricity. For example, organic-cooled first walls make lithium/ferritic steel blankets possible in high-field, high-surface-heat-flux tokamaks, and organic-cooled limiters (up to about 8 MW/m 2 surface heating) are a safer alternative to water cooling for liquid metal blanket concept. Organics can also be used in intermediate heat exchanger loops to provide efficient heat transfer with low reactivity and a large tritium barrier. 55 refs

  12. Contribution to the study of the thermal interaction between uranium oxide and sodium

    International Nuclear Information System (INIS)

    Newman, W.H.

    1982-01-01

    A description is given of the experimental results of the fuel-coolant interactions carried out in the CORECT II device at the Grenoble Nuclear Study Centre. A description is then given of a theoretical model of interaction which comprises three points: first a study of the coolant, that is to say of its hydrodynamic and thermodynamic behaviour, then the study of the fuel, namely the phenomena of fragmentation and heat transfer between the fuel and the coolant, and last the treatment of heat leaks to the structures. A study follows on the effect of the various parameters on the theoretical model as well as the effects of the assumptions on the fragmentation, transfer and losses of heat. Last, the interpretations of a few experiments carried out with two models of fragmentation are described. A discussion of these interpretations enables some generalizations to be made on the nature of the thermal interaction [fr

  13. Leak detection device for reactor coolant

    International Nuclear Information System (INIS)

    Oshima, Koichiro.

    1990-01-01

    In a light water cooled reactor, if reactor coolants are leaked from pipelines in a pipeline chamber, activated products (N-16) are diffused together to an atmosphere in the pipeline chamber. N-16 is sucked from an extracting tube which is always sucking the atmosphere in the pipeline chamber to a sucking blower. Then, β-rays released from N-16 are monitored by a radiation monitor in a measuring chamber which is radiation-shielded from the pipeline chamber. Accordingly, since the radiation monitor can detect even slight leakage, the slight leakage of reactor coolants in the pipelines can be detected at an early stage. (I.N.)

  14. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    National Research Council Canada - National Science Library

    Can, Levent

    2006-01-01

    .... The overall focus of this study is the build up of induced radioactivity in the coolant of metal cooled reactors as well as the evaluation of other physical and chemical properties of such coolants...

  15. Physics study of Canada deuterium uranium lattice with coolant void reactivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Shin, Ho Cheol [Korea Hydro and Nuclear Power Central Research Institute (KHNP-CRI), Daejeon (Korea, Republic of)

    2017-02-15

    This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 x 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

  16. Phenomena occuring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1990-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. This paper discusses, how in the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. The physical and chemical processes occurring within the RCS during normal operation of the reactor are relatively uncomplicated and are reasonably well understood. When the flow of coolant is properly adjusted, the thermal energy resulting from nuclear fission (or, in the shutdown mode, from radioactive decay processes) and secondary inputs, such as pumps, are exactly balanced by thermal losses through the RCS boundaries and to the various heat sinks that are employed to effect the conversion of heat to electrical energy. Because all of the heat and mass fluxes remain sensibly constant with time, mathematical descriptions of the thermophysical processes are relatively straightforward, even for boiling water reactor (BWR) systems. Although the coolant in a BWR does undergo phase changes, the phase boundaries remain well-defined and time-invariant

  17. Analysis of thermo-hydraulic behavior of coolant during discharge of pressurized high-temperature water

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Sobajima, Makoto; Sasaki, Shinobu; Onishi, Nobuaki; Shiba, Masayoshi

    1978-01-01

    The present report describes results of the analysis of the LOFT semiscale experiment No. 1011 using remodeled RELAP-3 code, performed at the Idaho National Engineering Laboratory to simulate a postulated loss-of-coolant accident in a pressurized water reactor. It was clarified through the analysis that coolant behavior during blowdown was influenced variously by the system components in the primary loop, comparing with coolant discharge from a pressure vessel. Good agreement was obtained between experimental and analytical results when phase separation was assumed in upper plenum and downcomer, since experimental data indicated existence of liquid level in those parts. It was also found that the use of the Wilson's equation to calculate bubble rise velocity and the use of discharge coefficient as the function of fluid quality at break location to calculate discharge flow rate resulted in good agreement with experimental data. (auth.)

  18. Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Elina Syrjaelahti; Anitta Haemaelaeinen [VTT Processes, P.O.Box 1604, FIN-02044 VTT (Finland)

    2005-07-01

    Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)

  19. Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark

    International Nuclear Information System (INIS)

    Elina Syrjaelahti; Anitta Haemaelaeinen

    2005-01-01

    Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)

  20. Coolant channel module CCM

    International Nuclear Information System (INIS)

    Hoeld, Alois

    2007-01-01

    A complete and detailed description of the theoretical background of an '(1D) thermal-hydraulic drift-flux based mixture-fluid' coolant channel model and its resulting module CCM will be presented. The objective of this module is to simulate as universally as possible the steady state and transient behaviour of the key characteristic parameters of a single- or two-phase fluid flowing within any type of heated or non-heated coolant channel. Due to the possibility that different flow regimes can appear along any channel, such a 'basic (BC)' 1D channel is assumed to be subdivided into a number of corresponding sub-channels (SC-s). Each SC can belong to only two types of flow regime, an SC with just a single-phase fluid, containing exclusively either sub-cooled water or superheated steam, or an SC with a two-phase mixture flow. After an appropriate nodalisation of such a BC (and therefore also its SC-s) a 'modified finite volume method' has been applied for the spatial discretisation of the partial differential equations (PDE-s) which represent the basic conservation equations of thermal-hydraulics. Special attention had to be given to the possibility of variable SC entrance or outlet positions (which describe boiling boundaries or mixture levels) and thus the fact that an SC can even disappear or be created anew. The procedure yields for each SC type (and thus the entire BC), a set of non-linear ordinary 1st order differential equations (ODE-s). To link the resulting mean nodal with the nodal boundary function values, both of which are present in the discretised differential equations, a special quadratic polygon approximation procedure (PAX) had to be constructed. Together with the very thoroughly tested packages for drift-flux, heat transfer and single- and two-phase friction factors this procedure represents the central part of the here presented 'Separate-Region' approach, a theoretical model which provides the basis to the very effective working code package CCM

  1. Tritium transport modeling at system level for the EUROfusion dual coolant lithium-lead breeding blanket

    Science.gov (United States)

    Urgorri, F. R.; Moreno, C.; Carella, E.; Rapisarda, D.; Fernández-Berceruelo, I.; Palermo, I.; Ibarra, A.

    2017-11-01

    The dual coolant lithium lead (DCLL) breeding blanket is one of the four breeder blanket concepts under consideration within the framework of EUROfusion consortium activities. The aim of this work is to develop a model that can dynamically track tritium concentrations and fluxes along each part of the DCLL blanket and the ancillary systems associated to it at any time. Because of tritium nature, the phenomena of diffusion, dissociation, recombination and solubilisation have been modeled in order to describe the interaction between the lead-lithium channels, the structural material, the flow channel inserts and the helium channels that are present in the breeding blanket. Results have been obtained for a pulsed generation scenario for DEMO. The tritium inventory in different parts of the blanket, the permeation rates from the breeder to the secondary coolant and the amount of tritium extracted from the lead-lithium loop have been computed. Results present an oscillating behavior around mean values. The obtained average permeation rate from the liquid metal to the helium is 1.66 mg h-1 while the mean tritium inventory in the whole system is 417 mg. Besides the reference case results, parametric studies of the lead-lithium mass flow rate, the tritium extraction efficiency and the tritium solubility in lead-lithium have been performed showing the reaction of the system to the variation of these parameters.

  2. Calculation and analysis of neutron and radiation characteristics of lead coolants with isotopic tailoring for future nuclear power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, A.I.; Ivanov, A.P.; Korobeinikov, V.V.; Lunev, V.P.; Manokhin, V.N.; Khorasanov, G.L. [SSC RF A. I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Kaluga Region (Russian Federation)

    2000-03-01

    A new type of safe fast reactor with lead coolant was proposed in Russia. The use of coolants with low moderating properties is one of the ways to get a hard neutron spectrum and an increase in the burning of Np-237, Am-243 and other miner actinides(MA) fissionable preferentially in the fast reactor. The stable lead isotope, Pb-208, is proposed as the one of such coolants. The neutron inelastic scattering cross-section of Pb-208 is 3.0-3.5 times less than the one of other lead isotopes. Calculation of the MA transmutation rates in the standard BN-type fast reactor with different coolants is performed by Monte-Carlo method using Code MMKFK. Six various models are simulated for the fast reactor blanket with different kinds of fuel and coolant. The fast reactor with natural-lead coolant practically does not differ from the reactor with sodium coolant relative to MA incineration. The use of Pb-208 as a coolant in the fast reactor results in increasing incineration of MA from 18 to 26% in comparison with a usual fast reactor. Calculation of induced radioactivity was performed using the FISPACT-3 inventory code, also. The results include total induced radioactivity and dose rate for initial material composition and selected long-lived radionuclides. The calculations show that the coolant consisting of lead isotope, Pb-206, or Pb-207, can be considered as the low-activation one because it does not practically contain long-lived toxic radionuclides. (M. Suetake)

  3. Evaluation of filtration and distillation methods for recycling automotive coolant

    International Nuclear Information System (INIS)

    Randall, P.M.; Gavaskar, A.R.

    1992-01-01

    Government regulations and high waste disposal cost of spent automotive coolant have driven the vehicle maintenance industry to explore on-site recycling. The USEPA in cooperation with the New Jersey Department of Environmental Protection (NJDEP) and the New Jersey Department of Transportation (NJDOT) evaluated two commercially available technologies that have potential for reducing the volume of spent automotive coolant. The objective of this study was to evaluate the quality of the recycled coolant, the pollution prevention potential, and the economic feasibility of the technologies

  4. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  5. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    International Nuclear Information System (INIS)

    Kryk, Holger; Hoffmann, Wolfgang; Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan

    2014-01-01

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products

  6. Numerical study on coolant flow distribution at the core inlet for an integral pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Peng, Min Jun; Xia, Genglei; Lv, Xing; Li, Ren [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-02-15

    When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

  7. Dual coolant blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Schleisiek, K.

    1994-11-01

    A self-cooled liquid metal breeder blanket with helium-cooled first wall ('Dual Coolant Blanket Concept') for a fusion DEMO reactor is described. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. Described are the design of the blankets including the ancillary loop system and the results of the theoretical and experimental work in the fields of neutronics, magnetohydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium control, safety, reliability, and electrically insulating coatings. The remaining open questions and the required R and D programme are identified. (orig.) [de

  8. Touch-sensitive colour graphics enhance monitoring of loss-of-coolant accident tests

    International Nuclear Information System (INIS)

    Snedden, M.D.; Mead, G.L.

    1982-01-01

    A stand-alone computer-based system with an intelligent colour termimal is described for monitoring parameters during loss-of-coolant accident tests. Colour graphic displays and touch-sensitive control have been combined for effective operator interaction. Data collected by the host MODCOMP II minicomputer are dynamically updated on colour pictures generated by the terminal. Experimenters select system functions by touching simulated switches on a transparent touch-sensitive overlay, mounted directly over the face of the colour screen, eliminating the need for a keyboard. Switch labels and colours are changed on the screen by the terminal software as different functions are selected. Interaction is self-prompting and can be learned quickly. System operation for a complete set of 20 tests has demonstrated the convenience of interactive touchsensitive colour graphics

  9. Theoretical studying the stability of steady-state regime of a channel with a coolant condensation

    International Nuclear Information System (INIS)

    Savikhin, O.G.

    1987-01-01

    Based on the boiling channel stability theory, the channel steady-state stability with the coolant condensation is studied. Condensable coolants are used in the NPP steam-separator superheaters as well as in cryogenic technique. Under certain conditions the coolant flow rate and temperature fluctuations may be excited in the parallel channel system with coolant condensation, which produce a sufficient effect on the heat exchange equipment operation reliability. To describe unsteady processes of heat and mass transfer in the channel, a homogeneous two-phase flow one dimensional model is used. The results obtained allow one to make a conclusion concerning the effect of some parameters on condensing channel steady-state regime stability: reduction of inlet and outlet unheated communication length, pressure drop increase at the outlet plate and its reduction at the inlet one lead to the increase of stability margin

  10. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  11. Multi-objective optimization of the reactor coolant system

    International Nuclear Information System (INIS)

    Chen Lei; Yan Changqi; Wang Jianjun

    2014-01-01

    Background: Weight and size are important criteria in evaluating the performance of a nuclear power plant. It is of great theoretical value and engineering significance to reduce the weight and volume of the components for a nuclear power plant by the optimization methodology. Purpose: In order to provide a new method for the optimization of nuclear power plant multi-objective, the concept of the non-dominated solution was introduced. Methods: Based on the parameters of Qinshan I nuclear power plant, the mathematical models of the reactor core, the reactor vessel, the main pipe, the pressurizer and the steam generator were built and verified. The sensitivity analyses were carried out to study the influences of the design variables on the objectives. A modified non-dominated sorting genetic algorithm was proposed and employed to optimize the weight and the volume of the reactor coolant system. Results: The results show that the component mathematical models are reliable, the modified non-dominated sorting generic algorithm is effective, and the reactor inlet temperature is the most important variable which influences the distribution of the non-dominated solutions. Conclusion: The optimization results could provide a reference to the design of such reactor coolant system. (authors)

  12. Reactor coolant pump seal leakage monitoring

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; James, W.; Shugars, H.G.

    1986-01-01

    Problems with reactor coolant pump seals have historically accounted for a large percentage of unscheduled outages. Studies performed for the Electric Power Research Institute (EPRI) have shown that the replacement of coolant pump seals has been one of the leading causes of nuclear plant unavailability over the last ten years. Failures of coolant pump seals can lead to primary coolant leakage rates of 200-500 gallons per minute into the reactor building. Airborne activity and high surface contamination levels following these failures require a major cleanup effort and increases the time and personnel exposure required to refurbish the pump seals. One of the problems in assessing seal integrity is the inability to accurately measure seal leakage. Because seal leakage flow is normally very small, it cannot be sensed directly with normal flow instrumentation, but must be inferred from several other temperature and flow measurements. In operating plants the leakage rate has been quantified with a tipping-bucket gauge, a device which indicates when one quart of water has been accumulated. The tipping-bucket gauge has been used for most rainfall-intensity monitoring. The need for a more accurate and less expensive gauge has been addressed. They have developed a drop-counter precipitation sensor has been developed and optimized. The applicability of the drop-counter device to the problem of measuring seal leakage is being investigated. If a review of system specification and known drop-counter performance indicates that this method is feasible for measuring seal leak rates, a drop-counter gauge will be fabricated and tested in the laboratory. If laboratory tests are successful the gauge will be demonstrated in a pump test loop at Ontario Hydro and evaluated under simulated plant conditions. 3 references, 2 figures

  13. Evaluation of Specific Activity in the Primary Coolant of PWRs by using SAEP

    International Nuclear Information System (INIS)

    Kim, Ha Yong; Song, Jae Seung; Kim, Keung Ku; Kim, Kyo Youn

    2008-07-01

    SAEP(Specific Activity Evaluation Program) to evaluate specific activities in the primary coolant of reactors due to fission products has been developed, which can be applied to the new concept nuclear reactor such as SMART as well as commercial PWRs in existence. Specific activities in the primary coolant were evaluated by using SAEP against reactor plants which are being operated currently in South Korea, respectively. We study the possibility of being applied to the developing commercial PWRs and the new concept reactors through the comparison the results by using SAEP with the results mentioned in the FSARs. We also verify SAEP itself through this evaluation. From the evaluation results, we know that the general trend is agreed with each other from the viewpoint of order of magnitude and that SAEP correctly executes the evaluation of specific activities in the primary coolant of reactor due to fission products for several reactor types, regardless of a reactor type. Therefore, SAEP can widely be applied to the new concept nuclear reactor development phase as well as already developed PWRs

  14. Modeling the spatial distribution of the parameters of the coolant in the reactor volume

    International Nuclear Information System (INIS)

    Nikonov, S.P.

    2011-01-01

    In this paper the approach to the question about the spatial distribution of the parameters of the coolant in-reactor volume. To describe the in-core space is used specially developed preprocessor. When the work of the preprocessor in the first place, is recreated on the basis of available information (mostly-the original drawings) with high accuracy three-dimensional description of the structures of the reactor volume and, secondly, are prepared on this basis blocks input to the nodal system code improved estimate ATHLET, allows to take into account the hydrodynamic interaction between the spatial control volumes. As an example the special case of solutions of international standard problem on the reconstruction of the transition process in the third unit of the Kalinin nuclear power plant, due to the shutdown of one of the four Main Coolant Pumps in operation at the rated capacity (first download). Model-core area consists of approximately 58 000 control volumes and spatial relationships. It shows the influence of certain structural units of the core to the distribution of the mass floe rate of its height. It is detected a strong cross-flow coolant in the area over the baffle. Moreover, we study the distribution of the coolant temperature at the assembly head of WWER-1000 reactor. It is shown that in the region of the top of the assembly head, where we have installation of thermocouples, the flow coolant for internal assemblies core is formed by only from guide channel Reactor control and protected system Control rod flow, or a mixture of the guide channel flow and flow from the area in front of top grid head assembly (the peripheral assemblies). It is shown that the magnitude of the flow guide channels affects not only the position of control rods, but also the presence of a particular type of measuring channels (Self powered neutron detector sensors or Temperature control sensors) in the cassette. (Author)

  15. Operation diagnostics of the reactor coolant pumps in the Jaslovske Bohunice nuclear power plant, CSSR

    International Nuclear Information System (INIS)

    Bahna, J.; Jaros, I.; Oksa, G.

    1990-01-01

    The state of the art of the materials basis, the diagnostics methods used, organization of data collection and processing, and some results of routine and specific investigations concerned with diagnosis of the reactor coolant pump in the Jaslovske Bohunice NPP V-1 are presented. Some information is given about the reactor coolant pump monitor developed in the VUJE. (author)

  16. Experimental study of simulant melt stream-water thermal interaction in pool and narrow geometries

    International Nuclear Information System (INIS)

    Narayanan, K.S.; Jasmin Sudha, A.; Murthy, S.S.; Rao, E.H.V.M.; Lydia, G.; Das, S.K.; Harvey, J.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: Small scale experiments were carried out to investigate the thermal interaction characteristics of a few kilograms of Sn Pb, Bi and Zn as hot melt, in the film boiling region of water in an attempt to simulate a coherent fuel coolant interaction during a postulated severe accident in a nuclear reactor. Melt stream solidification and detached debris generation were studied with different melt superheat up to 200 deg. C, at different coolant temperatures of 30 deg. C, 50 deg. C, 70 deg. C, 90 deg. C, in pool geometry and in long narrow coolant column. The material was heated in an Alumina crucible and poured through a hot stainless steel funnel with a nozzle diameter of 7.7 mm, into the coolant. A stainless steel plate was used to collect the solidified mass after the interaction. Temperature monitoring was done in the coolant column close to the melt stream. The melt stream movement inside the coolant was imaged using a video camera at 25 fps. Measured melt stream entry velocity was around 1.5 m/sec. For low melt superheat and low coolant temperature, solidified porous tree like structure extended from the collector plate up to the melt release point. For water temperature of 70 deg. C, the solidified bed height at the center was found to decrease with increase in the melt superheat up to 150 deg. C. Fragmentation was found to occur when the melt superheat exceeded 200 deg. C. Particle size distribution was obtained for the fragmented debris. In 1D geometry, with 50 deg. C superheat, columnar solidification was observed with no fine debris. The paper gives the details of the results obtained in the experiments and highlights the role of Rayleigh-Taylor, Kelvin-Helmholtz instabilities and the melt physical properties on the fragmentation kinetics. (authors)

  17. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  18. Premixing of corium into water during a Fuel-Coolant Interaction. The models used in the 3 field version of the MC3D code and two examples of validation on Billeau and FARO experiments

    Energy Technology Data Exchange (ETDEWEB)

    Berthoud, G.; Crecy, F. de; Duplat, F.; Meignen, R.; Valette, M. [CEA/Grenoble, DRN/DTP, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France)

    1998-01-01

    This paper presents the <> application of the multiphasic 3D computer code MC3D. This application is devoted to the premixing phase of a Fuel Coolant Interaction (FCI) when large amounts of molten corium flow into water and interact with it. A description of the new features of the model is given (a more complete description of the full model is given in annex). Calculations of Billeau experiments (cold or hot spheres dropped into water) and of a FARO test (<> corium dropped into 5 MPa saturated water) are presented. (author)

  19. Enhancing resistance to burnout via coolant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tu, J. P.; Dinh, T. N.; Theofanous, T. G. [Univ. of California, Santa Barbara (United States)

    2003-07-01

    Boiling Crisis (BC) on horizontal, upwards-facing copper and steel surfaces under the influence of various coolant chemistries relevant to reactor containment waters is considered. In addition to Boric Acid (BA) and TriSodium Phosphate (TSP), pure De-Ionized Water (DIW) and Tap Water (TW) are included in experiments carried out in the BETA facility. The results are related to a companion paper on the large scale ULPU facility.

  20. Simulation of IVR-ERVC and estimation method of coolant inflow to the cavity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunjin; Namgung, Ihn [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    In this study, the temperature distribution outside of RV wall and evaporation rate due to heat from core will be investigated. Using the universal analysis program ANSYS Fluent, the natural convection in the cavity for IVR-ERVC conditions were modelled and performed for heat transfer analysis. The aim of this study is to calculate the appropriate coolant flow so that coolant level in the cavity can be maintained at prescribed level and vessel wall temperature distribution, including RV outside wall temperature are also investigated. Reactor vessel and cavity in case of ex-vessel cooling for severe accident condition were modeled with and without insulators. The heat load into reactor vessel from corium inside of reactor lower head were obtained from MELCORE analysis and used as input B.C of CFD analysis. The Temperature gradient of reactor outer surface and evaporation rate of cooling eater was obtained from the analysis. These results can be used for further analysis of reactor vessel creep behavior and the estimate the coolant flow rate into the reactor cavity.. and The result can be used to verify the natural convection phenomena in the cavity and also to set the design parameters of cavity and coolant flow rate. The vessel outer surface temperature gradient can be also used to more accurate investigation of vessel creep behavior during severe accident condition, The result can also be used set up a strategy for severe accident managements.

