WorldWideScience

Sample records for conveyor based multifunction

  1. Voltage-Mode Multifunction Biquadratic Filters Using New Ultra-Low-Power Differential Difference Current Conveyors

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2013-06-01

    Full Text Available This paper presents two low-power voltage-mode multifunction biquadratic filters using differential difference current conveyors. Each proposed circuit employs three differential difference current conveyors, two grounded capacitors and two grounded resistors. The low-voltage ultra-low-power differential difference current conveyor is used to provide low-power consumption of the proposed filters. By appropriately connecting the input and output terminals, the proposed filters can provide low-pass, band-pass, high-pass, band-stop and all-pass voltage responses at high-input terminals, which is a desirable feature for voltage-mode operations. The natural frequency and the quality factor can be orthogonally set by adjusting the circuit components. For realizing all the filter responses, no inverting-type input signal requirements as well as no component-matching conditional requirements are imposed. The incremental parameter sensitivities are also low. The characteristics of the proposed circuits are simulated by using PSPICE simulators to confirm the presented theory.

  2. Current Conveyor Based Window Comparator Circuits

    Directory of Open Access Journals (Sweden)

    Sudhanshu Maheshwari

    2016-01-01

    Full Text Available This paper introduces a new window comparator circuit utilizing a new current conveyor and two diodes, operable at ±1.25 V and capable of accurately detecting the voltage windows. Another modified circuit with distinct binary levels suited for automatic control applications is also suggested. Exhaustive simulation results showing detection of windows, as small as 50 mV and as high as 1 V, are included. Comparisons are further drawn with the traditional operational amplifier based circuit and the new circuit is found to benefit from the use of current-mode active element, namely, Extra-X Current Controlled Current Conveyor. The proposed theory is well supported through simulation results.

  3. Minimum Configuration Insensitive Multifunctional Current-Mode Biquad Using Current Conveyors and All-Grounded Passive Components

    Directory of Open Access Journals (Sweden)

    W. Chunhua

    2010-04-01

    Full Text Available This paper proposes a new current conveyorbased high-output impedance single-input three-output current mode filter with minimum configuration. It contains two dual output second generation current conveyors, one third generation dual output current conveyor, and four grounded resistors and capacitors. The circuit simultaneously provides low-pass, band-pass, and high-pass filtering outputs, without any passive component matching conditions and restrictions on input signals. Additionally, the proposed circuit offers following advantages: Minimum active and passive element count, high output and low input impedances, suitable for cascading identical currentmode sections, all passive elements are grounded (no virtual grounding, low natural frequency and Q-factor sensitivities. The influences of non-ideal current conveyors on the proposed circuit are researched in the last.

  4. Optimizing the Pipe Diameter of the Pipe Belt Conveyor Based on Discrete Element Method

    Science.gov (United States)

    Guo, Yong-cun; Wang, Shuang; Hu, Kun; Li, De-yong

    2016-03-01

    In order to increase the transport volume of the pipe belt conveyor and reduce lateral pressure of the supporting roller set, this study aims to optimize the pipe diameter of the pipe belt conveyor. A mechanical model of the pipe belt conveyor with six supporting roller sets in the belt bearing section was built based on the infinitesimal method, and the formula for calculating the lateral pressure of each supporting roller was deduced on the basis of reasonable assumption. Simulated analysis was carried out on the operation process of the pipe belt conveyor by using the discrete element method. The result showed that, when the other conditions were certain, as the pipe diameter increased, the average lateral pressure of the supporting roller set increased, with a gradually decreasing increment, which was consistent with the calculated result of the theoretical formula. An optimized pipe diameter under the current conditions was obtained by fitting the curve of the formula for calculating the transport volume of the pipe belt conveyor and its simulation curve. It provided a certain reference value for improving the transport efficiency and prolonging the service life of the pipe belt conveyor.

  5. Design of belt conveyor electric control device based on CC-link bus

    Science.gov (United States)

    Chen, Goufen; Zhan, Minhua; Li, Jiehua

    2016-01-01

    In view of problem of the existing coal mine belt conveyor is no field bus communication function, two levels belt conveyor electric control system design is proposed based on field bus. Two-stage belt conveyor electric control system consists of operation platform, PLC control unit, various sensors, alarm device and the water spraying device. The error protection is realized by PLC programming, made use of CC-Link bus technology, the data share and the cooperative control came true between host station and slave station. The real-time monitor was achieved by the touch screen program. Practical application shows that the system can ensure the coalmine production, and improve the automatic level of the coalmine transport equipment.

  6. Feeding Control System of Conveyor-belt Based on Image Processing

    Institute of Scientific and Technical Information of China (English)

    MENG Fan-qin; WANG Yao-cai; XI Li-bo; WANG Jun-wei

    2004-01-01

    Based on the real time measurement of the width of coal flow, the method for measuring the width and the relative position of coal flow on a conveyor-belt by image processing was presented. A feeding control system of conveyor-belt was proposed using a fuzzy controller. This control system consists of CCD camera, universal image sampling system, control network and executor. The result shows that the algorithm used in the image processing is simple and efficient, and the measuring error of width is less than 4%.

  7. Biquads Based on Single Negative Impedance Converter Implemented by Classical Current Conveyor

    Directory of Open Access Journals (Sweden)

    V. Axman

    2007-09-01

    Full Text Available The paper deals with continuous-time ARC biquadratic (second-order filters based on the single classical three-port current conveyors, so called second generation CC II. A unique application of the CC II is discussed, when the terminals Y and Z are connected together. Using this way a negative impedance converter is obtained as a suitable building block in synthesis of several biquads, including notch filters.

  8. A Nanofiber-Based Optical Conveyor Belt for Cold Atoms

    CERN Document Server

    Schneeweiss, Philipp; Mitsch, Rudolf; Reitz, Daniel; Vetsch, Eugen; Rauschenbeutel, Arno

    2012-01-01

    We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- and blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed.

  9. FLUID-BASED SIMULATION APPROACH FOR HIGH VOLUME CONVEYOR TRANSPORTATION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Ying WANG; Chen ZHOU

    2004-01-01

    High volume conveyor systems in distribution centers have very large footprint and can handle large volumes and hold thousands of items. Traditional discrete-event cell-based approach to simulate such networks becomes computationally challenging. An alternative approach, in which the traffic is represented by segments of fluid flow of different density instead of individual packages, is presented in this paper to address this challenge. The proposed fluid-based simulation approach is developed using a Hybrid Petri Nets framework. The underlying model is a combination of an extension of a Batches Petri Nets (BPN) and a Stochastic Petri Nets (SPN). The extensions are in the inclusion of random elements and relaxation of certain structural constraints. Some adaptations are also made to fit the target system modeling. The approach is presented with an example.

  10. Noise in Load Cell Signal in an Automatic Weighing System Based on a Belt Conveyor

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2017-01-01

    Full Text Available Noise in load cell signal in an automatic weighing system based on a belt conveyor has been examined experimentally in time and frequency domains to enhance signal quality. The noise frequency spectrum showed nonlinearly increasing multiple resonance peaks as speed increased. The noise reduction process using noise reduction algorithm, by sharply rejecting peak noise frequency component and afterward forming optimum pulse width ratio through filter slope control using selective switching of 6 LPF stages, was used for enhanced accuracy. The effectiveness of proposed method, controlling both cutoff frequency and slope of LPF, was evaluated by feeding 50 g test mass, and this noise reduction process showed better noise filtering with enhanced accuracy than fixed cutoff frequency control method. The ratio of top to bottom pulse width showed that LPF cutoff frequency above 5 Hz had the ratio above 50% up to 80 m/min speed range.

  11. Multifunctional non-viral delivery systems based on conjugated polymers.

    Science.gov (United States)

    Yang, Gaomai; Lv, Fengting; Wang, Bing; Liu, Libing; Yang, Qiong; Wang, Shu

    2012-12-01

    Multifunctional nanomaterials with simultaneous therapeutic and imaging functions explore new strategies for the treatment of various diseases. Conjugated polymers (CPs) are considered as novel candidates to serve as multifunctional delivery systems due to their high fluorescence quantum yield, good photostability, and low cytotoxicity. Highly sensitive sensing and imaging properties of CPs are well reviewed, while the applications of CPs as delivery systems are rarely covered. This feature article mainly focuses on CP-based multifunctional non-viral delivery systems for drug, protein, gene, and cell delivery. Promising directions for the further development of CP-based delivery systems are also discussed.

  12. The fluid–solid coupling analysis of screw conveyor in drilling fluid centrifuge based on ANSYS

    Directory of Open Access Journals (Sweden)

    Hongbin Liu

    2015-09-01

    Full Text Available In the centrifugal separations of drilling fluid, screw conveyor is a critical component to push and separate the sediment. The work performance and structural parameters of conveyor are immediately related to the production capability, the working life and the separating effect of the centrifuge. The existing researches always use the theoretical calculation of the approximate loads to analyze the strength of conveyor, and it cannot reflect the stress situations accurately. In order to ensure the precise mastery of the working performance, this article obtained pressure distribution under working conditions from CFX evaluation and gained equivalent stress and deformation under several load conditions by using the ANSYS Workbench platform to check the strength of conveyor. The results showed that the influence of centrifugal hydraulic pressure was less than that of centrifugal force on the strength and deformation of conveyor. Besides, the maximum equivalent stress occurred at the inside of the feed opening, while the maximum deformation occurred at the conveyor blade edge of taper extremity. Furthermore, whether considered the feed opening or not, the computing model had a great influence on the analysis results, and the simplified loads had a great influence on the deformation analysis results. The methods and results from this article can provide reference for the design and the improvement of screw conveyor.

  13. Low-Voltage Ultra-Low-Power Current Conveyor Based on Quasi-Floating Gate Transistors

    Directory of Open Access Journals (Sweden)

    F. Khateb

    2012-06-01

    Full Text Available The field of low-voltage low-power CMOS technology has grown rapidly in recent years; it is an essential prerequisite particularly for portable electronic equipment and implantable medical devices due to its influence on battery lifetime. Recently, significant improvements in implementing circuits working in the low-voltage low-power area have been achieved, but circuit designers face severe challenges when trying to improve or even maintain the circuit performance with reduced supply voltage. In this paper, a low-voltage ultra-low-power current conveyor second generation CCII based on quasi-floating gate transistors is presented. The proposed circuit operates at a very low supply voltage of only ±0.4 V with rail-to-rail voltage swing capability and a total quiescent power consumption of mere 9.5 µW. Further, the proposed circuit is not only able to process the AC signal as it's usual at quasi-floating gate transistors but also the DC which extends the applicability of the proposed circuit. In conclusion, an application example of the current-mode quadrature oscillator is presented. PSpice simulation results using the 0.18 µm TSMC CMOS technology are included to confirm the attractive properties of the proposed circuit.

  14. Simply Adjustable Sinusoidal Oscillator Based on Negative Three-Port Current Conveyors

    Directory of Open Access Journals (Sweden)

    R. Sotner

    2010-09-01

    Full Text Available The paper deals with sinusoidal oscillator employing two controlled second-generation negative-current conveyors and two capacitors. The proposed oscillator has a simple circuit configuration. Electronic (voltage adjusting of the oscillation frequency and condition of oscillation are possible. The presented circuit is verified in PSpice utilizing macro models of commercially available negative current conveyors. The circuit is also verified by experimental measurements. Important characteristics and drawbacks of the proposed circuit and influences of real active elements in the designed circuit are discussed in detail.

  15. Noise Properties of CMOS Current Conveyors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1996-01-01

    The definition of the current conveyor is presented and it is shown how different generations of current conveyors can all be combined into a single definition of a multiple-output second generation current conveyor (CCII). Next, noise sources are introduced into the model, and a general noise...... model for the current conveyor is established. This model is used for the analysis of selected examples of current conveyor based operational amplifier configurations and the relative merits with respect to the noise performance of these configurations are discussed. Finally, the noise model...... is developed for a CMOS current conveyor implementation, and optimization strategies for noise reduction are discussed. It is concluded that a class AB implementation provides more flexibility than does a class A configuration. In both cases it is essential to design low noise current mirrors and current...

  16. Nodal Analysis of Circuits Containing Current Conveyors

    OpenAIRE

    T. Dostal; A. I. Rybin

    2001-01-01

    A special method of the nodal analysis of the circuits containing several types of the multiport current conveyors is presented in this paper. The method is based on the given regular and homogeneous models of the irregular current conveyors by the gyrators. Then a diakoptic solving and modification of the inversion of the admittance matrix is applied

  17. Nodal Analysis of Circuits Containing Current Conveyors

    Directory of Open Access Journals (Sweden)

    T. Dostal

    2001-09-01

    Full Text Available A special method of the nodal analysis of the circuits containingseveral types of the multiport current conveyors is presented in thispaper. The method is based on the given regular and homogeneous modelsof the irregular current conveyors by the gyrators. Then a diakopticsolving and modification of the inversion of the admittance matrix isapplied

  18. EVALUATION OF SOME PRODUCTION CHARACTERISTICS OF RECURSIVE CONVEYOR

    Directory of Open Access Journals (Sweden)

    Boris V. Kupriyanov

    2016-01-01

    Full Text Available We consider the two objectives of direct relevance to operational planning based on the model of recursive conveyor process. Calculate the Critical Operation of the conveyor and calculate the Load Factor of the equipment of the conveyor

  19. Overall Performance Evaluation of Tubular Scraper Conveyors Using a TOPSIS-Based Multiattribute Decision-Making Method

    Directory of Open Access Journals (Sweden)

    Yanping Yao

    2014-01-01

    Full Text Available Properly evaluating the overall performance of tubular scraper conveyors (TSCs can increase their overall efficiency and reduce economic investments, but such methods have rarely been studied. This study evaluated the overall performance of TSCs based on the technique for order of preference by similarity to ideal solution (TOPSIS. Three conveyors of the same type produced in the same factory were investigated. Their scraper space, material filling coefficient, and vibration coefficient of the traction components were evaluated. A mathematical model of the multiattribute decision matrix was constructed; a weighted judgment matrix was obtained using the DELPHI method. The linguistic positive-ideal solution (LPIS, the linguistic negative-ideal solution (LNIS, and the distance from each solution to the LPIS and the LNIS, that is, the approximation degrees, were calculated. The optimal solution was determined by ordering the approximation degrees for each solution. The TOPSIS-based results were compared with the measurement results provided by the manufacturer. The ordering result based on the three evaluated parameters was highly consistent with the result provided by the manufacturer. The TOPSIS-based method serves as a suitable evaluation tool for the overall performance of TSCs. It facilitates the optimal deployment of TSCs for industrial purposes.

  20. Conveyor Performance based on Motor DC 12 Volt Eg-530ad-2f using K-Means Clustering

    Science.gov (United States)

    Arifin, Zaenal; Artini, Sri DP; Much Ibnu Subroto, Imam

    2017-04-01

    To produce goods in industry, a controlled tool to improve production is required. Separation process has become a part of production process. Separation process is carried out based on certain criteria to get optimum result. By knowing the characteristics performance of a controlled tools in separation process the optimum results is also possible to be obtained. Clustering analysis is popular method for clustering data into smaller segments. Clustering analysis is useful to divide a group of object into a k-group in which the member value of the group is homogeny or similar. Similarity in the group is set based on certain criteria. The work in this paper based on K-Means method to conduct clustering of loading in the performance of a conveyor driven by a dc motor 12 volt eg-530-2f. This technique gives a complete clustering data for a prototype of conveyor driven by dc motor to separate goods in term of height. The parameters involved are voltage, current, time of travelling. These parameters give two clusters namely optimal cluster with center of cluster 10.50 volt, 0.3 Ampere, 10.58 second, and unoptimal cluster with center of cluster 10.88 volt, 0.28 Ampere and 40.43 second.

  1. Too little, too much - Downsides of multifunctionality in team-based work

    NARCIS (Netherlands)

    van den Beukel, AL; Molleman, E

    2002-01-01

    Not only is multifunctionality regarded as an indispensable design feature of team-based work being multifunctional is allegedly beneficial for employees, and it is presumed to increase job satisfaction and commitment. In this article we argue that multifunctionality also has its downsides and propo

  2. An Integrated MCDM Model for Conveyor Equipment Evaluation and Selection in an FMC Based on a Fuzzy AHP and Fuzzy ARAS in the Presence of Vagueness.

    Science.gov (United States)

    Nguyen, Huu-Tho; Dawal, Siti Zawiah Md; Nukman, Yusoff; Rifai, Achmad P; Aoyama, Hideki

    2016-01-01

    The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts' uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs.

  3. Voltage-Mode All-Pass Filters Using Universal Voltage Conveyor and MOSFET-Based Electronic Resistors

    Directory of Open Access Journals (Sweden)

    N. Herencsar

    2011-04-01

    Full Text Available The paper presents two novel realizations of voltage-mode first-order all-pass filters. Both circuits use single universal voltage conveyor (UVC, single capacitor, and two grounded resistors. Using the two NMOS transistors-based realizations of the electronic resistor with two symmetrical power supplies, presented all-pass filter circuits can be easily made electronically tunable. Proposed filter structures provide both inverting and non-inverting outputs at the same configuration simultaneously and they have high-input and low-output impedances that are desired for easy cascading in voltage-mode operations. The nonidealities of the proposed circuits are also analyzed and compared. The theoretical results of both circuits are verified by SPICE simulations using TSMC 0.35 μm CMOS process parameters. Based on the evaluation, the behavior of one of the circuits featuring better performance was also experimentally measured using the UVC-N1C 0520 integrated circuit.

  4. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  5. Multifunctional bulk plasma source based on discharge with electron injection

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A. S.; Medovnik, A. V. [Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Institute of High Current Electronics, Tomsk 634055 (Russian Federation); Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V. [Institute of High Current Electronics, Tomsk 634055 (Russian Federation)

    2013-01-15

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  6. Multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides.

    Science.gov (United States)

    Chen, Mingsheng; Hu, Mei; Wang, Dali; Wang, Guojian; Zhu, Xinyuan; Yan, Deyue; Sun, Jian

    2012-06-20

    Multifunctional gene vectors with high transfection, low cytotoxicity, and good antitumor and antibacterial activities were prepared from natural aminoglycosides. Through the Michael-addition polymerization of gentamycin and N,N'-methylenebisacrylamide, cationic hyperbranched glycoconjugated polymers were synthesized, and their physical and chemical properties were analyzed by FTIR, (1)H NMR, (13)C NMR, GPC, ζ-potential, and acid-base titration techniques. The cytotoxicity of these hyperbranched glycoconjugated polycations was low because of the hydrolysis of degradable glycosidic and amide linkages in acid conditions. Owing to the presence of various primary, secondary, and tertiary amines in the polymers, hyperbranched glycoconjugated polymers showed high buffering capacity and strong DNA condensation ability, resulting in the high transfection efficiency. In the meantime, due to the introduction of natural aminoglycosides into the polymeric backbone, the resultant hyperbranched glycoconjugated polymers inhibited the growth of cancer cells and bacteria efficiently. Combining the gene transfection, antitumor, and antibacterial abilities together, the multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides may play an important role in protecting cancer patients from bacterial infections.

  7. Emerging Multifunctional NIR Photothermal Therapy Systems Based on Polypyrrole Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mozhen Wang

    2016-10-01

    Full Text Available Near-infrared (NIR-light-triggered therapy platforms are now considered as a new and exciting possibility for clinical nanomedicine applications. As a promising photothermal agent, polypyrrole (PPy nanoparticles have been extensively studied for the hyperthermia in cancer therapy due to their strong NIR light photothermal effect and excellent biocompatibility. However, the photothermal application of PPy based nanomaterials is still in its preliminary stage. Developing PPy based multifunctional nanomaterials for cancer treatment in vivo should be the future trend and object for cancer therapy. In this review, the synthesis of PPy nanoparticles and their NIR photothermal conversion performance were first discussed, followed by a summary of the recent progress in the design and implementation on the mulitifunctionalization of PPy or PPy based therapeutic platforms, as well as the introduction of their exciting biomedical applications based on the synergy between the photothermal conversion effect and other stimulative responsibilities.

  8. Design of Online Monitoring and Fault Diagnosis System for Belt Conveyors Based on Wavelet Packet Decomposition and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available Belt conveyors are the equipment widely used in coal mines and other manufacturing factories, whose main components are a number of idlers. The faults of belt conveyors can directly influence the daily production. In this paper, a fault diagnosis method combining wavelet packet decomposition (WPD and support vector machine (SVM is proposed for monitoring belt conveyors with the focus on the detection of idler faults. Since the number of the idlers could be large, one acceleration sensor is applied to gather the vibration signals of several idlers in order to reduce the number of sensors. The vibration signals are decomposed with WPD, and the energy of each frequency band is extracted as the feature. Then, the features are employed to train an SVM to realize the detection of idler faults. The proposed fault diagnosis method is firstly tested on a testbed, and then an online monitoring and fault diagnosis system is designed for belt conveyors. An experiment is also carried out on a belt conveyor in service, and it is verified that the proposed system can locate the position of the faulty idlers with a limited number of sensors, which is important for operating belt conveyors in practices.

  9. Analysis of the Noise Characteristics of CMOS Current Conveyors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1997-01-01

    The definition of the current conveyor is reviewed and a multiple-output second generation current conveyor (CCII) is shown to combine the different generations of current conveyors presently existing. Next, noise sources are introduced, and a general noise model for the current conveyor...... is described. This model is used for the analysis of selected examples of current conveyor based operational amplifier configurations and the noise performance of these configurations is compared. Finally, the noise model is developed for a CMOS current conveyor implementation, and approaches...... to an optimization of the noise performance are discussed. It is concluded that a class AB implementation can yield a lower noise output for the same dynamic range than a class A implementation. For both the class A implementation and the class AB implementation it is essential to design low noise current mirrors...

  10. Multifunctional switches based on bis-imidazole derivative

    Indian Academy of Sciences (India)

    Abdullah M A Asiri; Gameel A Baghaffar; Khadija O Badahdah; Abdullah G M Al-Sehemi; Salman A Khan; Abeer A Bukhari

    2009-11-01

    multifunctional bis-imidazole derived from piperonal was prepared and found to have photo, thermo, solvato and peiezochromism with colour changes from pale green to deep blue. The multifunctionality colour changes and stability of the coloured species make the derivative candidates for various applications such as optical data storage. The photochromic properties and performance were found to be affected remarkably upon changing the solvent.

  11. Internet-based calibration of a multifunction calibrator

    Energy Technology Data Exchange (ETDEWEB)

    BUNTING BACA,LISA A.; DUDA JR.,LEONARD E.; WALKER,RUSSELL M.; OLDHAM,NILE; PARKER,MARK

    2000-04-17

    A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multifunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

  12. Research on Dynamic Tension for Belt Conveyor with Constant Force Automatic Take-Up Assembly

    Institute of Scientific and Technical Information of China (English)

    MENG Guo-ying; CHEN Jing-li; LI Yu-jin

    2003-01-01

    The article Provides a dynamic model for belt conveyor. Based on the drive-force of conveyor, take-up tension of take-up assembly, gravity of conveyor belt and material, and friction between belt and idlers, it gives a viscoelastic dynamic equation for conveyor belt. It presents a calculation method of analytic solution to both viscoelastic dynamic equation and geometric dynamic equation when automatic take-up assembly is applied to belt conveyor. The article also makes a study of design method of limiting and eliminating the conveyor belt's elastic vibration.

  13. FPGA-Based HD Camera System for the Micropositioning of Biomedical Micro-Objects Using a Contactless Micro-Conveyor

    Directory of Open Access Journals (Sweden)

    Elmar Yusifli

    2017-03-01

    Full Text Available With recent advancements, micro-object contactless conveyers are becoming an essential part of the biomedical sector. They help avoid any infection and damage that can occur due to external contact. In this context, a smart micro-conveyor is devised. It is a Field Programmable Gate Array (FPGA-based system that employs a smart surface for conveyance along with an OmniVision complementary metal-oxide-semiconductor (CMOS HD camera for micro-object position detection and tracking. A specific FPGA-based hardware design and VHSIC (Very High Speed Integrated Circuit Hardware Description Language (VHDL implementation are realized. It is done without employing any Nios processor or System on a Programmable Chip (SOPC builder based Central Processing Unit (CPU core. It keeps the system efficient in terms of resource utilization and power consumption. The micro-object positioning status is captured with an embedded FPGA-based camera driver and it is communicated to the Image Processing, Decision Making and Command (IPDC module. The IPDC is programmed in C++ and can run on a Personal Computer (PC or on any appropriate embedded system. The IPDC decisions are sent back to the FPGA, which pilots the smart surface accordingly. In this way, an automated closed-loop system is employed to convey the micro-object towards a desired location. The devised system architecture and implementation principle is described. Its functionality is also verified. Results have confirmed the proper functionality of the developed system, along with its outperformance compared to other solutions.

  14. Conveyor performance impacts mine productivity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    Factors leading to optimum performance of conveyors and conveyor systems with maximum reliability and least downtime are discussed. These include proper management of drives and take-up, predictive maintenance and condition monitoring and use of outsourcing maintenance. Advance in drive and take-up technologies together with computer software and hardware developments will reduce personnel requirements associated with conveyors. 2 photos.

  15. Polydopamine-Based Multifunctional (Nano)materials for Cancer Therapy.

    Science.gov (United States)

    Mrówczyński, Radosław

    2017-08-17

    Since Lee published a pioneering paper about polydopamine (PDA), application of that polymer in a number of areas has grown enormously in the last 10 years and is still growing. PDA's spectacular success can be attributed to its unique features, i.e., simple preparation protocol, strong adhesive properties, easy and straightforward functionalization, and biocompatibility. Therefore, this polymer has attracted the attention of a vast group of scientists, including those working in the field of nanomedicine. In consequence, polydopamine has been merged with various nanostructures that differ in size and nature, which has resulted in novel types of multifunctional nanomaterials that have recently been extensively exploited in nanomedicine and particularly in cancer therapy. The aim of this article is to offer insight into the latest achievements (up until the end of 2016) in the field of synthesis and application of nanomaterials based on polydopamine and their application in cancer therapy. The conclusions regarding the application of polydopamine-based nanoplatforms in this area and future prospects are given at the end.

  16. Emulation of floating memcapacitors and meminductors using current conveyors

    OpenAIRE

    Pershin, Yuriy V.; Di Ventra, Massimiliano

    2010-01-01

    We suggest circuit realizations of emulators transforming memristive devices into effective floating memcapacitive and meminductive systems. The emulator's circuits are based on second generation current conveyors and involve either four single-output or two dual-output current conveyors. The equations governing the resulting memcapactive and meminductive systems are presented.

  17. Emulation of floating memcapacitors and meminductors using current conveyors

    CERN Document Server

    Pershin, Yuriy V

    2010-01-01

    We suggest circuit realizations of emulators transforming memristive devices into effective floating memcapacitive and meminductive systems. The emulator's circuits are based on second generation current conveyors and involve either four single-output or two dual-output current conveyors. The equations governing the resulting memcapactive and meminductive systems are presented.

  18. Bacterial adherence to SiO2-based multifunctional bioceramics.

    Science.gov (United States)

    Kinnari, Teemu J; Esteban, Jaime; Gomez-Barrena, Enrique; Zamora, Nieves; Fernandez-Roblas, Ricardo; Nieto, Alejandra; Doadrio, Juan C; López-Noriega, Adolfo; Ruiz-Hernández, Eduardo; Arcos, Daniel; Vallet-Regí, María

    2009-04-01

    The bacterial adherence onto different multifunctional silica-based bioceramics has been evaluated. Staphylococcus aureus and Staphylococcus epidermidis were chosen, as they cause the majority of the implant-related infections in this field. Two SiO2 mesoporous materials (MCM-41, SBA-15), an ordered SiO2-CaO-P2O5 mesoporous glass (OMG), and a biphasic magnetic bioceramic (BMB), were incubated with S. aureus and S. epidermidis for 90 min, and subsequently sonicated to quantify the number of adhered bacteria on each material. It was found that S. aureus and S. epidermidis (10(8) CFU/mL) adhered significantly less to BMB samples when compared to MCM-41, SBA-15, or OMG. However, when the material pores accessible for bacteria in each material were taken into account, the lowest bacterial adherence was found in MCM-41, and the highest in SBA-15. The results show that bacterial adherence is higher on mesoporous bioceramics, although this higher microbial attachment is mainly due to the intergranular porosity and grain size morphology rather than to the mesoporous structure.

  19. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  20. A novel multi-functional cell-based microphysiometer

    Institute of Scientific and Technical Information of China (English)

    XU Ying; XU Gaixia; LIU Qingjun; CAI Hua; LI Yan; LI Rong; WANG Ping

    2006-01-01

    This paper presents a novel multi-functional microphysiometer for simultaneous measurements of several extracellular ion concentrations and action potential measurement in living cells based on MLAPS (multi-light addressable potentiometric sensor). In the microphysiometer, sorts of sensitive membranes are illuminated in parallel with n light sources at working frequencies, and the response amplitudes of each frequency component can be measured on-line by parallel processing algorithm. In the experiments, the relations of the extracellular environmental H+, Na +, K +, Ca2 + under the effects of western medicines (dilantin, phenobarbital sodium) and Chinese drugs (scutellaria, medlar, hemlock parsley) were analyzed, and the effects of several drugs were evaluated. Moreover, the action potential signals of different cell types (cardiac myocytes and neurons) could be measured and analyzed by LAPS. By detecting these parameters, the system can monitor the real-time process of the cell metabolism and action potential, observe the functional responses of different kinds of membrane-bound receptors, and evaluate the activities of drugs.

  1. A new conveyor system based on a passive magnetic levitation unit having repulsive-type magnetic bearings

    Science.gov (United States)

    Ohji, T.; Ichiyama, S.; Amei, K.; Sakui, M.; Yamada, S.

    2004-05-01

    A magnetic repulsive-type conveyor system is proposed as a new application of repulsive-type magnetic bearings, which use repulsive forces between the stator and rotor permanent magnets. The proposed conveyer is composed by aligning many passive magnetic levitation units. Each unit also contains electromagnets to oscillate a levitator shaft in the radial direction. The way of generating vibration and rotation in the conveyance direction was examined by the various excitation methods.

  2. Development of belt conveyor driving system

    Institute of Scientific and Technical Information of China (English)

    FU Jun-qing(付峻青); WANG Cong(王聪); HUO Wei(霍伟)

    2004-01-01

    A short review for the existing various driving methods for belt conveyor was given, which include the analysis and comparison about the advantages, disadvantages and suitable application range of these methods. Based on this the variable-frequency-control(VFC) method for belt conveyor drive was fully discussed with focus on its application in medium-high voltage range. The principle of Neutral Point Clamped (NPC) Three-Level Inverter using high-voltage IGBTs together with the control strategy of rotor field-oriented vector control for induction motor drive were illustrated.

  3. CONVEYOR SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    M. Salem

    1995-06-23

    The purpose and objective of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) surface and subsurface conveyor system (for a list of conveyor subsystems see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the conveyor structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the hazards related to the design of conveyor structures/systems/components (S/S/Cs) that occur during normal operation. Hazards occurring during assembly, test and maintenance or ''off normal'' operations have not been included in this analysis. Construction related work activities are specifically excluded per DOE Order 5481.1B section 4. c.

  4. Design of Scraper Conveyor Condition Monitoring System based on ARM%基于ARM的刮板输送机状态监测系统的设计

    Institute of Scientific and Technical Information of China (English)

    于平; 刘曦永; 小云

    2015-01-01

    针对刮板输送机传动系统的故障率较高,设计了基于ARM的刮板输送机状态的监测系统,其处理器采用的是英创生产的ARM9 EM9161,并结合数据采集装置和无线信号传输模块,实现了对电动机和减速器相关重要参数的监测报警。文中讲述了系统的硬件构成, WinCE的软件环境等。该设计将应用于煤矿状态监测领域,具有很好的应用价值。%The paper is designed the state of scraper conveyor monitoring system based on ARM for the high failure rate of scraper conveyor drive system. The system uses ARM9 EM9161 development board produced by YingChuang company, combines with data acquisition devices and wireless signal transmission module, realizes the important parameters related to the motor and gear unit to monitor alarming. The paper describes the configuration of the system's hardware, software envi-ronment of WINCE and so on. The design will apply to the field of early-warning and monitoring in mine, and have very good value.

  5. Current conveyors variants, applications and hardware implementations

    CERN Document Server

    Senani, Raj; Singh, A K

    2015-01-01

    This book serves as a single-source reference to Current Conveyors and their use in modern Analog Circuit Design. The authors describe the various types of current conveyors discovered over the past 45 years, details of all currently available, off-the-shelf integrated circuit current conveyors, and implementations of current conveyors using other, off-the-shelf IC building blocks. Coverage includes prominent bipolar/CMOS/Bi-CMOS architectures of current conveyors, as well as all varieties of starting from third generation current conveyors to universal current conveyors, their implementations and applications. •Describes all commercially available off-the-shelf IC current conveyors, as well as hardware implementations of current conveyors using other off-the-shelf ICs; • Describes numerous variants of current conveyors evolved over the past forty five years; • Describes a number of Bipolar/CMOS/Bi-CMOS architectures of current conveyors, along with their characteristic features; • Includes a comprehe...

  6. Floating Inductance and FDNR Using Positive Polarity Current Conveyors

    OpenAIRE

    Pal, K.

    2004-01-01

    A generalized circuit based on five positive polarity second-generation current conveyors is introduced. The circuit simulates a floating inductance, capacitor floatation circuit and floating fdnr. All these circuits use grounded capacitors.

  7. Floating Inductance and FDNR Using Positive Polarity Current Conveyors

    Directory of Open Access Journals (Sweden)

    K. Pal

    2004-01-01

    Full Text Available A generalized circuit based on five positive polarity second-generation current conveyors is introduced. The circuit simulates a floating inductance, capacitor floatation circuit and floating fdnr. All these circuits use grounded capacitors.

  8. RECURSIVE CONVEYOR PROCESSES - THE MAIN PROPERTIES AND CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Boris V. Kupriyanov

    2015-01-01

    Full Text Available In the article the formal model of recursive conveyor processes is considered. The main properties and characteristics ofthis type of processes are described andillustrated. Based on these properties splitting processes into classes is carried out.

  9. Multifunctional polymer nano-composite based superhydrophobic surface

    Science.gov (United States)

    Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos

    2014-11-01

    Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.

  10. Current Conveyor Equivalent Circuits

    Directory of Open Access Journals (Sweden)

    Tejmal S. Rathore

    2012-02-01

    Full Text Available An equivalence between a class of (current conveyor CC II+ and CC II- circuits is established. CC IIequivalent circuit uses one extra element. However, under certain condition, the extra element can be eliminated. As an illustration of the application of this equivalence, minimal first and second order all-pass filters are derived. Incertain cases, it is possible to compensate the effect of the input resistor of CC at port X. At the end, an open problem of realizing an Nth order (N > 2 minimal all-pass filter is stated.

  11. Digitally Controllable Current Amplifier and Current Conveyors in Practical Application of Controllable Frequency Filter

    Science.gov (United States)

    Polak, Josef; Jerabek, Jan; Langhammer, Lukas; Sotner, Roman; Dvorak, Jan; Panek, David

    2016-07-01

    This paper presents the simulations results in comparison with the measured results of the practical realization of the multifunctional second order frequency filter with a Digitally Adjustable Current Amplifier (DACA) and two Dual-Output Controllable Current Conveyors (CCCII +/-). This filter is designed for use in current mode. The filter was designed of the single input multiple outputs (SIMO) type, therefore it has only one input and three outputs with individual filtering functions. DACA element used in a newly proposed circuit is present in form of an integrated chip and the current conveyors are implemented using the Universal Current Conveyor (UCC) chip with designation UCC-N1B. Proposed frequency filter enables independent control of the pole frequency using parameters of two current conveyors and also independent control of the quality factor by change of a current gain of DACA.

  12. Linear-g-hyperbranched and cyclodextrin-based amphiphilic block copolymer as a multifunctional nanocarrier

    Directory of Open Access Journals (Sweden)

    Yamei Zhao

    2014-11-01

    Full Text Available In this paper, a novel, multifunctional polymer nanocarrier was designed to provide adequate volume for high drug loading, to afford a multiregion encapsulation ability, and to achieve controlled drug release. An amphiphilic, triblock polymer (ABC with hyperbranched polycarbonsilane (HBPCSi and β-cyclodextrin (β-CD moieties were first synthesized by the combination of a two-step reversible addition-fragmentation transfer polymerization into a pseudo-one-step hydrosilylation and quaternization reaction. The ABC then self-assembled into stable micelles with a core–shell structure in aqueous solution. These resulting micelles are multifunctional nanocarriers which possess higher drug loading capability due to the introduction of HBPCSi segments and β-CD moieties, and exhibit controlled drug release based on the diffusion release mechanism. The novel multifunctional nanocarrier may be applicable to produce highly efficient and specialized delivery systems for drugs, genes, and diagnostic agents.

  13. The power stability of a fiber amplifier based on a multifunction card and PID control program

    Science.gov (United States)

    Zhang, Linjie; Yang, Wenguang; Zhang, Hao; Zhao, JianMing; Jia, Suotang

    2016-06-01

    The power stability of a fiber amplifier was significantly improved by means of simultaneously controlling the current of a fiber amplifier and the diffraction efficiency of an acousto-optical modulator. The real-time fluctuation of laser power was recorded by a multifunction card and processed by a proportional-integral-derivative (PID) control program. The feedback loop voltage was introduced to the fiber laser amplifier and acoustic-optic modulator through the analog output of the multifunction card. The control method based on a multifunction card and PID program has good scalability, flexibility and reliability for the complex system on the condition in which the frequency and power of the laser need to be precisely stabilized.

  14. N-th Order Filters Using Balanced-Output CCII+/- Conveyors

    Directory of Open Access Journals (Sweden)

    V. Zeman

    1998-09-01

    Full Text Available A novel second-generation current conveyor is defined. A special three-port cell containing the above element is presented. A method for nth-order multifunction circuit realization is described. Two universal networks illustrate the described procedure.

  15. SCENARIO AND TARGET SIMULATION FOR A GROUND BASED MULTIFUNCTION PHASED ARRAY RADAR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper describes a scenario and target simulation which operates in non real-time to provide full closed-loop operation of the ground based multifunction phased array radar simulation system in support of ballistic missile defence experiments against countermeasure.By simulating the target scattering signature and dynamical signature,this scenario and target simulation provide re- alistic scenario source to evaluate the system performance of multifunction phased array radar,and the key algorithms verification and validation such as target tracking,multi-target imaging and target recognition.

  16. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    KAUST Repository

    Deng, Lin

    2012-01-01

    Tumor targetability and stimuli responsivity of drug delivery systems (DDS) are key factors in cancer therapy. Implementation of multifunctional DDS can afford targetability and responsivity at the same time. Herein, cholesterol molecules (Ch) were coupled to hyaluronic acid (HA) backbones to afford amphiphilic conjugates that can self-assemble into stable micelles. Doxorubicin (DOX), an anticancer drug, and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), magnetic resonance imaging (MRI) contrast agents, were encapsulated by Ch-HA micelles and were selectively released in the presence of hyaluronidase (Hyals) enzyme. Cytotoxicity and cell uptake studies were done using three cancer cell lines (HeLa, HepG2 and MCF7) and one normal cell line (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  17. Multifunctional, flexible electronic systems based on engineered nanostructured materials.

    Science.gov (United States)

    Ko, Hyunhyub; Kapadia, Rehan; Takei, Kuniharu; Takahashi, Toshitake; Zhang, Xiaobo; Javey, Ali

    2012-08-31

    The development of flexible electronic systems has been extensively researched in recent years, with the goal of expanding the potential scope and market of modern electronic devices in the areas of computation, communications, displays, sensing and energy. Uniquely, the use of soft polymeric substrates enables the incorporation of advanced features beyond mechanical bendability and stretchability. In this paper, we describe several functionalities which can be achieved using engineered nanostructured materials. In particular, reversible binding, self-cleaning, antireflective and shape-reconfigurable properties are introduced for the realization of multifunctional, flexible electronic devices. Examples of flexible systems capable of spatial mapping and/or responding to external stimuli are also presented as a new class of user-interactive devices.

  18. An indicator-based method for quantifying farm multifunctionality

    DEFF Research Database (Denmark)

    Andersen, Peter Stubkjær; Vejre, Henrik; Dalgaard, Tommy

    2013-01-01

    Production of food and fibres has traditionally been the main function of agriculture. In the last decades an increased focus on the importance of other functions has been discussed within the framework of agricultural and general land use multifunctionality. To a large extent farmers’ decisions...... and actions determine which functions their farming practices support. The extent of the production function is straightforward to identify and quantify but problems persist in rating functions such as ecosystem maintenance, housing, and amenity values. This paper presents a method to quantify and compare...... described as balance among functions–whilst smaller and bigger farms were biased towards mainly residence and production concerns, respectively. Challenges in quantifying functions still persist, but the suggested approach offer a method by which functionality can be compared among farms and among functions...

  19. MANAGEMENT OF TRAFFIC FLOW ON A CONVEYOR TRANSPORT

    Directory of Open Access Journals (Sweden)

    V. V. Tkachev

    2007-12-01

    Full Text Available The analysis of control capability of the freight traffic volumes in coal mines, which use storage bunkers for averaging a flow from the mining sections, is carried out on the basis of imitation model of conveyor network with the use of predistribution of conveyor space, on the base of equipment SAUKL for the purpose of stabilizing the freight traffic volume and avoiding the losses during transportation.

  20. Contacts Finite Element Analysis of the Conveyor Chain of Cooling Transporter based on ANSYS%基于ANSYS的冷却运输机输送链接触有限元分析

    Institute of Scientific and Technical Information of China (English)

    马鸿峰

    2011-01-01

    利用Pro/Engineer软件建立了冷却运输机输送链的三维实体模型,然后导入到ANSYS软件中.基于ANSYS软件,采用有限元接触分析方法对冷却运输机滚子输送链进行有限元接触分析,找出了输送链的危险区域和薄弱环节,其结果对冷却运输机输送链的优化设计具有一定的指导意义.%the three-dimensional solid model of the cooling transporter conveyor chain by means of the Pro/Engineer software was built. Then the model af the cooling transporter conveyor chain in Pro/Engineer is changed as finite element model in ANSYS software through the software interface between Pro/ Engineer and ANSYS. Based on the ANSYS software, we used the method of the finite element analysis to analyze the contacts finite element of the cooling transporter conveyor chain, found out the danger section and weaknesses. The results can instruct the optimization design of the cooling transporter conveyor chain.

  1. LOAD DISTRIBUTION ON DRUMS OF DOUBLE DRIVE BELT CONVEYOR

    Institute of Scientific and Technical Information of China (English)

    薛河; 苏清祖; 马胜利

    1999-01-01

    The double drum drive is widely used on the mine belt conveyor, which are divided the rigid connected double drums and separately driving double drums according to connected method of two drums. Because of the change of real work condition, the load distribution is changed on the two drive drums, which may produce a slippage between a drum and belt. Slippage may intensify the wear of the drum, and sometimes causing the fire of the belt. This restricts the development toward narrow belt, high velocity and large power of belt conveyor. In this paper, the factors affecting the load distribution of two drums of double drum belt conveyor are'systematically analyzed and some computing formulas derived, by these formulas, the actual load distribution onthe two drums of rigid connected or separately driving belt conveyor can be separately calculated. These formulas also can be as the theory base for adjusting the driving force of two drums.

  2. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes.

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I; Wise, Kristopher E; Lowther, Sharon E; Fay, Catharine C; Thibeault, Sheila A; Bryant, Robert G

    2015-12-22

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions.

  3. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  4. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  5. Development of a high capacity longwall conveyor. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, C

    1982-05-01

    The objectives of this program were to develop, fabricate, and demonstrate a longwall conveying system capable of transporting coal at a rate of 9000 tons/day (1000 tons/hr) and capable of accommodating a surge rate of 20 tons/min. The equipment was required to have the structural durability to perform with an operating availability of 90%. A review of available literature and discussions with longwall operators identified the problem areas of conveyor design that required attention. The conveyor under this contract was designed and fabricated with special attention given to these areas, and also to be easily maintainable. The design utilized twin 300 hp drives and twin inboard 26-mm chain at 270 ft/min; predictions of capacity and reliability based on the design indicating that it would satisfy the program requirements. Conveyor components were critically tested and the complete conveyor was surface-tested, the results verifying the design specifications. In addition, an instrumentation system was developed with analysis by computer techniques to monitor the performance of the conveyor. The conveyor was installed at a selected mine site, and it was the intention to monitor its performance over the entire longwall panel. Monitoring of the conveyor performance was conducted over approximately one-third of the longwall panel, at which point further effort was suspended. However, during the monitored period, data collected from various sources showed the conveyor to have exhibited its capability of transporting coal at the desired rate, and also to have conformed to the program requirements of reliability and availability.

  6. Development of a high capacity longwall conveyor. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, C

    1982-05-01

    The objectives of this program were to develop, fabricate, and demonstrate a longwall conveying system capable of transporting coal at a rate of 9000 tons/day (1000 tons/hr) and capable of accommodating a surge rate of 20 tons/min. The equipment was required to have the structural durability to perform with an operating availability of 90%. A review of available literature and discussions with longwall operators identified the problem areas of conveyor design that required attention. The conveyor under this contract was designed and fabricated with special attention given to these areas, and also to be easily maintainable. The design utilized twin 300 hp drives and twin inboard 26-mm chain at 270 ft/min; predictions of capacity and reliability based on the design indicating that it would satisfy the program requirements. Conveyor components were critically tested and the complete conveyor was surface-tested, the results verifying the design specifications. In addition, an instrumentation system was developed with analysis by computer techniques to monitor the performance of the conveyor. The conveyor was installed at a selected mine site, and it was the intention to monitor its performance over the entire longwall panel. Monitoring of the conveyor performance was conducted over approximately one-third of the longwall panel, at which point further effort was suspended. However, during the monitored period, data collected from various sources showed the conveyor to have exhibited its capability of transporting coal at the desired rate, and also to have conformed to the program requirements of reliability and availability.

  7. Adjoint Networks with Inverting and Noninverting Current Conveyors

    OpenAIRE

    J. Cajka; T. Dostal; Vrba, K.

    2000-01-01

    Four types of second-generation current conveyors are shown. The realisation of the above conveyors using differential voltage current conveyors (VDCC) is presented. Two examples illustrate the building of adjoint networks containing second-generation current conveyors.

  8. Multifunctional hybrid nanocomposites based on carbon nanotubes and chemically modified graphene

    OpenAIRE

    Bosch Navarro, Concepcion

    2013-01-01

    La Tesis trata del desarrollo de materiales híbridos multifuncionales basados en nanotubos de carbono y grafeno con interés en magnetismo molecular y electrónica molecular This Thesis deals with the chemistry and development of new hybrid multifunctional systems based on carbon nanotubes (CNTs) and graphene (G). To introduce both types of carbon nanoforms a brief historical overview of these systems has been briefly given at the Preface. Next and prior to the presentation of ...

  9. High-powered conveyor systems: long distance, downhill, open-pit, and high capacity conveyors

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, H.K.

    1978-01-01

    Paper indicates the conditions under which belt conveyors are superior to other forms of transport, the limitations of these conveyors. Long distance, downhill, open-pit and high capacity conveyor installations are described, including a 60-mile long conveyor in the Sahara.

  10. Multi-function radar emitter identification based on stochastic syntax-directed translation schema

    Institute of Scientific and Technical Information of China (English)

    Liu Haijun Diao; Yu Hongqi; Sun Zhaolin; Jietao

    2014-01-01

    To cope with the problem of emitter identification caused by the radar words’ uncer-tainty of measured multi-function radar emitters, this paper proposes a new identification method based on stochastic syntax-directed translation schema (SSDTS). This method, which is deduced from the syntactic modeling of multi-function radars, considers the probabilities of radar phrases appearance in different radar modes as well as the probabilities of radar word errors occurrence in different radar phrases. It concludes that the proposed method can not only correct the defective radar words by using the stochastic translation schema, but also identify the real radar phrases and working modes of measured emitters concurrently. Furthermore, a number of simulations are presented to demonstrate the identification capability and adaptability of the SSDTS algorithm. The results show that even under the condition of the defective radar words distorted by noise, the proposed algorithm can infer the phrases, work modes and types of measured emitters correctly.

  11. Measurement of the angular position of a human extremity based on a multifunctional approach

    Science.gov (United States)

    Quan, Wei; Shida, Katsunori

    2007-07-01

    A novel method for measuring the three-dimensional joint angles of a human extremity simultaneously is presented based on a multifunctional sensing approach. The method proposes a simple and single configuration with minimum sensing elements, which is able to convert obliquity, bending direction and torsion angle to the linear movements of three wires by imitating the status of the skin on the joint using a flexible tube. A prototype is built with three inductances as its outputs, whose results examine the feasibility of the proposed method and give satisfactory accuracy. A simple algorithm to reconstruct three angular parameters is able to provide real-time analysis. The system is multifunctional, easily mountable, low cost and can be used for long-term monitoring of human extremities such as the arm, knee and shoulder.

  12. A design and application of compound multi-functional sensor in wood-based panel processing

    Institute of Scientific and Technical Information of China (English)

    XU Kai-hong; ZHOU Ding-guo

    2006-01-01

    A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.

  13. Control strategy of disc braking systems for downward belt conveyors

    Institute of Scientific and Technical Information of China (English)

    Hou Youfu; Xie Fangwei; Huang Fei

    2011-01-01

    Reliability of braking systems is a key requirement to ensure the safety of in using downward belt conveyor brakes.By analyzing and comparing three commonly used braking velocity curves,we conclude that the Harrison curve is the best.Given the characteristics of a downward belt conveyor,we studied the control in a closed-loop velocity,a conventional PID method and an optimal PID control method.We used MATLAB/Simulink to simulate the three control methods.Our simulation results show that optimal PID control is especially suitable for disc braking systems.To verify the results from theoretical analysis and simulation,a multifunctional test-bed was developed to simulate the braking process of a disc brake system.Our experimental results demonstrate that the optimal PID control can make the output velocity to follow a preset velocity correctly with only small fluctuations,meeting the requirements of a flexible brake for a belt conveyor.

  14. Novel Flame-Based Synthesis of Nanowires for Multifunctional Application

    Science.gov (United States)

    2015-05-13

    laser-based diagnostics for in-situ Raman characterization of as- synthesized nanomaterials, (iv) flame synthesis of graphene , (v) flame synthesis of...laser- based diagnostics for in-situ Raman characterization of as-synthesized nanomaterials, (iv) flame synthesis of graphene , (v) flame synthesis of...Stephen D. Tse, Manish Chhowalla, Bernard H. Kear. Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films, Proceedings

  15. Emerging Multifunctional NIR Photothermal Therapy Systems Based on Polypyrrole Nanoparticles

    OpenAIRE

    Mozhen Wang

    2016-01-01

    Near-infrared (NIR)-light-triggered therapy platforms are now considered as a new and exciting possibility for clinical nanomedicine applications. As a promising photothermal agent, polypyrrole (PPy) nanoparticles have been extensively studied for the hyperthermia in cancer therapy due to their strong NIR light photothermal effect and excellent biocompatibility. However, the photothermal application of PPy based nanomaterials is still in its preliminary stage. Developing PPy based multifuncti...

  16. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics.

