WorldWideScience

Sample records for convex surface facing

  1. Convex surfaces

    CERN Document Server

    Busemann, Herbert

    2008-01-01

    This exploration of convex surfaces focuses on extrinsic geometry and applications of the Brunn-Minkowski theory. It also examines intrinsic geometry and the realization of intrinsic metrics. 1958 edition.

  2. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    . The output of the reconstruction algorithm is a polytope P, where the surface tensors of P and K are identical up to rank s. We establish a stability result based on a generalization of Wirtinger’s inequality that shows that for large s, two convex bodies are close in shape when they have identical surface...... that are translates of each other. An algorithm for reconstructing an unknown convex body in R 2 from its surface tensors up to a certain rank is presented. Using the reconstruction algorithm, the shape of an unknown convex body can be approximated when only a finite number s of surface tensors are available...... tensors up to rank s. This is used to establish consistency of the developed reconstruction algorithm....

  3. Transient disturbance growth in flows over convex surfaces

    Science.gov (United States)

    Karp, Michael; Hack, M. J. Philipp

    2017-11-01

    Flows over curved surfaces occur in a wide range of applications including airfoils, compressor and turbine vanes as well as aerial, naval and ground vehicles. In most of these applications the surface has convex curvature, while concave surfaces are less common. Since monotonic boundary-layer flows over convex surfaces are exponentially stable, they have received considerably less attention than flows over concave walls which are destabilized by centrifugal forces. Non-modal mechanisms may nonetheless enable significant disturbance growth which can make the flow susceptible to secondary instabilities. A parametric investigation of the transient growth and secondary instability of flows over convex surfaces is performed. The specific conditions yielding the maximal transient growth and strongest instability are identified. The effect of wall-normal and spanwise inflection points on the instability process is discussed. Finally, the role and significance of additional parameters, such as the geometry and pressure gradient, is analyzed.

  4. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...

  5. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    2016-01-01

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... of surface tensors are available for reconstruction, we recommend to use certain values of the surface tensors, namely harmonic intrinsic volumes instead of the surface tensors evaluated at the standard basis. The second algorithm we present is based on harmonic intrinsic volumes and allows for noisy...... measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based on measurements subject to noise is established under certain assumptions on the noise...

  6. Six-month-old infants' perception of the hollow face illusion: evidence for a general convexity bias.

    Science.gov (United States)

    Corrow, Sherryse L; Mathison, Jordan; Granrud, Carl E; Yonas, Albert

    2014-01-01

    Corrow, Granrud, Mathison, and Yonas (2011, Perception, 40, 1376-1383) found evidence that 6-month-old infants perceive the hollow face illusion. In the present study we asked whether 6-month-old infants perceive illusory depth reversal for a nonface object and whether infants' perception of the hollow face illusion is affected by mask orientation inversion. In experiment 1 infants viewed a concave bowl, and their reaches were recorded under monocular and binocular viewing conditions. Infants reached to the bowl as if it were convex significantly more often in the monocular than in the binocular viewing condition. These results suggest that infants perceive illusory depth reversal with a nonface stimulus and that the infant visual system has a bias to perceive objects as convex. Infants in experiment 2 viewed a concave face-like mask in upright and inverted orientations. Infants reached to the display as if it were convex more in the monocular than in the binocular condition; however, mask orientation had no effect on reaching. Previous findings that adults' perception of the hollow face illusion is affected by mask orientation inversion have been interpreted as evidence of stored-knowledge influences on perception. However, we found no evidence of such influences in infants, suggesting that their perception of this illusion may not be affected by stored knowledge, and that perceived depth reversal is not face-specific in infants.

  7. Moduli spaces of convex projective structures on surfaces

    DEFF Research Database (Denmark)

    Fock, V. V.; Goncharov, A. B.

    2007-01-01

    We introduce explicit parametrisations of the moduli space of convex projective structures on surfaces, and show that the latter moduli space is identified with the higher Teichmüller space for defined in [V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, math.......AG/0311149]. We investigate the cluster structure of this moduli space, and define its quantum version....

  8. Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization.

    Science.gov (United States)

    Craft, David

    2010-10-01

    A discrete set of points and their convex combinations can serve as a sparse representation of the Pareto surface in multiple objective convex optimization. We develop a method to evaluate the quality of such a representation, and show by example that in multiple objective radiotherapy planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five dimensions grows at most linearly with the number of objectives. The method described is also applicable to the representation of convex sets. Copyright © 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Approximating convex Pareto surfaces in multiobjective radiotherapy planning

    International Nuclear Information System (INIS)

    Craft, David L.; Halabi, Tarek F.; Shih, Helen A.; Bortfeld, Thomas R.

    2006-01-01

    Radiotherapy planning involves inherent tradeoffs: the primary mission, to treat the tumor with a high, uniform dose, is in conflict with normal tissue sparing. We seek to understand these tradeoffs on a case-to-case basis, by computing for each patient a database of Pareto optimal plans. A treatment plan is Pareto optimal if there does not exist another plan which is better in every measurable dimension. The set of all such plans is called the Pareto optimal surface. This article presents an algorithm for computing well distributed points on the (convex) Pareto optimal surface of a multiobjective programming problem. The algorithm is applied to intensity-modulated radiation therapy inverse planning problems, and results of a prostate case and a skull base case are presented, in three and four dimensions, investigating tradeoffs between tumor coverage and critical organ sparing

  10. Novel attempt to create uniform magnetic-field space generated by face-to-face settled HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, Tetsuo; Ichiju, Kana; Higa, Kazuya; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Yokoyama, Kazuya; Nakamura, Takashi

    2017-01-01

    Various experimental attempts have been made to obtain a uniform magnetic field in the space between face-to-face HTS bulk magnets that could possibly be utilized as NMR magnets. In general, the magnetic fields emitted from the magnetic pole surfaces containing HTS bulk magnets are characterized as non-uniform field distributions. Since the NMR magnets require highly uniform magnetic-field spaces, it has been assumed to be difficult to form uniform magnetic-field spaces between magnetic poles placed face-to-face. The authors modified the shapes of the magnetic-field distribution from convex to concave by attaching ferromagnetic iron plates to the pole surfaces. The magnets were then set face-to-face with various gaps of 30-70 mm, and the experimental data on magnetic-field uniformity was precisely measured in the space. In order to detect the NMR signals, the target performance for uniformity was set as 1,500 ppm throughout the 4-mm span on the x-axis, which is equivalent to performance in the past when the world's first detection of NMR signals was observed in the bore of hollow-type HTS bulk magnets. When we combined the concave and convex field distributions to compensate the uneven field distributions, the data of the best uniformity reached 358 ppm and 493 ppm in the 30 mm and 50 mm gaps, respectively, which exceeded the target value for the purpose of detecting the NMR signals within the space. Furthermore, it was shown that the field distributions change from concave to convex shape without any change at 1.1 T in the range from 7 to 11 mm in the 30-mm gap, indicating that the distributions are uniform. This suggests the possibility that the uniform magnetic-field space between the HTS bulk magnets set face-to-face expands. (author)

  11. Some Aspects of Convexity

    Indian Academy of Sciences (India)

    for all t E [0,1] and all x, y (in the domain of definition of f). ... Proof: (a) is a consequence of the definition. (b) Define conv(S) ... More generally, a set F is said to be a face of the convex .... and bounded, and assume the validity (for a proof, see.

  12. Convexity-preserving Bernstein–Bézier quartic scheme

    Directory of Open Access Journals (Sweden)

    Maria Hussain

    2014-07-01

    Full Text Available A C1 convex surface data interpolation scheme is presented to preserve the shape of scattered data arranged over a triangular grid. Bernstein–Bézier quartic function is used for interpolation. Lower bound of the boundary and inner Bézier ordinates is determined to guarantee convexity of surface. The developed scheme is flexible and involves more relaxed constraints.

  13. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Yi, Ying; Foulds, Ian G.

    2013-01-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  14. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  15. Undergraduate Convexity

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimin......Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier......-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point...... algorithm....

  16. Undergraduate Convexity

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    -Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point......Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier...

  17. NP-completeness of weakly convex and convex dominating set decision problems

    Directory of Open Access Journals (Sweden)

    Joanna Raczek

    2004-01-01

    Full Text Available The convex domination number and the weakly convex domination number are new domination parameters. In this paper we show that the decision problems of convex and weakly convex dominating sets are \\(NP\\-complete for bipartite and split graphs. Using a modified version of Warshall algorithm we can verify in polynomial time whether a given subset of vertices of a graph is convex or weakly convex.

  18. Formation of Sheeting Joints as a Result of Compression Parallel to Convex Surfaces, With Examples from Yosemite National Park, California

    Science.gov (United States)

    Martel, S. J.

    2008-12-01

    The formation of sheeting joints has been an outstanding problem in geology. New observations and analyses indicate that sheeting joints develop in response to a near-surface tension induced by compressive stresses parallel to a convex slope (hypothesis 1) rather than by removal of overburden by erosion, as conventionally assumed (hypothesis 2). Opening mode displacements across the joints together with the absence of mineral precipitates within the joints mean that sheeting joints open in response to a near-surface tension normal to the surface rather than a pressurized fluid. Consideration of a plot of this tensile stress as a function of depth normal to the surface reveals that a true tension must arise in the shallow subsurface if the rate of that tensile stress change with depth is positive at the surface. Static equilibrium requires this rate (derivative) to equal P22 k2 + P33 k3 - ρ g cosβ, where k2 and k3 are the principal curvatures of the surface, P22 and P33 are the respective surface- parallel normal stresses along the principal curvatures, ρ is the material density, g is gravitational acceleration, and β is the slope. This derivative will be positive and sheeting joints can open if at least one principal curvature is sufficiently convex (negative) and the surface-parallel stresses are sufficiently compressive (negative). At several sites with sheeting joints (e.g., Yosemite National Park in California), the measured topographic curvatures and the measured surface-parallel stresses of about -10 MPa combine to meet this condition. In apparent violation of hypothesis 1, sheeting joints occur locally at the bottom of Tenaya Canyon, one of the deepest glaciated, U-shaped (concave) canyons in the park. The canyon-bottom sheeting joints only occur, however, where the canyon is convex downstream, a direction that nearly coincides with direction of the most compressive stress measured in the vicinity. The most compressive stress acting along the convex

  19. Convexity Adjustments

    DEFF Research Database (Denmark)

    M. Gaspar, Raquel; Murgoci, Agatha

    2010-01-01

    A convexity adjustment (or convexity correction) in fixed income markets arises when one uses prices of standard (plain vanilla) products plus an adjustment to price nonstandard products. We explain the basic and appealing idea behind the use of convexity adjustments and focus on the situations...

  20. Convex analysis

    CERN Document Server

    Rockafellar, Ralph Tyrell

    2015-01-01

    Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and

  1. Recent characterizations of generalized convexity in convexity in cooperative game thoery

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, T.

    1994-12-31

    The notion of convexity for a real-valued function on the power set of the finite set N (the so-called cooperative game with player set N) is defined as in other mathematical fields. The study of convexity plays an important role within the field of cooperative game theory because the application of the solution part of game theory to convex games provides elegant results for the solution concepts involved. Especially, the well known solution concept called core is, for convex games, very well characterized. The current paper focuses on a notion of generalized convexity, called k- convexity, for cooperative n-person games. Due to very recent characterizations of convexity for cooperative games, the goal is to provide similar new characterizations of k-convexity. The main characterization states that for the k-convexity of an n-person game it is both necessary and sufficient that half of all the so-called marginal worth vectors belong to the core of the game. Here it is taken into account whether a marginal worth vector corresponds to an even or odd ordering of k elements of the n-person player set N. Another characterization of k-convexity is presented in terms of a so-called finite min-modular decomposition. That is, some specific cover game of a k-convex game can be decomposed as the minimum of a finite number of modular (or additive) games. Finally it is established that the k-convexity of a game can be characterized in terms of the second order partial derivates of the so-called multilinear extension of the game.

  2. Convex Lattice Polygons

    Science.gov (United States)

    Scott, Paul

    2006-01-01

    A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.

  3. Quantum logics and convex geometry

    International Nuclear Information System (INIS)

    Bunce, L.J.; Wright, J.D.M.

    1985-01-01

    The main result is a representation theorem which shows that, for a large class of quantum logics, a quantum logic, Q, is isomorphic to the lattice of projective faces in a suitable convex set K. As an application we extend our earlier results, which, subject to countability conditions, gave a geometric characterization of those quantum logics which are isomorphic to the projection lattice of a von Neumann algebra or a JBW-algebra. (orig.)

  4. Two-convex polygons

    OpenAIRE

    Aichholzer, Oswin; Aurenhammer, Franz; Hurtado Díaz, Fernando Alfredo; Ramos, Pedro A.; Urrutia, J.

    2009-01-01

    We introduce a notion of k-convexity and explore some properties of polygons that have this property. In particular, 2-convex polygons can be recognized in O(n log n) time, and k-convex polygons can be triangulated in O(kn) time.

  5. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  6. Undergraduate Convexity

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimin...

  7. A new convexity measure for polygons.

    Science.gov (United States)

    Zunic, Jovisa; Rosin, Paul L

    2004-07-01

    Abstract-Convexity estimators are commonly used in the analysis of shape. In this paper, we define and evaluate a new convexity measure for planar regions bounded by polygons. The new convexity measure can be understood as a "boundary-based" measure and in accordance with this it is more sensitive to measured boundary defects than the so called "area-based" convexity measures. When compared with the convexity measure defined as the ratio between the Euclidean perimeter of the convex hull of the measured shape and the Euclidean perimeter of the measured shape then the new convexity measure also shows some advantages-particularly for shapes with holes. The new convexity measure has the following desirable properties: 1) the estimated convexity is always a number from (0, 1], 2) the estimated convexity is 1 if and only if the measured shape is convex, 3) there are shapes whose estimated convexity is arbitrarily close to 0, 4) the new convexity measure is invariant under similarity transformations, and 5) there is a simple and fast procedure for computing the new convexity measure.

  8. Study on mechanics of driving drum with superelastic convexity surface covering-layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.J.; Sui, X.H.; Miao, D.J. [Shandong University of Science & Technology, Qingdao (China)

    2008-09-15

    Belt conveyor is one of the main transport equipment in coal mine and the driving drum is its key part. With the method of bionic design, the mushroom morphological structure is applied to the design of covering-layer structure of driving drum surface of belt conveyor. Superelastic rubber with large deformation is adopted as the covering-layer material. Nonlinear constitutive model of rubber, which is of superelasticity and large deformation, is established. The stress states and deformation principles of driving drums including both bionic covering-layer and common covering-layer are obtained by static intensity analysis with Finite Element Analysis (FEA) software ANSYS. The values of the stress and strain on the driving drum surface are gotten and the dangerous area is determined. FEA results show that the superelastic convexity surface structure can enlarge the contact area between the driving drum and viscoelastic belt. The results also show that in comparison with common driving drum, the bionic surface driving drum can not only increase the friction coefficient between drum and belt but also prolong its service life.

  9. Bypassing the Limits of Ll Regularization: Convex Sparse Signal Processing Using Non-Convex Regularization

    Science.gov (United States)

    Parekh, Ankit

    Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal

  10. θ-convex nonlinear programming problems

    International Nuclear Information System (INIS)

    Emam, T.

    2008-01-01

    A class of sets and a class of functions called θ-convex sets and θ-convex functions are introduced by relaxing the definitions of convex sets and operator θ on the sets and domain of definition of the functions. The optimally results for θ-convex programming problems are established.

  11. Theory of convex structures

    CERN Document Server

    van de Vel, MLJ

    1993-01-01

    Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) and of geodesically convex sets (Menger) are directly inspired by intuition; they go back to the first half of this century. An axiomatic approach started to develop in the early Fifties. The author became attracted to it in the mid-Seventies, resulting in the present volume, in which graphs appear si

  12. Analysis of the skin surface and inner structure around pores on the face.

    Science.gov (United States)

    Mizukoshi, Koji; Takahashi, Kazuhiro

    2014-02-01

    Facial pores do not appear to close again in old skin. Therefore, the tissue structure around the pore has been speculated to keep the pore open. To elucidate the reason for pore enlargement, we examined the relationship between the skin surface and inner skin structural characteristics in the same regions especially around the pore. Samples of the skin surface were obtained from the cheek and examined using a laser image processor to obtain three-dimensional (3D) data. The inner structure of the skin was analyzed using in vivo confocal laser scanning microscopy (CLSM). The conspicuous pore not only had a concave structure but also a discontinuous convex structure on the skin surface surrounding the pore. Furthermore, CLSM image indicated that the skin inner structure developed a discontinuous dermal papilla structure and isotropic dermal fiber structure. There were structural changes in the skin surface around conspicuous pores, including not only a concave structure but also a convex structure with skin inner structure changing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Analytic aspects of convexity

    CERN Document Server

    Colesanti, Andrea; Gronchi, Paolo

    2018-01-01

    This book presents the proceedings of the international conference Analytic Aspects in Convexity, which was held in Rome in October 2016. It offers a collection of selected articles, written by some of the world’s leading experts in the field of Convex Geometry, on recent developments in this area: theory of valuations; geometric inequalities; affine geometry; and curvature measures. The book will be of interest to a broad readership, from those involved in Convex Geometry, to those focusing on Functional Analysis, Harmonic Analysis, Differential Geometry, or PDEs. The book is a addressed to PhD students and researchers, interested in Convex Geometry and its links to analysis.

  14. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    International Nuclear Information System (INIS)

    Kibar, Ali

    2017-01-01

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface. (paper)

  15. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, Arslanbey Campus, 41285, Kocaeli (Turkey)

    2017-02-15

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface. (paper)

  16. Convex Interval Games

    NARCIS (Netherlands)

    Alparslan-Gok, S.Z.; Brânzei, R.; Tijs, S.H.

    2008-01-01

    In this paper, convex interval games are introduced and some characterizations are given. Some economic situations leading to convex interval games are discussed. The Weber set and the Shapley value are defined for a suitable class of interval games and their relations with the interval core for

  17. Generalized Convexity and Inequalities

    OpenAIRE

    Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M.

    2007-01-01

    Let R+ = (0,infinity) and let M be the family of all mean values of two numbers in R+ (some examples are the arithmetic, geometric, and harmonic means). Given m1, m2 in M, we say that a function f : R+ to R+ is (m1,m2)-convex if f(m1(x,y)) < or = m2(f(x),f(y)) for all x, y in R+ . The usual convexity is the special case when both mean values are arithmetic means. We study the dependence of (m1,m2)-convexity on m1 and m2 and give sufficient conditions for (m1,m2)-convexity of functions defined...

  18. The occipital lobe convexity sulci and gyri.

    Science.gov (United States)

    Alves, Raphael V; Ribas, Guilherme C; Párraga, Richard G; de Oliveira, Evandro

    2012-05-01

    The anatomy of the occipital lobe convexity is so intricate and variable that its precise description is not found in the classic anatomy textbooks, and the occipital sulci and gyri are described with different nomenclatures according to different authors. The aim of this study was to investigate and describe the anatomy of the occipital lobe convexity and clarify its nomenclature. The configurations of sulci and gyri on the lateral surface of the occipital lobe of 20 cerebral hemispheres were examined in order to identify the most characteristic and consistent patterns. The most characteristic and consistent occipital sulci identified in this study were the intraoccipital, transverse occipital, and lateral occipital sulci. The morphology of the transverse occipital sulcus and the intraoccipital sulcus connection was identified as the most important aspect to define the gyral pattern of the occipital lobe convexity. Knowledge of the main features of the occipital sulci and gyri permits the recognition of a basic configuration of the occipital lobe and the identification of its sulcal and gyral variations.

  19. The hollow-face illusion: object-specific knowledge, general assumptions or properties of the stimulus?

    Science.gov (United States)

    Hill, Harold; Johnston, Alan

    2007-01-01

    The hollow-face illusion, in which a mask appears as a convex face, is a powerful example of binocular depth inversion occurring with a real object under a wide range of viewing conditions. Explanations of the illusion are reviewed and six experiments reported. In experiment 1 the detrimental effect of figural inversion, evidence for the importance of familiarity, was found for other oriented objects. The inversion effect held for masks lit from the side (experiment 2). The illusion was stronger for a mask rotated by 90 degrees lit from its forehead than from its chin, suggesting that familiar patterns of shading enhance the illusion (experiment 2). There were no effects of light source visibility or any left/right asymmetry (experiment 3). In experiments 4-6 we used a 'virtual' hollow face, with illusion strength quantified by the proportion of noise texture needed to eliminate the illusion. Adding characteristic surface colour enhanced the illusion, consistent with the familiar face pigmentation outweighing additional bottom-up cues (experiment 4). There was no difference between perspective and orthographic projection. Photographic negation reduced, but did not eliminate, the illusion, suggesting shading is important but not essential (experiment 5). Absolute depth was not critical, although a shallower mask was given less extreme convexity ratings (experiment 6). We argue that the illusion arises owing to a convexity preference when the raw data have ambiguous interpretations. However, using a familiar object with typical orientation, shading, and pigmentation greatly enhances the effect.

  20. A noncommutative convexity in C*-bimodules

    Directory of Open Access Journals (Sweden)

    Mohsen Kian

    2017-02-01

    Full Text Available Let A and B be C*-algebras. We consider a noncommutative convexity in Hilbert A-B-bimodules, called A-B-convexity, as a generalization of C*-convexity in C*-algebras. We show that if X is a Hilbert A-B-bimodule, then Mn(X is a Hilbert Mn(A-Mn(B-bimodule and apply it to show that the closed unit ball of every Hilbert A-B-bimodule is A-B-convex. Some properties of this kind of convexity and various examples have been given.

  1. Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses.

    Science.gov (United States)

    Schein, Stan; Gayed, James Maurice

    2014-02-25

    The three known classes of convex polyhedron with equal edge lengths and polyhedral symmetry--tetrahedral, octahedral, and icosahedral--are the 5 Platonic polyhedra, the 13 Archimedean polyhedra--including the truncated icosahedron or soccer ball--and the 2 rhombic polyhedra reported by Johannes Kepler in 1611. (Some carbon fullerenes, inorganic cages, icosahedral viruses, geodesic structures, and protein complexes resemble these fundamental shapes.) Here we add a fourth class, "Goldberg polyhedra," which are also convex and equilateral. We begin by decorating each of the triangular facets of a tetrahedron, an octahedron, or an icosahedron with the T vertices and connecting edges of a "Goldberg triangle." We obtain the unique set of internal angles in each planar face of each polyhedron by solving a system of n equations and n variables, where the equations set the dihedral angle discrepancy about different types of edge to zero, and the variables are a subset of the internal angles in 6gons. Like the faces in Kepler's rhombic polyhedra, the 6gon faces in Goldberg polyhedra are equilateral and planar but not equiangular. We show that there is just a single tetrahedral Goldberg polyhedron, a single octahedral one, and a systematic, countable infinity of icosahedral ones, one for each Goldberg triangle. Unlike carbon fullerenes and faceted viruses, the icosahedral Goldberg polyhedra are nearly spherical. The reasoning and techniques presented here will enable discovery of still more classes of convex equilateral polyhedra with polyhedral symmetry.

  2. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølfting; Jacob, Rico

    2002-01-01

    In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the d......In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage...... of the data structure is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects...... the convex hull, and the tangent queries to determine whether a given point is inside the convex hull. We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....

  3. Use of Convexity in Ostomy Care

    Science.gov (United States)

    Salvadalena, Ginger; Pridham, Sue; Droste, Werner; McNichol, Laurie; Gray, Mikel

    2017-01-01

    Ostomy skin barriers that incorporate a convexity feature have been available in the marketplace for decades, but limited resources are available to guide clinicians in selection and use of convex products. Given the widespread use of convexity, and the need to provide practical guidelines for appropriate use of pouching systems with convex features, an international consensus panel was convened to provide consensus-based guidance for this aspect of ostomy practice. Panelists were provided with a summary of relevant literature in advance of the meeting; these articles were used to generate and reach consensus on 26 statements during a 1-day meeting. Consensus was achieved when 80% of panelists agreed on a statement using an anonymous electronic response system. The 26 statements provide guidance for convex product characteristics, patient assessment, convexity use, and outcomes. PMID:28002174

  4. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika; Amato, Nancy M.; Lu, Yanyan; Lien, Jyh-Ming

    2013-01-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  5. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika

    2013-02-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  6. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Jacob, Riko

    We determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the data structure...... is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects the convex hull......, and the tangent queries to determine whether a given point is inside the convex hull. The space usage of the data structure is O(n). We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....

  7. Advanced Face Gear Surface Durability Evaluations

    Science.gov (United States)

    Lewicki, David G.; Heath, Gregory F.

    2016-01-01

    The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.

  8. A class of free locally convex spaces

    International Nuclear Information System (INIS)

    Sipacheva, O V

    2003-01-01

    Stratifiable spaces are a natural generalization of metrizable spaces for which Dugundji's theorem holds. It is proved that the free locally convex space of a stratifiable space is stratifiable. This means, in particular, that the space of finitely supported probability measures on a stratifiable space is a retract of a locally convex space, and that each stratifiable convex subset of a locally convex space is a retract of a locally convex space

  9. Geometry of isotropic convex bodies

    CERN Document Server

    Brazitikos, Silouanos; Valettas, Petros; Vritsiou, Beatrice-Helen

    2014-01-01

    The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lov�sz-Simonovits conjecture. This book prov...

  10. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.

    2013-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. Entropy coherent and entropy convex measures of risk are special cases of φ-coherent and φ-convex measures of risk. Contrary to the classical use of coherent and convex

  11. Convexity and Marginal Vectors

    NARCIS (Netherlands)

    van Velzen, S.; Hamers, H.J.M.; Norde, H.W.

    2002-01-01

    In this paper we construct sets of marginal vectors of a TU game with the property that if the marginal vectors from these sets are core elements, then the game is convex.This approach leads to new upperbounds on the number of marginal vectors needed to characterize convexity.An other result is that

  12. Foundations of complex analysis in non locally convex spaces function theory without convexity condition

    CERN Document Server

    Bayoumi, A

    2003-01-01

    All the existing books in Infinite Dimensional Complex Analysis focus on the problems of locally convex spaces. However, the theory without convexity condition is covered for the first time in this book. This shows that we are really working with a new, important and interesting field. Theory of functions and nonlinear analysis problems are widespread in the mathematical modeling of real world systems in a very broad range of applications. During the past three decades many new results from the author have helped to solve multiextreme problems arising from important situations, non-convex and

  13. Flat tori in three-dimensional space and convex integration.

    Science.gov (United States)

    Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris

    2012-05-08

    It is well-known that the curvature tensor is an isometric invariant of C(2) Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C(1). This unexpected flexibility has many paradoxical consequences, one of them is the existence of C(1) isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash's results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C(1) fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C(1) and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations.

  14. Alpha-Concave Hull, a Generalization of Convex Hull

    OpenAIRE

    Asaeedi, Saeed; Didehvar, Farzad; Mohades, Ali

    2013-01-01

    Bounding hull, such as convex hull, concave hull, alpha shapes etc. has vast applications in different areas especially in computational geometry. Alpha shape and concave hull are generalizations of convex hull. Unlike the convex hull, they construct non-convex enclosure on a set of points. In this paper, we introduce another generalization of convex hull, named alpha-concave hull, and compare this concept with convex hull and alpha shape. We show that the alpha-concave hull is also a general...