  1. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  2. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    International Nuclear Information System (INIS)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-01-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications

  3. Analysis of small break loss of coolant accident for Chinese CPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of); Cilier, Anthonie [North-West University, Mahikeng (South Africa); Poc, Li-chi Cliff [Micro-Simulation Technology, Montville (United States)

    2016-05-15

    This research analyses the small break loss of coolant accident (LOCA) on a Chinese CPR1000 type reactor. LOCA accident is used as benchmark for the PCTRAN/CPR1000 code by comparing the effects and results to the Manshaan FSAR accident analysis. LOCA is a design basis accident in which a guillotine break is postulated to occur in one of the cold legs of a pressurized water reactor (PWR). Consequently, the primary system pressure would drop and almost all the reactor coolant would be discharged into the reactor containment. The drop in pressure would activate the reactor protection system and the reactor would trip. The simulation of a 3-inch small break loss of coolant accident using the PCTRAN/CPR1000 has revealed this code's effectiveness as well as weaknesses in specific simulation applications. The code has the ability to run at 16 times real time and produce very accurate results. The results are consistently producing the same trends as licensed codes used in Safety Assessment Reports. It is however able to produce these results in a fraction of the time and also provides a whole plant simulation coupling the various thermal, hydraulic, chemical and neutronic systems together with a plant specific control system.

  4. Coolant rate distribution in horizontal steam generator under natural circulation

    International Nuclear Information System (INIS)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A.

    1997-01-01

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered

  5. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  6. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1981-01-01

    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  7. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  8. Vertical reactor coolant pump instabilities

    International Nuclear Information System (INIS)

    Jones, R.M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corractive measures taken are also described

  9. Membrane technology for treating of waste nanofluids coolant: A review

    Science.gov (United States)

    Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi

    2017-09-01

    The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide

  10. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)

    1997-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  11. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A; Leontieva, V; Mitrioukhin, A [St. Petersburg State Technical Univ. (Russian Federation)

    1998-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  12. Evaluation of primary coolant leaks and assessment of detection methods

    International Nuclear Information System (INIS)

    Cassette, P.; Giroux, C.; Roche, H.; Seveon, J.J.

    1986-01-01

    A review of the French PWR situation concerning primary coolant leaks is presented, including a description of operating technical specifications, of the collecting system of primary coolant leakage into the containment and of the detection methods. It is mainly based on a compilation over three years, 1981 to 1983, of almost all actual leaks, their natures, causes, consequences and methods used for their detection. By analysing these data it is possible to evaluate the efficiency of the primary coolant leak detection system and the problems raised by compliance with the criteria defined in the operating technical specifications

  13. Evaluation of primary coolant leaks and assessment of detection methods

    International Nuclear Information System (INIS)

    Cassette, P.; Giroux, C.; Roche, H.; Seveon, J.J.

    1984-11-01

    A review of French PWR situation concerning primary coolant leaks is presented, including a description of operating technical specifications, of the collecting system of primary coolant leakage into the containment and of the detection methods. It is mainly based on a compilation over three years, 1981 to 1983, of almost all occurred leaks, their natures, causes, consequences and methods used for their detection. By analysing these data it is possible to evaluate the efficiency of the primary coolant leak detection system and the problems raised by the compliance with the criteria defined in the operating technical specifications

  14. The solid coolant and prospects of its use in innovative reactors

    International Nuclear Information System (INIS)

    Dmitriev, A.M.; Deniskin, V.P.

    2010-01-01

    The progress of nuclear power demands consideration and development of innovative projects of the reactors having the increased level of safety due to their immanent properties allowing to provide high parameters. One of interesting and perspective offers is the use of a solid substance as a coolant. Use of the solid coolant of a nuclear reactor core has significant advantages among which an opportunity of movement of the coolant in the core under action of gravities and absence of necessity to have superfluous pressure in the jacket, that in turn means small metal consumption of construction, decrease in risk of emergency and its consequences. Cooling of the core with the help of solid substance is possible at performance of the certain conditions connected to features of the solid coolant. The major requirements are: the uniform continuous movement and minimal fluctuation of its density on every site of the core; high mechanical durability and wear resistance of particles; as well as good parameters of heat exchange, i.e. high heat conductivity and thermal capacity of the coolant material at the core operating conditions

  15. SSYST-1. A computer code system to analyse the fuel rod behaviour during a loss of coolant accident

    International Nuclear Information System (INIS)

    Gulden, W.

    1977-08-01

    The modules of the SSYST program system allow the detailed analysis of an LWR fuel rod in the course of a postulated loss-of-coolant accident. They provide a tool for considering the interaction between the heat conduction in the fuel rod, heat transfer in the gap, fuel and cladding tube deformation, pressure in the coolant, as well as thermal and fluid dynamics in the cooling channel and for calculating the time and location of ballooning and rod failure, respectively. They can be used both to precalculate the behaviour of fuel rods during LWR accidents and in support of the design of experiments. Depending on the problem to be solved, the individual modules can be easily combined. (orig.) [de

  16. Radioactivity analysis of KAMINI reactor coolant from regulatory perspectives

    International Nuclear Information System (INIS)

    Srinivasan, T.K.; Sulthan, Bajeer; Sarangapani, R.; Jose, M.T.; Venkatraman, B.; Thilagam, L.

    2016-01-01

    KAMINI (a 30kWt) research reactor is operated for neutron radiography of fuel subassemblies and pyro devices and activation analysis of various samples. The reactor is fueled by 233 U and DM water is used as the coolant. During reactor operation, fission product noble gasses (FPNGs) such as 85m Kr, 87 Kr, 88 Kr, 135 Xe, 135m Xe and 138 Xe are detected in the coolant water. In order to detect clad failure, the water is sampled during reactor operation at regular intervals as per the technical specifications. In the present work, analysis of measured activities in coolant samples collected during reactor operation at 25 kWt are presented and compared with computed values obtained using ORIGEN (Isotope Generation) code

  17. LOFT advanced densitometer for nuclear loss-of-coolant experiments

    International Nuclear Information System (INIS)

    Johnson, L.O.; Lassahn, G.D.; Wood, D.B.

    1979-01-01

    A ''nuclear hardened'' gamma densitometer, a device which uses radiation attenuation to measure fluid density in the presence of a background radiation field, is described. Data from the nuclear hardened gamma densitometer are acquired by time sampling the coolant fluid piping and fluid attenuated source energy spectrum. The data are used to calculate transient coolant fluid cross sectional average density to analyze transient mass flow and other thermal-hydraulic characteristics during the Loss-of-Fluid Test (LOFT) loss-of-coolant experiments. The nuclear hardened gamma densitometer uses a pulse height analysis or energy discrimination, pulse counting technique which makes separation of the gamma radiation source signal from the reactor generated gamma radiation background noise signal possible by processing discrete pulses which retain their pulse amplitude information

  18. Upgradation of design features of primary coolant pumps of Indian 220 MWe PHWR

    International Nuclear Information System (INIS)

    Sharma, S.S.; Mhetre, S.G.; Manna, M.M.

    1994-01-01

    Evolution in the design features of Primary Coolant Pump (PCP) had started in fifties for catering to stringent specification requirements of reactor coolant systems of larger capacity reactors of various kinds. Primary coolant pumps of PWR and PHWR are employed for circulating radioactive, pressurized hot water in a circuit consisting of reactor (heat source) and steam generator (heat sink). As primary coolant pump capacity decides the station capacity, larger capacity primary coolant pumps have been evolved. Since primary coolant pump pressure containing parts are part of Primary Heat Transport system envelope, the parts are designed, manufactured, inspected and tested in accordance with the applicable system guidelines. Flywheel is mounted on the motor shaft for increasing mass moment of inertia of pump motor rotor to meet the coast down requirements of reactor cooling system under Class-IV electrical power supply failure. Due to limited accessibility of the PCP (PCP installed in shut down accessible area), quick maintenance, condition monitoring, reliable shaft seal system/bearing system aspects have been of great concern to reactor owners and pump manufacturers. In this paper upgradation of design features of RAPS, MAPS and NAPS primary coolant pumps have been covered. (author). 4 figs., 1 tab

  19. Analysis of loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Moldaschl, H.

    1982-01-01

    Analysis of loss-of-coolant accidents in pressurized water reactors -Quantification of the influence of leak size, control assembly worth, boron concentration and initial power by a dynamic operations criterion. Neutronic and thermohydraulic behaviour of a pressurized water reactor during a loss-of-coolant accident (LOCA) is mainly influenced by -change of fuel temperature, -void in the primary coolant. They cause a local stabilization of power density, that means that also in the case of small leaks local void is the main stabilization effect. As a consequence the increase of fuel temperature remains very small even under extremely hypothetical assumptions: small leak, positive reactivity feedback (positive coolant temperature coefficient, negative density coefficient) at the beginning of the accident and all control assemblies getting stuck. Restrictions which have been valid up to now for permitted start-up conditions to fulfill inherent safety requirements can be lossened substantially by a dynamic operations criterion. Burnable poisons for compensation of reactivity theorefore can be omitted. (orig.)

  20. Investigation of coolant mixture in pressurized water reactors at the Rossendorf mixing test facility ROCOM

    International Nuclear Information System (INIS)

    Grunwald, G.; Hoehne, T.; Prasser, H.M.; Richter, K.; Weiss, F.P.

    1999-01-01

    During the so-called boron dilution or cold water transients at pressurized water reactors too weakly borated water or too cold water, respectively, might enter the reactor core. This results in the insertion of positive reactivity and possibly leads to a power excursion. If the source of unborated or subcooled water is not located in all coolant loops but in selected ones only, the amount of reactivity insertion depends on the coolant mixing in the downcomer and lower plenum of the reactor pressure vessel (RPV). Such asymmetric disturbances of the coolant temperature or boron concentration might e.g. be the result of a failure of the chemical and volume control system (CVCS) or of a main steam line break (MSLB) that does only affect selected steam generators (SG). For the analysis of boron dilution or MSLB accidents coupled neutron kinetics/thermo-hydraulic system codes have been used. To take into account coolant mixing phenomena in these codes in a realistic manner, analytical mixing models might be included. These models must be simple and fast running on the one hand, but must well describe the real mixing conditions on the other hand. (orig.)

  1. Development of natural convection heat transfer correlation for liquid metal with overlying boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Y.; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1999-01-01

    Experimental study was performed to investigate the natural convection heat transfer characteristics and the crust formation of the molten metal pool concurrent with forced convective boiling of the overlying coolant. Tests were performed under the condition of the bottom surface heating in the test section and the forced convection of the coolant being injected onto the molten metal pool. The constant temperature and constant heater input power conditions were adopted for the bottom heating. Test results showed that the temperature distribution and crust layer thickness in the metal layer are appreciably affected by the heated bottom surface temperature of the test section, but not much by the coolant injection rate. The relationship between the Nu number and Ra number in the molten metal pool region is determined and compared with the correlations in the literature, and the experiment without coolant boiling. A new correlation on the relationship between the Nu number and Ra number in the molten metal pool with crust formation is developed from the experimental data

  2. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    Directory of Open Access Journals (Sweden)

    Lefèvre Grégory

    2012-01-01

    Full Text Available In the primary circuit of pressurized water reactors (PWR, the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspected to be the cause. As better understanding of the adhesion mechanism is the key factor in the prevention of fouling and particle removal, an experimental study was carried out using a laboratory set-up. With model materials, hematite and sintered alumina, the adhesion rate and surface potentials of the interacting solids were measured under different chemical conditions (solution pH and composition in analogy with the PWR ones. The obtained results were in good agreement with the DLVO (Derjaguin-Landau-Verwey- Overbeek theory and used as such to interpret this industrial phenomenon.

  3. Modular Porous Plate Sublimator /MPPS/ requires only water supply for coolant

    Science.gov (United States)

    Rathbun, R. J.

    1966-01-01

    Modular porous plate sublimators, provided for each location where heat must be dissipated, conserve the battery power of a space vehicle by eliminating the coolant pump. The sublimator requires only a water supply for coolant.

  4. Study on the quench behavior of molten fuel material jet into coolant

    International Nuclear Information System (INIS)

    Abe, Yutaka; Kizu, Tetsuya; Arai, Takahiro; Nariai, Hideki; Chitose, Keiko; Koyama, Kazuya

    2004-01-01

    In a core disruptive accident (CDA) of a Fast Breeder Reactor, the post accident heat removal (PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. In the present experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The distributions of the fragmented droplet diameter from the molten material jet are evaluated by correcting the solidified particles. The experimental results of the mean fragmented droplet diameter are compared with the existing theories. Consequently, the fragmented droplet diameter is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass ratio of the molten particle to the total injected mass by combining an appropriate heat transfer model. The heat transfer model used in the present study is composed of the fragmentation model based on the Kelvin-Helmholtz instability. The mass ratio of the molten fragment to total mass of the melted mixed oxide fuel in sodium coolant estimated in the present study is very small. The result means that most of the molten mixed oxide fuel material injected into the sodium coolant can be cooled down under the solidified temperature, that is so called quenched, if the amount of the coolant is sufficient. (author)

  5. Small break loss of coolant accident analysis of advanced PWR plant designs utilizing DVI line venturis

    International Nuclear Information System (INIS)

    Kemper, Robert M.; Gagnon, Andre F.; McNamee, Kevin; Cheung, Augustine C.

    1995-01-01

    The Westinghouse Advanced Passive and evolutionary Pressurizer Water Reactors (i.e. AP600 and APWR) incorporate direct vessel injection (DVI) of emergency core coolant as a means of minimizing the potential spilling of emergency core cooling water during a loss of coolant accident (LOCA). As a result, the most limiting small break LOCA (SBLOCA) event for these designs, with respect core inventory makeup capability, is a postulated double ended rupture of one of the DVI lines. This paper presents the results of a design optimization study that examines the installation of a venturi in the DVI line as a means of limiting the reactor coolant lost from the reactor vessel. The comparison results demonstrate that by incorporating a properly sized venturi in the DVI line, core uncovery concerns as a result of a DVI line break can be eliminated for both the AP600 and APWR plants. (author)

  6. Minimizing secondary coolant blowdown in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Ryu, J. S.; Cho, Y. G.; Lim, N. Y.

    2000-01-01

    There is about 80m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30MW research reactor. The evaporation and the windage is necessary loss to maintain the performance of cooling tower, but the blowdown is artificial lose to get rid of the foreign material and to maintain the quality of the secondary cooling water. Therefore, minimizing the blowdown loss was studied. It was confirmed, through the relation of the number of cycle and the loss rate of secondary coolant, that the number of cycle is saturated to 12 without blowdown because of the windage loss. When the secondary coolant is treated by high Ca-hardness treatment program (the number of cycle > 10) to maintain the number of cycle around 12 without blowdown, only the turbidity exceeds the limit. By adding filtering system it was confirmed, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2% of filtering rate without blowdown. And it was verified, through the performance test of back-flow filtering unit, that this unit gets rid of foreign material up to 95% of the back-flow and that the water can be reused as coolant. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  7. Method of injecting iron ion into reactor coolant

    International Nuclear Information System (INIS)

    Ito, Kazuyuki; Sawa, Toshio; Nishino, Yoshitaka; Adachi, Tetsuro; Osumi, Katsumi.

    1988-01-01

    Purpose: To form iron ions stably and inject them into nuclear reactor coolants with no substantial degradation of the severe water quality conditions for reactor coolants. Method: Iron ions are formed by spontaneous corrosion of iron type materials and electroconductivity is increased with the iron ions. Then, the liquids are introduced into an electrolysis vessel using iron type material as electrodes and, thereafter, incorporation of newly added ions other than the iron ions are prevented by supplying electric current. Further, by retaining the iron type material in the packing vessel by the magnetic force therein, only the iron ions are flow out substantially from the packing vessel while preventing the discharge of iron type materials per se or solid corrosion products and then introduced into the electrolysis vessel. Powdery or granular pure iron or carbon steel is used as the iron type material. Thus, iron ions and hydroxides thereof can be injected into coolants by using reactor water at low electroconductivity and incapable of electrolysis. (Kamimura, M.)

  8. Labelling Of Coolant Flow Anomaly Using Fractal Structure

    International Nuclear Information System (INIS)

    Djainal, Djen Djen

    1996-01-01

    This research deals with the instrumentation of the detection and characterization of vertical two-phase flow coolant. This type of work is particularly intended to find alternative method for the detection and identification of noise in vertical two-phase flow in a nuclear reactor environment. Various new methods have been introduced in the past few years, an attempt to developed an objective indicator off low patterns. One of new method is Fractal analysis which can complement conventional methods in the description of highly irregular fluctuations. In the present work, Fractal analysis was applied to analyze simulated boiling coolant signal. This simulated signals were built by sum random elements in small subchannels of the coolant channel. Two modes are defined and both are characterized by their void fractions. In the case of uni modal -PDF signals, the difference between these modes is relatively small. On other hand, bimodal -PDF signals have relative large range. In this research, Fractal dimension can indicate the characters of that signals simulation

  9. Sloshing of coolant in a seismically isolated reactor

    International Nuclear Information System (INIS)

    Wu, T.S.; Guildys, J.; Seidensticker, R.W.

    1988-01-01

    During a seismic event, the liquid coolant inside the reactor vessel has sloshing motion which is a low-frequency phenomenon. In a reactor system incorporated with seismic isolation, the isolation frequency usually is also very low. There is concern on the potential amplification of sloshing motion of the liquid coolant. This study investigates the effects of seismic isolation on the sloshing of liquid coolant inside the reactor vessel of a liquid metal cooled reactor. Based on a synthetic ground motion whose response spectra envelop those specified by the NRC Regulator Guide 1.60, it is found that the maximum sloshing wave height increases from 18 in. to almost 30 in. when the system is seismically isolated. Since higher sloshing wave may introduce severe impact forces and thermal shocks to the reactor closure and other components within the reactor vessel, adequate design considerations should be made either to suppress the wave height or to reduce the effects caused by high waves

  10. RETRAN code analysis of Tsuruga-2 plant chemical volume control system (CVCS) reactor coolant leakage incident

    International Nuclear Information System (INIS)

    Kawai, H.

    2001-01-01

    JAPC purchased RETRAN, a program for transient thermal hydraulic analysis of complex fluid flow system, from the U.S. Electric Power Research Institute in 1992. Since then, JAPC has been utilizing RETRAN to evaluate safety margins of actual plant operation, in coping with troubles (investigating trouble causes and establishing countermeasures), and supporting reactor operation (reviewing operational procedures etc.). In this paper, a result of plant analysis performed on a CVCS reactor primary coolant leakage incident which occurred at JAPC's Tsuruga-2 plant (4-loop PWR, 3423 MWt, 1160 MW) on July 12 of 1999 and, based on the result, we made a plan to modify our operational procedure for reactor primary coolant leakage events in order to make earlier plant shutdown and this reduced primary coolant leakage. (author)

  11. Numerical FEM Analyses of primary coolant system at NPP Temelin

    International Nuclear Information System (INIS)

    Junek, L.; Slovacek, M.; Ruzek, L.; Moulis, P.

    2003-01-01

    The main goal of this paper is to inform about the beginning and first steps of implementation of an aging management system at the Temelin NPP. The aging management system is important not only for achieving the current safety level but also for reaching operational reliability of a production unit equipment above the life time assumed by the original design, typically over 40 years. A method to locate the most prominent degradation regions is described. A global shell model of the primary coolant system including all loops and their components - reactor pressure vessel (RPV), steam generator (SG), main coolant pump (MCP), pressurizer, feed water and steam pipelines system is presented. The results of stress-strain analysis on the measured service parameters base are given. Validation of the results is very important and the method to compare the service measurement data with the numerical results is described. The global/local approach is mentioned and discussed. The effects of the complete global system on the individual components under monitoring are transformed into more accurate local spatial models. The local spatial models are used to analyze the gradual lifetime exhaustion of a facility during its service operation. Two spatial local models are presented, viz. feed water nozzle of SG and main coolant piping system T-brunch. The results of analysis of the local spatial models are processed by the neural network computing method, which is also described. The actual gradual damage of the material of the components under monitoring can be obtained based on the analyses performed and on the results from the neural network in combination with the knowledge of the real material characteristics. The procedures applied are included in the DIALIFE diagnostic system

  12. Coolant circuit water chemistry of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tilky, Peter; Doma, Arpad

    1985-01-01

    The numerous advantages of the proper selection of water chemistry parameters including low corrosion rate of the structural materials, hence the low-level activity build-up, depositions, radiation doses were emphasized. Major characteristics of water chemistry applied to the primary coolant of pressurized water reactors including neutral, slightly basic and strong basic ones are discussed. Boric acid is widely used to control reactivity. Primary coolant water chemistry of WWER type reactors which is based on the addition of ammonia and potassium hydroxide to boric acid is compared with that of other reactors. The demineralization of the total condensate of the steam turbines became a general trend in the water chemistry of the secondary coolant circuits. (V.N.)

  13. Standardized sampling system for reactor coolants

    International Nuclear Information System (INIS)

    Divine, J.R.; Munson, L.F.; Nelson, J.L.; McDowell, R.L.; Jankowski, M.W.

    1982-09-01

    A three-pronged approach was developed to reach the objectives of acceptable coolant sampling, assessment of occupational exposure from corrosion products, and model development for the transport and buildup of corrosion products. Emphasis is on sampler design

  14. Automatic coolant flow control device for a nuclear reactor assembly

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  15. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2017-09-01

    Full Text Available Output performance of a thermoelectric-based automotive waste heat recovery system with a nanofluid coolant is analyzed in this study. Comparison between Cu-Ethylene glycol (Cu-EG nanofluid coolant and ethylene glycol with water (EG-W coolant under equal mass flow rate indicates that Cu-EG nanofluid as a coolant can effectively improve power output and thermoelectric conversion efficiency for the system. Power output enhancement for a 3% concentration of nanofluid is 2.5–8 W (12.65–13.95% compared to EG-Water when inlet temperature of exhaust varies within 500–710 K. The increase of nanofluid concentration within a realizable range (6% has positive effect on output performance of the system. Study on the relationship between total area of thermoelectric modules (TEMs and output performance of the system indicates that optimal total area of TEMs exists for maximizing output performance of the system. Cu-EG nanofluid as coolant can decrease optimal total area of TEMs compared with EG-W, which will bring significant advantages for the optimization and arrangement of TEMs whether the system space is sufficient or not. Moreover, power output enhancement under Cu-EG nanofluid coolant is larger than that of EG-W coolant due to the increase of hot side heat transfer coefficient of TEMs.