    Science.gov (United States)

    Hong, Seong-Chul; Yoo, Seung-Yup; Kim, Hyeongmin; Lee, Jaehwi

    2017-03-01

    Chitosan has been widely used as a key biomaterial for the development of drug delivery systems intended to be administered via oral and parenteral routes. In particular, chitosan-based microparticles are the most frequently employed delivery system, along with specialized systems such as hydrogels, nanoparticles and thin films. Based on the progress made in chitosan-based drug delivery systems, the usefulness of chitosan has further expanded to anti-cancer chemoembolization, tissue engineering, and stem cell research. For instance, chitosan has been used to develop embolic materials designed to efficiently occlude the blood vessels by which the oxygen and nutrients are supplied. Indeed, it has been reported to be a promising embolic material. For better anti-cancer effect, embolic materials that can locally release anti-cancer drugs were proposed. In addition, a complex of radioactive materials and chitosan to be locally injected into the liver has been investigated as an efficient therapeutic tool for hepatocellular carcinoma. In line with this, a number of attempts have been explored to use chitosan-based carriers for the delivery of various agents, especially to the site of interest. Thus, in this work, studies where chitosan-based drug delivery systems have successfully been used for local delivery will be presented along with future perspectives.

  17. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics

    Directory of Open Access Journals (Sweden)

    Seong-Chul Hong

    2017-03-01

    Full Text Available Chitosan has been widely used as a key biomaterial for the development of drug delivery systems intended to be administered via oral and parenteral routes. In particular, chitosan-based microparticles are the most frequently employed delivery system, along with specialized systems such as hydrogels, nanoparticles and thin films. Based on the progress made in chitosan-based drug delivery systems, the usefulness of chitosan has further expanded to anti-cancer chemoembolization, tissue engineering, and stem cell research. For instance, chitosan has been used to develop embolic materials designed to efficiently occlude the blood vessels by which the oxygen and nutrients are supplied. Indeed, it has been reported to be a promising embolic material. For better anti-cancer effect, embolic materials that can locally release anti-cancer drugs were proposed. In addition, a complex of radioactive materials and chitosan to be locally injected into the liver has been investigated as an efficient therapeutic tool for hepatocellular carcinoma. In line with this, a number of attempts have been explored to use chitosan-based carriers for the delivery of various agents, especially to the site of interest. Thus, in this work, studies where chitosan-based drug delivery systems have successfully been used for local delivery will be presented along with future perspectives.

  18. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  19. Quantification of landscape multifunctionality based on farm functionality indices

    DEFF Research Database (Denmark)

    Andersen, Peter Stubkjær; Vejre, Henrik; Dalgaard, Tommy

    2011-01-01

    landscapes differ in the capacity to provide such goods and services (Willemen et al. 2008). The quantification of different functions in comparable units is challenging. Willemen et al. (2010) presented a top-down method in which interactions of functions are quantified based on national survey data. We...

  20. A Chaos Conveyor Belt

    Science.gov (United States)

    Schmidt, Britney E.

    2013-10-01

    ocean in light of active processes that may form a “chaos conveyor belt” that drives material exchange on Europa.

  1. QT-Based Monitoring System of Multi-Functional Laboratory

    Directory of Open Access Journals (Sweden)

    Li Xiaoling

    2012-11-01

    Full Text Available Regarding the embedded processor as the core, this study utilizes various cutting-edge technologies such as wireless LAN, USB interface, Bluetooth, multimedia, etc., to propose the design program of QT-based security monitoring system. Taking the lab environment in school as an example, this system has achieved the security monitoring, information transmission and control of certain equipment. Besides, it has cut the Linux kernel module reasonably and explored the touch screen, serial port, wireless LAN, Bluetooth, USB and other resources, thus realizing various functions, such as collection and processing of audio, video and security information and wireless communication. Thereby, users can carry out real-time monitoring for multiple locations through the wireless LAN.

  2. Graphene-Based Bionic Composites with Multifunctional and Repairing Properties.

    Science.gov (United States)

    Valentini, L; Bittolo Bon, S; Signetti, S; Pugno, N M

    2016-03-01

    In this work, a novel bionic composite inspired by the concept of yeast fermentation has been proposed. It was observed that the addition of graphene nanoplatelets during the fermentation of extract of Saccharomyces cerevisiae fungi allows coupling of the graphene sheets to the yeast cell wall. This process resulted in the formation of a composite film with improved mechanical and electrical properties along with the capability of converting the light stimulus in the electrical signal. The mechanical properties of the prepared composites, namely, the fracture strength and Young's modulus, were studied via numerical simulations and are related to the properties of the constituent phases via rules of mixture. Finally, it was observed that graphene nanoplatelets, added to the nutrient broth, were able to reassemble onto the stressed cell surface and repair the surface cracking, partially restoring the pristine electrical and mechanical properties. The method reported here may find potential application in the development of self-healable bioelectronic devices and microorganism-based strain and chemical biosensors.

  3. Linear Motor for Drive of Belt Conveyor

    Directory of Open Access Journals (Sweden)

    Milan Krasl

    2006-01-01

    Full Text Available This paper introduces a novel approach on the design of a linear motor for drive of belt conveyor (LMBC. The motor is a simple combination of asynchronous motor in plane. The electromagnetic forces is one of the most important parameters of electrical machines. This parameter is necessary for the checking of the design. This paper describes several variants: linear motor with slots in platens, slots in one half of platens and optimization of slots. The electromagnetic force can be found with the help of a Finite Elements Method – based program. For solution was used QuickField program.

  4. CALCULATION OF TENSION FORCE OF BELT CONVEYOR

    Directory of Open Access Journals (Sweden)

    Ismet Ibishi

    2012-12-01

    Full Text Available In this paper is done the explanation on tension fashion of the belt conveyor which is employed in Kosovo Energy Corporation – KEK, for coal transportation to provide electric power plant. The aim of the paper enables to recognize tension forces not to pass with deformation of belt so that this problem will damage the workingprocess. Work principle is based on initial tension and tension during working process. The fact is known that the tension starts from the carriage on the way to tension mechanization, so forces on the rope passing through pulley there has to dominate the friction coefficient. All this process is related to economy of transportationmechanism.

  5. Dihydroxynaphthalene-based mimicry of fungal melanogenesis for multifunctional coatings.

    Science.gov (United States)

    Jeon, Jong-Rok; Le, Thao Thanh; Chang, Yoon-Seok

    2016-05-01

    Material-independent adhesive action derived from polycatechol structures has been intensively studied due to its high applicability in surface engineering. Here, we for the first time demonstrate that a dihydroxynaphthalene-based fungal melanin mimetic, which exhibit a catechol-free structure, can act as a coating agent for material-independent surface modifications on the nanoscale. This mimetic was made by using laccase to catalyse the oxidative polymerization of specifically 2,7-dihydroxynaphthalene. Analyses of the product of this reaction, using Fourier transform infrared-attenuated total reflectance and X-ray photoelectron spectroscopy, bactericidal action, charge-dependent sorption behaviour, phenol content, Zeta potential measurements and free radical scavenging activity, yielded results consistent with it containing hydroxyphenyl groups. Moreover, nuclear magnetic resonance analyses of the product revealed that C-O coupling and C-C coupling were the main mechanisms for its synthesis, thus clearly excluding a catechol structure in the polymerization. This product, termed poly(2,7-DHN), was successfully deposited onto a wide variety of solid surfaces, including metals, polymeric materials, ceramics, biosurfaces and mineral complexes. The melanin-like polymerization could be used to co-immobilize other organic molecules, forming functional surfaces. In addition, the hydroxyphenyl group contained in the coated poly(2,7-DHN) induced secondary metal chelation/reduction and adhesion with proteins, suggesting the potential of this poly(2,7-DHN) layer to serve as a platform material for a variety of surface engineering applications. Moreover, the novel physicochemical properties of the poly(2,7-DHN) illuminate its potential applications as bactericidal, radical-scavenging and pollutant-sorbing agents.

  6. Novel Approach To Synthesis of Logic Circuits Based on Multifunctional Components

    Science.gov (United States)

    Crha, Adam; Růžička, Richard; Šimek, Václav

    2016-01-01

    Multifunctional logic continuously becomes an important way how to implement compact and cheap circuits with intrinsic reconfiguration features. Polymorphic electronics concept with its substantial technological independency opens a way to fulfil this objective through the adoption of emerging semiconductor technologies and advanced synthesis methods. The paper comes with a proposal of a novel synthesis method oriented on the exploitation of polymorphic electronics principles. Key part of it is based on Boolean divisor identification and function kernelling technique. The proposed method is evaluated with several test circuits.

  7. RATIONALE FOR CENTERING CAPACITY OF REDISIGNED BELT CONVEYOR DRUMS

    Directory of Open Access Journals (Sweden)

    V. V. Suglobov

    2016-02-01

    Full Text Available Purpose. In the study is necessary: 1 to justify aligning drums of a new design of belt conveyors; 2 to develop a method for calculating and determining the rational design parameters of drums depending on the technical parameters of the conveyor belt (the length of the conveyor, belt width, the performance of the conveyor, the diameter of the drive and tension drums, etc.; 3 to carry out pilot studies of efficiency conveyor belt in a production environment in order to determine the magnitude of dynamic loads and a comparative evaluation of the effectiveness of the centering ability of conventional and new designs of drums. Methodology. To substantiate the effectiveness of the centering ability of the drums of a new design by the authors developed a mathematical model of interaction of the tape with the drum. Mathematical simulation of tape reels with new design comes to drawing up a differential equation of the belt based on the dynamic component and restoring force. This model allowed us to estimate the movement of the tape in the transverse direction based on the calculated additional dynamic loads and forces on the investigated centering a conveyor belt with given specifications. For the first time the technique of calculating and determining the rational parameters of the drums, which allows determining the design parameters of the centering portions, depending on the mechanical properties and geometric parameters of the tape. Findings. With the help of mathematical modeling the scientifically substantiated effect of centering the ability of the new design of the drum, which ensures stable tape running along the longitudinal axis of the conveyor. The authors made the following conclusions: 1 the mathematical model of interaction with the new belt design of the drum, which allowed to describe the belt in the transverse direction in view of additional dynamic loads and renewable power was developed; 2 the method of calculation and

  8. Multifunctional Solar Systems Based On Two-Stage Regeneration Absorbent Solution

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-04-01

    Full Text Available The concepts of multifunctional dehumidification solar systems, heat supply, cooling, and air conditioning based on the open absorption cycle with direct absorbent regeneration developed. The solar systems based on preliminary drainage of current of air and subsequent evaporated cooling. The solar system using evaporative coolers both types (direct and indirect. The principle of two-stage regeneration of absorbent used in the solar systems, it used as the basis of liquid and gas-liquid solar collectors. The main principle solutions are designed for the new generation of gas-liquid solar collectors. Analysis of the heat losses in the gas-liquid solar collectors, due to the mechanism of convection and radiation is made. Optimal cost of gas and liquid, as well as the basic dimensions and configuration of the working channel of the solar collector identified. Heat and mass transfer devices, belonging to the evaporative cooling system based on the interaction between the film and the gas stream and the liquid therein. Multichannel structure of the polymeric materials used to create the tip. Evaporative coolers of water and air both types (direct and indirect are used in the cooling of the solar systems. Preliminary analysis of the possibilities of multifunctional solar absorption systems made reference to problems of cooling media and air conditioning on the basis of experimental data the authors. Designed solar systems feature low power consumption and environmental friendliness.

  9. Bioinspired Multifunctional Paper-Based rGO Composites for Solar-Driven Clean Water Generation.

    Science.gov (United States)

    Lou, Jinwei; Liu, Yang; Wang, Zhongyong; Zhao, Dengwu; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil; Zhang, Wang; Zhang, Di; Tao, Peng; Shang, Wen; Deng, Tao

    2016-06-15

    Reusing polluted water through various decontamination techniques has appeared as one of the most practical approaches to address the global shortage of clean water. Rather than relying on single decontamination mechanism, herein we report the preparation and utilization of paper-based composites for multifunctional solar-driven clean water generation that is inspired by the multiple water purification approaches in biological systems. The reduced graphene oxide (rGO) sheets within such composites can efficiently remove organic contaminants through physical adsorption mechanism. Under solar irradiation, the floating rGO composites can instantly generate localized heating, which not only can directly generate clean water through distillation mechanism but also significantly enhance adsorption removal performance with the assistance of upward vapor flow. Such porous-structured paper-based composites allow for facile incorporation of photocatalysts to regenerate clean water out of contaminated water with combined adsorption, photodegradation, and interfacial heat-assisted distillation mechanisms. Within a homemade all-in-one water treatment device, the practical applicability of the composites for multifunctional clean water generation has been demonstrated.

  10. Effective Conveyor Belt Inspection for Improved Mining Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Chris Fromme

    2006-06-01

    This document details progress on the project entitled ''Effective Conveyor Belt Inspection for Improved Mining Productivity'' during the period from November 15, 2004 to May 14, 2004. Highlights include fabrication of an improved LED lightbar, fabrication of a line-scan sensor head for the Smart-Camera based prototype, and development of prototype vulcanized splice detection algorithms.

  11. Chaos on the conveyor belt

    CERN Document Server

    Sándor, Bulcsú; Tél, Tamás; Néda, Zoltán

    2013-01-01

    The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by spring to an external static point, and due to the dragging effect of the belt the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can only be achieved by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic dynamics and phase transition-like behavior. Noise induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks, around five.

  12. Dynamic characteristics of conveyor belts

    Institute of Scientific and Technical Information of China (English)

    HOU You-fu; MENG Qing-rui

    2008-01-01

    The dynamic characteristics of a belt conveyor are determined to a large extent by the properties of the belt. This paper describes experiments designed to establish the dynamic properties of belting material. The dynamic elastic modulus, viscous damping and theological constants of the belt were measured. Several properties were studied as a function of the tensile loading on the belt. These included longitudinal vibration, the natural vibration frequency in the transverse direction and the response to an impulse excitation. Vibration response was observed under several different excitation frequencies. Most of these properties have not been tested previously under conditions appropriate for the ISO/DP9856 standard. Two types of belt were tested, a steel reinforced belt and a fabric reinforced belt. The test equipment was built to provide data appropriate for designing belt conveyors. It was observed that the stress wave propagation speed increased with tensile load and that tensile load was the main factor influencing longitudinal vibrations.

  13. Adjoint Networks with Inverting and Noninverting Current Conveyors

    Directory of Open Access Journals (Sweden)

    J. Cajka

    2000-04-01

    Full Text Available Four types of second-generation current conveyors are shown. Therealisation of the above conveyors using differential voltage currentconveyors (VDCC is presented. Two examples illustrate the building ofadjoint networks containing second-generation current conveyors.

  14. Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging

    Science.gov (United States)

    Zhou, Tao; Jia, Lei; Luo, Yi-Feng; Xu, Jun; Chen, Ru-Hua; Ge, Zhi-Jun; Ma, Tie-Liang; Chen, Hong; Zhu, Tao-Feng

    2016-01-01

    A novel multifunctional halloysite nanotube (HNT)-based Fe3O4@HNT-polyethyleneimine-Tip-Eu(dibenzoylmethane)3 nanocomposite (Fe-HNT-Eu NC) with both photoluminescent and magnetic properties was fabricated by a simple one-step hydrothermal process combined with the coupling grafting method, which exhibited high suspension stability and excellent photophysical behavior. The as-prepared multifunctional Fe-HNT-Eu NC was characterized using various techniques. The results of cell viability assay, cell morphological observation, and in vivo toxicity assay indicated that the NC exhibited excellent biocompatibility over the studied concentration range, suggesting that the obtained Fe-HNT-Eu NC was a suitable material for bioimaging and biological applications in human hepatic adenocarcinoma cells. Furthermore, the biocompatible Fe-HNT-Eu NC displayed superparamagnetic behavior with high saturation magnetization and also functioned as a magnetic resonance imaging (MRI) contrast agent in vitro and in vivo. The results of the MRI tests indicated that the Fe-HNT-Eu NC can significantly decrease the T2 signal intensity values of the normal liver tissue and thus make the boundary between the normal liver and transplanted cancer more distinct, thus effectively improving the diagnosis effect of cancers. PMID:27698562

  15. A new multifunctional platform based on high aspect ratio interdigitated NEMS structures

    Energy Technology Data Exchange (ETDEWEB)

    Ghatnekar-Nilsson, S; Karlsson, I; Kvennefors, A; Luo, G; Zela, V; Parker, T; Litwin, A [NEMS AB, Solvegatan 16, S-223 62 Lund (Sweden); Arlelid, M [Electrical and Information Technology, Lund University, PO Box 118, S-221 00 Lund (Sweden); Montelius, L [Solid State Physics/The Nanometer Structure Consortium, Lund University, PO Box 118, S-221 00 Lund (Sweden)], E-mail: andrej.litwin@nems.se

    2009-04-29

    A multifunctional NEMS platform based on a mass-producible, surface relief grating has been developed and fabricated directly in polymer materials. The pattern consists of high aspect ratio interdigitated nanometer-sized pairs of walls and can be produced in a low-complexity one-step patterning process with nanoimprint lithography. In this paper, we demonstrate the usefulness of the platform primarily by showing an application as a high-sensitivity mass sensor in air. The sensors, which are based on the high frequency resonant response of around 200 MHz, show a mass responsivity of the order of 0.1 Hz/zg per wall at room temperature and in ambient air. Their ability to selectively adsorb airborne target molecules, such as thiols, is also demonstrated. We also show that the same device can function as a varactor for electronic circuits based on its large tunable capacitive range.

  16. A new multifunctional platform based on high aspect ratio interdigitated NEMS structures.

    Science.gov (United States)

    Ghatnekar-Nilsson, S; Karlsson, I; Kvennefors, A; Luo, G; Zela, V; Arlelid, M; Parker, T; Montelius, L; Litwin, A

    2009-04-29

    A multifunctional NEMS platform based on a mass-producible, surface relief grating has been developed and fabricated directly in polymer materials. The pattern consists of high aspect ratio interdigitated nanometer-sized pairs of walls and can be produced in a low-complexity one-step patterning process with nanoimprint lithography. In this paper, we demonstrate the usefulness of the platform primarily by showing an application as a high-sensitivity mass sensor in air. The sensors, which are based on the high frequency resonant response of around 200 MHz, show a mass responsivity of the order of 0.1 Hz/zg per wall at room temperature and in ambient air. Their ability to selectively adsorb airborne target molecules, such as thiols, is also demonstrated. We also show that the same device can function as a varactor for electronic circuits based on its large tunable capacitive range.

  17. Computer-aided design of conveyor belts

    Energy Technology Data Exchange (ETDEWEB)

    Karolewski, B.; Pytel, J.

    1984-01-01

    Possibilities are discussed for using mathematical models of belt conveyors for development of computer-aided design of conveyors for coal mining. Examples of optimization tasks and methods for their solution using computerized simulation are analyzed. The analysis is illustrated by an algorithm used to design a starter for the drive system of a belt conveyor. Electromagnetic moment and starting current are used as optimization criteria. A simplified model of a belt conveyor is used. The model consists of an equation of motion with variable braking moment and variable moment of inertia. 3 references.

  18. Conveyor Belt Surface Image Correction and Fault Detection Algorithm Research Based on Machine Vision%基于机器视觉的输送带图像校正和故障检测算法研究

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    为了消除基于机器视觉的输送带故障在线监测系统中采集图像的不均匀光照影响,提高图像质量,检测出图像中的故障区域,提出了一种基于机器视觉的输送带图像校正和故障检测算法.该算法首先采用Butterworth低通滤波器对图像滤波,结合Retinex理论计算估计真实图像的背景,对图像进行灰度校正,得到校正后的图像;然后将机器视觉与生物视觉相结合,利用PCNN算法,对采集的图像进行检测,检测出故障区域.实验结果表明,算法能有效校正输送带表面图像,清晰检测出故障区域,具有很高的应用价值.%For the purposes of eliminating the influence of the non-uniform illumination which was used in on-line fault moni-toring system of conveyor belt based on machine vision and improved the quality of detected image and detecting the fault area of the image, a new kind of detection algorithm based on machine vision was proposed which can be used to realize the image correc-tion and fault detection of conveyor belt. The proposed algorithm firstly implemented the low-pass filtering of the acquired images by using Butterworth low-pass filter, then established estimated background model of the non-uniform illumination based on Retinex theory. Gray scale of the image can be amended evenly. Lastly, by using the combination the machine vision with biological vision and PNCC theory, the defected area of collected surface image of the conveyor belt was detected. Experimental results show that the proposed algorithm can be effectively used to correct the uneven gray scale of the surface images and detect the defected area of the surface image. It proves that this proposed algorithm has very high application value in mine belt conveyor supervision system.

  19. Detection system design of powerful conveyor belt based on the X-ray%基于X射线的强力运送带检测系统设计

    Institute of Scientific and Technical Information of China (English)

    谭成; 薛彦波; 胡宗亮

    2016-01-01

    In view of the existing strength conveyor belt fault line detection and location is difficult and waste a long time,the design of a conveyor belt automatic detection system handle the joint tensile,corrosion,fracture and other issues.Based on the video image acqui⁃sition principle and defect detection algorithm,it design the overall scheme of the system,combined with hardware and software develop⁃ment,the conveyor belt online detection,real⁃time,rapidly visual detection,for steel wire rope core conveyer belt running status,fault di⁃agnosis and decision make a reliable judgement way.%针对现有的强力运送带故障在线检测定位难、周期长情况,设计一套输送带自动检测系统来处理接头拉伸、锈蚀、断裂等故障问题。依据视频图像采集原理及缺陷检测技术算法,设计系统总体方案,结合硬件和软件开发,实现了运送带在线检测、实时性、快速性的可视化检测,为钢丝绳芯运送带运行状况、故障诊断与决策得出可靠判断方式。

  20. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  1. Piezoelectric Driving of Vibration Conveyors: An Experimental Assessment

    Directory of Open Access Journals (Sweden)

    Emerson Bastos de Albuquerque

    2013-07-01

    Full Text Available Vibratory feeders or vibratory conveyors have been widely used for the transport and orientation of individual parts and bulk materials in many branches of industrial activity. From the designer’s standpoint, the current endeavor is to conceive efficient vibratory feeders, satisfying constraints of power consumption, vibration transmission and noise emission. Moreover, the interest in the reduction of maintenance cost is always present. In this context, this paper investigates experimentally the concept of vibratory conveying based on the use of piezoelectric materials for motion generation. A small-size prototype of a linear conveyor, in which lead-zirconate-titanate (PZT patches are bonded to the resilient elements, is described. One of the main design goals is that the prototype is intended to be fed directly from the electric network, aiming at avoiding the use of electronic equipment for driving. To comply with this feature and, at the same time, enable to adjust the transport velocity, a mechanical device has been conceived in such a way that the first natural frequency of the conveyor can be changed. It is shown that the transport velocity is determined by the proximity between the excitation frequency and the first natural frequency of the conveyor. The experimental tests performed to characterize the dynamic behavior of the prototype are described and the range of transport velocities is determined.

  2. Piezoelectric driving of vibration conveyors: an experimental assessment.

    Science.gov (United States)

    Rade, Domingos Alves; de Albuquerque, Emerson Bastos; Figueira, Leandro Chaves; Carvalho, João Carlos Mendes

    2013-07-17

    Vibratory feeders or vibratory conveyors have been widely used for the transport and orientation of individual parts and bulk materials in many branches of industrial activity. From the designer's standpoint, the current endeavor is to conceive efficient vibratory feeders, satisfying constraints of power consumption, vibration transmission and noise emission. Moreover, the interest in the reduction of maintenance cost is always present. In this context, this paper investigates experimentally the concept of vibratory conveying based on the use of piezoelectric materials for motion generation. A small-size prototype of a linear conveyor, in which lead-zirconate-titanate (PZT) patches are bonded to the resilient elements, is described. One of the main design goals is that the prototype is intended to be fed directly from the electric network, aiming at avoiding the use of electronic equipment for driving. To comply with this feature and, at the same time, enable to adjust the transport velocity, a mechanical device has been conceived in such a way that the first natural frequency of the conveyor can be changed. It is shown that the transport velocity is determined by the proximity between the excitation frequency and the first natural frequency of the conveyor. The experimental tests performed to characterize the dynamic behavior of the prototype are described and the range of transport velocities is determined.

  3. Piezoelectric Driving of Vibration Conveyors: An Experimental Assessment

    Science.gov (United States)

    Rade, Domingos Alves; de Albuquerque, Emerson Bastos; Figueira, Leandro Chaves; Carvalho, João Carlos Mendes

    2013-01-01

    Vibratory feeders or vibratory conveyors have been widely used for the transport and orientation of individual parts and bulk materials in many branches of industrial activity. From the designer's standpoint, the current endeavor is to conceive efficient vibratory feeders, satisfying constraints of power consumption, vibration transmission and noise emission. Moreover, the interest in the reduction of maintenance cost is always present. In this context, this paper investigates experimentally the concept of vibratory conveying based on the use of piezoelectric materials for motion generation. A small-size prototype of a linear conveyor, in which lead-zirconate-titanate (PZT) patches are bonded to the resilient elements, is described. One of the main design goals is that the prototype is intended to be fed directly from the electric network, aiming at avoiding the use of electronic equipment for driving. To comply with this feature and, at the same time, enable to adjust the transport velocity, a mechanical device has been conceived in such a way that the first natural frequency of the conveyor can be changed. It is shown that the transport velocity is determined by the proximity between the excitation frequency and the first natural frequency of the conveyor. The experimental tests performed to characterize the dynamic behavior of the prototype are described and the range of transport velocities is determined. PMID:23867743

  4. Rational design of multifunctional devices based on molybdenum disulfide and graphene hybrid nanostructures

    Science.gov (United States)

    Lim, Yi Rang; Lee, Young Bum; Kim, Seong Ku; Kim, Seong Jun; Kim, Yooseok; Jeon, Cheolho; Song, Wooseok; Myung, Sung; Lee, Sun Sook; An, Ki-Seok; Lim, Jongsun

    2017-01-01

    We rationally designed a new type of hybrid materials, molybdenum disulfide (MoS2) synthesized by Mo pre-deposition followed by subsequent sulfurization process directly on thermal chemical vapor deposition (TCVD)-grown graphene, for applications in a multifunctional device. The synthesis of stoichiometric and uniform multilayer MoS2 and high-crystalline monolayer graphene was evaluated by X-ray photoelectron spectroscopy and Raman spectroscopy. To examine the electrical transport and photoelectrical properties of MoS2-graphene hybrid films, field effect transistors (FETs) and visible-light photodetectors based on MoS2-graphene were both fabricated. As a result, the extracted mobility for MoS2-graphene hybrid FETs was two times higher than that of MoS2 FETs. In addition, the MoS2-graphene photodetectors revealed a significant photocurrent with abrupt switching behavior under periodic illumination.

  5. Experimental demonstration of programmable multi-functional spin logic cell based on spin Hall effect

    Science.gov (United States)

    Zhang, X.; Wan, C. H.; Yuan, Z. H.; Fang, C.; Kong, W. J.; Wu, H.; Zhang, Q. T.; Tao, B. S.; Han, X. F.

    2017-04-01

    Confronting with the gigantic volume of data produced every day, raising integration density by reducing the size of devices becomes harder and harder to meet the ever-increasing demand for high-performance computers. One feasible path is to actualize more logic functions in one cell. In this respect, we experimentally demonstrate a prototype spin-orbit torque based spin logic cell integrated with five frequently used logic functions (AND, OR, NOT, NAND and NOR). The cell can be easily programmed and reprogrammed to perform desired function. Furthermore, the information stored in cells is symmetry-protected, making it possible to expand into logic gate array where the cell can be manipulated one by one without changing the information of other undesired cells. This work provides a prospective example of multi-functional spin logic cell with reprogrammability and nonvolatility, which will advance the application of spin logic devices.

  6. Multifunctional fiber-optic microwave links based on remote heterodyne detection

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Nielsen, Søren Nørskov

    1998-01-01

    The multifunctionality of microwave links based on remote heterodyne detection (RHD) of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection (DD) in conjunction with optical intensity modulation is used to implemen...... carrier to a 9-GHz carrier with penalty-free transmission over 25 km of optical fiber. Finally, the transparent link transmits a standard FM video 7.6-GHz radio-link signal over 25 km of optical fiber without measurable distortion...... fiber-optic microwave links. The resulting links are inherently transparent. As opposed to DD links, RHD links can perform radio-system functionalities such as modulation and frequency conversion in addition to transparency. All of these three functionalities are presented and experimentally...

  7. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy

    Science.gov (United States)

    Wang, Xiao-Gang; Dong, Zhi-Yue; Cheng, Hong; Wan, Shuang-Shuang; Chen, Wei-Hai; Zou, Mei-Zhen; Huo, Jia-Wei; Deng, He-Xiang; Zhang, Xian-Zheng

    2015-09-01

    Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects.Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects. Electronic supplementary information (ESI) available

  8. Intelligent Belt Conveyor Monitoring and Control

    NARCIS (Netherlands)

    Pang, Y.

    2010-01-01

    Belt conveyors have been used worldwide in continuous material transport for about 250 years. Traditional inspection and monitoring of large-scale belt conveyors focus on individual critical components and response to catastrophic system failures. To prevent operational problems caused by the lack

  9. Intelligent Belt Conveyor Monitoring and Control

    NARCIS (Netherlands)

    Pang, Y.

    2010-01-01

    Belt conveyors have been used worldwide in continuous material transport for about 250 years. Traditional inspection and monitoring of large-scale belt conveyors focus on individual critical components and response to catastrophic system failures. To prevent operational problems caused by the lack o

  10. AUTOMATION OF CONVEYOR BELT TRANSPORT

    Directory of Open Access Journals (Sweden)

    Nenad Marinović

    1990-12-01

    Full Text Available Belt conveyor transport, although one of the most economical mining transport system, introduce many problems to mantain the continuity of the operation. Every stop causes economical loses. Optimal operation require correct tension of the belt, correct belt position and velocity and faultless rolls, which are together input conditions for automation. Detection and position selection of the faults are essential for safety to eliminate fire hazard and for efficient maintenance. Detection and location of idler roll faults are still open problem and up to now not solved successfully (the paper is published in Croatian.

  11. The Question of Energy-Efficient Design of the Automated Electric Drive of Multi-Engine Belt Conveyors

    Directory of Open Access Journals (Sweden)

    Semykina Irina

    2015-01-01

    Full Text Available The article proposes a method for improving the energy efficiency of multi-motor variable frequency electric drives of trunk belt conveyors, based on the conveyor speed changing and controlling of the magnetic state of the motor. At conclusion, economic and energy effects of the implementation are estimated.

  12. Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Zhou T

    2016-09-01

    Full Text Available Tao Zhou,1 Lei Jia,1 Yi-Feng Luo,2 Jun Xu,1 Ru-Hua Chen,2 Zhi-Jun Ge,2 Tie-Liang Ma,2 Hong Chen,2 Tao-Feng Zhu2 1Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan, 2The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People’s Republic of China Abstract: A novel multifunctional halloysite nanotube (HNT-based Fe3O4@HNT-polyethyleneimine-Tip-Eu(dibenzoylmethane3 nanocomposite (Fe-HNT-Eu NC with both photoluminescent and magnetic properties was fabricated by a simple one-step hydrothermal process combined with the coupling grafting method, which exhibited high suspension stability and excellent photophysical behavior. The as-prepared multifunctional Fe-HNT-Eu NC was characterized using various techniques. The results of cell viability assay, cell morphological observation, and in vivo toxicity assay indicated that the NC exhibited excellent biocompatibility over the studied concentration range, suggesting that the obtained Fe-HNT-Eu NC was a suitable material for bioimaging and biological applications in human hepatic adenocarcinoma cells. Furthermore, the biocompatible Fe-HNT-Eu NC displayed superparamagnetic behavior with high saturation magnetization and also functioned as a magnetic resonance imaging (MRI contrast agent in vitro and in vivo. The results of the MRI tests indicated that the Fe-HNT-Eu NC can significantly decrease the T2 signal intensity values of the normal liver tissue and thus make the boundary between the normal liver and transplanted cancer more distinct, thus effectively improving the diagnosis effect of cancers. Keywords: halloysite nanotube, lanthanide complex, iron oxide, luminescence, contrast agent

  13. RURAL LANDSCAPE MULTIFUNCTIONALITY: A GIS BASED APPROACH FOR ASSESSING AREAS CHARACTERISED BY ECOLOGICAL FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Maurizia Sigura

    2012-06-01

    Full Text Available The concept of multifunctional agriculture refers to the idea that agriculture has many functions in addition to producing food and fiber, like environmental protection, landscape preservation, and rural employment. The UE Common agricultural policy substains multifunctionality in agriculture by rural development plans that provide relevant frameworks to integrate environmental aims into agriculture. Integration of environmental instances with socio economical development is an important element also in natural resources conservation strategies. Recently, a new view of the ecological network concept has been developed to produce a more multiobjective vision that defines the ecological network as a system of natural and/or semi-natural landscape elements, that is configured and managed with the objective of maintaining or restoring ecological functions, while also providing opportunities for the sustainable use of natural resources. The study refers to a method, based on the Geographical Information System (GIS, for assessing the ecological network model in a rural landscape, where human activities are involved. Two models were developed: the landscape model and the connectivity model. The application in the study area showed the capacity of models to identify strategic places for ecological functions. The results pointed out the natural values of the area (matching the protected areas and the most favourable expected ways of connection, or interruptions, between suitable areas. Agricultural and woodland areas were the main land uses involved in the ecological network structure. The maps which have been obtained can be useful instruments in order to involve policy makers, and other stakeholders, in the decision process on land use planning. In this way, the ecological network model can be a useful instrument in order to give valuable knowledge about environmental functions of rural landscape and to show constraints and possibilities to change the

  14. Multifunctional antireflection coatings based on novel hollow silica-silica nanocomposites.

    Science.gov (United States)

    Zhang, Xianpeng; Lan, Pinjun; Lu, Yuehui; Li, Jia; Xu, Hua; Zhang, Jing; Lee, YoungPak; Rhee, Joo Yull; Choy, Kwang-Leong; Song, Weijie

    2014-02-12

    Antireflection (AR) coatings that exhibit multifunctional characteristics, including high transparency, robust resistance to moisture, high hardness, and antifogging properties, were developed based on hollow silica-silica nanocomposites. These novel nanocomposite coatings with a closed-pore structure, consisting of hollow silica nanospheres (HSNs) infiltrated with an acid-catalyzed silica sol (ACSS), were fabricated using a low-cost sol-gel dip-coating method. The refractive index of the nanocomposite coatings was tailored by controlling the amount of ACSS infiltrated into the HSNs during synthesis. Photovoltaic transmittance (TPV) values of 96.86-97.34% were obtained over a broad range of wavelengths, from 300 to 1200 nm; these values were close to the theoretical limit for a lossy single-layered AR coating (97.72%). The nanocomposite coatings displayed a stable TPV, with degradation values of less than 4% and 0.1% after highly accelerated temperature and humidity stress tests, and abrasion tests, respectively. In addition, the nanocomposite coatings had a hardness of approximately 1.6 GPa, while the porous silica coatings with an open-pore structure showed more severe degradation and had a lower hardness. The void fraction and surface roughness of the nanocomposite coatings could be controlled, which gave rise to near-superhydrophilic and antifogging characteristics. The promising results obtained in this study suggest that the nanocomposite coatings have the potential to be of benefit for the design, fabrication, and development of multifunctional AR coatings with both omnidirectional broadband transmission and long-term durability that are required for demanding outdoor applications in energy harvesting and optical instrumentation in extreme climates or humid conditions.

  15. Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy

    Science.gov (United States)

    Lim, Wei Qi; Phua, Soo Zeng Fiona; Xu, Hesheng Victor; Sreejith, Sivaramapanicker; Zhao, Yanli

    2016-06-01

    In recent years, there has been a considerable research focus on integrating cancer cell imaging and therapeutic functions into single nanoscale platforms for better treatment of cancer. This task could often be achieved by incorporating multiple components into a hybrid nanosystem. In this minireview, we highlight different types of silica-based hybrid nanosystems and their recent applications as integrated multifunctional platforms for cancer imaging and treatment. The discussions are divided into several sections focusing on various types of materials employed to integrate with silica, which include silica-metallic nanoparticle based hybrid nanocarriers, silica-gold nanoparticle based hybrid nanocarriers, silica-quantum dot based hybrid nanocarriers, silica-upconversion nanoparticle based hybrid nanocarriers, silica-carbon based hybrid nanocarriers, and organosilica nanocarriers. Therapeutic agents loaded in such hybrids include chemodrugs, proteins, DNA/RNA and photosensitizers. For targeted delivery into tumor sites, targeting ligands such as antibodies, peptides, aptamers, and other small molecules are grafted on the surface of the nanocarriers. At the end of the review, a brief summary and research outlook are presented. This minireview aims to provide a quick update of recent research achievements in the field.

  16. Full-wave current conveyor precision rectifier

    Directory of Open Access Journals (Sweden)

    Đukić Slobodan R.

    2008-01-01

    Full Text Available A circuit that provides precision rectification of small signal with low temperature sensitivity for frequencies up to 100 kHz without waveform distortion is presented. It utilizes an improved second type current conveyor based on current-steering output stage and biased silicon diodes. The use of a DC current source to bias the rectifying diodes provides higher temperature stability and lower DC offset level at the output. Proposed design of the precision rectifier ensures good current transfer linearity in the range that satisfy class A of the amplifier and good voltage transfer characteristic for low level signals. Distortion during the zero crossing of the input signal is practically eliminated. Design of the proposed rectifier is realized with standard components.

  17. Study on conveyor natural frequency and time interval for switching off resistances

    Institute of Scientific and Technical Information of China (English)

    李光布; 杨汝清

    2004-01-01

    A conveyor belt driven by wound rotor motors produces dynamic tension, velocity and acceleration during starting. The terrible situation (such as resonance) in dynamic analysis and design is that system natural frequencies are equal to those for switching off electric resistances. This paper analyzes and determines system natural frequencies based on a modeling method of receptances with the analysis of sub-systems model and of the principle of their addition and conveyor loop closure. It also puts forward to calculate the time interval for switching off electric resistances. The starting of one conveyor is simulated by lumped-mass-spring-model software to further illustrate the influence of time interval for switching off electric resistances on conveyor dynamic behavior. Two methods are also compared. The receptance model is proved to be an excellent alternative.

  18. A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus.

    Science.gov (United States)

    Grasso, Simone; Lico, Chiara; Imperatori, Francesca; Santi, Luca

    2013-06-01

    Structure, size, physicochemical properties and production strategies make many plant viruses ideal protein based nanoscaffolds, nanocontainers and nano-building blocks expected to deliver a multitude of applications in different fields such as biomedicine, pharmaceutical chemistry, separation science, catalytic chemistry, crop pest control and biomaterials science. Functionalization of viral nanoparticles through modification by design of their external and internal surfaces is essential to fully exploit the potentiality of these objects. In the present paper we describe the development of a plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. We demonstrate the ability of this system to remarkably sustain genetic modifications and in vitro chemical derivatizations of its outer surface, which resulted in the successful display of large chimeric peptides fusions and small chemical molecules, respectively. Moreover, we have defined physicochemical conditions for viral swelling and reversible viral pore gating that we have successfully employed for foreign molecules loading and retention in the inner cavity of this plant virus nanoparticles system. Finally, a production and purification strategy from Nicotiana benthamiana plants has been addressed and optimized.

  19. Development of novel graphene and carbon nanotubes based multifunctional polymer matrix composites

    Science.gov (United States)

    Leung, S. N.; Khan, M. O.; Naguib, H. E.

    2014-05-01

    This paper investigates strategies to alter the nano-and-microstructures of carbon-based filler-reinforced polymer matrix composites (PMCs). The matrix materials being studied in this work include polyphenylene sulfide (PPS) and liquid crystal polymer (LCP). A set of experiments were performed to investigate various strategies (i) to fabricate a morphological structure within the polymer matrix; (ii) to develop a thermally and electrically conductive network of nano-scaled fillers; and (iii) to produce a thermally conductive but electrically insulative network of hybrid fillers of nano-and-micro scales. The PMCs' structure-to-property relationships, including electrical and thermal properties, were revealed. In particular, the composites' effective thermal conductivities could be increased by as much as 10-folded over the neat polymers. By structuring the embedded electrically conductive pathways in the PMCs, their electrical conductivities could be tailored to levels that ranged from those of electrical insulators to those of semi-conductors. These multifunctional carbon-based filler-reinforced PMCs are envisioned to be potential solutions of various engineering problems. For example, light-weight thermally conductive PMCs with tailored electrical conductivities can serve as a new family of materials for electronic packaging or heat management applications.

  20. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan-ling [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Jiuzhou College of Pharmacy, Yancheng Institute of Industry Technology, Yancheng 224005 (China); Bremner, David H. [School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee DD1 1HG, Scotland (United Kingdom); Li, He-yu; Shi, Qi-quan; Wu, Jun-zi; Xiao, Rui-qiu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhu, Li-min, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2016-05-01

    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed “kidney” shape with a height of 50–100 μm and width of 100–200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicity on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field. - Highlights: • Based on a wet spinning technique, a series of filaments which can be used as biomaterial

  1. New RC-Active Networks Using Current Conveyors

    Directory of Open Access Journals (Sweden)

    V. Zeman

    1997-06-01

    Full Text Available Two novel autonomous networks containing current conveyors are presented. The design of second-order oscillators and frequency filters based on the above general networks is described. The Q-factor of the circuits designed is controllable through a grounded single resistor. Some examples illustrate the procedure described. Two new one-port elements for high-order immittance realization are shown.

  2. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.

    Science.gov (United States)

    Wu, Hui; Shi, Yinfeng; Huang, Chusen; Zhang, Yang; Wu, Jiahui; Shen, Hebai; Jia, Nengqin

    2014-04-01

    RNA interference-mediated gene silencing relating to disease has recently emerged as a powerful method in gene therapy. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. Halloysites are cheap and naturally available aluminosilicate clay nanotubes with high mechanical strength and biocompatibility. In this study, a novel multifunctional nanocarrier based on functionalized halloysite nanotubes (f-HNTs) has been developed via electrostatic layer-by-layer assembling approach for loading and intracellular delivery of therapeutic antisurvivin siRNA and simultaneously tracking their intracellular transport, in which PEI-modified HNTs are used as gene vector, antisurvivin siRNA as gene therapeutic agent, and mercaptoacetic acid-capped CdSe quantum dots as fluorescent labeling probes. The successful assembly of the f-HNTs-siRNA complexes was systematically characterized by transmission electron microscopy (TEM), UV-visible spectrophotometry, Zeta potential measurement, fluorescence spectrophotometry, and electrochemical impedance spectroscopy. Confocal microscopy, biological TEM, and flow cytometry studies revealed that the complexes enabled the efficient intracellular delivery of siRNA for cell-specific gene silencing. MTT assays exhibited that the complexes can enhance antitumor activity. Furthermore, Western blot analysis showed that f-HNTs-mediated siRNA delivery effectively knocked down gene expression of survivin and thereby decreased the levels of target proteins of PANC-1 cells. Therefore, this study suggested that the synthesized f-HNTs were a new effective drug delivery system for potential application in cancer gene therapy.

  3. Nature-Inspired Multifunctional Ligands: Focusing on Amyloid-Based Molecular Mechanisms of Alzheimer's Disease.

    Science.gov (United States)

    Simoni, Elena; Serafini, Melania M; Bartolini, Manuela; Caporaso, Roberta; Pinto, Antonella; Necchi, Daniela; Fiori, Jessica; Andrisano, Vincenza; Minarini, Anna; Lanni, Cristina; Rosini, Michela

    2016-06-20

    The amyloidogenic pathway is a prominent feature of Alzheimer's disease (AD). However, growing evidence suggests that a linear disease model based on β-amyloid peptide (Aβ) alone is not likely to be realistic, which therefore calls for further investigations on the other actors involved in the play. The pro-oxidant environment induced by Aβ in AD pathology is well established, and a correlation among Aβ, oxidative stress, and conformational changes in p53 has been suggested. In this study, we applied a multifunctional approach to identify allyl thioesters of variously substituted trans-cinnamic acids for which the pharmacological profile was strategically tuned by hydroxy substituents on the aromatic moiety. Indeed, only catechol derivative 3 [(S)-allyl (E)-3-(3,4-dihydroxyphenyl)prop-2-enethioate] inhibited Aβ fibrilization. Conversely, albeit to different extents, all compounds were able to decrease the formation of reactive oxygen species in SH-SY5Y neuroblastoma cells and to prevent alterations in the conformation of p53 and its activity mediated by soluble sub-lethal concentrations of Aβ. This may support an involvement of oxidative stress in Aβ function, with p53 emerging as a potential mediator of their functional interplay.

  4. Hierarchical assembly of multifunctional oxide-based composite nanostructures for energy and environmental applications.

    Science.gov (United States)

    Gao, Pu-Xian; Shimpi, Paresh; Gao, Haiyong; Liu, Caihong; Guo, Yanbing; Cai, Wenjie; Liao, Kuo-Ting; Wrobel, Gregory; Zhang, Zhonghua; Ren, Zheng; Lin, Hui-Jan

    2012-01-01

    Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO(3)-type perovskites, A(2)BO(4) spinels and quaternary dielectric hydroxyl metal oxides (AB(OH)(6)) with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches- such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel) composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction-arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  5. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  6. Investigation of a simultaneous multifunctional photonic logic gate based on bidirectional FWM

    Science.gov (United States)

    Li, Lanlan; Lv, Tingting; Wu, Jian

    2013-11-01

    We demonstrate a multi-functional photonic logic gate for RZ-PolSK signals based on four wave mixing (FWM) in highly nonlinear fiber (HNLF). Bidirectional operation with one spool of HNLF is implemented numerically at 40 Gb/s. The basic logic arithmetics, such as XOR, AB¯,A¯B, XNOR, AND, NOR, and complex logic functions such as half-subtracter, half-adder, comparator and decoder are simultaneously realized by adjusting the polarization controllers. This novel structure is low-cost and rather flexible. Proper logic results, clear waveforms and high Q factors of eye diagrams are presented. Simulation analysis shows that bit error-free operation for the logic gate can be obtained when the wavelength separation is from -7 to 6 nm for two input signals. The impact of the input power on the Q factor is also investigated. Due to the femoto-second response time of Kerr-effect in HNLF we used in the scheme, the logic gate has great potential in future ultra-high speed optical transmission systems.

  7. Alligator gets its teeth into the conveyor market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Founded in 1907 in Chicago, USA, the Flexible Steel Lacing Company grew from a manufacturer of mechanical conveyor belt fasteners to become an international leader in the manufacture of belt fasteners and related products for conveyor systems. Although operating in the local market for decades through agencies, a subsidiary company was only formed in South Africa in 1992, a decision which has served to strengthen its presence even further. Markets are in the coal, gold and metalliferous mining sectors. The Flexco and Alligator range of fasteners are marketed in the US, New Zealand, Australia, Germany, Mexico and South Africa. The most recent acquisition was Clipper, based in Grand Rapids, USA. Clipper has a range of light weight fasteners complementary to the Alligator range. 2 photos.

  8. A learning curve-based method to implement multifunctional work teams in the Brazilian footwear sector.

    Science.gov (United States)

    Guimarães, L B de M; Anzanello, M J; Renner, J S

    2012-05-01

    This paper presents a method for implementing multifunctional work teams in a footwear company that followed the Taylor/Ford system for decades. The suggested framework first applies a Learning Curve (LC) modeling to assess whether rotation between tasks of different complexities affects workers' learning rate and performance. Next, the Macroergonomic Work Analysis (MA) method (Guimarães, 1999, 2009) introduces multifunctional principles in work teams towards workers' training and resources improvement. When applied to a pilot line consisting of 100 workers, the intervention-reduced work related accidents in 80%, absenteeism in 45.65%, and eliminated work related musculoskeletal disorders (WMSD), medical consultations, and turnover. Further, the output rate of the multifunctional team increased average 3% compared to the production rate of the regular lines following the Taylor/Ford system (with the same shoe model being manufactured), while the rework and spoilage rates were reduced 85% and 69%, respectively.

  9. Cascadable Current-Mode First-Order and Second-Order Multifunction Filters Employing Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    Jiun-Wei Horng

    2012-01-01

    Full Text Available A configuration for realizing low input and high output impedances current-mode multifunction filters using multiple output second-generation current conveyors (MOCCIIs is presented. From the proposed circuit configuration, first-order allpass, highpass, lowpass and second-order allpass, notch, bandpass filters can be obtained. The simulation results confirm the theoretical analysis.

  10. 一种基于第二代电流传输器的积分器设计%Design of an integrator based on second generation current conveyors

    Institute of Scientific and Technical Information of China (English)

    邓盼盼

    2012-01-01

    介绍了一种基于低压、宽带、轨对轨、自偏置CMOS第二代电流传输器(CCⅡ)的电流模式积分器电路,能广泛应用于无线通讯、射频等高频模拟电路中。通过采用0.18μm工艺参数,进行Hspice仿真,结果表明:电流传输器电压跟随的线性范围为-1.04~1.15V,电流跟随的线性范围为-9.02~6.66mA,iX/iZ的-3dB带宽为1.6GHz。输出信号的幅度以20dB/decade的斜率下降,相位在低于3MHz的频段上保持在90°。%An integrator based on low-vohage,wideband, rail-to-rail and self-biased CMOS second generation current conveyor (CCⅡ) is proposed,which is widely used in wireless communications, RF and other high-frequency analog circuits. Using 0.18urn CMOS process parameters, the Hspice simulation showed that the following voltage of the current conveyor varies linearly from -1.04V to 1.15V, and the linear range of the following current is -9.02mA-6.66mA. The iX/iZ has -3dB bandwidth of 1.6GHz. The output amplitude decreases on the slope of 20dB/decade, and the phase remains 90 degree when the frequency is below 3 MHz.

  11. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications.

    Science.gov (United States)

    Hyeon, Jeong Eun; Jeon, Sang Duck; Han, Sung Ok

    2013-11-01

    The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology.

  12. A Current-mode Electronically Controllable Multifunction Biquadratic Filter Using CCCIIs

    Directory of Open Access Journals (Sweden)

    MONTREE SIRIPRUCHYANUN

    2013-03-01

    Full Text Available This article presents a current-mode multifunction biquadratic filter performing completely standard functions low-pass, high-pass, band-pass, band-reject and all-pass functions. The circuit principle is based on second-generation current-controlled current conveyor (CCCII with three input terminals and one output terminal. The features of the circuit are that, the pole frequency can be electronically tuned via the input bias currents. The circuit topology is very simple, consisting of merely 2 CCCIIs and 2 grounded capacitors. Without any external resistor and using only grounded elements, the proposed circuit is very comfortable to further develop into an integrated circuit architecture. The PSpice simulation results are shown. The given results agree well with the theoretical anticipation. The total power consumption is approximately 1.87mW at ±1.5V power supply voltages.

  13. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    Science.gov (United States)

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-04

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  14. Transparent Conveyor of Dielectric Liquids or Particles

    Science.gov (United States)

    Calle, Carlos I.; Mantovani, James G.

    2009-01-01

    The concept of a transparent conveyor of small loose dielectric parti cles or small amounts of dielectric liquids has emerged as an outgro wth of an effort to develop efficient, reliable means of automated re moval of dust from solar cells and from windows of optical instrumen ts. This concept is based on the previously reported concept of an e lectrodynamic screen, according to which a grid-like electric field is established on and near a surface and is moved along the surface p erpendicularly to the grid lines. The resulting electrodynamic force s on loose dielectric particles or dielectric liquid drops in the vic inity would move the particles or drops along the surface. In the or iginal dust-removal application, dust particles would thus be swept out of the affected window area. Other potential applications may occ ur in nanotechnology -- for example, involving mixing of two or more fluids and/or nanoscale particles under optical illumination and/or optical observation.

  15. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer's disease.