  15. Notions of convexity

    CERN Document Server

    Hörmander, Lars

    1994-01-01

    The first two chapters of this book are devoted to convexity in the classical sense, for functions of one and several real variables respectively. This gives a background for the study in the following chapters of related notions which occur in the theory of linear partial differential equations and complex analysis such as (pluri-)subharmonic functions, pseudoconvex sets, and sets which are convex for supports or singular supports with respect to a differential operator. In addition, the convexity conditions which are relevant for local or global existence of holomorphic differential equations are discussed, leading up to Trépreau’s theorem on sufficiency of condition (capital Greek letter Psi) for microlocal solvability in the analytic category. At the beginning of the book, no prerequisites are assumed beyond calculus and linear algebra. Later on, basic facts from distribution theory and functional analysis are needed. In a few places, a more extensive background in differential geometry or pseudodiffer...

  16. Reconstruction of convex bodies from moments

    DEFF Research Database (Denmark)

    Hörrmann, Julia; Kousholt, Astrid

    We investigate how much information about a convex body can be retrieved from a finite number of its geometric moments. We give a sufficient condition for a convex body to be uniquely determined by a finite number of its geometric moments, and we show that among all convex bodies, those which......- rithm that approximates a convex body using a finite number of its Legendre moments. The consistency of the algorithm is established using the stabil- ity result for Legendre moments. When only noisy measurements of Legendre moments are available, the consistency of the algorithm is established under...

  17. Two generalizations of column-convex polygons

    International Nuclear Information System (INIS)

    Feretic, Svjetlan; Guttmann, Anthony J

    2009-01-01

    Column-convex polygons were first counted by area several decades ago, and the result was found to be a simple, rational, generating function. In this work we generalize that result. Let a p-column polyomino be a polyomino whose columns can have 1, 2, ..., p connected components. Then column-convex polygons are equivalent to 1-convex polyominoes. The area generating function of even the simplest generalization, namely 2-column polyominoes, is unlikely to be solvable. We therefore define two classes of polyominoes which interpolate between column-convex polygons and 2-column polyominoes. We derive the area generating functions of those two classes, using extensions of existing algorithms. The growth constants of both classes are greater than the growth constant of column-convex polyominoes. Rather tight lower bounds on the growth constants complement a comprehensive asymptotic analysis.

  18. Entropy Coherent and Entropy Convex Measures of Risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.A.

    2011-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. We prove that convex, entropy convex and entropy coherent measures of risk emerge as certainty equivalents under variational, homothetic and multiple priors preferences,

  19. Duality and calculus of convex objects (theory and applications)

    International Nuclear Information System (INIS)

    Brinkhuis, Ya; Tikhomirov, V M

    2007-01-01

    A new approach to convex calculus is presented, which allows one to treat from a single point of view duality and calculus for various convex objects. This approach is based on the possibility of associating with each convex object (a convex set or a convex function) a certain convex cone without loss of information about the object. From the duality theorem for cones duality theorems for other convex objects are deduced as consequences. The theme 'Duality formulae and the calculus of convex objects' is exhausted (from a certain precisely formulated point of view). Bibliography: 5 titles.

  20. Face recognition based on depth maps and surface curvature

    Science.gov (United States)

    Gordon, Gaile G.

    1991-09-01

    This paper explores the representation of the human face by features based on the curvature of the face surface. Curature captures many features necessary to accurately describe the face, such as the shape of the forehead, jawline, and cheeks, which are not easily detected from standard intensity images. Moreover, the value of curvature at a point on the surface is also viewpoint invariant. Until recently range data of high enough resolution and accuracy to perform useful curvature calculations on the scale of the human face had been unavailable. Although several researchers have worked on the problem of interpreting range data from curved (although usually highly geometrically structured) surfaces, the main approaches have centered on segmentation by signs of mean and Gaussian curvature which have not proved sufficient in themselves for the case of the human face. This paper details the calculation of principal curvature for a particular data set, the calculation of general surface descriptors based on curvature, and the calculation of face specific descriptors based both on curvature features and a priori knowledge about the structure of the face. These face specific descriptors can be incorporated into many different recognition strategies. A system that implements one such strategy, depth template comparison, giving recognition rates between 80% and 90% is described.

  1. Generalized convexity, generalized monotonicity recent results

    CERN Document Server

    Martinez-Legaz, Juan-Enrique; Volle, Michel

    1998-01-01

    A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo­ metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man­ agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized conve...

  2. The TMS-1 corneal topography measurement applied to calibrated ellipsoidal convex surfaces.

    Science.gov (United States)

    Douthwaite, W A; Matilla, M T

    1996-03-01

    The purpose of this report is to assess the accuracy of the TMS-1 videokeratoscope (Computed Anatomy Inc.) by using convex ellipsoidal surfaces. The ellipsoids were calibrated using Form Talysurf analysis, which allowed for subsequent calculation of the vertex radius and p value. The videokeratoscope was used to examine the same ellipsoids. The data provided by the instrument software were used to plot a graph of r2 verses y2, where r is the measured radius at y, the distance from the corneal point being measured to the optical axis of the instrument. The intercept on the ordinate of this graph gives the vertex radius, and the slope give the p value. The results arising from the Talysurf and the TMS-1 techniques were compared. The TMS-1 videokeratoscope gave readings for the vertex radius that were generally higher than those of the Talysurf analysis. The vertex radius was up to 0.09 mm greater. The p value results were similar by the two methods for p values of approximately 0.8; however, the TMS-1 results were higher, and the discrepancy increased as the p value approached that of a paraboloid. Although the videokeratoscope may be useful in comparative studies of the cornea, there must be some doubt about the absolute values displayed as the surface becomes increasingly aspheric.

  3. Convexity Adjustments for ATS Models

    DEFF Research Database (Denmark)

    Murgoci, Agatha; Gaspar, Raquel M.

    . As a result we classify convexity adjustments into forward adjustments and swaps adjustments. We, then, focus on affine term structure (ATS) models and, in this context, conjecture convexity adjustments should be related of affine functionals. In the case of forward adjustments, we show how to obtain exact...

  4. Convex games versus clan games

    NARCIS (Netherlands)

    Brânzei, R.; Dimitrov, D.A.; Tijs, S.H.

    2008-01-01

    In this paper we provide characterizations of convex games and total clan games by using properties of their corresponding marginal games. We show that a "dualize and restrict" procedure transforms total clan games with zero worth for the clan into monotonic convex games. Furthermore, each monotonic

  5. Convex Games versus Clan Games

    NARCIS (Netherlands)

    Brânzei, R.; Dimitrov, D.A.; Tijs, S.H.

    2006-01-01

    In this paper we provide characterizations of convex games and total clan games by using properties of their corresponding marginal games.We show that a "dualize and restrict" procedure transforms total clan games with zero worth for the clan into monotonic convex games.Furthermore, each monotonic

  6. An easy path to convex analysis and applications

    CERN Document Server

    Mordukhovich, Boris S

    2013-01-01

    Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical foundation for convex optimization, having deep knowledge of convex analysis helps students and researchers apply its tools more effectively. The main goal of this book is to provide an easy access to the most fundamental parts of convex analysis and its applications to optimization. Modern techniques of variational analysis are employed to cl

  7. On Hadamard-Type Inequalities Involving Several Kinds of Convexity

    Directory of Open Access Journals (Sweden)

    Dragomir SeverS

    2010-01-01

    Full Text Available We do not only give the extensions of the results given by Gill et al. (1997 for log-convex functions but also obtain some new Hadamard-type inequalities for log-convex -convex, and -convex functions.

  8. A wear simulation study of nanostructured CVD diamond-on-diamond articulation involving concave/convex mating surfaces

    Science.gov (United States)

    Baker, Paul A.; Thompson, Raymond G.; Catledge, Shane A.

    2015-01-01

    Using microwave-plasma Chemical Vapor Deposition (CVD), a 3-micron thick nanostructured-diamond (NSD) layer was deposited onto polished, convex and concave components that were machined from Ti-6Al-4V alloy. These components had the same radius of curvature, 25.4mm. Wear testing of the surfaces was performed by rotating articulation of the diamond-deposited surfaces (diamond-on-diamond) with a load of 225N for a total of 5 million cycles in bovine serum resulting in polishing of the diamond surface and formation of very shallow, linear wear grooves of less than 50nm depth. The two diamond surfaces remained adhered to the components and polished each other to an average surface roughness that was reduced by as much as a factor of 80 for the most polished region located at the center of the condyle. Imaging of the surfaces showed that the initial wearing-in phase of diamond was only beginning at the end of the 5 million cycles. Atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and surface profilometry were used to characterize the surfaces and verify that the diamond remained intact and uniform over the surface, thereby protecting the underlying metal. These wear simulation results show that diamond deposition on Ti alloy has potential application for joint replacement devices with improved longevity over existing devices made of cobalt chrome and ultra-high molecular weight polyethylene (UHMWPE). PMID:26989457

  9. Computing farthest neighbors on a convex polytope

    NARCIS (Netherlands)

    Cheong, O.; Shin, C.S.; Vigneron, A.

    2002-01-01

    Let N be a set of n points in convex position in R3. The farthest-point Voronoi diagram of N partitions R³ into n convex cells. We consider the intersection G(N) of the diagram with the boundary of the convex hull of N. We give an algorithm that computes an implicit representation of G(N) in

  10. ON THE GENERALIZED CONVEXITY AND CONCAVITY

    Directory of Open Access Journals (Sweden)

    Bhayo B.

    2015-11-01

    Full Text Available A function ƒ : R+ → R+ is (m1, m2-convex (concave if ƒ(m1(x,y ≤ (≥ m2(ƒ(x, ƒ(y for all x,y Є R+ = (0,∞ and m1 and m2 are two mean functions. Anderson et al. [1] studies the dependence of (m1, m2-convexity (concavity on m1 and m2 and gave the sufficient conditions of (m1, m2-convexity and concavity of a function defined by Maclaurin series. In this paper, we make a contribution to the topic and study the (m1, m2-convexity and concavity of a function where m1 and m2 are identric mean, Alzer mean mean. As well, we prove a conjecture posed by Bruce Ebanks in [2].

  11. Nested convex bodies are chaseable

    NARCIS (Netherlands)

    N. Bansal (Nikhil); M. Böhm (Martin); M. Eliáš (Marek); G. Koumoutsos (Grigorios); S.W. Umboh (Seeun William)

    2018-01-01

    textabstractIn the Convex Body Chasing problem, we are given an initial point v0 2 Rd and an online sequence of n convex bodies F1; : : : ; Fn. When we receive Fi, we are required to move inside Fi. Our goal is to minimize the total distance traveled. This fundamental online problem was first

  12. Convex and Radially Concave Contoured Distributions

    Directory of Open Access Journals (Sweden)

    Wolf-Dieter Richter

    2015-01-01

    Full Text Available Integral representations of the locally defined star-generalized surface content measures on star spheres are derived for boundary spheres of balls being convex or radially concave with respect to a fan in Rn. As a result, the general geometric measure representation of star-shaped probability distributions and the general stochastic representation of the corresponding random vectors allow additional specific interpretations in the two mentioned cases. Applications to estimating and testing hypotheses on scaling parameters are presented, and two-dimensional sample clouds are simulated.

  13. Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system

    KAUST Repository

    Fan, Yiqiang

    2013-12-20

    This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free-surface thermal compression molding method. The laser fabricated poly(methyl methacrylate) (PMMA) sheet is used as the mold for the thermal compression molding process. With different surface treatment methods of the PMMA mold, microlenses with either convex or concave profiles could be achieved during the thermal molding process. By integrating the microlenses in the microfluidic systems, observing the flow inside the microchannels is easier. This new technique is rapid, low cost, and it does not require cleanroom facilities. Microlenses with both convex and concave profiles can be easily fabricated and integrated in microfluidic system with this technique. © 2013 Springer-Verlag Berlin Heidelberg.

  14. Convex functions and optimization methods on Riemannian manifolds

    CERN Document Server

    Udrişte, Constantin

    1994-01-01

    This unique monograph discusses the interaction between Riemannian geometry, convex programming, numerical analysis, dynamical systems and mathematical modelling. The book is the first account of the development of this subject as it emerged at the beginning of the 'seventies. A unified theory of convexity of functions, dynamical systems and optimization methods on Riemannian manifolds is also presented. Topics covered include geodesics and completeness of Riemannian manifolds, variations of the p-energy of a curve and Jacobi fields, convex programs on Riemannian manifolds, geometrical constructions of convex functions, flows and energies, applications of convexity, descent algorithms on Riemannian manifolds, TC and TP programs for calculations and plots, all allowing the user to explore and experiment interactively with real life problems in the language of Riemannian geometry. An appendix is devoted to convexity and completeness in Finsler manifolds. For students and researchers in such diverse fields as pu...

  15. Surface relaxation and surface energy of face –centered Cubic ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    Surface relaxation and surface energy of face –centered Cubic metals. 1AGHEMENLO H E; *2IYAYI, S E; 3AVWIRI ,G O. 1, 3 Department of Physics, Ambrose Alli University, Ekpoma, Nigeria. 2 Department of Physics, University of Benin, Benin City, Nigeria. 3 Department of Physics, University of Port Harcourt, PH, Nigeria.

  16. Convexity of the effective potential

    International Nuclear Information System (INIS)

    Haymaker, R.W.; Perez-Mercader, J.

    1978-01-01

    The effective potential V(phi) in field theories is a convex function of phi. V(lambda phi 1 + (1 - lambda)phi 2 ) less than or equal to lambdaV(phi 1 ) + (1 - lambda)V(phi 2 ), 0 less than or equal to lambda less than or equal to 1, all phi 1 , phi 2 . A linear interpolation of V(phi) is always larger than or equal to V(phi). There are numerous examples in the tree approximation and in perturbation theory for which this is not the case, the most notorious example being the double dip potential. More complete solutions may or may not show this property automatically. However, a non-convex V(phi) simply indicates that an unstable vacuum state was used in implementing the definition of V(phi). A strict definition will instruct one to replace V(phi) with its linear interpolation in such a way as to make it convex. (Alternatively one can just as well take the view that V(phi) is undefined in these domains.) In this note, attention is called to a very simple argument for convexity based on a construction described by H. Callen in his classic book Thermodynamics

  17. Convex Banding of the Covariance Matrix.

    Science.gov (United States)

    Bien, Jacob; Bunea, Florentina; Xiao, Luo

    2016-01-01

    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.

  18. Convexity properties of Hamiltonian group actions

    CERN Document Server

    Guillemin, Victor

    2005-01-01

    This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been made in recent years following a breakthrough by Klyachko. The book presents a simple local model for the moment polytope, valid in the "generic&rdquo case, and an elementary Morse-theoretic argument deriving the Klyachko inequalities and some of their generalizations. It reviews various infinite-dimensional manifestations of moment convexity, such as the Kostant type theorems for orbits of a loop group (due to Atiyah and Pressley) or a symplectomorphism group (due to Bloch, Flaschka and Ratiu). Finally, it gives an account of a new convexity theorem for moment map images of orbits of a Borel sub...

  19. Approximate convex hull of affine iterated function system attractors

    International Nuclear Information System (INIS)

    Mishkinis, Anton; Gentil, Christian; Lanquetin, Sandrine; Sokolov, Dmitry

    2012-01-01

    Highlights: ► We present an iterative algorithm to approximate affine IFS attractor convex hull. ► Elimination of the interior points significantly reduces the complexity. ► To optimize calculations, we merge the convex hull images at each iteration. ► Approximation by ellipses increases speed of convergence to the exact convex hull. ► We present a method of the output convex hull simplification. - Abstract: In this paper, we present an algorithm to construct an approximate convex hull of the attractors of an affine iterated function system (IFS). We construct a sequence of convex hull approximations for any required precision using the self-similarity property of the attractor in order to optimize calculations. Due to the affine properties of IFS transformations, the number of points considered in the construction is reduced. The time complexity of our algorithm is a linear function of the number of iterations and the number of points in the output approximate convex hull. The number of iterations and the execution time increases logarithmically with increasing accuracy. In addition, we introduce a method to simplify the approximate convex hull without loss of accuracy.

  20. Introduction to Convex and Quasiconvex Analysis

    NARCIS (Netherlands)

    J.B.G. Frenk (Hans); G. Kassay

    2004-01-01

    textabstractIn the first chapter of this book the basic results within convex and quasiconvex analysis are presented. In Section 2 we consider in detail the algebraic and topological properties of convex sets within Rn together with their primal and dual representations. In Section 3 we apply the

  1. Decompositions, partitions, and coverings with convex polygons and pseudo-triangles

    NARCIS (Netherlands)

    Aichholzer, O.; Huemer, C.; Kappes, S.; Speckmann, B.; Tóth, Cs.D.

    2007-01-01

    We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex

  2. Non-convex multi-objective optimization

    CERN Document Server

    Pardalos, Panos M; Žilinskas, Julius

    2017-01-01

    Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in...

  3. Convex bodies with many elliptic sections

    OpenAIRE

    Arelio, Isaac; Montejano, Luis

    2014-01-01

    {We show in this paper that two normal elliptic sections through every point of the boundary of a smooth convex body essentially characterize an ellipsoid and furthermore, that four different pairwise non-tangent elliptic sections through every point of the $C^2$-differentiable boundary of a convex body also essentially characterize an ellipsoid.

  4. INdAM Workshop on Analytic Aspects of Convexity

    CERN Document Server

    Colesanti, Andrea; Gronchi, Paolo

    2018-01-01

    This book presents the proceedings of the international conference Analytic Aspects in Convexity, which was held in Rome in October 2016. It offers a collection of selected articles, written by some of the world’s leading experts in the field of Convex Geometry, on recent developments in this area: theory of valuations; geometric inequalities; affine geometry; and curvature measures. The book will be of interest to a broad readership, from those involved in Convex Geometry, to those focusing on Functional Analysis, Harmonic Analysis, Differential Geometry, or PDEs. The book is a addressed to PhD students and researchers, interested in Convex Geometry and its links to analysis.

  5. Convex polytopes

    CERN Document Server

    Klee, Victor; Ziegler, Günter

    2003-01-01

    "The appearance of Grünbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way." (Gil Kalai, The Hebrew University of Jerusalem) "The original book of Grünbaum has provided the central reference for work in this active area of mathematics for the past 35 years...I first consulted this book as a graduate student in 1967; yet, even today, I am surprised again and again by what I find there. It is an amazingly complete reference for work on this subject up to that time and continues to be a major influence on research to this day." (Louis J. Billera, Cornell University) "The or...

  6. Convex trace functions of several variables

    DEFF Research Database (Denmark)

    Hansen, Frank

    2002-01-01

    We prove that the function (x1,...,xk)¿Tr(f(x1,...,xk)), defined on k-tuples of symmetric matrices of order (n1,...,nk) in the domain of f, is convex for any convex function f of k variables. The matrix f(x1,...,xk) is defined by the functional calculus for functions of several variables, and it ...

  7. Nonsmooth Mechanics and Convex Optimization

    CERN Document Server

    Kanno, Yoshihiro

    2011-01-01

    "This book concerns matter that is intrinsically difficult: convex optimization, complementarity and duality, nonsmooth analysis, linear and nonlinear programming, etc. The author has skillfully introduced these and many more concepts, and woven them into a seamless whole by retaining an easy and consistent style throughout. The book is not all theory: There are many real-life applications in structural engineering, cable networks, frictional contact problems, and plasticity! I recommend it to any reader who desires a modern, authoritative account of nonsmooth mechanics and convex optimiz

  8. A New Interpolation Approach for Linearly Constrained Convex Optimization

    KAUST Repository

    Espinoza, Francisco

    2012-08-01

    In this thesis we propose a new class of Linearly Constrained Convex Optimization methods based on the use of a generalization of Shepard\\'s interpolation formula. We prove the properties of the surface such as the interpolation property at the boundary of the feasible region and the convergence of the gradient to the null space of the constraints at the boundary. We explore several descent techniques such as steepest descent, two quasi-Newton methods and the Newton\\'s method. Moreover, we implement in the Matlab language several versions of the method, particularly for the case of Quadratic Programming with bounded variables. Finally, we carry out performance tests against Matab Optimization Toolbox methods for convex optimization and implementations of the standard log-barrier and active-set methods. We conclude that the steepest descent technique seems to be the best choice so far for our method and that it is competitive with other standard methods both in performance and empirical growth order.

  9. Convexity of oligopoly games without transferable technologies

    NARCIS (Netherlands)

    Driessen, Theo; Meinhardt, Holger I.

    2005-01-01

    We present sufficient conditions involving the inverse demand function and the cost functions to establish the convexity of oligopoly TU-games without transferable technologies. For convex TU-games it is well known that the core is relatively large and that it is generically nonempty. The former

  10. Conference on Convex Analysis and Global Optimization

    CERN Document Server

    Pardalos, Panos

    2001-01-01

    There has been much recent progress in global optimization algo­ rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun­ damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon­ vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en­ dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by th...

  11. Decoration of the Truncated Tetrahedron—An Archimedean Polyhedron—To Produce a New Class of Convex Equilateral Polyhedra with Tetrahedral Symmetry

    Directory of Open Access Journals (Sweden)

    Stan Schein

    2016-08-01

    Full Text Available The Goldberg construction of symmetric cages involves pasting a patch cut out of a regular tiling onto the faces of a Platonic host polyhedron, resulting in a cage with the same symmetry as the host. For example, cutting equilateral triangular patches from a 6.6.6 tiling of hexagons and pasting them onto the full triangular faces of an icosahedron produces icosahedral fullerene cages. Here we show that pasting cutouts from a 6.6.6 tiling onto the full hexagonal and triangular faces of an Archimedean host polyhedron, the truncated tetrahedron, produces two series of tetrahedral (Td fullerene cages. Cages in the first series have 28n2 vertices (n ≥ 1. Cages in the second (leapfrog series have 3 × 28n2. We can transform all of the cages of the first series and the smallest cage of the second series into geometrically convex equilateral polyhedra. With tetrahedral (Td symmetry, these new polyhedra constitute a new class of “convex equilateral polyhedra with polyhedral symmetry”. We also show that none of the other Archimedean polyhedra, six with octahedral symmetry and six with icosahedral, can host full-face cutouts from regular tilings to produce cages with the host’s polyhedral symmetry.

  12. Convex stoma appliances: an audit of stoma care nurses.

    Science.gov (United States)

    Perrin, Angie

    2016-12-08

    This article observes the complexities surrounding the use of convex appliances within the specialist sphere of stoma care. It highlights some of the results taken from a small audit carried out with 24 stoma care nurses examining the general use of convex appliances and how usage of convex products has evolved, along with specialist stoma care practice.

  13. Differential analysis of matrix convex functions II

    DEFF Research Database (Denmark)

    Hansen, Frank; Tomiyama, Jun

    2009-01-01

    We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of matrix convex functions. Linear Algebra Appl., 420:102--116, 2007] of matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided...

  14. GRINDING OF SURFACES WITH COATINGS FORMED BY ELECTROMAGNETIC FACING WITH SURFACE PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    Zh. A. Mrochek

    2011-01-01

    Full Text Available The paper presents investigation results on machining of surfaces having a coating formed by electromagnetic facing with surface plastic deformation and using abrasive and diamond wheels having a porous metal binder with orientated drains.

  15. A STRONG OPTIMIZATION THEOREM IN LOCALLY CONVEX SPACES

    Institute of Scientific and Technical Information of China (English)

    程立新; 腾岩梅

    2003-01-01

    This paper presents a geometric characterization of convex sets in locally convex spaces onwhich a strong optimization theorem of the Stegall-type holds, and gives Collier's theorem ofw* Asplund spaces a localized setting.

  16. Characterizing Convexity of Games using Marginal Vectors

    NARCIS (Netherlands)

    van Velzen, S.; Hamers, H.J.M.; Norde, H.W.

    2003-01-01

    In this paper we study the relation between convexity of TU games and marginal vectors.We show that if specfic marginal vectors are core elements, then the game is convex.We characterize sets of marginal vectors satisfying this property, and we derive the formula for the minimum number of marginal

  17. Displacement Convexity for First-Order Mean-Field Games

    KAUST Repository

    Seneci, Tommaso

    2018-05-01

    In this thesis, we consider the planning problem for first-order mean-field games (MFG). These games degenerate into optimal transport when there is no coupling between players. Our aim is to extend the concept of displacement convexity from optimal transport to MFGs. This extension gives new estimates for solutions of MFGs. First, we introduce the Monge-Kantorovich problem and examine related results on rearrangement maps. Next, we present the concept of displacement convexity. Then, we derive first-order MFGs, which are given by a system of a Hamilton-Jacobi equation coupled with a transport equation. Finally, we identify a large class of functions, that depend on solutions of MFGs, which are convex in time. Among these, we find several norms. This convexity gives bounds for the density of solutions of the planning problem.

  18. Convex unwraps its first grown-up supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, T.

    1988-03-03

    Convex Computer Corp.'s new supercomputer family is even more of an industry blockbuster than its first system. At a tenfold jump in performance, it's far from just an incremental upgrade over its first minisupercomputer, the C-1. The heart of the new family, the new C-2 processor, churning at 50 million floating-point operations/s, spawns a group of systems whose performance could pass for some fancy supercomputers-namely those of the Cray Research Inc. family. When added to the C-1, Convex's five new supercomputers create the C series, a six-member product group offering a performance range from 20 to 200 Mflops. They mark an important transition for Convex from a one-product high-tech startup to a multinational company with a wide-ranging product line. It's a tough transition but the Richardson, Texas, company seems to be doing it. The extended product line propels Convex into the upper end of the minisupercomputer class and nudges it into the low end of the big supercomputers. It positions Convex in an uncrowded segment of the market in the $500,000 to $1 million range offering 50 to 200 Mflops of performance. The company is making this move because the minisuper area, which it pioneered, quickly became crowded with new vendors, causing prices and gross margins to drop drastically.

  19. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies.

    Science.gov (United States)

    Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T

    2015-01-01

    Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. To compare mask to "face" seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the "face." Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. The soft "face" significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft "face" was significantly greater for the SM compared to the AC (pmasks was observed with the hard "face." The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.

  20. Hermitian harmonic maps into convex balls

    International Nuclear Information System (INIS)

    Li Zhenyang; Xi Zhang

    2004-07-01

    In this paper, we consider Hermitian harmonic maps from Hermitian manifolds into convex balls. We prove that there exist no non-trivial Hermitian harmonic maps from closed Hermitian manifolds into convex balls, and we use the heat flow method to solve the Dirichlet problem for Hermitian harmonic maps when the domain is compact Hermitian manifold with non-empty boundary. The case where the domain manifold is complete(noncompact) is also studied. (author)

  1. Fundamentals of convex analysis duality, separation, representation, and resolution

    CERN Document Server

    Panik, Michael J

    1993-01-01

    Fundamentals of Convex Analysis offers an in-depth look at some of the fundamental themes covered within an area of mathematical analysis called convex analysis. In particular, it explores the topics of duality, separation, representation, and resolution. The work is intended for students of economics, management science, engineering, and mathematics who need exposure to the mathematical foundations of matrix games, optimization, and general equilibrium analysis. It is written at the advanced undergraduate to beginning graduate level and the only formal preparation required is some familiarity with set operations and with linear algebra and matrix theory. Fundamentals of Convex Analysis is self-contained in that a brief review of the essentials of these tool areas is provided in Chapter 1. Chapter exercises are also provided. Topics covered include: convex sets and their properties; separation and support theorems; theorems of the alternative; convex cones; dual homogeneous systems; basic solutions and comple...