  16. Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Siddharth [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Khan, Mohd Kaleem, E-mail: mkkhan@iitp.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Pathak, Manabendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-10-15

    Highlights: • Modelling of nuclear fuel cladding during loss-of-coolant accident transient. • Phase transformation, corrosion, and creep combined to evaluate burst criterion. • Effect of oxygen concentration on burst stress and burst strain. • Effect of heating rate, internal pressure fluctuation, shear modulus incorporated. - Abstract: A burst criterion model accounting the simultaneous phenomena of corrosion, solute-strengthening effect of oxygen, oxygen concentration based non-isothermal phase transformation, and thermal creep has been developed to predict the rupture behaviour of zircaloy-4 nuclear fuel cladding during the loss-of-coolant accident transients. The present burst criterion model has been validated using experimental data obtained from single-rod transient burst tests performed in steam environment. The predictions are in good agreement with the experimental results. A detailed computational analysis has been performed to assess the role of different parameters in the rupture of zircaloy cladding during loss-of-coolant accidents. This model reveals that at low temperatures, lower heating rates produce higher burst strains as oxidation effect is nominal. For high temperatures, the lower heating rates produce less burst strains, whereas higher heating rates yield greater burst strains.

  17. Hydrodynamic problems of heavy liquid metal coolants technology in loop-type and mono-block-type reactor installations

    International Nuclear Information System (INIS)

    Orlov, Yuri I.; Efanov, Alexander D.; Martynov, Pyotr N.; Gulevsky, Valery A.; Papovyants, Albert K.; Levchenko, Yuri D.; Ulyanov, Vladimir V.

    2007-01-01

    In the report, the influence of hydrodynamics of the loop with heavy liquid metal coolants (Pb and Pb-Bi) on the realization methods and efficiency of the coolant technology for the reactor installations of loop, improved loop and mono-block type of design has been studied. The last two types of installations, as a rule, are characterized by the following features: availability of loop sections with low hydraulic head and low coolant velocities, large squares of coolant free surfaces; absence of stop and regulating valve, auxiliary pumps on the coolant pumping-over lines. Because of the different hydrodynamic conditions in the installation types, the tasks of the coolant technology have specific solutions. The description of the following procedures of coolant technology is given in the report: purification by hydrogen (purification using gas mixture containing hydrogen), regulation of dissolved oxygen concentration in coolant, coolant filtrating, control of dissolved oxygen concentration in coolant. It is shown that change of the loop design made with economic purpose and for improvement of the installation safety cause additional requirements to the procedures and apparatuses of the coolant technology realization

  18. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  19. New mathematical method for the solution of gas-gas equilibria with special application to HTGR primary-coolant environments

    International Nuclear Information System (INIS)

    Bongartz, K.

    1983-07-01

    A new mathematical method and corresponding computer program have been developed that provide a general method for the numerical solution of an equilibrium problem involving the chemical interactions of gaseous species. The method and computer code were developed to calculate the equilibrium concentrations of impurity gases, such as CO, CO 2 , H 2 , H 2 O, CH 4 , and O 2 , which may be approached as the result of gaseous chemical reactions occurring within the hot primary coolant helium of a high-temperature gas-cooled reactor (HTGR). The method, however, can be applied to any gas mixture

  20. Secondary seal effects in hydrostatic non-contact seals for reactor coolant pump shaft

    International Nuclear Information System (INIS)

    Fujita, T.; Koga, T.; Tanoue, H.; Hirabayashi, H.

    1987-01-01

    The paper presents a seal flow analysis in a hydrostatic non-contact seal for a PWR coolant pump shaft. A description is given of the non-contact seal for the reactor coolant pump. Results are presented for a distortion analysis of the seal ring, along with the seal flow characteristics and the contact pressure profiles of the secondary seals. The results of the work confirm previously reported findings that the seal ring distortion is sensitive to the o-ring location (which was placed between the ceramic seal face and the seal ring retainer). The paper concludes that the seal flow characteristics and the tracking performance depend upon the dynamic properties of the secondary seal. (U.K.)

  1. Coolant Design System for Liquid Propellant Aerospike Engines

    Science.gov (United States)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  2. Evaluation of effective coolant flow rate in advanced design of the small scale VHTR core

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Suzuki, Kunihiko; Murakami, Tomoyuki.

    1988-02-01

    This report describes the evaluation of effective coolant flow rate in the advanced design of the small scale VHTR core. The analytical design study was carried out after the 2nd stage of detailed design in order to reduce the cost of construction. The summary of the analytical results are as follows: (1) Crossflow loss coefficient of flange type fuel block having 0.1 mm of sealing gap is about 100 times higher than that of dowel type block adopted in the 2nd stage of detailed design. (2) In case that coolant channel outer diameter is 52 mm and hydraulic diameter is 6 mm, the effective coolant flow rates using flange and dowel type fuel blocks are 80 % and 70 % respectively. Because the crossflow loss coefficients of dowel type are lower than that of flange type. (3) The effective coolant flow rate, when crossflow loss coefficients are distributed along with the axial direction, agrees well with that using mean value of crossflow loss coefficient i.e. 5 x 10 11 m -4 . (author)

  3. Characterization of primary coolant purification system samples for assay of spent ion exchanger radionuclide inventor

    International Nuclear Information System (INIS)

    Sajin Prasad, S.; Pant, Amar; Sharma, Ranjit; Pal, Sanjit

    2018-01-01

    The primary coolant system water of a research reactor contains various fission and activation products and the water is circulated continuously through ion exchange resin cartridges, to reduce the radioactive ionic impurity present in it. The coolant purification system comprises of an ion exchange cooler, two micro filters, and a battery of six ion exchanger beds, associated valves, piping and instrumentation (Heavy water System Operating manual, 2014). The spent cartridge is finally disposed off as active solid waste which contains predominantly long lived fission and activation products. The heavy water coolant is also used to cool the structural assemblies after passing through primary heat exchanger and a metallic strainer, which accumulates the fission and activation products. When there is a reduction of coolant flow through these strainers, they are removed for cleaning and decontamination. This paper describes the characterization of ion exchange resin samples and liquid effluent generated during ultra sonic decontamination of strainer. The results obtained can be used as a methodology for the assay of the spent ion exchanger cartridges radionuclide inventory, during its disposal

  4. Prediction of thermal hydraulic parameters in the loss of coolant accident by using artificial neural networks

    International Nuclear Information System (INIS)

    Vaziri, N.; Erfani, A.; Monsefi, M.; Hajabri, A.

    2008-01-01

    In a reactor accident like loss of coolant accident , one or more signals may not be monitored by control panel for some reasons such as interruptions and so on. Therefore a fast alternative method could guarantee the safe and reliable exploration of nuclear power planets. In this study, we used artificial neural network with Elman recurrent structure to predict six thermal hydraulic signals in a loss of coolant accident after upper plenum break. In the prediction procedure, a few previous samples are fed to the artificial neural network and the output value or next time step is estimated by the network output. The Elman recurrent network is trained with the data obtained from the benchmark simulation of loss of coolant accident in VVER. The results reveal that the predicted values follow the real trends well and artificial neural network can be used as a fast alternative prediction tool in loss of coolant accident

  5. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    Science.gov (United States)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.

  6. Development of additional module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)

    2007-07-01

    The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes.

  7. Development of additional module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N.

    2007-01-01

    The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes

  8. Method for controlling a coolant liquid surface of cooling system instruments in an atomic power plant

    International Nuclear Information System (INIS)

    Monta, Kazuo.

    1974-01-01

    Object: To prevent coolant inventory within a cooling system loop in an atomic power plant from being varied depending on loads thereby relieving restriction of varied speed of coolant flow rate to lowering of a liquid surface due to short in coolant. Structure: Instruments such as a superheater, an evaporator, and the like, which constitute a cooling system loop in an atomic power plant, have a plurality of free liquid surface of coolant. Portions whose liquid surface is controlled and portions whose liquid surface is varied are adjusted in cross-sectional area so that the sum total of variation in coolant inventory in an instrument such as a superheater provided with an annulus portion in the center thereof and an inner cylindrical portion and a down-comer in the side thereof comes equal to that of variation in coolant inventory in an instrument such as an evaporator similar to the superheater. which is provided with an overflow pipe in its inner cylindrical portion or down-comer, thereby minimizing variation in coolant inventory of the entire coolant due to loads thus minimizing variation in varied speed of the coolant. (Kamimura, M.)

  9. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  10. The 10B(n,α)7Li reaction in PWR coolants: calculations of the effect on coolant pH and on decreases in 10B isotopic fractions

    International Nuclear Information System (INIS)

    Polley, M.V.

    1988-07-01

    Boron is used as a chemical shim in PWRs for reactivity control and is added in the form of boric acid to the primary coolant. The 10 B(n,α) 7 Li reaction leads to a continuous increase in 7 Li in the primary coolant and to a continuous decrease in 10 B the isotope of boron responsible for control of reactivity. The rate of increase in coolant pH due to 7 Li production is calculated for the Sizewell 'B' PWR to enable judgements to be made on the frequency of sampling and removal of lithium required to maintain the pH of the primary coolant within the desired limits. Calculations are contrasted for the cases of natural boron and 100% 10 B chemical shims, for both a normal cycle and an extended 18 month cycle. Calculations of 10 B depletion over 30 years of operation as a function of the quantity of boron discharged to waste are also presented. 10 B isotopic fractions are calculated for the reactor coolant (RC), boric acid tanks (BATs) and refuelling water storage tank (RWST) assuming rapid mixing of BAT and RC boron for tritium control and other reasons. Such predictions enable assessments of the reactor physics implications of 10 B consumption to be made. (author)

  11. Feeding and purge systems of coolant primary circuit and coolant secondary circuit control of the I sup(123) target

    International Nuclear Information System (INIS)

    Almeida, G.L. de.

    1986-01-01

    The Radiation Protection Service of IEN (Brazilian-CNEN) detected three faults in sup(123)I target cooling system during operation process for producing sup(123)I: a) non hermetic vessel containing contaminated water from primary coolant circuit; possibility of increasing radioactivity in the vessel due to accumulation of contaminators in cooling water and; situation in region used for personnels to arrange and adjust equipments in nuclear physics area, to carried out maintenance of cyclotron and target coupling in irradiation room. The primary circuit was changed by secondary circuit for target coolant circulating through coil of tank, which receive weater from secondary circuit. This solution solved the three problems simultaneously. (M.C.K.)

  12. Design and development of remotely operated coolant channel cutting machine

    International Nuclear Information System (INIS)

    Suthar, R.L.; Sinha, A.K.; Srikrishnamurty, G.

    1994-01-01

    One of the coolant tubes of Narora Atomic Power Station (NAPS) reactor needs to be removed. To remove a coolant tube, four cutting operations, (liner tube cutting, end-fitting cutting, machining of seal weld of bellow ring and finally coolant tube cutting) are required to be carried out. A remotely operated cutting machine to carry out all these operations has been designed and developed by Central Workshops. This machine is able to cut at the exact location because of numerically controlled axial and radial travel of tool. Only by changing the tool head and tool holder, same machine can be used for various types of cutting/machining operations. This report details the design, manufacture, assembly and testing work done on the machine. (author). 4 figs

  13. Nanofluid as coolant for grinding process: An overview

    Science.gov (United States)

    Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.

    2018-04-01

    This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.

  14. Experimental research and development of main circulation pump bearings in reactor plants using heavy liquid-metal coolants

    International Nuclear Information System (INIS)

    Zudin, A.; Beznosov, A.; Chernysh, A.; Prikazchikov, G.

    2015-01-01

    At the present time, specialists in Russia are engaged in designing the BREST-OD-300 fast neutron lead-coolant reactor plant. There is currently no experience in designing and operating axial pumps of lead-coolant reactor plants, including one of their major units – bearing unit. Selection and substantiation of operating and structural parameters of plain friction bearings used in main circulation pumps of reactor plants running on heavy liquid-metal coolants are important tasks that are solved at the NNSTU. Development of a feasible procedure for designing bearings and its components operating within the structure of the main circulation pump of a reactor plant running on a heavy liquid-metal coolant as well as guidelines for an optimized structural scheme of such bearings set a goal of performing a range of theoretically-calculated and experimental works. The report contains testing data of a hydrostatic bearing with reciprocal fricative choking tested on the NNSTU FT-4 bench running on a lead coolant within the range of 420-500degC. There have been presented a scheme of a bench for testing a contact friction bearing on a high-temperature coolant and the results of investigation tests of bearings of such type at T = 450 ÷ 500degC. Material of the bearing sleeve is steel 08X18H10T, and a possibility is provided with regard to installation of the bearing sleeves and shaft made of non-metal materials (ceramic materials, silicified graphite, etc.). The presented testing data of plain friction bearings operating in a high-temperature heavy liquid-metal coolant will serve as a ground for making an alternative choice of a plain friction bearing for the main circulation pump of a reactor plant running on a heavy liquid-metal coolant. (author)

  15. A dynamic model of the reactor coolant system flow for KMRR plant simulation

    International Nuclear Information System (INIS)

    Rhee, B.W.; Noh, T.W.; Park, C.; Sim, B.S.; Oh, S.K.

    1990-01-01

    To support computer simulation studies for reactor control system design and performance evaluation, a dynamic model of the reactor coolant system (RCS) and reflector cooling system has been developed. This model is composed of the reactor coolant loop momentum equation, RCS pump dynamic equation, RCS pump characteristic equation, and the energy equation for the coolant inside the various components and piping. The model is versatile enough to simulate the normal steady-state conditions as well as most of the anticipated flow transients without pipe rupture. This model has been successfully implemented as the plant simulation code KMRRSIM for the Korea Multi-purpose Research Reactor and is now under extensive validation testing. The initial stage of validation has been comparison of its result with that of already validated, more detailed reactor system transient codes such as RELAP5. The results, as compared to the predictions by RELAP5 simulation, have been generally found to be very encouraging and the model is judged to be accurate enough to fulfill its intended purpose. However, this model will continue to be validated against other plant's data and eventually will be assessed by test data from KMRR

  16. The analysis of coolant-velocity distribution in plat-typed fuel element using CFD method for RSG-GAS research reactor

    International Nuclear Information System (INIS)

    Muhammad Subekti; Darwis Isnaini; Endiah Puji Hastuti

    2013-01-01

    The measurement experiment for coolant-velocity distribution in the subchannel of fuel element of RSG-GAS research reactor is difficult to be carried out due to too narrow channel and subchannel placed inside the fuel element. Hence, the calculation is required to predict the coolant-velocity distribution inside subchannel to confirm that the handle presence does not ruin the velocity distribution into every subchannel. This calculation utilizes CFD method, which respect to 3-dimension interior. Moreover, the calculation of coolant-velocity distribution inside subchannel was not ever carried out. The research object is to investigate the distribution of coolant-velocity in plat-typed fuel element using 3-dimension CFD method for RSG-GAS research reactor. This research is required as a part of the development of thermalhydraulic design of fuel element for innovative research reactor as well. The modeling uses ½ model in Gambit software and calculation uses turbulence equation in FLUENT 6.3 software. Calculation result of 3D coolant-velocity in subchannel using CFD method is lower about 4.06 % than 1D calculation result due to 1D calculation obeys handle availability. (author)

  17. Numerical modeling of the waves evolution generated by the depressurization of the vessels containing a supercritical parameters coolant

    Science.gov (United States)

    Alekseev, Maksim V.; Vozhakov, Ivan S.; Lezhnin, Sergey I.; Pribaturin, Nikolay A.

    2017-10-01

    The development of power plants focuses on increasing the parameters of water coolants up to a supercritical level. Depressurization of the unit circuits with such a coolant leads to emergency situations. Their scenarios can change significantly with the variation of initial pressure and temperature before the start of depressurization. When the pressure drops from the supercritical single-phase region of the initial thermodynamic parameters of the coolant, either the liquid boils up, or the vapor is condensed. Because of the rapid pressure decrease, the phase transition can be non-equilibrium that must be taken into account in the simulation. In the present study, an axisymmetric problem of the outflow of a water coolant from the pipe butt-end is considered. The equations of continuity, momentum and energy for a two-phase homogeneous mixture are solved numerically. The vapor and liquid properties are calculated using the TTSE software package (The Tabular Taylor Series Expansion Method). On the basis of the computer complex LCPFCT (The Flux-Corrected Transport Algorithm) the program code was developed for solving numerous problems on the depressurization of vessels or pipelines, containing superheated water or gas under high pressure. Different variants of outflow in the external model atmosphere and generation of waves are analyzed. The calculated data on the interaction of pressure waves with a barrier are calculated. To describe phase transitions, an asymptotic relaxation model of nonequilibrium evaporation and condensation has been created and tested.

  18. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  19. Probabilistic analyses of failure in reactor coolant piping

    International Nuclear Information System (INIS)

    Holman, G.S.

    1984-01-01

    LLNL is performing probabilistic reliability analyses of PWR and BWR reactor coolant piping for the NRC Office of Nuclear Regulatory Research. Specifically, LLNL is estimating the probability of a double-ended guillotine break (DEGB) in the reactor coolant loop piping in PWR plants, and in the main stream, feedwater, and recirculation piping of BWR plants. In estimating the probability of DEGB, LLNL considers two causes of pipe break: pipe fracture due to the growth of cracks at welded joints (direct DEGB), and pipe rupture indirectly caused by the seismically-induced failure of critical supports or equipment (indirect DEGB)

  20. Investigation of coolant mixing in WWER-440/213 RPV with improved turbulence model

    International Nuclear Information System (INIS)

    Kiss, B.; Aszodi, A.

    2011-01-01

    A detailed and complex RPV model of WWER-440/213 type reactor was developed in Budapest University of Technology and Economics Institute of Nuclear Techniques in the previous years. This model contains the main structural elements as inlet and outlet nozzles, guide baffles of hydro-accumulators coolant, alignment drifts, perforated plates, brake- and guide tube chamber and simplified core. With the new vessel model a series of parameter studies were performed considering turbulence models, discretization schemes, and modeling methods with ANSYS CFX. In the course of parameter studies the coolant mixing was investigated in the RPV. The coolant flow was 'traced' with different scalar concentration at the inlet nozzles and its distribution was calculated at the core bottom. The simulation results were compared with PAKS NPP measured mixing factors data (available from FLOMIX project. Based on the comparison the SST turbulence model was chosen for the further simulations, which unifies the advantages of two-equation (kω and kε) models. The most widely used turbulence models are Reynolds-averaged Navier-Stokes models that are based on time-averaging of the equations. Time-averaging filters out all turbulent scales from the simulation, and the effect of turbulence on the mean flow is then re-introduced through appropriate modeling assumptions. Because of this characteristic of SST turbulence model a decision was made in year 2011 to investigate the coolant mixing with improved turbulence model as well. The hybrid SAS-SST turbulence model was chosen, which is capable of resolving large scale turbulent structures without the time and grid-scale resolution restrictions of LES, often allowing the use of existing grids created for Reynolds-averaged Navier-Stokes simulations. As a first step the coolant mixing was investigated in the downcomer only. Eddies are occurred after the loop connection because of the steep flow direction change. This turbulent, vertiginous flow was

  1. Determination of two dimensional axisymmetric finite element model for reactor coolant piping nozzles

    International Nuclear Information System (INIS)

    Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.

    2000-01-01

    The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively

  2. Fission Product Releases from a Core into a Coolant of a Prismatic 350-MWth HTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Min; Jo, C. K. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A prismatic 350-MW{sub th} high temperature reactor (HTR) is a means to generate electricity and process heat for hydrogen production. The HTR will be operated for an extended fuel burnup of more than 150 GWd/MTU. Korea Atomic Energy Research Institute (KAERI) is performing a point design for the HTR which is a pre-conceptual design for the analysis and assessment of engineering feasibility of the reactor. In a prismatic HTR, metallic and gaseous fission products (FPs) are produced in the fuel, moved through fuel materials, and released into a primary coolant. The FPs released into the coolant are deposited on the various helium-wetted surfaces in the primary circuit, or they are sorbed on particulate matters in the primary coolant. The deposited or sorbed FPs are released into the environment through the leakage or venting of the primary coolant. It is necessary to rigorously estimate such radioactivity releases into the environment for securing the health and safety of the occupational personnel and the public. This study treats the FP releases from a core into a coolant of a prismatic 350-MW{sub th} HTR. These results can be utilized as input data for the estimation of FP migration from a coolant into the environment. The analysis of fission product release within a prismatic 350-MW{sub th} HTR has been done. It was assumed that the HTR was operated at constant temperature and power for 1500 EFPDs. - The final burnup is 152 GWd/tHM at packing fraction of 25 %, and the final fast fluence is about 8 X 10{sup 21} n/cm{sup 2}, E{sub n} > 0.1 MeV. - The temperatures at the compact center and at the center of a kernel located at the compact center are 884 and 893 .deg. C, respectively, when the packing fraction is 25 % and the coolant temperature is 850 .deg. C. - Xenon is the most radioactive fission product in a coolant of a prismatic HTR when there are broken TRISOs and fuel component contaminated with heavy metals. For metallic fission products, the radioactivity

  3. Sodium as a reactor coolant

    International Nuclear Information System (INIS)

    Cesar, S.B.G.

    1989-01-01

    This work is related to the use of sodium as a reactor coolant, to the advantages and problems related to its use, its mechanical, thermophysics, eletronical, magnetic and nuclear properties. It is mainly a bibliographic review, with the aim of gathering the necessary information to persons initiating in the study of sodium and also as reference source. (author) [pt

  4. Out-of-pile simulation experiments and theoretical analysis on sodium fuel interaction

    International Nuclear Information System (INIS)

    Conti, M.; Luigi, G. Di; Federico, A.; Mennini, G.; Scarano, G.; Tavano, F.

    1978-01-01

    Activities on fuel coolant interaction are being carried out since many years at C.N.E.N. in the frame of the Italian Fast Reactor Program. This paper describes the experimental and theoretical results recently obtained. (author)

  5. A Review of Fragmentation Models Relative to Molten UO2 Breakup when Quenched in Sodium Coolant

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Grolmes, M.A.