    Science.gov (United States)

    Gao, Nan; Sun, Hanjun; Dong, Kai; Ren, Jinsong; Qu, Xiaogang

    2015-01-01

    Targeting amyloid-β (Aβ)-induced complex neurotoxicity has received considerable attention in the therapeutic and preventive treatment of Alzheimer's disease (AD). The complex pathogenesis of AD suggests that it requires comprehensive treatment, and drugs with multiple functions against AD are more desirable. Herein, AuNPs@POMD-pep (AuNPs: gold nanoparticles, POMD: polyoxometalate with Wells-Dawson structure, pep: peptide) were designed as a novel multifunctional Aβ inhibitor. AuNPs@POMD-pep shows synergistic effects in inhibiting Aβ aggregation, dissociating Aβ fibrils and decreasing Aβ-mediated peroxidase activity and Aβ-induced cytotoxicity. By taking advantage of AuNPs as vehicles that can cross the blood-brain barrier (BBB), AuNPs@POMD-pep can cross the BBB and thus overcome the drawbacks of small-molecule anti-AD drugs. Thus, this work provides new insights into the design and synthesis of inorganic nanoparticles as multifunctional therapeutic agents for treatment of AD.

  16. Fabrication of modular multifunctional delivery for antitumor drugs based on host-guest recognition.

    Science.gov (United States)

    Chen, Li; Zhang, Zhe; Chen, Xiaofei; Yao, Xuemei; He, Chaoliang; Chen, Xuesi

    2015-05-01

    Herein, learning from the idea of the modular concept widely used in ship building, as a design approach that assembles some subdivided smaller modules to a specific ship, a new modular multifunctional drug delivery (MMDD) with excellent biocompatibility was directly prepared by a flexible host-guest interaction between pH-sensitive benzimidazole-graft-dextran (Dex-BM) and pre-synthesized multifunctional cyclodextrins. In this drug system, pH-sensitive Dex-BM acted as the main case and pre-synthesized multifunctional cyclodextrins were the changeable modules. To verify the feasibility of MMDD in cancer chemotherapy, doxorubicin (DOX) was used as a model drug. In vitro drug release experiments indicated that the drug released around 80% from DOX-loaded MMDD at pH 5.3, while approximately 40% of DOX released under the condition of pH 7.4. Moreover, the targeting antitumor activity of DOX-loaded MMDD was investigated in HeLa and HepG2 cells using MTT assays, confocal laser scanning microscopy and flow cytometer, which indicated that the targeted DOX-loaded MMDD provided an efficient drug delivery platform for inhibition of different cancer cells. Meantime, the incorporation of different functional modules into one system was also investigated, simultaneously exhibiting targeting and imaging property. These features suggest that this modular multifunctional drug delivery system can efficiently enhance the inhibition of cellular proliferation in vitro, and according to the needs in clinical treatment, some targeting and imaging molecules can be chosen.

  17. Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres

    CSIR Research Space (South Africa)

    Mokhena, Teboho C

    2017-07-01

    Full Text Available of Cleaner Production Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibers Teboho Clement Mokhena a, b, Adriaan Stephanus Luyt c, * a CSIR Materials Science and Manufacturing... stream_source_info Mokhena_2017_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 1910 Content-Encoding ISO-8859-1 stream_name Mokhena_2017_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Journal...

  18. Software defined radio based multi-carrier multi-function waveform for cognitive radio

    Science.gov (United States)

    Zhou, Ruolin; Li, Xue; Chakravarthy, Vasu; Wu, Zhiqiang

    2010-04-01

    In this paper, we demonstrate an adaptive multicarrier multi-function waveform generator for cognitive radio via software defined radio. Using a USRP (universal software radio peripheral) software defined radio boards and GNU radio software, we implement a multi-carrier waveform generator which can generate multi-function waveforms such as OFDM, NC-OFDM, MC-CDMA, NC-MC-CDMA, CI/MC-CDMA, NCCI/ MC-CDMA, TDCS for cognitive radio. Additionally, we demonstrate a portable overlay cognitive radio using this multicarrier multi-function waveform generator. This cognitive radio is capable of detecting primary users in real time and adaptively adjusting its transmission parameters to avoid interference to primary users. More importantly, this cognitive radio can take advantage of multiple spectrum holes by employing non-contiguous multi-carrier transmission technologies. Additionally, we demonstrate that when the primary user transmission changes, the cognitive radio dynamically adjusts its transmission accordingly. We also demonstrate seamless real time video transmission between two cognitive radio nodes, while avoiding interference from primary users and interference to primary users operating in the same spectrum.

  19. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yurong; Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kundu, Subhas C. [Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, West Bengal 721302 (India); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-15

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  20. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  1. Current and Voltage Conveyors in Current- and Voltage-Mode Precision Full-Wave Rectifiers

    Directory of Open Access Journals (Sweden)

    J. Koton

    2011-04-01

    Full Text Available In this paper new versatile precision full-wave rectifiers using current and/or voltage conveyors as active elements and two diodes are presented. The performance of these circuit solutions is analysed and compared to the opamp based precision rectifier. To analyze the behavior of the functional blocks, the frequency dependent RMS error and DC transient value are evaluated for different values of input voltage amplitudes. Furthermore, experimental results are given that show the feasibilities of the conveyor based rectifiers superior to the corresponding operational amplifier based topology.

  2. Effective Conveyor Belt Inspection for Improved Mining Productivity

    Energy Technology Data Exchange (ETDEWEB)

    David LaRose

    2006-07-01

    This document details progress on the project ''Effective Conveyor Belt Inspection for Improved Mining Productivity'' during the period from November 15, 2005 to May 14, 2006. Highlights include significant improvements in the accuracy and reliability of computer-vision based vulcanized splice detection, deployment of the vulcanized splice detection algorithms for daily use in two working mines, and successful demonstration of an early prototype of a Smart-Camera based system for on-site mechanical splice detection in coal mine installations.

  3. Research on Magnetic Model of Low Resistance Permanent Magnet Pipe Belt Conveyor

    Science.gov (United States)

    Wang, Shuang; Li, De-yong; Guo, Yong-cun

    2016-09-01

    In view of the feasibility of a new type of low resistance permanent magnet pipe belt conveyor, the magnetic properties of the permanent magnet magnetic pipe conveyor belt system are studied. Based on the molecular current hypothesis, the mathematical model of the three dimensional radial magnetic force of permanent magnet pipe conveyor belt was established. The mathematical model of the radial magnetic force was derived, and the influence factors of the radial magnetic force were derived. The finite element simulation of permanent magnet-magnetic pipe conveyor belt magnetic model was carried out, then the magnetic flux density distribution chart under the conditions of different remanence intensity of different permanent magnet and different lengths of the permanent magnets (along the transport direction) were obtained. The simulation results are consistent with the calculation results, which shows that the permanent magnet pipe belt conveyor is feasible. Under certain conditions, the radial magnetic force has nonlinear increase relations with residual magnetism of permanent magnet and the length of the permanent magnet (along the transport direction).

  4. Field-effect-based multifunctional hybrid sensor module for the determination of both (bio-)chemical and physical parameters

    Science.gov (United States)

    Schoening, Michael J.; Poghossian, Arshak; Schultze, J. Walter; Lueth, Hans

    2002-02-01

    Sensor systems for multi-parameter detection in fluidics usually combine different sensors, which are designed to detect either a physical or (bio-)chemical parameter. Therefore, such systems include a more complicated fabrication technology and measuring set-up. In this work, an ISFET (ion-sensitive field-effect transistor), which is well known as a (bio-)chemical sensor, is utilized as transducer for the detection of both (bio-)chemical and physical parameters. A multifunctional hybrid module for the determination of two (bio-)chemical parameters (pH, penicillin concentration) and three physical parameters (temperature, flow velocity and flow direction) using only two sensor structures, an ion generator and a reference electrode, is realized and its performance has been investigated. Here, a multifunctionality of the sensor system is achieved by means of different sensor arrangements and/or different operation modes. A Ta2O5-gate ISFET was used as transducer for all sensors. A novel time-of-flight type ISFET-based flow-velocity (flow rate) and flow-direction sensor using in-situ electrochemical generation of chemical tracers is presented. Due to the fast response of the ISFET (usually in the millisecond range), an ISFET-based flow sensor is suitable for the measurement of the flow velocity in a wide range. With regard to practical applications, pH measurements with this ISFET were performed in rain droplets.

  5. Floating RC Networks Using Current Conveyors

    OpenAIRE

    Zeman, V; J. Cajka; Vrba, K.

    1996-01-01

    The paper deals with the design of floating one- and/or two-port high-order networks. The current conveyor CCII+ seems to be a suitable active building block for this purpose. Some examples of the above mentioned networks are shown .

  6. Floating RC Networks Using Current Conveyors

    Directory of Open Access Journals (Sweden)

    V. Zeman

    1996-06-01

    Full Text Available The paper deals with the design of floating one- and/or two-port high-order networks. The current conveyor CCII+ seems to be a suitable active building block for this purpose. Some examples of the above mentioned networks are shown .

  7. Design aspects of multiple driven belt conveyors

    NARCIS (Netherlands)

    Nuttall, A.J.G.

    2007-01-01

    Worldwide belt conveyors are used to transport a great variety of bulk solid materials. The desire to carry higher tonnages over longer distances and more diverse routes, while keeping exploitation costs as low as possible, has fuelled many technological advances. An interesting development in the r

  8. Design aspects of multiple driven belt conveyors

    NARCIS (Netherlands)

    Nuttall, A.J.G.

    2007-01-01

    Worldwide belt conveyors are used to transport a great variety of bulk solid materials. The desire to carry higher tonnages over longer distances and more diverse routes, while keeping exploitation costs as low as possible, has fuelled many technological advances. An interesting development in the

  9. Communication equipment for underground conveyor units

    Energy Technology Data Exchange (ETDEWEB)

    Geurts, J.

    1981-06-01

    There are many factors governing smooth operation of a conveyor system. Communication systems are required for fast access to information in case of disturbances. The following possibilities are reported: Use of the existing telecommunication network, use of radio equipment, use of an independent intercommunication system.

  10. Structural Composites with Intrinsic Multifunctionality Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of multifunctional, structural materials for applications in terrestrial and space-based platforms is proposed. The principle innovation is the...

  11. Structural Composites with Intrinsic Multifunctionality Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a multifunctional, structural material for applications in terrestrial and space-based platforms used for instrumentation in earth observation is...

  12. 长距离带式输送机选型设计%Selection Design of Long Belt Conveyor

    Institute of Scientific and Technical Information of China (English)

    王颖; 陶焜

    2015-01-01

    文章介绍了长距离带式输送机的选型设计方法,并依据给定设计参数对输送机的传动滚筒、拉紧装置、输送带以及电控等主要部件进行选型设计。%This paper introduces the selection of long belt conveyor design method, and based on the given design parame-ters on the conveyor drive roller, drives, tensioning device, conveyor belts and so on major components of the selection and design, focusing on the conveyor belt tension analyzed and calculated, and finally gives a reasonable start-up mode and elec-tronically controlled program.

  13. Multifunctional Material Structures Based on Laser-Etched Carbon Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Aline Emplit

    2014-09-01

    Full Text Available High-power electronics in the transportation and aerospace sectors need size and weight reduction. Multifunctional and multistructured materials are currently being developed to couple electromagnetic (EM and thermal properties, i.e., shielding against electromagnetic impulsions, and thermal management across the thermal interface material (TIM. In this work, we investigate laser-machined patterned carbon nanotube (CNT micro-brushes as an alternative to metallic structures for driving simultaneously EM and heat propagation. The thermal and electromagnetic response of the CNT array is expected to be sensitive to the micro-structured pattern etched in the CNT brush.

  14. Design of multi-function sensor detection system in coal mine based on ARM

    Science.gov (United States)

    Ge, Yan-Xiang; Zhang, Quan-Zhu; Deng, Yong-Hong

    2017-06-01

    The traditional coal mine sensor in the specific measurement points, the number and type of channel will be greater than or less than the number of monitoring points, resulting in a waste of resources or cannot meet the application requirements, in order to enable the sensor to adapt to the needs of different occasions and reduce the cost, a kind of multi-functional intelligent sensor multiple sensors and ARM11 the S3C6410 processor is used to design and realize the dust, gas, temperature and humidity sensor functions together, and has storage, display, voice, pictures, data query, alarm and other new functions.

  15. Design Considerations for CMOS Current Mode Operational Amplifiers and Current Conveyors

    DEFF Research Database (Denmark)

    Bruun, Erik

    This dissertation is about CMOS current conveyors and current mode operational amplifiers (opamps). They are generic devices for continuous time signal processing in circuits and systems where signals are represented by currents.Substantial advancements are reported in the dissertation, both...... implementations of current mode opamps in CMOS technology are described. Also, current conveyor configurations with multiple outputs and flexible feedback connections from outputs to inputs are introduced. The dissertation includes several examples of circuit configurations ranging from simple class A and class...... AB conveyor implementations to implementations based on purely digital circuit structures and on more complex analog subsystems such as a voltage mode opamp with feedback to provide a voltage follower action. An important by-product of the investigation of current mode structures is the definition...

  16. Optimal Driving of Large Belt Conveyor with Multi-roller Variable-Frequency Drive

    Institute of Scientific and Technical Information of China (English)

    FU Jun-qing; WANG Cong; LI Yu-jin

    2004-01-01

    in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are also formulated when the hoister is used for straining. Based on the belt conveyor of main inclined shaft in Chengzhuang coal mine, the driving torque, driving power and starting-speed characteristic of each electric motor are studied and measured when multi-roller variable-frequency drive (power distribution 2∶1) is used. The optimal control and the optimal starting-acceleration of the multi-roller variable-frequency drive are determined by a large number of industrial experiments and theoretical calculations.

  17. 基于离散元法的水平螺旋输送机仿真模拟与分析%Simulation and Analysis of the horizontal screw conveyor Based on the Discrete Element Method

    Institute of Scientific and Technical Information of China (English)

    于瑞江; 汤晓华; 张玉玲

    2015-01-01

    Based on the discrete element method, using Inventor to establish a three dimensional model of horizontal screw conveyer, to import the model into EDEM software simulation. It was gained by analyzing that when the rotational speed of the screw conveyer and the volumetric fill level was 200 rpm and 20% respectively, transporting a certain mass material consumed power was to minimize; Through simulation obtain the average speed change rule of rice grain and the force situation of screw conveyor, when the volumetric fill level is 20%, 50%, 70%.%基于离散元法,应用Inventor软件建立水平螺旋输送机三维实体模型,将该模型导入EDEM软件进行仿真模拟。分析验证了水平螺旋输送机转速和填充率分别为200r/min和20%时,螺旋输送机输送一定质量物料消耗的功率最小;通过仿真模拟得出填充率为20%、50%、70%时大米颗粒平均速度变化规律以及螺旋输送机受力情况。

  18. Moving least squares-based multi-functional sensing technique or estimating viscosity and density of ternary solution

    Institute of Scientific and Technical Information of China (English)

    LIU Dan; WEI Guo; SUN Jin-wei; LIU Xin

    2009-01-01

    In the osmotic dehydration process of food, on-line estimation of concentrations of two components in ternary solution with NaCI and sucrose was performed based on multi-functional sensing technique.Moving Least Squares were adopted in approximation procedure to estimate the viscosity of such interested ternary solu-tion with the given data set.As a result, in one mode of using total experimental data as calibration data andvalidation data, the relative deviations of estimated viscosities are less than ~ 1.24%.In the other mode, by taking total experimental data except the ones for estimation as calibration data, the relative deviations are less than±3.47%.In the same way, the density of ternary solution can be also estimated with deviations less than ± 0.11% and ± 0.30% respectively in these two models.The satisfactory and accurate results show the ex-traordinary efficiency of Moving Least Squares behaved in signal approximation for multi-functional sensors.

  19. Trichloroethylene sensing in water based on SERS with multifunctional Au/TiO2 core-shell nanocomposites.

    Science.gov (United States)

    Ren, Wen; Zhou, Zhongwu; Irudayaraj, Joseph M K

    2015-10-07

    Herein we report on a rapid and highly sensitive scheme to detect trichloroethylene (TCE), an environmental contaminant, by surface enhanced Raman scattering (SERS) with multifunctional Au/TiO2 core-shell nanocomposites as SERS substrates. A facile approach to fabricate TiO2 shell around gold core nanocomposites is proposed as sensors for TCE detection by SERS. During detection, TCE was first oxidized due to the photocatalytic activity of the TiO2 shell and the increase in SERS intensity due to the product of TCE photooxidation can be used to determine the concentration of TCE. It should be noted that the SERS of the Raman label, 4-mercaptopyridine (4-MPy) modified onto the gold nanoparticle (GNP) core is in proportion to the product of TCE photooxidation. After optimizing the sample pH, enrichment of the analyte, and the UV exposure time, the methodology developed accomplishes an excellent limit of detection (LOD) (0.038 μM, i.e.∼5 ppb) for TCE in water. Our unique approach based on the synthesized SERS composite to detect TCE, a chlorinated environmental contaminant directly in water could pave the way for the development of a multifunctional nanosensor platform to monitor TCE and the catalytic reactions in a multiplex format.

  20. Voltage-Controlled Square/Triangular Wave Generator with Current Conveyors and Switching Diodes

    Directory of Open Access Journals (Sweden)

    Martin Janecek

    2012-12-01

    Full Text Available A novel relaxation oscillator based on integrating the diode-switched currents and Schmitt trigger is presented. It is derived from a known circuit with operational amplifiers where these active elements were replaced by current conveyors. The circuit employs only grounded resistances and capacitance and is suitable for high frequency square and triangular signal generation. Its frequency can be linearly and accurately controlled by voltage that is applied to a high-impedance input. Computer simulation with a model of a manufactured conveyor prototype verifies theoretic assumptions.

  1. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers

    Science.gov (United States)

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-01-01

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10−3 and 10−1 S·cm−1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording. PMID:28256608

  2. A multi-function IEC 61850 packet generator based on FPGA

    Science.gov (United States)

    Wei, Wei; Li, Hong-bin; Cheng, Han-miao

    2016-07-01

    An IEC 61850 packet generator is used to produce IEC 61850-9-2 packets by simulating the merging unit and testing the IEC 61850 digital device. While the existing IEC packet generator can produce ideal digital without any noise, it does not take into account the fact that the merging unit output signal packets will be inevitably superimposed with noise. Since the International Electrical Commission standard of the electronic current transformer specifies the minimum output signal-to-noise ratio of the merging unit to be 30 dB, and the signal superimposed with noise will influence the operation performance of the digital device, it is necessary to design a multi-function IEC 61850-9-2 packet generator for a digital device test. Therefore, in this paper, a multi-function IEC 61850 packet generator has been developed, which not only can output various IEC 61850-9-2 packets, but also can add white Gaussian noise to the signal for digital device testing. By testing three digital electricity meters from different manufacturers, we showed that the error of the digital electricity meter is significantly larger when the signal packet is superimposed with noise. Also when the signal-to-noise ration is 30 dB, the error of one of the meters exceeds the allowed range of the accuracy class. This indicates that the noise testing and the noise setting function of the system has an important role in the testing of a digital device.

  3. Graphene Quantum Dots-based Photoluminescent Sensor: A Multifunctional Composite for Pesticide Detection.

    Science.gov (United States)

    Zor, Erhan; Morales-Narváez, Eden; Zamora-Gálvez, Alejandro; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben

    2015-09-16

    Due to their size and difficulty to obtain, cost/effective biological or synthetic receptors (e.g., antibodies or aptamers, respectively), organic toxic compounds (e.g., less than 1 kDa) are generally challenging to detect using simple platforms such as biosensors. This study reports on the synthesis and characterization of a novel multifunctional composite material, magnetic silica beads/graphene quantum dots/molecularly imprinted polypyrrole (mSGP). mSGP is engineered to specifically and effectively capture and signal small molecules due to the synergy among chemical, magnetic, and optical properties combined with molecular imprinting of tributyltin (291 Da), a hazardous compound, selected as a model analyte. Magnetic and selective properties of the mSGP composite can be exploited to capture and preconcentrate the analyte onto its surface, and its photoluminescent graphene quantum dots, which are quenched upon analyte recognition, are used to interrogate the presence of the contaminant. This multifunctional material enables a rapid, simple and sensitive platform for small molecule detection, even in complex mediums such as seawater, without any sample treatment.

  4. Controlling multi-function of biomaterials interfaces based on multiple and competing adsorption of functional proteins.

    Science.gov (United States)

    Guan, Zhen-Yu; Huang, Chao-Wei; Huang, Mei-Ching; Wu, Chih-Yu; Liu, Hui-Yu; Ding, Shih-Torng; Chen, Hsien-Yeh

    2017-01-01

    Multifunctional biomaterial surfaces can be created by controlling the competing adsorption of multiple proteins. To demonstrate this concept, bone morphogenetic protein 2 (BMP-2) and fibronectin were adsorbed to the hydrophobic surface of polychloro-para-xylylene. The resulting adsorption properties on the surface depended on the dimensional and steric characteristics of the selected protein molecule, the degree of denaturation of the adsorbed proteins, the associated adsorption of interphase water molecules within the protein layers, and the aggregation of proteins in a planar direction with respect to the adsorbent surface. Additionally, a defined surface composition was formed by the competing adsorption of multiple proteins, and this surface composition was directly linked to the composition of the protein mixture in the solution phase. Although the mechanism of this complex competing adsorption process is not fully understood, the adsorbed proteins were irreversibly adsorbed and were unaffected by the further adsorption of homologous or heterologous proteins. Moreover, synergistic biological activities, including cell osteogenesis and proliferation independently and specifically induced by BMP-2 or fibronectin, were observed on the modified surface, and these biological activities were positively correlated with the surface composition of the multiple adsorbed proteins. These results provide insights and important design parameters for prospective biomaterials and biointerfaces for (multi)functional modifications. The ability to control protein/interface properties will be beneficial for the processing of biomaterials for clinical applications and industrial products.

  5. Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures

    Science.gov (United States)

    Wang, Qingfu; Yu, Yong; Ma, Jun; Zhang, Ning; Zhang, Jianjun; Liu, Zhihong; Cui, Guanglei

    2016-09-01

    A flame retardant and thermally dimensional stable membrane with high permeability and electrolyte wettability can overcome the safety issues of lithium ion batteries (LIBs) at elevated temperatures. In this work, a multifunctional thermoset nonwoven membrane composed of melamine formaldehyde resin (MFR) nano-fibers was prepared by a electro-spinning method. The resultant porous nonwoven membrane possesses superior permeability, electrolyte wettability and thermally dimensional stability. Using the electrospun MFR membrane, the LiFePO4/Li battery exhibits high safety and stable cycling performance at the elevated temperature of 120 °C. Most importantly, the MFR membrane contains lone pair electron in the nitrogen element, which can chelate with Mn2+ ions and suppress their transfer across the separator. Therefore, the LiMn2O4/graphite cells with the electrospun MFR multifunctional membranes reveal an improved cycle performance even at high temperature. This work demonstrated that electrospun MFR is a promising candidate material for high-safety separator of LIBs with stable cycling performance at elevated temperatures.

  6. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Science.gov (United States)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  7. Multifunctional nanoparticles: Analytical prospects

    Energy Technology Data Exchange (ETDEWEB)

    Dios, Alejandro Simon de [University of Oviedo, Department of Physical and Analytical Chemistry, Faculty of Chemistry, Av. Julian Claveria, 8, 33006 Oviedo (Spain); Diaz-Garcia, Marta Elena, E-mail: medg@uniovi.es [University of Oviedo, Department of Physical and Analytical Chemistry, Faculty of Chemistry, Av. Julian Claveria, 8, 33006 Oviedo (Spain)

    2010-05-07

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  8. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  9. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine.

    Science.gov (United States)

    Onoshima, Daisuke; Yukawa, Hiroshi; Baba, Yoshinobu

    2015-12-01

    A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine.

  10. Fuzzy, copper-based multi-functional composite particles serving simultaneous catalytic and signal-enhancing roles

    Science.gov (United States)

    Li, Xiangming; Hu, Yingmo; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-04-01

    Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high-performance dual-functional copper-based composite particles that catalyze reactions and simultaneously serve as a SERS (surface enhanced Raman spectra) active, label-free reporting agent. Polyelectrolyte-modified reduced graphene oxide particles are used as the reactive precursors in the fabrication method. Upon adding Cu(NO3)2 solutions into the precursor dispersions, composite particles comprised by copper/copper oxide core and polyelectrolyte-graphene shell were facilely obtained under sonication. The as-prepared composite particles efficiently catalyzed the conversion of 4-nitrophenol to 4-aminophenol and simultaneously acted as the SERS-active substrate to give enhanced Raman spectra of the produced 4-aminophenol. Taking advantage of the assembling capabilities of polyelectrolyte shells, the composite particles could be further assembled onto a planar substrate to catalyze organic reactions, facilitating their application in various conditions. We expect this report to promote the fabrication and application of copper-based multifunctional particles.Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high

  11. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization.

    Science.gov (United States)

    Wu, Huan-ling; Bremner, David H; Li, He-yu; Shi, Qi-quan; Wu, Jun-zi; Xiao, Rui-qiu; Zhu, Li-min

    2016-05-01

    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed "kidney" shape with a height of 50-100 μm and width of 100-200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicity on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Conveyor haulage systems: new design trends and ideas

    Energy Technology Data Exchange (ETDEWEB)

    Glossop, M.

    1983-06-01

    Extended use of belt conveyors for overland haulage has followed the continuing development of conveyor belting. Development of belt jointing techniques, the extended use of steel as a tension member, and the use of high-grade man-made fibres, such as Kevlar, has resulted in reliable high strength belts. The conveyor engineer's attention is now concerned more with problems of control. Use of multi-motor drives has brought the need for closed control of power sharing between drives. One recent development in this field is the Dowty Meco Power Monitoring Control System which provides a means of controlling acceleration and deceleration of a belt conveyor. A system of this kind is particularly valuable in controlling conveyors on gradients. Use of multiple drive motors is also pertinent where the load to be carried by the conveying system is expected to vary. Recently, further attention has been given to the requirements for longer length curved conveyors.

  13. Some aspects of the characteristics of vertical screw conveyors for granular material

    NARCIS (Netherlands)

    Rademacher, F.J.C.

    1974-01-01

    A theory has been developed, based on a physical model, to describe the behaviour of non-cohesive granular material inside a vertical screw conveyor. By use of this theory, relationships have been derived between dimensionless numbers for capacity, power consumption and efficiency. These relationshi

  14. Market multifunctional system based on ASP.NET%基于ASP.NET的商场多功能系统

    Institute of Scientific and Technical Information of China (English)

    潘永才; 余小娟; 张鹏; 程鼎; 陈俊琪

    2013-01-01

    基于ASP.NET开发平台,为商场构建了一个新的录入查询系统,同时结合Visual Studio 2008,开发了一个中小型商场数据库网络系统,从而为实现多功能、可扩展、易维护的系统提供了一个良好的解决方案。%A new entry and query system was established for market based on the ASP.NET development platform. A small shopping mall database network system was developed in combination with Visual Studio 2008. Thereby, a good solution was provided for achievement of multi-functional, scalable and maintainable system.

  15. Design of Belt Conveyor Control System Based on PLC SIEMENS S7-200%基于PLC西门子S7-200的带式输送机控制系统设计

    Institute of Scientific and Technical Information of China (English)

    李博

    2015-01-01

    Belt conveyor is a conveyor belt driven by the driving roller, as a continuous conveying equipment, which is one of the main transport equipment in modern mines. In particular, the modern large-scale coal mines, coal transportation is mainly through the conveyor to complete. Conveyor is characterized by large transmission capacity, small power consumption, simple structure, strong adaptability to the material, easy to form water production line, so that the enterprise production process to achieve mechanization. Belt conveyor in coal mine and coal preparation plant plays a important role, under the background of enterprise development of coal mining mechanization, automation, automatic control operation of the conveyor belt is particularly important. In this paper, the design and programming of the conveyor system are carried out with the SIEMENS S7-200 programmable controller as an example.%带式输送机是一种由驱动滚筒带动的输送带,作为一种连续输送的设备,其是现代矿井的主要运输设备之一.尤其是现代化大型的煤矿,煤的运输主要通过输送机来完成.输送机的特点是输送能力大,功耗小,构造简单,对物料的适应性强,便于组成流水生产线,使企业生产过程实现机械化.带式输送机在煤矿及洗煤厂发挥着重要作用,在企业发展采煤机械化、自动化的背景下,带式输送机的自动控制运行显得尤为重要.本文以西门子S7-200可编控制器为例进行输送机系统的编程和设计.

  16. Underground fires involving conveyor systems, 1958-78

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D.P.; Currie, J.L.

    1979-12-01

    Discusses the emergence of fire resistant conveyor belts for use in British mines, following the fires at Creswell and Whitfield Collieries, and the development of fire tests. The principle tests for belting are described and their relevance to the real fire situation is shown. The role of the conveyor as a cause of fire, and the effects of fire on conveyors, are identified from the fire statistics for the past 21 years.

  17. Nano-optical conveyor belt with waveguide-coupled excitation.

    Science.gov (United States)

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  18. Resistance and other parameters of belt conveyor shifting

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.

    1988-07-01

    Discusses a method developed by Poltegor for calculating energy consumption of belt conveyor shifting in brown coal surface mines in Poland. A program for simulating effects of all significant factors that represent the environment, physical and mechanical properties of soil, effects of weather and atmospheric precipitations, design of belt conveyors, effects of soil or coal buildup and conveyor wear is used. Indices that describe effects of major groups of factors are used for calculating resistance to belt conveyor shifting considering local conditions. Investigations carried out in the Belchatow brown coal mine show the method to be accurate and reliable.

  19. A multifunctional peptide based on the neutrophil immune defense molecule, CAP37, has antibacterial and wound-healing properties.

    Science.gov (United States)

    Kasus-Jacobi, Anne; Noor-Mohammadi, Samaneh; Griffith, Gina L; Hinsley, Heather; Mathias, Lauren; Pereira, H Anne

    2015-02-01

    CAP37, a protein constitutively expressed in human neutrophils and induced in response to infection in corneal epithelial cells, plays a significant role in host defense against infection. Initially identified through its potent bactericidal activity for Gram-negative bacteria, it is now known that CAP37 regulates numerous host cell functions, including corneal epithelial cell chemotaxis. Our long-term goal is to delineate the domains of CAP37 that define these functions and synthesize bioactive peptides for therapeutic use. We report the novel finding of a multifunctional domain between aa 120 and 146. Peptide analogs 120-146 QR, 120-146 QH, 120-146 WR, and 120-146 WH were synthesized and screened for induction of corneal epithelial cell migration by use of the modified Boyden chamber assay, antibacterial activity, and LPS-binding activity. In vivo activity was demonstrated by use of mouse models of sterile and infected corneal wounds. The identity of the amino acid at position 132 (H vs. R) was important for cell migration and in vivo corneal wound healing. All analogs demonstrated antimicrobial activity. However, analogs containing a W at position 131 showed significantly greater antibacterial activity against the Gram-negative pathogen Pseudomonas aeruginosa. All analogs bound P. aeruginosa LPS. Topical administration of analog 120-146 WH, in addition to accelerating corneal wound healing, effectively cleared a corneal infection as a result of P. aeruginosa. In conclusion, we have identified a multifunctional bioactive peptide, based on CAP37, that induces cell migration, possesses antibacterial and LPS-binding activity, and is effective at healing infected and noninfected corneal wounds in vivo.

  20. Universal Voltage Conveyor and Current Conveyor in Fast Full-Wave Rectifier

    Directory of Open Access Journals (Sweden)

    Josef Burian

    2012-12-01

    Full Text Available This paper deals about the design of a fast voltage-mode full-wave rectifier, where universal voltage conveyor and second-generation current conveyor are used as active elements. Thanks to the active elements, the input and output impedance of the non-linear circuit is infinitely high respectively zero in theory. For the rectification only two diodes and three resistors are required as passive elements. The performance of the circuit is shown on experimental measurement results showing the dynamic range, time response, frequency dependent DC transient value and RMS error for different values of input voltage amplitudes.

  1. A lysinated thiophene-based semiconductor as a multifunctional neural bioorganic interface.

    Science.gov (United States)

    Bonetti, Simone; Pistone, Assunta; Brucale, Marco; Karges, Saskia; Favaretto, Laura; Zambianchi, Massimo; Posati, Tamara; Sagnella, Anna; Caprini, Marco; Toffanin, Stefano; Zamboni, Roberto; Camaioni, Nadia; Muccini, Michele; Melucci, Manuela; Benfenati, Valentina

    2015-06-03

    Lysinated molecular organic semiconductors are introduced as valuable multifunctional platforms for neural cells growth and interfacing. Cast films of quaterthiophene (T4) semiconductor covalently modified with lysine-end moieties (T4Lys) are fabricated and their stability, morphology, optical/electrical, and biocompatibility properties are characterized. T4Lys films exhibit fluorescence and electronic transport as generally observed for unsubstituted oligothiophenes combined to humidity-activated ionic conduction promoted by the charged lysine-end moieties. The Lys insertion in T4 enables adhesion of primary culture of rat dorsal root ganglion (DRG), which is not achievable by plating cells on T4. Notably, on T4Lys, the number on adhering neurons/area is higher and displays a twofold longer neurite length than neurons plated on glass coated with poly-l-lysine. Finally, by whole-cell patch-clamp, it is shown that the biofunctionality of neurons cultured on T4Lys is preserved. The present study introduces an innovative concept for organic material neural interface that combines optical and iono-electronic functionalities with improved biocompatibility and neuron affinity promoted by Lys linkage and the softness of organic semiconductors. Lysinated organic semiconductors could set the scene for the fabrication of simplified bioorganic devices geometry for cells bidirectional communication or optoelectronic control of neural cells biofunctionality.

  2. Electronically Tunable High Input Impedance Voltage-Mode Multifunction Filter

    Science.gov (United States)

    Chen, Hua-Pin; Yang, Wan-Shing

    A novel electronically tunable high input impedance voltage-mode multifunction filter with single inputs and three outputs employing two single-output-operational transconductance amplifiers, one differential difference current conveyor and two capacitors is proposed. The presented filter can be realized the highpass, bandpass and lowpass functions, simultaneously. The input of the filter exhibits high input impedance so that the synthesized filter can be cascaded without additional buffers. The circuit needs no any external resistors and employs two grounded capacitors, which is suitable for integrated circuit implementation.

  3. Influence of diabatic processes on the PV development in a warm conveyor belt

    Science.gov (United States)

    Joos, H.; Wernli, H.

    2010-09-01

    Warm conveyor belts are frequent features of extratropical cyclones in the Northern Hemisphere. In the strongly ascending airstreams clouds are forming whereas the latent heat release further increases the upward motion. The potential vorticity (PV) in the conveyor belt is strongly influenced by the microphysical processes occurring during the formation of clouds. In general, the PV increases below the maximum diabatic heating and decreases above. Thus, the conveyor belt reaches the upper troposphere with low PV values and therefore has the potential to influence the large scale dynamics. In order to assess the influence of the different microphysical processes like condensation, freezing, evaporation, sublimation, etc. on the PV development during the ascent, a Lagrangian based analysis is used. First, simulations with the COSMO Model are performed in order to calculate the individual diabatic heating rates caused by various transfer processes between hydrometeors. Then, the diabatic heating rates and the associated change in PV are calculated along trajectories in a warm conveyor belt. It can be seen that ice phase processes as well as condensation/evaporation strongly modify the PV during the ascent. Therefore, small scale microphysical processes have the potential to modify the large scale dynamics as airstreams with a strongly modified PV reach the upper troposphere.

  4. Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application.

    Science.gov (United States)

    Huang, Na; Zhang, Si; Yang, Liuqing; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-08-19

    In this paper, a new strategy for the construction of multifunctional electrochemical detection platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide was first proposed. Inspired by the mussel adhesion proteins, 3,4-dihydroxyphenylalanine (DA) was selected as a reducing agent to simultaneously reduce graphene oxide and self-polymerize to obtain the polydopamine-reduced graphene oxide (PDA-rGO). The PDA-rGO was then functionalized with thiols and amines by the reaction of thiol/amino groups with quinine groups of PDA-rGO via the Michael addition/Schiff base reaction. Several typical compounds containing thiol and/or amino groups such as 1-[(4-amino)phenylethynyl] ferrocene (Fc-NH2), cysteine (cys), and glucose oxidase (GOx) were selected as the model molecules to anchor on the surface of PDA-rGO using the strategy for construction of multifunctional electrochemical platforms. The experiments revealed that the composite grafted with ferrocene derivative shows excellent catalysis activity toward many electroactive molecules and could be used for individual or simultaneous detection of dopamine hydrochloride (DA) and uric acid (UA), or hydroquinone (HQ) and catechol (CC), while, after grafting of cysteine on PDA-rGO, simultaneous discrimination detection of Pb(2+) and Cd(2+) was realized on the composite modified electrode. In addition, direct electron transfer of GOx can be observed when GOx-PDA-rGO was immobilized on glassy carbon electrode (GCE). When glucose was added into the system, the modified electrode showed excellent electric current response toward glucose. These results inferred that the proposed multifunctional electrochemical platforms could be simply, conveniently, and effectively regulated through changing the anchored recognition or reaction groups. This study would provide a versatile method to design more detection or biosensing platforms through a chemical reaction strategy in the future.

  5. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials.

    Science.gov (United States)

    Bhowmick, Arundhati; Jana, Piyali; Pramanik, Nilkamal; Mitra, Tapas; Banerjee, Sovan Lal; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-10-20

    This paper reports the development of multifunctional zirconium oxide (ZrO2) doped nancomposites having chitosan (CTS), organically modified montmorillonite (OMMT) and nano-hydroxyapatite (HAP). Formation of these nanocomposites was confirmed by various characterization techniques such as Fourier transform infrared spectroscopy and powder X-ray diffraction. Scanning electron microscopy images revealed uniform distribution of OMMT and nano-HAP-ZrO2 into CTS matrix. Powder XRD study and TEM study revealed that OMMT has partially exfoliated into the polymer matrix. Enhanced mechanical properties in comparison to the reported literature were obtained after the addition of ZrO2 nanoparticle into the nanocomposites. In rheological measurements, CMZH I-III exhibited greater storage modulus (G') than loss modulus (G″). TGA results showed that these nanocomposites are thermally more stable compare to pure CTS film. Strong antibacterial zone of inhibition and the lowest minimum inhibition concentration (MIC) value of these nanocomposites against bacterial strains proved that these materials have the ability to prevent bacterial infection in orthopedic implants. Compatibility of these nanocomposites with pH and blood of human body was established. It was observed from the swelling study that the swelling percentage was increased with decreasing the hydrophobic OMMT content. Human osteoblastic MG-63 cell proliferations were observed on the nanocomposites and cytocompatibility of these nanocomposites was also established. Moreover, addition of 5wt% OMMT and 5wt% nano-HAP-ZrO2 into 90wt% CTS matrix provides maximum tensile strength, storage modulus, aqueous swelling and cytocompatibility along with strong antibacterial effect, pH and erythrocyte compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. THE TRANSFORMATION OF THE RECURSIVE CONVEYOR FROM THE GENERAL FORM TO THE LINEAR CONVEYOR

    Directory of Open Access Journals (Sweden)

    Boris V. Kupriyanov

    2015-01-01

    Full Text Available We consider the problem of converting the model of the recursive conveyor process with a variable performance and characterized by five parameters in the model with a constant performance. The resulting process is characterized by only the initial phase and conveying performance. 

  7. A Novel Ideal Floating Inductor Using Translinear Conveyors

    Directory of Open Access Journals (Sweden)

    Iqbal A. Khan

    2003-01-01

    Full Text Available An ideal floating inductor circuit using translinear conveyors is introduced. The floating inductor simulator uses two translinear conveyors and a single capacitor in its realization. The circuit provides the current controlled ideal floating inductance without any component matching constraints. Simulation results on the floating inductor simulator verify the theory

  8. 30 CFR 56.14202 - Manual cleaning of conveyor pulleys.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Manual cleaning of conveyor pulleys. 56.14202 Section 56.14202 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Equipment Safety Practices and Operational Procedures § 56.14202 Manual cleaning of conveyor...

  9. Behind KPC's 13 km conveyor

    Energy Technology Data Exchange (ETDEWEB)

    James, G. (Minenco Pty. Ltd., Brisbane, Qld. (Australia))

    1993-11-01

    Describes the Kaltim Prima Coal overland conveyor. The conveyor is 13.1 km long and runs from the mine to a 700,000 port stockpile. Aspects covered include design and construction, instrumentation, equipment selection and discharge chutework. 1 fig., 1 photo.

  10. Reducing The Risk Of Fires In Conveyor Transport

    Science.gov (United States)

    Cheremushkina, M. S.; Poddubniy, D. A.

    2017-01-01

    The paper deals with the actual problem of increasing the safety of operation of belt conveyors in mines. Was developed the control algorithm that meets the technical requirements of the mine belt conveyors, reduces the risk of fires of conveyors belt, and enables energy and resource savings taking into account random sort of traffic. The most effective method of decision such tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. Was designed the mathematical model of the system "variable speed multiengine drive - conveyor - control system of conveyors", that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows to reduce the dynamic overload in the belt to (15-20)%.

  11. Heads for shifting new generation of belt conveyors

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.

    1980-03-01

    New design of belt conveyors characterized by rigid section joints and conveyor to pontoon joints significantly influences loading of machines shifting belt conveyors to new locations. A new belt conveyor shifting machine head design, called SGP12 (selflocking head for vertical loads up to 120 kN) is described. Design is shown in 4 diagrams. It is stressed that in the SGP-12 the force clamping rollers on rails is automatically controlled depending on the height to which the rails are lifted. Clamping force is proportional to the height. This means of controlling the clamping force excludes damage to the head and reduces wear of the rollers. The SGP12 is, therefore, superior to the GP-12 shifting head of similar capacity. It is suggested that the SGP-12 is characterized by simple design, easier operation, higher reliability and greater safety. The SGP-12 can be used to shift belt conveyors with belts 2250 mm to 3000 mm wide.

  12. Multifunctional, chitosan-based nano therapeutics: design and application for two- and three-dimensional cell culture systems

    Science.gov (United States)

    Suarato, Giulia

    There is a constant demand for sensitive and effective anti-cancer drug delivery systems, capable of detecting early-stage pathological conditions and increasing patient survival. Recently, chitosan-based drug delivery nanocomplexes have shown to smartly respond to the distinctive features of the tumor microenvironment, a complex network of extracellular molecules, stromal and endothelial cells, which supports the tumor formation and its metastatic invasion. Due to biocompatibility, easy chemical tailorability, and pH-responsiveness, chitosan has emerged as a promising candidate for the formulation of supramolecular multifunctional materials. The present study focuses on the design, fabrication and characterization of fluorescently labelled, hydrophobically modified glycol chitosan nano-micelles (HGC NPs), suitably tailored for the delivery of anti-neoplastic compounds to various tumor models. Doxorubicin-loaded HGC NPs have been delivered to a bone cancer model, both in monolayer and in 3D spheroid configuration, to assess for differences in the delivery profiles and in the therapeutic efficacy. Compared to the free drug, nanocomplexes showed rapid uptake and a more homogeneous distribution in 3D spheroids, a powerful cellular tool which recapitulates some of the in vivo tumor microenvironment features. In a second part of this thesis work, with the purpose of designing an active targeting tumor-homing nano-therapeutic system, HGC NPs have been linked, via avidin-biotin interaction, with a IVS4 peptide, a small molecule with inhibitory activity on MMP-14-mediated functions. An extensive study conducted on triple negative breast cancer cells in monolayer revealed the MMP-14-IVS4-HGC association at the cancer cell membrane, the preferential uptake, and the consequent impairment of protease-associated migratory ability. As an additional application of our engineered construct, HGC micelles have been decorated with a liver kinase B1 (LKB1), a critical kinase involved

  13. Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Li K

    2013-07-01

    Full Text Available Kangan Li,1,4,5,* Shihui Wen,2,* Andrew C Larson,4,5 Mingwu Shen,2 Zhuoli Zhang,4,5 Qian Chen,3 Xiangyang Shi,2,3 Guixiang Zhang1 1Department of Radiology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China; 3State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, People’s Republic of China; 4Departments of Radiology and Biomedical Engineering, Northwestern University, Chicago, IL, USA; 5Robert H Lurie Comprehensive Cancer Center, Chicago, IL, USA *These authors contributed equally to this work Abstract: Development of dual-mode or multi-mode imaging contrast agents is important for accurate and self-confirmatory diagnosis of cancer. We report a new multifunctional, dendrimer-based gold nanoparticle (AuNP as a dual-modality contrast agent for magnetic resonance (MR/computed tomography (CT imaging of breast cancer cells in vitro and in vivo. In this study, amine-terminated generation 5 poly(amidoamine dendrimers modified with gadolinium chelate (DOTA-NHS and polyethylene glycol monomethyl ether were used as templates to synthesize AuNPs, followed by Gd(III chelation and acetylation of the remaining dendrimer terminal amine groups; multifunctional dendrimer-entrapped AuNPs (Gd-Au DENPs were formed. The formed Gd-Au DENPs were used for both in vitro and in vivo MR/CT imaging of human MCF-7 cancer cells. Both MR and CT images demonstrate that MCF-7 cells and the xenograft tumor model can be effectively imaged. The Gd-Au DENPs uptake, mainly in the cell cytoplasm, was confirmed by transmission electron microscopy. The cell cytotoxicity assay, cell morphology observation, and flow cytometry show that the developed Gd-Au DENPs have good biocompatibility in the given concentration range. Our results

  14. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  15. Optical Tomography Imaging in Pneumatic Conveyor

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2008-08-01

    Full Text Available This paper describes the development of a tomographic system by employing optical sensors using low cost approach. The final aim of this project is achieving real-time monitoring of solid particles having low concentration flow when conveyed in vertical pneumatic conveyor. The developed tomography system consists of 32 pairs of Light Emitting Diode (LED and silicon PIN photodiode. These sensors are used to monitor the emitted radiation for fluctuations caused by particles interfering with the beam when passing through it. A good design of sensor fixture may increase the collimating of light beam from a light source that passes through a flow regime. The obtained information from sensors provided the cross-sectional material distribution in conveyor. By using this information, the relationships between particle distribution and light attenuation effects are investigated by using computer programming to reconstruct the image. The results obtained from this investigation shows that the low cost optical sensors are suitable for monitoring low and medium concentration flowing materials. Optical sensors provide an opportunity to design sensors with a very wide bandwidth, thus enabling the measurement of high speed flowing particles or droplets.

  16. Preparation of a multifunctional material with superhydrophobicity, superparamagnetism, mechanical stability and acids-bases resistance by electrospinning

    Science.gov (United States)

    Wang, Shuai; Liu, Qingwen; Zhang, Yang; Wang, Shaodan; Li, Yaoxian; Yang, Qingbiao; Song, Yan

    2013-08-01

    A multifunctional material with superhydrophobicity, superparamagnetism, mechanical stability and acids-bases resistance was developed from the bead-on-string PVDF and Fe3O4@SiO2@POTS nanoparticles by electrospinning in this work. The Fe3O4@SiO2@POTS nanoparticles which have excellent superparamagnetism were successfully prepared and subsequently introduced into PVDF precursor solution. Through electrospinning, Fe3O4@SiO2@POTS nanoparticles irregularly distributed in the membrane to not only make a dual-scale roughness which is beneficial to obtain a superhydrophobic surface but also stimulate the material turns to superparamagnetic for wider use in different fields. More importantly, the film shows stable superhydrophobicity even for many corrosive solutions, such as acidic or basic solutions over a wide pH range and remarkable mechanical stability. The composition and surface structure of the film are the two critical factors that induce such unusual properties. The weight ratio of Fe3O4@SiO2@POTS/PVDF can strongly influence the superhydrophobicity and mechanical properties of the composite films.

  17. Maghemite and poly-DL-alanine based core–shell multifunctional nanohybrids for environmental protection and biomedicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Covaliu, Cristina Ileana, E-mail: cristina_covaliu@yahoo.com [University Politehnica of Bucharest, Faculty of Biotechnical Systems Engineering, Bucharest (Romania); Paraschiv, Gigel; Biriş, Sorin-Ştefan [University Politehnica of Bucharest, Faculty of Biotechnical Systems Engineering, Bucharest (Romania); Jitaru, Ioana; Vasile, Eugeniu [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Bucharest (Romania); Diamandescu, Lucian [National Institute of Materials Physics, Bucharest (Romania); Velickovic, Tanja Cirkovic; Krstic, Maja [University of Belgrade, Faculty of Chemistry, Belgrade (Serbia); Ionita, Valentin [University Politehnica of Bucharest, Faculty of Electrical Engineering, Bucharest (Romania); Iovu, Horia [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Bucharest (Romania); Matei, Ecaterina [University Politehnica of Bucharest, Faculty of Materials Science and Engineering, Bucharest (Romania)

    2013-11-15

    This paper deals with the synthesis of two nanohybrid materials based on maghemite (γ-Fe{sub 2}O{sub 3}) and poly-DL-alanine using a two-step procedure consisting of maghemite nanoparticles synthesis by microemulsion method and nanohybrids obtaining by coating of maghemite nanoparticles with poly-DL-alanine biopolymer in two different molar ratios (H1:5 and H1:15). The maghemite and their corresponding nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoemission spectroscopy, Mössbauer spectroscopy, Transmission electron microscopy, High resolution transmission electron microscopy with selected area electron diffraction and Atomic absorption spectroscopy. The two nanohybrids under the investigation have the average particle sizes of 22 nm and 23 nm. The Fourier transform infrared spectroscopy spectra and X-ray photoemission spectroscopy data indicate the existence of some interactions between the maghemite nanoparticles and poly-DL-alanine shell. The saturation magnetization values for maghemite and the two nanohybrids determined by a Vibrating Sample Magnetometer correspond to a typical superparamagnetic behavior suitable for applying in biomedical field. Also, with respect of biomedical application the biological activity of maghemite and its corresponding nanohybrids was investigated on healthy human cells (PBMC) and cancerous cells (HeLa). Furthermore, in order to support the multifunctionality of the γ-Fe{sub 2}O{sub 3} sample and nanohybrids we also investigated their wastewater treatment properties by measuring the removal efficiency of heavy metal Cd (II) ions.

  18. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations

    Directory of Open Access Journals (Sweden)

    Jian Ou

    2017-03-01

    Full Text Available The extensive applications of multi-function radars (MFRs have presented a great challenge to the technologies of radar countermeasures (RCMs and electronic intelligence (ELINT. The recently proposed cognitive electronic warfare (CEW provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR. With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity.

  19. Novel Approach for the Recognition and Prediction of Multi-Function Radar Behaviours Based on Predictive State Representations.

    Science.gov (United States)

    Ou, Jian; Chen, Yongguang; Zhao, Feng; Liu, Jin; Xiao, Shunping

    2017-03-19

    The extensive applications of multi-function radars (MFRs) have presented a great challenge to the technologies of radar countermeasures (RCMs) and electronic intelligence (ELINT). The recently proposed cognitive electronic warfare (CEW) provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR). With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity.

  20. Novel multifunctional nanofibers based on thermoplastic polyurethane and ionic liquid: towards antibacterial, anti-electrostatic and hydrophilic nonwovens by electrospinning

    Science.gov (United States)

    Xing, Chenyang; Guan, Jipeng; Chen, Zhouli; Zhu, Yu; Zhang, Bowu; Li, Yongjin; Li, Jingye

    2015-03-01

    Novel antibacterial, anti-electrostatic, and hydrophilic nanofibers based on a blend containing thermoplastic polyurethane (TPU) and a room-temperature ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], were fabricated by electrospinning. We investigated the effect of the IL on the morphology and the physical properties of the TPU nanofibers. Nanofibers with a ‘bead-on-string’ morphology were obtained by electrospinning from a neat TPU solution. The incorporation of the IL, at levels as low as 1 wt%, largely suppressed the formation of beads during electrospinning, and homogeneous nanofibers were obtained. The as-spun TPU/IL composite nanofibers showed significant activity against both Escherichia coli (E coli) and Staphylococcus aureus (S. aureus), with antibacterial activities of more than four and three, respectively. This means that the antibacterial efficiencies of TPU/IL composite nanofibers toward E coli and S. aureus are 99.99% and 99.9%, respectively. Moreover, nonwoven fabrics derived from the electrospun TPU/IL composite nanofibers exhibit better stretchability, elasticity, and higher electrical conductivity compared to those made using neat TPU without an IL. Additionally, the incorporation of the IL leads to a hydrophilic surface for the TPU/IL composite nanofibers compared to hydrophobic neat TPU nanofibers. These multifunctional nanofibers with excellent antibacterial, anti-electrostatic, and mechanical properties and improved hydrophilicity are promising candidates for biomedical and wastewater treatment applications.