  2. A generalization of the convex Kakeya problem

    KAUST Repository

    Ahn, Heekap

    2013-09-19

    Given a set of line segments in the plane, not necessarily finite, what is a convex region of smallest area that contains a translate of each input segment? This question can be seen as a generalization of Kakeya\\'s problem of finding a convex region of smallest area such that a needle can be rotated through 360 degrees within this region. We show that there is always an optimal region that is a triangle, and we give an optimal Θ(nlogn)-time algorithm to compute such a triangle for a given set of n segments. We also show that, if the goal is to minimize the perimeter of the region instead of its area, then placing the segments with their midpoint at the origin and taking their convex hull results in an optimal solution. Finally, we show that for any compact convex figure G, the smallest enclosing disk of G is a smallest-perimeter region containing a translate of every rotated copy of G. © 2013 Springer Science+Business Media New York.

  3. Displacement Convexity for First-Order Mean-Field Games

    KAUST Repository

    Seneci, Tommaso

    2018-01-01

    Finally, we identify a large class of functions, that depend on solutions of MFGs, which are convex in time. Among these, we find several norms. This convexity gives bounds for the density of solutions of the planning problem.

  4. Strictly convex functions on complete Finsler manifolds

    Indian Academy of Sciences (India)

    convex functions on the metric structures of complete Finsler manifolds. More precisely we discuss ... map expp at some point p ∈ M (and hence at every point on M) is defined on the whole tangent space Mp to M at ... The influence of the existence of convex functions on the metric and topology of under- lying manifolds has ...

  5. On the stretch factor of convex polyhedra whose vertices are (almost on a sphere

    Directory of Open Access Journals (Sweden)

    Michiel Smid

    2016-10-01

    Full Text Available Let $P$ be a convex polyhedron in $\\mathbb{R}^3$. The skeleton of $P$ is the graph whose vertices and edges are the vertices and edges of $P$, respectively. We prove that, if these vertices are on the unit-sphere, the skeleton is a $(0.999 \\cdot \\pi$-spanner. If the vertices are very close to this sphere, then the skeleton is not necessarily a spanner. For the case when the boundary of $P$ is between two concentric spheres of radii $1$ and $R>1$, and the angles in all faces are at least $\\theta$, we prove that the skeleton is a $t$-spanner, where $t$ depends only on $R$ and $\\theta$. One of the ingredients in the proof is a tight upper bound on the geometric dilation of a convex cycle that is contained in an annulus.  

  6. First-order Convex Optimization Methods for Signal and Image Processing

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm

    2012-01-01

    In this thesis we investigate the use of first-order convex optimization methods applied to problems in signal and image processing. First we make a general introduction to convex optimization, first-order methods and their iteration complexity. Then we look at different techniques, which can...... be used with first-order methods such as smoothing, Lagrange multipliers and proximal gradient methods. We continue by presenting different applications of convex optimization and notable convex formulations with an emphasis on inverse problems and sparse signal processing. We also describe the multiple...

  7. Counting convex polygons in planar point sets

    NARCIS (Netherlands)

    Mitchell, J.S.B.; Rote, G.; Sundaram, Gopalakrishnan; Woeginger, G.J.

    1995-01-01

    Given a set S of n points in the plane, we compute in time O(n3) the total number of convex polygons whose vertices are a subset of S. We give an O(m · n3) algorithm for computing the number of convex k-gons with vertices in S, for all values k = 3,…, m; previously known bounds were exponential

  8. The Lp Lp Lp-curvature images of convex bodies and Lp Lp Lp ...

    Indian Academy of Sciences (India)

    Associated with the -curvature image defined by Lutwak, some inequalities for extended mixed -affine surface areas of convex bodies and the support functions of -projection bodies are established. As a natural extension of a result due to Lutwak, an -type affine isoperimetric inequality, whose special cases are ...

  9. Recovering convexity in non-associated plasticity

    Science.gov (United States)

    Francfort, Gilles A.

    2018-03-01

    We quickly review two main non-associated plasticity models, the Armstrong-Frederick model of nonlinear kinematic hardening and the Drucker-Prager cap model. Non-associativity is commonly thought to preclude any kind of variational formulation, be it in a Hencky-type (static) setting, or when considering a quasi-static evolution because non-associativity destroys convexity. We demonstrate that such an opinion is misguided: associativity (and convexity) can be restored at the expense of the introduction of state variable-dependent dissipation potentials.

  10. Conditionally exponential convex functions on locally compact groups

    International Nuclear Information System (INIS)

    Okb El-Bab, A.S.

    1992-09-01

    The main results of the thesis are: 1) The construction of a compact base for the convex cone of all conditionally exponential convex functions. 2) The determination of the extreme parts of this cone. Some supplementary lemmas are proved for this purpose. (author). 8 refs

  11. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, Roger; Stadje, M.A.

    2010-01-01

    We introduce entropy coherent and entropy convex measures of risk and prove a collection of axiomatic characterization and duality results. We show in particular that entropy coherent and entropy convex measures of risk emerge as negative certainty equivalents in (the regular and a generalized

  12. The selection problem for discounted Hamilton–Jacobi equations: some non-convex cases

    KAUST Repository

    Gomes, Diogo A.; Mitake, Hiroyoshi; Tran, Hung V.

    2018-01-01

    Here, we study the selection problem for the vanishing discount approximation of non-convex, first-order Hamilton–Jacobi equations. While the selection problem is well understood for convex Hamiltonians, the selection problem for non-convex Hamiltonians has thus far not been studied. We begin our study by examining a generalized discounted Hamilton–Jacobi equation. Next, using an exponential transformation, we apply our methods to strictly quasi-convex and to some non-convex Hamilton–Jacobi equations. Finally, we examine a non-convex Hamiltonian with flat parts to which our results do not directly apply. In this case, we establish the convergence by a direct approach.

  13. The selection problem for discounted Hamilton–Jacobi equations: some non-convex cases

    KAUST Repository

    Gomes, Diogo A.

    2018-01-26

    Here, we study the selection problem for the vanishing discount approximation of non-convex, first-order Hamilton–Jacobi equations. While the selection problem is well understood for convex Hamiltonians, the selection problem for non-convex Hamiltonians has thus far not been studied. We begin our study by examining a generalized discounted Hamilton–Jacobi equation. Next, using an exponential transformation, we apply our methods to strictly quasi-convex and to some non-convex Hamilton–Jacobi equations. Finally, we examine a non-convex Hamiltonian with flat parts to which our results do not directly apply. In this case, we establish the convergence by a direct approach.

  14. Stereotype locally convex spaces

    International Nuclear Information System (INIS)

    Akbarov, S S

    2000-01-01

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis

  15. Stereotype locally convex spaces

    Energy Technology Data Exchange (ETDEWEB)

    Akbarov, S S

    2000-08-31

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.

  16. Stereotype locally convex spaces

    Science.gov (United States)

    Akbarov, S. S.

    2000-08-01

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.

  17. CVXPY: A Python-Embedded Modeling Language for Convex Optimization

    OpenAIRE

    Diamond, Steven; Boyd, Stephen

    2016-01-01

    CVXPY is a domain-specific language for convex optimization embedded in Python. It allows the user to express convex optimization problems in a natural syntax that follows the math, rather than in the restrictive standard form required by solvers. CVXPY makes it easy to combine convex optimization with high-level features of Python such as parallelism and object-oriented design. CVXPY is available at http://www.cvxpy.org/ under the GPL license, along with documentation and examples.

  18. CVXPY: A Python-Embedded Modeling Language for Convex Optimization.

    Science.gov (United States)

    Diamond, Steven; Boyd, Stephen

    2016-04-01

    CVXPY is a domain-specific language for convex optimization embedded in Python. It allows the user to express convex optimization problems in a natural syntax that follows the math, rather than in the restrictive standard form required by solvers. CVXPY makes it easy to combine convex optimization with high-level features of Python such as parallelism and object-oriented design. CVXPY is available at http://www.cvxpy.org/ under the GPL license, along with documentation and examples.

  19. Entropy and convexity for nonlinear partial differential equations.

    Science.gov (United States)

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  20. Tritium saturation in plasma-facing materials surfaces

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J.; Causey, R.A.; Federici, G.; Haasz, A.A.

    1998-01-01

    Plasma-facing components in the international thermonuclear experimental reactor (ITER) will experience high heat loads and intense plasma fluxes of order 10 20 -10 23 particles/m 2 s. Experiments on Be and W, two of the materials considered for use in ITER, have revealed that a tritium saturation phenomenon can take place under these conditions in which damage to the surface results that enhances the return of implanted tritium to the plasma and inhibits uptake of tritium. This phenomenon is important because it implies that tritium inventories due to implantation in these plasma-facing materials will probably be lower than was previously estimated using classical recombination-limited release at the plasma surface. Similarly, permeation through these components to the coolant streams should be reduced. In this paper we discuss evidences for the existence of this phenomenon, describe techniques for modeling it, and present results of the application of such modeling to prior experiments. (orig.)

  1. Tritium saturation in plasma-facing materials surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J. [Idaho Nat. Eng. and Environ. Lab., Idaho Falls, ID (United States); Causey, R.A. [Sandia National Labs., Livermore, CA (United States); Federici, G. [ITER Garching Joint Work Site, Garching (Germany); Haasz, A.A. [Toronto Univ., ON (Canada). Inst. for Aerospace Studies

    1998-10-01

    Plasma-facing components in the international thermonuclear experimental reactor (ITER) will experience high heat loads and intense plasma fluxes of order 10{sup 20}-10{sup 23} particles/m{sup 2}s. Experiments on Be and W, two of the materials considered for use in ITER, have revealed that a tritium saturation phenomenon can take place under these conditions in which damage to the surface results that enhances the return of implanted tritium to the plasma and inhibits uptake of tritium. This phenomenon is important because it implies that tritium inventories due to implantation in these plasma-facing materials will probably be lower than was previously estimated using classical recombination-limited release at the plasma surface. Similarly, permeation through these components to the coolant streams should be reduced. In this paper we discuss evidences for the existence of this phenomenon, describe techniques for modeling it, and present results of the application of such modeling to prior experiments. (orig.) 39 refs.

  2. Convex Optimization in R

    Directory of Open Access Journals (Sweden)

    Roger Koenker

    2014-09-01

    Full Text Available Convex optimization now plays an essential role in many facets of statistics. We briefly survey some recent developments and describe some implementations of these methods in R . Applications of linear and quadratic programming are introduced including quantile regression, the Huber M-estimator and various penalized regression methods. Applications to additively separable convex problems subject to linear equality and inequality constraints such as nonparametric density estimation and maximum likelihood estimation of general nonparametric mixture models are described, as are several cone programming problems. We focus throughout primarily on implementations in the R environment that rely on solution methods linked to R, like MOSEK by the package Rmosek. Code is provided in R to illustrate several of these problems. Other applications are available in the R package REBayes, dealing with empirical Bayes estimation of nonparametric mixture models.

  3. Schur Convexity of Generalized Heronian Means Involving Two Parameters

    Directory of Open Access Journals (Sweden)

    Bencze Mihály

    2008-01-01

    Full Text Available Abstract The Schur convexity and Schur-geometric convexity of generalized Heronian means involving two parameters are studied, the main result is then used to obtain several interesting and significantly inequalities for generalized Heronian means.

  4. Inhibitory competition in figure-ground perception: context and convexity.

    Science.gov (United States)

    Peterson, Mary A; Salvagio, Elizabeth

    2008-12-15

    Convexity has long been considered a potent cue as to which of two regions on opposite sides of an edge is the shaped figure. Experiment 1 shows that for a single edge, there is only a weak bias toward seeing the figure on the convex side. Experiments 1-3 show that the bias toward seeing the convex side as figure increases as the number of edges delimiting alternating convex and concave regions increases, provided that the concave regions are homogeneous in color. The results of Experiments 2 and 3 rule out a probability summation explanation for these context effects. Taken together, the results of Experiments 1-3 show that the homogeneity versus heterogeneity of the convex regions is irrelevant. Experiment 4 shows that homogeneity of alternating regions is not sufficient for context effects; a cue that favors the perception of the intervening regions as figures is necessary. Thus homogeneity alone does not alone operate as a background cue. We interpret our results within a model of figure-ground perception in which shape properties on opposite sides of an edge compete for representation and the competitive strength of weak competitors is further reduced when they are homogeneous.

  5. Convexities move because they contain matter.

    Science.gov (United States)

    Barenholtz, Elan

    2010-09-22

    Figure-ground assignment to a contour is a fundamental stage in visual processing. The current paper introduces a novel, highly general dynamic cue to figure-ground assignment: "Convex Motion." Across six experiments, subjects showed a strong preference to assign figure and ground to a dynamically deforming contour such that the moving contour segment was convex rather than concave. Experiments 1 and 2 established the preference across two different kinds of deformational motion. Additional experiments determined that this preference was not due to fixation (Experiment 3) or attentional mechanisms (Experiment 4). Experiment 5 found a similar, but reduced bias for rigid-as opposed to deformational-motion, and Experiment 6 demonstrated that the phenomenon depends on the global motion of the effected contour. An explanation of this phenomenon is presented on the basis of typical natural deformational motion, which tends to involve convex contour projections that contain regions consisting of physical "matter," as opposed to concave contour indentations that contain empty space. These results highlight the fundamental relationship between figure and ground, perceived shape, and the inferred physical properties of an object.

  6. Use of Convexity in Ostomy Care: Results of an International Consensus Meeting.

    Science.gov (United States)

    Hoeflok, Jo; Salvadalena, Ginger; Pridham, Sue; Droste, Werner; McNichol, Laurie; Gray, Mikel

    Ostomy skin barriers that incorporate a convexity feature have been available in the marketplace for decades, but limited resources are available to guide clinicians in selection and use of convex products. Given the widespread use of convexity, and the need to provide practical guidelines for appropriate use of pouching systems with convex features, an international consensus panel was convened to provide consensus-based guidance for this aspect of ostomy practice. Panelists were provided with a summary of relevant literature in advance of the meeting; these articles were used to generate and reach consensus on 26 statements during a 1-day meeting. Consensus was achieved when 80% of panelists agreed on a statement using an anonymous electronic response system. The 26 statements provide guidance for convex product characteristics, patient assessment, convexity use, and outcomes.

  7. A Combination Theorem for Convex Hyperbolic Manifolds, with Applications to Surfaces in 3-Manifolds

    OpenAIRE

    Baker, Mark; Cooper, Daryl

    2005-01-01

    We prove the convex combination theorem for hyperbolic n-manifolds. Applications are given both in high dimensions and in 3 dimensions. One consequence is that given two geometrically finite subgroups of a discrete group of isometries of hyperbolic n-space, satisfying a natural condition on their parabolic subgroups, there are finite index subgroups which generate a subgroup that is an amalgamated free product. Constructions of infinite volume hyperbolic n-manifolds are described by gluing lo...

  8. Hermite-Hadamard type inequality for φ{sub h}-convex stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Sarıkaya, Mehmet Zeki, E-mail: sarikayamz@gmail.com [Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce (Turkey); Kiriş, Mehmet Eyüp, E-mail: kiris@aku.edu.tr [Department of Mathematics, Institute of Science and Arts, Afyon Kocatepe University, Afyonkarahisar (Turkey); Çelik, Nuri, E-mail: ncelik@bartin.edu.tr [Department of Statistics, Faculty of Science, Bartın University, Bartın-Turkey (Turkey)

    2016-04-18

    The main aim of the present paper is to introduce φ{sub h}-convex stochastic processes and we investigate main properties of these mappings. Moreover, we prove the Hadamard-type inequalities for φ{sub h}-convex stochastic processes. We also give some new general inequalities for φ{sub h}-convex stochastic processes.

  9. The importance of surface-based cues for face discrimination in non-human primates.

    Science.gov (United States)

    Parr, Lisa A; Taubert, Jessica

    2011-07-07

    Understanding how individual identity is processed from faces remains a complex problem. Contrast reversal, showing faces in photographic negative, impairs face recognition in humans and demonstrates the importance of surface-based information (shading and pigmentation) in face recognition. We tested the importance of contrast information for face encoding in chimpanzees and rhesus monkeys using a computerized face-matching task. Results showed that contrast reversal (positive to negative) selectively impaired face processing in these two species, although the impairment was greater for chimpanzees. Unlike chimpanzees, however, monkeys performed just as well matching negative to positive faces, suggesting that they retained some ability to extract identity information from negative faces. A control task showed that chimpanzees, but not rhesus monkeys, performed significantly better matching face parts compared with whole faces after a contrast reversal, suggesting that contrast reversal acts selectively on face processing, rather than general visual-processing mechanisms. These results confirm the importance of surface-based cues for face processing in chimpanzees and humans, while the results were less salient for rhesus monkeys. These findings make a significant contribution to understanding the evolution of cognitive specializations for face processing among primates, and suggest potential differences between monkeys and apes.

  10. Generalized Bregman distances and convergence rates for non-convex regularization methods

    International Nuclear Information System (INIS)

    Grasmair, Markus

    2010-01-01

    We generalize the notion of Bregman distance using concepts from abstract convexity in order to derive convergence rates for Tikhonov regularization with non-convex regularization terms. In particular, we study the non-convex regularization of linear operator equations on Hilbert spaces, showing that the conditions required for the application of the convergence rates results are strongly related to the standard range conditions from the convex case. Moreover, we consider the setting of sparse regularization, where we show that a rate of order δ 1/p holds, if the regularization term has a slightly faster growth at zero than |t| p

  11. Canonical Primal-Dual Method for Solving Non-convex Minimization Problems

    OpenAIRE

    Wu, Changzhi; Li, Chaojie; Gao, David Yang

    2012-01-01

    A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. %It is proved that the popular SDP method is indeed a special case of the canonical duality theory. Numerical examples are illustrated. Comparing...

  12. Study on IAEA international emergency response exercise convEx-3

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya

    2007-05-01

    The International Atomic Energy Agency (IAEA) carried out a large-scale international emergency response exercise in 2005 under the designated name of ConvEx-3(2005), at Romania. This review report summarizes a study about ConvEx-3(2005) based on several related open literature. The ConvEx-3 was conducted in accordance with Agency's safety standard series and requirements in the field of Emergency Preparedness and Response. The study on the preparation, conduct and evaluation of ConvEx-3(2005) exercise is expected to provide very useful knowledge for development of drills and educational programs conducted by Nuclear Emergency Assistance and Training Center (NEAT). Especially, study on the exercise evaluations is instrumental in improving evaluations of drills planned by the national government and local governments. As international cooperation among Asian countries in the field of nuclear emergency preparedness and response is going to realize, it is very useful to survey and consider scheme and methodology about international emergency preparedness, response and exercise referring the knowledge of this ConvEx-3 study. The lessons learned from this study of ConvEx-3(2005) are summarized in four chapters; methodology of exercises and educational programs, exercise evaluation process, amendments/verification of the emergency response plan of NEAT, and technical issues of systems for emergency response and assistance of NEAT relevant to interface for international emergency communication. (author)

  13. Convex geometry of quantum resource quantification

    Science.gov (United States)

    Regula, Bartosz

    2018-01-01

    We introduce a framework unifying the mathematical characterisation of different measures of general quantum resources and allowing for a systematic way to define a variety of faithful quantifiers for any given convex quantum resource theory. The approach allows us to describe many commonly used measures such as matrix norm-based quantifiers, robustness measures, convex roof-based measures, and witness-based quantifiers together in a common formalism based on the convex geometry of the underlying sets of resource-free states. We establish easily verifiable criteria for a measure to possess desirable properties such as faithfulness and strong monotonicity under relevant free operations, and show that many quantifiers obtained in this framework indeed satisfy them for any considered quantum resource. We derive various bounds and relations between the measures, generalising and providing significantly simplified proofs of results found in the resource theories of quantum entanglement and coherence. We also prove that the quantification of resources in this framework simplifies for pure states, allowing us to obtain more easily computable forms of the considered measures, and show that many of them are in fact equal on pure states. Further, we investigate the dual formulation of resource quantifiers, which provide a characterisation of the sets of resource witnesses. We present an explicit application of the results to the resource theories of multi-level coherence, entanglement of Schmidt number k, multipartite entanglement, as well as magic states, providing insight into the quantification of the four resources by establishing novel quantitative relations and introducing new quantifiers, such as a measure of entanglement of Schmidt number k which generalises the convex roof-extended negativity, a measure of k-coherence which generalises the \

  14. A generalization of the convex Kakeya problem

    KAUST Repository

    Ahn, Heekap

    2012-01-01

    We consider the following geometric alignment problem: Given a set of line segments in the plane, find a convex region of smallest area that contains a translate of each input segment. This can be seen as a generalization of Kakeya\\'s problem of finding a convex region of smallest area such that a needle can be turned through 360 degrees within this region. Our main result is an optimal Θ(n log n)-time algorithm for our geometric alignment problem, when the input is a set of n line segments. We also show that, if the goal is to minimize the perimeter of the region instead of its area, then the optimum placement is when the midpoints of the segments coincide. Finally, we show that for any compact convex figure G, the smallest enclosing disk of G is a smallest-perimeter region containing a translate of any rotated copy of G. © 2012 Springer-Verlag Berlin Heidelberg.

  15. Probing convex polygons with X-rays

    International Nuclear Information System (INIS)

    Edelsbrunner, H.; Skiena, S.S.

    1988-01-01

    An X-ray probe through a polygon measures the length of intersection between a line and the polygon. This paper considers the properties of various classes of X-ray probes, and shows how they interact to give finite strategies for completely describing convex n-gons. It is shown that (3n/2)+6 probes are sufficient to verify a specified n-gon, while for determining convex polygons (3n-1)/2 X-ray probes are necessary and 5n+O(1) sufficient, with 3n+O(1) sufficient given that a lower bound on the size of the smallest edge of P is known

  16. Highly efficient absorption of visible and near infrared light in convex gold and nickel grooves

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Beermann, Jonas; Søndergaard, Thomas

    The realization of nonresonant light absorption with nanostructured metal surfaces by making practical use of nanofocusing optical energy in tapered plasmonic waveguides, is of one of the most fascinating and fundamental phenomena in plasmonics [1,2]. We recently realized broadband light absorption...... in gold via adiabatic nanofocusing of gap surface plasmon modes in well-defined geometries of ultra-sharp convex grooves and being excited by scattering off subwavelength-sized wedges [3]....

  17. Hermite-Hadamard type inequalities for GA-s-convex functions

    Directory of Open Access Journals (Sweden)

    İmdat İşcan

    2014-10-01

    Full Text Available In this paper, The author introduces the concepts of the GA-s-convex functions in the first sense and second sense and establishes some integral inequalities of Hermite-Hadamard type related to the GA-s-convex functions. Some applications to special means of real numbers are also given.

  18. STRICT CONVEXITY THROUGH EQUIVALENT NORMS IN SEPARABLES BANACH SPACES

    Directory of Open Access Journals (Sweden)

    Willy Zubiaga Vera

    2016-12-01

    Full Text Available Let E be a separable Banach space with norm || . ||. In the present work, the objective is to construct a norm || . ||1 that is equivalent to || . || in E, such that || . ||1 is strictly convex. In addition it is shown that its dual conjugate norm is also strictly convex.

  19. Visualizing Data as Objects by DC (Difference of Convex) Optimization

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero

    2018-01-01

    In this paper we address the problem of visualizing in a bounded region a set of individuals, which has attached a dissimilarity measure and a statistical value, as convex objects. This problem, which extends the standard Multidimensional Scaling Analysis, is written as a global optimization...... problem whose objective is the difference of two convex functions (DC). Suitable DC decompositions allow us to use the Difference of Convex Algorithm (DCA) in a very efficient way. Our algorithmic approach is used to visualize two real-world datasets....

  20. Analysis of Conformational B-Cell Epitopes in the Antibody-Antigen Complex Using the Depth Function and the Convex Hull.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available The prediction of conformational b-cell epitopes plays an important role in immunoinformatics. Several computational methods are proposed on the basis of discrimination determined by the solvent-accessible surface between epitopes and non-epitopes, but the performance of existing methods is far from satisfying. In this paper, depth functions and the k-th surface convex hull are used to analyze epitopes and exposed non-epitopes. On each layer of the protein, we compute relative solvent accessibility and four different types of depth functions, i.e., Chakravarty depth, DPX, half-sphere exposure and half space depth, to analyze the location of epitopes on different layers of the proteins. We found that conformational b-cell epitopes are rich in charged residues Asp, Glu, Lys, Arg, His; aliphatic residues Gly, Pro; non-charged residues Asn, Gln; and aromatic residue Tyr. Conformational b-cell epitopes are rich in coils. Conservation of epitopes is not significantly lower than that of exposed non-epitopes. The average depths (obtained by four methods for epitopes are significantly lower than that of non-epitopes on the surface using the Wilcoxon rank sum test. Epitopes are more likely to be located in the outer layer of the convex hull of a protein. On the benchmark dataset, the cumulate 10th convex hull covers 84.6% of exposed residues on the protein surface area, and nearly 95% of epitope sites. These findings may be helpful in building a predictor for epitopes.

  1. Plasma facing surface composition during NSTX Li experiments

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, POB 451, Princeton, NJ 08543 (United States); Sullenberger, R. [Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08540 (United States); Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, NJ 08540 (United States); Jaworski, M.A.; Kugel, H.W. [Princeton Plasma Physics Laboratory, POB 451, Princeton, NJ 08543 (United States)

    2013-07-15

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices. However, the nature of the plasma–lithium surface interaction has been obscured by the difficulty of in-tokamak surface analysis. We report laboratory studies of the chemical composition of lithium surfaces exposed to typical residual gases found in tokamaks. Solid lithium and a molybdenum alloy (TZM) coated with lithium have been examined using X-ray photoelectron spectroscopy, temperature programmed desorption, and Auger electron spectroscopy both in ultrahigh vacuum conditions and after exposure to trace gases. Lithium surfaces near room temperature were oxidized after exposure to 1–2 Langmuirs of oxygen or water vapor. The oxidation rate by carbon monoxide was four times less. Lithiated PFC surfaces in tokamaks will be oxidized in about 100 s depending on the tokamak vacuum conditions.

  2. Convergence theorems for quasi-contractive maps in uniformly convex spaces

    International Nuclear Information System (INIS)

    Chidume, C.E.; Osilike, M.O.