    1976-01-01

    An important aspect of the fuel-coolant interaction problem relative to liquid metal fast breeder reactor (LMFBR) safety analysis is the fragmentation of molten oxide fuel during contact with liquid sodium coolant. A proper description of the kinetics of such an event requires an understanding of the breakup process and an estimate of the size and dispersion of such finely divided fuel in coolant. In recent years, considerable interest has centered on the problem of determining the nature of such fragmentation. In this paper, both analytic and experimental studies pertaining to such breakup are reviewed in light of recent developments in the understanding of heat transfer and solidification phenomena during quenching of UO 2 in sodium. A more extensive review of this subject can be found in Ref. 1. In conclusion: As discussed, a number of models have been proposed in an attempt to understand the nature of the UO 2 fragmentation process. The four principle mechanisms considered likely to cause such fragmentation (impact forces, boiling, violent gas release, and shell solidification) have been developed to the point where comparative analysis is possible. In addition, recent developments in the understanding of the physics of oxide fuel behavior in sodium coolant (boiling regime criteria, vapor nucleation theories, and prediction of solidification kinetics enable us to asses whether or not the various model assumptions are realistic. In view of this knowledge the following conclusions are made. For the case of hydrodynamic influence on fragmentation, it can be said that although the disruptive forces of impact and viscous drag may contribute to breakup, their effects are not controlling with respect to high temperature materials, including UO 2 -sodium. With respect to the vapor bubble growth and collapse mechanism it was shown that for sodium quenching, where coolant contact may, be expected (as opposed to water), the thermodynamic work potential of the bubble is

  6. Recovery studies for plutonium machining oil coolant

    International Nuclear Information System (INIS)

    Navratil, J.D.; Baldwin, C.E.

    1977-01-01

    Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tetrachloride. Appropriate methods then could be developed to remove the plutonium and to recycle the oil and carbon tetrachloride. Studies showed that the mixtures of spent oil and carbon tetrachloride contained particulate plutonium and plutonium species that are soluble in water or in oil and carbon tetrachloride. The particulate plutonium was removed by filtration; the nonfilterable plutonium was removed by adsorption on various materials. Laboratory-scale tests indicated the lathe-coolant oil mixture could be separated by distilling the carbon tetrachloride to yield recyclable products

  7. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  8. Fault diagnosis of main coolant pump in the nuclear power station based on the principal component analysis

    International Nuclear Information System (INIS)

    Feng Junting; Xu Mi; Wang Guizeng

    2003-01-01

    The fault diagnosis method based on principal component analysis is studied. The fault character direction storeroom of fifteen parameters abnormity is built in the simulation for the main coolant pump of nuclear power station. The measuring data are analyzed, and the results show that it is feasible for the fault diagnosis system of main coolant pump in the nuclear power station

  9. Design criteria of primary coolant chemistry in SMART-P

    International Nuclear Information System (INIS)

    Choi, Byung Seon; Kim, Ah Young; Kim, Seong Hoon; Yoon, Ju Hyeon; Zee, Sung Qunn

    2005-01-01

    SMART-P differs significantly from commercially designed PWRs. Materials inventories used in SMART-P differ from that at PWRs. All surfaces of the primary circuit with the primary coolant are either made from or plated with stainless steel. The material of steam generator (SG) is also different from that of the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. Also, SMART-P primary coolant technology differs from that in PWRs: ammonia is used as a pH raising agent and hydrogen formed due to radiolytic processes is kept in specific range by ammonia dosing. Nevertheless, main objectives of the SMART-P primary coolant are the same as at PWRs: to assure primary system pressure boundary integrity, fuel cladding integrity and to minimize out-of-core radiation buildup. The objective of this work is to introduce the design criteria for the primary water chemistry for SMART-P from the viewpoint of the system characteristics and the chemical design concept

  10. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change

    International Nuclear Information System (INIS)

    He, Fei; Wang, Jianhua

    2014-01-01

    Highlights: • Five states during the transpiration cooling are discussed. • A suit of applicable program is developed. • The variations of the thickness of two-phase region and the pressure are analyzed. • The relationship between heat flux and coolant mass flow rate is presented. • An approach is given to define the desired case of transpiration cooling. - Abstract: The mechanism of transpiration cooling with liquid phase change is numerically investigated to protect the thermal structure exposed to extremely high heat flux. According to the results of theoretical analysis, there is a lower critical and an upper critical external heat flux corresponding a certain coolant mass flow rate, between the two critical values, the phase change of liquid coolant occurs within porous structure. A strongly applicable self-edit program is developed to solve the states of fluid flow and heat transfer probably occurring during the phase change procedure. The distributions of temperature and saturation in these states are presented. The variations of the thickness of two-phase region and the pressure including capillary are analyzed, and capillary pressure is found to be the main factor causing pressure change. From the relationships between the external heat flux and coolant mass flow rate obtained at different cooling cases, an approach is given to estimate the maximal heat flux afforded and the minimal coolant consumption required by the desired case of transpiration cooling. Thus the pressure and coolant consumption required in a certain thermal circumstance can be determined, which are important in the practical application of transpiration cooling

  11. Deposition and incorporation of corrosion product to primary coolant suppressing method

    International Nuclear Information System (INIS)

    Tsuzuki, Yasuo; Hasegawa, Naoyoshi; Fujioka, Tsunaaki.

    1992-01-01

    In a PWR type nuclear power plant, the concentration of dissolved nitrogen in primary coolants is increased by controlling the nitrogen partial pressure in a volume controlling tank gas phase portion or addition of water in a primary system water supply tank containing dissolved nitrogen to a primary system. Then ammonium is formed by a reaction with hydrogen dissolved in the primary coolants in the field of radiation rays, to control the concentration of ammonium in the coolants within a range from 0.5 to 3.5 ppm, and operate the power plant. As a result, deposition and incorporation of corrosion products to the structural materials of the primary system equipments during plant operation (pH 6.8 to 8.0) are suppressed. In other words, deposition of particulate corrosion products on the surface of fuel cladding tubes and the inner surface of pipelines in the primary system main equipments is prevented and incorporation of ionic radioactive corrosion products to the oxide membranes on the inner surface of the pipelines of the primary system main equipments is suppressed, to greatly reduce the radiation dose rate of the primary system pipelines. Thus, operator's radiation exposure can be decreased upon shut down of the plant. (N.H.)

  12. Distribution and behavior of tritium in the Coolant-Salt Technology Facility

    International Nuclear Information System (INIS)

    Mays, G.T.; Smith, A.N.; Engel, J.R.

    1977-04-01

    A 1000-MW(e) Molten-Salt Breeder Reactor (MSBR) is expected to produce 2420 Ci/day of tritium. As much as 60 percent of the tritium produced may be transported to the reactor steam system (assuming no retention by the secondary coolant salt), where it would be released to the environment. Such a release rate would be unacceptable. Experiments were conducted in an engineering-scale facility--the Coolant-Salt Technology Facility (CSTF)--to examine the potential of sodium fluoroborate, the proposed coolant salt for an MSBR, for sequestering tritium. The salt was believed to contain chemical species capable of trapping tritium. A series of 5 experiments--3 transient and 2 steady-state experiments--was conducted from July of 1975 through June of 1976 where tritium was added to the CSTF. The CSTF circulated sodium fluoroborate at temperatures and pressures typical of MSBR operating conditions. Results from the experiments indicated that over 90 percent of tritium added at steady-state conditions was trapped by sodium fluoroborate and appeared in the off-gas system in a chemically combined (water-soluble) form and that a total of approximately 98 percent of the tritium added at steady-state conditions was removed through the off-gas system overall

  13. Analysis of coolant flow in central tube of WWER-440 fuel assemblies

    International Nuclear Information System (INIS)

    Zsiros, G.; Toth, S.; Attila Aszodi, A.

    2011-01-01

    Three dimensional computational fluid dynamics model has been built to investigate the coolant flow in the central tube of the WWER-440 fuel assemblies. The model was verified based on measured data of the Kurchatov Institute. With the model calculations were performed for two fuel assemblies used in PAKS NPP. One of them has symmetrical and another has inclined pin power profile. Ratios of the outlet mass fluxes of the central tube to the inlet mass fluxes of the rod bundle were determined. Heat up ratios of the tube and rod bundle flows were calculated too. Sensitivity of the results on the assembly power distribution, inlet temperature and mass flow rate was investigated. The results of these simulations can be used as boundary conditions of central tube in studies of coolant mixing in fuel assembly heads. (Authors)

  14. A device for monitoring the coolant in a nuclear reactor tank

    International Nuclear Information System (INIS)

    Smith, R.D.

    1984-01-01

    The invention deals with a gamma thermometer where the gamma absorber (stainless steel) is in heat conducting connection with an external casing located in the coolant in a reactor tank. A heat sink for the gamma absorber heated by gamma irradiation from reactor fuel is thereby established. The most sensitive joint in the thermocouple of the gamma thermometer is mounted vertically above the other joint. A differential voltage with a certain polarity will be generated between the two joints during uniform cooling of the external casing. If the coolant falls to a level under the most sensitive joint, the resulting polarity change can be utilized for the activation of alarm systems. The same gamma thermometer may simultaneously be used as a sensor for measurement of local power distribution

  15. The effect of coolants on the performance of magnetic micro-refrigerators.

    Science.gov (United States)

    Silva, D J; Bordalo, B D; Pereira, A M; Ventura, J; Oliveira, J C R E; Araújo, J P

    2014-06-01

    Magnetic refrigeration is an alternative cooling technique with envisaged technological applications on micro- and opto-electronic devices. Here, we present a magnetic micro-refrigerator cooling device with embedded micro-channels and based on the magnetocaloric effect. We studied the influence of the coolant fluid in the refrigeration process by numerically simulating the heat transfer processes using the finite element method. This allowed us to calculate the cooling power of the device. Our results show that gallium is the most efficient coolant fluid and, when used with Gd5Si2Ge2, a maximum power of 11.2 W/mm3 at a working frequency of -5 kHz can be reached. However, for operation frequencies around 50 Hz, water is the most efficient fluid with a cooling power of 0.137 W/mm3.

  16. A system for cooling electronic elements with an EHD coolant flow

    International Nuclear Information System (INIS)

    Tanski, M; Kocik, M; Barbucha, R; Garasz, K; Mizeraczyk, J; Kraśniewski, J; Oleksy, M; Hapka, A; Janke, W

    2014-01-01

    A system for cooling electronic components where the liquid coolant flow is forced with ion-drag type EHD micropumps was tested. For tests we used isopropyl alcohol as the coolant and CSD02060 diodes in TO-220 packages as cooled electronic elements. We have studied thermal characteristics of diodes cooled with EHD flow in the function of a coolant flow rate. The transient thermal impedance of the CSD02060 diode cooled with 1.5 ml/min EHD flow was 7.8°C/W. Similar transient thermal impedance can be achieved by applying to the diode a large RAD-A6405A/150 heat sink. We found out that EHD pumps can be successfully applied for cooling electronic elements.

  17. Management of large scale coolant channel replacement programme for Indian PHWRs

    International Nuclear Information System (INIS)

    Bhatnagar, V.K.; Chadda, S.K.; Arya, R.C.

    1994-01-01

    Coolant channel assemblies form most important core components of pressurised heavy water reactors. Zirconium alloy pressure tube which form part of coolant channel assemblies are subjected to environment of high neutron flux, high pressure and temperature. Under those operating environmental conditions, the pressure tubes material undergoes degradation of metallurgical and mechanical properties in addition to dimensional changes. The coolant channels are subjected to an in-service inspection (ISI) programme for monitoring the health particularly of the pressure tubes. The en-mass replacement of pressure tubes is needed after most of the pressure tubes show unacceptable conditions for an assured safe and reliable operation. An overview of various issues pertaining to this aspect is presented. (author). 4 figs

  18. Recent developments in coolant systems for Indus Accelerator Complex at RRCAT, Indore

    International Nuclear Information System (INIS)

    Nanda, Dipankar; Tiwari, Bablu; Pandey, R.M.

    2015-01-01

    Scarcity of fresh water forces mankind to explore other possible water sources that can meet the increasing demand of coolants in industries, R and D sectors and other establishments where water is used as coolant. It also becomes a challenge for water chemist to control water chemistry to keep the equipments/devices intact during its operation using water as coolant. Deionised (DI) and soft water have been used as coolants for Indus Accelerator Complex, RRCAT, Indore. DI water is produced and its quality is maintained either by conventional ion exchange method or a hybrid method of membrane separation and ion exchange technique. This requires handling of corrosive chemicals, manpower, space for plant installation, and a long array of water treatment units. CSL has implemented the idea of rain water harvesting to produce DI water after systematic studies in laboratory. The concerning issues are reduced to almost one-fourth by using rain water to produce DI water. The harvesting system has been in use for last three years. Heat is dissipated into air by evaporation of soft water in cooling tower. Requirement of soft water makeup has been estimated to be about 40,000 ltrs. / day (max.) if the machine is operated at its designed specifications. Non-availability of soft water (which circulates in open loop) may lead to shut down like situation and looking for alternate source becomes quite essential. Laboratory studies (water analysis and treatment) on sewage water (available 1,00,000 ltrs/day) from RRCAT colony as a possible source of producing soft water show promising result. (author)

  19. Dryout heat flux in a debris bed with forced coolant flow from below

    International Nuclear Information System (INIS)

    Bang, Kwang-Hyun; Kim, Jong-Myung

    2004-01-01

    The objective of the present study is to experimentally investigate the enhancement of dryout heat flux in debris beds with coolant flow from below. The experimental facility consists mainly of an induction heater (40 kW, 35 kHz), a double-wall quartz-tube test section containing steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of particle bed was achieved by induction heating. This paper reports the experimental data for 5 mm particle bed and 300 mm bed height. The dryout heat rate data were obtained of both top-flooding case and forced coolant injection from below with the injection mass flux up to 1.5 kg/m 2 s. For the top-flooded case, the volumetric dryout heat rate was about 4 MW/m 3 and it increased as the rate of coolant injection from below was increased. At the coolant injection mass flux of 1.5 kg/m 2 s, the volumetric dryout heat rate was about 10 MW/m 3 , the enhancement factor was more than two. (author)

  20. Modular 3-D solid finite element model for fatigue analyses of a PWR coolant system

    International Nuclear Information System (INIS)

    Garrido, Oriol Costa; Cizelj, Leon; Simonovski, Igor

    2012-01-01

    Highlights: ► A 3-D model of a reactor coolant system for fatigue usage assessment. ► The performed simulations are a heat transfer and stress analyses. ► The main results are the expected ranges of fatigue loadings. - Abstract: The extension of operational licenses of second generation pressurized water reactor (PWR) nuclear power plants depends to a large extent on the analyses of fatigue usage of the reactor coolant pressure boundary. The reliable estimation of the fatigue usage requires detailed thermal and stress analyses of the affected components. Analyses, based upon the in-service transient loads should be compared to the loads analyzed at the design stage. The thermal and stress transients can be efficiently analyzed using the finite element method. This requires that a 3-D solid model of a given system is discretized with finite elements (FE). The FE mesh density is crucial for both the accuracy and the cost of the analysis. The main goal of the paper is to propose a set of computational tools which assist a user in a deployment of modular spatial FE model of main components of a typical reactor coolant system, e.g., pipes, pressure vessels and pumps. The modularity ensures that the components can be analyzed individually or in a system. Also, individual components can be meshed with different mesh densities, as required by the specifics of the particular transient studied. For optimal accuracy, all components are meshed with hexahedral elements with quadratic interpolation. The performance of the model is demonstrated with simulations performed with a complete two-loop PWR coolant system (RCS). Heat transfer analysis and stress analysis for a complete loading and unloading cycle of the RCS are performed. The main results include expected ranges of fatigue loading for the pipe lines and coolant pump components under the given conditions.

  1. Steam generator for a pressurized-water coolant nuclear reactor

    International Nuclear Information System (INIS)

    Schroeder, H.J.; Berger, W.

    1975-01-01

    A description is given of a steam generator which has a vertical cylindrical housing having a steam output outlet, a horizontal tube sheet closing the lower end of this housing, and an inverted U-shaped tube bundle inside of the housing and having vertical inlet and outlet legs with their ends mounted in the tube sheet. Beneath the tube sheet there are inlet and outlet manifolds for the respective ends of the tube bundle so that pressurized-water coolant from a pressurized-water coolant nuclear reactor can be circulated through the tube bundle

  2. Design of the coolant system for the Large Coil Test Facility pulse coils

    International Nuclear Information System (INIS)

    Bridgman, C.; Ryan, T.L.

    1983-01-01

    The pulse coils will be a part of the Large Coil Test Facility in Oak Ridge, Tennessee, which is designed to test six large tokamak-type superconducting coils. The pulse coil set consists of two resistive coaxial solenoid coils, mounted so that their magnetic axis is perpendicular to the toroidal field lines of the test coil. The pulse coils provide transient vertical fields at test coil locations to simulate the pulsed vertical fields present in tokamak devices. The pulse coils are designed to be pulsed for 30 s every 150 s, which results in a Joule heating of 116 kW per coil. In order to provide this capability, the pulse coil coolant system is required to deliver 6.3 L/s (100 gpm) of subcooled liquid nitrogen at 10-atm absolute pressure. The coolant system can also cool down each pulse coil from room temperature to liquid nitrogen temperature. This paper provides details of the pumping and heat exchange equipment designed for the coolant system and of the associated instrumentation and controls

  3. Review on research of small break loss of coolant accident

    International Nuclear Information System (INIS)

    Bo Jinhai; Wang Fei

    1998-01-01

    The Small Break Loss of Coolant Accident (SBLOCA) and its research art-of -work are reviewed. A typical SBLOCA process in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) and the influence of break size, break location and reactor coolant pump on the process are described. The existing papers are classified in two categories: experimental and numerical modeling, with the primary experimental apparatuses in the world listed and the research works on SBLOCA summarized

  4. Evaluation of primary coolant pH operation methods for the domestic PWRs

    International Nuclear Information System (INIS)

    Paek, Seung Woo; Na, Jung Won; Kim, Yong Eak; Bae, Jae Heum

    1992-01-01

    Radioactive nuclides deposited on out-of-core surface after the radiation in the core by the transport of corrosion products (CRUD) through the primary coolant system in PWR which is the major plant type in Korea, are leading sources of radiation exposure to plant maintenance personnel. Thus, the optimal chemistry operation method is required for the reduction of radiation exposure by the corrosion products. This study analysed the actual water chemistry operation data of four operating domestic PWRs. And in order to evaluate the coolant chemistry operation data, a computer code which can calculate the activity buildup in the various chemistry conditions of PWR coolant was employed. Through the analysis of comparison between the activity buildup of actual water chemistry operation mode and that of assumed Elevated Li operation mode calculated by the computer code, it was found that the out-of-core radioactivity can be reduced by diminishing the deposition of corrosion products on the core in case that the Elevated Li operation mode is applied to the coolant chemistry operation of PWR. And the higher coolant pH operation was shown to have the advantage of the reduction of out-of-core activity buildup if the integrity of system structural materials and fuel cladding is guaranteed. (Author)

  5. Core performance of equilibrium fast reactors for different coolant materials and fuel types

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Sekimoto, Hiroshi

    1998-01-01

    Parametric studies with several coolant and fuel materials in the equilibrium state are performed for fast reactors in which natural uranium is fed and all of the actinides are confined. Sodium, sodium-potassium, lead, lead-bismuth and helium coolant materials, and oxide, nitride and metal fuels are employed to compare the neutronic characteristics in the equilibrium state. As to the criticality performance, sodium-potassium shows the best performance among the liquid metal coolants and the metallic fuel indicates the best performance

  6. 14C Behaviour in PWR coolant

    International Nuclear Information System (INIS)

    Sims, Howard; Dickinson Shirley; Garbett, Keith

    2012-09-01

    Although 14 C is produced in relatively small amounts in PWR coolant, it is important to know its fate, for example whether it is released by gaseous discharge, removed by absorption on ion exchange (IX) resins or deposited on the fuel pin surfaces. 14 C can exist in a range of possible chemical forms: inorganic carbon compounds (probably mainly CO 2 ), elemental carbon, and organic compounds such as hydrocarbons. This paper presents results from a preliminary survey of the possible reactions of 14 C in PWR coolant. The main conclusions of the study are: - A combination of thermal and radiolytic reactions controls the chemistry of 14 C in reactor coolant. A simple chemical kinetic model predicts that CH 3 OH would be the initial product from radiolytic reactions of 14 C following its formation from 17 O. CH 3 OH is predicted to arise as a result of reactions of OH . with CH 4 and CH 3 , and it persists because there is no known radiation chemical reduction mechanism. - Thermodynamic considerations show that CH 3 OH can be thermally reduced to CH 4 in PWR conditions, although formation of CO 2 from small organics is the most thermodynamically favourable outcome. Such reactions could be catalysed on active nickel surfaces in the primary circuit. - Limited plant data would suggest that CH 4 is the dominant form in PWR and CO 2 in BWR. This implies that radiation chemistry may be important in determining the speciation. - Addition of acetate does not affect the amount of 14 C formed, but the addition of large amounts of stable carbon would lead to a large range of additional products, some of which would be expected to deposit on fuel pin surfaces as high molecular weight hydrocarbons. However, the subsequent thermal decomposition reactions of these products are not known. - Acetate addition may represent a small input of 12 C compared with organic material released from CVCS resins, although the importance of this may depend on whether that is predominantly soluble

  7. Experimental approach to investigate the dynamics of mixing coolant flow in complex geometry using PIV and PLIF techniques

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2015-01-01

    Full Text Available The aim of this work is to investigate experimentally the increase of mixing phenomenon in a coolant flow in order to improve the heat transfer, the economical operation and the structural integrity of Light Water Reactors-Pressurized Water Reactors (LWRs-PWRs. Thus the parameters related to the heat transfer process in the system will be investigated. Data from a set of experiments, obtained by using high precision measurement techniques, Particle Image Velocimetry and Planar Laser-Induced Fluorescence (PIV and PLIF, respectively are to improve the basic understanding of turbulent mixing phenomenon and to provide data for CFD code validation. The coolant mixing phenomenon in the head part of a fuel assembly which includes spacer grids has been investigated (the fuel simulator has half-length of a VVER 440 reactor fuel. The two-dimensional velocity vector and temperature fields in the area of interest are obtained by PIV and PLIF technique, respectively. The measurements of the turbulent flow in the regular tube channel around the thermocouple proved that there is rotation and asymmetry in the coolant flow caused by the mixing grid and the geometrical asymmetry of the fuel bundle. Both PIV and PLIF results showed that at the level of the core exit thermocouple the coolant is homogeneous. The discrepancies that could exist between the outlet average temperature of the coolant and the temperature at in-core thermocouple were clarified. Results of the applied techniques showed that both of them can be used as good provider for data base and to validate CFD results.