  1. Multifunctional tunable multiwavelength erbium-doped fiber laser based on tunable comb filter and intensity-dependent loss modulation

    Science.gov (United States)

    Quan, Mingran; Li, Yuan; Tian, Jiajun; Yao, Yong

    2015-04-01

    A multiwavelength erbium-doped fiber laser based on tunable comb spectral filter and intensity-dependent loss modulation is proposed and experimentally demonstrated. The laser allows fine and multifunctional tunable operations of channel-spacing, peak-location, spectral-range, and wavelength-number. More specifically, channel-spacing switch from 0.4 nm to 0.2 nm and peak-location adjustment within half of free spectrum range are obtained via controlling the tunable comb filter. The wavelength-number and the spectral-range of the lasing lines can be accurately controlled by intensity-dependent loss modulation in the laser cavity, enabled by a power-symmetric nonlinear optical loop mirror. In addition, fine control over the wavelength-number at fixed spectral-range is realized by simply adjusting the pump power. More important, the tunable operation process for every type of specific parameter is individual, without influences for other output parameters. Such features of this fiber laser make it useful and convenient for the practical application.

  2. Vector-valued fuzzy multifunctions

    Directory of Open Access Journals (Sweden)

    Ismat Beg

    2001-01-01

    Full Text Available Some of the properties of vector-valued fuzzy multifunctions are studied. The notion of sum fuzzy multifunction, convex hull fuzzy multifunction, close convex hull fuzzy multifunction, and upper demicontinuous are given, and some of the properties of these fuzzy multifunctions are investigated.

  3. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    Science.gov (United States)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  4. Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles.

    Science.gov (United States)

    Shinoj, V K; Murukeshan, V M

    2012-05-15

    We demonstrate a novel multifunctional optical system that is capable of trapping, imaging, position sensing, and fluorescence detection of micrometer-sized fluorescent test particles using hollow-core photonic crystal fiber (HC-PCF). This multifunctional optical system for trapping, position sensing, and fluorescent detection is designed such that a near-IR laser light is used to create an optical trap across a liquid-filled HC-PCF, and a 473 nm laser is employed as a source for fluorescence excitation. This proposed system and the obtained results are expected to significantly enable an efficient integrated trapping platform employing HC-PCF for diagnostic biomedical applications.

  5. Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay.

    Science.gov (United States)

    Lu, Wentong; Arumugam, Sri Ranjini; Senapati, Dulal; Singh, Anant K; Arbneshi, Tahir; Khan, Sadia Afrin; Yu, Hongtao; Ray, Paresh Chandra

    2010-03-23

    Breast cancer is the most common cancer among women, and it is the second leading cause of cancer deaths in women today. The key to the effective and ultimately successful treatment of diseases such as cancer is early and accurate diagnosis. Driven by the need, in this article, we report for the first time a simple colorimetric and highly sensitive two-photon scattering assay for highly selective and sensitive detection of breast cancer SK-BR-3 cell lines at a 100 cells/mL level using a multifunctional (monoclonal anti-HER2/c-erb-2 antibody and S6 RNA aptamer-conjugated) oval-shaped gold-nanoparticle-based nanoconjugate. When multifunctional oval-shaped gold nanoparticles are mixed with the breast cancer SK-BR-3 cell line, a distinct color change occurs and two-photon scattering intensity increases by about 13 times. Experimental data with the HaCaT noncancerous cell line, as well as with MDA-MB-231 breast cancer cell line, clearly demonstrated that our assay was highly sensitive to SK-BR-3 and it was able to distinguish from other breast cancer cell lines that express low levels of HER2. The mechanism of selectivity and the assay's response change have been discussed. Our experimental results reported here open up a new possibility of rapid, easy, and reliable diagnosis of cancer cell lines by monitoring the colorimetric change and measuring TPS intensity from multifunctional gold nanosystems.

  6. Integrating public demands into model-based design for multifunctional agriculture: An application to intensive dutch dairy landscapes

    NARCIS (Netherlands)

    Parra-López, C.; Groot, J.C.J.; Carmona-Torres, C.; Rossing, W.A.H.

    2008-01-01

    The contribution of agriculture to the welfare of society is determined by its economic, social and environmental performance. Although theoretical discussions can be found in the literature, few reports exist that integrate the social demand for multifunctional agriculture in the evaluation of the

  7. Integrating public demands into model-based design for multifunctional agriculture: An application to intensive dutch dairy landscapes

    NARCIS (Netherlands)

    Parra-López, C.; Groot, J.C.J.; Carmona-Torres, C.; Rossing, W.A.H.

    2008-01-01

    The contribution of agriculture to the welfare of society is determined by its economic, social and environmental performance. Although theoretical discussions can be found in the literature, few reports exist that integrate the social demand for multifunctional agriculture in the evaluation of the

  8. Centrifuging Step-Screw Conveyor for Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A variety of ISRU operations will utilize lunar regolith as feedstock. The proposed centrifuging step-screw conveyor concept will provide a well controlled robust,...

  9. A Review of Screw Conveyors Performance Evaluation During Handling Process

    Directory of Open Access Journals (Sweden)

    Hemad Zareiforoush

    2010-04-01

    Full Text Available This paper reviews recent work on screw conveyors performance evaluation during handling process, especially in the case of agricultural grains and bulk materials. Experimental work has been mainly carried out to determine a range of parameters, such as auger dimension, screw rotational speed, screw clearance, conveyor intake length and conveying angle for horizontal, inclined and vertical screw conveyors. Several measurement techniques including theoretical models and DEM have been utilized to study the screw conveyors performance. However, each of these techniques is limited in its application. Difficulties in representing vortex motion and interactions among conveying grains and between the particles and screw rotating flight have so far limited the success of advanced modeling. Further work is needed to be conducted on screw augers performance to understand and improve the agricultural grains and bulk materials handling process.

  10. design and implementation of conveyor line speed synchroniser for ...

    African Journals Online (AJOL)

    user

    2016-07-03

    Jul 3, 2016 ... The electrical and mechanical sections were modeled separately and then integrated to obtain one composite ... speed of action of other process machines results in ..... 3.1 Simulation Results of Dc Motor and Belt Conveyor.

  11. Development of multifunctional heterocyclic Schiff base as a potential metal chelator: a comprehensive spectroscopic approach towards drug discovery.

    Science.gov (United States)

    Jadhao, Manojkumar; Das, Chayan; Rawat, Anoop; Kumar, Himank; Joshi, Ritika; Maiti, Sudipta; Ghosh, Sujit Kumar

    2017-01-01

    Amyloid-β peptides and their metal-associated aggregated states have been implicated in the pathogenesis of Alzheimer's disease. The present paper epitomises the design and synthesis of a small, neutral, lipophilic benzothiazole Schiff base (E)-2-((6-chlorobenzo[d]thiazol-2-ylimino)methyl)-5-diethylamino)phenol (CBMDP), and explores its multifunctionalty as a potential metal chelator/fluorophore using UV-visible absorption, steady-state fluorescence, single molecule fluorescence correlation spectroscopic (FCS) techniques which is further corroborated by in silico studies. Some pharmaceutically relevant properties of the synthesized compound have also been calculated theoretically. Steady-state fluorescence and single molecule FCS reveal that the synthesized CBMDP not only recognizes oligomeric Aβ40, but could also be used as an amyloid-specific extrinsic fluorophore as it shows tremendous increase in its emission intensity in the presence of Aβ40. Molecular docking exercise and MD simulation reveal that CBMDP localizes itself in the crucial amyloidogenic and copper-binding region of Aβ40 and undergoes a strong binding interaction via H-bonding and π-π stacking. It stabilizes the solitary α-helical Aβ40 monomer by retaining the initial conformation of the Aβ central helix and mostly interacts with the hydrophilic N-terminus and the α-helical region spanning from Ala-2 to Val-24. CBMDP exhibits strong copper as well as zinc chelation ability and retards the rapid copper-induced aggregation of amyloid peptide. In addition, CBMDP shows radical scavenging activity which enriches its functionality. Overall, the consolidated in vitro and in silico results obtained for the synthesized molecule could provide a rational template for developing new multifunctional agents.

  12. 基于FPGA的多功能数字钟设计%Design of multifunction digital clock based on FPGA

    Institute of Scientific and Technical Information of China (English)

    纪欣然; 丁一; 梁致源

    2012-01-01

    This paper briefly introduces a design scheme of multifunction digital clock based on FPGA. On the basis of achieving basic functions such as timing, adjusting and chronopher, the scheme brings in new world-time function, which can convert Beijing Time to GMT quickly. The design input method of the scheme combines VHDL and block diagram. The digital clock is designed, compiled as well as simulated under Quartus II development environment, and tested on the FPGA hardware development board. The experiment verifies the design scheme, which offers references for the application of FPGA and the design of digital clock.%文中简要介绍了一种基于FPGA的多功能数字钟设计方案。在实现数字钟计时、校时和整点报时等基本功能的基础上增加世界时钟功能。能够将北京时间快速转换为格林威治标准时。该方案采用VHDL和原理图相结合的设计输入方式.在QuartusII开发环境下完成设计、编译和仿真,并在FPGA硬件开发板上进行测试,实验证明该设计方案切实可行.对FPGA的应用和数字钟的设计具有一定参考价值。

  13. Does multifunctionality matter to US farmers? Farmer motivations and conceptions of multifunctionality in dairy systems.

    Science.gov (United States)

    Brummel, Rachel F; Nelson, Kristen C

    2014-12-15

    The concept of multifunctionality describes and promotes the multiple non-production benefits that emerge from agricultural systems. The notion of multifunctional agriculture was conceived in a European context and largely has been used in European policy arenas to promote and protect the non-production goods emerging from European agriculture. Thus scholars and policy-makers disagree about the relevance of multifunctionality for United States agricultural policy and US farmers. In this study, we explore lived expressions of multifunctional agriculture at the farm-level to examine the salience of the multifunctionality concept in the US. In particular, we investigate rotational grazing and confinement dairy farms in the eastern United States as case studies of multifunctional and productivist agriculture. We also analyze farmer motivations for transitioning from confinement dairy to rotational grazing systems. Through interviews with a range of dairy producers in Wisconsin, Pennsylvania, and New York, we found that farmers were motivated by multiple factors--including improved cow health and profitability--to transition to rotational grazing systems to achieve greater farm-level multifunctionality. Additionally, rotational grazing farmers attributed a broader range of production and non-production benefits to their farm practice than confinement dairy farmers. Further, rotational grazing dairy farmers described a system-level notion of multifunctionality based on the interdependence of multiple benefits across scales--from the farm to the national level--emerging from grazing operations. We find that the concept of multifunctionality could be expanded in the US to address the interdependence of benefits emerging from farming practices, as well as private benefits to farmers. We contend that understanding agricultural benefits as experienced by the farmer is an important contribution to enriching the multifunctionality concept in the US context, informing agri

  14. A global characterization and identification of multifunctional enzymes.

    Directory of Open Access Journals (Sweden)

    Xian-Ying Cheng

    Full Text Available Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What's more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm.

  15. Electronically Tunable Quadrature Oscillator Using Translinear Conveyors and Grounded Capacitors

    OpenAIRE

    Sudhanshu Maheshwari

    2003-01-01

    A new electronically tunable current-mode sinusoidal oscillator with three quadrature outputs is presented. The proposed circuit employs three translinear conveyors and two grounded capacitors to realize three quadrature outputs with independent frequency control. The circuit requires no resistors and the frequency of the oscillator can be varied over a wide range by external current control. RSPICE simulation results using the bipolar implementation of translinear conveyors are given to s...

  16. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  17. System for conveyor belt part picking using structured light and 3D pose estimation

    Science.gov (United States)

    Thielemann, J.; Skotheim, Ø.; Nygaard, J. O.; Vollset, T.

    2009-01-01

    Automatic picking of parts is an important challenge to solve within factory automation, because it can remove tedious manual work and save labor costs. One such application involves parts that arrive with random position and orientation on a conveyor belt. The parts should be picked off the conveyor belt and placed systematically into bins. We describe a system that consists of a structured light instrument for capturing 3D data and robust methods for aligning an input 3D template with a 3D image of the scene. The method uses general and robust pre-processing steps based on geometric primitives that allow the well-known Iterative Closest Point algorithm to converge quickly and robustly to the correct solution. The method has been demonstrated for localization of car parts with random position and orientation. We believe that the method is applicable for a wide range of industrial automation problems where precise localization of 3D objects in a scene is needed.

  18. Singularity Detection of Magnetic Memory Signal of Steel-Cord Conveyor Belt

    Directory of Open Access Journals (Sweden)

    Qiao Tiezhu

    2013-09-01

    Full Text Available Metal magnetic memory technology was an important method for detecting the steel-cord conveyor belt early fault, characteristics of magnetic memory signal extraction is critical for judging of the conveyor belt failure. Generally using of magnetic memory signal maximum gradient value can quickly judge the stress concentration zone, but the magnetic memory signal is susceptible to effected by environmental and noise; In view of the weak and non-stationary characteristics of magnetic memory signal, this paper has proposed the singularity detection method based on wavelet transform modulus maximum for metal magnetic memory signal, the method could exactly judged the stress concentration zone of joints and located the fault points of the steel-cord belt, the characteristic gradient of magnetic memory signal and the Lipschitz exponent were extracted. The result of simulation indicated the technology was effectively for judging the stress concentration zone and fault point. ��

  19. Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery

    NARCIS (Netherlands)

    G.A. Koning (Gerben); G.C. Krijger (Gerard )

    2007-01-01

    textabstractLipid-based nanocarriers have proven successful in the delivery of mainly chemotherapeutic agents, and currently they are being applied clinically in the treatment of various types of cancer. These drug delivery systems achieve increased therapeutic efficacy by altering the pharmacokinet

  20. Flame based growth of ZnO nano- and microstructures for advanced optical, multifunctional devices, and biomedical applications (Conference Presentation)

    Science.gov (United States)

    Mishra, Yogendra K.; Gröttrup, Jorit; Smazna, Daria; Hölken, Iris; Hoppe, Mathias; Sindushree, Sindushree; Kaps, Sören; Lupan, Oleg; Seidel, Jan; Monteiro, Teresa; Tiginyanu, Ion M.; Kienle, Lorenz; Ronning, Carsten; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    The recent flame based growth strategy offers a simple and versatile fabrication of various (one, two, and three-dimensional) nano- and microstructures from different metal oxides (ZnO, SnO2, Fe2O3, etc.) in a desired manner.[1] ZnO structures ranging from nanoscales wires to macroscopic and highly porous 3D interconnected tetrapod networks have been successfully synthesized, characterized and utilized for various applications. The ZnO micro- and nanoneedles grown at walls in silicon trenches showed excellent whispering gallery mode resonances and photocatalytic properties.[2] Using the same strategy, large polycrystalline micro- and nanostructured ZnO platelets can be grown with grains interconnected together via grain boundaries and these grain boundaries exhibit a higher conductivity as compared to individual grains.[3] This flame transport synthesis (FTS) approach offers the growth of a large amount of ZnO tetrapods which have shown interesting applications because of their 3D spatial shape and micro-and nanoscale size, for example, interconnected tetrapods based devices for UV-detection and gas sensing.[4-5] Because of their complex 3D shape, ZnO tetrapods can be used as efficient filler particles for designing self-reporting,[6] and other interesting composites. The nanostructured materials exhibit an important role with respect to advanced biomedical applications as grown ZnO structures have shown strong potentials for antiviral applications.[7] Being mechanically strong and micro-and nanoscale in dimensions, these ZnO tetrapods can be easily doped with other elements or hybridized with various nanoparticles in form of hybrid ZnO tetrapods which are suitable for various multifunctional applications, for example, these hybrid tetrapods showed improved gas sensing properties.[8] The sacrificial nature of ZnO allows the for growth of new tetrapods and 3D network materials for various advanced applications, for example, highly porous and ultra light carbon based

  1. Rapid detection of viral antibodies based on multifunctional Staphylococcus aureus nanobioprobes.

    Science.gov (United States)

    Qiao, Jinjuan; Li, Yunpeng; Wei, Cuihua; Yang, Hang; Yu, Junping; Wei, Hongping

    2016-12-01

    Biosynthesis of nanoparticles inside S. aureus cells has enhanced the sensitivity of immunoassays based on the S. aureus nanoparticles. However, the current methods are limited to antigen detection by conjugating IgG antibodies on S. aureus nanoparticles. In this study, a simple way to conjugate antigens to the S. aureus nanobioparticles was developed by utilizing a cell wall binding domain (CBD) from a bacteriophage lysin PlyV12. Based on this novel design, simple agglutination tests of the IgG antibodies of Ebola virus (EBOV) nucleoprotein (NP) and Middle East Respiratory Virus (MERS) NP in rabbit sera were successfully developed by conjugating the S. aureus nanobioparticles with two fusion proteins EBOV NP- CBD and MERS NP-CBD, respectively. The conjugation was done easily by just mixing the fusion proteins with the S. aureus nanoparticles. The detection time was within 20 min without any special equipment or expertise. As far as we know, this is the first time to realize the detection of viral antibodies based on S. aureus nanoparticles.

  2. A wireless multifunctional radar-based displacement sensor for structural health monitoring

    Science.gov (United States)

    Rice, Jennifer A.; Li, Changzhi; Gu, Changzhan; Hernandez, Justin C.

    2011-04-01

    Wireless smart sensor technology offers many opportunities to advance infrastructure monitoring and maintenance by providing pertinent information regarding the condition of a structure at a lower cost and higher density than traditional monitoring approaches. Many civil structures, especially long-span bridges, have low fundamental response frequencies that are challenging to accurately measure with sensors that are suitable for integration with low-cost, low-profile, and power-constrained wireless sensor networks. Existing displacement sensing technology is either not practical for wireless sensor implementations, does not provide the necessary accuracy, or is simply too cost-prohibitive for dense sensor deployments. This paper presents the development and integration of an accurate, low-cost radar-based sensor for the enhancement of low-frequency vibration-based bridge monitoring and the measurement of static bridge deflections. The sensors utilize both a nonlinear vibrometer mode and an arctangent-demodulated interferometry mode to achieve sub-millimeter measurement accuracy for both periodic and non-periodic displacement. Experimental validation results are presented and discussed.

  3. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    Science.gov (United States)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  4. Multifunctional silicon-based light emitting device in standard complementary metal-oxide-semiconductor technology

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Huang Bei-Ju; Dong Zan; Chen Hong-Da

    2011-01-01

    A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.

  5. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing.

    Science.gov (United States)

    Han, Joong Tark; Kim, Byung Kuk; Woo, Jong Seok; Jang, Jeong In; Cho, Joon Young; Jeong, Hee Jin; Jeong, Seung Yol; Seo, Seon Hee; Lee, Geon-Woong

    2017-03-01

    Directly printed superhydrophobic surfaces containing conducting nanomaterials can be used for a wide range of applications in terms of nonwetting, anisotropic wetting, and electrical conductivity. Here, we demonstrated that direct-printable and flexible superhydrophobic surfaces were fabricated on flexible substrates via with an ultrafacile and scalable screen printing with carbon nanotube (CNT)-based conducting pastes. A polydimethylsiloxane (PDMS)-polyethylene glycol (PEG) copolymer was used as an additive for conducting pastes to realize the printability of the conducting paste as well as the hydrophobicity of the printed surface. The screen-printed conducting surfaces showed a high water contact angle (WCA) (>150°) and low contact angle hysteresis (WCA superhydrophobic surfaces also showed sticky superhydrophobic characteristics and were used to transport water droplets. Moreover, fabricated films on metal meshes were used for an oil/water separation filter, and liquid evaporation behavior was investigated on the superhydrophobic and conductive thin-film heaters by applying direct current voltage to the film.

  6. Multifunctional thick-film structures based on spinel ceramics for environment sensors

    Energy Technology Data Exchange (ETDEWEB)

    Vakiv, M; Hadzaman, I; Klym, H; Shpotyuk, O [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Brunner, M, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Fachhochschule Koeln/University of Applied Sciences, 2 Betzdorfer str., Koeln, 50679 (Germany)

    2011-04-01

    Temperature sensitive thick films based on spinel-type NiMn{sub 2}O{sub 4}-CuMn{sub 2}O{sub 4}-MnCo{sub 2}O{sub 4} manganites with p- and p{sup +}-types of electrical conductivity and their multilayer p{sup +}-p structures were studied. These thick-film elements possess good electrophysical characteristics before and after long-term ageing test at 170 deg. C. It is shown that degradation processes connected with diffusion of metallic Ag into film grain boundaries occur in one-layer p-and p{sup +}-conductive films. Some part of the p{sup +}-p structures were of high stability, the relative electrical drift being no more than 1 %.

  7. Long-Term Homeostatic Properties Complementary to Hebbian Rules in CuPc-Based Multifunctional Memristor

    Science.gov (United States)

    Wang, Laiyuan; Wang, Zhiyong; Lin, Jinyi; Yang, Jie; Xie, Linghai; Yi, Mingdong; Li, Wen; Ling, Haifeng; Ou, Changjin; Huang, Wei

    2016-10-01

    Most simulations of neuroplasticity in memristors, which are potentially used to develop artificial synapses, are confined to the basic biological Hebbian rules. However, the simplex rules potentially can induce excessive excitation/inhibition, even collapse of neural activities, because they neglect the properties of long-term homeostasis involved in the frameworks of realistic neural networks. Here, we develop organic CuPc-based memristors of which excitatory and inhibitory conductivities can implement both Hebbian rules and homeostatic plasticity, complementary to Hebbian patterns and conductive to the long-term homeostasis. In another adaptive situation for homeostasis, in thicker samples, the overall excitement under periodic moderate stimuli tends to decrease and be recovered under intense inputs. Interestingly, the prototypes can be equipped with bio-inspired habituation and sensitization functions outperforming the conventional simplified algorithms. They mutually regulate each other to obtain the homeostasis. Therefore, we develop a novel versatile memristor with advanced synaptic homeostasis for comprehensive neural functions.

  8. Robust Multifunctional Yttrium-Based Metal-Organic Frameworks with Breathing Effect.

    Science.gov (United States)

    Firmino, Ana D G; Mendes, Ricardo F; Antunes, Margarida M; Barbosa, Paula C; Vilela, Sérgio M F; Valente, Anabela A; Figueiredo, Filipe M L; Tomé, João P C; Paz, Filipe A Almeida

    2017-02-06

    Phosphonate- and yttrium-based metal-organic frameworks (MOFs), formulated as [Y(H5btp)]·5.5H2O (1), [Y(H5btp)]·2.5H2O (2), (H3O)[Y2(H5btp)(H4btp)]·H2O (3), and [Y(H5btp)]·H2O·0.5(MeOH) (4), were prepared using a "green" microwave-assisted synthesis methodology which promoted the self-assembly of the tetraphosphonic organic linker [1,1'-biphenyl]-3,3',5,5'-tetrayltetrakis(phosphonic acid) (H8btp) with Y(3+) cations. This new family of functional materials, isolated in bulk quantities, exhibits a remarkable breathing effect. Structural flexibility was thoroughly studied by means of X-ray crystallography, thermogravimetry, variable-temperature X-ray diffraction, and dehydration and rehydration processes, ultimately evidencing a remarkable reversible single-crystal to single-crystal (SC-SC) transformation solely through the loss and gain of crystallization solvent molecules. Topologically, frameworks remained unaltered throughout this interconversion mechanism, with all compounds being binodal 6,6-connected network with a Schäfli symbol of {4(13).6(2)}{4(8).6(6).8}. Results show that this is one of the most stable and thermally robust families of tetraphosphonate-based MOFs synthesized reported to date. Porous materials 2 and 3 were further studied to ascertain their performance as heterogeneous catalysts and proton conductors, respectively, with outstanding results being registered for both materials. Compound 2 showed a 94% conversion of benzaldehyde into (dimethoxymethyl)benzene after just 1 h of reaction, among the best results registered to date for MOF materials. On the other hand, the protonic conductivity of compound 3 at 98% of relative humidity (2.58 × 10(-2) S cm(-1)) was among the highest registered among MOFs, with the great advantage of the material to be prepared using a simpler and sustainable synthesis methodology, as well as exhibiting a good stability at ambient conditions (temperature and humidity) over time when compared to others.

  9. Novel multifunctional composites based on carbon nanotube sheets and yarns: Synthesis, fabrication, properties and applications

    Science.gov (United States)

    Lepro Chavez, Xavier N.

    Multiwalled carbon nanotube (MWNT) aligned sheets directly drawn from forests and derived yarns have recently attracted wide attention because of their exhibited mechanical, electronic, photonic and optical properties. Unfortunately, the supply of drawable forests is currently limited since the set of experimental conditions required to obtain adequate forest morphology is rather narrow, thus restricting the advance towards large scale applications. This work starts by addressing this issue by showing that the correct preparation of alternative substrates, such as thin metallic sheets, can produce the forest morphology required for solid-state drawability and increase the attainable surface for forest harvesting without further enlargement of the currently used chemical vapor deposition (CVD) reactor chamber. Also, it explores suitable ways to quantify the alignment of MWNTs in forests and by comparing them with spinnable ones, provides a range of alignment distribution where forest drawability can be reasonably expected. Next, this work presents procedures that can add functionality to the MWNT free-standing sheets without strongly affecting their mechanical integrity, nanotube alignment or individual morphology. Proved examples, such as free-standing sheets of catalytic-active, highly capacity (39 F/g), aligned nitrogen-doped MWNTs and silicon-based ceramic conformationally coated MWNTs that can be easily twisted into yarns, are examined in different chapters. Moreover, we show that MWNT sheets can be used for templating materials other than carbon into nanostructured arrays by preparing sheets of aligned silicon oxide nanotubes. Similar to MWNT sheets, these nanotube based materials can be used as host to confine functional unspinnable materials (up to 95 wt.%) by twisting them together into biscrolled yarns, suitable for applications as superconductors, lithium-ion batteries, fuel cells catalysts and photocatalysis. Such biscrolled yarns have a twist

  10. Development of multifunctional fluoroelastomers based on nanocomposites; Desenvolvimento de elastomeros fluorados multifuncionais baseados em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Zen, Heloisa Augusto

    2015-07-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  11. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness

    Science.gov (United States)

    Sahabudeen, Hafeesudeen; Qi, Haoyuan; Glatz, Bernhard Alexander; Tranca, Diana; Dong, Renhao; Hou, Yang; Zhang, Tao; Kuttner, Christian; Lehnert, Tibor; Seifert, Gotthard; Kaiser, Ute; Fery, Andreas; Zheng, Zhikun; Feng, Xinliang

    2016-01-01

    One of the key challenges in two-dimensional (2D) materials is to go beyond graphene, a prototype 2D polymer (2DP), and to synthesize its organic analogues with structural control at the atomic- or molecular-level. Here we show the successful preparation of porphyrin-containing monolayer and multilayer 2DPs through Schiff-base polycondensation reaction at an air–water and liquid–liquid interface, respectively. Both the monolayer and multilayer 2DPs have crystalline structures as indicated by selected area electron diffraction. The monolayer 2DP has a thickness of∼0.7 nm with a lateral size of 4-inch wafer, and it has a Young's modulus of 267±30 GPa. Notably, the monolayer 2DP functions as an active semiconducting layer in a thin film transistor, while the multilayer 2DP from cobalt-porphyrin monomer efficiently catalyses hydrogen generation from water. This work presents an advance in the synthesis of novel 2D materials for electronics and energy-related applications. PMID:27849053

  12. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery.

    Science.gov (United States)

    Lu, Kun-Ying; Li, Rou; Hsu, Chun-Hua; Lin, Cheng-Wei; Chou, Shen-Chieh; Tsai, Min-Lang; Mi, Fwu-Long

    2017-06-01

    Fucoidan, a sulfated marine polysaccharide, has many potential biological functions, including anticancer activity. Recently, fucoidan has been reported to target P-selectin expressed on metastatic cancer cells. Increasing research attention has been devoted to the developments of fucoidan-based nanomedicine. However, the application of traditional chitosan/fucoidan nanoparticles in anticancer drug delivery may be limited due to the deprotonation of chitosan at a pH greater than 6.5. In this study, a mutli-stimuli-responsive nanoparticle self-assembled by fucoidan and a cationic polypeptide (protamine) was developed, and their pH-/enzyme-responsive properties were characterized by circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and zeta potential analysis. Enzymatic digestion and acidic intracellular microenvironment (pH 4.5-5.5) in cancer cells triggered the release of an anticancer drug (doxorubicin) from the nanoparticles. The protamine/fucoidan complex nanoparticles with P-selectin mediated endocytosis, charge conversion and stimuli-tunable release properties showed an improved inhibitory effect against a metastatic breast cancer cell line (MDA-MB-231).

  13. Multifunctional Environmental Smart Fertilizer Based on l-Aspartic Acid for Sustained Nutrient Release.

    Science.gov (United States)

    Lü, Shaoyu; Feng, Chen; Gao, Chunmei; Wang, Xinggang; Xu, Xiubin; Bai, Xiao; Gao, Nannan; Liu, Mingzhu

    2016-06-22

    Fertilizer is one of the most important elements of modern agriculture. However, conventional fertilizer, when applied to crops, is vulnerable to losses through volatilization, leaching, nitrification, or other means. Such a loss limits crop yields and pollutes the environment. In an effort to enhance nutrient use efficiency and reduce environmental pollution, an environmental smart fertilizer was reported in the current study. Poly(aspartic acid) and a degradable macro-cross-linker based on l-aspartic acid were synthesized and introduced into the fertilizer as a superabsorbent to improve the fertilizer degradability and soil moisture-retention capacity. Sustained release behavior of the fertilizer was achieved in soil. Cumulative release of nitrogen and phosphorus was 79.8% and 64.4% after 30 days, respectively. The water-holding and water-retention capacities of soil with the superabsorbent are obviously higher than those of the control soil without superabsorbent. For the sample of 200 g of soil with 1.5 g of superabsorbent, the water-holding capacity is 81.8%, and the water-retention capacity remains 22.6% after 23 days. All of the current results in this study indicated that the as-prepared fertilizer has a promising application in sustainable modern agriculture.

  14. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness

    Science.gov (United States)

    Sahabudeen, Hafeesudeen; Qi, Haoyuan; Glatz, Bernhard Alexander; Tranca, Diana; Dong, Renhao; Hou, Yang; Zhang, Tao; Kuttner, Christian; Lehnert, Tibor; Seifert, Gotthard; Kaiser, Ute; Fery, Andreas; Zheng, Zhikun; Feng, Xinliang

    2016-11-01

    One of the key challenges in two-dimensional (2D) materials is to go beyond graphene, a prototype 2D polymer (2DP), and to synthesize its organic analogues with structural control at the atomic- or molecular-level. Here we show the successful preparation of porphyrin-containing monolayer and multilayer 2DPs through Schiff-base polycondensation reaction at an air-water and liquid-liquid interface, respectively. Both the monolayer and multilayer 2DPs have crystalline structures as indicated by selected area electron diffraction. The monolayer 2DP has a thickness of~0.7 nm with a lateral size of 4-inch wafer, and it has a Young's modulus of 267+/-30 GPa. Notably, the monolayer 2DP functions as an active semiconducting layer in a thin film transistor, while the multilayer 2DP from cobalt-porphyrin monomer efficiently catalyses hydrogen generation from water. This work presents an advance in the synthesis of novel 2D materials for electronics and energy-related applications.

  15. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance.

    Science.gov (United States)

    Liu, Juan; Wei, Tuo; Zhao, Jing; Huang, Yuanyu; Deng, Hua; Kumar, Anil; Wang, Chenxuan; Liang, Zicai; Ma, Xiaowei; Liang, Xing-Jie

    2016-06-01

    By its unique advantages over traditional medicine, nanomedicine has offered new strategies for cancer treatment. In particular, the development of drug delivery strategies has focused on nanoscale particles to improve bioavailability. However, many of these nanoparticles are unable to overcome tumor resistance to chemotherapeutic agents. Recently, new opportunities for drug delivery have been provided by oligonucleotides that can self-assemble into three-dimensional nanostructures. In this work, we have designed and developed functional DNA nanostructures to deliver the chemotherapy drug doxorubicin (Dox) to resistant cancer cells. These nanostructures have two components. The first component is a DNA aptamer, which forms a dimeric G-quadruplex nanostructure to target cancer cells by binding with nucleolin. The second component is double-stranded DNA (dsDNA), which is rich in -GC- base pairs that can be applied for Dox delivery. We demonstrated that Dox was able to efficiently intercalate into dsDNA and this intercalation did not affect the aptamer's three-dimensional structure. In addition, the Aptamer-dsDNA (ApS) nanoparticle showed good stability and protected the dsDNA from degradation in bovine serum. More importantly, the ApS&Dox nanoparticle efficiently reversed the resistance of human breast cancer cells to Dox. The mechanism circumventing doxorubicin resistance by ApS&Dox nanoparticles may be predominantly by cell cycle arrest in S phase, effectively increased cell uptake and decreased cell efflux of doxorubicin. Furthermore, the ApS&Dox nanoparticles could effectively inhibit tumor growth, while less cardiotoxicity was observed. Overall, this functional DNA nanostructure provides new insights into the design of nanocarriers to overcome multidrug resistance through targeted drug delivery.

  16. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application

    Science.gov (United States)

    Hao, Yongwei; Wang, Lei; Zhang, Bingxiang; Zhao, Hongjuan; Niu, Mengya; Hu, Yujie; Zheng, Cuixia; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2016-01-01

    It is highly desirable to develop smart nanocarriers with stimuli-responsive drug-releasing and diagnostic-imaging functions for cancer theranostics. Herein, we develop a reduction and pH dual-responsive tumor theranostic platform based on degradable manganese dioxide (MnO2) nanosheets. The MnO2 nanosheets with a size of 20-60 nm were first synthesized and modified with (3-Aminopropyl) trimethoxysilane (APTMS) to get amine-functionalized MnO2, and then functionalized by NH2-PEG2000-COOH (PEG). The tumor-targeting group, folic acid (FA), was finally conjugated with the PEGylated MnO2 nanosheets. Then, doxorubicin (DOX), a chemotherapeutic agent, was loaded onto the modified nanosheets through a physical adsorption, which was designated as MnO2-PEG-FA/DOX. The prepared MnO2-PEG-FA/DOX nanosheets with good biocompatibility can not only efficiently deliver DOX to tumor cells in vitro and in vivo, leading to enhanced anti-tumor efficiency, but can also respond to a slightly acidic environment and high concentration of reduced glutathione (GSH), which caused degradation of MnO2 into manganese ions enabling magnetic resonance imaging (MRI). The longitudinal relaxation rate r 1 was 2.26 mM-1 s-1 at pH 5.0 containing 2 mM GSH. These reduction and pH dual-responsive biodegradable nanosheets combining efficient MRI and chemotherapy provide a novel and promising platform for tumor-targeting theranostic application.

  17. Discrete element modelling of screw conveyor-mixers

    Directory of Open Access Journals (Sweden)

    Jovanović Aca

    2015-01-01

    Full Text Available Screw conveyors are used extensively in food, plastics, mineral processing, agriculture and processing industries for elevating and/or transporting bulk materials over short to medium distances. Despite their apparent simplicity in design, the transportation action is very complex for design and constructors have tended to rely heavily on empirical performance data. Screw conveyor performance is affected by its operating conditions (such as: the rotational speed of the screw, the inclination of the screw conveyor, and its volumetric fill level. In this paper, horizontal, several single-pitch screw conveyors with some geometry variations in screw blade was investigated for mixing action during transport, using Discrete Element Method (DEM. The influence of geometry modifications on the performance of screw conveyor was examined, different screw designs were compared, and the effects of geometrical variations on mixing performances during transport were explored. During the transport, the particle tumbles down from the top of the helix to the next free surface and that segment of the path was used for auxiliary mixing action. The particle path is dramatically increased with the addition of three complementary helices oriented in the same direction as screw blades (1458.2 mm compared to 397.6 mm in case of single flight screw conveyor Transport route enlarges to 1764.4 mm, when installing helices oriented in the opposite direction from screw blades. By addition of straight line blade to single flight screw conveyor, the longest particle path is being reached: 2061.6 mm [Projekat Ministarstva nauke Republike Srbije, br. TR-31055

  18. MULTIFUNCTIONAL PLATFORMS AND

    African Journals Online (AJOL)

    Solar service centres and multifunctional platforms are innovative concepts for providing energy services in ... same time generate income. obeng ..... communities the driving force behind the ... operator(s) had to contact repairers outside their.

  19. Multifunctionality in molecular magnetism.

    Science.gov (United States)

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  20. Programmable Voltage-Mode Multifunction Filter Using Two Current Conveyors and One Operational Transconductance Amplifier

    OpenAIRE

    Muhammad Taher Abuelma'atti; Azhar Quddus

    1996-01-01

    A new voltage-mode active-filter with single input and three outputs is presented. The parameters of the proposed filter are programmable and the filter uses grounded capacitors. The proposed circuit can simultaneously realize lowpass, highpass, and bandpass biquadratic filter functions and enjoys low temperature sensitivities.

  1. Multifunctional cellulase and hemicellulase

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.

    2015-09-29

    A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.

  2. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  3. Novel multifunction-integrated molecular beacon for the amplification detection of DNA hybridization based on primer/template-free isothermal polymerization.

    Science.gov (United States)

    Dong, Haiyan; Wu, Zai-Sheng; Xu, Jianguo; Ma, Ji; Zhang, Huijuan; Wang, Jie; Shen, Weiyu; Xie, Jingjing; Jia, Lee

    2015-10-15

    Molecular beacon (MB) is widely explored as a signaling probe in powerful biosensing systems, for example, enzyme-assisted strand displacement amplification (SDA)-based system. The existing polymerization-based amplification system is often composed of recognition element, primer, template and fluorescence reporter. To develop a new MB sensing system and simply the signal amplification design, we herein attempted to propose a multifunctional integrated MB (MI-MB) for the polymerization amplification detection of target DNA via introducing a G-rich fragment into the loop of MB without using any exogenous auxiliary oligonucleotide probe. Utilizing only one MI-MB probe, the p53 target gene could trigger the cycles of hybridization/polymerization/displacement, resulting in amplification of the target hybridization event. Thus, the p53 gene can be detected down to 5 × 10(-10)M with the linear response range from 5 × 10(-10)M to 4 × 10(-7)M. Using the MI-MB, we could readily discriminate the point mutation-contained p53 from the wild-type one. As a proof-of-concept study, owing to its simplicity and multifunction, including recognition, replication, amplification and signaling, the MI-MB exhibits the great potential for the development of different biosensors for various biomedical applications, especially, for early cancer diagnosis.

  4. On possible flow back in vertical screw conveyors for cohesionless granular materials

    NARCIS (Netherlands)

    Rademacher, F.J.C.

    1981-01-01

    Conditions for which back flow will be initiated in vertical screw conveyors conveying cohesionless granular material are theoretically established. Use is made of existing knowledge of the performance characteristics of such conveyors. Provided the conveyor is operated at not too low an angular spe

  5. 7 CFR 58.228 - Dump hoppers, screens, mixers and conveyors.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dump hoppers, screens, mixers and conveyors. 58.228... Service 1 Equipment and Utensils § 58.228 Dump hoppers, screens, mixers and conveyors. The product contact surfaces of dump hoppers, screens, mixers and conveyors which are used in the process of transferring...

  6. On Dynamic Range Limitations of CMOS Current Conveyors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1999-01-01

    This paper is concerned with the dynamic range of continuous time CMOS current mode circuits. As a representative current mode device a class AB current conveyor is examined. First, the voltage input range of the high impedance Y input is investigated. Next, the current input range of the low...... frequency band and for the situation where the conveyor is used over the full bandwidth achievable. Finally, the optimisation of the current input range is related to the distortion characteristics and it is pointed out that to a first order approximation the distortion is independent of the current range....... impedance X input is investigated. It is compared to the thermal noise in the X to Z signal path in order to evaluate the dynamic range, and the dependencies of the dynamic range on the supply voltage and the transistor lay-out is derived, both for the situation where the conveyor is used over a narrow...

  7. 差分进化MVB总线周期扫描表%Periodic polling table in multifunction vehicle bus based on the differential evolution algorithm

    Institute of Scientific and Technical Information of China (English)

    徐进权; 王宏志; 胡黄水

    2016-01-01

    To optimize the periodic polling table in Multifunction Vehicle Bus (M VB) ,a new design based on differential evolution algorithm is proposed .According to the relevant provisions of international standard IEC61375 ,we set the periodic polling table generation rules and constraints , and establish the mathematical model .With the evenness degree as objective function ,periodic polling table is built and optimized .The differential evolution algorithm is compared with the step fill method in the IEC61375‐1 to show that the former is with better performance .%针对多功能车辆总线(Multifunction Vehicle Bus ,MVB)周期扫描表提出了一种利用差分进化算法的优化设计方法。根据 IEC61375国际标准相关规定,明确了周期扫描表生成规则和约束条件,建立了相应的数学模型,以均匀度为目标函数,对周期扫描表进行建立和优化。最后,通过与国际标准中的逐步填空法进行均匀度对比,显示出差分进化算法的优势。

  8. Event Driven Control of Vibratory Conveyors Operating on the Frahm's Eliminator Basis

    Directory of Open Access Journals (Sweden)

    Klemiato M.

    2015-04-01

    Full Text Available The new, original control method of the vibratory conveyor operating on the Frahm's dynamic eliminator basis, is presented in the paper. The proposed method is based on the application of the control of the feed-forward controler, together with the events detection based on the generalised likelihood ratio (GLR algorithm. Such approach leads to the controller intervention only when it is justified by the current process situation, (e.g. in case of an essential change of the feed mass to enable the stable machine operations and to limit transient states. The results are presented in a form of numerical simulations.

  9. Fatigue Analysis of the Screw Conveyor Shaft Based on S-N Curve%基于S-N曲线的螺旋输送机主轴疲劳分析

    Institute of Scientific and Technical Information of China (English)

    李大平; 薛静; 刘学; 陈亮

    2014-01-01

    For the rear-driving screw conveyor of the shield machine,the finite element method followed by classic S-N curve is used to perform the fatigue life analysis of its shaft.With the help of the analysis,we can easily design the opti-mized structure to make sure that the screw works safely and efficiently during the whole construction process.%针对后部驱动结构形式的盾构螺旋输送机,采用先进的有限元分析再基于S-N曲线的方法,对其主轴进行疲劳寿命分析,并将此分析结果作为对主轴进行优化设计的依据,确保螺旋输送机在整个施工过程中能够正常高效工作。

  10. Simulated Analysis on Dynamic Characteristics of ZS60600F Cooling Conveyor Shake Sifter Based on ADAMS%基于ADAMS的ZS60600F型冷却输送振动筛动态特性仿真分析

    Institute of Scientific and Technical Information of China (English)

    李吉伟; 陈秀娟; 崔继强

    2011-01-01

    针对消失模铸造用ZS60600F型冷却输送振动筛,运用系统仿真软件ADAMS,建立振动筛虚拟样机模型.通过分析振动筛力学模型,在ADAMS/Vibration模块建立与实际等价的振动分析模型,对虚拟样机进行振动分析,得出振动筛系统动态特性,为振动筛动态设计提供必要的基础数据.%Using system simulation software ADAMS, the virtual prototype model of ZS60600F cooling conveyor shake sifter for EPC process was created. By analyzing the mechanical model of the shaker, the equivalent vibration analysis model with actual model in ADAMS / Vibration module was established. The vibration analysis to the virtual prototype model was performed, and the dynamic characteristics of the shaker were obtained, which provide the necessary basic data for dynamic design of shaking sifter.

  11. Voltage-Mode Multifunction Biquadratic Filter with One Input and Six Outputs Using Two ICCIIs

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2014-01-01

    Full Text Available A novel voltage-mode multifunction biquadratic filter with one input and six outputs is presented. The proposed circuit can realize inverting and noninverting low-pass, bandpass, and high-pass filters, simultaneously, by using two inverting second-generation current conveyors (ICCIIs, two grounded capacitors, and four resistors. Moreover, the proposed circuit offers the following attractive advantages: no requirements for component matching conditions, the use of only grounded capacitors, and low active and passive sensitivities. HSPICE and MATLAB simulations results are provided to demonstrate the theoretical analysis.

  12. Voltage-mode multifunction biquadratic filter with one input and six outputs using two ICCIIs.

    Science.gov (United States)

    Chen, Hua-Pin

    2014-01-01

    A novel voltage-mode multifunction biquadratic filter with one input and six outputs is presented. The proposed circuit can realize inverting and noninverting low-pass, bandpass, and high-pass filters, simultaneously, by using two inverting second-generation current conveyors (ICCIIs), two grounded capacitors, and four resistors. Moreover, the proposed circuit offers the following attractive advantages: no requirements for component matching conditions, the use of only grounded capacitors, and low active and passive sensitivities. HSPICE and MATLAB simulations results are provided to demonstrate the theoretical analysis.

  13. DEVELOPMENT OF THE TEST METHODS OF THE CONVEYOR BELTS USED IN ENVIRONMENTS ENDANGERED BY EXPLOSION HAZARDS

    Directory of Open Access Journals (Sweden)

    Florin Adrian PĂUN

    2012-05-01

    Full Text Available Conveyor belts are used for a long period of time in the industry branches where potentially explosive atmospheres could occur. Dangerous phenomena which can be in direct connection with the use of conveyor belts are the ones regarding: - sparks influence over the coating layer and/or resistance internal structure of the stopped conveyor belt; - propagation of a flame along the length of a conveyor belt that was exposed to a energy source relative high like a fire or due to blockage of a conveyor belt as a result of the driving mechanism still operating, that generate a local heating of the conveyor belt in contact with the driving drum, rollers or any other heating source generated by friction. Determining the safety parameters characteristic of the conveyor belts by employing test methods allows assessment of the safety level as well as certification of their explosion protection quality when used in environments with explosion danger.

  14. Multifunctional nanomesoporous materials with upconversion (in vivo) and downconversion (in vitro) luminescence imaging based on mesoporous capping UCNPs and linking lanthanide complexes

    Science.gov (United States)

    Sun, Lining; Ge, Xiaoqian; Liu, Jinliang; Qiu, Yannan; Wei, Zuwu; Tian, Bo; Shi, Liyi

    2014-10-01

    A series of new multifunctional nanomesoporous materials based on upconversion nanophosphors NaYF4:Yb,Tm@NaGdF4 (UCNPs) and lanthanide complexes were designed and synthesized through mesoporous capping UCNPs nanophosphors and linking lanthanide (Ln) complexes. The obtained UCNPs@mSiO2-Ln(dbm)4 (Ln = Eu, Sm, Er, Nd, Yb) materials can achieve downconversion and upconversion luminescence to show multicolor emission (covering the spectral region from 450 nm to 1700 nm) under visible-light excitation and 980 nm excitation, respectively. In addition, low cytotoxicity and good biocompatibility was found as determined by methyl thiazolyl tetrazolium assay, and the nanomesoporous materials were successfully applied to cell imaging in vitro based on Eu3+ luminescence (under 405 nm excitation) and small animal imaging based on Tm3+ luminescence (under 980 nm excitation). The doped Gd3+ ion endows the nanomesoporous materials UCNPs@mSiO2-Ln(dbm)4 with effective T1 signal enhancement, which affords them as potential magnetic resonance imaging (MRI) contrast agents. Therefore, our results may provide more exciting opportunities for multimodal bioimaging and multifunctional applications.A series of new multifunctional nanomesoporous materials based on upconversion nanophosphors NaYF4:Yb,Tm@NaGdF4 (UCNPs) and lanthanide complexes were designed and synthesized through mesoporous capping UCNPs nanophosphors and linking lanthanide (Ln) complexes. The obtained UCNPs@mSiO2-Ln(dbm)4 (Ln = Eu, Sm, Er, Nd, Yb) materials can achieve downconversion and upconversion luminescence to show multicolor emission (covering the spectral region from 450 nm to 1700 nm) under visible-light excitation and 980 nm excitation, respectively. In addition, low cytotoxicity and good biocompatibility was found as determined by methyl thiazolyl tetrazolium assay, and the nanomesoporous materials were successfully applied to cell imaging in vitro based on Eu3+ luminescence (under 405 nm excitation) and small

  15. Flexible Mechanical Conveyors for Regolith Extraction and Transport

    Science.gov (United States)

    Walton, Otis R.; Vollmer, Hubert J.

    2013-01-01

    A report describes flexible mechanical conveying systems for transporting fine cohesive regolith under microgravity and vacuum conditions. They are totally enclosed, virtually dust-free, and can include enough flexibility in the conveying path to enable an expanded range of extraction and transport scenarios, including nonlinear drill-holes and excavation of enlarged subsurface openings without large entry holes. The design of the conveyors is a modification of conventional screw conveyors such that the central screw-shaft and the outer housing or conveyingtube have a degree of bending flexibility, allowing the conveyors to become nonlinear conveying systems that can convey around gentle bends. The central flexible shaft is similar to those used in common tools like a weed whacker, consisting of multiple layers of tightly wound wires around a central wire core. Utilization of compliant components (screw blade or outer wall) increases the robustness of the conveying, allowing an occasional oversized particle to pass hough the conveyor without causing a jam or stoppage

  16. Programmable Current-Mode Universal Active Filters Employing Current Conveyors

    OpenAIRE

    Muhammad Taher Abuelma'atti

    1998-01-01

    Novel current-mode active filter circuits using current-conveyors are presented. The proposed circuits can realize all standard second-order filter functions. The circuits enjoy high output impedances and can, therefore, be easily cascaded to produce higher order filters. Moreover, the realized filter function can be easily programmed using at most a 13-bit digital number without changing the circuit topology.

  17. Increasing of horizontal velocity of particles leaving a belt conveyor

    Directory of Open Access Journals (Sweden)

    Tavares Abraão

    2017-01-01

    Full Text Available We investigate the transport of granular materials by a conveyor belt via numerical simulations. We report an unusual increasing of particles horizontal velocity when they leave the belt and initiate free-fall. Using Discrete Elements Method, the mechanism underlying this phenomenon were investigated, and a study on how particle and system properties influences this effect were conducted.

  18. CONVEYOR DRIVE DESIGN IN COMPAS 3D SYSTEM

    Directory of Open Access Journals (Sweden)

    Mikhail Yu. Rodioshkin

    2017-03-01

    Full Text Available Introduction: Engineers often face problems associated with design and technological preparation of production and with improving the technical documentation quality. These problems can be solved using CAD/CAE/CALS-technology in industrial production. Design engineering products is related to modeling parts and assemblies in 3D CAD graphics, followed by engineering analysis. The authors demonstrate the sequence of the conveyor drive design using COMPAS application libraries. Materials and Methods: А conveyor drive mechanical transmission was calculated and simulated using COMPAS application libraries. Design calculation and construction of COMPAS 3D model are present in the article. Results:The authors proposed their method of the conveyor drive design using COMPAS 3D libraries. Discussion and Conclusions: The method of a 3D conveyor drive model design with the choice of the necessary parameters for design, calculation and simulation of mechanical transmissions as a part of the projected product was developed. The proposed technique allows using the capabilities of modern CAD software for product design related things ensuring time reduction for preparation of production, and promoting economic efficiency.

  19. 30 CFR 57.14202 - Manual cleaning of conveyor pulleys.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Manual cleaning of conveyor pulleys. 57.14202 Section 57.14202 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Equipment Safety Practices and Operational Procedures § 57.14202 Manual cleaning of...