    1992-04-01

    Let K be a nonempty closed convex and bounded subset of a real uniformly convex Banach space E of modulus of convexity of power type q≥2. Let T by a quasi-contractive mapping of K into itself. It is proved that each of two well known fixed point iteration methods (the Mann and the Ishikawa iteration methods) converges strongly, without any compactness assumption on the domain of the map, to the unique fixed point of T in K. Our theorems generalize important known results. (author). 22 refs

  3. A Fast Algorithm of Convex Hull Vertices Selection for Online Classification.

    Science.gov (United States)

    Ding, Shuguang; Nie, Xiangli; Qiao, Hong; Zhang, Bo

    2018-04-01

    Reducing samples through convex hull vertices selection (CHVS) within each class is an important and effective method for online classification problems, since the classifier can be trained rapidly with the selected samples. However, the process of CHVS is NP-hard. In this paper, we propose a fast algorithm to select the convex hull vertices, based on the convex hull decomposition and the property of projection. In the proposed algorithm, the quadratic minimization problem of computing the distance between a point and a convex hull is converted into a linear equation problem with a low computational complexity. When the data dimension is high, an approximate, instead of exact, convex hull is allowed to be selected by setting an appropriate termination condition in order to delete more nonimportant samples. In addition, the impact of outliers is also considered, and the proposed algorithm is improved by deleting the outliers in the initial procedure. Furthermore, a dimension convention technique via the kernel trick is used to deal with nonlinearly separable problems. An upper bound is theoretically proved for the difference between the support vector machines based on the approximate convex hull vertices selected and all the training samples. Experimental results on both synthetic and real data sets show the effectiveness and validity of the proposed algorithm.

  4. Convexity, gauge-dependence and tunneling rates

    Energy Technology Data Exchange (ETDEWEB)

    Plascencia, Alexis D.; Tamarit, Carlos [Institute for Particle Physics Phenomenology, Durham University,South Road, DH1 3LE (United Kingdom)

    2016-10-19

    We clarify issues of convexity, gauge-dependence and radiative corrections in relation to tunneling rates. Despite the gauge dependence of the effective action at zero and finite temperature, it is shown that tunneling and nucleation rates remain independent of the choice of gauge-fixing. Taking as a starting point the functional that defines the transition amplitude from a false vacuum onto itself, it is shown that decay rates are exactly determined by a non-convex, false vacuum effective action evaluated at an extremum. The latter can be viewed as a generalized bounce configuration, and gauge-independence follows from the appropriate Nielsen identities. This holds for any election of gauge-fixing that leads to an invertible Faddeev-Popov matrix.

  5. Convexity, gauge-dependence and tunneling rates

    International Nuclear Information System (INIS)

    Plascencia, Alexis D.; Tamarit, Carlos

    2016-01-01

    We clarify issues of convexity, gauge-dependence and radiative corrections in relation to tunneling rates. Despite the gauge dependence of the effective action at zero and finite temperature, it is shown that tunneling and nucleation rates remain independent of the choice of gauge-fixing. Taking as a starting point the functional that defines the transition amplitude from a false vacuum onto itself, it is shown that decay rates are exactly determined by a non-convex, false vacuum effective action evaluated at an extremum. The latter can be viewed as a generalized bounce configuration, and gauge-independence follows from the appropriate Nielsen identities. This holds for any election of gauge-fixing that leads to an invertible Faddeev-Popov matrix.

  6. Convexity and concavity constants in Lorentz and Marcinkiewicz spaces

    Science.gov (United States)

    Kaminska, Anna; Parrish, Anca M.

    2008-07-01

    We provide here the formulas for the q-convexity and q-concavity constants for function and sequence Lorentz spaces associated to either decreasing or increasing weights. It yields also the formula for the q-convexity constants in function and sequence Marcinkiewicz spaces. In this paper we extent and enhance the results from [G.J.O. Jameson, The q-concavity constants of Lorentz sequence spaces and related inequalities, Math. Z. 227 (1998) 129-142] and [A. Kaminska, A.M. Parrish, The q-concavity and q-convexity constants in Lorentz spaces, in: Banach Spaces and Their Applications in Analysis, Conference in Honor of Nigel Kalton, May 2006, Walter de Gruyter, Berlin, 2007, pp. 357-373].

  7. Two examples of non strictly convex large deviations

    OpenAIRE

    De Marco, Stefano; Jacquier, Antoine; Roome, Patrick

    2016-01-01

    We present two examples of a large deviations principle where the rate function is not strictly convex. This is motivated by a model used in mathematical finance (the Heston model), and adds a new item to the zoology of non strictly convex large deviations. For one of these examples, we show that the rate function of the Cramer-type of large deviations coincides with that of the Freidlin-Wentzell when contraction principles are applied.

  8. Convex Hull Aided Registration Method (CHARM).

    Science.gov (United States)

    Fan, Jingfan; Yang, Jian; Zhao, Yitian; Ai, Danni; Liu, Yonghuai; Wang, Ge; Wang, Yongtian

    2017-09-01

    Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.

  9. On convex complexity measures

    Czech Academy of Sciences Publication Activity Database

    Hrubeš, P.; Jukna, S.; Kulikov, A.; Pudlák, Pavel

    2010-01-01

    Roč. 411, 16-18 (2010), s. 1842-1854 ISSN 0304-3975 R&D Projects: GA AV ČR IAA1019401 Institutional research plan: CEZ:AV0Z10190503 Keywords : boolean formula * complexity measure * combinatorial rectangle * convexity Subject RIV: BA - General Mathematics Impact factor: 0.838, year: 2010 http://www.sciencedirect.com/science/article/pii/S0304397510000885

  10. On approximation and energy estimates for delta 6-convex functions.

    Science.gov (United States)

    Saleem, Muhammad Shoaib; Pečarić, Josip; Rehman, Nasir; Khan, Muhammad Wahab; Zahoor, Muhammad Sajid

    2018-01-01

    The smooth approximation and weighted energy estimates for delta 6-convex functions are derived in this research. Moreover, we conclude that if 6-convex functions are closed in uniform norm, then their third derivatives are closed in weighted [Formula: see text]-norm.

  11. A post-processing study on aluminum surface by fiber laser: Removing face milling patterns

    Science.gov (United States)

    Kayahan, Ersin

    2018-05-01

    The face milling process of the metal surface is a well-known machining process of using rotary cutters to remove material from a workpiece. Flat metal surfaces can be produced by a face milling process. However, in practice, visible, traced marks following the motion of points on the cutter's face are usually apparent. In this study, it was shown that milled patterns can be removed by means of 20 W fiber laser on the aluminum surface (AA7075). Experimental results also showed that roughened and hydrophobic surface can be produced with optimized laser parameters. It is a new approach to remove the patterns from the metal surface and can be explained through roughening by re-melting instead of ablation. The new method is a strong candidate to replace sandblasting the metal surface. It is also cheap and environmentally friendly.

  12. On approximation and energy estimates for delta 6-convex functions

    Directory of Open Access Journals (Sweden)

    Muhammad Shoaib Saleem

    2018-02-01

    Full Text Available Abstract The smooth approximation and weighted energy estimates for delta 6-convex functions are derived in this research. Moreover, we conclude that if 6-convex functions are closed in uniform norm, then their third derivatives are closed in weighted L2 $L^{2}$-norm.

  13. A convex optimization approach for solving large scale linear systems

    Directory of Open Access Journals (Sweden)

    Debora Cores

    2017-01-01

    Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.

  14. Riemann solvers and undercompressive shocks of convex FPU chains

    International Nuclear Information System (INIS)

    Herrmann, Michael; Rademacher, Jens D M

    2010-01-01

    We consider FPU-type atomic chains with general convex potentials. The naive continuum limit in the hyperbolic space–time scaling is the p-system of mass and momentum conservation. We systematically compare Riemann solutions to the p-system with numerical solutions to discrete Riemann problems in FPU chains, and argue that the latter can be described by modified p-system Riemann solvers. We allow the flux to have a turning point, and observe a third type of elementary wave (conservative shocks) in the atomistic simulations. These waves are heteroclinic travelling waves and correspond to non-classical, undercompressive shocks of the p-system. We analyse such shocks for fluxes with one or more turning points. Depending on the convexity properties of the flux we propose FPU-Riemann solvers. Our numerical simulations confirm that Lax shocks are replaced by so-called dispersive shocks. For convex–concave flux we provide numerical evidence that convex FPU chains follow the p-system in generating conservative shocks that are supersonic. For concave–convex flux, however, the conservative shocks of the p-system are subsonic and do not appear in FPU-Riemann solutions

  15. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    Science.gov (United States)

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  16. Convergence of Algorithms for Reconstructing Convex Bodies and Directional Measures

    DEFF Research Database (Denmark)

    Gardner, Richard; Kiderlen, Markus; Milanfar, Peyman

    2006-01-01

    We investigate algorithms for reconstructing a convex body K in Rn from noisy measurements of its support function or its brightness function in k directions u1, . . . , uk. The key idea of these algorithms is to construct a convex polytope Pk whose support function (or brightness function) best...

  17. Efficiency and Generalized Convex Duality for Nondifferentiable Multiobjective Programs

    Directory of Open Access Journals (Sweden)

    Bae KwanDeok

    2010-01-01

    Full Text Available We introduce nondifferentiable multiobjective programming problems involving the support function of a compact convex set and linear functions. The concept of (properly efficient solutions are presented. We formulate Mond-Weir-type and Wolfe-type dual problems and establish weak and strong duality theorems for efficient solutions by using suitable generalized convexity conditions. Some special cases of our duality results are given.

  18. Processing convexity and concavity along a 2-D contour: figure-ground, structural shape, and attention.

    Science.gov (United States)

    Bertamini, Marco; Wagemans, Johan

    2013-04-01

    Interest in convexity has a long history in vision science. For smooth contours in an image, it is possible to code regions of positive (convex) and negative (concave) curvature, and this provides useful information about solid shape. We review a large body of evidence on the role of this information in perception of shape and in attention. This includes evidence from behavioral, neurophysiological, imaging, and developmental studies. A review is necessary to analyze the evidence on how convexity affects (1) separation between figure and ground, (2) part structure, and (3) attention allocation. Despite some broad agreement on the importance of convexity in these areas, there is a lack of consensus on the interpretation of specific claims--for example, on the contribution of convexity to metric depth and on the automatic directing of attention to convexities or to concavities. The focus is on convexity and concavity along a 2-D contour, not convexity and concavity in 3-D, but the important link between the two is discussed. We conclude that there is good evidence for the role of convexity information in figure-ground organization and in parsing, but other, more specific claims are not (yet) well supported.

  19. Measures of symmetry for convex sets and stability

    CERN Document Server

    Toth, Gabor

    2015-01-01

    This textbook treats two important and related matters in convex geometry: the quantification of symmetry of a convex set—measures of symmetry—and the degree to which convex sets that nearly minimize such measures of symmetry are themselves nearly symmetric—the phenomenon of stability. By gathering the subject’s core ideas and highlights around Grünbaum’s general notion of measure of symmetry, it paints a coherent picture of the subject, and guides the reader from the basics to the state-of-the-art. The exposition takes various paths to results in order to develop the reader’s grasp of the unity of ideas, while interspersed remarks enrich the material with a behind-the-scenes view of corollaries and logical connections, alternative proofs, and allied results from the literature. Numerous illustrations elucidate definitions and key constructions, and over 70 exercises—with hints and references for the more difficult ones—test and sharpen the reader’s comprehension. The presentation includes:...

  20. Generalized vector calculus on convex domain

    Science.gov (United States)

    Agrawal, Om P.; Xu, Yufeng

    2015-06-01

    In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.

  1. Dose evaluation from multiple detector outputs using convex optimisation

    International Nuclear Information System (INIS)

    Hashimoto, M.; Iimoto, T.; Kosako, T.

    2011-01-01

    A dose evaluation using multiple radiation detectors can be improved by the convex optimisation method. It enables flexible dose evaluation corresponding to the actual radiation energy spectrum. An application to the neutron ambient dose equivalent evaluation is investigated using a mixed-gas proportional counter. The convex derives the certain neutron ambient dose with certain width corresponding to the true neutron energy spectrum. The range of the evaluated dose is comparable to the error of conventional neutron dose measurement equipments. An application to the neutron individual dose equivalent measurement is also investigated. Convexes of particular dosemeter combinations evaluate the individual dose equivalent better than the dose evaluation of a single dosemeter. The combinations of dosemeters with high orthogonality of their response characteristics tend to provide a good suitability for dose evaluation. (authors)

  2. On the Moduli of Convexity

    Czech Academy of Sciences Publication Activity Database

    Guirao, A. J.; Hájek, Petr Pavel

    2007-01-01

    Roč. 135, č. 10 (2007), s. 3233-3240 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190502 Institutional research plan: CEZ:AV0Z10190503 Keywords : Banach spaces * moduli of convexity * uniformly rotund norms Subject RIV: BA - General Mathematics Impact factor: 0.520, year: 2007

  3. Nash points, Ky Fan inequality and equilibria of abstract economies in Max-Plus and -convexity

    Science.gov (United States)

    Briec, Walter; Horvath, Charles

    2008-05-01

    -convexity was introduced in [W. Briec, C. Horvath, -convexity, Optimization 53 (2004) 103-127]. Separation and Hahn-Banach like theorems can be found in [G. Adilov, A.M. Rubinov, -convex sets and functions, Numer. Funct. Anal. Optim. 27 (2006) 237-257] and [W. Briec, C.D. Horvath, A. Rubinov, Separation in -convexity, Pacific J. Optim. 1 (2005) 13-30]. We show here that all the basic results related to fixed point theorems are available in -convexity. Ky Fan inequality, existence of Nash equilibria and existence of equilibria for abstract economies are established in the framework of -convexity. Monotone analysis, or analysis on Maslov semimodules [V.N. Kolokoltsov, V.P. Maslov, Idempotent Analysis and Its Applications, Math. Appl., volE 401, Kluwer Academic, 1997; V.P. Litvinov, V.P. Maslov, G.B. Shpitz, Idempotent functional analysis: An algebraic approach, Math. Notes 69 (2001) 696-729; V.P. Maslov, S.N. Samborski (Eds.), Idempotent Analysis, Advances in Soviet Mathematics, Amer. Math. Soc., Providence, RI, 1992], is the natural framework for these results. From this point of view Max-Plus convexity and -convexity are isomorphic Maslov semimodules structures over isomorphic semirings. Therefore all the results of this paper hold in the context of Max-Plus convexity.

  4. Convex Hull Abstraction in Specialisation of CLP Programs

    DEFF Research Database (Denmark)

    Peralta, J.C.; Gallagher, John Patrick

    2003-01-01

    We introduce an abstract domain consisting of atomic formulas constrained by linear arithmetic constraints (or convex hulls). This domain is used in an algorithm for specialization of constraint logic programs. The algorithm incorporates in a single phase both top-down goal directed propagation...... and bottom-up answer propagation, and uses a widening on the convex hull domain to ensure termination. We give examples to show the precision gained by this approach over other methods in the literature for specializing constraint logic programs. The specialization method can also be used for ordinary logic...

  5. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    Science.gov (United States)

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  6. Tritium loading in ITER plasma-facing surfaces and its release under accident conditions

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J.

    1996-01-01

    Plasma-facing surfaces of the International Thermonuclear Experimental Reactor (ITER) will take up tritium from the plasma. These surfaces will probably consist of matures of Be, C, and possibly W together with other impurities. Recent experimental results have suggested mechanisms, not previously considered in analyses, by which tritium and other hydrogen isotopes are retained in Be. This warrants revised modeling and estimation of the amount of tritium that will be deposited in ITER beryllium plasma-facing surfaces and the rates at which it can be released under postulated accident scenarios. In this paper we describe improvements in modeling and experiments planned at the Idaho National Engineering Laboratory (INEL) to investigate the tritium uptake and thermal release behavior for mixed plasma- facing materials. TMAP4 calculations were made using recent data to estimate first-wall tritium inventories in ITER. 16 refs., 1 fig

  7. Convex sets in probabilistic normed spaces

    International Nuclear Information System (INIS)

    Aghajani, Asadollah; Nourouzi, Kourosh

    2008-01-01

    In this paper we obtain some results on convexity in a probabilistic normed space. We also investigate the concept of CSN-closedness and CSN-compactness in a probabilistic normed space and generalize the corresponding results of normed spaces

  8. Plasmonic black metals via radiation absorption by two-dimensional arrays of ultra-sharp convex grooves

    DEFF Research Database (Denmark)

    Beermann, Jonas; Eriksen, René L.; Stær, Tobias Holmgaard

    2014-01-01

    Plasmonic black surfaces formed by two-dimensional arrays of ultra-sharp convex metal grooves, in which the incident radiation is converted into gap surface plasmon polaritons (GSPPs) and subsequently absorbed (via adiabatic nanofocusing), are fabricated and investigated experimentally for gold......%, averaged over the investigated wavelength range of 400-985 nm. The highest averaged absorption level (similar to 97%) is achieved with 250-nm-period arrays in palladium that also has the highest melting temperature(similar to 15526 degrees C), promising thereby potential applications for broadband...

  9. Exact generating function for 2-convex polygons

    International Nuclear Information System (INIS)

    James, W R G; Jensen, I; Guttmann, A J

    2008-01-01

    Polygons are described as almost-convex if their perimeter differs from the perimeter of their minimum bounding rectangle by twice their 'concavity index', m. Such polygons are called m-convex polygons and are characterized by having up to m indentations in their perimeter. We first describe how we conjectured the (isotropic) generating function for the case m = 2 using a numerical procedure based on series expansions. We then proceed to prove this result for the more general case of the full anisotropic generating function, in which steps in the x and y directions are distinguished. In doing so, we develop tools that would allow for the case m > 2 to be studied

  10. Solving ptychography with a convex relaxation

    Science.gov (United States)

    Horstmeyer, Roarke; Chen, Richard Y.; Ou, Xiaoze; Ames, Brendan; Tropp, Joel A.; Yang, Changhuei

    2015-05-01

    Ptychography is a powerful computational imaging technique that transforms a collection of low-resolution images into a high-resolution sample reconstruction. Unfortunately, algorithms that currently solve this reconstruction problem lack stability, robustness, and theoretical guarantees. Recently, convex optimization algorithms have improved the accuracy and reliability of several related reconstruction efforts. This paper proposes a convex formulation of the ptychography problem. This formulation has no local minima, it can be solved using a wide range of algorithms, it can incorporate appropriate noise models, and it can include multiple a priori constraints. The paper considers a specific algorithm, based on low-rank factorization, whose runtime and memory usage are near-linear in the size of the output image. Experiments demonstrate that this approach offers a 25% lower background variance on average than alternating projections, the ptychographic reconstruction algorithm that is currently in widespread use.

  11. Analytical Model of Doppler Spectra of Light Backscattered from Rotating Convex Bodies of Revolution in the Global Cartesian Coordinate System

    International Nuclear Information System (INIS)

    Yan-Jun, Gong; Zhen-Sen, Wu; Jia-Ji, Wu

    2009-01-01

    We present an analytical model of Doppler spectra in backscattering from arbitrary rough convex bodies of revolution rotating around their axes in the global Cartesian coordinate system. This analytical model is applied to analyse Doppler spectra in backscatter from two cones and two cylinders, as well as two ellipsoids of revolution. We numerically analyse the influences of attitude and geometry size of objects on Doppler spectra. The analytical model can give contribution of the surface roughness, attitude and geometry size of convex bodies of revolution to Doppler spectra and may contribute to laser Doppler velocimetry as well as ladar applications

  12. Usefulness of the convexity apparent hyperperfusion sign in 123I-iodoamphetamine brain perfusion SPECT for the diagnosis of idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Ohmichi, Takuma; Kondo, Masaki; Itsukage, Masahiro; Koizumi, Hidetaka; Matsushima, Shigenori; Kuriyama, Nagato; Ishii, Kazunari; Mori, Etsuro; Yamada, Kei; Mizuno, Toshiki; Tokuda, Takahiko

    2018-03-16

    OBJECTIVE The gold standard for the diagnosis of idiopathic normal pressure hydrocephalus (iNPH) is the CSF removal test. For elderly patients, however, a less invasive diagnostic method is required. On MRI, high-convexity tightness was reported to be an important finding for the diagnosis of iNPH. On SPECT, patients with iNPH often show hyperperfusion of the high-convexity area. The authors tested 2 hypotheses regarding the SPECT finding: 1) it is relative hyperperfusion reflecting the increased gray matter density of the convexity, and 2) it is useful for the diagnosis of iNPH. The authors termed the SPECT finding the convexity apparent hyperperfusion (CAPPAH) sign. METHODS Two clinical studies were conducted. In study 1, SPECT was performed for 20 patients suspected of having iNPH, and regional cerebral blood flow (rCBF) of the high-convexity area was examined using quantitative analysis. Clinical differences between patients with the CAPPAH sign (CAP) and those without it (NCAP) were also compared. In study 2, the CAPPAH sign was retrospectively assessed in 30 patients with iNPH and 19 healthy controls using SPECT images and 3D stereotactic surface projection. RESULTS In study 1, rCBF of the high-convexity area of the CAP group was calculated as 35.2-43.7 ml/min/100 g, which is not higher than normal values of rCBF determined by SPECT. The NCAP group showed lower cognitive function and weaker responses to the removal of CSF than the CAP group. In study 2, the CAPPAH sign was positive only in patients with iNPH (24/30) and not in controls (sensitivity 80%, specificity 100%). The coincidence rate between tight high convexity on MRI and the CAPPAH sign was very high (28/30). CONCLUSIONS Patients with iNPH showed hyperperfusion of the high-convexity area on SPECT; however, the presence of the CAPPAH sign did not indicate real hyperperfusion of rCBF in the high-convexity area. The authors speculated that patients with iNPH without the CAPPAH sign, despite showing

  13. Convex Clustering: An Attractive Alternative to Hierarchical Clustering

    Science.gov (United States)

    Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth

    2015-01-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340

  14. Short Run Profit Maximization in a Convex Analysis Framework

    Directory of Open Access Journals (Sweden)

    Ilko Vrankic

    2017-03-01

    Full Text Available In this article we analyse the short run profit maximization problem in a convex analysis framework. The goal is to apply the results of convex analysis due to unique structure of microeconomic phenomena on the known short run profit maximization problem where the results from convex analysis are deductively applied. In the primal optimization model the technology in the short run is represented by the short run production function and the normalized profit function, which expresses profit in the output units, is derived. In this approach the choice variable is the labour quantity. Alternatively, technology is represented by the real variable cost function, where costs are expressed in the labour units, and the normalized profit function is derived, this time expressing profit in the labour units. The choice variable in this approach is the quantity of production. The emphasis in these two perspectives of the primal approach is given to the first order necessary conditions of both models which are the consequence of enveloping the closed convex set describing technology with its tangents. The dual model includes starting from the normalized profit function and recovering the production function, and alternatively the real variable cost function. In the first perspective of the dual approach the choice variable is the real wage, and in the second it is the real product price expressed in the labour units. It is shown that the change of variables into parameters and parameters into variables leads to both optimization models which give the same system of labour demand and product supply functions and their inverses. By deductively applying the results of convex analysis the comparative statics results are derived describing the firm's behaviour in the short run.

  15. An efficient method for minimizing a convex separable logarithmic function subject to a convex inequality constraint or linear equality constraint

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We consider the problem of minimizing a convex separable logarithmic function over a region defined by a convex inequality constraint or linear equality constraint, and two-sided bounds on the variables (box constraints. Such problems are interesting from both theoretical and practical point of view because they arise in some mathematical programming problems as well as in various practical problems such as problems of production planning and scheduling, allocation of resources, decision making, facility location problems, and so forth. Polynomial algorithms are proposed for solving problems of this form and their convergence is proved. Some examples and results of numerical experiments are also presented.

  16. Some Characterizations of Convex Interval Games

    NARCIS (Netherlands)

    Brânzei, R.; Tijs, S.H.; Alparslan-Gok, S.Z.

    2008-01-01

    This paper focuses on new characterizations of convex interval games using the notions of exactness and superadditivity. We also relate big boss interval games with concave interval games and obtain characterizations of big boss interval games in terms of exactness and subadditivity.

  17. Schur-Convexity for a Class of Symmetric Functions and Its Applications

    Directory of Open Access Journals (Sweden)

    Wei-Feng Xia

    2009-01-01

    Full Text Available For x=(x1,x2,…,xn∈R+n, the symmetric function ϕn(x,r is defined by ϕn(x,r=ϕn(x1,x2,…,xn;r=∏1≤i1convexity, Schur multiplicative convexity and Schur harmonic convexity of ϕn(x,r are discussed. As applications, some inequalities are established by use of the theory of majorization.

  18. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard; Wonka, Peter; Cao, Yuanhao

    2015-01-01

    be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution

  19. On convexity and Schoenberg's variation diminishing splines

    International Nuclear Information System (INIS)

    Feng, Yuyu; Kozak, J.

    1992-11-01

    In the paper we characterize a convex function by the monotonicity of a particular variation diminishing spline sequence. The result extends the property known for the Bernstein polynomial sequence. (author). 4 refs

  20. Distribution functions of sections and projections of convex bodies

    OpenAIRE

    Kim, Jaegil; Yaskin, Vladyslav; Zvavitch, Artem

    2015-01-01

    Typically, when we are given the section (or projection) function of a convex body, it means that in each direction we know the size of the central section (or projection) perpendicular to this direction. Suppose now that we can only get the information about the sizes of sections (or projections), and not about the corresponding directions. In this paper we study to what extent the distribution function of the areas of central sections (or projections) of a convex body can be used to derive ...

  1. Quantum information and convex optimization

    Energy Technology Data Exchange (ETDEWEB)

    Reimpell, Michael

    2008-07-01

    This thesis is concerned with convex optimization problems in quantum information theory. It features an iterative algorithm for optimal quantum error correcting codes, a postprocessing method for incomplete tomography data, a method to estimate the amount of entanglement in witness experiments, and it gives necessary and sufficient criteria for the existence of retrodiction strategies for a generalized mean king problem. (orig.)

  2. Quantum information and convex optimization

    International Nuclear Information System (INIS)

    Reimpell, Michael

    2008-01-01

    This thesis is concerned with convex optimization problems in quantum information theory. It features an iterative algorithm for optimal quantum error correcting codes, a postprocessing method for incomplete tomography data, a method to estimate the amount of entanglement in witness experiments, and it gives necessary and sufficient criteria for the existence of retrodiction strategies for a generalized mean king problem. (orig.)

  3. Directional Convexity and Finite Optimality Conditions.

    Science.gov (United States)

    1984-03-01

    system, Necessary Conditions for optimality. Work Unit Number 5 (Optimization and Large Scale Systems) *Istituto di Matematica Applicata, Universita...that R(T) is convex would then imply x(u,T) e int R(T). Cletituto di Matematica Applicata, Universita di Padova, 35100 ITALY. Sponsored by the United

  4. Preconditioning 2D Integer Data for Fast Convex Hull Computations.

    Science.gov (United States)

    Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.

  5. Effect of dental arch convexity and type of archwire on frictional forces

    NARCIS (Netherlands)

    Fourie, Zacharias; Ozcan, Mutlu; Sandham, John

    Introduction: Friction measurements in orthodontics are often derived from models by using brackets placed on flat models with various straight wires. Dental arches are convex in some areas. The objectives of this study were to compare the frictional forces generated in conventional flat and convex

  6. A working-set framework for sequential convex approximation methods

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2008-01-01

    We present an active-set algorithmic framework intended as an extension to existing implementations of sequential convex approximation methods for solving nonlinear inequality constrained programs. The framework is independent of the choice of approximations and the stabilization technique used...... to guarantee global convergence of the method. The algorithm works directly on the nonlinear constraints in the convex sub-problems and solves a sequence of relaxations of the current sub-problem. The algorithm terminates with the optimal solution to the sub-problem after solving a finite number of relaxations....