  8. Methodologies and technologies for life assessment and management of coolant channels of Indian pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Rupani, B.B.; Sinha, S.K.; Sinha, R.K.

    2002-01-01

    Zirconium alloy coolant channels are central to the design of Indian Pressurised Heavy Water Reactors (PHWRs) and form the individual pressure boundaries. These coolant channels consist of horizontal pressure tubes made of zirconium alloys, which are separated from cold calandria tubes using garter spring spacers. High temperature heavy water coolant flows through the pressure tube which supports the fuel bundles. A typical coolant channel in a PHWR is shown. These pressure tubes are subjected to several life limiting degradation mechanisms like creep and growth, hydrogen pick-up, reduction in fracture toughness and delayed hydride cracking phenomena because of their operation under high temperature, high stress and high fast neutron flux environment. Considering the early onset of these degradation mechanisms in Zircaloy-2 pressure tubes used in the early generation of Indian PHWRs, the life management of these coolant channels becomes a challenging task, involving multidisciplinary R and D efforts in areas like analytical modelling of degradation mechanisms, evolution of methodologies for assessment of fitness for service and, tools and techniques for remote on line monitoring of integrity, maintenance and replacement. The degradation mechanisms have been modelled and incorporated into specially developed computer codes, such as SCAPCA for irradiation induced creep and growth deformation modelling, HYCON for hydrogen pick-up modelling, BLIST for hydrogen diffusion, blister nucleation and growth modelling and CEAL for assessment of leak before break behaviour. These codes have been validated with respect to the results of in-service inspection and post irradiation examination. Development of analytical models actually paved the way for the evolution of more refined methodologies for assessing the safe residual life of coolant channel. Information gathered from various experiments simulating the degradation mechanisms, results of post-irradiation examination of the

  9. Analysis of molten fuel behavior in coolant channel during severe accidents in KALIMER

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Lee, Yong Bum; Hahn, Do Hee

    2004-11-01

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double fault initiators such as ATWS events without boiling coolant or melting fuel. For the future design of liquid metal reactor, however, the evaluation of the safety performance and the determination of containment requirements may require consideration of tripe-fault accident sequences of extremely low probability of occurrence that leads to fuel melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will required as a design requirement for the future design of LMR. For sodium-cooled core designs with metallic fuel, one of the major phenomenological modeling uncertainties to be resolved is the potential for freezing and plugging of molten metallic fuel in above- and below-core structures and possibly in inter-subassembly spaces. In this study, scoping analyses were carried out to evaluate the penetration depths in the coolant channels by molten fuel mixture during the unprotected loss-of-flow accidents in the core of the KALIMER-600. It is assumed in the analyses that a solid fuel crust would start to form upon contact with the coolant channel structure temperature of which is below the fuel solidus. The analysis results predict that the coolant channels would be plugged by the freezing molten fuel in the inlet lower shield as well as in the outlet, fission-gas-plenum region for the KALIMER-600 design

  10. Analysis of fluid-structure interaction and structural respones of Chernobyl-4 reactor

    International Nuclear Information System (INIS)

    Wang, C.Y.; Pizzica, P.A.; Gvildys, J.; Spencer, B.W.

    1989-01-01

    The accident at Chernobyl-4 occurred during the running of a test to determine the turbogenerator's ability to provide in-house emergency power after shutting off its steam supply. The accident was the result of a large, destructive power excursion. This paper presents an analysis of the energetic events associated with the fuel failures, fuel-coolant thermal interactions, and the fluid-structure interaction

  11. Comparison of thermohydraulic characteristics in the use of various coolants

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Suda, Kazunori; Yamaguchi, Akira

    2000-11-01

    Numerical calculations were carried out for a free surface sloshing, a thermal stratification, a thermal striping, and a natural convection as key phenomena of in-vessel thermohydraulics in future fast reactor systems with various fluids as coolants. This numerical work was initiated based on a recognition that the fundamental characteristics of the phenomena have been unsolved quantitatively in the use of various coolants. From the analysis for the phenomena, the following results were obtained. [Free Surface Sloshing phenomena] (1) There is no remarkable difference between liquid sodium and liquid Pb-Bi in characteristics of internal flows and free surface characteristics based on Fr number. (2) The AQUA-VOF code has a potential enough to evaluate gas entrainment behavior from the free surface including the internal flow characteristics. [Thermal Stratification Phenomena] (1) On-set position of thermal entrainment process due to dynamic vortex flows was moved to downstream direction with decreasing of Ri number. On the other hand, the position in the case of CO 2 gas was shifted to upstream side with decreasing of Ri number. (2) Destruction speed of the thermal stratification interface was dependent on thermal diffusivity as fluid properties. Therefore it was concluded that an elimination method is necessary for the interface generated in CO 2 gas. [Thermal Striping Phenomena] (1) Large amplitudes of fluid temperature fluctuations was reached to down stream area in the use of CO 2 gas, due to larger fluid viscosity and smaller thermal diffusivity, compared with liquid sodium and liquid Pb-Bi cases. (2) To simulate thermal striping conditions such as amplitude and frequency of the fluid temperature fluctuations, it is necessary for coincidences of Re number for the amplitude and of velocity value for the frequency, in various coolants. [Natural Convection Phynomlena] (1) Fundamental behavior of the natural convection in various coolant follows buoyant jet

  12. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  13. Computational and Experimental Investigations of the Coolant Flow in the Cassette Fissile Core of a KLT-40S Reactor

    Science.gov (United States)

    Dmitriev, S. M.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Pronin, A. N.; Sorokin, V. D.; Khrobostov, A. E.

    2017-07-01

    Results of experimental investigations of the local hydrodynamic and mass-exchange characteristics of a coolant flowing through the cells in the characteristic zones of a fuel assembly of a KLT-40S reactor plant downstream of a plate-type spacer grid by the method of diffusion of a gas tracer in the coolant flow with measurement of its velocity by a five-channel pneumometric probe are presented. An analysis of the concentration distribution of the tracer in the coolant flow downstream of a plate-type spacer grid in the fuel assembly of the KLT-40S reactor plant and its velocity field made it possible to obtain a detailed pattern of this flow and to determine its main mechanisms and features. Results of measurement of the hydraulic-resistance coefficient of a plate-type spacer grid depending on the Reynolds number are presented. On the basis of the experimental data obtained, recommendations for improvement of the method of calculating the flow rate of a coolant in the cells of the fissile core of a KLT-40S reactor were developed. The results of investigations of the local hydrodynamic and mass-exchange characteristics of the coolant flow in the fuel assembly of the KLT-40S reactor plant were accepted for estimating the thermal and technical reliability of the fissile cores of KLT-40S reactors and were included in the database for verification of computational hydrodynamics programs (CFD codes).

  14. Radiolytic reactions in the coolant of helium cooled reactors

    International Nuclear Information System (INIS)

    Tingey, G.L.; Morgan, W.C.

    1975-01-01

    The success of helium cooled reactors is dependent upon the ability to prevent significant reaction between the coolant and the other components in the reactor primary circuit. Since the thermal reaction of graphite with oxidizing gases is rapid at temperatures of interest, the thermal reactions are limited primarily by the concentration of impurity gases in the helium coolant. On the other hand, the rates of radiolytic reactions in helium are shown to be independent of reactive gas concentration until that concentration reaches a very low level. Calculated steady-state concentrations of reactive species in the reactor coolant and core burnoff rates are presented for current U. S. designed, helium cooled reactors. Since precise base data are not currently available for radiolytic rates of some reactions and thermal reaction rate data are often variable, the accuracy of the predicted gas composition is being compared with the actual gas compositions measured during startup tests of the Fort Saint Vrain high temperature gas-cooled reactor. The current status of these confirmatory tests is discussed. 12 references

  15. Health physics aspects of processing EBR-I coolant

    International Nuclear Information System (INIS)

    Burke, L.L.; Thalgott, J.O.; Poston, J.W. Jr.

    1998-01-01

    The sodium-potassium reactor coolant removed from the Experimental Breeder Reactor Number One after a partial reactor core meltdown had been stored at the Idaho National Engineering and Environmental Laboratory for 40 years. The State of Idaho considered this waste the most hazardous waste stored in the state and required its processing. The reactor coolant was processed in three phases. The first phase converted the alkali metal into a liquid sodium-potassium hydroxide. The second phase converted this caustic to a liquid sodium-potassium carbonate. The third phase solidified the sodium-potassium carbonate into a form acceptable for land disposal. Health physics aspects and dose received during each phase of the processing are discussed

  16. Dynamic Analysis of Coolant Channel and Its Internals of Indian 540 MWe PHWR Reactor

    Directory of Open Access Journals (Sweden)

    A. Rama Rao

    2008-04-01

    Full Text Available The horizontal coolant channel is one of the important parts of primary heat transport system in PHWR type of reactors. There are in all 392 channels in the core of Indian 540 MWe reactor. Each channel houses 13 natural uranium fuel bundles and shielding and sealing plugs one each on either side of the channel. The heavy water coolant flows through the coolant channel and carries the nuclear heat to outside the core for steam generation and power production in the turbo-generator. India has commissioned one 540 MWe PHWR reactor in September 2005 and another similar unit will be going into operation very shortly. For a complete dynamic study of the channel and its internals under the influence of high coolant flow, experimental and modeling studies have been carried out. A good correlation has been achieved between the results of experimental and analytical models. The operating life of a typical coolant channel typically ranges from 10 to 15 full-power years. Towards the end of its operating life, its health monitoring becomes an important activity. Vibration diagnosis plays an important role as a tool for life management of coolant. Through the study of dynamic characteristics of the coolant channel under simulated loading condition, an attempt has been made to develop a diagnostics to monitor the health of the coolant channel over its operating life. A study has been also carried out to characterize the fuel vibration under different flow condition.

  17. Definition of loss-of-coolant accident radiation source

    International Nuclear Information System (INIS)

    1978-02-01

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist

  18. Coolant Chemistry Control: Oxygen Mass Transport in Lead Bismuth Eutectic

    International Nuclear Information System (INIS)

    Weisenburger, A.; Mueller, G.; Bruzzese, C.; Glass, A.

    2015-01-01

    In lead-bismuth cooled transmutation systems, oxygen, dissolved in the coolant at defined quantities, is required for stable long-term operation by assuring the formation of protective oxide scales on structural steel surfaces. Extracted oxygen must be permanently delivered to the system and distributed in the entire core. Therefore, coolant chemistry control involves detailed knowledge on oxygen mass transport. Beside the different flow regimes a core might have stagnant areas at which oxygen delivery can only be realised by diffusion. The difference between oxygen transport in flow paths and in stagnant zones is one of the targets of such experiments. To investigate oxygen mass transport in flowing and stagnant conditions, a dedicated facility was designed based on computational fluid dynamics (CFD). CFD also was applied to define the position of oxygen sensors and ultrasonic Doppler velocimetry transducers for flow measurements. This contribution will present the test facility, design relevant CFD calculations and results of first tests performed. (authors)

  19. Q-factor of coolant flow in the primary circuit of NPP with pressurised water reactors

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Belikov, S.O.; Novikov, K.S.

    2011-01-01

    Systems of preoperational vibration dynamic monitoring in of WWER are presented. The results of measurements during commission of NPP with WWER are presented. The paper provides the result of the research, that estimation of coolant fluctuations caused by pulse perturbation of pressure in the primary circuit NPP. It is shown that results could be received at known value of a Q - factor of acoustical oscillatory system only. The research demonstrates the results of dependence of the sound speed from the mass steam content in the coolant flow thru reactor core. The worked out results can be used for identification of the reasons of abnormal growth of level of vibrations of fuel assembly, fuel rod, equipment and internals, and for forecasting the operation conditions which provide of vibration - acoustical resonances in the primary loop equipment. (author)

  20. Confinement barriers for loss of coolant accidents in the SEAFP reactor plant models

    International Nuclear Information System (INIS)

    Blomquist, R.; Ebert, E.; Gay, J.M.; Mazille, F.; Natalizio, A.; Rolandsson, S.; Ross, W.E.; Shen, K.; Sjoeberg, A.

    1995-01-01

    Loss of coolant accidents may mobilise radioactivity and pressurise confinement barriers thereby making a release to the environment possible. The paper defines the radioactivity confinements and presents principal results from the underlying thermal-hydraulic analyses. (orig.)

  1. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  2. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the 13 N content in the containment atmosphere. 13 N is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/ 13 N+ 4 He. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium 13 N concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  3. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/Nl3+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  4. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1979-08-01

    The present paper deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process H1+016 → N13+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m -3 and 7 kBq m -3 for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge (Li) flow detector assembly operated at elevated pressure. (Auth.)

  5. Determination of temperature distributions in fast reactor core coolants

    International Nuclear Information System (INIS)

    Tillman, M.

    1975-04-01

    An analytical method of determination of a temperature distribution in the coolant medium in a fuel assembly of a liquid-metal-fast-breeder-reactor (LMFBR) is presented. The temperature field obtained is applied for a constant velocity (slug flow) fluid flowing, parallel to the fuel pins of a square and hexagonal array assembly. The coolant subchannels contain irregular boundaries. The geometry of the channel due to the rod adjacent to the wall (edge rod) differs from the geometry of the other channels. The governing energy equation is solved analytically, assuming series solutions for the Poisson and diffusion equations, and the total solution is superposed by the two. The boundary conditions are specified by symmetry considerations, assembly wall insulation and a continuity of the temperature field and heat fluxes. The initial condition is arbitrary. The method satisfies the boundary conditions on the irregular boundaries and the initial condition by a least squares technique. Computed results are presented for various geometrical forms, with ratio of rod pitch-to-diameter typical for LMFBR cores. These results are applicable for various fast-reactors, and thus the influence of the transient solution (which solves the diffusion equation) on the total depends on the core parameters. (author)

  6. Method and apparatus for suppressing water-solid overpressurization of coolant in nuclear reactor power apparatus

    International Nuclear Information System (INIS)

    Aanstad, O.J.; Sklencar, A.M.

    1983-01-01

    A reactor-coolant relief valve is opened for increase in mass influx if the rate of change of coolant pressure exceeds a setpoint during a predetermined interval, if, during this interval, the coolant temperature is less than a setpoint and if the level of the fluid in the pressurizer is above a predetermined setpoint (water-solid state). (author)

  7. Calorimetric and reactor coolant system flow uncertainty

    International Nuclear Information System (INIS)

    Bates, L.; McLean, T.

    1991-01-01

    This paper describes a methodology for the quantification of errors associated with the determination of a feedwater flow, secondary power, and Reactor Coolant System (RCS) flow used at the Trojan Nuclear Plant to ensure compliance with regulatory requirements. The sources of error in Plant indications and process measurement are identified and tracked, using examples, through the mathematical processes necessary to calculate the uncertainty in the RCS flow measurement. An error of approximately 1.4 percent is calculated for secondary power. This error results, along with the consideration of other errors, in an uncertainty of approximately 3 percent in the RCS flow determination

  8. Lubrication analysis of the journal bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Kim, J. I.; Jang, M. H.

    2000-01-01

    Special type journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel. The MCP bearings are lubricated with water without external lubricating oil supply. Long bearing with vertical grooves is designed with relatively large bearing clearance to accommodate the long shaft. Lubricational analysis method for journal bearing with vertical grooves in the main coolant pump of SMART is proposed, and lubricational characteristics of the bearings are examined in this paper

  9. The Analysis of Applying Different Coolants for Cooling Systems in the Office Building

    Directory of Open Access Journals (Sweden)

    Rasa Kanapienytė

    2011-12-01

    Full Text Available The paper analyzes air conditioning systems of different coolants on the basis of an example of a typical office building. Depending on the type of a coolant fan coil unit, active chilled beams, variable refrigerant volumes and air cooling systems were designed. The article suggests hydraulic and aerodynamic calculations and evaluates initial investments, energy expenditures and operating costs of the compared systems. Considering economic calculations, the pay-back time of the systems was assessed and the sensitivity analysis of electricity prices was carried out. The results of the conducted investigation show the most appropriate analysed system for office buildings taking into account the efficient use of electricity and initial investments.Article in Lithuanian

  10. Experiments on simulation of coolant mixing in fuel assembly head and core exit channel of WWER-440 reactor

    International Nuclear Information System (INIS)

    Kobzar, L.L; Oleksyuk, D.A.

    2006-01-01

    RRC 'Kurchatov Institute' has performed coolant mixing investigation in a head of a full-size simulator of WWER-440 fuel assembly. The experiments were focused on obtaining the data important for investigating the trends in temperature difference between the value registered by a ICIS thermocouple and the value of average temperature. The completed experiments ensure representative of configuration simulation by reproducing every construction peculiar feature of flow part of fuel assembly in the domain between the lower spacing grid and thermocouple location, and also by slightly modified fuel assembly regular elements (or analogues thereof). For the purpose of effectiveness of coolant mixing assessment within the head cross section of FA simulator, we measured coolant temperature distribution both in the place where coolant flow leaves the rod bundle simulator (in 39 data points along the cross section) and in the cross section location of regular ICIS thermocouple simulator (30 data points). The testing was conducted with pressure of (90 - 95) bar, mass coolant flow rates up to 2000 kg/(m 2 .s), temperature of coolant heating in 'hot' parts of the bundle up to 35.. and differences between coolant temperature extremes measured in rod bundle simulator outlet up to 20... Temperature fields were registered in 63 conditions that differ in coolant flow and inlet coolant temperature, electrical heating rate of FA simulator, and radial coolant distribution. In certain registered conditions we simulated coolant leakage to the space between the fuel assemblies. The received test data may be important both for investigation of dependencies between the coolant temperature in regular thermocouple location or average outlet temperature in assembly head, and for validation of CFD codes or subchannel codes (Authors)

  11. APPLICATION OF MULTIHOLE PRESSURE PROBE FOR RESEARCH OF COOLANT VELOCITY PROFILE IN NUCLEAR REACTOR FUEL ASSEMBLIES

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2015-01-01

    Full Text Available Development of heat and mass transfer intensifiers is a major engineering task in the design of new and modernization of existing fuel assemblies. These devices create lateral mass flow of coolant. Design of intensifiers affects both the coolant mixing and the hydraulic resistance. The aim of this work is to develop a methodology of measuring coolant local velocity in the fuel assembly models with different mixing grids. To solve the problems was manufactured and calibrated multihole pressure probe. The air flow velocity measuring method with multihole pressure probe was used in the experimental studies on the coolant local hydrodynamics in fuel assemblies with mixing grids. Analysis of the coolant lateral velocity vector fields allowed to study the formation of the secondary vortex flows behind the mixing grids, and to determine the basic laws of coolant flow in experimental models. Quantitative data on the coolant flow velocity distribution obtained with a multihole pressure probe make possible to determine the magnitude of the flow lateral velocities in fuel rod gaps, as well as to determine the distance at which damping occurs during mixing. 

  12. Main-coolant-pump shaft-seal reliability investigation. Interim report

    International Nuclear Information System (INIS)

    Fair, C.E.; Marsi, J.A.; Greer, A.O.

    1982-09-01

    This report contains the results of a survey of reactor coolant pump shaft seal reliability. The survey sample is representatively large (approx. = 27% of total US commercial plant population) and includes the three industry seal suppliers (Bingham-Williamette, Byron Jackson, and Westinghouse). Operationally incurred/induced problems and seal redesign parameters are identified. Failure hypotheses in the form of fault trees have been developed to describe the failure mechanisms. Recommendations are made for seal reliability improvement

  13. Exhaust temperature analysis of four stroke diesel engine by using MWCNT/Water nanofluids as coolant

    Science.gov (United States)

    Muruganandam, M.; Mukesh Kumar, P. C.

    2017-10-01

    There has been a continuous improvement in designing of cooling system and in quality of internal combustion engine coolants. The liquid engine coolant used in early days faced many difficulties such as low boiling, freezing points and inherently poor thermal conductivity. Moreover, the conventional coolants have reached their limitations of heat dissipating capacity. New heat transfer fluids have been developed and named as nanofluids to try to replace traditional coolants. Moreover, many works are going on the application of nanofluids to avail the benefits of them. In this experimental investigation, 0.1, 0.3 and 0.5% volume concentrations of multi walled carbon nanotube (MWCNT)/water nanofluids have been prepared by two step method with surfactant and is used as a coolant in four stroke single cylinder diesel engine to assess the exhaust temperature of the engine. The nanofluid prepared is characterized with scanning electron microscope (SEM) to confirm uniform dispersion and stability of nanotube with zeta potential analyzer. Experimental tests are performed by various mass flow rate such as 270 300 330 LPH (litre per hour) of coolant nanofluids and by changing the load in the range of 0 to 2000 W and by keeping the engine speed constant. It is found that the exhaust temperature decreases by 10-20% when compared to water as coolant at the same condition.

  14. EDF PWRs primary coolant purification strategies

    International Nuclear Information System (INIS)

    Gressier, Frederic; Mascarenhas, Darren; Taunier, Stephane; Le-Calvar, Marc; Bretelle, Jean-Luc; Ranchoux, Gilles

    2012-09-01

    In order to achieve a good physico-chemical quality of the primary coolant fluid, the primary water is continuously treated by the Chemical and Volume Control System (CVCS). This system is composed of a treatment chain containing filters and ion-exchange resins. In the EDF design, an upstream filter is placed before the resin so as to prevent it from being saturated with insoluble particles. Then, the fluid passes through several resin beds (up to 3 depending on the configuration) and again through a downstream filter that prevents resin fines dissemination into the reactor coolant. Much work has been conducted in the last 5 years on the homogenisation of products and usage on French EDF NPP primary coolant treatment, while taking into account the compromise between source term reduction, liquid and solid waste, and buying and disposal costs. Two national markets have been created, and two operational documents for chemists on site have been published: a filtration guideline and an ion-exchange resin guideline. Both documents give general information about the products used, how are they characterized and selected for national market (technical requirements, standards and tests), how they should be used and what are the change-out criteria. They are also periodically updated based on feedback from sites. The positive impact on resin and filter lifetime (extension of some, limitation of others), homogenisation of products and usage will be presented. Moreover, EDF is constantly in the process of improving the current purification methods, as well as researching the use of existing and novel technologies. In this field, recent experiments on short loading of resin during reactor shutdown has been tested on site with success. In addition, work is done on silica free filters, filter consumption and filter chemical release. An overview of these optimization methods will be given. (authors)

  15. Qualitative infrared spectral analysis of products adsorbed by silica gel from ditolylmethane coolant and their adsorption isotherm

    International Nuclear Information System (INIS)

    Ermakov, V.A.; Benderskaya, O.S.