  20. A Study of Science and Technology Support System for Multifunctional Forestry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Based on the analysis on existing problems in China's forestry science & technology support system and in view of the requirements of multifunctional forestry development for science & technology support, the paper constructed a science & technology support framework for multifunctional forestry, comprising technology innovation, achievements transfer, extension and application, and policy guarantee. Major countermeasures were proposed to consolidate the science & technology support to multifunctional fores...

  1. Multifunctional material based on ionic transition metal complexes and gold-silica nanoparticles: synthesis and photophysical characterization for application in imaging and therapy.

    Science.gov (United States)

    Ricciardi, Loredana; Martini, Matteo; Tillement, Olivier; Sancey, Lucie; Perriat, Pascal; Ghedini, Mauro; Szerb, Elisabeta I; Yadav, Yogesh J; La Deda, Massimo

    2014-11-01

    A new combination of luminescent ionic transition-metal complexes (M = Ru(II) or Ir(III)) with gold silica-based nanoparticles (GSNPs) gives a promising nanomaterial for application in biomedical fields. Herein we report the synthesis and the photophysical properties of Ru(II) and Ir(III) complexes doped gold core-polysiloxane shell particles prepared by microemulsion method and characterized by Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis spectroscopy. The cytotoxicity and photodynamic activity of the obtained 50 nm-diameter nanoparticles were evaluated in vitro, providing noteworthy results. Furthermore, their intrinsic phosphorescence allows the localization of the photosensitizing nanoparticles into the cytosol of tumor cells by fluorescence confocal microscope. These valuable features designate them as multifunctional nanoplatforms for theranostic purposes.

  2. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives

    Science.gov (United States)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall

    2017-06-01

    Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real

  3. 基于输送机链轮的数控铣削加工编程研究%Research on CNC Milling Programming for Conveyor Chain

    Institute of Scientific and Technical Information of China (English)

    李传军

    2012-01-01

    利用配有HNC-22M的XKN715数控铣床,基于宏程序和子程序开发输送机链轮齿形数控加工程序,并给出典型链轮齿形加工数控程序实例.%Using XKN715 CNC milling machine equipped with HNC 22M system, the NC program for conveyor chain was developed based on macro program and subroutines. And a NC programming example for typical conveyor chain tooth profile was given.

  4. Self-response multi-functional composite material base on carbon nanotube paper using deicing, flame retardancy, thermal insulation, and lightning-strike protection

    Science.gov (United States)

    Chu, Hetao; Zhang, Zhichun; Liu, Yanju; Leng, Jinsong

    2015-04-01

    Carbon nanotube paper (CNP) based multi-functional composite material is an attractive candidate for deicing, flame retardancy, thermal insulation and lighting strike protection due to the excellent conductivity, light weight and thin dimensions. In this article, multi-functional carbon nanotube paper was fabricated successfully by using commercial carbon nanotube. As a deicing composite material, carbon nanotube was used directly without pretreatment in fabricating carbon nanotube paper. The conductivities of the carbon nanotube paper and deicing composite were 77.8S/cm and 64.9S/ respectively. Electrical heating and deicing performance were test by infrared camera with deicing time less than 220s and 450s to melt a certain amount of ice under different ambient condition. CNT was grafted by zirconium (IV) butoxide solution and dimethyl dichlorosilicane to form co-oligomers on the tube surface while oligomers decompose under a certain temperature to develop an inorganic layer of silicon zirconium oxide. The oxidizing temperature of carbon nanotube increases more than 20°C and the weight loss rate decreases 20% than the untreated carbon nanotube. Lightning protection material required high electro conductivity, due to the utmost high current in a short time. Therefore, silver nanoparticles were deposited on the surface of carbon nanotube with the diameter around 100nm. The conductivity increased sharply from 84s/cm to1756s/cm with the mount of 5.9wt% Ag of the modified carbon nanotube paper because the silver nanoparticles deposited on the surface. In addition, the silver modified also can be used as thermal insulation material decreasing the infrared radiation.

  5. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  6. One-step fabrication of multifunctional micromotors

    Science.gov (United States)

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-08-01

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications. Electronic supplementary information (ESI) available: Videos S1-S4 and Fig. S1-S3. See DOI: 10.1039/c5nr03574k

  7. Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White.

    Science.gov (United States)

    Bi, Zhijie; Li, Xiaomin; Chen, Yongbo; He, Xiaoli; Xu, Xiaoke; Gao, Xiangdong

    2017-09-06

    A high-performance electrochromic-energy storage device (EESD) is developed, which successfully realizes the multifunctional combination of electrochromism and energy storage by constructing tungsten trioxide monohydrate (WO3·H2O) nanosheets and Prussian white (PW) film as asymmetric electrodes. The EESD presents excellent electrochromic properties of broad optical modulation (61.7%), ultrafast response speed (1.84/1.95 s), and great coloration efficiency (139.4 cm(2) C(-1)). In particular, remarkable cyclic stability (sustaining 82.5% of its initial optical modulation after 2500 cycles as an electrochromic device, almost fully maintaining its capacitance after 1000 cycles as an energy storage device) is achieved. The EESD is also able to visually detect the energy storage level via reversible and fast color changes. Moreover, the EESD can be combined with commercial solar cells to constitute an intelligent operating system in the architectures, which would realize the adjustment of indoor sunlight and the improvement of physical comfort totally by the rational utilization of solar energy without additional electricity. Besides, a scaled-up EESD (10 × 11 cm(2)) is further fabricated as a prototype. Such promising EESD shows huge potential in practically serving as electrochromic smart windows and energy storage devices.

  8. Conveyorized Radio Frequency Cure of Epoxy Glass Composites.

    Science.gov (United States)

    1980-05-01

    322 ,ounds on Conveyor the rax. speed is_______:i. VJ. Vin speed cf conveyor !) elt is eaival to or lIess t .A .. es Min. speed 0.11 ft/min. wit *o...1.000 1128 5581 5.16 53 (lCT) 259,520 .090 1.004 938 4503 1 5.19 59 ( ICT ) 235,270 .086 1.006 778 3928 5.18 69 OCT) 240.010 .091 1.003 RRr 4 _ _ a 72...R. Bushelman M-29 0. Browning 7 I b’ubo".. • -a " o , -T - No. I Secio of Costn ThicknessPanel iCT a No. 1 Section of Constant Thickness Panel M

  9. Modeling and simulation of longwall scraper conveyor considering operational faults

    Science.gov (United States)

    Cenacewicz, Krzysztof; Katunin, Andrzej

    2016-06-01

    The paper provides a description of analytical model of a longwall scraper conveyor, including its electrical, mechanical, measurement and control actuating systems, as well as presentation of its implementation in the form of computer simulator in the Matlab®/Simulink® environment. Using this simulator eight scenarios typical of usual operational conditions of an underground scraper conveyor can be generated. Moreover, the simulator provides a possibility of modeling various operational faults and taking into consideration a measurement noise generated by transducers. The analysis of various combinations of scenarios of operation and faults with description is presented. The simulator developed may find potential application in benchmarking of diagnostic systems, testing of algorithms of operational control or can be used for supporting the modeling of real processes occurring in similar systems.

  10. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer.

    Science.gov (United States)

    Melancon, Marites P; Lu, Wei; Zhong, Meng; Zhou, Min; Liang, Gan; Elliott, Andrew M; Hazle, John D; Myers, Jeffrey N; Li, Chun; Stafford, R Jason

    2011-10-01

    Image-guided thermal ablation of tumors is becoming a more widely accepted minimally invasive alternative to surgery for patients who are not good surgical candidates, such as patients with advanced head and neck cancer. In this study, multifunctional superparamagnetic iron oxide coated with gold nanoshell (SPIO@Au NS) that have both optical and magnetic properties was conjugated with the targeting agent, C225 monoclonal antibody, against epidermal growth factor receptor (EGFR). C225-SPIO@Au NS have an average a diameter of 82 ± 4.4 nm, contain 142 ± 15 antibodies per nanoshell, have an absorption peak in the near infrared (~800 nm), and have transverse relaxivity (r(2)) of 193 and 353 mM(-1) s(-1) versus Feridex™ of 171 and 300 mM(-1) s(-1), using 1.5 T and 7 T MR scanners, respectively. Specific targeting of the synthesized C225-SPIO@Au NS was tested in vitro using A431 cells and oral cancer cells, FaDu, OSC19, and HN5, all of which overexpress EGFR. Selective binding was achieved using C225-SPIO@Au NS but not with the non-targeting PEG-SPIO@Au NS and blocking group (excess of C225 + C225-SPIO@Au NS). In vivo biodistribution on mice bearing A431 tumors also showed selective targeting of C225-SPIO@Au NS compared with the non-targeting and blocking groups. The selective photothermal ablation of the nanoshells shows that without laser treatment there were no cell death and among the groups that were treated with laser at a power of 36 W/cm(2) for 3 min, only the cells treated with C225-SPIO@Au NS had cell killing (p nanoshells are MR-active and can be selectively heated up for simultaneous imaging and photothermal ablation therapy.

  11. Combining exploratory scenarios and participatory backcasting: using an agent-based model in participatory policy design for a multi-functional landscape.

    Science.gov (United States)

    Van Berkel, Derek B; Verburg, Peter H

    While the merits of local participatory policy design are widely recognised, limited use is made of model-based scenario results to inform such stakeholder involvement. In this paper we present the findings of a study using an agent based model to help stakeholders consider, discuss and incorporate spatial and temporal processes in a backcasting exercise for rural development. The study is carried out in the Dutch region called the Achterhoek. Region-specific scenarios were constructed based on interviews with local experts. The scenarios are simulated in an agent based model incorporating rural residents and farmer characteristics, the environment and different policy interventions for realistic projection of landscape evolution. Results of the model simulations were presented to stakeholders representing different rural sectors at a workshop. The results indicate that illustration of the spatial configuration of landscape changes is appreciated by stakeholders. Testing stakeholders' solutions by way of model simulations revealed that the effectiveness of local interventions is strongly related to exogenous processes such as market competition and endogenous processes like local willingness to engage in multifunctional activities. The integration of multi-agent modelling and participatory backcasting is effective as it offers a possibility to initiate discussion between experts and stakeholders bringing together different expertise.

  12. Selección de cadenas para equipos de transporte continuo. // Chain selection software for continuous conveyors.

    Directory of Open Access Journals (Sweden)

    F. Aguilar Parés

    2003-01-01

    ón, transportadores de tablillas, transportadores de rastrillos,elevadores de cangilones._____________________________________________________________________________Abstract:The design of conveyors and elevators that employ chains as driving member is commonly used in industry. An essentialelement for well functioning is the correct chain selection. There are a great variety of chains and attachments thataccomplish any requirements at manufacturers disposal. In order to supply these requirements there is a need to establish aprocedure that considers the following aspects:· Type of equipment (slat conveyor, flight conveyor, bucket conveyor, etc..· Transportation requirements (capacity, transportation velocity, material characteristics, etc..· Transportation conditions (overload, operation conditions, explotation time, etc..The resulting procedure is very annoying because there are stages in which a decision implies accommodation to latecalculations and as usual there is more than one solution. Therefore the SELCAD computation program is conceived for theuse by non experts in design and selection of continuous conveyors equipments. The program use data base from Link BeltIndustrial Chain Division catalog in which 14 types of chains are appraise with an average of 15 models for each and morethan 40 different attachments. Some of the program characteristics are:· User friendly environment (Visual Basic programation, version 5.· Help available at any moment.· Point out the characteristics of both driving member and gear.· Allows visualization of the selected real chain shape and attachment by photos.· Quick analysis of different variations.Key words: Transportation chain, slat conveyors, flight conveyor, bucket conveyor.

  13. High swing CMOS realization for third generation current conveyor (CCIII)

    OpenAIRE

    Minaei, Shahram; Yıldız, Merih; Türköz, Sait; Kuntman, Hakan

    2003-01-01

    In this paper a new CMOS realization for third generation current conveyor (CCIII) is proposed. The proposed circuit provides high swing range at terminals X and Y. The circuit has low input impedances at terminals X and Y and high output impedance at terminals Z+ and Z-. The circuit has 180MHz -3dB cutoff frequency in voltage follower mode. SPICE simulation results using MIETEC 1.2 CMOS process model are given.

  14. Investigation of used Conveyor Belts by the Differential Scanning Calorimetry Analysis

    Directory of Open Access Journals (Sweden)

    Lucia Knapcikova,

    2016-02-01

    Full Text Available In this paper is presented the use of differential scanning calorimetry analysis of the used conveyor belts. This method has been specifically tested on the individual components contained in the used conveyor belts esp. rubber pellets, cord and fabric. The result of the analysis is the determination of Tg temperature and melting temperatures (Tm by the components.Weanalyzed used conveyor belts and after this analysis it was determined components and their application to the industry

  15. Electrospun multifunctional tissue engineering scaffolds

    Science.gov (United States)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  16. Schmitt Trigger with Controllable Hysteresis Using Current Conveyors

    Directory of Open Access Journals (Sweden)

    Jiri Misurec

    2012-07-01

    Full Text Available Active elements working in the current or mixed mode are still attractive for the design of analog functional blocks. The current conveyor (CC was defined already in 1968. This paper deals with hysteresis comparators using second generation current conveyor. The comparator is basically a pulse circuit. In these circuits, the maximum rate of change in the output voltage is required during switching from one state to another. In comparators with operational amplifiers the switching time is given by the slew rate of the operational amplifier used, which is not too high. If a current conveyor is used, the time of switching the comparator gets shorter. The comparator is capable to operate at a higher frequency bands and if it is used, for example, in converters, a higher operating frequency can be reached. The connection of an inverting and a non-inverting comparator with adjustable hysteresis is shown as a practical implementation. Using the AD844, results of experimental measurements are presented that confirm the theoretical  assumptions and the results of computer simulation.

  17. The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models.

    Science.gov (United States)

    Yates, Cecelia C; Whaley, Diana; Babu, Ranjith; Zhang, Jianying; Krishna, Priya; Beckman, Eric; Pasculle, A William; Wells, Alan

    2007-09-01

    We determined whether a two-part space-conforming polyethylene glycol/dopa polymer-based gel promoted healing of contaminated wounds in mice. This silver-catalysed gel was previously developed to be broadly microbiocidal in vitro while being biocompatible with human wound cell functioning. Full-thickness wounds were created on the backs of mice. The wounds were inoculated with 10(4) CFU of each of four common skin wound contaminants, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanii and Clostridium perfringens. The wounds were then treated with our multifunctional polymer-based gel, the commercially available NewSkin product, or left to heal untreated. The untreated wounds were overtly infected, and presented detectable bacterial loads over the entire 21-day healing period, while the gel and NewSkin groups presented significantly smaller rises in bacterial levels and were cleared of detectable colonies by the third week, with the gel group clearing the bacteria earlier. While all three groups healed their wounds, the polymer-based gel-treated group demonstrated significantly earlier re-epithelialization and dermal maturation (Phealing wound. These preclinical studies show that the anti-microbial polymer gel not only supports but also accelerates healing of bacterially contaminated wounds.

  18. Numerical evaluation of turbulence models for dense to dilute gas-solid flows in vertical conveyor

    Institute of Scientific and Technical Information of China (English)

    Salar Azizi; Dariush Mowla; Goodarz Ahmadi

    2012-01-01

    A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas-solid flows in vertical pneumatic conveyor.An axisymmetric 2-dimensional,vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain,same to that used for experimentation in the literature.The chosen particles are spherical,of diameter 1.91 mm and density 2500 kg/m3.Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles.Flow regimes transition and pressure drop were predicted.Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe.It was found that the voidage has a minimum,and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime.Slug length and pressure fluctuation reduction were predicted with increasing gas velocity,too.It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.

  19. Toward multifunctional "clickable" diamond nanoparticles.

    Science.gov (United States)

    Khanal, Manakamana; Turcheniuk, Volodymyr; Barras, Alexandre; Rosay, Elodie; Bande, Omprakash; Siriwardena, Aloysius; Zaitsev, Vladimir; Pan, Guo-Hui; Boukherroub, Rabah; Szunerits, Sabine

    2015-04-07

    Nanodiamonds (NDs) are among the most promising new carbon based materials for biomedical applications, and the simultaneous integration of various functions onto NDs is an urgent necessity. A multifunctional nanodiamond based formulation is proposed here. Our strategy relies on orthogonal surface modification using different dopamine anchors. NDs simultaneously functionalized with triethylene glycol (EG) and azide (-N3) functions were fabricated through a stoichiometrically controlled integration of the dopamine ligands onto the surface of hydroxylated NDs. The presence of EG functionalities rendered NDs soluble in water and biological media, while the -N3 group allowed postsynthetic modification of the NDs using "click" chemistry. As a proof of principle, alkynyl terminated di(amido amine) ligands were linked to these ND particles.

  20. Synthesis and characterization of a cadmium(II)-organic supramolecular coordination compound based on the multifunctional 2-amino-5-sulfobenzoic acid ligand.

    Science.gov (United States)

    Yuan, Gan Yin; Zhang, Lei; Wang, Meng Jie; Zhang, Kou Lin

    2016-12-01

    Much attention has been paid by chemists to the construction of supramolecular coordination compounds based on the multifunctional ligand 5-sulfosalicylic acid (H3SSA) due to the structural and biological interest of these compounds. However, no coordination compounds have been reported for the multifunctional amino-substituted sulfobenzoate ligand 2-amino-5-sulfobenzoic acid (H2asba). We expected that H2asba could be a suitable building block for the assembly of supramolecular networks due to its interesting structural characteristics. The reaction of cadmium(II) nitrate with H2asba in the presence of the auxiliary flexible dipyridylamide ligand N,N'-bis[(pyridin-4-yl)methyl]oxamide (4bpme) under ambient conditions formed a new mixed-ligand coordination compound, namely bis(3-amino-4-carboxybenzenesulfonato-κO(1))diaquabis{N,N'-bis[(pyridin-4-yl)methyl]oxamide-κN}cadmium(II)-N,N'-bis[(pyridin-4-yl)methyl]oxamide-water (1/1/4), [Cd(C7H6NO5S)2(C14H14N4O2)2(H2O)2]·C14H14N4O2·4H2O, (1), which was characterized by single-crystal and powder X-ray diffraction analysis (PXRD), FT-IR spectroscopy, thermogravimetric analysis (TG), and UV-Vis and photoluminescence spectroscopic analyses in the solid state. The central Cd(II) atom in (1) occupies a special position on a centre of inversion and exhibits a slightly distorted octahedral geometry, being coordinated by two N atoms from two monodentate 4bpme ligands, four O atoms from two monodentate 4-amino-3-carboxybenzenesulfonate (Hasba(-)) ligands and two coordinated water molecules. Interestingly, complex (1) further extends into a threefold polycatenated 0D→2D (0D is zero-dimensional and 2D is two-dimensional) interpenetrated supramolecular two-dimensional (4,4) layer through intermolecular hydrogen bonding. The interlayer hydrogen bonding further links adjacent threefold polycatenated two-dimensional layers into a three-dimensional network. The optical properties of complex (1) indicate that it may be used as a

  1. Design of Smart Digital Multifunction Meter Based on MSP430%基于MSP430的智能测量表设计

    Institute of Scientific and Technical Information of China (English)

    胥开芳; 蔡志涛

    2014-01-01

    This paper describes the smart digital multifunction meter based on MSP430. The system contains master-chip, the signal generating circuit, liquid crystal display circuit, keyboard input circuit and the corresponding measuring circuit, and it has many multi-range measurement functions, such as AC/DC voltage measurement, resistance measurement, capacitance measurement and transistor magnification measurement, and adjustable frequency sine wave or square wave output function. After testing, the system can be good to complete the measurement and the output task,and it has advantage of measurement accuracy and friendly interface.%基于MSP430设计了智能多功能测量表,由主控芯片、信号发生电路、液晶显示电路、键盘输入电路等测量电路组成,实现了对直流/交流电压、电阻、电容以及晶体三极管放大倍数的多量程测量功能和频率可调正弦波/方波的输出功能。经测试,系统可以完成指定的测量输出任务,具有测量精度理想、交互界面友好等优点。

  2. Multifunctional Control System of Sliding Plug Door Based on PSoC%基于PSoC的对开塞拉门多功能控制系统

    Institute of Scientific and Technical Information of China (English)

    何杰; 林辉

    2011-01-01

    针对轻轨交通中对开塞拉门的电气控制要求,该文采用无刷直流电机,设计了一种基于PSoC的多功能门控系统.以CY8C29466单片机和IR2130功率驱动芯片为核心,设计了门机控制器,给出了可行的软件设计方法,提高了系统可靠性.%Consider the electric control requirements of the sliding plug door in the field of metro vehicles,designed a kind of multifunctional control system based on PSoC by using brushless DC motor. With CY8C29466 CPU and IR2130 power driver chip, presented a door controller and a feasible method of software flowchart. It has greatly improved the reliability of the system.

  3. Multifunctional assessment and zoning of crop production system based on set pair analysis-A comparative study of 31 provincial regions in mainland China

    Science.gov (United States)

    Tao, Jin; Fu, Meichen; Sun, Jingjing; Zheng, Xinqi; Zhang, Jianjun; Zhang, Dingxuan

    2014-05-01

    In this study, we present a multifunctional indicator system for the performance evaluation of crop production system by set pair analysis method. Five functions were summarized to represent the multifunctionality of crop production system, including production function, supply function, ecological function, security function and economic function. Setting a case study of 31 provincial regions in mainland China, this paper conducted a comparison of each function in different regions, divided into 9 groups by cluster analysis. The results show that: the levels of multifunction in most regions are under a low degree balance; the production function has a high coordination with the economic function and security function in China; the supply function is lowly correlated with the other functions, especially the economic function has negative correlation with the supply function to some extent; some relevant policies and suggestions are deduced for multifunctional improvement. It is concluded that the multifunctional indicators and the set pair analysis method can serve as an effective method for the assessment of crop production system.

  4. Multifunctional materials and composites

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  5. Mechanics of Multifunctional Materials & Microsystems

    Science.gov (United States)

    2012-03-09

    Thermal Energy Harvesting Flexible Battery of Graphene -CNT Hybrid > Integrated Solar Cells for MAV Wings < Multifunctional Mg-Li Alloy...Design of Reconfigurable Structures Active Cells for Multifunctional Structures Morphing CNT Microstructures Metamaterial Enhanced MEMS Acoustic... Metamaterials w Local Resonance Macroscale Meta-Materials Active Materials w Sensory & Adaptive Capabilities > Mechano-Responsive Polymer Systems

  6. Dunlop Enerka Belting supplies and installs Europe's longest conveyor belt at British Coal-Mine

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Dunlop Enerka Belting of Farington, U.K., has supplied a steel cord conveyor belt to the mine complex at Selby in North Yorkshire operated by RJB Mining plc. The new conveyor belt replaces the belt supplied and installed in 1981 by Dunlop Enerka Belting (then BTR Belting Ltd.).

  7. PROPOSALS ON IMPROVING THE EXCAVATION, TRANSPORT AND COAL DEPOSIT, USING THE RUBBER CONVEYOR BELT

    Directory of Open Access Journals (Sweden)

    Nicoleta-Maria MIHUT

    2016-05-01

    Full Text Available In this work we make a study of the improvement methods of quantity of material transported by conveyor belt. Determination of discharge of solids entail establish of the parameters of the conveyor belt. As a result, we determine the belt speed who provide maximum discharge of solids materials.

  8. Implementation of Multi-Body Dynamics Simulation for the Conveyor Chain Drive System

    Directory of Open Access Journals (Sweden)

    Suvanjumrat Chakrit

    2017-01-01

    Full Text Available The conveyor chain drive system which included four sprockets, four flat bars (chain guides and one conveyor chain had been assembled into commercial software, MSC.ADAMS. The conveyor chain was connected with rollers for running on the chain guides. The multi-body dynamics (MBD simulation was implemented to study the large displacement of chain components which happened during rotations of the symmetric model of the conveyor chain drive system. The physical experiment had obtained by construction of the conveyor chain drive system regarding the MBD model. The speeds of chain drive were adjusted by a gear motor with a converter. The trajectory of conveyor chain links which respectively meshed and ran on sprockets and chain guides was recorded by a high speed camera. Furthermore, impact-contact forces by a collision of components in the conveyor chain drive system during rotation were analysis. The comparison between MBD simulation and physical experiment of the conveyor chain drive system was performed for validation of simulation models. The MBD simulation results were in good agreement with the experimental data which obtained an average error of 3.95%.

  9. A Nanotechnology Approach to Lightweight Multifunctional Polyethylene Composite Materials for Use Against the Space Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene-based composite materials are under consideration as multifunctional structural materials, with the expectation that they can provide radiation...

  10. Radiation Abating Highly Flexible Multifunctional Polyimide Cryogenic and Thermal Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of highly flexible thermal insulation materials with multifunctional properties based in polyimide polymers and designed to provide significant...

  11. A “ Youth Multi-function Centre” in the Free State: An alternative to clinic-based HIV/AIDS prevention and care

    Directory of Open Access Journals (Sweden)

    C Heunis

    2000-09-01

    Full Text Available The youth are especially vulnerable to the HIV/AIDS epidemic in South Africa. In the Free State (second highest incidence of HIV/AIDS among the provinces, the Welkom-Goldfields area may for various reasons be singled out as a high risk area for HIV/AIDS which should receive priority attention in attempts to combat the disease. It is suggested that a Youth Multi-function Centre would place youth reproductive health care in the broader development and life skills arena - where it could be thought to rightfully belong. The objectives of the paper are to depict the rationale for a Youth Multi-function Centre, to broadly conceptualise a Youth Multi-function Centre, and to report on the process and methodology followed in an attempt to actually establish such a centre in Thabong/Welkom.

  12. Availability analysis of the main conveyor in the Svea Coal Mine in Norway

    Institute of Scientific and Technical Information of China (English)

    Simon Furuly; Javad Barabady; Abbas Barabadi⇑

    2014-01-01

    Reliability and maintainability of mining industry is more in focus than ever, and the mining systems are becoming more complex and the equipment more expensive to repair or modify. Unplanned failures can result in significant costs, especially when the machinery is hard to repair or spare parts are far away. This paper presents a case study describing a reliability and maintainability analysis of the main conveyor system of the Svea Coal Mine located in Svalbard, Norway. The conveyor system includes several separate conveyors. In this study, the main six conveyors of the whole system were selected for the analysis. The failure and repair data of the conveyors were collected for the whole year of 2010 using maintenance and daily reports. The date was analyzed and the result shows that the availability of six conveyers is 96.44%for one year of operation. However, reliability of these conveyers needs to be improved in order to reduce the number of failures.

  13. Long-Term Predictions of Global Climate Using the Ocean Conveyor

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Wilson, J.R.

    2003-01-01

    Many have attributed the Great Ocean Conveyor as a major driver of global climate change over millennia as well as a possible explanation for shorter (multidecadal) oscillations. The conveyor is thought to have a cycle time on the order of 1000 years, however recent research has suggested that it is much faster than previously believed (about 100 years). A faster conveyor leads to the possibility of the conveyor's role in even shorter oscillations such as the El Nino/Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). The conveyor is primarily density driven. In this study the salty outflow of the Red Sea is used to predict its behavior ten years into the future. A successful model could lead to a long-term prediction (ten years) of El Ninos, Atlantic hurricane season intensity, as well as global temperature and precipitation patterns.

  14. An integrated multi-criteria decision-making methodology for conveyor system selection

    Directory of Open Access Journals (Sweden)

    Pairat Jiamruangjarus

    2016-12-01

    Full Text Available Material handling equipment (MHE is important for every industry because it has an effect on the productivity of manufacturing. Conveyor systems are presently one popular type of MHE. This paper presents an integration of the analytic network process (ANP with the benefits, opportunities, costs and risk (BOCR model in order to select the best conveyor system. The proposed model established a network with four merits, six strategies criteria, and twenty six sub-criteria with four alternatives (present, roller conveyor, chain conveyor, and monorail. The ANP is to determine the relative weights of an evaluative criteria and decision alternatives. Therefore, the final ranking of the alternatives are calculated by synthesizing the score of each alternative under BOCR. The results showed that the best alternative under all five methods is the chain conveyor. These research results can be easily applied, adapted and used to improve performance of selecting the conveyer system in small and medium enterprises through large industries.

  15. 3D-Virtualization of a Conveyor Machine

    OpenAIRE

    Taipalus, Joonas

    2016-01-01

    The purpose of this thesis was to create a virtually working 3D-model of a conveyor machine. The topic and the machine were provided by Siemens. Siemens will use this virtual model to ease their education, as it is not necessary to have the real equipment nearby. The first model was made in Solid Edge, and then transported to Siemens NX and MCD –software. The PLC-program was made in Siemens TIA portal. The connection between TIA portal and MCD was made with an OPC-server. The theory part of t...

  16. Single beam optical conveyor belt for chiral particles

    CERN Document Server

    Fernandes, David E

    2016-01-01

    We propose a novel paradigm to selectively manipulate and transport small engineered chiral particles and discriminate different enantiomers using unstructured chiral light. It is theoretically shown that the response of a chiral metamaterial particle may be tailored to enable an optical conveyor belt operation with no optical traps, such that for a fixed incident light helicity and independent of the nanoparticle location, it is either steadily pushed towards the direction of the photon flow or steadily pulled against the photon flow. Our findings create new opportunities for unconventional optical manipulations of tailored nanoparticles and may have applications in sorting racemic mixtures of artificial chiral molecules and in particle delivery.

  17. Characteristic analysis on screw conveyor used for lignite molding%褐煤成型用螺旋输送机的特性分析

    Institute of Scientific and Technical Information of China (English)

    郝兵; 崔郎郎; 李聪杰; 白爱民; 蒋惠民; 刘正魁; 高洁

    2013-01-01

    根据褐煤成型机用螺旋输送机的工作特点,通过对螺旋轴结构进行分析及试验研究,确定一种合理的螺旋结构.通过试验数据得出螺旋输送机输送能力受煤粉的水分、温度和粒度的影响.物料水分增加,会增加螺旋输送机的功耗;物料水分下降,既能降低螺旋输送机功耗,又能提升成型机的成型压力.因此,合理设计螺旋输送机的结构,可为成型机运行参数的确定提供参考.%Based on the operating features of the screw conveyor used for lignite molding machine,after the structure of the screw shaft was analyzed and tested,a screw with reasonable structure was determined.Test data showed the influences of moisture,temperature and granularity of pulverized coal on the transportation capacity of the screw conveyor.The moisture raise led to increase in power consumption of the screw conveyor; the moisture reduction led to decrease in power consumption of the screw conveyor and increase in molding pressure of the molding machine.The screw conveyor with reasonable structure could offer foundation for determining the operating parameters of the molding machine.

  18. 基于粒子群算法的高黏度大比重物料无轴螺旋输送机构优化设计%Optimization design of shaft-less screw conveyor mechanism for high viscosity and large specific gravity materials based on PSO

    Institute of Scientific and Technical Information of China (English)

    张炎; 芮延年; 周宏伟; 童玉武

    2014-01-01

    为解决高黏度大比重物料无轴螺旋输送机的螺旋叶片变形问题,利用粒子群优化算法,以无轴螺旋叶片刚度变形最小为优化设计目标,构建了基于粒子群算法的无轴螺旋叶片优化设计模型。应用构建的理论模型,进行了实例设计,并通过实验研究进一步证实该设计方法具有先进性和实用性。将智能算法应用于机械优化设计,为该领域研究提供新思路。%Many users are plagued by the problem that screw blades of shaft-less screw conveyor are deformed when transport materials are with high viscosity and large specific gravity .The al-gorithm of particle swarm optimization (PSO) was used with the purpose of minimum deforma-tion of shaft-less screw stiffness .Firstly ,optimization design model of shaft-less screw blade was constructed based on particle swarm optimization .Then ,examples were designed with theoretical model constructed .Finally ,experimental research was studied to further confirm that the method designed was advanced and practical .Intelligent algorithm is applied in mechanical optimization design ,w hich provides new method for the research on the field .

  19. Factors affecting multifunctional teams in innovation processes

    OpenAIRE

    Shen, Xin

    2002-01-01

    Structuring the innovation process and managing multifunctional teams is a basic prerequisite successful innovation. A well-structured process gives the possibility to implement effective multifunctional teamwork. Meanwhile, multifunctional teamwork helps to optimise and accomplish the innovation process. Organizational support is necessary to achieve effective teamwork. Designing or changing the organizational structures for multifunctional collaboration is an important issue. Changing the s...

  20. A New Application of Current Conveyors: The Design of Wideband Controllable Low-Noise Amplifiers

    Directory of Open Access Journals (Sweden)

    A. Fabre

    2008-12-01

    Full Text Available The aim of this paper is three-fold. First, it reviews the low-noise amplifier and its relevance in wireless communications receivers. Then it presents an exhaustive review of the existing topologies. Finally, it introduces a new class of LNAs, based on current conveyors, describing the founding principle and the performances of a new single-ended LNA. The new LNAs offer the following notable advantages: total absence of passive elements (and the smallest LNAs in their respective classes; wideband performance, with stable frequency responses from 0 to 3 GHz; easy gain control over wide ranges (0 to 20 dB. Comparisons with other topologies prove that the new class of LNA greatly advances the state of the art.

  1. Layer-by-Layer Assembly of Multifunctional Flame Retardant Based on Brucite, 3-Aminopropyltriethoxysilane, and Alginate and Its Applications in Ethylene-Vinyl Acetate Resin.

    Science.gov (United States)

    Wang, Yiliang; Yang, Xiaomei; Peng, Hui; Wang, Fang; Liu, Xiu; Yang, Yunguo; Hao, Jianwei

    2016-04-20

    An efficient and multifunctional brucite/3-aminopropyltriethoxysilane (APTES)/nickel alginate/APTES (B/A/Nia/A) hybrid flame retardant was fabricated via the layer-by-layer assembly technique with brucite, silane coupling agents, nickel chloride, and sodium alginate. The morphology, chemical composition, and structure of the hybrid flame retardant were characterized. The results confirmed the multilayer structure and indicated that the assembled driving forces were electrostatic interactions, dehydration condensation, hydrogen bonds, and coordination bonds. When used in ethylene-vinyl acetate (EVA) resin, the multifunctional flame retardant had better performance than brucite in improving the flame retardancy, smoke suppression, and mechanical properties. With 130 phr loading, the multifunctional flame retardant achieved a limiting oxygen index value of 32.3% and a UL 94 V-0 rating, whereas the brucite achieved only 31.1% and a V-2 rating, respectively. The peak heat release rate and total heat released decreased by 41.5% and 8.9%, respectively. The multifunctional flame retardant had an excellent performance in reducing the smoke, CO, and CO2 production rates. These improvements could be attributed to the catalyzing carbonization of nickel compounds and the formation of more protective char layers. Moreover, the elongation at break increased by 97.5%, which benefited from the improved compatibility and the sacrificial bonds in the nickel alginate. The mechanism of flame retardant, smoke suppression, and toughening is proposed.

  2. Global ocean conveyor lowers extinction risk in the deep sea

    Science.gov (United States)

    Henry, Lea-Anne; Frank, Norbert; Hebbeln, Dierk; Weinberg, Claudia; Robinson, Laura; van de Flierdt, Tina; Dahl, Mikael; Douarin, Melanie; Morrison, Cheryl; Correa, Matthias Lopez; Rogers, Alex D.; Ruckelshausen, Mario; Roberts, J. Murray

    2014-01-01

    General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth׳s largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium–thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.

  3. Global ocean conveyor lowers extinction risk in the deep sea

    Science.gov (United States)

    Henry, Lea-Anne; Frank, Norbert; Hebbeln, Dierk; Wienberg, Claudia; Robinson, Laura; van de Flierdt, Tina; Dahl, Mikael; Douarin, Mélanie; Morrison, Cheryl L.; López Correa, Matthias; Rogers, Alex D.; Ruckelshausen, Mario; Roberts, J. Murray

    2014-06-01

    General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth's largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium-thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.

  4. Dynamic analysis of scraper conveyor operation with external loads

    Directory of Open Access Journals (Sweden)

    Świder Jerzy

    2017-01-01

    Full Text Available A load to an armoured face conveyor (AFC during coal mining is changeable and very difficult or even impossible to be predicted. Changes of the load to the upper scraper chain affect the load of the driving motor and generate changes in a scraper chain tension. Impact of increasing the external load to the upper scraper chain on the operation of electric motors and on the scraper chain tension is presented. The developed numerical model of the Rybnik 850 conveyor enabled identifying the places of the scraper chain high tension or places of its loosening. An impact of changing frequency of driving motor voltage on AFC’s operational conditions was tested and analysed using the AFC’s numerical model. During tests, tension of the scraper chain on the discharge end and the return end was recorded. High tension of the scraper chain and its loosening during the changeable load were also recorded on upward and downward transportation of run-of-mine material.

  5. Multi-functional windows

    Science.gov (United States)

    Nag, Nagendra; Goldman, Lee M.; Balasubramanian, Sreeram; Sastri, Suri

    2013-06-01

    The requirements for modern aircraft are driving the need for conformal windows for future sensor systems. However, limitations on optical systems and the physical properties of optically transparent materials currently limit the geometry of existing windows and window assemblies to faceted assemblies of flat windows held in weight bearing frames. Novel material systems will have to be developed which combine different materials (e.g. ductile metals with transparent ceramics) into structures that combine transparency with structural integrity. Surmet's demonstrated ability to produce novel transparent ceramic/metal structures will allow us to produce such structures in the types of conformal shapes required for future aircraft applications. Furthermore, the ability to incorporate transparencies into such structures also holds out the promise of creating multi-functional windows which provide a broad range of capabilities that might include RF antennas and de-icing in addition to transparency. Recent results in this area will be presented.

  6. A Parametric Energy Model for Energy Management of Long Belt Conveyors

    Directory of Open Access Journals (Sweden)

    Tebello Mathaba

    2015-12-01

    Full Text Available As electricity prices continue to rise, the increasing need for energy management requires better understanding of models for energy-consuming applications, such as conveyor belts. Conveyor belts are used in a wide range of industries, including power generation, mining and mineral processing. Conveyor technological advances are leading to increasingly long conveyor belts being commissioned. Thus, the energy consumption of each individual belt conveyor unit is becoming increasingly significant. This paper proposes a generic energy model for belt conveyors with long troughed belts. The model has a two-parameter power equation, and it uses a partial differential equation to capture the variable amount of material mass per unit length throughout the belt length. Verification results show that the power consumption calculations of the newly proposed simpler model are consistent with those of a known non-linear model with an error of less than 4%. The online parameter identification set-up of the model is proposed. Simulations indicate that the parameters can be identified successfully from data with up to 15% measurement noise. Results show that the proposed model gives better predictions of the power consumed and material delivered by a long conveyor belt than the steady-state models in the current literature.

  7. Exploring the multifunctional role of farming systems

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Noe, Egon; Halberg, Niels

    2006-01-01

    Public expectations of farming practices are changing from a demand for environmentally "sustainable farming practices" to farming making an "enhanced contribution to the development of the rural areas", the so-called multifunctionality. Based on our research model of including farmers in the dev......Public expectations of farming practices are changing from a demand for environmentally "sustainable farming practices" to farming making an "enhanced contribution to the development of the rural areas", the so-called multifunctionality. Based on our research model of including farmers...... in the development of eco-friendly farming systems, we propose that the achievement of these changed expectations could be facilitated through an appropriate research and development initiative in several European regions. Key elements in such a project sould include: (i) the establishment of platforms for dialogue...... and development of relevant indicators of multifunctional effects (ii) documentation of results obtained from a number of fams and (iii) analysis of development opportunities in the light of the changes "requested". Participants in the regional platform for communication will include farmers, regional policy...

  8. Multifunctional materials for bone cancer treatment

    Directory of Open Access Journals (Sweden)

    Marques C

    2014-05-01

    Full Text Available Catarina Marques,1 José MF Ferreira,1 Ecaterina Andronescu,2 Denisa Ficai,2 Maria Sonmez,3 Anton Ficai21Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, University of Aveiro, Aveiro, Portugal; 2Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Bucharest, Romania; 3National Research and Development Institute for Textiles and Leather, Bucharest, RomaniaAbstract: The purpose of this review is to present the most recent findings in bone tissue engineering. Special attention is given to multifunctional materials based on collagen and collagen–hydroxyapatite composites used for skin and bone cancer treatments. The multifunctionality of these materials was obtained by adding to the base regenerative grafts proper components, such as ferrites (magnetite being the most important representative, cytostatics (cisplatin, carboplatin, vincristine, methotrexate, paclitaxel, doxorubicin, silver nanoparticles, antibiotics (anthracyclines, geldanamycin, and/or analgesics (ibuprofen, fentanyl. The suitability of complex systems for the intended applications was systematically analyzed. The developmental possibilities of multifunctional materials with regenerative and curative roles (antitumoral as well as pain management in the field of skin and bone cancer treatment are discussed. It is worth mentioning that better materials are likely to be developed by combining conventional and unconventional experimental strategies.Keywords: bone graft, cancer, collagen, magnetite, cytostatics, silver

  9. INVESTIGATION OF PROCESSES ON TREATMENT OF PLASMA COATINGS MADE OF MATERIALS BASED ON MULTIFUNCTIONAL OXIDE CERAMICS WITH LASER IRRADIATION IMPULSES

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2014-01-01

    Full Text Available The purpose of the presented paper is to optimize technological parameters of hardening high-energy processing used for sprayed coatings made of materials based on oxide ceramics with inclusions of solid lubricant. The paper presents results of the investigations on influence of power density and total number of laser irradiation impulses in a spot treatment on thickness of treated coating layers made of materials based on oxide ceramics. The considered wear-resistant coatings require increased cohesive and adhesive strength. Therefore, the total number of impulses should ensure melting and sealing of the coatings along the whole thickness that will fully contribute to obtain hardened nano-crystalline and amorphous structures.The work is based on complex metallography, X-ray diffraction and electron-microscopic investigations on modified structural elements of composite coatings being treated with highly concentrated energy sources. The following main processes of hardened plasma coating formations have been revealed in the paper: com paction of sprayed materials due to thermal and shock-wave impacts of laser irradiation impulses. In this case material porosity is decreasing, cohesive and adhesive strength of coatings is increasing, grain structure is crushed, amorphous and nano-crystalline phases of higher strength are formed all these facts are evidenced by an increase in average micro-hardness of deposited compositions. Duration of thermal laser irradiation impulse impact on the material is sufficient to activate chemical processes in the boundaries of main phases of the composite coating. This leads to formation of finely dispersed (including nanoparticle size compounds that strengthen boundaries of the main phases and the coating as a whole. This is confirmed by the results of an X-ray diffraction analysis.

  10. Hydrothermal synthesis for new multifunctional materials: A few examples of phosphates and phosphonate-based hybrid materials

    Science.gov (United States)

    Rueff, Jean-Michel; Poienar, Maria; Guesdon, Anne; Martin, Christine; Maignan, Antoine; Jaffrès, Paul-Alain

    2016-04-01

    Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containing phosphonates organic building units crystallizing in different structural types.

  11. Towards the development of multifunctional chitosan-based iron oxide nanoparticles: Optimization and modelling of doxorubicin release.

    Science.gov (United States)

    Soares, Paula I P; Sousa, Ana Isabel; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-11-20

    In the present work composite nanoparticles with a magnetic core and a chitosan-based shell were produced as drug delivery systems for doxorubicin (DOX). The results show that composite nanoparticles with a hydrodynamic diameter within the nanometric range are able to encapsulate more DOX than polymeric nanoparticles alone corresponding also to a higher drug release. Moreover the synthesis method of the iron oxide nanoparticles influences the total amount of DOX released and a high content of iron oxide nanoparticles inhibits DOX release. The modelling of the experimental results revealed a release mechanism dominated by Fickian diffusion.

  12. Development Of Multi-users Multi-function Watt-hour Meter Based On ATT7022B

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>According to the feature of city’s apartment building in China,a kind of Multi-users Watt-hour Meter based on ATT7022B has been developed in this paper.The master-slave MCU control model and the principles of Time Sharing Multiplex are adopted in this Watt-hour Meter,its function includes the measurement of current, voltage,power,power factor and the overload protection.It supports remote reading,pre-payment,multi-rate and etc. The practice shows that this meter has high accuracy,runs stable.It has wide prospect in the future market.

  13. VIRTUAL MODEL OF A ROLLER CONVEYOR INTEGRATED INTO A LOGISTIC FLOW

    Directory of Open Access Journals (Sweden)

    POPESCU Adrian

    2015-11-01

    Full Text Available In this article is presented, with the help of graphics, a logistic flow for palletizing and wrapping operations. The loaded pallets are transported by means of a roller conveyor. Creating the virtual model for the conveyer allows us to emphasize the compatibility elements between on the one hand the mechanical assemblies of the flow components and on the other hand the subassemblies of the conveyer structure. The paper has focused on the presentation of the conveyor specific assembly and how are placed the sensors on the mechanical structure of the conveyor. Finally, the main working phases are graphically presented within the flow, highlighting the loaded pallet positions in the flow.

  14. Theoretical research on hydroviscous speed-adjusting clutch in soft-start of belt conveyor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Man-shan; ZHANG Yuan

    2005-01-01

    Through research on the application of hydroviscous speed-adjusting clutch in belt conveyor, this paper concluded that hydroviscous speed-adjusting clutch has many advantages such as controllable start and stop, overload protection and multi-motor power equilibrium. But its theory when used in large power fan and pump could not meet the needs of belt conveyor soft-start operation. Focusing on the theoretical analysis of the lubrication oil flow needed by the transmission procedure to form the oil-film. Put forward concrete calculation methods of lubrication flow and how to decide number of oil-films used in belt conveyor.

  15. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer.

    Science.gov (United States)

    Dong, Yixiao; Hassan, Waqar U; Kennedy, Robert; Greiser, Udo; Pandit, Abhay; Garcia, Yolanda; Wang, Wenxin

    2014-05-01

    Hydrogel dressings have been widely used for wound management due to their ability to maintain a hydrated wound environment, restore the skin's physical barrier and facilitate regular dressing replacement. However, the therapeutic functions of standard hydrogel dressings are restricted. In this study, an injectable hybrid hydrogel dressing system was prepared from a polyethylene glycol (PEG)-based thermoresponsive hyperbranched multiacrylate functional copolymer and thiol-modified hyaluronic acid in combination with adipose-derived stem cells (ADSCs). The cell viability, proliferation and metabolic activity of the encapsulated ADSCs were studied in vitro, and a rat dorsal full-thickness wound model was used to evaluate this bioactive hydrogel dressing in vivo. It was found that long-term cell viability could be achieved for both in vitro (21days) and in vivo (14days) studies. With ADSCs, this hydrogel system prevented wound contraction and enhanced angiogenesis, showing the potential of this system as a bioactive hydrogel dressing for wound healing.

  16. Nonlinear multifunctional sensor signal reconstruction based on least squares support vector machines and total least squares algorithm

    Institute of Scientific and Technical Information of China (English)

    Xin LIU; Guo WEI; Jin-wei SUN; Dan LIU

    2009-01-01

    Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. In this paper, a novel training algorithm based on total least squares (TLS) for an LS-SVM is presented and applied to muhifunctional sensor signal reconstruction. For three different nonlinearities of a multi functional sensor model, the reconstruction accuracies of input signals are 0.001 36%, 0.03184% and 0.504 80%, respectively. The experimental results demonstrate the higher reliability and accuracy of the proposed method for multi functional sensor signal reconstruction than the original LS-SVM training algorithm, and verify the feasibility and stability of the proposed method.

  17. Developing Eastern Africa's resilience to flood and drought through multi-functional ecosystem-based management strategies

    Science.gov (United States)

    Lyon, Steve W.

    2017-04-01

    The rapid urbanization and agricultural expansion of Eastern Africa puts people in direct conflict with nature. Nowhere is this more obvious than for water resources where the delicate balance of too much water (flood) or too little water (drought) is a matter of life and death for millions. This work tackles this apparent conflict head-on by considering ecosystem service trade-offs relevant for water-based disasters as populations transition from rural to more intensive agricultural/urban lifestyles. Specifically, recent work from the Kilombero Valley of Tanzania, a region which has been targeted for development investment but where potential impacts (not to mention sustainability) associated with various development scenarios remain largely unresolved, will be presented as relevant case study. Our efforts on modelling and data synthesis for this region have shown promise as we seek to advance science in more and more remote (and in particular developing) regions while allowing important improvements for management of less and less available resources. Thus, in spite of large uncertainties the work highlights how research may still provide an improved system understanding of resource flows even when working under less than perfect conditions. Subsequently, such understanding feeds into development of frameworks for quantifying socio-hydrological impacts of land-water management. To ensure relevance regionally, we consider Kilombero Valley in the context of existing nature-based approaches dealing with disaster risk reduction. Such context potentially facilitates transfer of knowledge across country borders. Our goal here is to empower planners and stakeholders throughout the region by helping translate their knowledge into optimized adaptation strategies and linking their experiences through South-South transfer. There remains an open (and fundamental) question of how to best define management recommendations and activities that not only achieve climate resiliency

  18. Architecture design of the multi-functional wavelet-based ECG microprocessor for realtime detection of abnormal cardiac events.

    Science.gov (United States)

    Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee

    2012-01-01

    Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved.

  19. A multifunctional heat pipe sandwich panel structure

    Energy Technology Data Exchange (ETDEWEB)

    Queheillalt, Douglas T.; Wadley, Haydn N.G. [University of Virginia, Department of Materials Science and Engineering, 140 Chemistry Way, P.O. Box 400745, Charlottesville, VA 22904 (United States); Carbajal, Gerardo [University of Turabo, School of Engineering, P.O. Box 3030, Gurabo 00778 (Puerto Rico); Peterson, G.P. [University of Colorado at Boulder, 914 Broadway, Boulder, CO 80309 (United States)

    2008-01-15

    A multifunctional sandwich panel combining efficient structural load support and thermal management characteristics has been designed and experimentally assessed. The concept is based upon a truncated, square honeycomb sandwich structure. In closed cell honeycomb structures, the transport of heat from one face to the other occurs by a combination of conduction through the webs and convection/radiation within the cells. Here, much more effective heat transport is achieved by multifunctionally utilizing the core as a heat pipe sandwich panel. Its interior consists of a 6061 aluminum truncated-square honeycomb core covered with a stochastic open-cell nickel foam wick. An electroless nickel plating barrier layer inhibited the chemical reaction between the deionized water working fluid and the aluminum structure, retarding the generation of non-condensable hydrogen gas. A thermodynamic model was used to guide the design of the heat pipe sandwich panel. We describe the results of a series of experiments that validate the operational principle of the multifunctional heat pipe sandwich panel and characterize its transient response to an intense localized heat source. The systems measured thermal response to a localized heat source agrees well with that predicted by a finite difference method model used to predict the thermal response. (author)

  20. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  1. Advanced computer modeling techniques expand belt conveyor technology

    Energy Technology Data Exchange (ETDEWEB)

    Alspaugh, M.

    1998-07-01

    Increased mining production is continuing to challenge engineers and manufacturers to keep up. The pressure to produce larger and more versatile equipment is increasing. This paper will show some recent major projects in the belt conveyor industry that have pushed the limits of design and engineering technology. Also, it will discuss the systems engineering discipline and advanced computer modeling tools that have helped make these achievements possible. Several examples of technologically advanced designs will be reviewed. However, new technology can sometimes produce increased problems with equipment availability and reliability if not carefully developed. Computer modeling techniques that help one design larger equipment can also compound operational headaches if engineering processes and algorithms are not carefully analyzed every step of the way.