  7. Subordination by convex functions

    Directory of Open Access Journals (Sweden)

    Rosihan M. Ali

    2006-01-01

    Full Text Available For a fixed analytic function g(z=z+∑n=2∞gnzn defined on the open unit disk and γ<1, let Tg(γ denote the class of all analytic functions f(z=z+∑n=2∞anzn satisfying ∑n=2∞|angn|≤1−γ. For functions in Tg(γ, a subordination result is derived involving the convolution with a normalized convex function. Our result includes as special cases several earlier works.

  8. A One-Layer Recurrent Neural Network for Constrained Complex-Variable Convex Optimization.

    Science.gov (United States)

    Qin, Sitian; Feng, Jiqiang; Song, Jiahui; Wen, Xingnan; Xu, Chen

    2018-03-01

    In this paper, based on calculus and penalty method, a one-layer recurrent neural network is proposed for solving constrained complex-variable convex optimization. It is proved that for any initial point from a given domain, the state of the proposed neural network reaches the feasible region in finite time and converges to an optimal solution of the constrained complex-variable convex optimization finally. In contrast to existing neural networks for complex-variable convex optimization, the proposed neural network has a lower model complexity and better convergence. Some numerical examples and application are presented to substantiate the effectiveness of the proposed neural network.

  9. Convex integration theory solutions to the h-principle in geometry and topology

    CERN Document Server

    Spring, David

    1998-01-01

    This book provides a comprehensive study of convex integration theory in immersion-theoretic topology. Convex integration theory, developed originally by M. Gromov, provides general topological methods for solving the h-principle for a wide variety of problems in differential geometry and topology, with applications also to PDE theory and to optimal control theory. Though topological in nature, the theory is based on a precise analytical approximation result for higher order derivatives of functions, proved by M. Gromov. This book is the first to present an exacting record and exposition of all of the basic concepts and technical results of convex integration theory in higher order jet spaces, including the theory of iterated convex hull extensions and the theory of relative h-principles. A second feature of the book is its detailed presentation of applications of the general theory to topics in symplectic topology, divergence free vector fields on 3-manifolds, isometric immersions, totally real embeddings, u...

  10. Differential analysis of matrix convex functions

    DEFF Research Database (Denmark)

    Hansen, Frank; Tomiyama, Jun

    2007-01-01

    We analyze matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided differences given by Kraus [F. Kraus, Über konvekse Matrixfunktionen, Math. Z. 41 (1936) 18-42]. We obtain for each order conditions for ma...

  11. Convexity and the Euclidean Metric of Space-Time

    Directory of Open Access Journals (Sweden)

    Nikolaos Kalogeropoulos

    2017-02-01

    Full Text Available We address the reasons why the “Wick-rotated”, positive-definite, space-time metric obeys the Pythagorean theorem. An answer is proposed based on the convexity and smoothness properties of the functional spaces purporting to provide the kinematic framework of approaches to quantum gravity. We employ moduli of convexity and smoothness which are eventually extremized by Hilbert spaces. We point out the potential physical significance that functional analytical dualities play in this framework. Following the spirit of the variational principles employed in classical and quantum Physics, such Hilbert spaces dominate in a generalized functional integral approach. The metric of space-time is induced by the inner product of such Hilbert spaces.

  12. A parallel Discrete Element Method to model collisions between non-convex particles

    Directory of Open Access Journals (Sweden)

    Rakotonirina Andriarimina Daniel

    2017-01-01

    Full Text Available In many dry granular and suspension flow configurations, particles can be highly non-spherical. It is now well established in the literature that particle shape affects the flow dynamics or the microstructure of the particles assembly in assorted ways as e.g. compacity of packed bed or heap, dilation under shear, resistance to shear, momentum transfer between translational and angular motions, ability to form arches and block the flow. In this talk, we suggest an accurate and efficient way to model collisions between particles of (almost arbitrary shape. For that purpose, we develop a Discrete Element Method (DEM combined with a soft particle contact model. The collision detection algorithm handles contacts between bodies of various shape and size. For nonconvex bodies, our strategy is based on decomposing a non-convex body into a set of convex ones. Therefore, our novel method can be called “glued-convex method” (in the sense clumping convex bodies together, as an extension of the popular “glued-spheres” method, and is implemented in our own granular dynamics code Grains3D. Since the whole problem is solved explicitly, our fully-MPI parallelized code Grains3D exhibits a very high scalability when dynamic load balancing is not required. In particular, simulations on up to a few thousands cores in configurations involving up to a few tens of millions of particles can readily be performed. We apply our enhanced numerical model to (i the collapse of a granular column made of convex particles and (i the microstructure of a heap of non-convex particles in a cylindrical reactor.

  13. Fabricating small-scale, curved, polymeric structures with convex and concave menisci through interfacial free energy equilibrium.

    Science.gov (United States)

    Cheng, Chao-Min; Matsuura, Koji; Wang, I-Jan; Kuroda, Yuka; LeDuc, Philip R; Naruse, Keiji

    2009-11-21

    Polymeric curved structures are widely used in imaging systems including optical fibers and microfluidic channels. Here, we demonstrate that small-scale, poly(dimethylsiloxane) (PDMS)-based, curved structures can be fabricated through controlling interfacial free energy equilibrium. Resultant structures have a smooth, symmetric, curved surface, and may be convex or concave in form based on surface tension balance. Their curvatures are controlled by surface characteristics (i.e., hydrophobicity and hydrophilicity) of the molds and semi-liquid PDMS. In addition, these structures are shown to be biocompatible for cell culture. Our system provides a simple, efficient and economical method for generating integrateable optical components without costly fabrication facilities.

  14. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.

    Science.gov (United States)

    Podczeck, Fridrun; Drake, Kevin R; Newton, J Michael

    2013-09-15

    In the literature various solutions exist for the calculation of the diametral compression tensile strength of doubly-convex tablets and each approach is based on experimental data obtained from single materials (gypsum, microcrystalline cellulose) only. The solutions are represented by complex equations and further differ for elastic and elasto-plastic behaviour of the compacts. The aim of this work was to develop a general equation that is applicable independently of deformation behaviour and which is based on simple tablet dimensions such as diameter and total tablet thickness only. With the help of 3D-FEM analysis the tensile failure stress of doubly-convex tables with central cylinder to total tablet thickness ratios W/D between 0.06 and 0.50 and face-curvature ratios D/R between 0.25 and 1.85 were evaluated. Both elastic and elasto-plastic deformation behaviour were considered. The results of 80 individual simulations were combined and showed that the tensile failure stress σt of doubly-convex tablets can be calculated from σt=(2P/πDW)(W/T)=2P/πDT with P being the failure load, D the diameter, W the central cylinder thickness, and T the total thickness of the tablet. This equation converts into the standard Brazilian equation (σt=2P/πDW) when W equals T, i.e. is equally valid for flat cylindrical tablets. In practice, the use of this new equation removes the need for complex measurements of tablet dimensions, because it only requires values for diameter and total tablet thickness. It also allows setting of standards for the mechanical strength of doubly-convex tablets. The new equation holds both for elastic and elasto-plastic deformation behaviour of the tablets under load. It is valid for all combinations of W/D-ratios between 0.06 and 0.50 with D/R-ratios between 0.00 and 1.85 except for W/D=0.50 in combination with D/R-ratios of 1.85 and 1.43 and for W/D-ratios of 0.40 and 0.30 in combination with D/R=1.85. FEM-analysis indicated a tendency to

  15. linear time algorithm for finding the convex ropes between two vertices of a simple polygon without triangulation

    International Nuclear Information System (INIS)

    Phan Thanh An

    2008-06-01

    The convex rope problem, posed by Peshkin and Sanderson in IEEE J. Robotics Automat, 2 (1986) pp. 53-58, is to find the counterclockwise and clockwise convex ropes starting at the vertex a and ending at the vertex b of a simple polygon, where a is on the boundary of the convex hull of the polygon and b is visible from infinity. In this paper, we present a linear time algorithm for solving this problem without resorting to a linear-time triangulation algorithm and without resorting to a convex hull algorithm for the polygon. The counterclockwise (clockwise, respectively) convex rope consists of two polylines obtained in a basic incremental strategy described in convex hull algorithms for the polylines forming the polygon from a to b. (author)

  16. Surface tensor estimation from linear sections

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    From Crofton's formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  17. Surface tensor estimation from linear sections

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    2015-01-01

    From Crofton’s formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  18. The Concept of Convexity in Fuzzy Set Theory | Rauf | Journal of the ...

    African Journals Online (AJOL)

    The notions of convex analysis are indispensable in theoretical and applied Mathematics especially in the study of Calculus where it has a natural generalization for the several variables case. This paper investigates the concept of Fuzzy set theory in relation to the idea of convexity. Some fundamental theorems were ...

  19. Dynamic Matchings in Convex Bipartite Graphs

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Georgiadis, Loukas; Hansen, Kristoffer Arnsfelt

    2007-01-01

    We consider the problem of maintaining a maximum matching in a convex bipartite graph G = (V,E) under a set of update operations which includes insertions and deletions of vertices and edges. It is not hard to show that it is impossible to maintain an explicit representation of a maximum matching...

  20. Diameter 2 properties and convexity

    Czech Academy of Sciences Publication Activity Database

    Abrahamsen, T. A.; Hájek, Petr Pavel; Nygaard, O.; Talponen, J.; Troyanski, S.

    2016-01-01

    Roč. 232, č. 3 (2016), s. 227-242 ISSN 0039-3223 R&D Projects: GA ČR GA16-07378S Institutional support: RVO:67985840 Keywords : diameter 2 property * midpoint locally uniformly rotund * Daugavet property Subject RIV: BA - General Mathematics Impact factor: 0.535, year: 2016 https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia- mathematica /all/232/3/91534/diameter-2-properties-and-convexity

  1. A generalization of the convex Kakeya problem

    KAUST Repository

    Ahn, Heekap; Bae, Sangwon; Cheong, Otfried; Gudmundsson, Joachim; Tokuyama, Takeshi; Vigneron, Antoine E.

    2012-01-01

    We consider the following geometric alignment problem: Given a set of line segments in the plane, find a convex region of smallest area that contains a translate of each input segment. This can be seen as a generalization of Kakeya's problem

  2. Multi-objective convex programming problem arising in multivariate ...

    African Journals Online (AJOL)

    user

    Multi-objective convex programming problem arising in ... However, although the consideration of multiple objectives may seem a novel concept, virtually any nontrivial ..... Solving multiobjective programming problems by discrete optimization.

  3. Cost Allocation and Convex Data Envelopment

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tind, Jørgen

    such as Data Envelopment Analysis (DEA). The convexity constraint of the BCC model introduces a non-zero slack in the objective function of the multiplier problem and we show that the cost allocation rules discussed in this paper can be used as candidates to allocate this slack value on to the input (or output...

  4. Auto-recognition of surfaces and auto-generation of material removal volume for finishing process

    Science.gov (United States)

    Kataraki, Pramod S.; Salman Abu Mansor, Mohd

    2018-03-01

    Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.

  5. On the Lasserre hierarchy of semidefinite programming relaxations of convex polynomial optimization problems

    NARCIS (Netherlands)

    de Klerk, E.; Laurent, M.

    2011-01-01

    The Lasserre hierarchy of semidefinite programming approximations to convex polynomial optimization problems is known to converge finitely under some assumptions. [J. B. Lasserre, Convexity in semialgebraic geometry and polynomial optimization, SIAM J. Optim., 19 (2009), pp. 1995–2014]. We give a

  6. On the stretch factor of convex Delaunay graphs

    Directory of Open Access Journals (Sweden)

    Prosenjit Bose

    2010-06-01

    Full Text Available Let C be a compact and convex set in the plane that contains the origin in its interior, and let S be a finite set of points in the plane. The Delaunay graph DGC(S of S is defined to be the dual of the Voronoi diagram of S with respect to the convex distance function defined by C. We prove that DGC(S is a t-spanner for S, for some constant t that depends only on the shape of the set C. Thus, for any two points p and q in S, the graph DGC(S contains a path between p and q whose Euclidean length is at most t times the Euclidean distance between p and q.

  7. Learning Convex Inference of Marginals

    OpenAIRE

    Domke, Justin

    2012-01-01

    Graphical models trained using maximum likelihood are a common tool for probabilistic inference of marginal distributions. However, this approach suffers difficulties when either the inference process or the model is approximate. In this paper, the inference process is first defined to be the minimization of a convex function, inspired by free energy approximations. Learning is then done directly in terms of the performance of the inference process at univariate marginal prediction. The main ...

  8. Robust Nearfield Wideband Beamforming Design Based on Adaptive-Weighted Convex Optimization

    Directory of Open Access Journals (Sweden)

    Guo Ye-Cai

    2017-01-01

    Full Text Available Nearfield wideband beamformers for microphone arrays have wide applications in multichannel speech enhancement. The nearfield wideband beamformer design based on convex optimization is one of the typical representatives of robust approaches. However, in this approach, the coefficient of convex optimization is a constant, which has not used all the freedom provided by the weighting coefficient efficiently. Therefore, it is still necessary to further improve the performance. To solve this problem, we developed a robust nearfield wideband beamformer design approach based on adaptive-weighted convex optimization. The proposed approach defines an adaptive-weighted function by the adaptive array signal processing theory and adjusts its value flexibly, which has improved the beamforming performance. During each process of the adaptive updating of the weighting function, the convex optimization problem can be formulated as a SOCP (Second-Order Cone Program problem, which could be solved efficiently using the well-established interior-point methods. This method is suitable for the case where the sound source is in the nearfield range, can work well in the presence of microphone mismatches, and is applicable to arbitrary array geometries. Several design examples are presented to verify the effectiveness of the proposed approach and the correctness of the theoretical analysis.

  9. A survey on locally uniformly A-convex algebras

    International Nuclear Information System (INIS)

    Oudadess, M.

    1984-12-01

    Using a bornological technic of M. Akkar, we reduce the study of classical questions (spectrum, boundedness of characters, functional calculus, etc.) in locally uniformly A-convex algebras to the Banach case. (author)

  10. On the complexity of a combined homotopy interior method for convex programming

    Science.gov (United States)

    Yu, Bo; Xu, Qing; Feng, Guochen

    2007-03-01

    In [G.C. Feng, Z.H. Lin, B. Yu, Existence of an interior pathway to a Karush-Kuhn-Tucker point of a nonconvex programming problem, Nonlinear Anal. 32 (1998) 761-768; G.C. Feng, B. Yu, Combined homotopy interior point method for nonlinear programming problems, in: H. Fujita, M. Yamaguti (Eds.), Advances in Numerical Mathematics, Proceedings of the Second Japan-China Seminar on Numerical Mathematics, Lecture Notes in Numerical and Applied Analysis, vol. 14, Kinokuniya, Tokyo, 1995, pp. 9-16; Z.H. Lin, B. Yu, G.C. Feng, A combined homotopy interior point method for convex programming problem, Appl. Math. Comput. 84 (1997) 193-211.], a combined homotopy was constructed for solving non-convex programming and convex programming with weaker conditions, without assuming the logarithmic barrier function to be strictly convex and the solution set to be bounded. It was proven that a smooth interior path from an interior point of the feasible set to a K-K-T point of the problem exists. This shows that combined homotopy interior point methods can solve the problem that commonly used interior point methods cannot solveE However, so far, there is no result on its complexity, even for linear programming. The main difficulty is that the objective function is not monotonically decreasing on the combined homotopy path. In this paper, by taking a piecewise technique, under commonly used conditions, polynomiality of a combined homotopy interior point method is given for convex nonlinear programming.

  11. Closedness type regularity conditions in convex optimization and beyond

    Directory of Open Access Journals (Sweden)

    Sorin-Mihai Grad

    2016-09-01

    Full Text Available The closedness type regularity conditions have proven during the last decade to be viable alternatives to their more restrictive interiority type counterparts, in both convex optimization and different areas where it was successfully applied. In this review article we de- and reconstruct some closedness type regularity conditions formulated by means of epigraphs and subdifferentials, respectively, for general optimization problems in order to stress that they arise naturally when dealing with such problems. The results are then specialized for constrained and unconstrained convex optimization problems. We also hint towards other classes of optimization problems where closedness type regularity conditions were successfully employed and discuss other possible applications of them.

  12. Tropicalized Lambda Lengths, Measured Laminations and Convexity

    DEFF Research Database (Denmark)

    C. Penner, R.

    This work uncovers the tropical analogue for measured laminations of the convex hull construction of decorated Teichmueller theory, namely, it is a study in coordinates of geometric degeneration to a point of Thurston's boundary for Teichmueller space. This may offer a paradigm for the extension ...

  13. Measurement system for diffraction efficiency of convex gratings

    Science.gov (United States)

    Liu, Peng; Chen, Xin-hua; Zhou, Jian-kang; Zhao, Zhi-cheng; Liu, Quan; Luo, Chao; Wang, Xiao-feng; Tang, Min-xue; Shen, Wei-min

    2017-08-01

    A measurement system for diffraction efficiency of convex gratings is designed. The measurement system mainly includes four components as a light source, a front system, a dispersing system that contains a convex grating, and a detector. Based on the definition and measuring principle of diffraction efficiency, the optical scheme of the measurement system is analyzed and the design result is given. Then, in order to validate the feasibility of the designed system, the measurement system is set up and the diffraction efficiency of a convex grating with the aperture of 35 mm, the curvature-radius of 72mm, the blazed angle of 6.4°, the grating period of 2.5μm and the working waveband of 400nm-900nm is tested. Based on GUM (Guide to the Expression of Uncertainty in Measurement), the uncertainties in the measuring results are evaluated. The measured diffraction efficiency data are compared to the theoretical ones, which are calculated based on the grating groove parameters got by an atomic force microscope and Rigorous Couple Wave Analysis, and the reliability of the measurement system is illustrated. Finally, the measurement performance of the system is analyzed and tested. The results show that, the testing accuracy, the testing stability and the testing repeatability are 2.5%, 0.085% and 3.5% , respectively.

  14. Relaxation Methods for Strictly Convex Regularizations of Piecewise Linear Programs

    International Nuclear Information System (INIS)

    Kiwiel, K. C.

    1998-01-01

    We give an algorithm for minimizing the sum of a strictly convex function and a convex piecewise linear function. It extends several dual coordinate ascent methods for large-scale linearly constrained problems that occur in entropy maximization, quadratic programming, and network flows. In particular, it may solve exact penalty versions of such (possibly inconsistent) problems, and subproblems of bundle methods for nondifferentiable optimization. It is simple, can exploit sparsity, and in certain cases is highly parallelizable. Its global convergence is established in the recent framework of B -functions (generalized Bregman functions)

  15. A generalization of the convex Kakeya problem

    KAUST Repository

    Ahn, Heekap; Bae, Sangwon; Cheong, Otfried; Gudmundsson, Joachim; Tokuyama, Takeshi; Vigneron, Antoine E.

    2013-01-01

    segments. We also show that, if the goal is to minimize the perimeter of the region instead of its area, then placing the segments with their midpoint at the origin and taking their convex hull results in an optimal solution. Finally, we show that for any

  16. Localized Multiple Kernel Learning A Convex Approach

    Science.gov (United States)

    2016-11-22

    data. All the aforementioned approaches to localized MKL are formulated in terms of non-convex optimization problems, and deep the- oretical...learning. IEEE Transactions on Neural Networks, 22(3):433–446, 2011. Jingjing Yang, Yuanning Li, Yonghong Tian, Lingyu Duan, and Wen Gao. Group-sensitive

  17. Pattern Discovery in Brain Imaging Genetics via SCCA Modeling with a Generic Non-convex Penalty.

    Science.gov (United States)

    Du, Lei; Liu, Kefei; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L; Han, Junwei; Guo, Lei; Saykin, Andrew J; Shen, Li

    2017-10-25

    Brain imaging genetics intends to uncover associations between genetic markers and neuroimaging quantitative traits. Sparse canonical correlation analysis (SCCA) can discover bi-multivariate associations and select relevant features, and is becoming popular in imaging genetic studies. The L1-norm function is not only convex, but also singular at the origin, which is a necessary condition for sparsity. Thus most SCCA methods impose [Formula: see text]-norm onto the individual feature or the structure level of features to pursuit corresponding sparsity. However, the [Formula: see text]-norm penalty over-penalizes large coefficients and may incurs estimation bias. A number of non-convex penalties are proposed to reduce the estimation bias in regression tasks. But using them in SCCA remains largely unexplored. In this paper, we design a unified non-convex SCCA model, based on seven non-convex functions, for unbiased estimation and stable feature selection simultaneously. We also propose an efficient optimization algorithm. The proposed method obtains both higher correlation coefficients and better canonical loading patterns. Specifically, these SCCA methods with non-convex penalties discover a strong association between the APOE e4 rs429358 SNP and the hippocampus region of the brain. They both are Alzheimer's disease related biomarkers, indicating the potential and power of the non-convex methods in brain imaging genetics.

  18. Convex nonnegative matrix factorization with manifold regularization.

    Science.gov (United States)

    Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong

    2015-03-01

    Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui

    2016-01-01

    This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...

  20. An analytic model of pool boiling critical heat flux on an immerged downward facing curved surface

    International Nuclear Information System (INIS)

    He, Hui; Pan, Liang-ming; Wu, Yao; Chen, De-qi

    2015-01-01

    Highlights: • Thin liquid film and supplement of liquid contribute to the CHF. • CHF increases from the bottom to the upper of the lowerhead. • Evaporation of thin liquid film is dominant nearby bottom region. • The subcooling has significant effects on the CHF. - Abstract: In this paper, an analytical model of the critical heat flux (CHF) on the downward facing curved surface for pool boiling has been proposed, which hypothesizes that the CHF on the downward facing curved is composed of two parts, i.e. the evaporation of the thin liquid film underneath the elongated bubble adhering to the lower head outer surface and the depletion of supplement of liquid due to the relative motion of vapor bubbles along with the downward facing curved. The former adopts the Kelvin–Helmholtz instability analysis of vapor–liquid interface of the vapor jets which penetrating in the thin liquid film. When the heat flux closing to the CHF point, the vapor–liquid interface becomes highly distorted, which block liquid to feed the thin liquid film and the thin liquid film will dry out gradually. While the latter considers that the vapor bubbles move along with the downward facing curved surface, and the liquid in two-phase boundary layer enter the liquid film that will be exhausted when the CHF occurs. Based on the aforementioned mechanism and the energy balance between the thin liquid film evaporation and water feeding, and taking the subcooling of the bulk water into account, the mathematic model about the downward facing curved surface CHF has been proposed. The CHF of the downward facing curved surface for pool boiling increases along with the downward facing orientation except in the vicinity of bottom center region, because in this region the vapor bubble almost stagnates and the evaporation of the thin liquid film is dominant. In addition, the subcooling has significant effect on the CHF. Comparing the result of this model with the published experimental results show

  1. Headache as a crucial symptom in the etiology of convexal subarachnoid hemorrhage.

    Science.gov (United States)

    Rico, María; Benavente, Lorena; Para, Marta; Santamarta, Elena; Pascual, Julio; Calleja, Sergio

    2014-03-01

    Convexal subarachnoid hemorrhage has been associated with different diseases, reversible cerebral vasoconstriction syndrome and cerebral amyloid angiopathy being the 2 main causes. To investigate whether headache at onset is determinant in identifying the underlying etiology for convexal subarachnoid hemorrhage. After searching in the database of our hospital, 24 patients were found with convexal subarachnoid hemorrhage in the last 10 years. The mean age of the sample was 69.5 years. We recorded data referring to demographics, symptoms and neuroimaging. Cerebral amyloid angiopathy patients accounted for 46% of the sample, 13% were diagnosed with reversible cerebral vasoconstriction syndrome, 16% with several other etiologies, and in 25%, the cause remained unknown. Mild headache was present only in 1 (9%) of the 11 cerebral amyloid angiopathy patients, while severe headache was the dominant feature in 86% of cases of the remaining etiologies. Headache is a key symptom allowing a presumptive etiological diagnosis of convexal subarachnoid hemorrhage. While the absence of headache suggests cerebral amyloid angiopathy as the more probable cause, severe headache obliges us to rule out other etiologies, such as reversible cerebral vasoconstriction syndrome. © 2013 American Headache Society.

  2. Effective potential for non-convex potentials

    International Nuclear Information System (INIS)

    Fujimoto, Y.; O'Raifeartaigh, L.; Parravicini, G.

    1983-01-01

    It is shown that the well-known relationship between the effective potential GAMMA and the vacuum graphs μ of scalar QFT follows directly from the translational invariance of the measure, and that it holds for all values of the fields phi if, and only if, the classical potential is convex. In the non-convex case μ appears to become complex for some values of phi, but it is shown that the complexity is only apparent and is due to the failure of the loop expansion. The effective potential actually remains real and well-defined for all phi, and reduces to μ in the neighbourhood of the classical minima. A number of examples are considered, notably potentials which are spontaneously broken. In particular the mechanism by which a spontaneous breakdown may be generated by radiative corrections is re-investigated and some new insights obtained. Finally, it is shown that the renormalization group equations for the parameters may be obtained by inspection from the effective potential, and among the examples considered are SU(n) fields and supermultiplets. In particular, it is shown that for supermultiplets the effective potential is not only real but positive. (orig.)

  3. Reactive solid surface morphology variation via ionic diffusion.

    Science.gov (United States)

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  4. On evolving deformation microstructures in non-convex partially damaged solids

    KAUST Repository

    Gurses, Ercan

    2011-06-01

    The paper outlines a relaxation method based on a particular isotropic microstructure evolution and applies it to the model problem of rate independent, partially damaged solids. The method uses an incremental variational formulation for standard dissipative materials. In an incremental setting at finite time steps, the formulation defines a quasi-hyperelastic stress potential. The existence of this potential allows a typical incremental boundary value problem of damage mechanics to be expressed in terms of a principle of minimum incremental work. Mathematical existence theorems of minimizers then induce a definition of the material stability in terms of the sequential weak lower semicontinuity of the incremental functional. As a consequence, the incremental material stability of standard dissipative solids may be defined in terms of weak convexity notions of the stress potential. Furthermore, the variational setting opens up the possibility to analyze the development of deformation microstructures in the post-critical range of unstable inelastic materials based on energy relaxation methods. In partially damaged solids, accumulated damage may yield non-convex stress potentials which indicate instability and formation of fine-scale microstructures. These microstructures can be resolved by use of relaxation techniques associated with the construction of convex hulls. We propose a particular relaxation method for partially damaged solids and investigate it in one- and multi-dimensional settings. To this end, we introduce a new isotropic microstructure which provides a simple approximation of the multi-dimensional rank-one convex hull. The development of those isotropic microstructures is investigated for homogeneous and inhomogeneous numerical simulations. © 2011 Elsevier Ltd. All rights reserved.

  5. Experimental investigation of pool boiling heat transfer and critical heat flux on a downward facing surface

    International Nuclear Information System (INIS)

    Gocmanac, M.; Luxat, J.C.