    1987-01-01

    The IR-spectral analysis has been applied to study the products adsorbed from ditolylmethane first-circuit coolant, as well as from still bottoms after coolant distillation on silicagel of various makes. The qualitative study of desorbate IR-spectra has shown that they refer to the classes of arylaldehydes, diarylketones and carbonic acids. Under actual conditions first-circuit reactor coolant also has a wide set of products of its radiolysis, therefore the spectrum of coolant oxidaton products must be wider. It is noted that adsorption on silica gel, ASK of oxygen-bearing compounds which are present in ditolyl methane coolant has 2 stages

  16. Method of eliminating cruds in the primary coolants of reactors

    International Nuclear Information System (INIS)

    Tamura, Takaaki.

    1984-01-01

    Purpose: To eliminate cruds in the primary coolants by using rind of onions or peanuts. Method: Since cruds contained in the reactor primary coolants increase the radioactive exposure to reactor operators, they have been intended to remove by ion exchange resins. In this invention, rind of onions or peanuts are crushed into an adequate particle size and packed into an absorption column instead of ion exchange resins into which primary coolants are circulated. The powderous onions or peanuts rind contain glucoside such as cosmosiin and has an effect of cationic exchanger, they satisfactorily catch heavy metals such as Fe and Cu. They have an excellent filtering effect even under a high pH condition and are excellent in economical point of view. They can be decrease the volume of the absorption column, reduce their devolume after use through corrosion and easily subjected to waste procession through oxidizing combustion in liquid. (Nakamoto, H.)

  17. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    International Nuclear Information System (INIS)

    Solyany, V.I.; Bibilashvili, Yu.K.; Sukhanov, G.I.; Pimenov, Yu.V.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-01-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness. (author)

  18. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Solyany, V I; Bibilashvili, Yu K; Sukhanov, G I; Pimenov, Yu V [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Neorganicheskikh Materialov, Moscow (USSR); Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-12-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness.

  19. Recent results of three-dimensional CFD simulations of coolant mixing in VVER-440/213 reactor pressure vessel

    International Nuclear Information System (INIS)

    Kiss, B.; Boros, I.; Aszodi, A.

    2008-01-01

    The Budapest University of Technology and Economics, Institute of Nuclear Techniques has been working since 2001 on the three-dimensional CFD model of the reactor pressure vessel of the VVER-440 type reactor. During this time period - due to the development of the available computational capacity - a very complex and detailed model of the RPV has been developed. The aim of the construction of the new model is to describe further internal structures of the RPV (e.g. correct modeling of brake tubes, or internals in the upper mixing chamber) and to perform an extensive sensitivity analysis on the different modeling and calculation parameters (e.g. porous region models vs. detailed modeling, or n different turbulence models). The new model can be applied for steady state calculation during normal operational condition and for different transient analyses as well. One interesting application is the participation in a planned benchmark exercise on the start-up of the sixth main coolant pump, which is aimed to compare the capabilities of mixing models of one-dimensional system codes with the results of CFD simulation. (authors)

  20. Method of detecting coolant leakages from the pipeways in FBR type reactors

    International Nuclear Information System (INIS)

    Sonoda, Yukio; Tamaoki, Tetsuo

    1986-01-01

    Purpose: To detect coolant leakage in the incore pipeways of loop type FBR type reactors in the initial stage at high sensitivity. Constitution: Temperature of the coolants sealed between incore pipeways and the buffle surrounding them is measured by thermocouples and coolant leakage is detected due to fluctuating components. A well-insertion type in which electrode is sealed with argon is used as the thermo-couples. Signals from the thermocouples are once amplified, removed with DC components and then only the fluctuating components are outputted. The fluctuating components are digitalized, passed through an adaptive digital filter and the RMS value as the difference between the output signal and the thermocouple signal is calculated. The calculated value is compared with a threshold value in a comparative calculator. If it exceeds the threshold value, it is judged as abnormal to display an alarm on an alarm display. In this way, the coolant leakage for the pipeways in the FBR type reactor can be detected on real time and at high sensitivity. (Kamimura, M.)

  1. Study on primary coolant system depressurization effect factor in pressurized water reactor

    International Nuclear Information System (INIS)

    Ji Duan; Cao Xuewu

    2006-01-01

    The progression of high-pressure core melting severe accident induced by very small break loss of coolant accident plus the loss of main feed water and auxiliary feed water failure is studied, and the entry condition and modes of primary cooling system depressurization during the severe accident are also estimated. The results show that the temperature below 650 degree C is preferable depressurization input temperature allowing recovery of core cooling, and the available and effective way to depressurize reactor cooling system and to arrest very small break loss of coolant accident sequences is activating pressurizer relief valves initially, then restoring the auxiliary feedwater and opening the steam generator relief valves. It can adequately reduce the primary pressure and keep the capacity loop of long-term core cooling. (authors)

  2. LOFT transient thermal analysis for 10 inch primary coolant blowdown piping weld

    International Nuclear Information System (INIS)

    Howell, S.K.

    1978-01-01

    A flaw in a weld in the 10 inch primary coolant blowdown piping was discovered by LOFT personnel. As a result of this, a thermal analysis and fracture mechanics analysis was requested by LOFT personnel. The weld and pipe section were analyzed for a complete thermal cycle, heatup and Loss of Coolant Experiment (LOCE), using COUPLE/MOD2, a two-dimensional finite element heat conduction code. The finite element representation used in this analysis was generated by the Applied Mechanics Branch. The record of nodal temperatures for the entire transient was written on tape VSN=T9N054, and has been forwarded to the Applied Mechanics Branch for use in their mechanical analysis. Specific details and assumptions used in this analysis are found in appropriate sections of this report

  3. Experimental and numerical investigation of the coolant mixing during fast deboration transients

    International Nuclear Information System (INIS)

    Hoehne, T.; Rohde, U.; Weiss, F.P.

    1999-01-01

    For the analysis of boron dilution transients and main steam line break scenarios the modeling of the coolant mixing inside the reactor vessel is important, because the reactivity insertion strongly depends on boron acid concentration or the coolant temperature distribution. Calculations for steady state flow conditions for the WWER-440 were performed with a CFD code (CFX-4). For this calculation the RPV from the cold legs inlet through the downcomer, the lower plenum and the lower core support plate was nodulized in detail. The comparison with experimental data and analytical mixing model which is implemented in the neutron kinetic code DYN3D showed a good agreement for near-nominal conditions (all MCPs are running). The comparison between the CFD-results and the analytical model revealed differences for MSLB conditions[1]. (Authors)

  4. Transient Temperature Distribution in a Reactor Core with Cylindrical Fuel Rods and Compressible Coolant

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-04-15

    Applying linearization and Laplace transformation the transient temperature distribution and weighted temperatures in fuel, canning and coolant are calculated analytically in two-dimensional cylindrical geometry for constant material properties in fuel and canning. The model to be presented includes previous models as special cases and has the following novel features: compressibility of the coolant is accounted for. The material properties of the coolant are variable. All quantities determining the temperature field are taken into account. It is shown that the solution for fuel and canning temperature may be given by the aid of 4 basic transfer functions depending on only two variables. These functions are calculated for all relevant rod geometries and material constants. The integrals involved in transfer functions determining coolant temperatures are solved for the most part generally by application of coordinate and Laplace transformation. The model was originally developed for use in steam cooled fast reactor analysis where the coolant temperature rise and compressibility are considerable. It may be applied to other fast or thermal systems after suitable simplifications.

  5. Fast measurements of the in-core coolant velocity in a BWR by neutron noise analysis

    International Nuclear Information System (INIS)

    Hagen, T.H.J.J. van der; Hoogenboom, J.E.

    1988-01-01

    A method to determine in-core coolant velocities from neutron noise within short time intervals has been developed. The accuracy of the method was determined by using a simulation set-up and by using signals of a twin self-powered neutron detector installed in the core of the Dodewaard BWR in the Netherlands. In-core coolant velocities can be estimated within 2.5 s with a standard deviation (due to statistics) less than 2.1%. The method is suitable for velocity monitoring as is shown by the application to a stepwise velocity change of the coolant in a model of a coolant channel of a BWR. The presented technique was applied to determine the variations of the coolant velocity in the Dodewaard core during normal operation and during pressure steps. Only minor variations of the coolant velocity were detected during normal reactor conditions. An increase of those variations with pressure lowering - indicating a lower thermal hydraulic stability - could be detected. A clear velocity response to pressure steps could be determined which was also reflected in the cross-spectrum of the velocity with the vessel pressure and with the in-core neutron flux. (author)

  6. Freeform Deposition Method for Coolant Channel Closeout

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)

    2017-01-01

    A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.

  7. Pressurized-water coolant nuclear reactor steam generator

    International Nuclear Information System (INIS)

    Mayer, H.; Schroder, H.J.

    1975-01-01

    A description is given of a pressurized-water coolant nuclear reactor steam generator having a vertical housing for the steam generating water and containing an upstanding heat exchanger to which the pressurized-water coolant passes and which is radially surrounded by a guide jacket supporting a water separator on its top. By thermosiphon action the steam generating water flows upward through and around the heat exchanger within the guide chamber to the latter's top from which it flows radially outwardly and downwardly through a down draft space formed between the outside of the jacket and the housing. The water separator discharges separated water downwardly. The housing has a feedwater inlet opening adjacent to the lower portion of the heat exchanger, providing preheating of the introduced feedwater. This preheated feedwater is conveyed by a duct upwardly to a location where it mixes with the water discharged from the water separator

  8. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  9. Application of damage function analysis to reactor coolant circuits

    International Nuclear Information System (INIS)

    MacDonald, D.D.

    2002-01-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  10. Application of damage function analysis to reactor coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, D.D. [Center for Electrochemical Science and Technology, Pennsylvania State Univ., University Park, PA (United States)

    2002-07-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  11. Design of Reactor Coolant Pump Seal Online Monitoring System

    International Nuclear Information System (INIS)

    Ah, Sang Ha; Chang, Soon Heung; Lee, Song Kyu

    2008-01-01

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation

  12. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  13. Coolant Void Reactivity Analysis of CANDU Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.

  14. Factors governing particulate corrosion product adhesion to surfaces in water reactor coolant circuits

    International Nuclear Information System (INIS)

    1979-03-01

    Gravity, van der Waals, magnetic, electrical double layer and hydrodynamic forces are considered as potential contributors to the adhesion of particulate corrosion products to surfaces in water reactor coolant circuits. These forces are renewed and evaluated, and the following are amongst the conclusions drawn; adequate theories are available to estimate the forces governing corrosion product particle adhesion to surfaces in single phase flow in water reactor coolant circuits. Some uncertainty is introduced by the geometry of real particle-surface systems. The major uncertainties are due to inadequate data on the Hamaker constant and the zeta potential for the relevant materials, water chemistry and radiation chemistry at 300 0 C; van der Waals force is dominant over the effect of gravity for particles smaller than about 100 m; quite modest zeta potentials, approximately 50mV, are capable of inhibiting particle deposition throughout the size range relevant to water reactors; for surfaces exposed to typical water reactor flow conditions, particles smaller than approximately 1 m will be stable against resuspension in the absence of electrical double layer repulsion; and the magnitude of the electrical double layer repulsion for a given potential depends on whether the interaction is assumed to occur at constant potential or constant change. (author)

  15. On-line real time gamma analysis of primary coolant

    International Nuclear Information System (INIS)

    Kalechstein, W.; Kupca, S.; Lipsett, J.J.

    1985-10-01

    The evolution of failed fuel monitoring at CANDU power stations is briefly summarized and the design of the latest system for failed fuel detection at a multi-unit power station is described. At each reactor, the system employs a germanium spectrometer combined with a novel spectrum analyzer that simultaneously accumulates the gamma-ray spectrum of the coolant and provides the control room with the concentration of radioisotope activity in the coolant for the gaseous fission products Xe-133, Xe-135, Kr-88 and I-131 in real time and with statistical precision independent of count rate. A gross gamma monitor is included to provide independent information on the level of radioactivity in the coolant and extend the measurement range at very high count rates. A central computer system archives spectra received from all four spectrum analyzers and provides both the activity concentrations and the release rates of specified isotopes. Compared with previous systems the current design offers improvements in that the activity concentrations are updated much more frequently, improved tools are provided for long term surveillance of the heat transport system and the monitor is more reliable and less costly

  16. Single failure effects of reactor coolant system large bore hydraulic snubbers for Korean Standard Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, T.S.; Park, S.H.; Sung, K.K.; Kim, T.W.; Jheon, J.H.

    1996-01-01

    A potential snubber single failure is one of the safety significances identified in General Safety Issue 113 for Large Bore Hydraulic Snubber (LBHS) dynamic qualification. This paper investigates dynamic structural effects of single failures of the steam generator and reactor coolant pump snubbers in Korean Standard Nuclear Power Plant by performing the time history dynamic analyses for the reactor coolant system under seismic and postulated pipe break events. The seismic input motions considered are the synthesized ground time histories conforming to SRP 3.7.1, and he postulated pipe break input loadings result from steam generator main seam line and feedwater line pipe breaks which govern pipe breaks remaining after applying LBB to the main coolant line and primary side ranch lines equal to and greater than 12 inch nominal pipe size

  17. Effect of membrane and through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-11-01

    This study clarified the effect of a membrane and a through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity due to irregularity of crack surface. Each stress component relates to fatigue crack growth behavior directly in general and thus the wild-used K I solutions are anticipated to give good evaluation results on it. Meanwhile, it is necessary to notify that surface irregularity for coolant leakage assessment is made by stress history in nature. Surface irregularity is known to be largely classified into the following two aspects: surface roughness due to continuous crack opening and closure behavior and surface turnover due to cyclic bending stress dominance. Therefore, the deterministic parameters on resistance of coolant leakage by surface irregularity are considered to be not only stress history but crack opening behavior. (author)

  18. On a specific feature of heat transfer to organic coolants

    International Nuclear Information System (INIS)

    Kafengauz, N.L.; Gladkikh, V.A.

    1986-01-01

    Heat transfer to organic coolants, which is accompanied by solid carbon deposit formation, is experimentally studied. Polished and rough steel tubes with 3 mm outside diameter and 0.5 mm wall thickness, heated by electric current, were used as fuel elements. Results of experiments with kerosene T-1 are presented under the following regime parameters: pressure - 45 b; flow rate - 3.75 m/s; temperature - 25-40 deg C; fuel element temperature - 400-900 deg C. In experiments on fuel elements with natural roughness deposit formation caused a smooth increase of the wall temperature. In fuel elements with polished surface, deposit formation caused during the first minutes the reduction of the wall temperature and after that it increased. Intensity of solid deposit formation in fuel elements with polished and rough surface was the same. Similar results were observed not only in experiments with kerosene T-1, but with other organic fluids as well: with toluene, n-heptane, diisopropylcyclohexane etc. The results obtained can be explained in the following way. Solid deposits on a smooth surface create roughness which improves heat exchange and reduces, respectively, the heating surface temperature. But deposits possess weak heat conductivity and create additional thermal resistance, which aggravates heat exchange. Interaction of these two factors causes the complicated time dependence of wall temperature

  19. Impact of high-pressure coolant supply on chip formation in milling

    Science.gov (United States)

    Klocke, F.; Döbbeler, B.; Lakner, T.

    2017-10-01

    Machining of titanium alloys is considered as difficult, because of their high temperature strength, low thermal conductivity and low E-modulus, which contributes to high mechanical loads and high temperatures in the contact zone between tool and workpiece. The generated heat in the cutting zone can be dissipated only in a low extent. When cutting steel materials, up to 75% of the process heat is transported away by the chips, contrary to only 25% when machining titanium alloys. As a result, the cutting tool heats up, which leads to high tool wear. Therefore, machining of titanium alloys is only possible with relatively low cutting speeds. This leads to low levels of productivity for milling processes with titanium alloys. One way to increase productivity is to use more cutting edges in tools with the same diameter. However, the limiting factor of adding more cutting edges to a milling tool is the minimum size of the chip spaces, which are sufficient for a stable chip evacuation. This paper presents experimental results on the chip formation and chip size influenced by high-pressure coolant supply, which can lead to smaller chips and to smaller sizes of the chip spaces, respectively. Both influences, the pressure of the supplied coolant and the volumetric flow rate were individually examined. Alpha-beta annealed titanium TiAl6V4 was examined in relation to the reference material quenched and tempered steel 42CrMo4+QT (AISI 4140+QT). The work shows that with proper chip control due to high-pressure coolant supply in milling, the number of cutting edges on the same diameter tool can be increased, which leads to improved productivity.

  20. Primary Coolant pH Control for Soluble Boron-Free PWRs

    International Nuclear Information System (INIS)

    Cheon, Yang Ho; Lee, Nam Yeong; Park, Byeong Ho; Park, Seong Chan; Kim, Eun Kee

    2015-01-01

    These should be considered when evaluating and designing the operating pH program for nuclear power plants. This paper discusses the advanced water chemistry strategies to keep pace with the recent global trends related to pH control in the primary water system for soluble boron pressurized water reactor (PWR) plants. Finally, the objective of this work is to study primary coolant pH control for soluble boron-free PWR plants. This paper reviewed the advanced water chemistry strategies to keep pace with the recent global trends related to pH control in the primary water chemistry system for soluble boron PWR plants. The new chemistry trend for the primary coolant is towards adaption of the constant and elevated chemistry. Finally, this work studied primary coolant pH control for soluble boron-free PWR plants. The ammonia-based water chemistry related to pH control for boron-free PWR plants was discussed. The ammonia-based water chemistry is not recommended to avoid fluctuation of the pH value by ammonia radiolysis and to reduce C-14 production in reactor coolant from reaction with dissolved nitrogen. Also, the potassium-based water chemistry related to pH control for boron-free PWR plants was discussed. KOH has a potential as an alternative pH control agent for soluble boron-free PWR plants. The potassium-based water chemistry related to pH control is recommended for boron-free operation as follows

  1. The 1994 loss of coolant incident at Pickering NGS

    Energy Technology Data Exchange (ETDEWEB)

    Charlebois, P R; Clarke, T R; Goodman, R M; McEwan, W F [Ontario Hydro, Pickering, ON (Canada). Pickering Generating Station; Cuttler, J M [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    Fracture of the rubber diaphragm in a liquid relief valve initiated events leading to a loss of coolant in Unit 2, on December 10. The valve failed open, filling the bleed condenser. The reactor shut itself down. When pressure recovered, two spring-loaded safety relief valves opened and one of them chattered. The shock and pulsations cracked the inlet pipe to the chattering valve, and the subsequent loss of coolant triggered the emergency core cooling system. The incident was terminated by operator action. No abnormal radioactivity was released. The four reactor units of Pickering A remained shut down until the corrective actions were completed in April/May 1995. (author). 4 figs.

  2. Graphite beds for coolant filtration at high temperature

    International Nuclear Information System (INIS)

    Heathcock, R.E.; Lacy, C.S.

    1978-01-01

    High temperature filtration will be provided for new Ontario Hydro CANDU heat transport systems. Filtration has been shown to effectively reduce the concentration of circulating corrosion products in our heat transport systems, hence, minimizing the processes of activity transport. This paper will present one option we have for this application; Deep Bed Granular Graphite Filters. The filter system is described by discussing pertinent aspects of its development programme. The compatibility of the filter and the heat transport coolant are demonstrated by results from loop tests, both out- and in-reactor, and by subsequent results from a large filter installation in the NPD NGS heat transport system. (author)

  3. The operating reliability of the reactor coolant pump

    International Nuclear Information System (INIS)

    Grancy, W.

    1996-01-01

    There is a strong tendency among operating companies and manufacturers of nuclear power stations to further increase safety and operating availability of the plant and of its components. This applies also and particularly to reactor coolant pumps for the primary circuit of nuclear power stations of the type PWR. For 3 decades, ANDRITZ has developed and built such pumps and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as bearing and shaft seal. Apart from questions connected with design functioning of the pump there is one question of top priority: the operating reliability of the reactor coolant pump. The pump rotor (together with the rotor of the drive motor) is the only component within the primary system that permanently rotates at high speed during operation of the reactor plant. Many questions concerning design and configuration of such components cannot be answered purely theoretically, or they can only be answered partly. Therefore comprehensive development work and testing was necessary to increase the operating reliability of the pump rotor itself and of its surrounding elements. This contribution describes the current status of development and, as a focal point, discusses shaft sealing solutions elaborated so far. In this connection also a sealing system will be presented which aims for the first time at using a two-stage mechanical seal in reactor coolant pumps

  4. CSNI Joint Interpretation Exercise on fuel-coolant interactions. Results from selected experiments performed in the Thermir facility at AEE Winfrith

    International Nuclear Information System (INIS)

    Fry, C.J.; Robinson, C.H.

    1980-05-01

    This report describes the data from three experiments demonstrating the propagation of thermal interactions in tin and aluminium water mixtures. Transient pressure and cine film data clearly show the propagation of an interaction front through the materials. Detailed information has been provided to permit a full analysis by other groups working in the field and for this reason no such analysis is presented in this report. (author)

  5. Calculation of coolant temperature sensitivity related to thermohydraulic parameters

    International Nuclear Information System (INIS)

    Silva, F.C. da; Andrade Lima, F.R. de

    1985-01-01

    It is verified the viability to apply the generalized Perturbation Theory (GPT) in the calculation of sensitivity for thermal-hydraulic problems. It was developed the TEMPERA code in FORTRAN-IV to transient calculations in the axial temperature distribution in a channel of PWR reactor and the associated importance function, as well as effects of variations of thermalhydraulic parameters in the coolant temperature. The results are compared with one which were obtained by direct calculation. (M.C.K.) [pt

  6. A Study on thermal-hydraulic characteristics of the coolant materials for the transmutation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Taejon (Korea)

    1998-03-01

    The objective of this study is to provide the direction of transmutation reactor design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of various candidate materials for the transmutation reactor coolant. In this study, the characteristics of coolant materials used in current nuclear power plants and candidate materials for transmutation reactor are analyzed and compared. To evaluate the thermal hydraulic characteristics, the preliminary thermal-hydraulic calculation is performed for the candidate coolant materials of transmutation reactor. An analysis of thermal-hydraulic characteristics of transmutation reactor. An analysis of thermal-hydraulic characteristics of Sodium, Lead, Lead-Bismuth, and Lead-Lithium among the liquid metals considered as the coolant of transmutation reactor is performed by using computational fluid dynamics code FLUENT, and SIMPLER algorithm. (author). 50 refs., 40 figs., 30 tabs.