  2. Theoretical analysis of optical conveyor belt with plasmonic nanodisk array

    Science.gov (United States)

    Lee, Changhun; Kim, Donghyun

    2017-07-01

    Plasmonic optical trapping allows trapping and manipulation of micro- and even nanometer-sized particles using localized and enhanced electric fields by plasmon resonance in metallic nanostructure. We consider an optical conveyor belt consisting of an array of nanodisks acting as optical tweezers with different sizes to implement a system to trap and manipulate particles through a laser-induced gradient force. An electric field induced and localized at each optical resonator is sensitive to the wavelength and polarization. The maximum electric field is enhanced at resonant wavelength depending on the shape and size of the plasmonic nanostructure used for light localization. By changing the light wavelength and polarization, the position of localized light induced in the disk can be determined and nanoparticles can be moved to a desired location through the variation of resonance conditions without any mechanical forces.

  3. Multifunctional Thermally Remendable Nanocomposites

    Directory of Open Access Journals (Sweden)

    Edward D. Sosa

    2014-01-01

    Full Text Available Challenges associated with damage tolerance in polymer matrix composites must be successfully addressed in order to ensure highly reliable structures with significant weight savings. Self-healing materials provide a viable means to surmount damage tolerance concerns, thereby allowing for the realization of the mass reduction such structures have promised but not yet achieved. Introduction of multifunctional properties into self-healing composites can further extend their usefulness. This study examines the incorporation of carbon nanotubes into a self-healing composite in order to achieve this. Composite panels were fabricated with carbon fibers, a bismaleimide tetrafuran (2MEP4F polymer resin, and various carbon nanotube materials. The composites exhibit enhancement in electrical, mechanical, and thermal properties. The healing mechanism is a thermally activated reversible polymerization of the 2MEP4F resin. The proposed method of heating exploits the enhanced microwave absorption inherent to carbon nanotubes to provide the thermal energy required for the reversible polymerization. Microwave testing demonstrated that the heating efficiency is increased, allowing uniform heating to the required temperature for polymer healing. Impacted composites show localized heating at the damage site, which implies that microwave heating can also be used as a means for damage detection and potential structural health monitoring.

  4. Multifunctions of bounded variation

    Science.gov (United States)

    Vinter, R. B.

    2016-02-01

    Consider control systems described by a differential equation with a control term or, more generally, by a differential inclusion with velocity set F (t , x). Certain properties of state trajectories can be derived when it is assumed that F (t , x) is merely measurable w.r.t. the time variable t. But sometimes a refined analysis requires the imposition of stronger hypotheses regarding the time dependence. Stronger forms of necessary conditions for minimizing state trajectories can be derived, for example, when F (t , x) is Lipschitz continuous w.r.t. time. It has recently become apparent that significant addition properties of state trajectories can still be derived, when the Lipschitz continuity hypothesis is replaced by the weaker requirement that F (t , x) has bounded variation w.r.t. time. This paper introduces a new concept of multifunctions F (t , x) that have bounded variation w.r.t. time near a given state trajectory, of special relevance to control. We provide an application to sensitivity analysis.

  5. Multifunctional layered magnetic composites

    Directory of Open Access Journals (Sweden)

    Maria Siglreitmeier

    2015-01-01

    Full Text Available A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material.

  6. 煤矿斜井隧道连续皮带机出渣系统选型配置∗%Selection and Configuration for Slag System of Continuous Belt Conveyor in Colliery Inclined Shaft Tunnel

    Institute of Scientific and Technical Information of China (English)

    韩兵

    2016-01-01

    According to the engineering characteristics of deep, long and continuous downhill of the Xinjie colliery inclined shaft, the engineering adaptability and the advantages and disadvantages of the common tunneling mucking methods were contrasted and analyzed, then aiming at the selection of continuous belt conveyor mucking method and the engineering condition, this paper analyzed the driving apparatus placement scheme of single belt conveyor and multi stage belt conveyor. Then based on the optimal scheme of the belt conveyor, the relationship between belt intensity and length of belt conveyor was analyzed, and it established four kinds of working conditions, and the calculation of the parameters of each working condition shows that the arrangement of belt conveyor working conditions is reasonable, all of which can ensure mucking smoothly in the Xinjie colliery inclined shaft engineering.%针对新街煤矿斜井隧道深埋、超长、连续下坡的工程特点,对比分析了常见隧道出渣方式的工程适应性及优缺点,并针对选定的连续皮带机出渣方式和工程条件,对单、多级皮带输送和输送机驱动装置布置方案进行了比较分析,基于优选的皮带机出渣方案,分析了皮带机带强与输送机长度的关系,制定了4种出渣工况,各工况参数计算表明皮带机工况制定合理,能保证新街煤矿斜井工程的顺利出渣。

  7. Novel Wien Bridge Oscillator Design Using Functional Block Structure with Current Conveyors

    Directory of Open Access Journals (Sweden)

    Pavel Brandstetter

    2012-01-01

    Full Text Available The purpose of this paper is to generally present possibilities of the current conveyor use in the well-known active electronic circuits. Current conveyors are able to substitute all known active elements. This claim is supported by the fact, that four basic functional block structures can be realized by use of current conveyors - voltage-controlled voltage source, voltage-controlled current source, current-controlled current source and current-controlled voltage source. The paper presents particular example of use of functional block structure with current conveyors in Wien bridge oscillator, where it successfully substitutes operational amplifier on the place of active element. Both theoretical formulae and design description are given. Finally, OrCAD PSpice simulation results are presented.

  8. Design Analysis of Conveyor Mechanism Unit for Automatic Car Park System

    Directory of Open Access Journals (Sweden)

    Preeti S. Dambhare,

    2015-09-01

    Full Text Available The design analysis of a conveyor mechanism for an automatic car park is discussed. The conveyor assembly is made up of three units; the rack-pinion unit, the cable drive unit and the cantilever. The rack-pinion unit converts the rotational motion of a stepper motor to a linear forward and backward motion of the conveyor. The cable drive converts the rotational motion of another stepper motor to upward and downward motion of the cantilever to lift and lower the car at will. The cantilever is responsible for positioning the vehicle in the stack unit. The parameter for the cantilever is estimated to avoid excess deflection that could result from impact loading of a vehicle on the lift mechanism. The pinion-rack design for strength and rigidity is considered for the load required to be translated by the conveyor. The prototype was interfaced with a computer for operation using parallel port.

  9. Effects of industrial microcomputer use in control systems for machines and conveyors in surface mining

    Energy Technology Data Exchange (ETDEWEB)

    Borczyk, Z.; Rosseger, A. (Poltegor-Instytut, Wroclaw (Poland))

    1991-01-01

    Evaluates use of the ComPan Pzaz microcomputers manufactured in Poland for control of bucket wheel excavators without thrust action and for belt conveyors used in brown coal surface mines in Poland. The microcomputer consists of 14 standard microprocessor controller modules and 4 specialized modules. Structure of the control system, types of operations controlled by the system and effects of computerized control on safety and efficiency of operation of bucket wheel excavators are analyzed. Use of the ComPan Pzaz microcomputers for control of steep-angle conveyor systems (with a drive power from 1,000 kW to 4,000 kW) is evaluated. The system controls conveyor start-up and conveyor braking. Selected aspects of ComPan Pzaz reliability and service are also discussed. 2 refs.

  10. the screw-conveyor vane design for piece-wise construction

    African Journals Online (AJOL)

    Dr Obe

    By. G O EZEKWE. Mechanical Engineering Department, ... granular, Powdery or slurry material is by the screw conveyor. ... manufacture, the spiral blade can withstand axial load. ... wax process, do not provide the solution The first reason is ...

  11. EUO-Based Multifunctional Heterostructures

    Science.gov (United States)

    2015-06-06

    magnetic exchange interaction.20 In collaboration with Jochen Mannhart’s group we found a way to extend the large metal- to- insulator transition (MIT...conduction band,24,25 allowing for the temperature and magnetic field induced switching between non-linear and linear current-voltage characteristics...magnetoresistance and the metal- insulator transition resistance ratios of doped EuO by interfacing this semiconductor with niobium; the observed effect is

  12. Determination of The Mechanical Power in Belt Conveyor's Drive System in Industrial Conditions

    Science.gov (United States)

    Król, Robert; Kaszuba, Damian; Kisielewski, Waldemar

    2016-10-01

    Mechanical power is a value which carries a significant amount of information on the properties of the operating status of the machine analysed. The value of mechanical power reflects the degree of load of the drive system and of the entire machine. It is essential to determine the actual efficiency of the drive system η [%], which is the key parameter of the energy efficiency of the drive system. In the case of a single drive of a belt conveyor the actual efficiency is expressed as the ratio of mechanical output power Pm [W] at the drive pulley shaft to active electrical power drawn by the motor Pe [W]. Furthermore, the knowledge about the mechanical power from all drives of the multiple driven belt conveyor allows for the analysis of load distribution between the drives. In case of belt conveyor, the mechanical power Pm [W] generated by the drive at the drive pulley's shaft is equal to its angular velocity ω [rad / s] multiplied by the torque T [Nm]. The measurement of angular velocity is relatively easy and can be realized with the use of a tachometer or can be determined on the basis of linear velocity of the conveyor belt during belt conveyor's steady state operation. Significantly more difficult to perform in industrial conditions is the measurement of the torque. This is due to the operational conditions of belt conveyors (e.g. dustiness, high humidity, high temperature) and tight assembly of the drive components without the possibility of their disassembly. It makes it difficult or even impossible to measure the torque using a number of the techniques available, causing an individual approach to each object of research. The paper proposes a measurement methodology allowing to determine the mechanical power in belt conveyors drives which are commonly used in underground and surface mining. The paper presents result of the research into mechanical power in belt conveyor's drive carried out in underground mine conditions.

  13. Theoretical basis and industrial applications of energy – saving and increased durability belt conveyors

    Directory of Open Access Journals (Sweden)

    Antoniak Jerzy

    2003-09-01

    Full Text Available Theoretical basis used to build new generation of belt conveyors is presented is this paper. These conveyors are characterized by better energy-saving parameters of the transport of run-of-mine and higher reliability. Examples of current technical solutions applied in coal mines have been used to present the results of this research. The paper is summarized with conclusions and remarks.

  14. Diagnostics and computer test of a longwall scraper conveyor; Diagnostyka i atest komputerowy scianowego przenosnika zgrzeblowego

    Energy Technology Data Exchange (ETDEWEB)

    Dolipski, M.; Remiorz, E. [Politechnika Slaska, Gliwice (Poland)

    1996-08-01

    The article draws the attention to the need of continuous estimation of the technological state of a longwall scraper conveyor by means of vibration signals analysis. The chain vibration diagnostics as well as mechanical asymmetry one of the main and auxiliary drives is here very useful. There are also given the importance and composition of a computer test at the decisive stage of longwall conveyor purchase. (author). 2 refs.; 4 figs.

  15. Experimental Study of Kinetic Properties of Pyrolysis for Conveyor Belt in Coal Mine

    Institute of Scientific and Technical Information of China (English)

    SONG Zheng-chang

    2005-01-01

    The combustion of conveyor belt is a leading factor of mine fire. In this paper, the pyrolysis properties of ordinary conveyor belt and fire-resistant belt were studied experimentally with thermo-gravimetric analysis and derivative thermo-gravimetric analysis, and the curves of pyrolysis properties were achieved. On this basis, the activation energy and reaction order of pyrolysis were obtained in combination with theoretical analysis, aiming to provide data for further numerical simulation and simulating experiment of mine fire.

  16. THE INFLUENCE OF INCREASING RELIABILITY OF BELT CONVEYORS UPON THE PRODUCTIVITY OF LIGNITE QUARRIES

    Directory of Open Access Journals (Sweden)

    FLORIN-MIHAI NIȚESCU

    2012-10-01

    Full Text Available At present belt conveyors have an important role in the mines of lignite quarries because they contribute decisively to achieving an optimum production. From this point of view the management of mines should be constantly preoccupied with ensuring, in optimal conditions, the operation of these elements of fixed capital and, if it is necessary they should maintain constant reliability. In this context, this paper has as theme the relation between the reliability of conveyors and the productivity within lignite quarries.

  17. Reasoning Process of Product Platform Design for Armored Face Conveyor Based on Sensitivity Analysis%基于敏感性分析的刮板输送机产品平台设计推理

    Institute of Scientific and Technical Information of China (English)

    赵文燕; 张换高; 何桢; 檀润华; 李国平

    2009-01-01

    在分析现有产品平台设计方法基础上,提出一种基于敏感性分析的平台推理方法:通过分析导致产品变型的因素的可控性,排除当前产品中不合理的变型;通过分析产品结构模型元素对产品能力因素的敏感性,确定层级平台主参数;通过分析每个功能模块对变型因素的敏感性,并结合一定的平台表达方式确定平台架构.推理过程采用质量管理QC工具中的鱼骨图来分析产品变型因素,利用反向鱼骨图表达产品及产品平台的架构.该方法可以推广到参数范围变化较大的相似产品的平台设计.%After a reference review of AFC, a method of reasoning process of product platform design based on sensitivity analysis was put forward: some illogical or unnecessary change in design can be filtered after controllable analysis of causes was finished;main parameters of hierarchy platform were identified based on a sensitivity analysis between parameters associated to functional ability and modules or components; platform architecture was advanced with some manners by analyzing sensitivity of function elements to uncontrollable causes. A tool of quality control-fishbone diagram was introduced to find out the causes of the product changes, reverse fishbone diagram was used to represent the architecture of the product and platform. The method and process of product platform design based on sensitivity analysis is feasible to be applied to the platform design of other products with similar structure.

  18. Frames and dilemmas in multifunctional projects

    NARCIS (Netherlands)

    Matos Castano, Julieta

    2016-01-01

    Increasing population, sea level rise and changes in public spending encourage the development of multifunctional projects. Multifunctional projects integrate various functions in the same area to satisfy multiple objectives simultaneously and to combine the resources and expertise of various

  19. Frames and dilemmas in multifunctional projects

    NARCIS (Netherlands)

    Matos Castano, Julieta

    2016-01-01

    Increasing population, sea level rise and changes in public spending encourage the development of multifunctional projects. Multifunctional projects integrate various functions in the same area to satisfy multiple objectives simultaneously and to combine the resources and expertise of various stakeh

  20. Study and modeling of changes in volumetric efficiency of helix conveyors at different rotational speeds and inclination angels by ANFIS and statistical methods

    Directory of Open Access Journals (Sweden)

    A Zareei

    2017-05-01

    Full Text Available Introduction Spiral conveyors effectively carry solid masses as free or partly free flow of materials. They create good throughput and they are the perfect solution to solve the problems of transport, due to their simple structure, high efficiency and low maintenance costs. This study aims to investigate the performance characteristics of conveyors as function of auger diameter, rotational speed and handling inclination angle. The performance characteristic was investigated according to volumetric efficiency. In another words, the purpose of this study was obtaining a suitable model for volumetric efficiency changes of steep auger to transfer agricultural products. Three different diameters of auger, five levels of rotational speed and three slope angles were used to investigate the effects of changes in these parameters on volumetric efficiency of auger. The used method is novel in this area and the results show that performance by ANFIS models is much better than common statistical models. Materials and Methods The experiments were conducted in Department of Mechanical Engineering of Agricultural Machinery in Urmia University. In this study, SAYOS cultivar of wheat was used. This cultivar of wheat had hard seeds and the humidity was 12% (based on wet. Before testing, all foreign material was separated from the wheat such as stone, dust, plant residues and green seeds. Bulk density of wheat was 790 kg m-3. The auger shaft of the spiral conveyor was received its rotational force through belt and electric motor and its rotation leading to transfer the product to the output. In this study, three conveyors at diameters of 13, 17.5, and 22.5 cm, five levels of rotational speed at 100, 200, 300, 400, and 500 rpm and three handling angles of 10, 20, and 30º were tested. Adaptive Nero-fuzzy inference system (ANFIS is the combination of fuzzy systems and artificial neural network, so it has both benefits. This system is useful to solve the complex non

  1. Enhanced multifunctional paint for detection of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.; Moses, Edward Ira; Rubenchik, Alexander M.

    2017-03-07

    An enhanced multifunctional paint apparatus, systems, and methods for detecting radiation on a surface include providing scintillation particles; providing an enhance neutron absorptive material; providing a binder; combining the scintillation particles, the enhance neutron absorptive material, and the binder creating a multifunctional paint; applying the multifunctional paint to the surface; and monitoring the surface for detecting radiation.

  2. Terahertz Nanoscience of Multifunctional Materials: Atomistic Exploration

    Science.gov (United States)

    2014-03-28

    Approved for Public Release; Distribution Unlimited Final report on the project "Terahertz Nanoscience of Multifunctional Materials: Atomistic...non peer-reviewed journals: Final report on the project "Terahertz Nanoscience of Multifunctional Materials: Atomistic Exploration" Report Title In... nanoscience of multifunctional materials: atomistic exploration” PI:Inna Ponomareva We have accomplished the following. 1. We have developed a set of

  3. QUALITATIVE ANALYSIS OF DEPENDENCE OF DRIVE POWER HORIZONTAL-INCLINED BELT CONVEYOR ON ITS INITIAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. M. Bohomaz

    2017-02-01

    Full Text Available Purpose.One of the main elements of band conveyors is a drive. To analyze the effect of design parameters on the drive power it is necessary to carry out the calculations according to standard procedures outlined in the current technical literature. The main design parameters of the band conveyor are: the type of cargo, project performance, the geometric dimensions of sections and track configuration as a whole. The feature of band conveyor calculation as compared to the elevators is the dependence of the band width on its performance, the inclination angle and the type of cargo. In the article for the account of this fact during calculations it is necessary to construct the dependence of the band width on the generalized parameter, which takes into account change in the design parameters. To determine the general pattern of changing the value of band conveyor drive power when varying its design parameters in the article it is necessary to construct the corresponding graphic dependences taking into account the standard sizes and bands parameters. Methodology. We consider the band conveyor with two sections: the inclined and horizontal one. It is conducted a detailed analysis of dependence of the conveyor band width and its drive power on the type of cargo, project performance, geometric dimensions and configuration of the conveyor track, using the appropriate parameter dependences constructed by the authors in previous papers. Findings. For band conveyors of this type there were constructed the graphics dependences of the band width on the parameter characterizing the project performance and the inclination angle of the track section, and on the performance at a fixed angle of inclination. Taking into account the changes in the band width with an increase in the value of project performance the graph dependences of drive power on the productivity and the inclination angle of the inclined section were built. Originality. For the first time there

  4. A multifunctional measurement system for frequency based on PIC microprocessor%一种基于PIC单片机的多功能测频系统

    Institute of Scientific and Technical Information of China (English)

    张滔

    2012-01-01

    频率作为电子技术的基本参量,其测量结果的准确性成为衡量一个以频率作为技术指标之一的待测电子系统是否达到设计要求的关键因素。PWM(脉宽调制)信号是现代电子技术当中广泛应用的一类重要数字信号,对这种信号的表征除了频率本身外,还有周期、脉宽、占空比等其它技术特征。传统频率计一般只能测量和显示频率单一参数,对PWM信号的其他参量无法进行测量。随着电子技术的迅速发展,以单片机为控制核心的控制器件,已经全面渗透到测试仪器和计量检定的各个方面,成为应用的热点。本文提出并设计了一种以PIC单片机CCP模块为核心,以差分信号为基础的多功能数字频率计,克服了传统测频方法的不足,有效地实现了PWM信号各种技术指标的同步测量。同时,系统还具备硬件结构简单,软件算法容易实现的优点,便于工程上的实际应用。%Frequency is the basic parameter of electronic technology, the accuracy of the measurement results becomes :he key factor which judges whether a electronic system matched the design requirements. PWM signal is one of impor-tant digital signals widely used in modem electronics. In addition to frequency ,the period ,pulse width and duty cycle are all the features of PWM signal. Tranditional frequency meters can only measure and display frequency, lack the abil-ity to measure other parameters of PWM signal. With the rapid development of electronic technology, the control devices based on MCU have been fully penetrated into the measurement equipments and become the hot point in applications. In this paper, we proposed and designed a multifunctional frequency meter based on differential signal and the CCP module of PIC MCU. This design overcomes the deficiencies of traditional frequency measurement method , and effectively a-chieves the synchronous measurement for various technical

  5. Noise Reduction of Steel Cord Conveyor Belt Defect Electromagnetic Signal by Combined Use of Improved Wavelet and EMD

    Directory of Open Access Journals (Sweden)

    Hong-Wei Ma

    2016-09-01

    Full Text Available In order to reduce the noise of a defect electromagnetic signal of the steel cord conveyor belt used in coal mines, a new signal noise reduction method by combined use of the improved threshold wavelet and Empirical Mode Decomposition (EMD is proposed. Firstly, the denoising method based on the improved threshold wavelet is applied to reduce the noise of a defect electromagnetic signal obtained by an electromagnetic testing system. Then, the EMD is used to decompose the denoised signal and then the effective Intrinsic Mode Function (IMF is extracted by the dominant eigenvalue strategy. Finally, the signal reconstruction is carried out by utilizing the obtained IMF. In order to verify the proposed noise reduction method, the experiments are carried out in two cases including the defective joint and steel wire rope break. The experimental results show that the proposed method in this paper obtains the higher Signal to Noise Ratio (SNR for the defect electromagnetic signal noise reduction of steel cord conveyor belts.

  6. 半封闭螺旋输送机运动量及几何参数确定%Semi-enclosed Screw Conveyor Exercise and Geometric Parameters

    Institute of Scientific and Technical Information of China (English)

    李新; 薛风

    2013-01-01

      Based on the closed spiral conveyor within a single material as the research object, this paper carries on the analysis, obtains the granular material parameter design criterion and the formula for calculation and checking, providing the way for selecting and determining semi-enclosed screw conveyor operating parameters and geometric parameters, to be conduce to semi hermetic screw conveyor design and application.%  通过对半封闭螺旋输送机内单颗物料为研究对象进行分析,得出了输送散体物料过程中主要参数设计准则及其计算和校验公式,为半封闭螺旋输送机的工作参数和几何参数的选择和确定提供了方法,有助于半封闭螺旋输送机的设计和应用。

  7. 基于电话网的多功能煤气管道自动抄表系统%Automatical Reading Meter System of Multifunction Gas Pipings Based on Telephone Network

    Institute of Scientific and Technical Information of China (English)

    刘桂兰

    2011-01-01

    为了保证远程自动抄表系统的准确性和可靠性,介绍了一种基于电话网用单片机控制的多功能煤气管道远程自动抄表系统.整个系统由主控端和客户多功能煤气表端组成,主控端与客户端通过电话线网实现自动抄表.该系统布线简单,数据传输的可靠性和安全性都较好.%With the development of sensor, electron, automatic control and computer technologies, the long-range automatical reading meter system is emerging rapidly. In order to guarantee its accuracy and reliability, a kind of long-range automatical reading meter system of multifunction gas pipings, controlled by a single chip microcomputer and based on telephone network, is introduced. The overall system consists of the main control terminal and multifunction gas meter at client. The automalic reading meter is realized automatically by telephone wires network.

  8. Enhanced photocatalysts based on Ag-TiO2 and Ag-N-TiO2 nanoparticles for multifunctional leather surface coating

    Directory of Open Access Journals (Sweden)

    Gaidau Carmen

    2016-01-01

    Full Text Available The Ag deposition on TiO2 nanoparticles (Ag-TiO2 NPs and N-TiO2 nanoparticles (Ag-N-TiO2 NPs has been made by electrochemical methodology in view of improved antibacterial properties and enhanced photocatalytic activity under visible light irradiation. The particle size in powder and in dispersion showed similar values and good stability in aqueous medium which made them suitable for use in leather surface covering for new multifunctional properties development. The diffuse reflectance spectra of Ag-TiO2 NPs, Ag-N-TiO2 NPs and TiO2 NPs have been investigated and correlated with their photocatalytic performances under UV and visible light against different silver concentrations. The leather surfaces treated with Ag-N-TiO2 NPs showed advanced self-cleaning properties under visible light exposure through the hydrophilic mechanism of organic soil decomposition. Moreover the bacterial sensitivity and proven fungitoxic properties of Ag-N-TiO2 NPs leads to the possibility of designing new multifunctional additives to extend the advanced applications for more durable and useable materials.

  9. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Szczeszak, Agata [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Ekner-Grzyb, Anna [Adam Mickiewicz University, Department of Behavioural Ecology, Faculty of Biology (Poland); Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Mrówczyńska, Lucyna [Adam Mickiewicz University, Department of Cell Biology, Faculty of Biology (Poland); Grzyb, Tomasz; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2015-03-15

    Rare earths orthovanadates (REVO{sub 4}) doped with luminescent lanthanide ions (Ln{sup 3+}) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu{sup 3+} ions is well known for its efficient and intense red emission, induced by energy transfer from the VO{sub 4}{sup 3−} groups to Eu{sup 3+} ions. In the presented study, Fe{sub 3}O{sub 4}@SiO{sub 2}@GdVO{sub 4}:Eu{sup 3+} 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO{sub 4} doped with Ln{sup 3+}. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  10. Multi-functional composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2010-04-27

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  11. Multi-functional composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2004-10-19

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  12. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Mi Kyung Yu, Jinho Park, Sangyong Jon

    2012-01-01

    Full Text Available Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications.

  13. Material selection for Multi-Function Waste Tank Facility tanks

    Energy Technology Data Exchange (ETDEWEB)

    Larrick, A.P.; Blackburn, L.D.; Brehm, W.F.; Carlos, W.C.; Hauptmann, J.P. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States); Divine, J.R. [ChemMet Ltd., West Richland, WA (United States); Foster, G.M. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1995-03-01

    This paper briefly summarizes the history of the materials selection for the US Department of Energy`s high-level waste carbon steel storage tanks. It also provides an evaluation of the materials for the construction of new tanks at the evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements: assessed. each requirement: and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of ASME SA 515, Grade 70, carbon steel.

  14. Programmable Input Mode Instrumentation Amplifier Using Multiple Output Current Conveyors

    Directory of Open Access Journals (Sweden)

    Pankiewicz Bogdan

    2017-03-01

    Full Text Available In this paper a programmable input mode instrumentation amplifier (IA utilising second generation, multiple output current conveyors and transmission gates is presented. Its main advantage is the ability to choose a voltage or current mode of inputs by setting the voltage of two configuration nodes. The presented IA is prepared as an integrated circuit block to be used alone or as a sub-block in a microcontroller or in a field programmable gate array (FPGA, which shall condition analogue signals to be next converted by an analogue-to-digital converter (ADC. IA is designed in AMS 0.35 µm CMOS technology and the power supply is 3.3 V; the power consumption is approximately 9.1 mW. A linear input range in the voltage mode reaches ± 1.68 V or ± 250 µA in current mode. A passband of the IA is above 11 MHz. The amplifier works in class A, so its current supply is almost constant and does not cause noise disturbing nearby working precision analogue circuits.

  15. Multifunctional epitaxial systems on silicon substrates

    Science.gov (United States)

    Singamaneni, Srinivasa Rao; Prater, John Thomas; Narayan, Jagdish

    2016-09-01

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO3, SrTiO3 (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called "domain matching epitaxy," is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%-25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation "smart" devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a

  16. Multifunctional epitaxial systems on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Prater, John Thomas [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin

  17. Research on Multifunctional Fitness Monitor Based on FFT and Photoelectric Sensor%基于FFT、光电传感器的多功能健身监测仪的研究

    Institute of Scientific and Technical Information of China (English)

    田鹤; 朱欢燕; 张钰; 张珣

    2013-01-01

    This paper proposes a multifunctional fitness monitor based on FFT and photoelectric sensor, which uses pulse-type and non-invasive detection method to complete the analysis of the human blood oxygen saturation and heart rate. The system col ects the absorption of red and infrared light absorbed by fingertip, then by programmable gain amplifier and the Fast Fourier analysis, it extracts the amplitude, frequency of the AC signal. PIC24FJ128GA010 is used to complete the col ection, automatic gain judgment and signal processing. Final y, the result is calibrateed by pulse blood oxygen emulator. Furthermore, it realizes the pedometer function based on three axles acceleration sensors MMA7260, which enhances fitness monitor’s usability and al ows people to obtain dynamic physiological signs when exercising.

  18. Conveyor belts as factor in fire hazard in European coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Zyska, B.

    1981-03-01

    Major mine accidents in the United Kingdom (Creswell, 1950), Czechoslovakia (Dukla, 1961) and in the Federal Republic of Germany (Schlagel und Eisen, 1977) caused by fires of conveyor belts are described. Methods of testing fire resistant conveyor belts, used in the following countries, are evaluated: Belgium, Czechoslovakia, France, German Democratic Republic, Federal Republic of Germany, Romania, Hungary, United Kingdom and USSR. The following methods are characterized: flame method, oxygen coefficient method, friction method, propane method, model tunnel method, 1 to 1 scale tunnel method, calorimetric method and a so-called flame tube method. Comparative evaluation of the methods and their efficiency is presented. Development of non-inflammable conveyor belts in: Czechoslovakia, Federal Republic of Germany and in the United Kingdom is discussed (elimination of rubber belts and introduction of PVC belts). It is stressed that three methods of testing fire resistance of conveyor belts are of particular importance: friction method, model tunnel method and 1 to 1 scale tunnel method. Standards used in Poland to test properties of conveyor belts are also described. 44 refs.

  19. 一种多功能DAB接收终端设计%A Design of DAB Technology-based Multifunction Radio Receiving Terminal

    Institute of Scientific and Technical Information of China (English)

    王国裕; 陈永飞; 张红升

    2013-01-01

      本文根据数字广播(DAB:Digital Audio Broadcasting)标准,设计了一款多功能数字广播接收终端,并完成了硬件设计和嵌入式程序设计,成功实现了远程控制、多接口集成、终端识别、信息屏蔽、信息发射源识别等功能。%According to digital broadcasting(DAB:Digital Audio Broadcasting)standard,this paper designed a multi-functional digital broadcasting receiving terminal,and completed the hardware design and embedded programming,achieves remote control,multi-interface integrated;terminal identification information shielded and selected,information emission source identified.

  20. Design of Multifunctional Intelligentized Drone Based on the Radio-technology%基于无线电体制的多功能智能靶标设计

    Institute of Scientific and Technical Information of China (English)

    葛尧; 韩春生; 何四华

    2012-01-01

    武器系统试验频繁,靶标作为测试装备保障日趋繁重,现有机械组合式目标模拟方式保障兵力难度大,多功能智能靶标可以缩短试验准备周期,降低工作强度,满足武器试验需求。%The ant-ship missile's test is higher frequency,the drone is very onerous, the combinatorial corner reflector is difficulty ensure for the missile, the multifunctional intelligentized drone could curtail test preparative cycle, debase work intensity, satisfy the test's needs.

  1. Multifunctional co-poly(amic acid): A new binder for Si-based micro-composite anode of lithium-ion battery

    Science.gov (United States)

    Lin, Che-Tseng; Huang, Tzu-Yang; Huang, Jau-Jiun; Wu, Nae-Lih; Leung, Man-kit

    2016-10-01

    Multifunctional co-poly(amic acid) (PAmA) containing pyrene and carboxylic acid side-chains is developed as a binder for the recycled kerf-loss Si-Ni-SiC composite anode. The capacity retention performance of the lithium-ion battery can be apparently enhanced. In a long-cycle test of 300 lithiation/delithiation cycles, 79% of capacity retention is achieved. In considering that the recycled kerf-loss Si sample contains 38 wt% inactive micro-sized SiC abrasive particles, the achieved capacity of 648 mAh g-1 is reasonably high in comparison to other reported values. Small anode thickness expansion of 43% is found in a 100 cycle test, reflecting that the use of the PAmA binder can create strong interconnection among the silicon particles, conductive carbons and copper electrode.

  2. Third Order Low-Pass Filter Using Synthetic Immittance Elements with Current Conveyors

    Directory of Open Access Journals (Sweden)

    Pavel Brandstetter

    2012-01-01

    Full Text Available The paper deals with a theoretical proposal of the resulting circuit of the frequency filter using synthetic immittance elements of higher order with current conveyors. The text pays particular attention to design process of synthetic immittance elements, explains the principle of increasing of order, which is then reflected to the frequency filter order. The text then deals less with the theory of current conveyors, which has already been discussed, in detail, in previous papers. Universal current conveyor (UCC is discussed more. This active element is used for the theoretical implementation of the synthetic element solution used in the frequency filter. The theoretical knowledge is then demonstrated in the design of 3rd order low-pass frequency filter. The final functionality of the proposed frequency filter circuit solution is validated by PSpice simulation.

  3. Multifunctional Carbon Fibre Tapes for Automotive Composites

    Science.gov (United States)

    Koncherry, V.; Potluri, P.; Fernando, A.

    2016-11-01

    Cabon fibre composites are used where mechanical performance such as strength, stiffness and impact properties at low density is a critical parameter for engineering applications. Carbon fibre flat tape is one material which is traditionally used to manufacture three-dimensional composites in this area. Modifying the carbon fibre tape to incorporate other functions such as stealth, electromagnetic interference, shielding, de-icing, self-repair, energy storage, allows us to create multi-functional carbon fibre tape. Researchers have been developing such material and the technology for their manufacture in order to produce multifunctional carbon fibre based components more economically and efficiently. This paper presents the manufacturing process of a metallised carbon fibre material for a chopped fibre preforming process that uses electromagnets for preforming instead of traditional suction airflow fibre deposition. In addition, the paper further presents mechanical and magneto-static modelling that is carried out to investigate the bending properties of the material produced and its suitability for creating 3D preforms.

  4. Carbon nanotube integrated multifunctional multiscale composites

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Jingjing; Zhang, Chuck; Wang, Ben; Liang, Richard [High-Performance Materials Institute, Department of Industrial and Manufacturing Engineering, Florida A and M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046 (United States)

    2007-07-11

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer composites and enabling functionality, but current manufacturing challenges hinder the realization of their potential. This paper presents a method to fabricate multifunctional multiscale composites through an effective infiltration-based vacuum-assisted resin transfer moulding (VARTM) process. Multi-walled carbon nanotubes (MWNTs) were infused through and between glass-fibre tows along the through-thickness direction. Both pristine and functionalized MWNTs were used in fabricating multiscale glass-fibre-reinforced epoxy composites. It was demonstrated that the mechanical properties of multiscale composites were remarkably enhanced, especially in the functionalized MWNT multiscale composites. With only 1 wt% loading of functionalized MWNTs, tensile strength was increased by 14% and Young's modulus by 20%, in comparison with conventional fibre-reinforced composites. Moreover, the shear strength and short-beam modulus were increased by 5% and 8%, respectively, indicating the improved inter-laminar properties. The strain-stress tests also suggested noticeable enhancement in toughness. Scanning electron microscopy (SEM) characterization confirmed an enhanced interfacial bonding when functionalized MWNTs were integrated into epoxy/glass-fibre composites. The coefficient thermal expansion (CTE) of functionalized nanocomposites indicated a reduction of 25.2% compared with epoxy/glass-fibre composites. The desired improvement of electrical conductivities was also achieved. The multiscale composites indicated a way to leverage the benefits of CNTs and opened up new opportunities for high-performance multifunctional multiscale composites.

  5. Carbon nanotube integrated multifunctional multiscale composites

    Science.gov (United States)

    Qiu, Jingjing; Zhang, Chuck; Wang, Ben; Liang, Richard

    2007-07-01

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer composites and enabling functionality, but current manufacturing challenges hinder the realization of their potential. This paper presents a method to fabricate multifunctional multiscale composites through an effective infiltration-based vacuum-assisted resin transfer moulding (VARTM) process. Multi-walled carbon nanotubes (MWNTs) were infused through and between glass-fibre tows along the through-thickness direction. Both pristine and functionalized MWNTs were used in fabricating multiscale glass-fibre-reinforced epoxy composites. It was demonstrated that the mechanical properties of multiscale composites were remarkably enhanced, especially in the functionalized MWNT multiscale composites. With only 1 wt% loading of functionalized MWNTs, tensile strength was increased by 14% and Young's modulus by 20%, in comparison with conventional fibre-reinforced composites. Moreover, the shear strength and short-beam modulus were increased by 5% and 8%, respectively, indicating the improved inter-laminar properties. The strain-stress tests also suggested noticeable enhancement in toughness. Scanning electron microscopy (SEM) characterization confirmed an enhanced interfacial bonding when functionalized MWNTs were integrated into epoxy/glass-fibre composites. The coefficient thermal expansion (CTE) of functionalized nanocomposites indicated a reduction of 25.2% compared with epoxy/glass-fibre composites. The desired improvement of electrical conductivities was also achieved. The multiscale composites indicated a way to leverage the benefits of CNTs and opened up new opportunities for high-performance multifunctional multiscale composites.

  6. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device.

    Science.gov (United States)

    Ge, Lei; Wang, Shoumei; Song, Xianrang; Ge, Shenguang; Yu, Jinghua

    2012-09-07

    A novel 3D microfluidic paper-based immunodevice, integrated with blood plasma separation from whole blood samples, automation of rinse steps, and multiplexed CL detections, was developed for the first time based on the principle of origami (denoted as origami-based device). This 3D origami-based device, comprised of one test pad surrounded by four folding tabs, could be patterned and fabricated by wax-printing on paper in bulk. In this work, a sandwich-type chemiluminescence (CL) immunoassay was introduced into this 3D origami-based immunodevice, which could separate the operational procedures into several steps including (i) folding pads above/below and (ii) addition of reagent/buffer under a specific sequence. The CL behavior, blood plasma separation, washing protocol, and incubation time were investigated in this work. The developed 3D origami-based CL immunodevice, combined with a typical luminuol-H(2)O(2) CL system and catalyzed by Ag nanoparticles, showed excellent analytical performance for the simultaneous detection of four tumor markers. The whole blood samples were assayed and the results obtained were in agreement with the reference values from the parallel single-analyte test. This paper-based microfluidic origami CL detection system provides a new strategy for a low-cost, sensitive, simultaneous multiplex immunoassay and point-of-care diagnostics.

  7. Multifunctional Cascaded Metamaterials: Integrated Transmitarrays

    Science.gov (United States)

    Elsakka, Amr A.; Asadchy, Viktar S.; Faniayeu, Ihar A.; Tcvetkova, Svetlana N.; Tretyakov, Sergei A.

    2016-10-01

    Control of electromagnetic waves using engineered materials is very important in a wide range of applications, therefore there is always a continuous need for new and more efficient solutions. Known natural and artificial materials and surfaces provide a particular functionality in the frequency range they operate but cast a "shadow" and produce reflections at other frequencies. Here, we introduce a concept of multifunctional engineered materials that possess different predetermined functionalities at different frequencies. Such response can be accomplished by cascading metasurfaces (thin composite layers) that are designed to perform a single operation at the desired frequency and are transparent elsewhere. Previously, out-of-band transparent metasurfaces for control over reflection and absorption were proposed. In this paper, to complete the full set of functionalities for wave control, we synthesize transmitarrays that tailor transmission in a desired way, being "invisible" beyond the operational band. The designed transmitarrays for wavefront shaping and anomalous refraction are tested numerically and experimentally. To demonstrate our concept of multifunctional engineered materials, we have designed a cascade of three metasurfaces that performs three different functions for waves at different frequencies. Remarkably, applied to volumetric metamaterials, our concept can enable a single composite possessing desired multifunctional response.

  8. Experiment on asphalt mixture segregation in screw conveyor%沥青混合料在螺旋处的离析试验

    Institute of Scientific and Technical Information of China (English)

    谢立扬; 张晨光; 赵利军

    2013-01-01

    In order to exactly find out segregation reasons and segregation distribution regularities of asphalt mixture in screw conveyor during the paving process,based on the kinetic characteristics of mixture,this paper analyzed the relationship between the particles' axial and circumferential velocity and radius,pitch,rotational speed and friction coefficient under the action of screw conveyor.Meanwhile,field tests were conducted to get the segregation distribution regularities of asphalt mixture in screw conveyor.The results indicate that the mixture segregation is mainly affected by the spiral structure and the kinetic parameters.With the increase of radius,the particles' axial velocity monotonically increases,the circumferential velocity increases first and then decreases and the circumferential velocity is approximately equal to the axial velocity in the primary working range (radius 14~21 cm).So the segregation can be restricted by changing the rotational speed of screw conveyor and the relative position of screw conveyor and asphalt mixture.The asphalt content in the upper part of the screw is 2% higher than that in the bottom,the asphalt content in the central part of the screw is 0.7 % higher than that in both sides,the deviation of asphalt mixture gradation is in the specified range,but the asphalt mixture in the upper part of the screw contains more fine aggregate.Using the method of completely burying the crew conveyor,we can solve the asphalt content segregation occurring in the crew suspension.But the segregation between the upper and the lower part of the crew conveyor still exists.2 tabs,9 figs,11 refs.%为准确掌握摊铺过程中沥青混合料在螺旋分科器中的离析原因及分布规律,基于混合料在螺旋内的运动特性,分析了螺旋作用下混合料颗粒的轴向速度及圆周速度与螺旋半径、节距、转速及摩擦因数之间的关系,并通过现场试验给出了混合料离析在螺旋中的分布规律.结果

  9. Multifunctional astronomical self-organizing system of autonomous navigation and orientation for artificial Earth satellites

    Science.gov (United States)

    Kuznetsov, V. I.; Danilova, T. V.

    2017-03-01

    We describe the methods and algorithms of a multifunctional astronomical system of the autonomous navigation and orientation for artificial Earth satellites based on the automatization of the system approach to the design and programming problems of the subject area.

  10. Perancangan Prototype Early Warning System pada Kontrol On/Off Belt Conveyor Menggunakan PLC Siemens S7-300

    Directory of Open Access Journals (Sweden)

    Taufik Taufik

    2016-04-01

    Full Text Available Nowadays, automation system become an important aspect of the manufacturing process because could make integration manufacturing process on it more effective and more efficient. PLC or Programmable Logic Controller is one kind of automation system. Many industries use PLC as automation control device in the manufacturing process to control all kind of process. For example at transportation process of coals in generator industry. Coals could be burned because main elements of coals are carbon, hydrogen, and oxygen. Base on this prototype early warning system design, we get the result if sensor thermocouple detects temperature larger than setpoint temperature (it is 2000C, then PLC will give an order to shut down the output, that is a belt conveyor. The result of this prototype design could use at coals transportation as an early warning system. The design of prototype early warning system could detect and prevent fire because of the consequence of burned coals until spreading of fire could be avoided.

  11. In Retrospect, Five Year's Splendid Journey of Wind and Rain,Look into the Future, Five Year's Grand Prospect--Shanxi Phoenix Conveyor Belt Co., Ltd.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      On January 21, 2006, ShanxiPhoenix Conveyor Belt Co.,Ltd. held the 2005 Honor Convention. Those who attended the conference were Mr. Ren Runhou, Board Chairman of Shanxi Phoenix Conveyor Belt Co., Ltd., Board Chairman & General Manager of Shanxi Luan Mining Group, Mr. Shi Wenlin, Director of Shanxi Phoenix Conveyor Belt Co., Ltd.,Vice General Manager of Shanxi Luan Mining Group, Dr. Feng Weimin, General Manager of Shanxi Phoenix Conveyor Belt Co., Ltd. and Mr. Feng Qiang,Administrative General Manager of Shanxi Phoenix Conveyor Belt Co., Ltd.The conference was presided by Vice General Manager Zhu Junhong.……

  12. In Retrospect, Five Year's Splendid Journey of Wind and Rain,Look into the Future, Five Year's Grand Prospect--Shanxi Phoenix Conveyor Belt Co., Ltd.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ On January 21, 2006, ShanxiPhoenix Conveyor Belt Co.,Ltd. held the 2005 Honor Convention. Those who attended the conference were Mr. Ren Runhou, Board Chairman of Shanxi Phoenix Conveyor Belt Co., Ltd., Board Chairman & General Manager of Shanxi Luan Mining Group, Mr. Shi Wenlin, Director of Shanxi Phoenix Conveyor Belt Co., Ltd.,Vice General Manager of Shanxi Luan Mining Group, Dr. Feng Weimin, General Manager of Shanxi Phoenix Conveyor Belt Co., Ltd. and Mr. Feng Qiang,Administrative General Manager of Shanxi Phoenix Conveyor Belt Co., Ltd.The conference was presided by Vice General Manager Zhu Junhong.

  13. High-Input Impedance Voltage-Mode Multifunction Filter with Four Grounded Components and Only Two Plus-Type DDCCs

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2010-01-01

    Full Text Available This paper introduces a novel voltage-mode multifunction biquadratic filter with single input and four outputs using two plus-type differential difference current conveyors (DDCCs and four grounded passive components. The filter can realize inverting highpass, inverting bandpass, noninverting lowpass, and noninverting bandpass filter responses, simultaneously. It still maintains the following advantages: (i using grounded capacitors attractive for integration and absorbing shunt parasitic capacitance, (ii using grounded resistors at all X terminals of DDCCs suitable for the variations of filter parameters and absorbing series parasitic resistances at all X terminals of DDCCs, (iii high-input impedance good for cascadability, (iv no need to change the filter topology, (v no need to component-matching conditions, (vi low active and passive sensitivity performances, and (vii simpler configuration due to the use of plus-type DDCCs only. HSPICE and MATLAB simulations results are provided to demonstrate the theoretical analysis.

  14. Multifunctional Polycrystalline Ferroelectric Materials Processing and Properties

    CERN Document Server

    Pardo, Lorena

    2011-01-01

    This book presents selected topics on processing and properties of ferroelectric materials that are currently the focus of attention in scientific and technical research. Ferro-piezoelectric ceramics are key materials in devices for many applications, such as automotive, healthcare and non-destructive testing. As they are polycrystalline, non-centrosymmetric materials, their piezoelectricity is induced by the so-called poling process. This is based on the principle of polarization reversal by the action of an electric field that characterizes the ferroelectric materials. This book was born with the aim of increasing the awareness of the multifunctionality of ferroelectric materials among different communities, such as researchers, electronic engineers, end-users and manufacturers, working on and with ferro-piezoelectric ceramic materials and devices which are based on them. The initiative to write this book comes from a well-established group of researchers at the Laboratories of Ferroelectric Materials, Mate...

  15. Multi-functional energy plantation; Multifunktionella bioenergiodlingar

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lund Univ. (Sweden). Environmental and Energy Systems Studies; Berndes, Goeran; Fredriksson, Fredrik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Physical Resource Theory; Kaaberger, Tomas [Ecotraffic, Goeteborg (Sweden)

    2002-02-01

    future if this problem will be valued differently. The value of increased carbon accumulation in mineral soils and reduced carbon dioxide emissions from organic soils is estimated to be equivalent to a few percent and half the production cost in conventional Salix plantations, respectively. These values may also change in the future if carbon sinks in agriculture will be included as an approved mitigation option within the Kyoto agreement. Based on an analysis of possible combinations of environmental services achieved in specific plantations, it is estimated that biomass can be produced to an negative cost in around 100,000 hectares of multi-functional energy plantations, when the value of the environmental services is included. The production cost in another 250,000 hectares of plantations is estimated to be halved. This is equivalent to around 6 and 11 TWh biomass per year, respectively. Economic incentives also exist for municipal wastewater plants for utilising vegetation filters for wastewater and sewage sludge treatment. Cadmium removal and increased soil fertility will give a minor increase in the income for the farmer. However, cadmium removal will result in increased costs later in the Salix fuel chain, due to increased costs of flue gas cleaning during combustion. Thus, to overcome this economic barrier, subsidies will probably be needed to heating plants utilising cadmium-contaminated biomass. The possibilities of achieving an income from increased soil carbon accumulation will depend on if this option will be an approved mechanism. Today, the Swedish greenhouse gas mitigation policy does not include this option. Some of the potential multi-functional energy plantations (e.g. buffer strips for reducing nutrient leaching and vegetation filters for treatment of polluted drainage water) results in increased cultivation costs for the farmer, thus increased economic barriers. Examples of measures to overcome such barriers are dedicated subsidies for multi-functional

  16. India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy.

    Science.gov (United States)

    Jian, Jia; Liu, Chengbo; Gong, Yuping; Su, Lei; Zhang, Bin; Wang, Zhigang; Wang, Dong; Zhou, Yu; Xu, Fenfen; Li, Pan; Zheng, Yuanyi; Song, Liang; Zhou, Xiyuan

    2014-01-01

    The in vivo applications of gas-core microbubbles have been limited by gas diffusion, rapid body clearance, and poor vascular permeability. To overcome these limitations, using a modified three-step emulsion process, we have developed a first-of-its-kind India ink incorporated optically-triggerable phase-transition perfluorocarbon nanodroplets (INDs) that can provide not only three types of contrast mechanisms-conventional/thermoelastic photoacoustic, phase-transition/nonlinear photoacoustic, and ultrasound imaging contrasts, but also a new avenue for photoacoustic effect mediated tumor therapy. Upon pulsed laser illumination above a relatively low energy threshold, liquid-gas phase transition of the INDs has been demonstrated both in vitro and in vivo, offering excellent contrasts for photoacoustic and ultrasound dual-modality imaging. With further increased laser energy, the nanodroplets have been shown to be capable of destructing cancer cells in vivo, presumably due to the photoacoustic effect induced shock-wave generation from the carbon particles of the incorporated India ink. The demonstrated results suggest that the developed multifunctional phase-transition nanodroplets have a great potential for many theranostic biomedical applications, including photoacoustic/ultrasound dual-modality molecular imaging and targeted, localized cancer therapy.

  17. Investigation of enhanced hemocompatibility and tissue compatibility associated with multi-functional coating based on hyaluronic acid and Type IV collagen

    Science.gov (United States)

    Li, Jingan; Zhang, Kun; Ma, Wenyong; Wu, Feng; Yang, Ping; He, Zikun; Huang, Nan

    2016-01-01

    The biocompatibility of cardiovascular devices has always been considered crucial for their clinical efficacy. Therefore, a biofunctional coating composed of Type IV collagen (CoIV) and hyaluronan (HA) was previously fabricated onto the titanium (Ti) substrate for the application of promoting vascular smooth muscle cell contractile phenotype and improving surface endothelialization. However, the anti-inflammation property, blood compatibility and in vivo tissue compatibility of the HA/CoIV coating, as paramount consideration of cardiovascular materials surface coating, have not been investigated. Thus, in this study, the three crucial properties of the HA/CoIV coating were tested. The platelet adhesion/activation test and the dynamic whole blood experiment implied that the HA/CoIV coating had better blood compatibility compared with Ti substrate and pure CoIV coating. The macrophage adhesion/activation and inflammatory cytokine release (tumor necrosis factor-alpha and interleukin-1) results indicated that the HA/CoIV coating could significantly improve the anti-inflammation property of the Ti substrate. The in vivo implantation of SD rats for 3 weeks’ results demonstrated that the HA/CoIV coating caused milder tissue response. All these results suggested that the multi-functional HA/CoIV coating possessed good biocompatibility. This research is anticipated to be potentially applied for the surface modification of cardiovascular stents. PMID:27252884

  18. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  19. Gold nanorod-based poly(lactic-co-glycolic acid) with manganese dioxide core-shell structured multifunctional nanoplatform for cancer theranostic applications.

    Science.gov (United States)

    Wang, Lei; Li, Dong; Hao, Yongwei; Niu, Mengya; Hu, Yujie; Zhao, Hongjuan; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2017-01-01

    Recently, photothermal therapy has become a promising strategy in tumor treatment. However, the therapeutic effect was seriously hampered by the low tissue penetration of laser. Therefore, in this study, radiofrequency (RF) with better tissue penetration was used for tumor hyperthermia. First, one type of gold nanorods (AuNRs) suitable for RF hyperthermia was selected. Then, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with AuNRs and docetaxel (DTX) (PLGA/AuNR/DTX) NPs were constructed. Finally, manganese dioxide (MnO2) ultrathin nanofilms were coated on the surfaces of PLGA/AuNR/DTX NPs by the reduction of KMnO4 to construct the PLGA/AuNR/DTX@MnO2 drug delivery system. This drug delivery system can not only be used for the combined therapy of chemotherapy and RF hyperthermia but can also produce Mn(2+) to enable magnetic resonance imaging. Furthermore, the RF hyperthermia and the degradation of MnO2 can significantly promote the controlled drug release in a tumor region. The in vitro and in vivo results suggested that the PLGA/AuNR/DTX@MnO2 multifunctional drug delivery system is a promising nanoplatform for effective cancer theranostic applications.