    2012-01-01

    A separate effects experimental study of heat transfer and Critical Heat Flux (CHF) on a downward facing plate in subcooled water pool boiling is described. Two geometries of downwards facing surfaces are studied. The first is termed the 'confined' study in which bubble motion is restricted to the heated surface. The second is termed the 'unconfined' study where individual bubbles are free to move along the heated surface and vent in any direction. The method used in the confined study is novel and involves the placement of a lip surrounding the heated surface. The CHF as a function of angle of inclination of the surface is presented and is in good agreement with other experimental data from somewhat different test geometries. (author)

  6. Cohesive granular media modelization with non-convex particles shape: Application to UO2 powder compaction

    International Nuclear Information System (INIS)

    Saint-Cyr, B.

    2011-01-01

    We model in this work granular materials composed of non-convex and cohesive aggregates, in view of application to the rheology of UO 2 powders. The effect of non convexity is analyzed in terms of bulk quantities (Coulomb internal friction and cohesion) and micromechanical parameters such as texture anisotropy and force transmission. In particular, we find that the packing fraction evolves in a complex manner with the shape non convexity and the shear strength increases but saturates due to interlocking between the aggregates. We introduce simple models to describe these features in terms of micro-mechanical parameters. Furthermore, a systematic investigation of shearing, uniaxial compaction and simple compression of cohesive packings show that bulk cohesion increases with non-convexity but is strongly influenced by the boundary conditions and shear bands or stress concentration. (author) [fr

  7. The spectral positioning algorithm of new spectrum vehicle based on convex programming in wireless sensor network

    Science.gov (United States)

    Zhang, Yongjun; Lu, Zhixin

    2017-10-01

    Spectrum resources are very precious, so it is increasingly important to locate interference signals rapidly. Convex programming algorithms in wireless sensor networks are often used as localization algorithms. But in view of the traditional convex programming algorithm is too much overlap of wireless sensor nodes that bring low positioning accuracy, the paper proposed a new algorithm. Which is mainly based on the traditional convex programming algorithm, the spectrum car sends unmanned aerial vehicles (uses) that can be used to record data periodically along different trajectories. According to the probability density distribution, the positioning area is segmented to further reduce the location area. Because the algorithm only increases the communication process of the power value of the unknown node and the sensor node, the advantages of the convex programming algorithm are basically preserved to realize the simple and real-time performance. The experimental results show that the improved algorithm has a better positioning accuracy than the original convex programming algorithm.

  8. Finite dimensional convexity and optimization

    CERN Document Server

    Florenzano, Monique

    2001-01-01

    The primary aim of this book is to present notions of convex analysis which constitute the basic underlying structure of argumentation in economic theory and which are common to optimization problems encountered in many applications. The intended readers are graduate students, and specialists of mathematical programming whose research fields are applied mathematics and economics. The text consists of a systematic development in eight chapters, with guided exercises containing sometimes significant and useful additional results. The book is appropriate as a class text, or for self-study.

  9. Heat transfer effect of an extended surface in downward-facing subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abdul R., E-mail: khan@vis.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Erkan, Nejdet, E-mail: erkan@vis.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan); Okamoto, Koji, E-mail: okamoto@n.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan)

    2015-12-15

    Highlights: • Compare downward-facing flow boiling results from bare and extended surfaces. • Upstream and downstream temperatures were measured on the extended surface. • Downstream temperatures exceed upstream temperatures for all flow rates. • Bubble accumulation occurs downstream on extended surface. • Extended surface heat transfer lower than bare surface as flow rate reduced. - Abstract: New BWR containment designs are considering cavity flooding as an accident management strategy. Unlike the PWR, the BWR has many Control Rod Guide Tube (CRGT) penetrations in the lower head. During a severe accident scenario with core melt in the lower plenum along with cavity flooding, the penetrations may affect the heat transfer on the ex-vessel surface and disrupt fluid flow during the boiling process. A small-scale experiment was performed to investigate the issues existing in downward-facing boiling phenomenon with an extended surface. The results were compared with a bare (flat) surface. The mass flux of 244 kg/m{sup 2} s, 215 kg/m{sup 2} s, and 177 kg/m{sup 2} s were applied in this study. CHF conditions were observed only for the 177 kg/m{sup 2} s case. The boiling curves for both types of surfaces and all flow rates were obtained. The boiling curves for the highest flow rate showed lower surface temperatures for the extended surface experiments when compared to the bare surface. The downstream location on the extended surface yielded the highest surface temperatures as the flow rate was reduced. The bubble accumulation and low velocity in the wake produced by flow around the extended surface was believed to have caused the elevated temperatures in the downstream location. Although an extended surface may enhance the overall heat transfer, a reduction in the local heat transfer was observed in the current experiments.

  10. Robust Utility Maximization Under Convex Portfolio Constraints

    International Nuclear Information System (INIS)

    Matoussi, Anis; Mezghani, Hanen; Mnif, Mohamed

    2015-01-01

    We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption–investment strategy by studying the associated quadratic backward stochastic differential equation. We characterize the optimal control by using the duality method and deriving a dynamic maximum principle

  11. Minimizing convex functions by continuous descent methods

    Directory of Open Access Journals (Sweden)

    Sergiu Aizicovici

    2010-01-01

    Full Text Available We study continuous descent methods for minimizing convex functions, defined on general Banach spaces, which are associated with an appropriate complete metric space of vector fields. We show that there exists an everywhere dense open set in this space of vector fields such that each of its elements generates strongly convergent trajectories.

  12. Numerical modeling of isothermal compositional grading by convex splitting methods

    KAUST Repository

    Li, Yiteng

    2017-04-09

    In this paper, an isothermal compositional grading process is simulated based on convex splitting methods with the Peng-Robinson equation of state. We first present a new form of gravity/chemical equilibrium condition by minimizing the total energy which consists of Helmholtz free energy and gravitational potential energy, and incorporating Lagrange multipliers for mass conservation. The time-independent equilibrium equations are transformed into a system of transient equations as our solution strategy. It is proved our time-marching scheme is unconditionally energy stable by the semi-implicit convex splitting method in which the convex part of Helmholtz free energy and its derivative are treated implicitly and the concave parts are treated explicitly. With relaxation factor controlling Newton iteration, our method is able to converge to a solution with satisfactory accuracy if a good initial estimate of mole compositions is provided. More importantly, it helps us automatically split the unstable single phase into two phases, determine the existence of gas-oil contact (GOC) and locate its position if GOC does exist. A number of numerical examples are presented to show the performance of our method.

  13. Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering

    Directory of Open Access Journals (Sweden)

    M. Geravanchizadeh

    2014-12-01

    Full Text Available This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS leads to better performance of adaptive filter. Furthermore, convex combination of two adaptive filters improves its performance. In this paper, new convex combinational adaptive filtering methods in the framework of speech enhancement system are proposed. The proposed methods utilize the idea of normalization and fractional derivative, both in the design of different convex mixing strategies and their related component filters. To assess our proposed methods, simulation results of different LMS-based algorithms based on their convergence behavior (i.e., MSE plots and different objective and subjective criteria are compared. The objective and subjective evaluations include examining the results of SNR improvement, PESQ test, and listening tests for dual-channel speech enhancement. The powerful aspects of proposed methods are their low complexity, as expected with all LMS-based methods, along with a high convergence rate.

  14. Surface structure of Cr0.5 Ti0.5N coatings after heavy ions irradiation and annealing

    International Nuclear Information System (INIS)

    Kislitsin, Sergey; Gorlachev, Igor; Uglov, Vladimir

    2015-01-01

    Results of surface structure investigations of TiCrN coating on carbon steel after irradiation by helium, krypton and xenon heavy ions are reported in the present publication. The series of Cr50Ti50N coatings on carbon steel with thickness of 50,..., 300 nm were formed by vacuum arc deposition techniques. Specimens with TiCrN coating on carbon steel were irradiated by low energy 4 He +1 (22 keV) and 4 He +2 (40 keV) ions and high energy Xe +18 and Kr +14 ions with energy of 1.5 MeV/nucleon. Fluence of He ions was 1.0x10 17 ion.cm -2 , fluence of Xe and Kr ions was 5x10 14 -1.0x10 15 ion.cm -2 , irradiation temperature did not exceed 150 deg. C. Study of surface structure was performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Methods of Roentgen diffractometry and Rutherford backscattering was applied for determination of structure and thickness of coating. In case of irradiation with Xe +18 and Kr +14 ions an investigation of surface morphology and structure was done after successive two hours vacuum annealing of irradiated samples at temperatures 400 deg. C, 500 deg. C and 600 deg. C. It was shown that after irradiation by Xe and Kr ions on the surface of coating convexities appear, surface density of which correlates with ion flux. In the case of Xe, ions irradiation generated convexities of spherical and elongated shape with dimensions ranging from ten to hundreds nm. In the case of Kr ions, only spherical globules were generated, dimensions of which are 10-30 nm. The most likely explanation of observed surface damage is that: convexities on the surface are generated at ion bombardment of specimens with coating. Convexities are the traces of ions passing through coating and they are due to structural reconstruction at energy release along a trajectory of ions braking. Convexities of elongated shape represent overlapping traces from two passing ions. When the projective range of Xe and Kr ions exceeds coating thickness, damage

  15. Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons.

    Science.gov (United States)

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2013-08-01

    In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π.

  16. A Convex Optimization Model and Algorithm for Retinex

    Directory of Open Access Journals (Sweden)

    Qing-Nan Zhao

    2017-01-01

    Full Text Available Retinex is a theory on simulating and explaining how human visual system perceives colors under different illumination conditions. The main contribution of this paper is to put forward a new convex optimization model for Retinex. Different from existing methods, the main idea is to rewrite a multiplicative form such that the illumination variable and the reflection variable are decoupled in spatial domain. The resulting objective function involves three terms including the Tikhonov regularization of the illumination component, the total variation regularization of the reciprocal of the reflection component, and the data-fitting term among the input image, the illumination component, and the reciprocal of the reflection component. We develop an alternating direction method of multipliers (ADMM to solve the convex optimization model. Numerical experiments demonstrate the advantages of the proposed model which can decompose an image into the illumination and the reflection components.

  17. The canonical partial metric and the uniform convexity on normed spaces

    Directory of Open Access Journals (Sweden)

    S. Oltra

    2005-10-01

    Full Text Available In this paper we introduce the notion of canonical partial metric associated to a norm to study geometric properties of normed spaces. In particular, we characterize strict convexity and uniform convexity of normed spaces in terms of the canonical partial metric defined by its norm. We prove that these geometric properties can be considered, in this sense, as topological properties that appear when we compare the natural metric topology of the space with the non translation invariant topology induced by the canonical partial metric in the normed space.

  18. Performance of the coned-face end seal with regard to energy conservation

    Science.gov (United States)

    Sehnal, J.; Sedy, J.; Zobens, A.; Etsion, I.

    1982-01-01

    The effects of face coning on seal performance are evaluated with particular regard to the energy saving potential of convex conedface end seals as indicated by torque reduction. Experiments were conducted using a conventional carbon flat-face pusher-type seal, a coned-face pusher-type seal, coned-face bellows-type seal, and a modified coned-face pusher-type seal intended for dynamically unstable operation, with shaft rotation at up to 8000 rpm, pressures of up to 2758 kPa, and a petroleum-based turbine oil as lubricant. Torque at the seal interface is found to be reduced by 42% when the standard flat-face seal is replaced by a coned seal, although the leakage of the cone-face seal was 11 times greater. Reduction of seal balance from 76.1 to 51.3% resulted in an additional 44% reduction in torque, although at the expense of excessive leakage, but did not produce unstable operation. Face temperatures were reduced by 33-56 C and wear was also reduced greatly on the cone face seals. Seal performance is noted to be in agreement with analytical calculations.

  19. Alternative face models for 3D face registration

    Science.gov (United States)

    Salah, Albert Ali; Alyüz, Neşe; Akarun, Lale

    2007-01-01

    3D has become an important modality for face biometrics. The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a one-to-all registration approach, which means each new facial surface is registered to all faces in the gallery, at a great computational cost. We explore the approach of registering the new facial surface to an average face model (AFM), which automatically establishes correspondence to the pre-registered gallery faces. Going one step further, we propose that using a couple of well-selected AFMs can trade-off computation time with accuracy. Drawing on cognitive justifications, we propose to employ category-specific alternative average face models for registration, which is shown to increase the accuracy of the subsequent recognition. We inspect thin-plate spline (TPS) and iterative closest point (ICP) based registration schemes under realistic assumptions on manual or automatic landmark detection prior to registration. We evaluate several approaches for the coarse initialization of ICP. We propose a new algorithm for constructing an AFM, and show that it works better than a recent approach. Finally, we perform simulations with multiple AFMs that correspond to different clusters in the face shape space and compare these with gender and morphology based groupings. We report our results on the FRGC 3D face database.

  20. On the convexity of relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Ibáñez, José M; Martí, José M; Cordero-Carrión, Isabel; Miralles, Juan A

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla (note)

  1. Glass molding of 3mm diameter aspheric plano-convex lens

    Science.gov (United States)

    Sung, Hayeong; Hue, Myung sang; Lee, Giljae; Ryu, Geunman; Kim, Dongguk; Yang, Suncheol

    2017-10-01

    The many industries and research fields have demands for small scale optical systems. To satisfy the demands, many studies are conducted and the miniaturization technologies have been developed. The optical lens is directly related to the optical systems and a key component for the miniaturization. So the aspheric surface which can replace multispherical lenses is applied to the optical lens. And fabrication methods to reduce the diameter of the lens have been developed. The glass molding pressing (GMP) process is an attractive method to fabricate aspheric lens among the lens manufacturing processes. Because the GMP process has advantages of productivity, repeatability and so on. In this study, a 3 mm diameter aspheric plano-convex lens was fabricated using the GMP process. The GMP process was divided into heating, pressing, annealing and cooling. And the process was conducted using a commercial glass molding machine. Mold tools consist of an upper and a lower mold insert, an inner and an outer guide. The aspheric and the flat surfaces of the mold inserts were coated with ta-C to prevent the sticking of the glass to the mold. The surfaces of molded lens were measured by white interferometry and surface profilometer. The height and the diameter were measured using optical microscopy. As results, the aspheric surface of the lens was 5.1187 nm in Ra and 0.242 um in Pt. And the flat surface was 2.6697 nm in Ra and 0.13 um in Pt. The height and the diameter were 1.935 mm and 3.002 mm respectively.

  2. A two-layer recurrent neural network for nonsmooth convex optimization problems.

    Science.gov (United States)

    Qin, Sitian; Xue, Xiaoping

    2015-06-01

    In this paper, a two-layer recurrent neural network is proposed to solve the nonsmooth convex optimization problem subject to convex inequality and linear equality constraints. Compared with existing neural network models, the proposed neural network has a low model complexity and avoids penalty parameters. It is proved that from any initial point, the state of the proposed neural network reaches the equality feasible region in finite time and stays there thereafter. Moreover, the state is unique if the initial point lies in the equality feasible region. The equilibrium point set of the proposed neural network is proved to be equivalent to the Karush-Kuhn-Tucker optimality set of the original optimization problem. It is further proved that the equilibrium point of the proposed neural network is stable in the sense of Lyapunov. Moreover, from any initial point, the state is proved to be convergent to an equilibrium point of the proposed neural network. Finally, as applications, the proposed neural network is used to solve nonlinear convex programming with linear constraints and L1 -norm minimization problems.

  3. [Muscular aging and its involvement in facial aging: the Face Recurve concept].

    Science.gov (United States)

    Le Louarn, C

    2009-05-01

    Cutaneous ageing is responsible for the increasingly creased appearance of the skin, pores opening, skin dyschromia, while the ageing of the structures of the face is attributed primarily to the effect of gravity on the tissues. The theory expounded below sets out to prove that the main and initial cause of this ageing is the repeated contractions of the mimic muscles. This concept attributes only a secondary role to gravity in the ageing process, which is initially brought about by muscular contractions. An MRI study recently made it possible to demonstrate the anterior convexity curve of the mimic muscles in the young subject. This curve is due to the existence of a deep fat pad at the back of these muscles. While this mass of fat is effectively a mechanical sliding plane, its convexity constitutes the founding principle behind this new ageing theory. In the young subject, the extent of its convexity and its location give a specific, youthful character to the movements, in terms of direction and amplitude, of the facial muscles. With age, the muscle gradually straightens and shortens, due to the repeated contractions that expel the underlying fat and increase the tonus at rest. The structural ageing becomes visible and with time, the expression of the subject is consequently more rigid.

  4. Convex polyhedral abstractions, specialisation and property-based predicate splitting in Horn clause verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2014-01-01

    We present an approach to constrained Horn clause (CHC) verification combining three techniques: abstract interpretation over a domain of convex polyhedra, specialisation of the constraints in CHCs using abstract interpretation of query-answer transformed clauses, and refinement by splitting...... in conjunction with specialisation for propagating constraints it can frequently solve challenging verification problems. This is a contribution in itself, but refinement is needed when it fails, and the question of how to refine convex polyhedral analyses has not been studied much. We present a refinement...... technique based on interpolants derived from a counterexample trace; these are used to drive a property-based specialisation that splits predicates, leading in turn to more precise convex polyhedral analyses. The process of specialisation, analysis and splitting can be repeated, in a manner similar...

  5. Uniform estimate of a compact convex set by a ball in an arbitrary norm

    International Nuclear Information System (INIS)

    Dudov, S I; Zlatorunskaya, I V

    2000-01-01

    The problem of the best uniform approximation of a compact convex set by a ball with respect to an arbitrary norm in the Hausdorff metric corresponding to that norm is considered. The question is reduced to a convex programming problem, which can be studied by means of convex analysis. Necessary and sufficient conditions for the solubility of this problem are obtained and several properties of its solution are described. It is proved, in particular, that the centre of at least one ball of best approximation lies in the compact set under consideration; in addition, conditions ensuring that the centres of all balls of best approximation lie in this compact set and a condition for unique solubility are obtained

  6. Efficiency measurement with a non-convex free disposal hull technology

    DEFF Research Database (Denmark)

    Fukuyama, Hirofumi; Hougaard, Jens Leth; Sekitani, Kazuyuki

    2016-01-01

    We investigate the basic monotonicity properties of least-distance (in)efficiency measures on the class of non-convex FDH (free disposable hull) technologies. We show that any known FDH least-distance measure violates strong monotonicity over the strongly (Pareto-Koopmans) efficient frontier. Tak....... Taking this result into account, we develop a new class of FDH least-distance measures that satisfy strong monotonicity and show that the developed (in)efficiency measurement framework has a natural profit interpretation.......We investigate the basic monotonicity properties of least-distance (in)efficiency measures on the class of non-convex FDH (free disposable hull) technologies. We show that any known FDH least-distance measure violates strong monotonicity over the strongly (Pareto-Koopmans) efficient frontier...

  7. Convex variational problems linear, nearly linear and anisotropic growth conditions

    CERN Document Server

    Bildhauer, Michael

    2003-01-01

    The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.

  8. A Survey on Operator Monotonicity, Operator Convexity, and Operator Means

    Directory of Open Access Journals (Sweden)

    Pattrawut Chansangiam

    2015-01-01

    Full Text Available This paper is an expository devoted to an important class of real-valued functions introduced by Löwner, namely, operator monotone functions. This concept is closely related to operator convex/concave functions. Various characterizations for such functions are given from the viewpoint of differential analysis in terms of matrix of divided differences. From the viewpoint of operator inequalities, various characterizations and the relationship between operator monotonicity and operator convexity are given by Hansen and Pedersen. In the viewpoint of measure theory, operator monotone functions on the nonnegative reals admit meaningful integral representations with respect to Borel measures on the unit interval. Furthermore, Kubo-Ando theory asserts the correspondence between operator monotone functions and operator means.

  9. Towards reproducible experimental studies for non-convex polyhedral shaped particles

    Directory of Open Access Journals (Sweden)

    Wilke Daniel N.

    2017-01-01

    Full Text Available The packing density and flat bottomed hopper discharge of non-convex polyhedral particles are investigated in a systematic experimental study. The motivation for this study is two-fold. Firstly, to establish an approach to deliver quality experimental particle packing data for non-convex polyhedral particles that can be used for characterization and validation purposes of discrete element codes. Secondly, to make the reproducibility of experimental setups as convenient and readily available as possible using affordable and accessible technology. The primary technology for this study is fused deposition modeling used to 3D print polylactic acid (PLA particles using readily available 3D printer technology. A total of 8000 biodegradable particles were printed, 1000 white particles and 1000 black particles for each of the four particle types considered in this study. Reproducibility is one benefit of using fused deposition modeling to print particles, but an extremely important additional benefit is that specific particle properties can be explicitly controlled. As an example in this study the volume fraction of each particle can be controlled i.e. the effective particle density can be adjusted. In this study the particle volumes reduces drastically as the non-convexity is increased, however all printed white particles in this study have the same mass within 2% of each other.

  10. Towards reproducible experimental studies for non-convex polyhedral shaped particles

    Science.gov (United States)

    Wilke, Daniel N.; Pizette, Patrick; Govender, Nicolin; Abriak, Nor-Edine

    2017-06-01

    The packing density and flat bottomed hopper discharge of non-convex polyhedral particles are investigated in a systematic experimental study. The motivation for this study is two-fold. Firstly, to establish an approach to deliver quality experimental particle packing data for non-convex polyhedral particles that can be used for characterization and validation purposes of discrete element codes. Secondly, to make the reproducibility of experimental setups as convenient and readily available as possible using affordable and accessible technology. The primary technology for this study is fused deposition modeling used to 3D print polylactic acid (PLA) particles using readily available 3D printer technology. A total of 8000 biodegradable particles were printed, 1000 white particles and 1000 black particles for each of the four particle types considered in this study. Reproducibility is one benefit of using fused deposition modeling to print particles, but an extremely important additional benefit is that specific particle properties can be explicitly controlled. As an example in this study the volume fraction of each particle can be controlled i.e. the effective particle density can be adjusted. In this study the particle volumes reduces drastically as the non-convexity is increased, however all printed white particles in this study have the same mass within 2% of each other.

  11. Intracranial Convexity Lipoma with Massive Calcification: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung Tae; Park, Dong Woo; Ryu, Jeong Ah; Park, Choong Ki; Lee, Young Jun; Lee, Seung Ro [Dept. of Radiology, Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2011-12-15

    Intracranial lipoma is a rare entity, accounting for less than 0.5% of intracranial tumors, which usually develops in the callosal cisterns. We report a case of lipoma with an unusual location; in the high parietal convexity combined with massive calcification, and no underlying vascular malformation or congenital anomaly.

  12. A duality recipe for non-convex variational problems

    Science.gov (United States)

    Bouchitté, Guy; Phan, Minh

    2018-03-01

    The aim of this paper is to present a general convexification recipe that can be useful for studying non-convex variational problems. In particular, this allows us to treat such problems by using a powerful primal-dual scheme. Possible further developments and open issues are given. xml:lang="fr"

  13. On conditional independence and log-convexity

    Czech Academy of Sciences Publication Activity Database

    Matúš, František

    2012-01-01

    Roč. 48, č. 4 (2012), s. 1137-1147 ISSN 0246-0203 R&D Projects: GA AV ČR IAA100750603; GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : Conditional independence * Markov properties * factorizable distributions * graphical Markov models * log-convexity * Gibbs- Markov equivalence * Markov fields * Gaussian distributions * positive definite matrices * covariance selection model Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2012 http://library.utia.cas.cz/separaty/2013/MTR/matus-0386229.pdf

  14. Distributed Topological Convex Hull Estimation of Event Region in Wireless Sensor Networks without Location Information

    NARCIS (Netherlands)

    Guo, Peng; Cao, Jiannong; Zhang, Kui

    2015-01-01

    In critical event (e.g., fire or gas) monitoring applications of wireless sensor networks (WSNs), convex hull of the event region is an efficient tool in handling the usual tasks like event report, routes reconstruction and human motion planning. Existing works on estimating convex hull of event

  15. On the convex closed set-valued operators in Banach spaces and their applications in control problems

    International Nuclear Information System (INIS)

    Vu Ngoc Phat; Jong Yeoul Park

    1995-10-01

    The paper studies a class of set-values operators with emphasis on properties of their adjoints and existence of eigenvalues and eigenvectors of infinite-dimensional convex closed set-valued operators. Sufficient conditions for existence of eigenvalues and eigenvectors of set-valued convex closed operators are derived. These conditions specify possible features of control problems. The results are applied to some constrained control problems of infinite-dimensional systems described by discrete-time inclusions whose right-hand-sides are convex closed set- valued functions. (author). 8 refs

  16. A new corrective technique for adolescent idiopathic scoliosis (Ucar′s convex rod rotation

    Directory of Open Access Journals (Sweden)

    Bekir Yavuz Ucar

    2014-01-01

    Full Text Available Study Design: Prospective single-center study. Objective: To analyze the efficacy and safety of a new technique of global vertebral correction with convex rod rotation performed on the patients with adolescent idiopathic scoliosis. Summary of Background Data: Surgical goal is to obtain an optimal curve correction in scoliosis surgery. There are various correction techniques. This report describes a new technique of global vertebral correction with convex rod rotation. Materials and Methods: A total of 12 consecutive patients with Lenke type I adolescent idiopathic scoliosis and managed by convex rod rotation technique between years 2012 and 2013 having more than 1 year follow-up were included. Mean age was 14.5 (range = 13-17 years years at the time of operation. The hospital charts were reviewed for demographic data. Measurements of curve magnitude and balance were made on 36-inch standing anteroposterior and lateral radiographs taken before surgery and at most recent follow up to assess deformity correction, spinal balance, and complications related to the instrumentation. Results: Preoperative coronal plane major curve of 62° (range = 50°-72° with flexibility of less than 30% was corrected to 11.5°(range = 10°-14° showing a 81% scoliosis correction at the final follow-up. Coronal imbalance was improved 72% at the most recent follow-up assessment. No complications were found. Conclusion: The new technique of global vertebral correction with Ucar′s convex rod rotation is an effective technique. This method is a vertebral rotation procedure from convex side and it allows to put screws easily to the concave side.

  17. Thermographic analysis of plasma facing components covered by carbon surface layer in tokamaks

    International Nuclear Information System (INIS)

    Gardarein, Jean-Laurent

    2007-01-01

    Tokamaks are reactors based on the thermonuclear fusion energy with magnetic confinement of the plasma. In theses machines, several MW are coupled to the plasma for about 10 s. A large part of this power is directed towards plasma facing components (PFC). For better understanding and control the heat flux transfer from the plasma to the surrounding wall, it is very important to measure the surface temperature of the PFC and to estimate the imposed heat flux. In most of tokamaks using carbon PFC, the eroded carbon is circulating in the plasma and redeposited elsewhere. During the plasma operations, this leads at some locations to the formation of thin or thick carbon layers usually poorly attached to the PFC. These surface layers with unknown thermal properties complicate the calculation of the heat flux from IR surface temperature measurements. To solve this problem, we develop first, inverse method to estimate the heat flux using thermocouple (not sensitive to the carbon surface layers) temperature measurements. Then, we propose a front face pulsed photothermal method allowing an estimation of layers thermal diffusivity, conductivity, effusivity and the thermal contact resistance between the layer and the tile. The principle is to study with an infrared sensor, the cooling of the layer surface after heating by a short laser pulse, this cooling depending on the thermal properties of the successive layers. (author) [fr

  18. A note on supercyclic operators in locally convex spaces

    OpenAIRE

    Albanese, Angela A.; Jornet, David

    2018-01-01

    We treat some questions related to supercyclicity of continuous linear operators when acting in locally convex spaces. We extend results of Ansari and Bourdon and consider doubly power bounded operators in this general setting. Some examples are given.