  7. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net-power...

  8. Deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail.

  9. Temperature and velocity field of coolant at inlet to WWER-440 core - evaluation of experimental data

    International Nuclear Information System (INIS)

    Jirous, F.; Klik, F.; Janeba, B.; Daliba, J.; Delis, J.

    1989-01-01

    Experimentally determined were coolant temperature and velocity fields at the inlet of the WWER-440 reactor core. The accuracy estimate is presented of temperature measurements and the relation is given for determining the resulting measurement error. An estimate is also made of the accuracy of solution of the system of equations for determining coefficients B kn using the method of the least square fit. Coefficients B kn represent the relative contribution of the mass flow of the k-th fuel assembly from the n-th loop and allow the calculation of coolant temperatures at the inlet of the k-th fuel assembly, when coolant temperatures in loops at reactor inlet are known. A comparison is made of the results of measurements on a hydrodynamic model of a WWER-440 reactor with results of measurements made at unit 4 of the Dukovany nuclear power plant. Full agreement was found for 32 model measurements and 6 reactor measurements. It may be assumed that the results of other model measurements obtained for other operating variants will also apply for an actual reactor. Their applicability may, however, only be confirmed by repeating the experiment on other WWER-440 reactors. (Z.M.). 5 figs., 7 refs

  10. Conceptual design of primary coolant purification system using cylindrical membrane for nuclear energy system base on HTGR

    International Nuclear Information System (INIS)

    Piping Supriatna

    2011-01-01

    The recent progress of reactor technology design for next generation reactor will be implemented on cogeneration reactor, which the aim of reactor operation not only for generating electrical energy, but also for other application like desalination, industrial manufacturing process, hydrogen production, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor concept developed for generate energy effectively, efficiently and sustainable, which reserve of uranium and thorium nuclear fuel for cogeneration reactor is supply able for world energy demand until next thousand years. The cogeneration reactor produce temperature output higher than commonly Nuclear Power Plant (NPP), and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this research has been designed modeling and assessment of primary coolant gas purification system with purify and fill up helium gas continuously, by using Cylindrical Helium Splitting Membrane and helium gas inventory system. The result of flow rate helium assessment for the purification system is 0.844x10 -3 kg/sec, where helium flow rate of reactor primary coolant is 120 kg/sec. The result of study show that the Primary Coolant Gas Purification System is enable to be implemented on Cogeneration Reactor HTGR200C. (author)

  11. Effect of coolant flow rate on the power at onset of nucleate boiling in a swimming pool type research reactor

    International Nuclear Information System (INIS)

    Khan, L.A.; Ahmad, N.; Ahmad, S.

    1998-01-01

    The effect of flow rate of coolant on power of Onset Nucleate Boiling (ONB) in a reference core of a swimming pool type research reactor has been studied using a as standard computer code PARET. It has been found that the decrease in the coolant flow rate results in a corresponding decrease in power at ONB. (author)

  12. Identification of flow patterns by neutron noise analysis during actual coolant boiling in thin rectangular channels

    International Nuclear Information System (INIS)

    Kozma, R.; van Dam, H.; Hoogenboom, J.E.

    1992-01-01

    The primary objective of this paper is to introduce results of coolant boiling experiments in a simulated materials test reactor-type fuel assembly with plate fuel in an actual reactor environment. The experiments have been performed in the Hoger Onderwijs Reactor (HOR) research reactor at the Interfaculty Reactor Institute, Delft, The Netherlands. In the analysis, noise signals of self-powered neutron detectors located in the neighborhood of the boiling region and thermocouple in the channel wall and in the coolant are used. Flow patterns in the boiling coolant have been identified by means of analysis of probability density functions and power spectral densities of neutron noise. It is shown that boiling has an oscillating character due to partial channel blockage caused by steam slugs generated periodically between the plates. The observed phenomenon can serve as a basis for a boiling detection method in reactors with plate-type fuels

  13. The calculation of coolant leak rate through the cracks using RELAP5 code

    International Nuclear Information System (INIS)

    Krungeleviciute, V.; Kaliatka, A.

    2001-01-01

    For reason to choose method of leak detection first of all it is necessary to perform evaluating thermal-hydraulic calculations. These calculations allow to determine flow rate of discharged coolant. For coolant leak rate calculations through possible cracks in Ignalina NPP pipes SQUIRT and RELAP5 thermal-hydraulic codes were used. SQUIRT is well known as computer program that predicts the leakage for cracked pipes in NPP. As this code calculates only water (at subcooled or saturated conditions) leak rate, RELAP5 code model, that calculates water and steam leak rate, was created. For model validation comparison of SQUIRT, RELAP5 and experimental results was performed. Analysis shows RELAP5 code model suitability for calculations of leak through through-wall cracks in pipes. (author)

  14. Safety and environmental impact of the dual coolant blanket concept. SEAL subtask 6.2, final report

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Dammel, F.; Gabel, K.; Jordan, T.; Schmuck, I.

    1996-03-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four concepts under development, namely two of the solid breeder type and two of the liquid breeder type. At the Forschungszentrum Karlsruhe one blanket concept of each line has been pursued so far with the so-called dual coolant type representing the liquid breeder line. In the dual coolant concept the breeder material (Pb-17Li) is circulated to external heat exchangers to carry away the bulk of the generated heat and to extract the tritium. Additionally, the heavily loaded first wall is cooled by high pressure helium gas. The safety and environmental impact of the dual coolant blanket concept has been assessed as part of the blanket concept selection excercise, a European concerted action, aiming at selecting the two most promising concepts for futher development. The topics investigated are: (a) Blanket materials and toxic materials inventory, (b) energy sources for mobilisation, (c) fault tolerance, (d) tritium and activation products release, and (e) waste generation and management. No insurmountable safety problems have been identified for the dual coolant blanket. The results of the assessment are described in this report. The information collected is also intended to serve as input to the EU 'Safety and Environmental Assessment of Fusion longterm Programme' (SEAL). The unresolved issues pertaining to the dual coolant blanket which would need further investigations in future programmes are outlined herein. (orig.) [de

  15. Experimental investigations and modelling of sodium-concrete interaction

    International Nuclear Information System (INIS)

    Schultheiss, G.F.; Deeg, H.J.

    1990-01-01

    The use of sodium as a coolant in liquid metal fast breeder reactors, fusion reactors, and solar plants requires special consideration of its chemical reactivity and related safety problems in the case of sodium leckage. On contact between hot sodium and concrete an interaction takes place resulting in energy release and hydrogen generation, which may contribute to containment loading by pressurization in a hypothetical accident situation. For this reason, sodium-concrete interactions were investigated experimentally and theoretically. The experiments revealed important effects of quartzitic material within the concrete and of the sodium temperature on the interaction mechanisms, the energy release and the consequent hydrogen production. The numerical model shows good agreement with the experimental results. (orig.) [de

  16. The Analysis of the Effect of Coolant Channel Width on Fuel Loading of the RSG-GAS Core

    International Nuclear Information System (INIS)

    Surbakti; Tukiran

    2004-01-01

    The RGS-GAS using uranium silicide fuel, plate type and 250 g U of loading is planned to increase the fuel loading to 300 g U even to 400 g U. The silicide fuel has advantages when increase the fuel loading in the same volume. Because of that case, it is necessary to analyze the effect of coolant channel width on fuel loading of the RSG-GAS core. Analyzing the effect the work which done is to generate cell and core calculation using WIMSD/4 and Batan-2DIFF codes. The WIMSD/4 code is used to generate cross section of core material and Batan-2DIFF is used to calculate the effective multiplication factor. The model that used in this calculation there are three kind of fuel loading namely, 250 g U, 300 g U and 400 g U. The coolant channel width is simulated from 1.75 mm to 2.55 mm. From that fuel loadings, it is analyzed which coolant channel width gave the best effective multiplication factor. From result of analysis showed that the best effective multiplication factor is on the coolant channel width of 2.55 mm for third of fuel loadings. (author)

  17. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    Science.gov (United States)

    Xie, Huaqing; Li, Yang; Yu, Wei

    2010-05-01

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2O 3, ZnO, TiO 2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2O 3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  18. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    International Nuclear Information System (INIS)

    Xie Huaqing; Li Yang; Yu Wei

    2010-01-01

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2 O 3 , ZnO, TiO 2 , and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2 O 3 , and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  19. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    Energy Technology Data Exchange (ETDEWEB)

    Xie Huaqing, E-mail: hqxie@eed.sspu.c [School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China); Li Yang; Yu Wei [School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China)

    2010-05-31

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al{sub 2}O{sub 3}, ZnO, TiO{sub 2}, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al{sub 2}O{sub 3}, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  20. OECD/DOE/CEA VVER-1000 Coolant Transient Benchmark. Summary Record of the Third Workshop (V1000-CT3)

    International Nuclear Information System (INIS)

    2005-01-01

    The overall objective of the VVER-1000 coolant transient (V1000CT) benchmark is to assess computer codes used in the safety analysis of VVER power plants, specifically for their use in analysis of reactivity transients in a VVER-1000. The V1000CT benchmark consists of two phases: V1000CT-1 is a simulation of the switching on of one main coolant pump (MCP) when the other three MCPs are in operation, and V1000CT-2 concerns calculation of coolant mixing tests and main steam line break (MSLB) scenarios. Each of the two phases contains three exercises. The reference problem chosen for simulation in Phase 1 is a MCP switching on when the other three main coolant pumps are in operation in a VVER-1000. This event is characterized by rapid increase in the flow through the core resulting in a coolant temperature decrease, which is spatially dependent. This leads to insertion of spatially distributed positive reactivity due to the modelled feedback mechanisms and non-symmetric power distribution. Simulation of the transient requires evaluation of core response from a multi-dimensional perspective (coupled three-dimensional neutronics/core thermal-hydraulics) supplemented by a one-dimensional simulation of the remainder of the reactor coolant system. Three exercises are defined in the framework of Phase 1: a) Exercise 1 - Point kinetics plant simulation; b) Exercise 2 - Coupled 3-D neutronics/core thermal-hydraulics response evaluation; c) Exercise 3 - Best-estimate coupled 3-D core/plant system transient modelling. In addition to the measured (experiment) scenario, extreme calculation scenarios were defined in the frame of Exercise 3 for better testing 3-D neutronics/thermal-hydraulics techniques. The proposals concerned: rod ejection simulations with scram set points at two different power levels. The technical topics presented at this workshop were: Review of the benchmark activities after the 2. Workshop; - Discussion of participant's feedback and introduced modifications

  1. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat......The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... heat sink configurations reduces the coolant pumping power in the system....

  2. Applied model of through-wall crack of coolant vessels of WWER-type reactors

    International Nuclear Information System (INIS)

    Petrosyan, V.; Hovakimyan, T.; Vardanyan, M.; Khachatryan, A.; Minasyan, K.

    2010-01-01

    We propose an applied-model of Through-Wall Crack (TWC) for WWER-type units primary vessels. The model allows to simulate the main morphological parameters of real TWC, i.e. length, area of inlet and outlet openings, channel depth and small and large size unevenness of the crack surface. The model can be used for developing and improving the coolant-leak detectors for the primary circuit vessels of WWER-units. Also, it can be used for research of the coolant two-phase leakage phenomenon through narrow cracks/channels and thermo-physical processes in heat-insulation layer of the Main Coolant Piping (MCP) during the leak

  3. In-Service Inspection system for coolant channels of Indian PHWRS - evolution and experience

    International Nuclear Information System (INIS)

    Puri, R.K.; Singh, M.

    2006-01-01

    In-Service Inspection (ISI) is the most important of all periodic monitoring and surveillance activities for assuring the structural integrity of coolant channels in the life extension and management of pressurized heavy water reactors (PHWR-CANDU). Indian PHWRs (220 MWe) are characterized by consists by 306 coolant channels in each unit. These channels have to be inspected for various parameters over the operating life of the reactor. ISI of coolant channels necessitated the indigenous development of an inspection system called BARCIS (BARC Channel Inspection System) at Bhabha Atomic Research Center. BARCIS consists of mainly three parts; drive and control unit, special sealing plug and an inspection head carrying various NDT sensors. Five such systems have been built and deployed at various power plants. The paper deals with the development of the BARCIS system for meeting the ISI requirements of coolant channels, development cycle of this system from its conception to evolution to the present state, challenges, data generated and experience gained (ISI of nearly 900 coolant channels has been completed). Prior to BARCIS, pressure tube gauging equipment for pre-service inspection of coolant tubes was developed in 1980. Moreover a tool for ISI of coolant channels in dry condition was developed in 1990. The paper also describes evolution of various contingency procedures and devices developed over the last one decade. Future plans taking into account technological advancement, changes in the scope of inspection due to design and operating experiences and plant layout will also be covered. The paper describes the efforts put in to develop drive and control mechanism to suit the different vault layouts. The drive mechanism is responsible for linear and rotary movement of the inspection head to carry out 100% volumetric inspection. Special emphasis has been laid on the safety devices required during the inspection activity. Special measures for heavy water retention in

  4. Compatibility of structural materials with fusion reactor coolant and breeder fluids

    International Nuclear Information System (INIS)

    DeVan, J.H.

    1979-01-01

    Fusion reactors are characterized by a lithium-containing blanket, a heat transfer medium that is integral with the blanket and first wall, and a heat engine that couples to the heat transfer medium. A variety of lithium-containing substances have been identified as potential blanket materials, including molten lithium metal, molten LiF-BeF 2 , Pb-Li alloys, and solid ceramic compounds such as Li 2 O. Potential heat transfer media include liquid lithium, liquid sodium, molten nitrates, water, and helium. Each of these coolants and blankets requires a particular set of chemical and mechanical properties with respect to the associated reactor and heat engine structural materials. This paper discusses the materials factors that underlie the selection of workable combinations of blankets and coolants. It also addresses the materials compatibility problems generic to those blanket-coolant combinations currently being considered in reactor design studies. (orig.)

  5. Additional requirements for leak-before-break application to primary coolant piping in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, G. [AIB Vincotte Nuclear, Brussels (Belgium)

    1997-04-01

    Leak-Before-Break (LBB) technology has not been applied in the first design of the seven Pressurized Water Reactors the Belgian utility is currently operating. The design basis of these plants required to consider the dynamic effects associated with the ruptures to be postulated in the high energy piping. The application of the LBB technology to the existing plants has been recently approved by the Belgian Safety Authorities but with a limitation to the primary coolant loop. LBB analysis has been initiated for the Doel 3 and Tihange 2 plants to allow the withdrawal of some of the reactor coolant pump snubbers at both plants and not reinstall some of the restraints after steam generator replacement at Doel 3. LBB analysis was also found beneficial to demonstrate the acceptability of the primary components and piping to the new conditions resulting from power uprating and stretch-out operation. LBB analysis has been subsequently performed on the primary coolant loop of the Tihange I plant and is currently being performed for the Doel 4 plant. Application of the LBB to the primary coolant loop is based in Belgium on the U.S. Nuclear Regulatory Commission requirements. However the Belgian Safety Authorities required some additional analyses and put some restrictions on the benefits of the LBB analysis to maintain the global safety of the plant at a sufficient level. This paper develops the main steps of the safety evaluation performed by the Belgian Safety Authorities for accepting the application of the LBB technology to existing plants and summarizes the requirements asked for in addition to the U.S. Nuclear Regulatory Commission rules.

  6. Modelling nonstationary thermohydrodynamic processes in heat-exchange circuits with a two-phase coolant

    International Nuclear Information System (INIS)

    Blinkov, V.N.

    1993-01-01

    This paper presents a mathematical model and a open-quotes fastclose quotes computer program for analyzing nonstationary thermohydrodynamic processes in distributed multi-element circuits containing a two-phase coolant. The author's approach is based on representing the distributed multi-element circuits with the two-phase coolant (such as cooling circuits of the reactor of an atomic power station) in the form of equivalent thermohydrodynamic chains composed of idealized elements with the intrinsic properties of the structure elements of real systems. The author has developed the nomenclature of such conceptual elements for objects which can be modelled; the nomenclature encompasses the control volumes (with a single-phase or two-phase coolant or a moving boundary of boiling/condensation) and the branch lines (type of tube and connections in dependence on the inertia of the coolant being taken into account) for a hydrodynamic submodel and the thermal components and lines for a thermal submodel. The mathematical models which have been developed and the program using them are designated for various forms of calculating slow thermohydrodynamic processes in multi-element coolant circuits in reactors and modeling test stands. The program facilitates calculation of the range of stable operation, detailed studies of stationary and nonstationary modes of operation, and forecasts of effective engineering measures to obtain stability with the aid of microcomputers

  7. Evaluation of organic coolants for the transportation of LMFBR spent fuel rods

    International Nuclear Information System (INIS)

    Arnold, C. Jr.

    1978-05-01

    The physical and chemical processes that are likely to occur when sodium coated LMFBR spent fuel rods are submerged in various aromatic organic coolants was defined by means of immersion experiments carried out with sodium coated 304 stainless steel coupons. Upon immersion of sodium coated coupons at 220 0 C in hydrocarbon type coolants such as Therminol 88, a mixture of terphenyls, not only was the metallic sodium retained on the coupon, but a carbonaceous coating formed on the surface of the sodium. In contrast, coolants that contained aromatic ether bonds, such as Dowtherm A, reacted with sodium at 220 0 C to form phenolate and other salts, which precipitated from the coolant in the form of a dark sludge. With Dowtherm A, removal of metallic sodium from the coupon was essentially complete in a matter of hours at temperatures of 160--220 0 C. Data on the rate and efficiency of sodium removal upon immersion in Dowtherm A at elevated temperatures were obtained. In addition the kinetics and chemistry of the sodium/Dowtherm A reaction were defined. Because sodium sludges are potentially incompatible with the containing structural materials and the fuel elements, it is recommended that sodium be removed prior to immersion in the coolant via reaction with benzoic acid; this method should be adaptable to the facilities at reactor sites. In aging studies Dowtherm A was found to be thermally stable up to 400 0 C and radiatively stable at ambient conditions. The combined effect of heat and radiation was not defined

  8. Predicting the conditions under which vibroacoustic resonances with external periodic loads occur in the primary coolant circuits of VVER-based NPPs

    Science.gov (United States)

    Proskuryakov, K. N.; Fedorov, A. I.; Zaporozhets, M. V.

    2015-08-01

    The accident at the Japanese Fukushima Daiichi nuclear power plant (NPP) caused by an earthquake showed the need of taking further efforts aimed at improving the design and engineering solutions for ensuring seismic resistance of NPPs with due regard to mutual influence of the dynamic processes occurring in the NPP building structures and process systems. Resonance interaction between the vibrations of NPP equipment and coolant pressure pulsations leads to an abnormal growth of dynamic stresses in structural materials, accelerated exhaustion of equipment service life, and increased number of sudden equipment failures. The article presents the results from a combined calculation-theoretical and experimental substantiation of mutual amplification of two kinds of external periodic loads caused by rotation of the reactor coolant pump (RCP) rotor and an earthquake. The data of vibration measurements at an NPP are presented, which confirm the predicted multiple amplification of vibrations in the steam generator and RCP at a certain combination of coolant thermal-hydraulic parameters. It is shown that the vibration frequencies of the main equipment may fall in the frequency band corresponding to the maximal values in the envelope response spectra constructed on the basis of floor accelerograms. The article presents the results from prediction of conditions under which vibroacoustic resonances with external periodic loads take place, which confirm the occurrence of additional earthquake-induced multiple growth of pressure pulsation intensity in the steam generator at the 8.3 Hz frequency and additional multiple growth of vibrations of the RCP and the steam generator cold header at the 16.6 Hz frequency. It is shown that at the elastic wave frequency equal to 8.3 Hz in the coolant, resonance occurs with the frequency of forced vibrations caused by the rotation of the RCP rotor. A conclusion is drawn about the possibility of exceeding the design level of equipment vibrations

  9. TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT

    Science.gov (United States)

    Gaugler, R. E.

    1994-01-01

    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient

  10. EXPERIMENTAL STUDY OF LOCAL HYDRODYNAMICS AND MASS EXCHANGE PROCESSES OF COOLANT IN FUEL ASSEMBLIES OF PRESSURIZED WATER REACTORS

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2016-01-01

    Full Text Available The results of experimental studies of local hydrodynamics and mass exchange of coolant flow behind spacer and mixing grids of different structural versions that were developed for fuel assemblies of domestic and foreign nuclear reactors are presented in the article. In order to carry out the study the models of the following fuel assemblies have been fabricated: FA for VVER and VBER, FA-KVADRAT for PWR-reactor and FA for KLT-40C reactor. All the models have been fabricated with a full geometrical similarity with full-scale fuel assemblies. The study was carried out by simulating the flow of coolant in a core by air on an aerodynamic test rig. In order to measure local hydrodynamic characteristics of coolant flow five-channel Pitot probes were used that enable to measure the velocity vector in a point by its three components. The tracerpropane method was used for studying mass transfer processes. Flow hydrodynamics was studied by measuring cross-section velocities of coolant flow and coolant rates according to the model cells. The investigation of mass exchange processes consisted of a study of concentration distribution for tracer in experimental model, in determination of attenuation lengths of mass transfer processes behind mixing grids, in calculating of inter-cellar mass exchange coefficient. The database on coolant flow in fuel assemblies for different types of reactors had been accumulated that formed the basis of the engineering substantiation of reactor cores designs. The recommendations on choice of optimal versions of mixing grids have been taken into consideration by implementers of the JSC “OKBM Afrikantov” when creating commissioned fuel assemblies. The results of the study are used for verification of CFD-codes and CFD programs of detailed cell-by-cell calculation of reactor cores in order to decrease conservatism for substantiation of thermal-mechanical reliability.