  20. Multifunctional Mechatronic Materials

    Science.gov (United States)

    2007-11-02

    actuating structures based on the properties of the Kagome system. This final report contains the following studies: (1) Effective Properties of the Octet...truss Lattice Material, by V.S. Deshpande, N.A. Fleck, and M.F. Ashby; (2) Kagome Plate Structures for Actuation, by R.G. Hutchinson, N. Wicks, A.G

  1. A Design of ABC95 Array Computer Multi-function Interconnection Chips

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    ABC95 array computer is a multi-function network computer based on FPGA technology. A notable feature of ABC95 array computer is the support of complex interconnection, which determines that the computer must have enough I/O band and flexible communications between Pes. The authors designed the interconnecting network chips of ABC95 and realized a form of multi-function interconnection. The multi-function interconnecting network supports conflict-free access from processors to memory matrix and the MESH network of enhanced processors to processor communications. The design scheme has been proved feasible by experiment.

  2. Advanced Multifunctional Coating

    Science.gov (United States)

    2011-08-17

    and UV durability of then current chrome free TT-P-2756 SPTC • Leverage APC technology into SPTC • Coating uses same fluoropolyurethane technology...as APC currently used on C-17 • Leverage recent advances in chrome free corrosion inhibitor technology • State of the art chrome free corrosion...coat exposed metal Aluminum Base Metal Original Finish System Aged APC Topcoat Conversion Coat Chromic Acid Anodize Aluminum Cladding Original Primer

  3. Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives

    NARCIS (Netherlands)

    Chaitiemwong, N.; Hazeleger, W.C.; Beumer, R.R.

    2010-01-01

    Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives, in the absence or presence of food debris from meat, fish and vegetables and at temperatures of 10, 25 and 37 °C was investigated. The pathogen survived best at 10 °C, and better at 25 °C than at

  4. New Universal Current-Mode Filter Using Non-Inverting Second-Generation Current-Conveyors

    OpenAIRE

    Muhammad Taher Abuelma'atti; Aamir Alam Farooqui

    1995-01-01

    A new universal active current-mode filter with single input and five outputs is presented. The proposed filter avoids the use of feedback in any part of the circuit and uses only one type of second-generation current-conveyors, grounded resistors, and grounded capacitors. The proposed circuit can simultaneously realize lowpass, highpass, bandpass, allpass, and notch biquadratic filter functions.

  5. Converter-controlled belt conveyor systems under the difficult conditions; Umrichtergesteuerte Bandanlagen unter schwierigen Bedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Horz, Michael-Josef [RAG Deutsche Steinkohle, Herne (Germany). Abt. Elektrotechnik unter Tage; Mueller, Uwe [RAG Deutsche Steinkohle, Herne (Germany). Servicebereich Technik- und Logistikdienste

    2010-05-15

    Panel 572 is located at a depth of 1,200 m in the Girondelle seam at the West mine. The panel has a mean thickness of 2.5 m and is designed as a shearer loader face with a length of 460 m. Coal is conveyed to the shaft by six belts with a total length of about 6 km and a total lifting height of 396 m. The main conveyor belt 1 with an installed power of 3 MW links the panel to a bunker. Conveyor belts 2 to 4 each with 500 kW drive power have operated in a stable manner since the start of working of the panel. Due to in-seam drivage with a selective-cut machine of type AM 85 an area with a marked trough was produced in the coal conveyor road. This area is traversed by belt 5. The planning and control of the conveyor belt in this difficult geological environment impose high demands on drive and control technology. To ensure stable operation under different loads a raft of measures was resolved and implemented. The contribution examines the problem and describes the implemented measures in detail. (orig.)

  6. Theoretical and experimental investigation on optimization of a non-contact air conveyor

    Institute of Scientific and Technical Information of China (English)

    钟伟; 黎鑫; 陶国良; 路波; 香川利春

    2016-01-01

    Air film conveyors equipped with porous pads have been developed to bring the liquid crystal display (LCD) into a non-contact state during transportation process. In this work, a theoretical model including flow property of porous media and Reynolds equation is established within a representative region in order to optimize the design parameters of a partial porous air conveyor. With the theoretical model, an optimization method using nondominated sorting genetic algorithm – II (NSGA-II) is applied for a two-objective optimization to achieve a minimum air consumption and maximum load capacity. Three Pareto-optimal solutions are selected to analyze the influence of each parameter on the characteristics of the air conveyor, and the results indicate that the position of the porous pads has the most significant impact on the performance and of course must be determined with care. Furthermore, experimental results in terms of the supporting force versus gap clearance show that the optimized air conveyor can greatly improve the load capacity over the normal one, indicating that the optimization method is applicable for practical use.

  7. Multifunctional centers in rural areas

    DEFF Research Database (Denmark)

    Svendsen, Gunnar Lind Haase

    2009-01-01

    invest in multifunctional centers in which the local public school is the dynamo. This in order to increase local levels of social as well as human capital. Ideally, such centers should contain both public services such as school, library and health care, private enterprises as hairdressers and banks......, and facilities for local associations as theatre scenes and sports halls. The centers should be designed to secure both economies of scale and geographic proximity. Empirical evidence indicates that such large meeting places in fact foster physical and social cohesion, as well as human capital and informal...

  8. Exploring the multifunctional role of farming systems

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Noe, Egon; Halberg, Niels

    2006-01-01

    Public expectations of farming practices are changing from a demand for environmentally "sustainable farming practices" to farming making an "enhanced contribution to the development of the rural areas", the so-called multifunctionality. Based on our research model of including farmers...... in the development of eco-friendly farming systems, we propose that the achievement of these changed expectations could be facilitated through an appropriate research and development initiative in several European regions. Key elements in such a project sould include: (i) the establishment of platforms for dialogue...... makers and administrators, grassroots movements and research staff. It is expected that such a coordinated research initiative can revitalize the contribution of farming to rural development and yield important insight to be used by the individual farmer in coping with future challenges....

  9. Multifunctionality of silver closo-boranes

    DEFF Research Database (Denmark)

    Paskevicius, Mark; Hansen, Bjarne R. S.; Jorgensen, Mathias

    2017-01-01

    Silver compounds share a rich history in technical applications including photography, catalysis, photocatalysis, cloud seeding and as antimicrobial agents. Here we present a class of silver compounds (Ag2B10H10 and Ag2B12H12) that are semiconductors with a bandgap at 2.3 eV in the green visible...... light spectrum. The silver boranes have extremely high ion conductivity and dynamic-anion facilitated Ag+ migration is suggested based on the structural model. The ion conductivity is enhanced more than two orders of magnitude at room temperature (up to 3.2 mS cm(-1)) by substitution with AgI to form...... new compounds. Furthermore, the closo-boranes show extremely fast silver nano-filament growth when excited by electrons during transmission electron microscope investigations. Ag nano-filaments can also be reabsorbed back into Ag2B12H12. These interesting properties demonstrate the multifunctionality...

  10. Modeling phase noise in multifunction subassemblies.

    Science.gov (United States)

    Driscoll, Michael

    2012-03-01

    Obtaining requisite phase noise performance in hardware containing multifunction circuitry requires accurate modeling of the phase noise characteristics of each signal path component, including both absolute (oscillator) and residual (non-oscillator) circuit contributors. This includes prediction of both static and vibration-induced phase noise. The model (usually in spreadsheet form) is refined as critical components are received and evaluated. Additive (KTBF) phase noise data can be reasonably estimated, based on device drive level and noise figure. However, accurate determination of component near-carrier (multiplicative) and vibration-induced noise usually must be determined via measurement. The model should also include the effects of noise introduced by IC voltage regulators and properly discriminate between common versus independent signal path residual noise contributors. The modeling can be easily implemented using a spreadsheet.

  11. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  12. 基于固有安全的多功能辐射测量仪%Multifunction Meter Based on Protection of Inherently

    Institute of Scientific and Technical Information of China (English)

    徐海江; 徐建平

    2012-01-01

    In order to realize the protection of the inherently safe optical radiation,with evaluating the beam strength of the e-quipment using optical radiation,a multifunction radiometric system was designed. According to the principle analysis of photoelectric converter,photoelectric cell and PIN diode were selected to be the core component of photoelectric detector. Mode alternation was used to obtain various kinds of optical signals. Then the signals were processed in the following circuit to realize the measurement relating to the average power of continuous wave radiation, the peak power of the pulse radiation and the pulse energy ultimately. The gauge specially used for protection could provide a plan for the measurement of the equipment using optical radiation on the protection technique wholly,and possess the application value practically.%为实现固有安全光辐射防爆技术,评定设备的光束强度,设计了一个多功能辐射测量系统.分析光电转换器的检测原理,选择光电池和PIN光电二极管作为光电转换模块核心元件,并设置了模式切换,以完成不同种类光信号的采集.经过后续电路的信号处理,最终实现连续光波辐射的平均功率、脉冲辐射的峰值功率以及脉冲能量的测量.这种用于防爆的专用测量仪能够提供整体的光辐射设备防爆技术测量方案,具有实际的应用价值.

  13. Multifunctional meat grinder control system based on grey forecast%多功能绞肉机智能控制系统

    Institute of Scientific and Technical Information of China (English)

    李兰忖

    2012-01-01

    The multifunctional meat grinder control system is in the center of microcontroller AT89C52 control technology, has realized the organic combination of three kind of functions of boning, grinding and emulsifying. The system pre-selects the program for different degrees emulsifying product by the programming software and hardware circuit, and can automatically adjust each motor's speed to ensure their interlocking requirements by applying the fuzzy PID control technology and stepping motor subdivision technology according to emulsion fineness requirements. So the system responds quickly and runs smooth, and has realized the high accuracy control of the e-mulsifying granularity.%多功能绞肉机控制系统以单片机AT89C52控制技术为核心,实现了出骨、绞肉、乳化3种功能的有机结合.该系统通过硬件电路和编程软件,对不同乳化细度要求的乳化产品有程序预选功能,能够根据乳化细度要求,采用模糊PID控制技术和步进电动机细分控制技术,自动调节各台电动机的速度,并保证它们之间的联锁要求,从而使系统反应快、运行平稳,对乳化粒度实现高精度控制.

  14. Voluntary initiation of movement: multifunctional integration of subjective agency.

    Science.gov (United States)

    Grüneberg, Patrick; Kadone, Hideki; Suzuki, Kenji

    2015-01-01

    This paper investigates subjective agency (SA) as a special type of efficacious action consciousness. Our central claims are, firstly, that SA is a conscious act of voluntarily initiating bodily motion. Secondly, we argue that SA is a case of multifunctional integration of behavioral functions being analogous to multisensory integration of sensory modalities. This is based on new perspectives on the initiation of action opened up by recent advancements in robot assisted neuro-rehabilitation which depends on the active participation of the patient and yields experimental evidence that there is SA in terms of a conscious act of voluntarily initiating bodily motion (phenomenal performance). Conventionally, action consciousness has been considered as a sense of agency (SoA). According to this view, the conscious subject merely echoes motor performance and does not cause bodily motion. Depending on sensory input, SoA is implemented by means of unifunctional integration (binding) and inevitably results in non-efficacious action consciousness. In contrast, SA comes as a phenomenal performance which causes motion and builds on multifunctional integration. Therefore, the common conception of the brain should be shifted toward multifunctional integration in order to allow for efficacious action consciousness. For this purpose, we suggest the heterarchic principle of asymmetric reciprocity and neural operators underlying SA. The general idea is that multifunctional integration allows conscious acts to be simultaneously implemented with motor behavior so that the resulting behavior (SA) comes as efficacious action consciousness. Regarding the neural implementation, multifunctional integration rather relies on operators than on modular functions. A robotic case study and possible experimental setups with testable hypotheses building on SA are presented.

  15. Generic Automated Multi-function Finger Design

    Science.gov (United States)

    Honarpardaz, M.; Tarkian, M.; Sirkett, D.; Ölvander, J.; Feng, X.; Elf, J.; Sjögren, R.

    2016-11-01

    Multi-function fingers that are able to handle multiple workpieces are crucial in improvement of a robot workcell. Design automation of multi-function fingers is highly demanded by robot industries to overcome the current iterative, time consuming and complex manual design process. However, the existing approaches for the multi-function finger design automation are unable to entirely meet the robot industries’ need. This paper proposes a generic approach for design automation of multi-function fingers. The proposed approach completely automates the design process and requires no expert skill. In addition, this approach executes the design process much faster than the current manual process. To validate the approach, multi-function fingers are successfully designed for two case studies. Further, the results are discussed and benchmarked with existing approaches.

  16. The interaction between warm conveyor belts and breaking Rossby waves: a climatological perspective.

    Science.gov (United States)

    Madonna, Erica; Joos, Hanna; Martius, Olivia; Aebi, Christine; Limbach, Sebastian

    2014-05-01

    Warm conveyor belts (WCBs) are moist ascending airstreams in extratropical cyclones. Climatologically, they are key for the meridional and vertical transport of water vapour and heat. The rapid ascent of WCBs from the boundary layer to the upper troposphere in about 1-2 days leads to cloud formation, (intense) precipitation and the release of latent heat, which modifies their potential vorticity (PV) value in a significant way. Typically WCBs reach the tropopause level with low PV values (~0.5 pvu) and therefore the cross-isentropic transport of low-PV air in WCBs can amplify upper-level Rossby waves and contribute to the formation of PV streamers downstream. Here, filamentary PV streamers are regarded as clear signs of breaking Rossby waves. They in turn can act as precursors of extreme weather events and/or trigger the genesis of another cyclone, potentially generating a new WCB. The aim of this study is to quantify the interaction of WCBs and PV-streamers from a climatological point of view for the ERA-Interim data set for the period 1989-2010. WCBs are identified from comprehensive trajectory calculations that select air parcels in the vicinity of cyclones with a minimum ascent of 600 hPa in 48 hours. From these WCB trajectories, coherent features of WCB outflows are derived and checked for overlapping with PV streamers, which are identified using a contour searching algorithm. Both, WCBs and PV-streamers are then tracked using a novel feature tracking technique, which is based upon a modified region growing approach. With this technique, the interaction of WCBs and PV-streamers is analysed for a 22-years period leading to novel insight about the role of WCBs for triggering the breaking of Rossby waves, as well as, vice versa, about the importance of PV-streamers for the formation of new WCBs.

  17. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    Science.gov (United States)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  18. 基于虚拟现实技术的多功能肌电假肢控制系统开发平台%Virtual Reality Technology Based on Development Platform of Multifunctional Prosthesis Control System

    Institute of Scientific and Technical Information of China (English)

    余龙; 吴禄慎; 张志勇; 李光林

    2011-01-01

    Using a virtual reality (VR) technology based development platform of multifunctional prosthesis control system, we can quantify the performance of real- time control of a multifunctional myoelectric prosthesis.This development platform also can be used to investigate the effect of various dynamic factors in practical application of a prosthesis system on the prosthesis control performance of multipurpose myoelectrie prosthesis, which will provide information about how to enhance and improve the control performance of a multifunctional myoelectril prosthesis.In addition, it is well known that learning to operate a myoelectric prosthesis needs a long training process and the users suffer heavy mental burden from the training.The VR-based platform may provide a relaxant and enjoyable training environment.To develop this platform system, a three-dimensional upper limb was drawn by using Solidworks and then edited to an integrated scene of virtual artificial limb with virtual reality modeling and modeling language (VRML).Finally, the platform system performed through simulink of the MATLAB the interactions between virtual world and outside real world.By decoding of electromyography (EMG) signals collected from arm muscle surface, the platform system could identify the classes of different arm and hand movements and control the virtual artificial limb and/or the physical arms simutineously.%利用虚拟现实技术开发的多功能假肢控制系统开发平台,可以研究肌电解码控制多功能假肢的实时操控性能,便于对影响多功能肌电假肢临床控制性能的动态因素及如何提高和改善多功能肌电假肢控制性能进行详细的研究.另外,肌电假肢的使用存在训练过程漫长、使用者精神负担大等问题,利用虚拟手代替真实肌电手进行训练,可以营造一种轻松训练环境;本系统利用SolidWorks绘制出三维手臂,再用虚拟现实三维建模方法和建模语言(VRML)节点语法编辑出

  19. The Design of PLC Control Programs of Screens and Spiral Conveyors%格栅除污机及螺旋输送机PLC控制程序设计

    Institute of Scientific and Technical Information of China (English)

    谢凯; 袁鹏; 王明军

    2011-01-01

    本文分析了污水提升泵站格栅除污机及螺旋输送机自动控制运行原理,以西门子S7-300系列PLC为例,设计出了PLC控制程序.%This paper analy es the automatic operation principle of screens and spiral conveyors at wastewater pumping stations,designs the PLC control programs based on S7-300 of Siemens.

  20. Velocity controller design of a conveyor system in a fish sorting system using modified model reference adaptive control

    National Research Council Canada - National Science Library

    Nguyen, Huy Hung; Duong, Van Tu; Ho Van, Cuu; Kim, Hak Kyeong; Kim, Sang Bong

    2017-01-01

    A modified model reference adaptive controller for velocity control of a conveyor system in a fish sorting system with uncertainty parameters, input saturation and bounded disturbances is proposed in this article...

  1. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  2. Control of start-up and dynamic braking of conveyors used for downhill transport in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Rosseger, A.; Borczyk, Z.; Kwater, M. (POLTEGOR Instytut, Wroclaw (Poland))

    1992-04-01

    Presents the structure of a microprocessor-aided control system for conveyors used in surface mines for downhill transport. Control of motor start-up and braking is performed in 8 speed stages. Permissible starting time duration is taken into consideration. The procedure of direct current braking is described. The microprocessor activates emergency braking by disc brakes if direct current braking is not sufficient. The system was implemented on four conveyors and has been used successfully since 1990.

  3. Multifunctional Cascaded Metamaterials: Integrated Transmitarrays

    CERN Document Server

    Elsakka, Amr A; Faniayeu, Ihar A; Tcvetkova, Svetlana N; Tretyakov, Sergei A

    2016-01-01

    Control of electromagnetic waves using engineered materials is very important in a wide range of applications, therefore there is always a continuous need for new and more efficient solutions. Known natural and artificial materials and surfaces provide a particular functionality in the frequency range they operate but cast a "shadow" and produce reflections at other frequencies. Here, we introduce a concept of multifunctional engineered materials that possess different predetermined functionalities at different frequencies. Such response can be accomplished by cascading metasurfaces (thin composite layers) that are designed to perform a single operation at the desired frequency and are transparent elsewhere. Previously, out-of-band transparent metasurfaces for control over reflection and absorption were proposed. In this paper, to complete the full set of functionalities for wave control, we synthesize transmitarrays that tailor transmission in a desired way, being "invisible" beyond the operational band. The...

  4. Multifunctional composites for energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  5. 基于 Android 系统控制的多功能小车系统设计%Design of Embedded Multifunctional Car System Based on Android

    Institute of Scientific and Technical Information of China (English)

    黄莺

    2015-01-01

    In order to solve the shortcomings of smart cars , such as single function , low integration degree , poor data processing ability, lack of remote data transmission, storage and control, etc., embedded multifunction car system with automatic tracking , automatic obstacle avoidance , phone control , wireless image transmission and processing functions is designed .The system can be controlled by STC ’s IAP15F2K61S2 SCM, tracked by photoe-lectric sensors and automatically avoided obstacle with ultrasonic module .The car can be droved by four stepper motors which are droved by UL2003 , L298 chip, and shift in the direction is achieved through the left and right poor motor speed .PWM technology can be used to control the speed of the car .PTZ camera T6836 WIP is used for image acquisition and processing , and the car can be controlled by wireless mode by WiFi to serial module .PC control is using Google ’ s second-generation NEXUS 7 tablet which installs monitoring software developed by An-droid system .The NEXUS 7 can send order to the car and receive image from the car , then process data and stor-age , which provide the user intuitive understanding of information ahead .The car with stable performance is work-ing properly, and then can be used in real life for warehouse management , items search etc., which help people to achieve security management .%为了解决目前小车系统功能较单一,集成度不高,数据处理能力不强,缺乏远程数据传输、存储和控制等缺点,设计了一种具有自动循迹、自动避障、平板电脑控制、码盘测速、无线图像传输处理等多功能的小车系统。该系统采用STC公司的IAP15F2K61S2单片机作为核心,用红外传感器实现小车循迹,超声波测距实现自动避障;四个步进电机作为小车驱动,采用UL2003、L298芯片驱动步进电机工作,利用左右电机的速度差实现转向;采用PWM(脉冲宽度调制)技术实现对小车的

  6. Design of Multifunctional Platform Analog Computer Peripherals Based on Android Smartphone%基于Android智能手机的模拟计算机外设的多功能平台设计

    Institute of Scientific and Technical Information of China (English)

    罗圆; 刘世鑫; 瞿绍军

    2014-01-01

    随着计算技术和通信技术的快速发展,人类正逐步进入普适计算(Ubiquitous Computing)时代。而智能空间正是普适计算本质特点的一种具体而集中的体现,智能手机在其中可以获得增强化的个性服务。论文实现了一种基于Android智能手机的模拟电脑外设的多功能平台,手机和电脑端通过TCP/IP协议连接,使得用户在一定的距离内用手机远程的控制电脑。%With the rapid development of computer technology and communication technology, human beings is gradually enter⁃ing the Ubiquitous Computing age. The Smart Space is a specific and concentrated expression of an essential feature of pervasive computing.Due to them,Intelligent phone can get personalized service. This paper realizes a multifunctional platform analog computer peripherals based on Android smartphone, mobile phones and computer connected via TCP/IP protocol, allowing us⁃ers remote control the computer at the appropriate distance using a mobile phone.

  7. The need for sustainable technology diffusion in mining: Achieving the use of belt conveyor systems in the German hard-rock quarrying industry

    Directory of Open Access Journals (Sweden)

    Tobias Braun

    2017-01-01

    Full Text Available The movement of raw materials can be one of the most challenging tasks in open pit mining, with truck transportation representing the largest factor in mining costs and resulting in major greenhouse gas (GHG emissions. In this study, the transportation methods of bulk materials within German hard-rock open pit mines were investigated. Approximately 450 quarries were studied for their production tonnage, lease areas, mined rock type as well as mining methods and processing equipment. The results demonstrate that 90% of the operations use truck-based transportation methods, with the remainder relying partly or completely on continuous conveyor-based systems. The installation of continuous conveyors compared to trucks represents a real alternative because of reduced dead load, reduced GHG emissions and in many cases even reduced costs. Thus, for in-pit haulage in quarries sustainable technology substitutions exist that are yet to be adopted by the German quarrying industry. As this study shows, in the future the diffusion of sustainable technologies requires site champions and large-scale case studies that demonstrate their successful introduction in the mining value chain.

  8. Geodetic constraint on the motion of a slab window: Implication for the Mendocino Crustal Conveyor model

    Science.gov (United States)

    Peng, Y.; Dong, D.; Yan, J.; Chen, W.

    2017-07-01

    The migration of the slab window in the Northern California Coast Ranges provides a unique setting to study the viscous coupling between crust and asthenosphere flow. The mechanisms of these dynamic processes are explained by the Mendocino Crustal Conveyor model, which predicts a 2-D "double-humped" surface uplift rate pattern on a 400 km long profile. To evaluate the Mendocino Crustal Conveyor (MCC) model using accurate geodetic measurements, we derive the vertical velocity field from 43 continuous GPS (CGPS) stations in the Coast Ranges region and project it onto the profile along three possible orientations of the slab window. The CGPS measured uplift rates are in good agreement with the MCC prediction, when the slab window orientation is parallel to the symmetry axis of the region of thickened crust. Thus, the CGPS solutions not only provide a complementary means to diagnose the MCC model but also provide an effective way to constrain the orientation of the slab window.

  9. INFLUENCE CONSTRUCTION OF THE ROLLER ON THE POWER OF THE DRIVE SYSTEM OF THE BELT CONVEYOR

    Directory of Open Access Journals (Sweden)

    Tadeusz OPASIAK

    2014-09-01

    Full Text Available The paper presents a study of new design of rollers. The study focused on the measurement of static and dynamic resistance of rotating rollers and the impact of new construction on the power consumption of the belt conveyor. Rollers have been modified through the use of class C4 bearing seals and labyrinth seal U4Exp 62/65 with a cover 2LU4 of runner construction. Measurements of static and dynamic resistance of rotating rollers were made on a universal rollers stand and power measurements were carried out on a belt conveyor power supply system Gwarek 1200 No. TW in mine KWK Mysłowice–Wesoła.

  10. Modeling a magneto-rheological soft starter for use with belt conveyors

    Institute of Scientific and Technical Information of China (English)

    Tian Zuzhi; Hou Youfu

    2012-01-01

    The theory of magnetic circuit design,the constitutive equations of a magneto-rheological fluid,and the load properties of belt conveyors were used to design a magneto-rheological soft starter test-bed.The magnetic field distribution in the working gap was analyzed and the current-speed relationship was investigated.A mathematical model for the time response was deduced.The results show that a linear relationship between current and magnetic field is seen when the magnetic materials are not saturated and the magnetic field is uniform in the working section.The rotation speed of the driven shaft changes linearly with increasing time.The response is rapid and can be as short as milliseconds.This meets the starting requirements of belt conveyors.

  11. Dynamics simulation of the belt conveyor possessing feedback loop during starting

    Institute of Scientific and Technical Information of China (English)

    XI Ping-yuan; ZHANG Hai-tao; LIU Jun

    2005-01-01

    Synthesizing the mechanical models of the belt, the driver and the take-up device, the dynamics model was established on the longitudinal vibration of the overall belt conveyor system with finite elemental method, and S-function simulation block of asynchronous motor owing feedback function was built in Matlab/Simulink software, the simulation block indicates that motor rotation speed and its output moment vary with load and time, and the motor is a dynamic feedback system in working process. The state space block was adopted to express model of the belt. Thus it created simulation model of established dynamic model of overall belt conveyor system with Matlab/Simulink software, and simulates the course of starting by properly setting simulation parameters, and processes data for visualization.

  12. Design Considerations for CMOS Current Mode Operational Amplifiers and Current Conveyors

    DEFF Research Database (Denmark)

    Bruun, Erik

    This dissertation is about CMOS current conveyors and current mode operational amplifiers (opamps). They are generic devices for continuous time signal processing in circuits and systems where signals are represented by currents.Substantial advancements are reported in the dissertation, both...... related to circuit implementations and system configurations and to an analysis of the fundamental limitations of the current mode technique.In the field of system configurations and circuit implementations different configurations of high gain current opamps are introduced and some of the first...... implementations of current mode opamps in CMOS technology are described. Also, current conveyor configurations with multiple outputs and flexible feedback connections from outputs to inputs are introduced. The dissertation includes several examples of circuit configurations ranging from simple class A and class...

  13. Possibilities for utilizing scrap rubber conveyor belts in manufacturing mine cars

    Energy Technology Data Exchange (ETDEWEB)

    Owinski, A.; Furmanik, K.

    1985-01-01

    Utilization of scrap conveyor belts removed due to wear in manufacturing mine cars used in underground coal mines is evaluated. Tests show that rubber packs (sandwiches) consisting of conveyor belt elements successfully replace springing in mine cars. The rubber packs are bent at an angle of 90 or 120 degrees to increase their damping properties. Evaluations show that service life of rubber springing is longer than 3 years. Replacing steel springs in car buffers with rubber belt packs is a further possibility. The rubber packs in car buffers absorb up to 35% of shock energy. Sections of scrap belts could also be used to reduce buildup of coal in mine cars. Belt sections are fastened to the bottom of mine cars. Belt deformation during car self-dumping (or unloading in a rotary tippler) reduces coal adhesion to the car body and prevents buildup. 4 references.

  14. Modelling and control algorithms of the cross conveyors line with multiengine variable speed drives

    Science.gov (United States)

    Cheremushkina, M. S.; Baburin, S. V.

    2017-02-01

    The paper deals with the actual problem of developing the control algorithm that meets the technical requirements of the mine belt conveyors, and enables energy and resource savings taking into account a random sort of traffic. The most effective method of solution of these tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. The authors designed the mathematical model of the system ‘variable speed multiengine drive – conveyor – control system of conveyors’ that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows one to reduce the dynamic overload in the belt to 15-20%.

  15. Using the classical linear regression model in analysis of the dependences of conveyor belt life

    Directory of Open Access Journals (Sweden)

    Miriam Andrejiová

    2013-12-01

    Full Text Available The paper deals with the classical linear regression model of the dependence of conveyor belt life on some selected parameters: thickness of paint layer, width and length of the belt, conveyor speed and quantity of transported material. The first part of the article is about regression model design, point and interval estimation of parameters, verification of statistical significance of the model, and about the parameters of the proposed regression model. The second part of the article deals with identification of influential and extreme values that can have an impact on estimation of regression model parameters. The third part focuses on assumptions of the classical regression model, i.e. on verification of independence assumptions, normality and homoscedasticity of residuals.

  16. Sustainable multifunctional landscapes: a review to implementation

    CSIR Research Space (South Africa)

    O'Farrell, PJ

    2010-05-01

    Full Text Available Historic land use practices have dramatically altered landscapes across all scales, homogenising them and restricting opportunities for humans and wildlife. The need for multifunctional landscapes which simultaneously provide food security...

  17. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    Science.gov (United States)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  18. Microbial diversity drives multifunctionality in terrestrial ecosystems.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K

    2016-01-28

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

  19. Realization of Nth-Order Voltage Transfer Function using Current Conveyors CCII

    Directory of Open Access Journals (Sweden)

    K. Vrba

    1997-06-01

    Full Text Available A universal method for the realization of arbitrary voltage transfer function in canonic form is presented. A voltage-controlled current-source using a plus-type second-generation current conveyor is here applied as the basic building element. Filters designed according to this method have a high input impedance and low sensitivity to variations of circuit parameters. All passive elements are grounded.

  20. Varying the uphill and downhill speeds of the shearer loader and of the face conveyor

    Energy Technology Data Exchange (ETDEWEB)

    Husz, N.

    1978-01-01

    Utilization of the production capacity attainable by the suitable variation of the speed of the hauling chain of both the shearer loader and the face of the conveyor has been subjected to study. The results which can be reached by applying the coal falling length equalization method are shown as well as the utilization of the conveying capacity for the case when the seam is cut in two slices in the face height ie in two benches.

  1. Targeting Prostate Cancer with Multifunctional Nanoparticles

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0487 TITLE: Targeting Prostate Cancer with Multifunctional Nanoparticles PRINCIPAL INVESTIGATOR: Darryl Martin...Targeting Prostate Cancer with Multifunctional Nanoparticles 5b. GRANT NUMBER W81XWH-14-1-0487 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Darryl...claudin-3 and claudin-4 are expressed in subsets of aggressive prostate cancer. Finally, we produced our first two batches of nanoparticles during year

  2. Impact of Selected Parameters on the Fatigue Strength of Splices on Multiply Textile Conveyor Belts

    Science.gov (United States)

    Bajda, Mirosław; Błażej, Ryszard; Hardygóra, Monika

    2016-10-01

    Splices are the weakest points in the conveyor belt loop. The strength of these joints, and thus their design as well as the method and quality of splicing, determine the strength of the whole conveyor belt loop. A special zone in a splice exists, where the stresses in the adjacent plies or cables differ considerably from each other. This results in differences in the elongation of these elements and in additional shearing stresses in the rubber layer. The strength of the joints depends on several factors, among others on the parameters of the joined belt, on the connecting layer and the technology of joining, as well as on the materials used to make the joint. The strength of the joint constitutes a criterion for the selection of a belt suitable for the operating conditions, and therefore methods of testing such joints are of great importance. This paper presents the method of testing fatigue strength of splices made on multi-ply textile conveyor belts and the results of these studies.

  3. Minimising the fire hazard from the use of belt conveyors in intake roadways

    Energy Technology Data Exchange (ETDEWEB)

    Leeming, J.R. [Health and Safety Executive, Sheffield, S. Yorkshire (United Kingdom)

    2010-07-01

    The fire that occurred a the Creswell underground coal mine in Derbyshire in 1950 in which 90 miners lost their lives was caused by a damaged rubber conveyor belt that ignited after being friction heated. The fire propagated along the intake trunk roadway by the burning belt itself, which ignited the timber roadway supports and hampered fire-fighting efforts. This paper demonstrated that operating conveyors in intake trunk roadways presents a risk that products of combustion can be carried to the working areas of a mine via ventilation pathways, thus creating a hazard to the underground miners. In North America, the use of belt air is not commonly used to ventilate working areas. However, these arrangements are common in the United Kingdom. As such, installation, inspection and maintenance standards have been created to minimize the risk of fire in underground, remotely operated belt conveyors in underground mines. Monitoring systems are also in place for early detection of any fire. A review of recent underground fires in the United Kingdom has shown that the measures adopted have been successful in avoiding uncontrollable fires. 13 refs., 5 figs.

  4. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas.

    Science.gov (United States)

    Hansen, Rieke; Pauleit, Stephan

    2014-05-01

    Green infrastructure (GI) and ecosystem services (ES) are promoted as concepts that have potential to improve environmental planning in urban areas based on a more holistic understanding of the complex interrelations and dynamics of social-ecological systems. However, the scientific discourses around both concepts still lack application-oriented frameworks that consider such a holistic perspective and are suitable to mainstream GI and ES in planning practice. This literature review explores how multifunctionality as one important principle of GI planning can be operationalized by approaches developed and tested in ES research. Specifically, approaches developed in ES research can help to assess the integrity of GI networks, balance ES supply and demand, and consider trade-offs. A conceptual framework for the assessment of multifunctionality from a social-ecological perspective is proposed that can inform the design of planning processes and support stronger exchange between GI and ES research.

  5. DSJ100/100/3×200型顺槽带式输送机的研制%Development of DSJ1 00/1 00/3 ×200 Type Belt Conveyor

    Institute of Scientific and Technical Information of China (English)

    赵世旭

    2014-01-01

    Aiming at the transportation requirements of special roadway and universality of series product in Xis-han coal and electricity (group)company,on the basis of digestion and absorption the experience of traditional belt conveyor,through optimization design of the existing DSJ100 series tunnel extensible belt conveyor in Xishan coal and electricity group electromechanical factory,a new kind of belt conveyor is developed,which is safe,reliable and en-ergy saving.Introduces through adopting the key techniques such as variable frequency conversion start mode,the new integral base,unloading intermediate drive,the fast disassembly fuselage and so on,adaptability,safety reliabili-ty and economy of belt conveyor to severe environment in the underground of coal mine is improved effectively.%针对西山煤电(集团)公司矿井特殊巷道运输要求和产品系列的通用性,在消化和吸收传统顺槽带式输送机经验的基础上,对西山机电厂现有DSJ100系列顺槽可伸缩带式输送机进行了优化设计,研制开发出了一种安全、可靠、节能的新型带式输送机。介绍了通过采用变频调速启动方式、新式整体底座、卸载式中间驱动、快速可拆卸机身等关键技术,有效提高了带式输送机对煤矿井下恶劣环境的适应能力、安全可靠性及经济性。

  6. Study on application of high-speed idlers of conveyors%带式输送机高速托辊的应用研究

    Institute of Scientific and Technical Information of China (English)

    刘振; 包继华; 黄世鼎; 郭锋; 王领

    2011-01-01

    After analyzing the application status of the belt conveyor and the idler, the necessity of developing high-speed idlers is proposed. Based on the study of such components as idler shaft, bearing, sealings and bearing pedestal, such key issues of high-speed idlers as radial mn-out, rotary resistance and employment lifespan are discussed, which offers theoretical basis for the design and application of the high-speed idler and the highspeed belt conveyor.%通过对带式输送机及托辊的应用现状进行分析,提出了研发带式输送机高速托辊的必要性.通过对托辊主轴、轴承、筒体、密封结构和轴承座等各部分结构进行研究,探讨了高速托辊在径向圆跳动、旋转阻力和使用寿命等方面要解决的关键技术,为高速托辊以及高速带式输送机的设计应用提供理论基础.

  7. Multifunctionality assessment of urban agriculture in Beijing City, China.

    Science.gov (United States)

    Peng, Jian; Liu, Zhicong; Liu, Yanxu; Hu, Xiaoxu; Wang, An

    2015-12-15

    As an important approach to the realization of agricultural sustainable development, multifunctionality has become a hot spot in the field of urban agriculture. Taking 13 agricultural counties of Beijing City as the assessing units, this study selects 10 assessing index from ecological, economic and social aspects, determines the index weight using Analytic Hierarchy Process (AHP) method, and establishes an index system for the integrated agricultural function. Based on standardized data from agricultural census and remote sensing, the integrated function and multifunctionality of urban agriculture in Beijing City are assessed through the index grade mapping. The results show that agricultural counties with the highest score in ecological, economic, and social function are Yanqing, Changping, and Miyun, respectively; and the greatest disparity among those counties is economic function, followed by social and ecological function. Topography and human disturbance may be the factors that affect integrated agricultural function. The integrated agricultural function of Beijing rises at the beginning then drops later with the increase of mean slope, average altitude, and distance from the city. The whole city behaves balance among ecological, economic, and social functions at the macro level, with 8 out of the 13 counties belonging to ecology-society-economy balanced areas, while no county is dominant in only one of the three functions. On the micro scale, however, different counties have their own functional inclination: Miyun, Yanqing, Mentougou, and Fengtai are ecology-society dominant, and Tongzhou is ecology-economy dominant. The agricultural multifunctionality in Beijing City declines from the north to the south, with Pinggu having the most significant agricultural multifunctionality. The results match up well with the objective condition of Beijing's urban agriculture planning, which has proved the methodological rationality of the assessment to a certain extent.

  8. Effective Design of Multifunctional Peptides by Combining Compatible Functions.

    Science.gov (United States)

    Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel

    2016-04-01

    Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf.

  9. Workshop report European multifunctional farmers network : creating an European network of pioneers in multifunctional agriculture

    NARCIS (Netherlands)

    Lakner, D.; Alebeek, van F.A.N.

    2009-01-01

    This report describes the results of the Workshop European Multifunctional Farmers Network (EMFN) which was held on October 23, 2008 on the multifunctional farm “De Zonnehoeve” of Piet van IJzendoorn, at Zeewolde, the Netherlands. This workshop was part of the European Eemland Conference ‘Versatile

  10. Multifunctional composites: Healing, heating and electromagnetic integration

    Science.gov (United States)

    Plaisted, Thomas Anthony John

    2007-12-01

    Multifunctional materials, in the context of this research, integrate other functions into materials that foremost have outstanding structural integrity. Details of the integration of electromagnetic, heating, and healing functionalities into fiber-reinforced polymer composites are presented. As a result of fiber/wire integration through textile braiding and weaving, the dielectric constant of a composite may be tuned from negative to positive values. These wires are further leveraged to uniformly heat the composite through resistive heating. A healing functionality is introduced by utilizing a polymer matrix with the ability to heal internal cracking through thermally-reversible covalent bonds based on Diels-Alder cycloaddition. The Double Cleavage Drilled Compression (DCDC) specimen is applied to study the fracture and healing characteristics of the neat polymer. This method allows for quantitative evaluation of incremental crack growth, and ensures that the cracked sample remains in one piece after the test, improving the ability to re-align the fracture surfaces prior to healing. Initially, the fracture strength of PMMA is studied with various DCDC geometries to develop a model of the propagation of a crack within this type of specimen. Applied to the healable polymer (2MEP4F), repeated fracture-healing cycles demonstrate that treatment at temperatures between 85 to 95°C results in full fracture toughness recovery and no dimensional changes due to creep. The fracture toughness after each fracturing and healing cycle has been calculated, using the model, to yield a fracture toughness of about 0.71 MPa·m1/2 for this material at room temperature. Glass and carbon fiber-reinforced composites have been fabricated with the 2MEP4F polymer, and the ability of this polymer to heal microcracks in fiber-reinforced composites is demonstrated. Microcracks have been introduced into the composites by cryogenic cycling in liquid nitrogen, causing a reduction in the storage

  11. Glyconanoparticles: multifunctional nanomaterials for biomedical applications.

    Science.gov (United States)

    García, Isabel; Marradi, Marco; Penadés, Soledad

    2010-07-01

    Metal-based glyconanoparticles (GNPs) are biofunctional nanomaterials that combine the unique physical, chemical and optical properties of the metallic nucleus with the characteristics of the carbohydrate coating. The latter characteristics comprise a series of advantages that range from ensuring water solubility, biocompatibility and stability to targeting properties. The selection of suitable carbohydrates for specifically targeting biomarkers opens up the possibility to employ metallic GNPs in diagnostics and/or therapy. Within the vast nanoscience field, this review intends to focus on the advances of multifunctional and multimodal GNPs, which make use of the 'glycocode' to specifically address pathogens or pathological-related biomedical problems. Examples of their potential application in antiadhesion therapy and diagnosis are highlighted. From the ex vivo diagnostic perspective, it can be predicted that GNPs will soon be used clinically. However, the in vivo application of metallic GNPs in humans will probably need more time. In particular, major concerns regarding nanotoxicity need to be exhaustively addressed. However, it is expected that the sugar shell of GNPs will lower the intrinsic toxicity of metal nanoclusters better than other non-natural coatings.

  12. Multifunctional Prenylated Peptides for Live Cell Analysis

    Science.gov (United States)

    Wollack, James W.; Zeliadt, Nicholette A.; Mullen, Daniel G.; Amundson, Gregg; Geier, Suzanne; Falkum, Stacy; Wattenberg, Elizabeth V.; Barany, George; Distefano, Mark D.

    2009-01-01

    Protein prenylation is a common post-translational modification present in eukaryotic cells. Many key proteins involved in signal transduction pathways are prenylated and inhibition of prenylation can be useful as a therapeutic intervention. While significant progress has been made in understanding protein prenylation in vitro, we have been interested in studying this process in living cells, including the question of where prenylated molecules localize. Here, we describe the synthesis and live cell analysis of a series of fluorescently labeled multifunctional peptides, based on the C-terminus of the naturally prenylated protein CDC42. A synthetic route was developed that features a key Acm to Scm protecting group conversion. This strategy was compatible with acid-sensitive isoprenoid moieties, and allowed incorporation of an appropriate fluorophore as well as a cell-penetrating sequence (penetratin). These peptides are able to enter cells through different mechanisms, depending on the presence or absence of the penetratin vehicle and the nature of the prenyl group attached. Interestingly, prenylated peptides lacking penetratin are able to enter cells freely through an energy-independent process, and localize in a perinuclear fashion. This effect extends to a prenylated peptide that includes a full “CAAX box” sequence (specifically, CVLL). Hence, these peptides open the door for studies of protein prenylation in living cells, including enzymatic processing and intracellular peptide trafficking. Moreover, the synthetic strategy developed here should be useful for the assembly of other types of peptides that contain acid sensitive functionalities. PMID:19425596

  13. Angiography with a multifunctional line scanning ophthalmoscope

    Science.gov (United States)

    Hammer, Daniel X.; Ferguson, R. Daniel; Patel, Ankit H.; Vazquez, Vanessa; Husain, Deeba

    2012-02-01

    A multifunctional line scanning ophthalmoscope (mLSO) was designed, constructed, and tested on human subjects. The mLSO could sequentially acquire wide-field, confocal, near-infrared reflectance, fluorescein angiography (FA), and indocyanine green angiography (ICGA) retinal images. The system also included a retinal tracker (RT) and a photodynamic therapy laser treatment port. The mLSO was tested in a pilot clinical study on human subjects with and without retinal disease. The instrument exhibited robust retinal tracking and high-contrast line scanning imaging. The FA and ICGA angiograms showed a similar appearance of hyper- and hypo-pigmented disease features and a nearly equivalent resolution of fine capillaries compared to a commercial flood-illumination fundus imager. An mLSO-based platform will enable researchers and clinicians to image human and animal eyes with a variety of modalities and deliver therapeutic beams from a single automated interface. This approach has the potential to improve patient comfort and reduce imaging session times, allowing clinicians to better diagnose, plan, and conduct patient procedures with improved outcomes.

  14. Superamphiphobic Surfaces Prepared by Coating Multifunctional Nanofluids.

    Science.gov (United States)

    Esmaeilzadeh, Pouriya; Sadeghi, Mohammad Taghi; Bahramian, Alireza; Fakhroueian, Zahra; Zarbakhsh, Ali

    2016-11-23

    Construction of surfaces with the capability of repelling both water and oil is a challenging issue. We report the superamphiphobic properties of mineral surfaces coated with nanofluids based on synthesized Co-doped and Ce-doped Barium Strontium Titanate (CoBST and CeBST) nanoparticles and fluorochemicals of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOS) and polytetrafluoroethylene (PTFE). Coating surfaces with these nanofluids provides both oil (with surface tensions as low as 23 mN/m) and water repellency. Liquids with high surface tension (such as water and ethylene glycol) roll off the coated surface without tilting. A water drop released from 8 mm above the coated surface undergoes first a lateral displacement from its trajectory and shape deformation, striking the surface after 23 ms, bouncing and rolling off freely. These multifunctional coating nanofluids impart properties of self-cleaning. Applications include coating surfaces where cleanliness is paramount such as in hospitals and domestic environments as well as the maintenance of building facades and protection of public monuments from weathering. These superamphiphobic-doped nanofluids have thermal stability up to 180 °C; novel industrial applications include within fracking and the elimination of condensate blockage in gas reservoirs.

  15. Research and realization for multi-function mobile service mode based on WeChat-campus platform%基于微信校园平台多功能移动服务模式探索与实现

    Institute of Scientific and Technical Information of China (English)

    陈申杰; 刘波; 沈岳; 张郁青

    2014-01-01

    以百度微信校园项目为基础,开发了微信校园多功能移动服务模块,该模块可实现课表查询、成绩查询、掌上图书馆、天气查询、快递查询、公交查询、外卖订购、学术交流等多种信息查询与推送功能,模块除满足用户获取信息资源的时效性、便捷性外,还能更好地适应大学生个性化的信息服务需求,同时利用微信校园服务新模式,也可为大学生创业提供新的商机。%Based on the Baidu WeChat-campus project, the WeChat-campus multi-functional mobile service module was developed, by which a variety of information queries and sending functions can be achieved, such as curriculum inquiry, score inquiry, pocket library, weather inquiry, express check, bus inquiry, takeaway ordering and academic exchanges. In addition, the module can satisfy the users′demands to get more information resources timely and conveniently, and meet personalized information service suitable for college students. Some new commercial opportunities will be provided for students by utilizing WeChat-campus services new mode.

  16. Design and Implementation of a Multi-function Charger Based on Microcontroller%基于单片机的多功能充电器的设计与实现

    Institute of Scientific and Technical Information of China (English)

    赵璞

    2012-01-01

    This project mainly based on single chip multi-function charger to address the fast charging of different battery.ATmega8 in-depth studies on the use of his performance, the design completely implemented the latest technology designed battery charger, sealed lead-acid battery can (SLA), and nickel-cadmium batteries (NiCd) fast charge without modification of hardware, to focus on a single hardware platform to achieve a complete charger product line. Just switch the button you can manually choose a different algo- rithm to realize the different battery charging, and through the LCD clearly see the charge status. Greatly increased the integrated charger, charging reduced cost, convenient and quick.%本课题主要研究基于单片机的多功能充电器,解决对不同电池的快速充电。通过对ATmega8的深入研究,利用它的高性能,设计完全实现了电池充电器设计的功能。本设计可以通过按键切换,对的密封铅酸电池(SLA)和镍镉电池(NiCd)进行充电,并通过LCD清楚地看到其充电状态。同时利用放大电路和Atmega8本身的AD转换器显示对电池电压和电流的实时测量,以较好的控制充电过程,保护电池。

  17. Finishing Titanium Alloy Cutting Zone Analysis Via Multifunction Measuring System

    Science.gov (United States)

    Andrej, Czán; Michal, Šajgalík; Drbúl, Mário; Holubják, Jozef; Mrázik, Jozef; Babík, Ondrej; Zaušková, Lucia; Piešová, Marianna

    2015-12-01

    With the development of automotive, aerospace and biomedical industry, there is higher demand for exotic alloys, often based on titanium or nickel, though they are hard to machine. Therefore, it is essential to thoroughly understand their behavior during machining. Processes in the cutting zone of said materials are due to the complexity and dynamics defined by specific models. These include some deviations, thus it is essential to improve machining observation methodology, so exhibited errors and deviations are minimal or none. Based on the observations, multifunction measuring system has been designed, which allows simultaneous observation of characteristics such as e.g. cutting forces, deformations and thermal spread without uninterrupting machining process.

  18. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zonetti, P.C.; Gaspar, A.B.; Mendes, F.M.T.; Appel, L.G., E-mail: lucia.appel@int.gov.br [Instituto Nacional de Tecnologia (INT/MCT), Rio de Janeiro, RJ (Brazil); Avillez, R. R. de [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil); Sousa-Aguiar, E.F. [Centro de Pesquisa Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2013-10-15

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  19. The role of zeolites in the deactivation of multifunctional fischer-tropsch synthesis catalysts: the interaction between HZSM-5 and Fe-based Ft-catalysts

    Directory of Open Access Journals (Sweden)

    P. C. Zonetti

    2013-12-01

    Full Text Available In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis.

  20. Report on the Design, Development and Compilation of a Bilingual Multifunctional Intranet-based Convergence Telecom Lexinome at a Major Danish Telecoms Group

    DEFF Research Database (Denmark)

    Simonsen, Henrik Køhler

    2000-01-01

    This paper discusses the conceptual considerations for the design and development of an Intranet-based lexicographic knowledge management system at Tele Danmark (TD). The Convergence Telecom Lexinome is thus the result of the interplay between theory and practice. The design and development of CTL...... are based on an analysis of the communicative environment and of end-users' skills and competencies. On the basis of this analysis, the CTL functions are identified, and the conclusion is drawn that multiple lexicographic and non-lexicographic data sources must be integrated and networked to solve...

  1. EHF multifunction phased array antenna

    Science.gov (United States)

    Solbach, Klaus

    1986-07-01

    The design of a low cost demonstration EHF multifunction-phased array antenna is described. Both, the radiating elements and the phase-shifter circuits are realized on microstrip substrate material in order to allow photolithographic batch fabrication. Self-encapsulated beam-lead PIN-diodes are employed as the electronic switch elements to avoid expensive hermetic encapsulation of the semiconductors or complete circuits. A space-feed using a horn-radiator to illuminate the array from the front-side is found to be the simplest and most inexpensive feed. The phased array antenna thus operates as a reflect-array, the antenna elements employed in a dual role for the collection of energy from the feed-horn and for the re-radiation of the phase-shifted waves (in transmit-mode). The antenna is divided into modules containing the radiator/phase-shifter plate plus drive- and BITE-circuitry at the back. Both drive- and BITE-components use gate-array integrated circuits especially designed for the purpose. Several bus-systems are used to supply bias and logical data flows to the modules. The beam-steering unit utilizes several signal processors and high-speed discrete adder circuits to combine the pointing, frequency and beam-shape information from the radar system computer with the stored phase-shift codes for the array elements. Since space, weight and power consumption are prime considerations only the most advanced technology is used in the design of both the microwave and the digital/drive circuitry.

  2. Report on the Design, Development and Compilation of a Bilingual Multifunctional Intranet-based Convergence Telecom Lexinome at a Major Danish Telecoms Group

    DEFF Research Database (Denmark)

    Simonsen, Henrik Køhler

    2000-01-01

    This paper discusses the conceptual considerations for the design and development of an Intranet-based lexicographic knowledge management system at Tele Danmark (TD). The Convergence Telecom Lexinome is thus the result of the interplay between theory and practice. The design and development of CT...