  19. Neuro-genetic hybrid approach for the solution of non-convex economic dispatch problem

    International Nuclear Information System (INIS)

    Malik, T.N.; Asar, A.U.

    2009-01-01

    ED (Economic Dispatch) is non-convex constrained optimization problem, and is used for both on line and offline studies in power system operation. Conventionally, it is solved as convex problem using optimization techniques by approximating generator input/output characteristic. Curves of monotonically increasing nature thus resulting in an inaccurate dispatch. The GA (Genetic Algorithm) has been used for the solution of this problem owing to its inherent ability to address the convex and non-convex problems equally. This approach brings the solution to the global minimum region of search space in a short time and then takes longer time to converge to near optimal results. GA based hybrid approaches are used to fine tune the near optimal results produced by GA. This paper proposes NGH (Neuro Genetic Hybrid) approach to solve the economic dispatch with valve point effect. The proposed approach combines the GA with the ANN (Artificial Neural Network) using SI (Swarm Intelligence) learning rule. The GA acts as a global optimizer and the neural network fine tunes the GA results to the desired targets. Three machines standard test system has been tested for validation of the approach. Comparing the results with GA and NGH model based on back-propagation learning, the proposed approach gives contrast improvements showing the promise of the approach. (author)

  20. Mechanics of curved surfaces, with application to surface-parallel cracks

    Science.gov (United States)

    Martel, Stephen J.

    2011-10-01

    The surfaces of many bodies are weakened by shallow enigmatic cracks that parallel the surface. A re-formulation of the static equilibrium equations in a curvilinear reference frame shows that a tension perpendicular to a traction-free surface can arise at shallow depths even under the influence of gravity. This condition occurs if σ11k1 + σ22k2 > ρg cosβ, where k1 and k2 are the principal curvatures (negative if convex) at the surface, σ11 and σ22 are tensile (positive) or compressive (negative) stresses parallel to the respective principal curvature arcs, ρ is material density, g is gravitational acceleration, and β is the surface slope. The curvature terms do not appear in equilibrium equations in a Cartesian reference frame. Compression parallel to a convex surface thus can cause subsurface cracks to open. A quantitative test of the relationship above accounts for where sheeting joints (prominent shallow surface-parallel fractures in rock) are abundant and for where they are scarce or absent in the varied topography of Yosemite National Park, resolving key aspects of a classic problem in geology: the formation of sheeting joints. Moreover, since the equilibrium equations are independent of rheology, the relationship above can be applied to delamination or spalling caused by surface-parallel cracks in many materials.

  1. Anomalous dynamics triggered by a non-convex equation of state in relativistic flows

    Science.gov (United States)

    Ibáñez, J. M.; Marquina, A.; Serna, S.; Aloy, M. A.

    2018-05-01

    The non-monotonicity of the local speed of sound in dense matter at baryon number densities much higher than the nuclear saturation density (n0 ≈ 0.16 fm-3) suggests the possible existence of a non-convex thermodynamics which will lead to a non-convex dynamics. Here, we explore the rich and complex dynamics that an equation of state (EoS) with non-convex regions in the pressure-density plane may develop as a result of genuinely relativistic effects, without a classical counterpart. To this end, we have introduced a phenomenological EoS, the parameters of which can be restricted owing to causality and thermodynamic stability constraints. This EoS can be regarded as a toy model with which we may mimic realistic (and far more complex) EoSs of practical use in the realm of relativistic hydrodynamics.

  2. Generalization of the fejer-hadamard type inequalities for p-convex functions via k-fractional integrals

    Directory of Open Access Journals (Sweden)

    Ghulam Farid

    2017-10-01

    Full Text Available The aim of this paper is to obtain some more general fractional integral inequalities of Fejer Hadamard type for p-convex functions via Riemann-Liouville k-fractional integrals. Also in particular fractional inequalities for p-convex functions via Riemann-Liouville fractional integrals have been deduced.

  3. Convex solutions of systems arising from Monge-Ampere equations

    Directory of Open Access Journals (Sweden)

    Haiyan Wang

    2009-10-01

    Full Text Available We establish two criteria for the existence of convex solutions to a boundary value problem for weakly coupled systems arising from the Monge-Ampère equations. We shall use fixed point theorems in a cone.

  4. WE-AB-209-07: Explicit and Convex Optimization of Plan Quality Metrics in Intensity-Modulated Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Engberg, L; Eriksson, K; Hardemark, B; Forsgren, A

    2016-01-01

    Purpose: To formulate objective functions of a multicriteria fluence map optimization model that correlate well with plan quality metrics, and to solve this multicriteria model by convex approximation. Methods: In this study, objectives of a multicriteria model are formulated to explicitly either minimize or maximize a dose-at-volume measure. Given the widespread agreement that dose-at-volume levels play important roles in plan quality assessment, these objectives correlate well with plan quality metrics. This is in contrast to the conventional objectives, which are to maximize clinical goal achievement by relating to deviations from given dose-at-volume thresholds: while balancing the new objectives means explicitly balancing dose-at-volume levels, balancing the conventional objectives effectively means balancing deviations. Constituted by the inherently non-convex dose-at-volume measure, the new objectives are approximated by the convex mean-tail-dose measure (CVaR measure), yielding a convex approximation of the multicriteria model. Results: Advantages of using the convex approximation are investigated through juxtaposition with the conventional objectives in a computational study of two patient cases. Clinical goals of each case respectively point out three ROI dose-at-volume measures to be considered for plan quality assessment. This is translated in the convex approximation into minimizing three mean-tail-dose measures. Evaluations of the three ROI dose-at-volume measures on Pareto optimal plans are used to represent plan quality of the Pareto sets. Besides providing increased accuracy in terms of feasibility of solutions, the convex approximation generates Pareto sets with overall improved plan quality. In one case, the Pareto set generated by the convex approximation entirely dominates that generated with the conventional objectives. Conclusion: The initial computational study indicates that the convex approximation outperforms the conventional objectives

  5. A one-dimensional gravitationally interacting gas and the convex minorant of Brownian motion

    International Nuclear Information System (INIS)

    Suidan, T M

    2001-01-01

    The surprising connection between a one-dimensional gravitationally interacting gas of sticky particles and the convex minorant process generated by Brownian motion on [0,1] is studied. A study is made of the dynamics of this 1-D gas system by identifying three distinct clustering regimes and the time scales at which they occur. At the critical moment of time the mass distribution of the gas can be computed in terms of functionals of the convex minorant process

  6. Surface temperature measurement of plasma facing components in tokamaks

    International Nuclear Information System (INIS)

    Amiel, Stephane

    2014-01-01

    During this PhD, the challenges on the non-intrusive surface temperature measurements of metallic plasma facing components in tokamaks are reported. Indeed, a precise material emissivity value is needed for classical infrared methods and the environment contribution has to be known particularly for low emissivities materials. Although methods have been developed to overcome these issues, they have been implemented solely for dedicated experiments. In any case, none of these methods are suitable for surface temperature measurement in tokamaks.The active pyrometry introduced in this study allows surface temperature measurements independently of reflected flux and emissivities using pulsed and modulated photothermal effect. This method has been validated in laboratory on metallic materials with reflected fluxes for pulsed and modulated modes. This experimental validation is coupled with a surface temperature variation induced by photothermal effect and temporal signal evolvement modelling in order to optimize both the heating source characteristics and the data acquisition and treatment. The experimental results have been used to determine the application range in temperature and detection wavelengths. In this context, the design of an active pyrometry system on tokamak has been completed, based on a bicolor camera for a thermography application in metallic (or low emissivity) environment.The active pyrometry method introduced in this study is a complementary technique of classical infrared methods used for thermography in tokamak environment which allows performing local and 2D surface temperature measurements independently of reflected fluxes and emissivities. (author) [fr

  7. A canonical process for estimation of convex functions : The "invelope" of integrated Brownian motion +t4

    NARCIS (Netherlands)

    Groeneboom, P.; Jongbloed, G.; Wellner, J.A.

    2001-01-01

    A process associated with integrated Brownian motion is introduced that characterizes the limit behavior of nonparametric least squares and maximum likelihood estimators of convex functions and convex densities, respectively. We call this process “the invelope” and show that it is an almost surely

  8. Sequential Change-Point Detection via Online Convex Optimization

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2018-02-01

    Full Text Available Sequential change-point detection when the distribution parameters are unknown is a fundamental problem in statistics and machine learning. When the post-change parameters are unknown, we consider a set of detection procedures based on sequential likelihood ratios with non-anticipating estimators constructed using online convex optimization algorithms such as online mirror descent, which provides a more versatile approach to tackling complex situations where recursive maximum likelihood estimators cannot be found. When the underlying distributions belong to a exponential family and the estimators satisfy the logarithm regret property, we show that this approach is nearly second-order asymptotically optimal. This means that the upper bound for the false alarm rate of the algorithm (measured by the average-run-length meets the lower bound asymptotically up to a log-log factor when the threshold tends to infinity. Our proof is achieved by making a connection between sequential change-point and online convex optimization and leveraging the logarithmic regret bound property of online mirror descent algorithm. Numerical and real data examples validate our theory.

  9. Lipschitz estimates for convex functions with respect to vector fields

    Directory of Open Access Journals (Sweden)

    Valentino Magnani

    2012-12-01

    Full Text Available We present Lipschitz continuity estimates for a class of convex functions with respect to Hörmander vector fields. These results have been recently obtained in collaboration with M. Scienza, [22].

  10. Optimal skill distribution under convex skill costs

    Directory of Open Access Journals (Sweden)

    Tin Cheuk Leung

    2018-03-01

    Full Text Available This paper studies optimal distribution of skills in an optimal income tax framework with convex skill constraints. The problem is cast as a social planning problem where a redistributive planner chooses how to distribute a given amount of aggregate skills across people. We find that optimal skill distribution is either perfectly equal or perfectly unequal, but an interior level of skill inequality is never optimal.

  11. Convexity of Energy-Like Functions: Theoretical Results and Applications to Power System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Dvijotham, Krishnamurthy [California Inst. of Technology (CalTech), Pasadena, CA (United States); Low, Steven [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-12

    Power systems are undergoing unprecedented transformations with increased adoption of renewables and distributed generation, as well as the adoption of demand response programs. All of these changes, while making the grid more responsive and potentially more efficient, pose significant challenges for power systems operators. Conventional operational paradigms are no longer sufficient as the power system may no longer have big dispatchable generators with sufficient positive and negative reserves. This increases the need for tools and algorithms that can efficiently predict safe regions of operation of the power system. In this paper, we study energy functions as a tool to design algorithms for various operational problems in power systems. These have a long history in power systems and have been primarily applied to transient stability problems. In this paper, we take a new look at power systems, focusing on an aspect that has previously received little attention: Convexity. We characterize the domain of voltage magnitudes and phases within which the energy function is convex in these variables. We show that this corresponds naturally with standard operational constraints imposed in power systems. We show that power of equations can be solved using this approach, as long as the solution lies within the convexity domain. We outline various desirable properties of solutions in the convexity domain and present simple numerical illustrations supporting our results.

  12. On the polarizability dyadics of electrically small, convex objects

    Science.gov (United States)

    Lakhtakia, Akhlesh

    1993-11-01

    This communication on the polarizability dyadics of electrically small objects of convex shapes has been prompted by a recent paper published by Sihvola and Lindell on the polarizability dyadic of an electrically gyrotropic sphere. A mini-review of recent work on polarizability dyadics is appended.

  13. Perturbation of convex risk minimization and its application in differential private learning algorithms

    Directory of Open Access Journals (Sweden)

    Weilin Nie

    2017-01-01

    Full Text Available Abstract Convex risk minimization is a commonly used setting in learning theory. In this paper, we firstly give a perturbation analysis for such algorithms, and then we apply this result to differential private learning algorithms. Our analysis needs the objective functions to be strongly convex. This leads to an extension of our previous analysis to the non-differentiable loss functions, when constructing differential private algorithms. Finally, an error analysis is then provided to show the selection for the parameters.

  14. License or entry decision for innovator in international duopoly with convex cost functions

    OpenAIRE

    Hattori, Masahiko; Tanaka, Yasuhito

    2017-01-01

    We consider a choice of options for a foreign innovating firm to license its new cost-reducing technology to a domestic incumbent firm or to enter the domestic market with or without license under convex cost functions. With convex cost functions the domestic market and the foreign market are not separated, and the results depend on the relative size of those markets. In a specific case with linear demand and quadratic cost, entry without license strategy is never the optimal strategy for the...

  15. The steady-state of the (Normalized) LMS is schur convex

    KAUST Repository

    Al-Hujaili, Khaled A.

    2016-06-24

    In this work, we demonstrate how the theory of majorization and schur-convexity can be used to assess the impact of input-spread on the Mean Squares Error (MSE) performance of adaptive filters. First, we show that the concept of majorization can be utilized to measure the spread in input-regressors and subsequently order the input-regressors according to their spread. Second, we prove that the MSE of the Least Mean Squares Error (LMS) and Normalized LMS (NLMS) algorithms are schur-convex, that is, the MSE of the LMS and the NLMS algorithms preserve the majorization order of the inputs which provide an analytical justification to why and how much the MSE performance of the LMS and the NLMS algorithms deteriorate as the spread in input increases. © 2016 IEEE.

  16. Convex lattice polygons of fixed area with perimeter-dependent weights.

    Science.gov (United States)

    Rajesh, R; Dhar, Deepak

    2005-01-01

    We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal lattices. We attach a weight tm to a convex polygon of perimeter m and show that the sum of weights of all polygons with a fixed area s varies as s(-theta(conv))eK(t)square root(s) for large s and t less than a critical threshold tc, where K(t) is a t-dependent constant, and theta(conv) is a critical exponent which does not change with t. Using heuristic arguments, we find that theta(conv) is 1/4 for the square lattice, but -1/4 for the hexagonal lattice. The reason for this unexpected nonuniversality of theta(conv) is traced to existence of sharp corners in the asymptotic shape of these polygons.

  17. The steady-state of the (Normalized) LMS is schur convex

    KAUST Repository

    Al-Hujaili, Khaled A.; Al-Naffouri, Tareq Y.; Moinuddin, Muhammad

    2016-01-01

    In this work, we demonstrate how the theory of majorization and schur-convexity can be used to assess the impact of input-spread on the Mean Squares Error (MSE) performance of adaptive filters. First, we show that the concept of majorization can be utilized to measure the spread in input-regressors and subsequently order the input-regressors according to their spread. Second, we prove that the MSE of the Least Mean Squares Error (LMS) and Normalized LMS (NLMS) algorithms are schur-convex, that is, the MSE of the LMS and the NLMS algorithms preserve the majorization order of the inputs which provide an analytical justification to why and how much the MSE performance of the LMS and the NLMS algorithms deteriorate as the spread in input increases. © 2016 IEEE.

  18. Reconstruction of Undersampled Big Dynamic MRI Data Using Non-Convex Low-Rank and Sparsity Constraints

    Directory of Open Access Journals (Sweden)

    Ryan Wen Liu

    2017-03-01

    Full Text Available Dynamic magnetic resonance imaging (MRI has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t-space measurements, commonly referred to as big data. The purpose of this work is to accelerate big medical data acquisition in dynamic MRI by developing a non-convex minimization framework. In particular, to overcome the inherent speed limitation, both non-convex low-rank and sparsity constraints were combined to accelerate the dynamic imaging. However, the non-convex constraints make the dynamic reconstruction problem difficult to directly solve through the commonly-used numerical methods. To guarantee solution efficiency and stability, a numerical algorithm based on Alternating Direction Method of Multipliers (ADMM is proposed to solve the resulting non-convex optimization problem. ADMM decomposes the original complex optimization problem into several simple sub-problems. Each sub-problem has a closed-form solution or could be efficiently solved using existing numerical methods. It has been proven that the quality of images reconstructed from fewer measurements can be significantly improved using non-convex minimization. Numerous experiments have been conducted on two in vivo cardiac datasets to compare the proposed method with several state-of-the-art imaging methods. Experimental results illustrated that the proposed method could guarantee the superior imaging performance in terms of quantitative and visual image quality assessments.

  19. Optimization of Transverse Oscillating Fields for Vector Velocity Estimation with Convex Arrays

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2013-01-01

    A method for making Vector Flow Images using the transverse oscillation (TO) approach on a convex array is presented. The paper presents optimization schemes for TO fields for convex probes and evaluates their performance using Field II simulations and measurements using the SARUS experimental...... from 90 to 45 degrees in steps of 15 degrees. The optimization routine changes the lateral oscillation period lx to yield the best possible estimates based on the energy ratio between positive and negative spatial frequencies in the ultrasound field. The basic equation for lx gives 1.14 mm at 40 mm...

  20. Free locally convex spaces with a small base

    Czech Academy of Sciences Publication Activity Database

    Gabriyelyan, S.; Kąkol, Jerzy

    2017-01-01

    Roč. 111, č. 2 (2017), s. 575-585 ISSN 1578-7303 R&D Projects: GA ČR GF16-34860L Institutional support: RVO:67985840 Keywords : compact resolution * free locally convex space * G-base Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.690, year: 2016 http://link.springer.com/article/10.1007%2Fs13398-016-0315-1

  1. Some fixed point theorems on non-convex sets

    Directory of Open Access Journals (Sweden)

    Mohanasundaram Radhakrishnan

    2017-10-01

    Full Text Available In this paper, we prove that if $K$ is a nonempty weakly compact set in a Banach space $X$, $T:K\\to K$ is a nonexpansive map satisfying $\\frac{x+Tx}{2}\\in K$ for all $x\\in K$ and if $X$ is $3-$uniformly convex or $X$ has the Opial property, then $T$ has a fixed point in $K.$

  2. Electron-pair logarithmic convexity and interelectronic moments in atoms: Application to heliumlike ions

    International Nuclear Information System (INIS)

    Koga, T.; Kasai, Y.; Dehesa, J.S.; Angulo, J.C.

    1993-01-01

    The electron-pair function h(u) of a finite many-electron system is not monotonic, but the related quantity h(u)/u α , α>0, is not only monotonically decreasing from the origin but also convex for the values α 1 and α 2 , respectively, as has been recently found. Here, it is first argued that this quantity is also logarithmically convex for any α≥α' with α'=max{-u 2 d2[lnh(u)]/du 2 }. Then this property is used to obtain a general inequality which involves three interelectronic moments left-angle u t right-angle. Particular cases of this inequality involve relevant characteristics of the system such as the number of electrons and the total electron-electron repulsion energy. Second, the logarithmic-convexity property of h(u) as well as the accuracy of this inequality are investigated by the optimum 20-term Hylleraas-type wave functions for two-electron atoms with nuclear charge Z=1, 2, 3, 5, and 10. It is found that (i) 14 2 much-gt α 1 ) and (ii) the accuracy of the inequality which involves moments of contiguous orders oscillates between 62.4% and 96.7% according to the specific He-like atom and the moments involved. Finally, the importance of the logarithmic-convexity effects on the interelectronic moments relative to those coming from other monotonicity properties of h(u)/u α are analyzed in the same numerical Hylleraas framework

  3. Near-surface thermal characterization of plasma facing components using the 3-omega method

    International Nuclear Information System (INIS)

    Dechaumphai, Edward; Barton, Joseph L.; Tesmer, Joseph R.; Moon, Jaeyun; Wang, Yongqiang; Tynan, George R.; Doerner, Russell P.; Chen, Renkun

    2014-01-01

    Near-surface regime plays an important role in thermal management of plasma facing components in fusion reactors. Here, we applied a technique referred to as the ‘3ω’ method to measure the thermal conductivity of near-surface regimes damaged by ion irradiation. By modulating the frequency of the heating current in a micro-fabricated heater strip, the technique enables the probing of near-surface thermal properties. The technique was applied to measure the thermal conductivity of a thin ion-irradiated layer on a tungsten substrate, which was found to decrease by nearly 60% relative to pristine tungsten for a Cu ion dosage of 0.2 dpa

  4. Chance-Constrained Guidance With Non-Convex Constraints

    Science.gov (United States)

    Ono, Masahiro

    2011-01-01

    Missions to small bodies, such as comets or asteroids, require autonomous guidance for descent to these small bodies. Such guidance is made challenging by uncertainty in the position and velocity of the spacecraft, as well as the uncertainty in the gravitational field around the small body. In addition, the requirement to avoid collision with the asteroid represents a non-convex constraint that means finding the optimal guidance trajectory, in general, is intractable. In this innovation, a new approach is proposed for chance-constrained optimal guidance with non-convex constraints. Chance-constrained guidance takes into account uncertainty so that the probability of collision is below a specified threshold. In this approach, a new bounding method has been developed to obtain a set of decomposed chance constraints that is a sufficient condition of the original chance constraint. The decomposition of the chance constraint enables its efficient evaluation, as well as the application of the branch and bound method. Branch and bound enables non-convex problems to be solved efficiently to global optimality. Considering the problem of finite-horizon robust optimal control of dynamic systems under Gaussian-distributed stochastic uncertainty, with state and control constraints, a discrete-time, continuous-state linear dynamics model is assumed. Gaussian-distributed stochastic uncertainty is a more natural model for exogenous disturbances such as wind gusts and turbulence than the previously studied set-bounded models. However, with stochastic uncertainty, it is often impossible to guarantee that state constraints are satisfied, because there is typically a non-zero probability of having a disturbance that is large enough to push the state out of the feasible region. An effective framework to address robustness with stochastic uncertainty is optimization with chance constraints. These require that the probability of violating the state constraints (i.e., the probability of

  5. A Simple Proof of Cauchy's Surface Area Formula

    OpenAIRE

    Tsukerman, Emmanuel; Veomett, Ellen

    2016-01-01

    We give a short and simple proof of Cauchy's surface area formula, which states that the average area of a projection of a convex body is equal to its surface area up to a multiplicative constant in the dimension.

  6. Dynamic Convex Duality in Constrained Utility Maximization

    OpenAIRE

    Li, Yusong; Zheng, Harry

    2016-01-01

    In this paper, we study a constrained utility maximization problem following the convex duality approach. After formulating the primal and dual problems, we construct the necessary and sufficient conditions for both the primal and dual problems in terms of FBSDEs plus additional conditions. Such formulation then allows us to explicitly characterize the primal optimal control as a function of the adjoint process coming from the dual FBSDEs in a dynamic fashion and vice versa. Moreover, we also...

  7. The Backscattering Phase Function for a Sphere with a Two-Scale Relief of Rough Surface

    Science.gov (United States)

    Klass, E. V.

    2017-12-01

    The backscattering of light from spherical surfaces characterized by one and two-scale roughness reliefs has been investigated. The analysis is performed using the three-dimensional Monte-Carlo program POKS-RG (geometrical-optics approximation), which makes it possible to take into account the roughness of objects under study by introducing local geometries of different levels. The geometric module of the program is aimed at describing objects by equations of second-order surfaces. One-scale roughness is set as an ensemble of geometric figures (convex or concave halves of ellipsoids or cones). The two-scale roughness is modeled by convex halves of ellipsoids, with surface containing ellipsoidal pores. It is shown that a spherical surface with one-scale convex inhomogeneities has a flatter backscattering phase function than a surface with concave inhomogeneities (pores). For a sphere with two-scale roughness, the dependence of the backscattering intensity is found to be determined mostly by the lower-level inhomogeneities. The influence of roughness on the dependence of the backscattering from different spatial regions of spherical surface is analyzed.

  8. Convexity Conditions and the Legendre-Fenchel Transform for the Product of Finitely Many Positive Definite Quadratic Forms

    International Nuclear Information System (INIS)

    Zhao Yunbin

    2010-01-01

    While the product of finitely many convex functions has been investigated in the field of global optimization, some fundamental issues such as the convexity condition and the Legendre-Fenchel transform for the product function remain unresolved. Focusing on quadratic forms, this paper is aimed at addressing the question: When is the product of finitely many positive definite quadratic forms convex, and what is the Legendre-Fenchel transform for it? First, we show that the convexity of the product is determined intrinsically by the condition number of so-called 'scaled matrices' associated with quadratic forms involved. The main result claims that if the condition number of these scaled matrices are bounded above by an explicit constant (which depends only on the number of quadratic forms involved), then the product function is convex. Second, we prove that the Legendre-Fenchel transform for the product of positive definite quadratic forms can be expressed, and the computation of the transform amounts to finding the solution to a system of equations (or equally, finding a Brouwer's fixed point of a mapping) with a special structure. Thus, a broader question than the open 'Question 11' in Hiriart-Urruty (SIAM Rev. 49, 225-273, 2007) is addressed in this paper.

  9. On evolving deformation microstructures in non-convex partially damaged solids

    KAUST Repository

    Gurses, Ercan; Miehe, Christian

    2011-01-01

    . These microstructures can be resolved by use of relaxation techniques associated with the construction of convex hulls. We propose a particular relaxation method for partially damaged solids and investigate it in one- and multi-dimensional settings. To this end, we

  10. Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face - Site density model

    Science.gov (United States)

    Salazar-Camacho, Carlos; Villalobos, Mario

    2010-04-01

    We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is: lbond2 FeOH +lbond2 SOH +AsO43-+H→lbond2 FeOAsO3[2-]…SOH+HO where lbond2 SOH is an adjacent surface site to lbond2 FeOH; with log K = 21.6 ± 0.7 when lbond2 SOH is another lbond2 FeOH, and log K = 18.75 ± 0.9, when lbond2 SOH is lbond2 Fe 2OH. An additional small contribution of a protonated complex was required to describe data at low pH and very high arsenate loadings. The model considered goethites above 80 m 2/g as ideally composed of 70% face (1 0 1) and 30% face (0 0 1), resulting in a site density for lbond2 FeOH and for lbond2 Fe 3OH of 3.125/nm 2 each. Below 80 m 2/g surface capacity increases progressively with decreasing area, which was modeled by considering a progressively increasing proportion of faces (0 1 0)/(1 0 1), because face (0 1 0) shows a much higher site density of lbond2 FeOH groups. Computation of the specific proportion of faces, and thus of the site densities for the three types of crystallographic surface groups present in

  11. Convex blind image deconvolution with inverse filtering

    Science.gov (United States)

    Lv, Xiao-Guang; Li, Fang; Zeng, Tieyong

    2018-03-01

    Blind image deconvolution is the process of estimating both the original image and the blur kernel from the degraded image with only partial or no information about degradation and the imaging system. It is a bilinear ill-posed inverse problem corresponding to the direct problem of convolution. Regularization methods are used to handle the ill-posedness of blind deconvolution and get meaningful solutions. In this paper, we investigate a convex regularized inverse filtering method for blind deconvolution of images. We assume that the support region of the blur object is known, as has been done in a few existing works. By studying the inverse filters of signal and image restoration problems, we observe the oscillation structure of the inverse filters. Inspired by the oscillation structure of the inverse filters, we propose to use the star norm to regularize the inverse filter. Meanwhile, we use the total variation to regularize the resulting image obtained by convolving the inverse filter with the degraded image. The proposed minimization model is shown to be convex. We employ the first-order primal-dual method for the solution of the proposed minimization model. Numerical examples for blind image restoration are given to show that the proposed method outperforms some existing methods in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), visual quality and time consumption.