  11. Results of Semiscale Mod-2C small-break (5%) loss-of-coolant accident. Experiments S-LH-1 and S-LH-2

    International Nuclear Information System (INIS)

    Loomis, G.G.; Streit, J.E.

    1985-11-01

    Two experiments simulating small break (5%) loss-of-coolant accidents (5% SBLOCAs) were performed in the Semiscale Mod-2C facility. These experiments were identical except for downcomer-to-upper-head bypass flow (0.9% in Experiment S-LH-1 and 3.0% in Experiment S-LH-2) and were performed at high pressure and temperature [15.6 MPa (2262 psia) system pressure; 37 K (67 0 F) core differential temperature; 595 K(610 0 F) hot leg fluid temperature]. From the experimental results, the signature response and transient mass distribution are determined for a 5% SBLOCA. The core thermal-hydraulic response is characterized, including core void distribution maps, and the effect of core bypass flow on transient severity is assessed. Comparisons are made between postexperiment RELAP5 calculations and the experimental results, and the capability of RELAP5 to calculate the phenomena is assessed. 115 figs

  12. On natural circulation in High Temperature Gas-Cooled Reactors and pebble bed reactors for different flow regimes and various coolant gases

    International Nuclear Information System (INIS)

    Melesed'Hospital, G.

    1983-01-01

    The use of CO 2 or N 2 (heavy gas) instead of helium during natural circulation leads to improved performance in both High Temperature Gas-Cooled Reactors (HTGR) and in Pebble Bed Reactors (PBR). For instance, the coolant temperature rise corresponding to a coolant pressure level and a rate of afterheat removal could be only 18% with CO 2 as compared to He, for laminar flow in HTGR; this value would be 40% in PBR. There is less difference between HTGR and PBR for turbulent flows; CO 2 is found to be always better than N 2 . These types of results derived from relationships between coolant properties, coolant flow, temperature rise, pressure, afterheat levels and core geometry, are obtained for HTGR and PBR for various flow regimes, both within the core and in the primary loop

  13. Method of suppressing the deposition of Co-60 to primary coolant pipeways in a nuclear reactor

    International Nuclear Information System (INIS)

    Hoshi, Michio; Tachikawa, Enzo; Goto, Satoshi; Sagawa, Chiaki; Yonezawa, Chushiro.

    1987-01-01

    Purpose: To suppress the deposition of Co-60 to primary coolant pipeways in a nuclear reactor. Method: To reduce the accumulation of Co-60 by causing chemical species of extremely similar chemical property with soluble Co-60 to be present together in coolants and replacing the deposition of Co-60 to the primary coolant pipeways in a nuclear reactor with that of the coexistent chemical spacies. Ni or Zn is used as the coexistet chemical spacies of similar chemical property with Co-60. The coexistent amount is from 5 to 10 times of the soluble Co-60 in the primary coolants. Ni or Zn solution adjusted with concentration is poured into and mixed with the coolants from a water feed source by using a high pressure constant volume pump. The amount of Co-60 taken into the pipeways caused by corrosion due to high temperature coolant is reduced to about 1/5 as compared with the case of Co-60 alone if 1 ppb of soluble Co-60 is present in water and 5 ppb of soluble Ni or Zn is added and, reduced to 1/12 if the amount of Ni or Zn is 10 ppb. (Kamimura, M.)

  14. Transient flow characteristics of nuclear reactor coolant pump in recessive cavitation transition process

    International Nuclear Information System (INIS)

    Wang Xiuli; Yuan Shouqi; Zhu Rongsheng; Yu Zhijun

    2013-01-01

    The numerical simulation calculation of the transient flow characteristics of nuclear reactor coolant pump in the recessive cavitation transition process in the nuclear reactor coolant pump impeller passage is conducted by CFX, and the transient flow characteristics of nuclear reactor coolant pump in the transition process from reducing the inlet pressure at cavitation-born conditions to NPSHc condition is studied and analyzed. The flow field analysis shows that, in the recessive cavitation transition process, the speed diversification at the inlet is relative to the bubble increasing, and makes the speed near the blade entrance increase when the bubble phase region becomes larger. The bubble generation and collapse will affect the the speed fluctuation near the entrance. The vorticity close to the blade entrance gradually increasing is influenced by the bubble phase, and the collapse of bubble generated by cavitation will reduce the vorticity from the collapse to impeller outlet. Pump asymmetric structure causes the asymmetry of the flow, velocity and outlet pressure distribution within every impeller flow passage, which cause the asymmetry of the transient radial force. From the dimensionless t/T = 0.6, the bubble phase starts to have impact on the impeller transient radial force, and results in the irregular fluctuations. (authors)

  15. Theoretical study on loss of coolant accident of a research reactor

    International Nuclear Information System (INIS)

    Lee, Kwon-Yeong; Kim, Wan-Soo

    2016-01-01

    Highlights: • A theoretical model of siphon breaking phenomena was developed. • A general formula using Chisholm coefficient B was proposed. • The safety requirements regarding a loss of coolant accident of research reactors could be found out. - Abstract: Under the design conditions of a research reactor, the siphon phenomenon induced by pipe rupture can cause continuous efflux of water. In order to prevent water efflux, an additional facility is necessary. A siphon breaker is a type of safety facility that can resist the loss of coolant effectively. However, analysis of siphon breaking is complex since it comprises two-phase flow and there are many inputs to be considered. For this reason, we analyzed the experimental results to develop a theoretical model of siphon breaking phenomena. Developed model is based on fluid mechanics and Chisholm model. From Bernoulli’s equation, the velocity and quantity as well as undershooting height, water level, pressure, friction coefficient, and factors related to the two-phase flow could be calculated. The Chisholm model, which is able to analyze the two-phase flow, can predict the results in a manner similar to those obtained from a real-scale experiment, and a general formula using Chisholm coefficient B was proposed in this study. Also, we verified the theoretical model and concluded that it is possible to analyze the siphon breaking. Moreover, the design conditions that can satisfy the safety requirements regarding a loss of coolant accident of research reactors could be found out by using the theoretical model. In conclusion, we propose the theoretical model which can analyze the siphon breaking as real, and it is helpful not only to analyze but also to design the siphon breaker.

  16. Accident beyond the design basis management with the coolant loss at the NPP with WWER

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Klyuchnikov, A.A.; Kolykhanov, V.N.

    2010-01-01

    The analysis of status and experience of development on modelling and accident beyond the design basis management, including the severe accidents, at the nuclear power plants is carried out. The methodical providing of manuals on the accident beyond the design basis management with the coolant loss on the basis of simulated critical system configurations providing the necessary safety function performance on reactor unit is proposed. The project of symptom-oriented manuals on accident beyond the design basis management with the coolant loss on the serial power unit with WWER-1000 on the basis of developed methodical providing and well known results of deepened safety analysis is presented.

  17. Vision system for precision alignment of coolant channels

    International Nuclear Information System (INIS)

    Kar, S.; Rao, Y.V.; Valli Kumar; Joshi, D.G.; Chadda, V.K.; Nigam, R.K.; Kayal, J.N.; Panwar, S.; Sinha, R.K.

    1997-01-01

    This paper describes a vision system which has been developed for precision alignment of Coolant Channel Replacement Machine (CCRM) with respect to the front face of the coolant channel under repair/replacement. It has provisions for automatic as well as semi-automatic alignment. A special lighting scheme has been developed for providing illumination to the front face of the channel opening. This facilitates automatic segmentation of the digitized image. The segmented image is analysed to obtain the centre of the front face of the channel opening and thus the extent of misalignment i.e. offset of the camera with respect to the front face of the channel opening. The offset information is then communicated to the PLC to generate an output signal to drive the DC servo motors for precise positioning of the co-ordinate table. 2 refs., 5 figs

  18. The corrosion products in the coolant circuits of pressurized water nuclear power plants

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of the corrosion products formed in the primary and secondary coolant circuits of light-water pressurized reactors are reviewed. The problem induced by the pollution of coolants and metallic surface are examined. Then, the recommendations to follow to minimize the disturbing effects of this pollution by the corrosion products are indicated [fr

  19. Experiments for simulating a great leak in the primary coolant circuit of a PWR type reactor

    International Nuclear Information System (INIS)

    Liebig, E.

    1977-01-01

    A loss of coolant accident is to be simulated on a high pressure test rig. The accident is initiated by an externally induced rupture of a pair of rupture-disks installed in a coolant ejection device. Several problems of simulating leaks in the primary coolant circuit of PWR type reactors are dealt with. The selection of appropriate rupture-disks for such experiments is described

  20. Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant

    Science.gov (United States)

    Schopf, C.; Rascher, R.

    2016-11-01

    The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.

  1. Water quality control device and water quality control method for reactor primary coolant system

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Eishi; Watanabe, Atsushi.

    1995-01-01

    The present invention is suitable for preventing defects due to corrosion of structural materials in a primary coolant system of a BWR type reactor. Namely, a concentration measuring means measures the concentration of oxidative ingredients contained in a reactor water. A reducing electrode is disposed along a reactor water flow channel in the primary coolant system and reduces the oxidative ingredients. A reducing counter electrode is disposed along the reactor water flow channel in the primary coolant system, and electrically connected to the reducing electrode. The reactor structural materials are used as a reference electrode providing a reference potential to the reducing electrode and the reducing counter electrode. A potential control means controls the potential of the reducing electrode relative to the reference potential based on the signals from the concentration measuring means. A stable reference potential in a region where an effective oxygen concentration is stable can be obtained irrespective of the change of operation conditions by using the reactor structural materials disposed to a boiling region in the reactor core as a reference electrode. As a result, the water quality can be controlled at high accuracy. (I.S.)

  2. The application of release models to the interpretation of rare gas coolant activities

    International Nuclear Information System (INIS)

    Wise, C.

    1985-01-01

    Much research is carried out into the release of fission products from UO 2 fuel and from failed pins. A significant application of this data is to define models of release which can be used to interpret measured coolant activities of rare gas isotopes. Such interpretation is necessary to extract operationally relevant parameters, such as the number and size of failures in the core and the 131 I that might be released during depressurization faults. The latter figure forms part of the safety case for all operating CAGRs. This paper describes and justifies the models which are used in the ANAGRAM program to interpret CAGR coolant activities, highlighting any remaining uncertainties. The various methods by which the program can extract relevant information from the measurements are outlined, and examples are given of the analysis of coolant data. These analyses point to a generally well understood picture of fission gas release from low temperature failures. Areas of higher temperature release are identified where further research would be beneficial to coolant activity analysis. (author)

  3. Requalification of the LOFT reactor following a loss of coolant experiment (Level I)

    International Nuclear Information System (INIS)

    Cannon, J.W.

    1979-01-01

    During a Loss of Coolant Experiment (LOCE), the LOFT reactor experiences an acceleration of 10 G's and fuel cladding temperature changes at a rate of 1100 0 K/sec. These unparalleled conditions present a unique startup problem to the LOFT program: How can the integrity of the fuel be confirmed so as to minimize operation if damage has occurred. The Level I Requalification Program is designed to accomplish this. It is a progressive series of tests, designed to detect damage at the earliest possible time, and thus preclude or minimize operation if damage exists. First, fuel specialists examine the LOCE data for possible damaging conditions and the results of primary coolant sample analysis for signs of failed fuel. Second, the requalification program proceeds to a series of mechanical and physics tests

  4. Pressurization of a compartment due to the rupture of coolant piping

    International Nuclear Information System (INIS)

    Kot, C.A.; Hsieh, B.J.

    1993-01-01

    The pressurization and venting of enclosed compartments due to the accidental rupture of coolant piping is a safety problem common to many nuclear facilities. The processes associated with such an accident are very complex, involving, in general, transient multiphase flows, interactions and mixing between the incoming flows and the gases in the compartment, and heat transfer with the surroundings. Since pipe rupture is associated with many phenomenological uncertainties, elaborate 3-D thermal-hydraulic modeling and extensive calculational efforts are not warranted for many design applications. It is then more appropriate to rely. on simplified, global analysis approaches which can provide reasonably conservative estimates of the structural loads and flow processes, and which can readily be used in parameter/design studies. The objective of this paper is to present such an approach

  5. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  6. Lubrication analysis of the thrust bearing in the main coolant pump of SMART

    International Nuclear Information System (INIS)

    Lee, J. S.; Park, J. S.; Kim, J. H.; Hur, H.; Kim, J. I.

    2001-01-01

    Thrust bearing and journal bearings are installed in the main coolant pump for SMART to support the rotating shaft with proper lubrication. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and especially the MCP bearings are lubricated with water without external lubricating oil supply. Because axial load capacity of the thrust bearing can hardly meet requirement to acquire hydrodynamic or fluid film lubrication state, self-lubrication characteristics of silicon graphite meterials would be needed. Lubricational analysis method for thrust bearing for the main coolant pump of SMART is proposed, and lubricational characteristics of the bearing generated by solving the Reynolds equation are examined in this paper

  7. The chemistry of the X-7 (organic) loop coolant part I, May 1960 to April 1965

    International Nuclear Information System (INIS)

    Smee, J.L.

    1966-01-01

    The report describes in detail the X-7 coolant chemistry from the start of loop operation in May 1960 to April 1965. During this period the coolant was Santowax OM containing a nominal 30% high boilers or high molecular weight decomposition products. During the first few months of operation it became apparent that there wa.s a serious problem in the fouling of fuel element heat transfer surfaces. This was overcome by continuous purification of the coolant by Attapulgus clay and filters. Since clay purification has been in use, the fouling rate has been less than 0.2 μg.cm -2 .h -1 (10 μm per year), the target value for successful operation of an organic cooled power reactor. Control of the fouling promoter chlorine has been accomplished by completely excluding it from the vicinity of the loop. Any which does get into the coolant is removed by a bed of Mg ribbon and Pd pellets. Since such a bed has been in use, the Cl content of the coolant has been less than 3 ppm. Also given in this report are: (a) a brief history of the loop since its inception in 1959. (b) the effect of the clay column on the coolant chemistry. (c) a complete description of the current purification, degas and make-up circuits, (d) a summary of the coolant chemistry during all fuel irradiations. (author)

  8. Thermal-hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach

    International Nuclear Information System (INIS)

    Jahanfarnia, G.; Zarifi, E.; Veysi, F.

    2013-01-01

    The aim of this study was to perform a thermal-hydraulic analysis of nanofluids as coolant in the Bushehr VVER-1000 reactor core using the porous media approach. Water-based nanofluids containing various volume fractions of Al 2 O 3 and TiO 2 nanoparticles were analyzed. The conservation equations were discretized by the finite volume method and solved by numerical methods. To validate the approaches applied in this study, the results of the model and COBRA-EN code were compared for pure water. The achieved results show that the temperature of the coolant increases with the concentration of the nanoparticles. (authors)

  9. Radiolysis of the VVER-1000 reactor coolant: An experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Bugaenko, V.L.; Kabakchi, S.A.

    1995-01-01

    Variations in the composition of the coolant for the primary circuit of a VVER-1000 reactor of the Kalinin nuclear power plant upon transition from power-level operation to shutdown was studied experimentally. The data obtained were used for verification of the MORAVA-H2 program developed earlier for simulation of the coolant state in pressurized-water power reactors

  10. Reactor coolant pump shaft seal stability during station blackout

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Hill, R.C.; Wensel, R.G.

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries

  11. Reactor coolant pump shaft seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, D B; Hill, R C; Wensel, R G

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries.

  12. Core dynamics analysis for reactivity insertion and loss of coolant flow tests using the HTTR

    International Nuclear Information System (INIS)

    Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki

    2007-01-01

    The High Temperature engineering Test Reactor (HTTR) is a graphite-moderated and a gas-cooled reactor with a thermal power of 30 MW and a reactor outlet coolant temperature of 950degC (SAITO, 1994). Safety demonstration tests using the HTTR are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-Temperature Gas-cooled Reactors (HTGRs) (TACHIBANA 2002) (NAKAGAWA 2004). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named ACCORD (TAKAMATSU 2006), was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We used a conventional method, namely, a one-dimensional flow channel model and reactor kinetics model with a single temperature coefficient, taking into account the temperature changes in the core. However, a slight difference between the analytical and experimental results was observed. Therefore, we have modified this code to use a model with four parallel channels and twenty temperature coefficients in the core. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results of the reactivity insertion test as well as the loss of coolant flow tests by tripping one or two out of three gas circulators. Finally, the pre-analytical result of

  13. Design of the solid target structure and the study on the coolant flow distribution in the solid target using the 2-dimensional flow analysis

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Terada, Atsuhiko; Ishikura, Shuichi; Teshigawara, Makoto; Kinoshita, Hidetaka; Kobayashi, Kaoru; Kaminaga, Masaki; Hino, Ryutaro; Susuki, Akira

    1999-11-01

    A solid target cooled by heavy water is presently under development under the Neutron Science Research Project of the Japan Atomic Energy Research Institute (JAERI). Target plates of several millimeters thickness made of heavy metal are used as the spallation target material and they are put face to face in a row with one to two millimeters gaps in between though which heavy water flows, as the coolant. Based on the design criteria regarding the target plate cooling, the volume percentage of the coolant, and the thermal stress produced in the target plates, we conducted thermal and hydraulic analysis with a one dimensional target plate model. We choosed tungsten as the target material, and decided on various target plate thicknesses. We then calculated the temperature and the thermal stress in the target plates using a two dimensional model, and confirmed the validity of the target plate thicknesses. Based on these analytical results, we proposed a target structure in which forty target plates are divided into six groups and each group is cooled using a single pass of coolant. In order to investigate the relationship between the distribution of the coolant flow, the pressure drop, and the coolant velocity, we conducted a hydraulic analysis using the general purpose hydraulic analysis code. As a result, we realized that an uniform coolant flow distribution can be achieved under a wide range of flow velocity conditions in the target plate cooling channels from 1 m/s to 10 m/s. The pressure drop along the coolant path was 0.09 MPa and 0.17 MPa when the coolant flow velocity was 5 m/s and 7 m/s respectively, which is required to cool the 1.5 MW and 2.5 MW solid targets. (author)

  14. Study on B-10 consumption of PWR primary coolant during normal operation

    International Nuclear Information System (INIS)

    Liang, C.H.

    1994-01-01

    B-10 consumption under PWR primary coolant conditions has been analyzed. The result indicates its time-dependent change reacting with neutron in the normal operation. In this work, neutron energy assumed to be 4 eV; thermal neutron flux is in the range of 3 x 10 13 to 3 x 10 14 n/sec - cm 2 and the time of cycling of the primary coolant through the RCS is 8 sec. and its retention time in the core region is about 1 sec. Under this condition investigated, B-10 consumption is less than 5% at 3 x 10 13 n/sec - cm 2 thermal neutron flux, and closes to 27% at 3 x 10 14 n/sec - cm 2 by calculation at the 16th month of continuous operation. The effect of B-10 consumption on PWR primary water chemistry is also investigated. (author). 1 fig., 2 tabs., 4 refs

  15. The deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail. (author)

  16. Transient simulation of coolant peak temperature due to prolonged fan and/or water pump operation after the vehicle is keyed-off

    Science.gov (United States)

    Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali

    2014-01-01

    Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.

  17. Reactor coolant flow measurements at Point Lepreau

    International Nuclear Information System (INIS)

    Brenciaglia, G.; Gurevich, Y.; Liu, G.

    1996-01-01

    The CROSSFLOW ultrasonic flow measurement system manufactured by AMAG is fully proven as reliable and accurate when applied to large piping in defined geometries for such applications as feedwater flows measurement. Its application to direct reactor coolant flow (RCF) measurements - both individual channel flows and bulk flows such as pump suction flow - has been well established through recent work by AMAG at Point Lepreau, with application to other reactor types (eg. PWR) imminent. At Point Lepreau, Measurements have been demonstrated at full power; improvements to consistently meet ±1% accuracy are in progress. The development and recent customization of CROSSFLOW to RCF measurement at Point Lepreau are described in this paper; typical measurement results are included. (author)

  18. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  19. Generic evaluation of small break loss-of-coolant accident behavior in Babcock and Wilcox designed 177-FA operating plants

    International Nuclear Information System (INIS)

    1980-01-01

    Slow system depressurization resulting from small break loss-of-coolant accidents (LOCAs) in the reactor coolant system have not, until recently, received detailed analytical study comparable to that devoted to large breaks. Following the TMI-2 accident, the staff had a series of meetings with Babcock and Wilcox (B and W) and the B and W licensees. The staff requested that B and W and the licensees: (1) systematically evaluate plant response for small break loss-of-coolant accidents; (2) address each of the concerns documented in the Michelson report; (3) validate the computer codes used against the TMI-2 accident; (4) extend the break spectrum analysis to very small breaks, giving special consideration to failure of pressurizer valves to close; (5) analyze degraded conditions where AFW is not available; (6) prepare design changes aimed at reducing the probability of loss-of-coolant accidents produced by the failure of a PORV to close; and (7) develop revised emergency procedures for small breaks. This report describes the review of the generic analyses performed by B and W based on the requests stated above

  20. High-temperature process heat reactor with solid coolant and radiant heat exchange

    International Nuclear Information System (INIS)

    Alekseev, A.M.; Bulkin, Yu.M.; Vasil'ev, S.I.

    1984-01-01

    The high temperature graphite reactor with the solid coolant in which heat transfer is realized by radiant heat exchange is described. Neutron-physical and thermal-technological features of the reactor are considered. The reactor vessel is made of sheet carbon steel in the form of a sealed rectangular annular box. The moderator is a set of graphite blocks mounted as rows of arched laying Between the moderator rows the solid coolant annular layings made of graphite blocks with high temperature nuclear fuel in the form of coated microparticles are placed. The coolant layings are mounted onto ring movable platforms, the continuous rotation of which is realizod by special electric drives. Each part of the graphite coolant laying consecutively passes through the reactor core neutron cut-off zones and technological zone. In the core the graphite is heated up to the temperature of 1350 deg C sufficient for effective radiant heat transfer. In the neutron cut-off zone the chain reaction and further graphite heating are stopped. In the technological zone the graphite transfers the accumulated heat to the walls of technological channels in which the working medium moves. The described reactor is supposed to be used in nuclear-chemical complex for ammonia production by the method of methane steam catalytic conversion