  3. A multifunctional organic-inorganic hybrid structure based on Mn(III)-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst.

    Science.gov (United States)

    Zou, Chao; Zhang, Zhijuan; Xu, Xuan; Gong, Qihan; Li, Jing; Wu, Chuan-De

    2012-01-11

    A two-step synthesis strategy has led to a unique layered polyoxometalate-Mn(III)-metalloporphyrin-based hybrid material. The hybrid solid demonstrates remarkable capability for scavenging of dyes and for heterogeneous selective oxidation of alkylbenzenes with excellent product yields and 100% selectivity.

  4. 带式输送机机头硐室改造及远距离卸载臂的研制%Reconstruction of Belt Conveyor Driving Head Chamber and Research & Development on Long-Distance Unloading Boom

    Institute of Scientific and Technical Information of China (English)

    王天平

    2012-01-01

    According to the belt conveyor hard to start due to the heavy load, the slipping of the conveying belt, temperature rising of the electric motor and other problems caused by the high conveying slope of the fully mechanized coal mining face and the unleveled designed gateway, based on the driving head structure of the belt conveyor as basis, the driving head chamber was designed for the belt conveyor and a new plan of the reconstruction was provided for the discharging unit of the driving head. Thus the inclined drop driving head cham- ber and the long distance discharging arm, with the reduction of the manufactured height of the installed platform in the driving head chamber of the belt conveyor, thus could reduce the slope of the buffer section in the large framework of the driving head of the belt con- veyor and the height of the large framework driving section could be reduced and the operation performances of the belt conveyor could not be affected. Meanwhile the application to the actual coal mining face had confirmed the applied value.%针对综采工作面运输坡度较大及巷道设计不平整等引发的带式输送机重载无法启动、输送带打滑、电机温度升高等问题,提出了以带式输送机机头结构为基准,设计带式输送机机头硐室并对机头卸载部进行改造的新方案,即倾斜落差式机头硐室和远距离卸载臂,通过降低带式输送机机头硐室安装平台的施工高度,从而降低带式输送机机头大架缓冲段的坡度,实现了大架传动部分降低高度安装而不影响带式输送机运行性能,同时通过实际工作面的应用验证了其实用价值。

  5. Multifunctional nanocomposite foams for space applications

    Science.gov (United States)

    Rollins, Diandra J.

    Materials combined with a small amount of nanoparticles offer new possibilities in the synthesizing of multifunctional materials. Graphene nanoplatelets (GnP) are multifunctional nanoreinforcing agents consisting of stacks of graphene sheets with comparable properties to a single graphene layer at an overall lower cost in a more robust form. Such particles have been shown to have good thermal, mechanical and electrical properties. In addition, a low density multifunctional nanocomposite foam has the potential for multiple applications and potential use for the aerospace industry. This dissertation investigates two different microporous (foam) polymers that are modified by the addition of GnP to combat this density effect to improve the foam's macroscopic properties Three sizes of GnP with varying aspect ratio were used to improve the polymeric foams' dielectric, electrical and mechanical properties. (Abstract shortened by ProQuest.).

  6. Synthesis and characterization of novel multifunctional epoxy resin

    Institute of Scientific and Technical Information of China (English)

    Jue Cheng; Jing Chen; Wan Tai Yang

    2007-01-01

    A novel multifunctional epoxy resin was synthesized by polyphenol and epichlorohydrin. The structure and molecular weight of the multifunctional epoxy were characterized by FTIR and ESI-MS. DSC and DMTA were used to investigate the thermal property of multifunctional epoxy cured by DDS. The thermal resistance of the synthesized multifunctional epoxy was much better than a standard diglycidyl ether of bisphenol-A epoxy.

  7. 一种电动辊道输送车%One Type of Electric Roller Conveyor Truck

    Institute of Scientific and Technical Information of China (English)

    祝洲杰; 吴锂力

    2015-01-01

    Based on the accurate judgment of warehousing market and combined with the actual needs of customers,designed a new type of electric roller conveyor truck. This paper introduces the technical characteristics and performance characteristics of this truck , elaborates the structure. This truck provides a good solution to solve the actual problems in some working conditions.%通过对仓储物流细分市场的准确判断,结合客户的实际需求,研制了全电动辊道输送车。本文介绍了该车型的主要技术特点和性能特点,详细阐述了其结构实现方式和工作原理。该车型为解决某些工况环境下的实际问题提供了良好的解决方案。

  8. State of Charge Balancing Control of a Multi-Functional Battery Energy Storage System Based on a 11-Level Cascaded Multilevel PWM Converter

    DEFF Research Database (Denmark)

    Wang, Songcen; Teodorescu, Remus; Máthé, Lászlo

    2015-01-01

    This paper focuses on modeling and SOC (State of Charge) balancing control of lithium-ion battery energy storage system based on cascaded multilevel converter for both grid integration and electric vehicle propulsion applications. The equivalent electrical circuit model of lithium-ion battery...... is adopted to control active power and reactive power independently, and the zero-sequence voltage injection and a sorting and select algorithm are employed for SOC balancing control. The simulation results have been carried out with PLECS Simulation Software and are presented to validate the SOC control...

  9. Multifunctional Nanowire/film Composites based Bi-modular Sensors for In-situ and Real-time High Temperature Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Lei, Yu

    2013-06-01

    This final report to the Department of Energy/National Energy Technology Laboratory for DE-FE0000870 covers the period from 2009 to June, 2013 and summarizes the main research accomplishments, which can be divided in sensing materials innovation, bimodular sensor demonstration, and new understanding and discoveries. As a matter of fact, we have successfully completed all the project tasks in June 1, 2013, and presented the final project review presentation on the 9th of July, 2013. Specifically, the major accomplishments achieved in this project include: 1) Successful development of a new class of high temperature stable gas sensor nanomaterials based on composite nano-array strategy in a 3D or 2D fashion using metal oxides and perovskite nanostructures. 2) Successful demonstration of bimodular nanosensors using 2D nanofibrous film and 3D composite nanowire arrays using electrical resistance mode and electrochemical electromotive force mode. 3) Series of new discoveries and understandings based on the new composite nanostructure platform toward enhancing nanosensor performance in terms of stability, selectivity, sensitivity and mass flux sensing. In this report, we highlight some results toward these accomplishments.

  10. Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept

    Directory of Open Access Journals (Sweden)

    Adnane Kara

    2016-05-01

    Full Text Available In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an “intelligent” drug delivery system based on a feedback loop to monitor drug delivery.

  11. Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept.

    Science.gov (United States)

    Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine

    2016-05-28

    In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.

  12. Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy.

    Science.gov (United States)

    Song, Xuejiao; Zhang, Rui; Liang, Chao; Chen, Qian; Gong, Hua; Liu, Zhuang

    2015-07-01

    The combination of chemotherapy with photothermal therapy, which may lead to improved therapeutic efficacies and reduced side effects of conventional chemotherapy, would require safe drug delivery systems (DDSs) with strong near-infrared (NIR) absorbance, efficient drug loading, and effective tumor homing ability. Herein, we fabricate nano-assemblies containing J-aggregates of a NIR dye, IR825, for drug delivery and combined photothermal & chemotherapy of cancer. It is found that IR825 could be complexed with a low-molecular-weight cationic polymer polyethylenimine (PEI), forming IR825@PEI J-aggregates with greatly enhanced NIR absorbance red-shifted to 915 nm. Those nano-assemblies of J-aggregates are further modified with polyethylene glycol (PEG), obtaining IR825@PEI-PEG nano-complex which exhibits great dispersity in physiological solutions, excellent photostability, and is able to efficiently load chemotherapeutic drug doxorubicin (DOX) via a unique strategy different from drug loading in conventional amphiphilic polymer-based DDSs. In vivo animal experiments uncover that IR825@PEI-PEG/DOX upon intravenous injection into tumor-bearing mice shows rather high tumor uptake as illustrated by photoacoustic imaging. In vivo combined photothermal & chemotherapy is then carried out, demonstrating great synergistic anti-tumor therapeutic effect remarkably superior to those achieved by the respective mono-therapies. Hence, we present a novel type of nanoscale DDSs based on nano-assemblies of small molecules without involving amphiphilic polymers, promising for imaging-guided combination cancer therapy.

  13. A Novel MVA-Based Multiphasic Vaccine for Prevention or Treatment of Tuberculosis Induces Broad and Multifunctional Cell-Mediated Immunity in Mice and Primates.

    Science.gov (United States)

    Leung-Theung-Long, Stéphane; Gouanvic, Marie; Coupet, Charles-Antoine; Ray, Aurélie; Tupin, Emmanuel; Silvestre, Nathalie; Marchand, Jean-Baptiste; Schmitt, Doris; Hoffmann, Chantal; Klein, Murielle; Seegren, Philip; Huaman, Maria C; Cristillo, Anthony D; Inchauspé, Geneviève

    2015-01-01

    Bacille Calmette-Guérin (BCG) vaccination of new born babies can protect children against tuberculosis (TB), but fails to protect adults consistently against pulmonary TB underlying the urgent need to develop novel TB vaccines. Majority of first generation TB vaccine candidates have relied on a very limited number of antigens typically belonging to the active phase of infection. We have designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara virus (MVA). Up to fourteen antigens representative of the three phases of TB infection (active, latent and resuscitation) were inserted into MVA. Using three different strains of mouse (BALB/c, C57BL/6 and C3H/HeN), we show that a single vaccination results in induction of both CD4 and CD8 T cells, displaying capacity to produce multiple cytokines together with cytolytic activity targeting a large array of epitopes. As expected, dominance of responses was linked to the mouse haplotype although for a given haplotype, responses specific of at least one antigen per phase could always be detected. Vaccination of non-human primates with the 14 antigens MVA-TB candidate resulted in broad and potent cellular-based immunogenicity. The remarkable plasticity of MVA opens the road to development of a novel class of highly complex recombinant TB vaccines to be evaluated in both prophylactic and therapeutic settings.

  14. A Novel MVA-Based Multiphasic Vaccine for Prevention or Treatment of Tuberculosis Induces Broad and Multifunctional Cell-Mediated Immunity in Mice and Primates.

    Directory of Open Access Journals (Sweden)

    Stéphane Leung-Theung-Long

    Full Text Available Bacille Calmette-Guérin (BCG vaccination of new born babies can protect children against tuberculosis (TB, but fails to protect adults consistently against pulmonary TB underlying the urgent need to develop novel TB vaccines. Majority of first generation TB vaccine candidates have relied on a very limited number of antigens typically belonging to the active phase of infection. We have designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara virus (MVA. Up to fourteen antigens representative of the three phases of TB infection (active, latent and resuscitation were inserted into MVA. Using three different strains of mouse (BALB/c, C57BL/6 and C3H/HeN, we show that a single vaccination results in induction of both CD4 and CD8 T cells, displaying capacity to produce multiple cytokines together with cytolytic activity targeting a large array of epitopes. As expected, dominance of responses was linked to the mouse haplotype although for a given haplotype, responses specific of at least one antigen per phase could always be detected. Vaccination of non-human primates with the 14 antigens MVA-TB candidate resulted in broad and potent cellular-based immunogenicity. The remarkable plasticity of MVA opens the road to development of a novel class of highly complex recombinant TB vaccines to be evaluated in both prophylactic and therapeutic settings.

  15. Designing multifunctional chemical sensors using Ni and Cu doped carbon nanotubes

    DEFF Research Database (Denmark)

    Mowbray, Duncan; García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2010-01-01

    We demonstrate a “bottom up” approach to the computational design of a multifunctional chemical sensor. General techniques are employed for describing the adsorption coverage and resistance properties of the sensor based on density functional theory and non-equilibrium Green's function methodolog......We demonstrate a “bottom up” approach to the computational design of a multifunctional chemical sensor. General techniques are employed for describing the adsorption coverage and resistance properties of the sensor based on density functional theory and non-equilibrium Green's function...... methodologies, respectively. Specifically, we show how Ni and Cu doped metallic (6,6) single-walled carbon nanotubes may work as effective multifunctional sensors for both CO and NH3....

  16. Smart and multifunctional concrete toward sustainable infrastructures

    CERN Document Server

    Han, Baoguo; Ou, Jinping

    2017-01-01

    This book presents the latest research advances and findings in the field of smart/multifunctional concretes, focusing on the principles, design and fabrication, test and characterization, performance and mechanism, and their applications in infrastructures. It also discusses future challenges in the development and application of smart/multifunctional concretes, providing useful theory, ideas and principles, as well as insights and practical guidance for developing sustainable infrastructures. It is a valuable resource for researchers, scientists and engineers in the field of civil-engineering materials and infrastructures.

  17. Complex Multifunctional Polymer/Carbon-Nanotube Composites

    Science.gov (United States)

    Patel, Pritesh; Balasubramaniyam, Gobinath; Chen, Jian

    2009-01-01

    A methodology for developing complex multifunctional materials that consist of or contain polymer/carbon-nanotube composites has been conceived. As used here, "multifunctional" signifies having additional and/or enhanced physical properties that polymers or polymer-matrix composites would not ordinarily be expected to have. Such properties include useful amounts of electrical conductivity, increased thermal conductivity, and/or increased strength. In the present methodology, these properties are imparted to a given composite through the choice and processing of its polymeric and CNT constituents.

  18. 煤矿井下带式输送机驱动系统浅析%Analysis of Driving System for Belt Conveyor

    Institute of Scientific and Technical Information of China (English)

    张志飞

    2015-01-01

    文章通过对输送机驱动系统的讨论比较,给出了不同驱动方式的优缺点,并对变频控制技术及电动滚筒驱动的带式输送机的发展前景进行了展望,为煤矿井下皮带输送机驱动系统合理选型提供支撑。%Belt conveyor in coal mine got a lot of applications,Through the discussion of the conveyor drive system,the paper presented the advantages and disadvantages of different driving modes,And prospected the development of the belt conveyor of frequency control technology and electric drum-driven conveyor,it procide support for a reasonable selection of drive system of coal mine belt conveyor.

  19. Use of computational fluid dynamics simulations for design of a pretreatment screw conveyor reactor.

    Science.gov (United States)

    Berson, R Eric; Hanley, Thomas R

    2005-01-01

    Computational fluid dynamics simulations were employed to compare performance of various designs of a pretreatment screw conveyor reactor. The reactor consisted of a vertical screw used to create cross flow between the upward conveying solids and the downward flow of acid. Simulations were performed with the original screw design and a modified design in which the upper flights of the screw were removed. Results of the simulations show visually that the modified design provided favorable plug flow behavior within the reactor. Pressure drop across the length of the reactor without the upper screws in place was predicted by the simulations to be 5 vs 40 kPa for the original design.

  20. THE HARMONIZATION AND OPTIMIZATION OF DIAGNOSTIC METHODS FOR A BELT CONVEYOR

    Directory of Open Access Journals (Sweden)

    František HELEBRANT

    2012-04-01

    Full Text Available The final aim of the project MPO FR‐T11/537 called “The Complex Diagnostic System for the Belt Transport” is a single part custom manufacturing and sale of complex diagnostic system for belt transportation and related services. The output of the project is a prototype of a diagnostic system on a model belt conveyor with prepared and certified diagnostic services and methods including their measurements and other supportive tools. The article will introduce the present state of the solution for the given grant project, especially in the field of suggested work on the diagnostic and supportive methods and other measurements.

  1. Movement analysis on steel wire rope of continuous conveyor with disc-tube assembly

    Institute of Scientific and Technical Information of China (English)

    LUAN Li-jun; SHI Shu-lin; REN Li-yi

    2004-01-01

    The steel wire rope of continuous conveyor with disc-tube assembly is droved by the driving wheel. When the driving wheel rotates, the gear is combined to the connection disc in turn, promoting the connection disc to move in succession. Turning the whirling torque of driving wheel into the straight-line traction force. When the steel wire rope is winded by the driving wheel some winded along the circumference, others winded along the straight line. Used motion subject law, this article analyses the change of the velocity and the acceleration of the steel wire rope in the straight movement, and observe the mathematics' model of velocity and acceleration.

  2. 一种螺旋输送机的改进设计%An Improved Design of the Screw Conveyor

    Institute of Scientific and Technical Information of China (English)

    左章华

    2014-01-01

    通过一次闲置的螺旋输送机改造过程,叙述了螺旋输送机改造中需要注意的几个相关事项,并对螺旋输送机现场改造中涉及到的问题提出了相应的解决办法。%In this paper ,through the transformation process of an idle screw conveyor ,describes several re-lated issues that need attention on the transformation of the screw conveyor , and on-site issues related to this transformation,here advance a corresponding solution .

  3. Surveying the face head advance rate and the face conveyor position. Ueberwachung des Strebfrontverlaufs und der Lage von Strebfoerdermitteln

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    For a constant monitoring of the face work and the position of the face conveyor, continuous surveying of the conveyor systems is required. This publication of the Steinkohlenbergbauverein describes two well-established surveying techniques using either a folding rule or a tape measure or advance rate meter. The latter is described with regard to its design and functions. Both methods are quasisteady methods which can be carried out by the working staff or by the foreman without disturbing operations and with hardly any loss of time. (MOS).

  4. An efficient dual-loaded multifunctional nanocarrier for combined photothermal and photodynamic therapy based on copper sulfide and chlorin e6.

    Science.gov (United States)

    Tan, Xiaoxiao; Pang, Xiaojuan; Lei, Mingzhu; Ma, Man; Guo, Fang; Wang, Jinping; Yu, Meng; Tan, Fengping; Li, Nan

    2016-04-30

    The therapeutic effectiveness of photodynamic therapy (PDT) was hampered by the poor water solubility and instability in physiological conditions of the photosensitizers. Here, we designed folate conjugated thermosensitive liposomes (TSL) as the nanocarrier to improve the solubility, stability and biocompatibility of photosensitizer Chlorin e6 (Ce6). Based on the photothermal effect, we combined copper sulfide (CuS) as the photothermal agent to realize heat-triggered Ce6 release as well as synergistic effect of photothermal and photodynamic therapy. In vitro MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that Ce6-CuS-TSL had low dark toxicity, while performed excellent phototoxicity under the combined 660 and 808 nm laser irradiation compared to any single laser irradiation alone. Moreover, in vivo combination therapy study revealed that Ce6-CuS-TSL inhibited tumor growth to a great extent without evident side effect under the laser irradiation. All detailed evidence demonstrated a considerable potential of Ce6-CuS-TSL for synergistic cancer treatment.

  5. A magnesium-based multifunctional metal-organic framework: synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study.

    Science.gov (United States)

    Saha, Debraj; Maity, Tanmoy; Das, Soma; Koner, Subratanath

    2013-10-14

    Three magnesium based carboxylate framework systems were prepared through a temperature-dependent synthesis. The compounds were synthesized by a hydrothermal method and characterized by single crystal X-ray diffraction analysis. A stepwise increase in the temperature of the medium resulted a stepwise increase in the dimensionality of the network, ultimately leading to the formation of a new 2D layered alkaline earth metal-organic framework (MOF) compound, {[Mg2(HL)2(H2O)4]·H2O}n (1) (H3L = pyrazole-3,5-dicarboxylate). Compound 1 selectively adsorbs hydrogen (H2) (ca. 0.56 wt% at 77 K) over nitrogen at 1 atm and demonstrates a strong blue fluorescent emission band at 480 nm (λ(max)) upon excitation at 270 nm. Notably, the 2D framework compound efficiently catalyzes the aldol condensation reactions of various aromatic aldehydes with ketones in a heterogeneous medium under environmentally friendly conditions. The catalyst can be recycled and reused several times without any significant loss of activity.

  6. A multifunctional Schiff base as a fluorescence sensor for Fe3 + and Zn2 + ions, and a colorimetric sensor for Cu2 + and applications

    Science.gov (United States)

    Tang, Xu; Han, Juan; Wang, Yun; Ni, Liang; Bao, Xu; Wang, Lei; Zhang, Wenli

    2017-02-01

    Chemosensors play important parts in the selective recognition of ions, which is widely applied in various fields of environment, industry and biological sciences. In this work, a chemosensor for multi-metal ions based on rhodamine B derivative was synthesized, which could selectively recognize various metal ions in different solvent system. The addition of Cu2 + caused the color change from colorless to pink in EtOH/H2O (v/v = 1:1) solvent system, which could be quickly identified by the naked eyes with a detection limit of 8.27 × 10- 8 M. In ethanol solution system, the addition of Fe3 + and Zn2 + caused different fluorescence changes with the detection limit of 2.12 × 10- 7 M and 6.64 × 10- 7 M respectively. The binding ratios are 1:1 (1-Cu2 +), 2:1 (1-Fe3 +) and 1:1 (1-Zn2 +), respectively. Meanwhile, the probe 1 was used to detect the trace metal ions in real water samples. Besides, the probe 1 showed sensitive fluorescence signals for Fe3 + in biological cells. The experimental results further verify the application value of the sensor.

  7. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands.

    Science.gov (United States)

    Valencia, Enrique; Maestre, Fernando T; Le Bagousse-Pinguet, Yoann; Quero, José Luis; Tamme, Riin; Börger, Luca; García-Gómez, Miguel; Gross, Nicolas

    2015-04-01

    We used a functional trait-based approach to assess the impacts of aridity and shrub encroachment on the functional structure of Mediterranean dryland communities (functional diversity (FD) and community-weighted mean trait values (CWM)), and to evaluate how these functional attributes ultimately affect multifunctionality (i.e. the provision of several ecosystem functions simultaneously). Shrub encroachment (the increase in the abundance/cover of shrubs) is a major land cover change that is taking place in grasslands worldwide. Studies conducted on drylands have reported positive or negative impacts of shrub encroachment depending on the functions and the traits of the sprouting or nonsprouting shrub species considered. FD and CWM were equally important as drivers of multifunctionality responses to both aridity and shrub encroachment. Size traits (e.g. vegetative height or lateral spread) and leaf traits (e.g. specific leaf area and leaf dry matter content) captured the effect of shrub encroachment on multifunctionality with a relative high accuracy (r(2)  = 0.63). FD also improved the resistance of multifunctionality along the aridity gradient studied. Maintaining and enhancing FD in plant communities may help to buffer negative effects of ongoing global environmental change on dryland multifunctionality.

  8. Synthesis and structure of dawson polyoxometalate-based, multifunctional, inorganic-organic hybrid compounds: organogermyl complexes with one terminal functional group and organosilyl analogues with two terminal functional groups.

    Science.gov (United States)

    Nomiya, Kenji; Togashi, Yoshihiro; Kasahara, Yuhki; Aoki, Shotaro; Seki, Hideaki; Noguchi, Marie; Yoshida, Shoko

    2011-10-03

    Four novel multifunctional polyoxometalate (POM)-based inorganic-organic hybrid compounds, [α(2)-P(2)W(17)O(61){(RGe)}](7-) (Ge-1, R(1) = HOOC(CH(2))(2(-)) and Ge-2, R(2) = H(2)C═CHCH(2(-))) and [α(2)-P(2)W(17)O(61){(RSi)(2)O}](6-) (Si-1, R(1) and Si-2, R(2)), were prepared by incorporating organic chains having terminal functional groups (carboxylic acid and allyl groups) into monolacunary site of Dawson polyoxoanion [α(2)-P(2)W(17)O(61)](10-). In these POMs, new modification of the terminal functional groups was attained by introducing organogermyl and organosilyl groups. Dimethylammonium salts of the organogermyl complexes, (Me(2)NH(2))(7)[α(2)-P(2)W(17)O(61)(R(1)Ge)]·H(2)O MeN-Ge-1 and (Me(2)NH(2))(7)[α(2)-P(2)W(17)O(61)(R(2)Ge)]·4H(2)O MeN-Ge-2, were obtained as analytically pure crystals, in 22.8% and 55.3% yields, respectively, by stoichiometric reactions of [α(2)-P(2)W(17)O(61)](10-) with separately prepared Cl(3)GeC(2)H(4)COOH in water, and H(2)C═CHCH(2)GeCl(3) in a solvent mixture of water/acetonitrile. Synthesis and X-ray structure analysis of the Dawson POM-based organogermyl complexes were first successful. Dimethylammonium salts of the corresponding organosilyl complexes, (Me(2)NH(2))(6)[α(2)-P(2)W(17)O(61){(R(1)Si)(2)O}]·4H(2)O MeN-Si-1 and (Me(2)NH(2))(6)[α(2)-P(2)W(17)O(61){(R(2)Si)(2)O}]·6H(2)O MeN-Si-2, were also obtained as analytically pure crystalline crystals, in 17.1% and 63.5% yields, respectively, by stoichiometric reactions of [α(2)-P(2)W(17)O(61)](10-) with NaOOC(CH(2))(2)Si(OH)(2)(ONa) and H(2)C═CHCH(2)Si(OEt)(3). These complexes were characterized by elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solid-state ((31)P) and solution ((31)P, (1)H, and (13)C) NMR, and X-ray crystallography.

  9. Targeting Endothelial Cells with Multifunctional GaN/Fe Nanoparticles

    Science.gov (United States)

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Andrée, Birgit; Cebotari, Serghei; Boyle, Erin C.; Haverich, Axel; Hilfiker, Andres

    2017-08-01

    In this paper, we report on the interaction of multifunctional nanoparticles with living endothelial cells. The nanoparticles were synthesized using direct growth of gallium nitride on zinc oxide nanoparticles alloyed with iron oxide followed by core decomposition in hydrogen flow at high temperature. Using transmission electron microscopy, we demonstrate that porcine aortic endothelial cells take up GaN-based nanoparticles suspended in the growth medium. The nanoparticles are deposited in vesicles and the endothelial cells show no sign of cellular damage. Intracellular inert nanoparticles are used as guiding elements for controlled transportation or designed spatial distribution of cells in external magnetic fields.

  10. Multifunctional combinatorial-designed nanoparticles for nucleic acid therapy

    Science.gov (United States)

    Amiji, Mansoor M.

    2016-05-01

    Recent advances in biomedical sciences, especially in the field of human genetics, is increasingly considered to facilitate a new frontier in development of novel disease-modifying therapeutics. One of major challenges in the development of nucleic acid therapeutics is efficient and specific delivery of the molecules to the target tissue and cell upon systemic administration. In this report, I discuss our strategy to develop combinatorial-designed multifunctional nanoparticle assemblies based on natural biocompatible and biodegradable polymers for nucleic acid delivery in: (1) overcoming tumor drug resistance and (2) genetic modulation of macrophage functional phenotype from M1 to M2 in treatment of inflammatory diseases.

  11. Multi-Functional Fibre-Optic Microwave Links

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo

    1998-01-01

    The multi-functionality of microwave links based on remote heterodyne detection of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection in conjunction with optical intensity modulation is used to implement fibre......-optic microwave links. The resulting links are inherently transparent and mainly used for signal transmission. As opposed to direct detection links, remote heterodyne detection links can directly perform functionalities such as modulation, frequency conversion, and transparent signal recovery in addition...

  12. 基于STM32的通用高速编程器的设计与实现%A Multifunctional Programmer Based on STM32 Abstract

    Institute of Scientific and Technical Information of China (English)

    何晋红; 潘桃; 于婷; 马义德

    2015-01-01

    文章设计并实现了一种针对FLASH、EEROM等存储器进行数据更新的高速通用编程器。该编程器是一个以STM32为核心,能对24、25等系列的存储器完成数据写入、读出等操作的嵌入式系统。系统具备USB连接PC机的联机操作模式和基于UCGUI的脱机操作模式。它可以控制接口电压以适用更多的芯片,与当前常见编程器进行性能比较,其具有更好的兼容性、更快的操作速度和更高的数据正确率。%Memorizers such as FLASH and EEROM are widely used to store the code and configuration parameters in digital products. Sometimes it is necessary to change the data in memory for product upgrade and maintenance. This article designs an embedded system which utilizes the STM32 as the MCU and provides reading and writing functionalities among the memorizers such as 24 and 25 series .This system can run in two models including connecting the PC with USB and working offline based on UCGUI. Interface voltage can be controlled to fit more chips. This system achieves excellent operating speed and high accuracy of the data writing at the same time.

  13. Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2014-05-01

    Full Text Available Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA. Evidence has been presented that during the initial phase of HA synthesis poorly crystalline carbonated apatite is deposited. Recent data summarized here indicate that during early bone formation calcium carbonate deposits enzymatically formed by CA, act as potential bioseeds for the precipitation of calcium phosphate mineral onto bone-forming osteoblasts. Two different calcium carbonate phases have been found during CA-driven enzymatic calcium carbonate deposition in in vitro assays: calcite crystals and round-shaped vaterite deposits. The CA provides a new target of potential anabolic agents for treatment of bone diseases; a first CA activator stimulating the CA-driven calcium carbonate deposition has been identified. In addition, the CA-driven calcium carbonate crystal formation can be frozen at the vaterite state in the presence of silintaphin-2, an aspartic acid/glutamic acid-rich sponge-specific protein. The discovery that calcium carbonate crystals act as bioseeds in human bone formation may allow the development of novel biomimetic scaffolds for bone tissue engineering. Na-alginate hydrogels, enriched with biosilica, have recently been demonstrated as a suitable matrix to embed bone forming cells for rapid prototyping bioprinting/3D cell printing applications.

  14. Multifunction intelligent car robot basing on SCM%基于单片机的多功能智能小车机器人

    Institute of Scientific and Technical Information of China (English)

    申江江; 齐银鹏; 陈方超; 陈毓; 梁浩

    2014-01-01

    本课题采用AT89S52单片机作为检测和控制核心,设计了一个智能小车机器人,其具有自动循迹、检测金属、报警、避障及遥控功能。构建了基于微处理器为核心、多传感器信息检测与融合、声音报警与 LCD数码显示、双向PWM控制的智能小车系统,并可实现ASP在线编程,加快了程序的下载速度。本设计结构简单,功能齐全,较容易实现,具有一定的智能化、人性化特点。%This project designed an intelligent car robot with function of auto searching、metal detecting、alarming、obstacle evading and remote controlling, using AT89S52 Single Chip Microcomputer as the detecting and controlling core. The intelligent car system was constructed basing on the core of microprocesser,multi-sensor information examing and fusing,alarming and LCD digital display, two-way PWM control,and it could programme on-line using ASP and speed up the download procedure. This design is worth applicating and popularizing,which can be used for non-human driving vehicles、non-human factories and stowages, with characteristics of simple construction、all-purpose function、easy realization、intelligence and hommization.

  15. Combination chemotherapy of doxorubicin, all-trans retinoic acid and low molecular weight heparin based on self-assembled multi-functional polymeric nanoparticles

    Science.gov (United States)

    Zhang, Ting; Xiong, Hui; Zohra Dahmani, Fatima; Sun, Li; Li, Yuanke; Yao, Li; Zhou, Jianping; Yao, Jing

    2015-04-01

    Based on the complementary effects of doxorubicin (DOX), all-trans retinoic acid (ATRA) and low molecular weight heparin (LMWH), the combination therapy of DOX, ATRA and LMWH was expected to exert the enhanced anti-tumor effects and reduce the side effects. In this study, amphiphilic LMWH-ATRA conjugate was synthesized for encapsulating the DOX. In this way, DOX, ATRA and LMWH were assembled into a single nano-system by both chemical and physical modes to obtain a novel anti-tumor targeting drug delivery system that can realize the simultaneous delivery of multiple drugs with different properties to the tumor. LMWH-ATRA nanoparticles exhibited good loading capacities for DOX with excellent physico-chemical properties, good biocompatibility, and good differentiation-inducing activity and antiangiogenic activity. The drug-loading capacity was up to 18.7% with an entrapment efficiency of 78.8%. It was also found that DOX-loaded LMWH-ATRA nanoparticles (DHR nanoparticles) could be efficiently taken up by tumor cells via endocytic pathway, and mainly distributed in cytoplasm at first, then transferred into cell nucleus. Cell viability assays suggested that DHR nanoparticles maintained the cytotoxicity effect of DOX on MCF-7 cells. Moreover, the in vivo imaging analysis indicated that DiR-loaded LMWH-ATRA nanoparticles could target the tumor more effectively as compared to free DiR. Furthermore, DHR nanoparticles possessed much higher anticancer activity and reduced side effects compared to free drugs solution. These results suggested that DHR nanoparticles could be considered as a promising targeted delivery system for combination cancer chemotherapy with lower adverse effects.

  16. Construction of three metal-organic frameworks based on multifunctional T-shaped tripodal ligands, H3PyImDC

    KAUST Repository

    Jing, Xuemin

    2010-08-04

    Three novel metal-organic frameworks (MOFs), |(C3H 7NO)2(H2O)|[Zn3(C10H 5N3O4)3(C3H 7NO)2] (1), |(H2O)5(H 3O)(NO3)|[Nd2(C10H5N 3O4)3(H2O)4] (2), and |(H2O)2|[Nd3(C10H5N 3O4)3(C10H4N 3O4)] (3), based on the T-shaped tripodal ligands 2-(pyridine-4-yl)-1H-4,5-imidazoledicarboxylic acid and 2-(pyridine-3-yl)-1H-4, 5-imidazoledicarboxylic acid (H3PyImDC), have been constructed under solvo-/hydrothermal conditions. The diverse coordination modes of H 3PyImDC ligands have afforded the assembly of three novel compounds. In compound 1, two oxygen atoms and three nitrogen atoms of the H 3PyImDC ligand, a T-shaped linker, coordinate to two zinc centers to form a novel bbm net with two distinct channels along the [100] and [001] directions. In compound 2, H3PyImDC ligands coordinate to neodymium centers to form a ladder-like chain which then interacts with a water molecules chain via hydrogen-bondings to construct a 3D supermolecular structure. In compound 3, H3PyImDC ligands, a T-shaped linker, coordinate to neodymium centers to form a (3,6)-connected net with an ant topology. In compounds 1-3, the two H3PyImDC ligands exhibit different coordination modes with zinc and neodymium centers, which afforded the expected structural diversity. Additionally, all three compounds exhibit strong fluorescence emissions in the solid state at room temperature. © 2010 American Chemical Society.

  17. 螺旋叶片对垂直螺旋输送机性能的影响%Influence of screw blade of performance for vertical screw conveyor

    Institute of Scientific and Technical Information of China (English)

    余书豪; 谌永祥

    2016-01-01

    为了研究在垂直螺旋输送机物料输送过程中的细观甚至微观特征,降低颗粒输送过程中近轴处的涡流引起的能耗,增大近壁面处的轴向速度,考察不同母线形状的螺旋叶片,借助颗粒仿真软件EDEM 2.5进行数值试验,模拟垂直螺旋输送机内颗粒速度、功率消耗、能量耗散、质量流量等性能指标,通过数据处理软件Origin Pro 8.0作图分析各项指标的变化情况.结果表明:与传统直线型母线的螺旋叶片相比,弯曲型母线的螺旋叶片在近轴处的切向速度减小73.87%,大大降低近轴处的涡流效应;近壁面处的轴向速度在高转速时增大12.34%,完成预定输送任务基础上,有效地降低额外的能量消耗,提升整机性能.%In order to figure out the meso and microscopic characteristics during bulk material being conveyed within the vertical screw conveyor and reduce the swirl flow near the screw shag and increase the axial velocity of particles near the wall during the particulate being conveyed,the different shape screw blades were surveyed,by means of the software of particle simulation EDEM 2.5,numerical test was done,the standards of performance such as particle velocity,power consumption,energy dissipation and average mass flow rate within the vertical screw conveyor were simulated.The trend charts were plotted based on the data processing software Origin Pro 8.0,to analysis the changes of indicators.The result shows that compared with the line type screw blade,the curved screw blade of tangential velocity near the shaft is reduce by 73.87%,the vortex motion decreases evidently.The axial velocity near the wall is increased by 12.34%,the extra energy dissipation effectively reduces on the basis of finishing the intended work,which promotes the whole performance of vertical screw conveyor

  18. Characterisation and Testing of Multifunctional Surfaces

    DEFF Research Database (Denmark)

    Godi, Alessandro

    the acronym stands for multifunctional. Produced by hard-turning followed by a highly controllable Robot Assisted Polishing process, MUFU surfaces feature reservoirs for providing extra-lubrication between the contacting parts as well as uppermost flat regions for ensuring the bearing capability...

  19. Active Structural Fibers for Multifunctional Composite Materials

    Science.gov (United States)

    2012-07-31

    31, 2012 X - ray Diffraction of BST Coatings • BaxSr1-xTiO3 films can be grown with stoichiometry control • Process allows for control of the film...thickness from ~500nm to 20mm •Other perovskite compositions can be synthesized 2q Henry A Sodano – AFOSR Mech. of Multifunctional and

  20. Brain and language: evidence for neural multifunctionality.

    Science.gov (United States)

    Cahana-Amitay, Dalia; Albert, Martin L

    2014-01-01

    This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term "neural multifunctionality" refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging.

  1. Multifunctional floodplain management and biodiversity effects

    NARCIS (Netherlands)

    Schindler, Stefan; O’Neill, Fionnuala H.; Biró, Marianna; Damm, Christian; Gasso, Viktor; Kanka, Robert; Sluis, van der Theo; Krug, Andreas; Lauwaars, Sophie G.; Sebesvari, Zita; Pusch, Martin; Baranovsky, Boris; Ehlert, Thomas; Neukirchen, Bernd; Martin, James R.; Euller, Katrin; Mauerhofer, Volker; Wrbka, Thomas

    2016-01-01

    Floodplain ecosystems are biodiversity hotspots and supply multiple ecosystem services. At the same time they are often prone to human pressures that increasingly impact their intactness. Multifunctional floodplain management can be defined as a management approach aimed at a balanced supply of m

  2. Characterisation of multifunctional surfaces with robust filters

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Godi, Alessandro; De Chiffre, Leonardo

    2011-01-01

    Research has shown that engineered surfaces containing lubrication pockets and directional surface texture can decrease wear and friction in sliding or rolling contacts. A new generation of multifunctional (MUFU) surfaces is achieved by hard machining followed by robot assisted polishing (RAP...

  3. Characterization of multifunctional surfaces during fabrication

    DEFF Research Database (Denmark)

    Godi, Alessandro; Friis, Kasper Storgaard; De Chiffre, Leonardo

    2011-01-01

    The multifunctional surfaces herein studied are intended for carrying high loads as well as providing lubrication. They are produced by hard turning, creating a periodic pattern that will constitute the lubricant channels, followed by accurate Robot Assisted Polishing to smooth the tops...

  4. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing.

    Science.gov (United States)

    Xu, Bin-Bin; Zhang, Yong-Lai; Xia, Hong; Dong, Wen-Fei; Ding, Hong; Sun, Hong-Bo

    2013-05-07

    In the pursuit of modern microfluidic chips with multifunction integration, micronanofabrication techniques play an increasingly important role. Despite the fact that conventional fabrication approaches such as lithography, imprinting and soft lithography have been widely used for the preparation of microfluidic chips, it is still challenging to achieve complex microfluidic chips with multifunction integration. Therefore, novel micronanofabrication approaches that could be used to achieve this end are highly desired. As a powerful 3D processing tool, femtosecond laser fabrication shows great potential to endow general microfluidic chips with multifunctional units. In this review, we briefly introduce the fundamental principles of femtosecond laser micronanofabrication. With the help of laser techniques, both the preparation and functionalization of advanced microfluidic chips are summarized. Finally, the current challenges and future perspective of this dynamic field are discussed based on our own opinion.

  5. Computational fluid dynamics simulation and redesign of a screw conveyor reactor.

    Science.gov (United States)

    Wan, Yinkun; Hanley, Thomas R

    2004-01-01

    National Renewable Energy Laboratory (NREL) designed a shrinking-bed reactor to maintain a constant bulk packing density of cellulosic biomass. The high solid-to-liquid ratio in the pretreatment process allows a high sugar yield and avoids the need to flush large volumes of solution through the reactor. To scale up the shrinking-bed reactor, NREL investigated a pilot-scale screw conveyor reactor in which an interrupted flight between screws was employed to mimic the "shrinking-bed" effect. In the experiments with the screw conveyor reactor, overmixing and uneven flow occurred. These phenomena produce negative effects on biomass hydrolysis. The flow behavior inside the reactor was analyzed to allow redesign of the screw to achieve adequate mixing and even flow. In the present study, computational fluid dynamics (CFD) was utilized to simulate the fluid flow in the porous media, and a new screw design was proposed. CFD analysis performed on the redesigned reactor indicated that an even flow pattern was achieved.

  6. Análisis estructural de un transportador de banda. // Structural analysis of a band conveyor.

    Directory of Open Access Journals (Sweden)

    P. Alvarez Barreras

    2001-07-01

    Full Text Available El presente trabajo contiene el análisis de comprobación de la estructura de la cuna de una máquina transportadora debanda. En el mismo se determinan las cargas de servicio y las condiciones de apoyo, se efectúa el cálculo lineal por elmétodo de los elementos finitos, y finalmente se valoran los resultados en forma de:· Análisis de las tensiones.· Análisis de los desplazamientos.· Análisis de las deformaciones.Palabras claves: Transportador de banda, estructura, análisis de tensiones, elementos finitos.________________________________________________________________________________AbstractThe present work contains the structure analysis of a belt conveyor cradle. The operation loads and conditions of supportare determined, the lineal calculation is made by the Finite Element Method, and finally the results are valued in form of:· Analysis of tensions.· Analysis of displacements.· Analysis of deformations.Key words: Belt conveyor cradle, structure, tension analysis, finite element.

  7. Transport of stone material by conveyor belt. Transporte de materiales rocosos por cintas transportadoras

    Energy Technology Data Exchange (ETDEWEB)

    Herranz Villafruela, F. (Lignitos de Meirama S.A., La Coruna (Spain))

    1990-04-01

    During one of the phases of the project (1976) to extract the brown lignite discovered in the Meirama valley (La Coruna) by opencast mining, it was decided, for economic reasons, to transport shale to the spoil tips by conveyor belts. Working on the basis of entirely theoretical data, for want of experience in this field, this waste stone material was crushed as near as possible to the working face in order to make it small enough to be transported by the general conveyor belt system. For this purpose, a semi-mobile crushing unit was selected which advances by means of a hydraulic platform mounted on caterpillar tracks. After several years of operation in the mining environment with what at the beginning was a totally new method, it can be confirmed that a saving has been made in the cost of transporting waste material compared to the use of dumper trucks and their two main cost elements - energy and spare parts. 4 figs., 2 tabs.

  8. New equipment for shifting belt conveyors and rails of basic mining machines

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.

    1977-07-01

    Notes that equipment used in the Polish brown coal surface mines for shifting belt conveyors and rail tracks is easily damaged, particularly under difficult mining conditions in autumn and spring. After the difficult season 1974-1975 the Poltegor Project Center investigated the possibility of constructing new equipment for shifting rails and belt conveyors. In January 1976 the first three prototypes of the PP-12 shifting machine, installed on the DET-250 tractor (produced in GDR), and with GP-12 type grab, were produced. The first tests of PP-12 machines in brown coal surface mines under difficult conditions were positive. The amount of damage decreased, wear of parts also decreased, fuel consumption fell and efficiency of the shifting machines increased. The price of one GP-12 grab produced according to plans developed by Poltegor is 4 times lower than price of the grab imported from FRG (produced by Krupp). Detailed technical specifications of the PP-12 shifting machine as well as the GP-12 grab are given. (In Polish)

  9. Magnetically Attached Multifunction Maintenance Rover

    Science.gov (United States)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces

  10. Bioinspired Multifunctional Membrane for Aquatic Micropollutants Removal.

    Science.gov (United States)

    Cao, Xiaotong; Luo, Jianquan; Woodley, John M; Wan, Yinhua

    2016-11-09

    Micropollutants present in water have many detrimental effects on the ecosystem. Membrane technology plays an important role in the removal of micropollutants, but there remain significant challenges such as concentration polarization, membrane fouling, and variable permeate quality. The work reported here uses a multifunctional membrane with rejection, adsorption, and catalysis functions to solve these problems. On the basis of mussel-inspired chemistry and biological membrane properties, a multifunctional membrane was prepared by applying "reverse filtration" of a laccase solution and subsequent "dopamine coating" on a nanofiltration (NF) membrane support, which was tested on bisphenol A (BPA) removal. Three NF membranes were chosen for the preparation of the multifunctional membranes on the basis of the membrane properties and enzyme immobilization efficiency. Compared with the pristine membrane, the multifunctional membrane exhibited significant improvement of BPA removal (78.21 ± 1.95%, 84.27 ± 7.30%, and 97.04 ± 0.33% for NT103, NF270, and NF90, respectively), all of which are clearly superior to the conventional Fenton treatment (55.0%) under similar conditions and comparable to soluble laccase coupled with NF270 membrane filtration (89.0%). The improvement would appear to be due to a combination of separation (reducing the enzymatic burden), adsorption (enriching the substrate concentration as well as prolonging the residence time), and lastly, catalysis (oxidizing the pollutants and breaking the "adsorption saturation limits"). Furthermore, the synergistic effect of the polydopamine (PDA) layer on the enzymatic oxidation of BPA was confirmed, which was due to its enhanced adsorption and electron transfer performance. The multifunctional membrane could be reused for at least seven cycles with an acceptable activity loss, demonstrating good potential for removal of micropollutants.

  11. Water: The conveyor belt for sustainable livelihoods and economic development

    Science.gov (United States)

    Mapani, Benjamin; Meck, Maideyi; Makurira, Hodson; Magole, Lapologang; Mashauri, Damas; mazvimavi, Dominic; Mul, Marloes

    2016-04-01

    The theme for the 2014 symposium focused on the contribution of integrated water resources management (IWRM) to socio-economic development. A number of papers presented various methods that could be used to enable society to access clean water; sanitation and provision of water for rainfed and irrigation based agriculture and aquaculture. Water is the engine of development, that drives both money generating ventures as well as activities which cannot be assigned exact monetary value, but are essential for the social and economic well being of communities. It is now accepted that in order to produce most products, the contribution of water has to be factored in; from manufacturing to mining. The role that water plays in the has a much higher economic value than most people realize.

  12. MULTIFUNCTIONAL CAGULANTS BASED ON HIDROCARBOALUMINATES CALCIUM

    Directory of Open Access Journals (Sweden)

    Ekaterina Viktorovna Siziakova

    2017-03-01

    Full Text Available The article describes harmful factors from the environmental point of view that accompany almost all stages of production of non-ferrous metals. Due to the fact that this industry requires large volume of water, these factors require special attention when cleaning wastewater. The contamination of wastewater by non-ferrous metallurgy is characterized by metal ions, particulate pollutants, acids, SAS, etc, The common feature of all these substances is harmfulness, however, they are often very aggressive and toxic also. The article focuses on the possible use of hidrocarboaluminates calcium as an active ion exchanger for cleanup wastewater metallurgical production.

  13. Multifunctional SWNT-Based Structural Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — GMA Industries, Inc. proposes produce a lightweight, fully polymeric but intrinsically conducting hybrid material that can be applied towards the production of...

  14. Of Rock Damage and the Regolith Conveyor Belt: A Geomorphologist's View of the Critical Zone

    Science.gov (United States)

    Anderson, R. S.; Anderson, S. P.; Tucker, G. E.

    2011-12-01

    Models of hillslope evolution require rules for the rate of detachment of rock into the mobile regolith layer, for the rate of mobile regolith transport, and for channel incision or aggradation rates that serve as boundary conditions. The evolution of material as it passes through the weathered zone is typically ignored, making it difficult to cast proper rules for production of mobile regolith. The current rules are therefore insufficient to address critical zone evolution, in which the chemical, mechanical, and hydrologic properties of the rock and the regolith matter. These properties evolve as rock is weathered during exhumation, and they continue to evolve as particles ride the conveyor belt of mobile regolith downslope. Models that honor specific processes involved in the evolution of rock as it passes through the CZ will both advance models of landscape evolution, and provide context for ecological and hydrological investigations. Physical processes responsible for progressive damage of rock during exhumation in the current CZOs include frost cracking and tree root cracking. If we define damage as the density of flaws within the rock, we require rules governing the rate of generation of new flaws, which will vary with climate, depth, and the present state of damage. We envision a "damage-limited system" in which the likelihood of release of rock fragments into mobile regolith depends on the accumulated damage in the subjacent rock. In most temperate and alpine settings relevant to the present CZOs, the ratio of a rock's residence time in the damage zone to the duration of a climate oscillation is such that a rock parcel will experience the full spectrum of Quaternary climates. This requires that we address both climate history and the damage and transport rates associated with all Quaternary climates. We present numerical models for rock damage, mobile regolith production, and hillslope profile evolution. These models are motivated by the Boulder Creek CZO

  15. On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity

    NARCIS (Netherlands)

    Suweken, G.; van Horssen, W.T.

    2002-01-01

    In this paper the weakly nonlinear, transversal vibrations of a conveyor belt will be considered. The belt is assumed to move with a low and time-varying speed. Using Kirchhoff's approach a single equation of motion will be derived from a coupled system of partial differential equations describing

  16. Beyond Accidents: A Back-Analysis on Conveyor Belt Injury for a Better Design for Maintenance Operations

    NARCIS (Netherlands)

    Martinetti, Alberto; van Dongen, Leonardus Adriana Maria; Romano, Raffaele

    2016-01-01

    The conveyor belt represents one of the most commonly used methods of transporting bulk materials today. As highlighted multiple times in research, the moving parts are a critical issue causing accidents and injuries and several of these are strictly related to the opportunity to enter in working

  17. 30 CFR 75.1101 - Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives. 75.1101 Section 75.1101 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection §...

  18. Multifunctional non-woven fabrics of interfused graphene fibres.

    Science.gov (United States)

    Li, Zheng; Xu, Zhen; Liu, Yingjun; Wang, Ran; Gao, Chao

    2016-11-30

    Carbon-based fibres hold promise for preparing multifunctional fabrics with electrical conductivity, thermal conductivity, permeability, flexibility and lightweight. However, these fabrics are of limited performance mainly because of the weak interaction between fibres. Here we report non-woven graphene fibre fabrics composed of randomly oriented and interfused graphene fibres with strong interfibre bonding. The all-graphene fabrics obtained through a wet-fusing assembly approach are porous and lightweight, showing high in-plane electrical conductivity up to ∼2.8 × 10(4 )S m(-1) and prominent thermal conductivity of ∼301.5 W m(-1 )K(-1). Given the low density (0.22 g cm(-3)), their specific electrical and thermal conductivities set new records for carbon-based papers/fabrics and even surpass those of individual graphene fibres. The as-prepared fabrics are further used as ultrafast responding electrothermal heaters and durable oil-adsorbing felts, demonstrating their great potential as high-performance and multifunctional fabrics in real-world applications.

  19. Multifunctional hydrogel nano-probes for atomic force microscopy

    Science.gov (United States)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  20. 圆管带式输送机压陷阻力的计算方法%Method of calculating indentation resistance of tubular belt conveyor

    Institute of Scientific and Technical Information of China (English)

    陈洪亮; 熊爽

    2013-01-01

    通过分析圆管带式输送机的托辊组与输送带之间的作用关系,得出圆管带式输送机的压陷阻力是圆管状输送带与圆柱形辊子的空间接触产生的,应采用二维模型计算压陷阻力.通过DEM仿真方法分析了不同充填率下物料在托辊组各个辊子上的正压力分布,采用Nuttall基于广义的Maxwell二维模型计算式,应用MATLAB通过迭代方法计算压陷阻力矩,进而实现对压陷阻力和压陷阻力系数的计算.%After analyzing the interaction between idler group and belt of the tubular belt conveyor,the paper concluded that the indentation resistance of the tubular belt conveyor produced due to the spatial contact between tubular belt and cylindrical idler,so 2D model should be applied to calculation of the indentation resistance.In addition,DEM simulation method was used to analyze the distribution of normal pressure on each idler at various material filling rate.Calculation formula of 2D Nuttall model based on generalized Maxwell model and MATLAB iteration method were used to calculate the indentation resistance moment,so as to calculate the indentation resistance and indentation resistance coefficient.