  12. Computing Convex Coverage Sets for Faster Multi-Objective Coordination

    NARCIS (Netherlands)

    Roijers, D.M.; Whiteson, S.; Oliehoek, F.A.

    2015-01-01

    In this article, we propose new algorithms for multi-objective coordination graphs (MO-CoGs). Key to the efficiency of these algorithms is that they compute a convex coverage set (CCS) instead of a Pareto coverage set (PCS). Not only is a CCS a sufficient solution set for a large class of problems,

  13. Size of the virtual source behind a convex spherical surface emitting a space charge limited ion current

    International Nuclear Information System (INIS)

    Chavet, I.

    1987-01-01

    A plasma source fitted with a circular orifice and emitting a space charge limited ion current can be made to operate with a convex spherical plasma boundary (meniscus) by appropriately adjusting its extraction parameters. In this case, the diameter of the virtual source behind the meniscus is much smaller than the orifice diameter. The effective value of this virtual source diameter depends significantly on various practical factors that are more or less controllable. Its lower ideal limit, however, depends only on the radio δ of the interelectrode distance to the meniscus curvature radius and on the ratio ω of the initial to final ion energy. This ideal limit is given for the ranges 0.1 ≤ δ ≤ 10 and 10 -7 ≤ ω ≤ 10 -3 . Preliminary experimental results are reported. (orig.)

  14. Positive definite functions and dual pairs of locally convex spaces

    Directory of Open Access Journals (Sweden)

    Daniel Alpay

    2018-01-01

    Full Text Available Using pairs of locally convex topological vector spaces in duality and topologies defined by directed families of sets bounded with respect to the duality, we prove general factorization theorems and general dilation theorems for operator-valued positive definite functions.

  15. Convex relationships in ecosystems containing mixtures of trees and grass

    CSIR Research Space (South Africa)

    Scholes, RJ

    2003-12-01

    Full Text Available The relationship between grass production and the quantity of trees in mixed tree-grass ecosystems (savannas) is convex for all or most of its range. In other words, the grass production declines more steeply per unit increase in tree quantity...

  16. CHARACTERIZATION OF SURFACE OF THE (010 FACE OF BORAX CRYSTALS USING EX SITU ATOMIC FORCE MICROSCOPY (AFM:

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The surface topology of borax crystals grown at a relative supersaturation of 0.21 has been investigated using ex situ atomic force microscopy (AFM. It was found that the cleavage of borax crystals along the (010 face planes has features of the cleavage of layered compounds, exhibiting cleavage steps of low heights. The step heights of the cleavage of the (010 face of borax crystal are from one unit cell to three unit cells of this face.   Keywords: AFM, cleavage, borax.

  17. Pluripotential theory and convex bodies

    Science.gov (United States)

    Bayraktar, T.; Bloom, T.; Levenberg, N.

    2018-03-01

    A seminal paper by Berman and Boucksom exploited ideas from complex geometry to analyze the asymptotics of spaces of holomorphic sections of tensor powers of certain line bundles L over compact, complex manifolds as the power grows. This yielded results on weighted polynomial spaces in weighted pluripotential theory in {C}^d. Here, motivated by a recent paper by the first author on random sparse polynomials, we work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body in ({R}^+)^d. These classes of polynomials need not occur as sections of tensor powers of a line bundle L over a compact, complex manifold. We follow the approach of Berman and Boucksom to obtain analogous results. Bibliography: 16 titles.

  18. Constrained convex minimization via model-based excessive gap

    OpenAIRE

    Tran Dinh, Quoc; Cevher, Volkan

    2014-01-01

    We introduce a model-based excessive gap technique to analyze first-order primal- dual methods for constrained convex minimization. As a result, we construct new primal-dual methods with optimal convergence rates on the objective residual and the primal feasibility gap of their iterates separately. Through a dual smoothing and prox-function selection strategy, our framework subsumes the augmented Lagrangian, and alternating methods as special cases, where our rates apply.

  19. Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds

    International Nuclear Information System (INIS)

    Guix, Benjamin; Finestres, Fernando; Tello, Jose-Ignacio; Palma, Cesar; Martinez, Antonio; Guix, Jose-Ramon; Guix, Ricardo

    2000-01-01

    Purpose: To analyze the results obtained in a prospective group of patients with basal or squamous cell skin carcinomas of the face treated by high-dose-rate (HDR) brachytherapy via custom-made surface molds. Methods and Materials: A total of 136 patients with basal or squamous cell carcinomas of the face were treated between March 1992 and March 1997 by surface molds and HDR brachytherapy with iridium-192. Nineteen patients were treated with standard Brock applicators and 117 patients with custom-made polymethyl methacrylate applicators, built over a plaster mold obtained of the patient's face. Minimum dose administered to the tumor was 6000 to 6500 cGy in 33 to 36 fractions at 180 cGy/fraction in lesions of up to 4 cm. Lesions greater than 4 cm were boosted up to 7500-8000 cGy after a 3-week pause. Results: With the custom-made surface molds, the dose distribution was uniform in the surface of the skin and at 5 mm depth in the whole area of the applicator. Differences between the areas of maximum and minimum dose at this depth never reached values higher than 5% of the prescribed dose. At the edges of the custom-made molds dose gradient was sharp, with the detected dose at 5 mm from the applicator being negligible. All the patients were complete responders. There were 3 local recurrences, 1/73 patients treated for primary tumor and 2/63 patients treated for recurrent tumor. Actuarial local control at 5 years for all patients was 98%, for those patients with primary tumors 99%, and for recurrent patients 87%. The treatment tolerance was excellent in all cases. No severe, early, or late, complications were detected. Conclusions: Radiotherapy is a highly effective treatment of skin carcinomas of the face. Custom-made molds, to be used in conjunction with HDR brachytherapy equipment, make possible a uniform dose distribution, with a sharp dose gradient in the limits of applicators. Custom-made surface molds are easy and safe to use, and they fit very accurately for

  20. PENNON: A code for convex nonlinear and semidefinite programming

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Stingl, M.

    2003-01-01

    Roč. 18, č. 3 (2003), s. 317-333 ISSN 1055-6788 R&D Projects: GA ČR GA201/00/0080 Grant - others:BMBF(DE) 03ZOM3ER Institutional research plan: CEZ:AV0Z1075907 Keywords : convex programming * semidefinite programming * large-scale problems Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.306, year: 2003

  1. Convex-based void filling method for CAD-based Monte Carlo geometry modeling

    International Nuclear Information System (INIS)

    Yu, Shengpeng; Cheng, Mengyun; Song, Jing; Long, Pengcheng; Hu, Liqin

    2015-01-01

    Highlights: • We present a new void filling method named CVF for CAD based MC geometry modeling. • We describe convex based void description based and quality-based space subdivision. • The results showed improvements provided by CVF for both modeling and MC calculation efficiency. - Abstract: CAD based automatic geometry modeling tools have been widely applied to generate Monte Carlo (MC) calculation geometry for complex systems according to CAD models. Automatic void filling is one of the main functions in the CAD based MC geometry modeling tools, because the void space between parts in CAD models is traditionally not modeled while MC codes such as MCNP need all the problem space to be described. A dedicated void filling method, named Convex-based Void Filling (CVF), is proposed in this study for efficient void filling and concise void descriptions. The method subdivides all the problem space into disjointed regions using Quality based Subdivision (QS) and describes the void space in each region with complementary descriptions of the convex volumes intersecting with that region. It has been implemented in SuperMC/MCAM, the Multiple-Physics Coupling Analysis Modeling Program, and tested on International Thermonuclear Experimental Reactor (ITER) Alite model. The results showed that the new method reduced both automatic modeling time and MC calculation time

  2. Globally convergent optimization algorithm using conservative convex separable diagonal quadratic approximations

    NARCIS (Netherlands)

    Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.

    2009-01-01

    We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by

  3. Modeling IrisCode and its variants as convex polyhedral cones and its security implications.

    Science.gov (United States)

    Kong, Adams Wai-Kin

    2013-03-01

    IrisCode, developed by Daugman, in 1993, is the most influential iris recognition algorithm. A thorough understanding of IrisCode is essential, because over 100 million persons have been enrolled by this algorithm and many biometric personal identification and template protection methods have been developed based on IrisCode. This paper indicates that a template produced by IrisCode or its variants is a convex polyhedral cone in a hyperspace. Its central ray, being a rough representation of the original biometric signal, can be computed by a simple algorithm, which can often be implemented in one Matlab command line. The central ray is an expected ray and also an optimal ray of an objective function on a group of distributions. This algorithm is derived from geometric properties of a convex polyhedral cone but does not rely on any prior knowledge (e.g., iris images). The experimental results show that biometric templates, including iris and palmprint templates, produced by different recognition methods can be matched through the central rays in their convex polyhedral cones and that templates protected by a method extended from IrisCode can be broken into. These experimental results indicate that, without a thorough security analysis, convex polyhedral cone templates cannot be assumed secure. Additionally, the simplicity of the algorithm implies that even junior hackers without knowledge of advanced image processing and biometric databases can still break into protected templates and reveal relationships among templates produced by different recognition methods.

  4. Derivative-free generation and interpolation of convex Pareto optimal IMRT plans

    Science.gov (United States)

    Hoffmann, Aswin L.; Siem, Alex Y. D.; den Hertog, Dick; Kaanders, Johannes H. A. M.; Huizenga, Henk

    2006-12-01

    In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning.

  5. Derivative-free generation and interpolation of convex Pareto optimal IMRT plans

    International Nuclear Information System (INIS)

    Hoffmann, Aswin L; Siem, Alex Y D; Hertog, Dick den; Kaanders, Johannes H A M; Huizenga, Henk

    2006-01-01

    In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning

  6. A note on the nucleolus for 2-convex TU games

    NARCIS (Netherlands)

    Driessen, Theo; Hou, D.

    For 2-convex n-person cooperative TU games, the nucleolus is determined as some type of constrained equal award rule. Its proof is based on Maschler, Peleg, and Shapley’s geometrical characterization for the intersection of the prekernel with the core. Pairwise bargaining ranges within the core are

  7. Tensor completion and low-n-rank tensor recovery via convex optimization

    International Nuclear Information System (INIS)

    Gandy, Silvia; Yamada, Isao; Recht, Benjamin

    2011-01-01

    In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In an important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as a sparsity measure and consider the low-n-rank tensor recovery problem, i.e. the problem of finding the tensor of the lowest n-rank that fulfills some linear constraints. We introduce a tractable convex relaxation of the n-rank and propose efficient algorithms to solve the low-n-rank tensor recovery problem numerically. The algorithms are based on the Douglas–Rachford splitting technique and its dual variant, the alternating direction method of multipliers

  8. Fabrication of complex free-standing nanostructures with concave and convex curvature via the layer-by-layer approach.

    Science.gov (United States)

    Raoufi, Mohammad; Schönherr, Holger

    2014-02-18

    We report on the fabrication of unprecedented free-standing complex polymeric nanoobjects, which possess both concave and convex curvatures, by exploiting the layer-by-layer (LBL) deposition of polyelectrolytes. In a combined top-down/bottom-up replication approach pore diameter-modulated anodic aluminum oxide (AAO) templates, fabricated by temperature modulation hard anodization (TMHA), were replicated with multilayers of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) to yield open nanotubes with diameters in the wide and narrow segments of 210 and 150 nm, respectively. To obtain stable pore diameter-modulated nanopores, which possess segment lengths between 1 and 5 μm and 5 and 10 μm in the narrow and wide pore portion, respectively, conventional hard anodization of aluminum was followed by a subsequent temperature-modulated anodization. After removing the backside aluminum electrode, silanizing the aluminum oxide, and passivating the exposed membrane surface with a thin layer of gold, PSS and PAH were deposited alternatingly to yield LBL multilayers. For optimized LBL multilayer thicknesses and compactness, established in separate experiments on silicon substrates and nanoporous AAO with straight pores, free-standing polymeric nanoobjects with concave and convex curvatures, were obtained. These were stable for wall thickness to pore diameter ratios of ≥0.08.

  9. Blaschke- and Minkowski-endomorphisms of convex bodies

    DEFF Research Database (Denmark)

    Kiderlen, Markus

    2006-01-01

    We consider maps of the family of convex bodies in Euclidean d-dimensional space into itself that are compatible with certain structures on this family: A Minkowski-endomorphism is a continuous, Minkowski-additive map that commutes with rotations. For d>2, a representation theorem for such maps......-endomorphisms, where additivity is now understood with respect to Blaschke-addition. Using a special mixed volume, an adjoining operator can be introduced. This operator allows one to identify the class of Blaschke-endomorphisms with the class of weakly monotonic, non-degenerate and translation-covariant Minkowski...

  10. Some Convex Functions Based Measures of Independence and Their Application to Strange Attractor Reconstruction

    Directory of Open Access Journals (Sweden)

    Kazuyuki Aihara

    2011-04-01

    Full Text Available The classical information-theoretic measures such as the entropy and the mutual information (MI are widely applicable to many areas in science and engineering. Csiszar generalized the entropy and the MI by using the convex functions. Recently, we proposed the grid occupancy (GO and the quasientropy (QE as measures of independence. The QE explicitly includes a convex function in its definition, while the expectation of GO is a subclass of QE. In this paper, we study the effect of different convex functions on GO, QE, and Csiszar’s generalized mutual information (GMI. A quality factor (QF is proposed to quantify the sharpness of their minima. Using the QF, it is shown that these measures can have sharper minima than the classical MI. Besides, a recursive algorithm for computing GMI, which is a generalization of Fraser and Swinney’s algorithm for computing MI, is proposed. Moreover, we apply GO, QE, and GMI to chaotic time series analysis. It is shown that these measures are good criteria for determining the optimum delay in strange attractor reconstruction.

  11. Dynamic Planar Convex Hull with Optimal Query Time and O(log n · log log n ) Update Time

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jakob, Riko

    2000-01-01

    The dynamic maintenance of the convex hull of a set of points in the plane is one of the most important problems in computational geometry. We present a data structure supporting point insertions in amortized O(log n · log log log n) time, point deletions in amortized O(log n · log log n) time......, and various queries about the convex hull in optimal O(log n) worst-case time. The data structure requires O(n) space. Applications of the new dynamic convex hull data structure are improved deterministic algorithms for the k-level problem and the red-blue segment intersection problem where all red and all...

  12. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    Science.gov (United States)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-04-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.

  13. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    International Nuclear Information System (INIS)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-01-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix

  14. On the Convexity of Step out - Step in Sequencing Games

    NARCIS (Netherlands)

    Musegaas, Marieke; Borm, Peter; Quant, Marieke

    2016-01-01

    The main result of this paper is the convexity of Step out - Step in (SoSi) sequencing games, a class of relaxed sequencing games first analyzed by Musegaas, Borm, and Quant (2015). The proof makes use of a polynomial time algorithm determining the value and an optimal processing order for an

  15. Transonic shock wave. Boundary layer interaction at a convex wall

    NARCIS (Netherlands)

    Koren, B.; Bannink, W.J.

    1984-01-01

    A standard finite element procedure has been applied to the problem of transonic shock wave – boundary layer interaction at a convex wall. The method is based on the analytical Bohning-Zierep model, where the boundary layer is perturbed by a weak normal shock wave which shows a singular pressure

  16. Abelian faces of state spaces of C*-algebras

    International Nuclear Information System (INIS)

    Batty, C.J.K.

    1980-01-01

    Let F be a closed face of the weak* compact convex state space of a unital C*-algebra A. The class of F-abelian states, introduced earlier by the author, is studied further. It is shown (without any restriction on A or F) that F is a Choquet simplex if and only if every state in F is F-abelian, and that it is sufficient for this that every pure state in F is F-abelian. As a corollary, it is deduced that an arbitrary C*-dynamical system (A,G,α) is G-abelian if and only if every ergodic state is weakly clustering. Nevertheless the set of all F-abelian (or even G-abelian) states is not necessarily weak* compact. (orig.)

  17. Synergistic effects of surface erosion on tritium inventory and permeation in metallic plasma facing armours

    Science.gov (United States)

    Federici, G.; Holland, D. F.; Matera, R.

    1996-10-01

    In the next generation of DT fuelled tokamaks, i.e., the International Thermonuclear Experimental Reactor (ITER) implantation of energetic DT particles on some portions of the plasma facing components (PFCs) will take place along with significant erosion of the armour surfaces. As a result of the simultaneous removal of material from the front surface, the build-up of tritium inventory and the start of permeation originating in the presence of large densities of neutron-induced traps is expected to be influenced considerably and special provisions could be required to minimise the consequences on the design. This paper reports on the results of a tritium transport modelling study based on a new model which describes the migration of implanted tritium across the bulk of metallic plasma facing materials containing neutron-induced traps which can capture it and includes the synergistic effects of surface erosion. The physical basis of the model is summarised, but emphasis is on the discussion of the results of a comparative study performed for beryllium and tungsten armours for ranges of design and operation conditions similar to those anticipated in the divertor of ITER.

  18. Synergistic effects of surface erosion on tritium inventory and permeation in metallic plasma facing armours

    International Nuclear Information System (INIS)

    Federici, G.; Holland, D.F.; Matera, R.

    1996-01-01

    In the next generation of DT fuelled tokamaks, i.e., the international thermonuclear experimental reactor (ITER) implantation of energetic DT particles on some portions of the plasma facing components (PFCs) will take place along with significant erosion of the armour surfaces. As a result of the simultaneous removal of material from the front surface, the build-up of tritium inventory and the start of permeation originating in the presence of large densities of neutron-induced traps is expected to be influenced considerably and special provisions could be required to minimise the consequences on the design. This paper reports on the results of a tritium transport modelling study based on a new model which describes the migration of implanted tritium across the bulk of metallic plasma facing materials containing neutron-induced traps which can capture it and includes the synergistic effects of surface erosion. The physical basis of the model is summarised, but emphasis is on the discussion of the results of a comparative study performed for beryllium and tungsten armours for ranges of design and operation conditions similar to those anticipated in the divertor of ITER. (orig.)

  19. Uniqueness of a pre-generator for $C_0$-semigroup on a general locally convex vector space

    OpenAIRE

    Lemle, Ludovic Dan; Wu, Liming

    2007-01-01

    The main purpose is to generalize a theorem of Arendt about uniqueness of $C_0$-semigroups from Banach space setting to the general locally convex vector spaces, more precisely, we show that cores are the only domains of uniqueness for $C_0$-semigroups on locally convex spaces. As an application, we find a necessary and sufficient condition for that the mass transport equation has one unique $L^1(\\R^d,dx)$ weak solution.

  20. Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization

    NARCIS (Netherlands)

    Simonetto, A.; Jamali-Rad, H.

    2015-01-01

    Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel

  1. Mean-square performance of a convex combination of two adaptive filters

    DEFF Research Database (Denmark)

    Garcia, Jeronimo; Figueiras-Vidal, A.R.; Sayed, A.H.

    2006-01-01

    Combination approaches provide an interesting way to improve adaptive filter performance. In this paper, we study the mean-square performance of a convex combination of two transversal filters. The individual filters are independently adapted using their own error signals, while the combination i...

  2. Three-Dimensional Synthetic Aperture Focusing Using a Rocking Convex Array Transducer

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Pedersen, Mads Møller

    2010-01-01

    Volumetric imaging can be performed using 1-D arrays in combination with mechanical motion. Outside the elevation focus of the array, the resolution and contrast quickly degrade compared with the lateral plane, because of the fixed transducer focus. This paper shows the feasibility of using...... synthetic aperture focusing for enhancing the elevation focus for a convex rocking array. The method uses a virtual source (VS) for defocused multi-element transmit, and another VS in the elevation focus point. This allows a direct time-of-flight to be calculated for a given 3-D point. To avoid artifacts...... and increase SNR at the elevation VS, a plane-wave VS approach has been implemented. Simulations and measurements using an experimental scanner with a convex rocking array show an average improvement in resolution of 26% and 33%, respectively. This improvement is also seen in in vivo measurements...

  3. Neural correlates of face and object perception in an awake chimpanzee (Pan troglodytes examined by scalp-surface event-related potentials.

    Directory of Open Access Journals (Sweden)

    Hirokata Fukushima

    Full Text Available BACKGROUND: The neural system of our closest living relative, the chimpanzee, is a topic of increasing research interest. However, electrophysiological examinations of neural activity during visual processing in awake chimpanzees are currently lacking. METHODOLOGY/PRINCIPAL FINDINGS: In the present report, skin-surface event-related brain potentials (ERPs were measured while a fully awake chimpanzee observed photographs of faces and objects in two experiments. In Experiment 1, human faces and stimuli composed of scrambled face images were displayed. In Experiment 2, three types of pictures (faces, flowers, and cars were presented. The waveforms evoked by face stimuli were distinguished from other stimulus types, as reflected by an enhanced early positivity appearing before 200 ms post stimulus, and an enhanced late negativity after 200 ms, around posterior and occipito-temporal sites. Face-sensitive activity was clearly observed in both experiments. However, in contrast to the robustly observed face-evoked N170 component in humans, we found that faces did not elicit a peak in the latency range of 150-200 ms in either experiment. CONCLUSIONS/SIGNIFICANCE: Although this pilot study examined a single subject and requires further examination, the observed scalp voltage patterns suggest that selective processing of faces in the chimpanzee brain can be detected by recording surface ERPs. In addition, this non-invasive method for examining an awake chimpanzee can be used to extend our knowledge of the characteristics of visual cognition in other primate species.

  4. SU-F-T-340: Direct Editing of Dose Volume Histograms: Algorithms and a Unified Convex Formulation for Treatment Planning with Dose Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Ungun, B [Stanford University, Stanford, CA (United States); Stanford University School of Medicine, Stanford, CA (United States); Fu, A; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Boyd, S [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: To develop a procedure for including dose constraints in convex programming-based approaches to treatment planning, and to support dynamic modification of such constraints during planning. Methods: We present a mathematical approach that allows mean dose, maximum dose, minimum dose and dose volume (i.e., percentile) constraints to be appended to any convex formulation of an inverse planning problem. The first three constraint types are convex and readily incorporated. Dose volume constraints are not convex, however, so we introduce a convex restriction that is related to CVaR-based approaches previously proposed in the literature. To compensate for the conservatism of this restriction, we propose a new two-pass algorithm that solves the restricted problem on a first pass and uses this solution to form exact constraints on a second pass. In another variant, we introduce slack variables for each dose constraint to prevent the problem from becoming infeasible when the user specifies an incompatible set of constraints. We implement the proposed methods in Python using the convex programming package cvxpy in conjunction with the open source convex solvers SCS and ECOS. Results: We show, for several cases taken from the clinic, that our proposed method meets specified constraints (often with margin) when they are feasible. Constraints are met exactly when we use the two-pass method, and infeasible constraints are replaced with the nearest feasible constraint when slacks are used. Finally, we introduce ConRad, a Python-embedded free software package for convex radiation therapy planning. ConRad implements the methods described above and offers a simple interface for specifying prescriptions and dose constraints. Conclusion: This work demonstrates the feasibility of using modifiable dose constraints in a convex formulation, making it practical to guide the treatment planning process with interactively specified dose constraints. This work was supported by the

  5. SU-F-T-340: Direct Editing of Dose Volume Histograms: Algorithms and a Unified Convex Formulation for Treatment Planning with Dose Constraints

    International Nuclear Information System (INIS)

    Ungun, B; Fu, A; Xing, L; Boyd, S

    2016-01-01

    Purpose: To develop a procedure for including dose constraints in convex programming-based approaches to treatment planning, and to support dynamic modification of such constraints during planning. Methods: We present a mathematical approach that allows mean dose, maximum dose, minimum dose and dose volume (i.e., percentile) constraints to be appended to any convex formulation of an inverse planning problem. The first three constraint types are convex and readily incorporated. Dose volume constraints are not convex, however, so we introduce a convex restriction that is related to CVaR-based approaches previously proposed in the literature. To compensate for the conservatism of this restriction, we propose a new two-pass algorithm that solves the restricted problem on a first pass and uses this solution to form exact constraints on a second pass. In another variant, we introduce slack variables for each dose constraint to prevent the problem from becoming infeasible when the user specifies an incompatible set of constraints. We implement the proposed methods in Python using the convex programming package cvxpy in conjunction with the open source convex solvers SCS and ECOS. Results: We show, for several cases taken from the clinic, that our proposed method meets specified constraints (often with margin) when they are feasible. Constraints are met exactly when we use the two-pass method, and infeasible constraints are replaced with the nearest feasible constraint when slacks are used. Finally, we introduce ConRad, a Python-embedded free software package for convex radiation therapy planning. ConRad implements the methods described above and offers a simple interface for specifying prescriptions and dose constraints. Conclusion: This work demonstrates the feasibility of using modifiable dose constraints in a convex formulation, making it practical to guide the treatment planning process with interactively specified dose constraints. This work was supported by the

  6. Image restoration by the method of convex projections: part 1 theory.

    Science.gov (United States)

    Youla, D C; Webb, H

    1982-01-01

    A projection operator onto a closed convex set in Hilbert space is one of the few examples of a nonlinear map that can be defined in simple abstract terms. Moreover, it minimizes distance and is nonexpansive, and therefore shares two of the more important properties of ordinary linear orthogonal projections onto closed linear manifolds. In this paper, we exploit the properties of these operators to develop several iterative algorithms for image restoration from partial data which permit any number of nonlinear constraints of a certain type to be subsumed automatically. Their common conceptual basis is as follows. Every known property of an original image f is envisaged as restricting it to lie in a well-defined closed convex set. Thus, m such properties place f in the intersection E(0) = E(i) of the corresponding closed convex sets E(1),E(2),...EE(m). Given only the projection operators PE(i) onto the individual E(i)'s, i = 1 --> m, we restore f by recursive means. Clearly, in this approach, the realization of the P(i)'s in a Hilbert space setting is one of the major synthesis problems. Section I describes the geometrical significance of the three main theorems in considerable detail, and most of the underlying ideas are illustrated with the aid of simple diagrams. Section II presents rules for the numerical implementation of 11 specific projection operators which are found to occur frequently in many signal-processing applications, and the Appendix contains proofs of all the major results.

  7. CudaPre3D: An Alternative Preprocessing Algorithm for Accelerating 3D Convex Hull Computation on the GPU

    Directory of Open Access Journals (Sweden)

    MEI, G.

    2015-05-01

    Full Text Available In the calculating of convex hulls for point sets, a preprocessing procedure that is to filter the input points by discarding non-extreme points is commonly used to improve the computational efficiency. We previously proposed a quite straightforward preprocessing approach for accelerating 2D convex hull computation on the GPU. In this paper, we extend that algorithm to being used in 3D cases. The basic ideas behind these two preprocessing algorithms are similar: first, several groups of extreme points are found according to the original set of input points and several rotated versions of the input set; then, a convex polyhedron is created using the found extreme points; and finally those interior points locating inside the formed convex polyhedron are discarded. Experimental results show that: when employing the proposed preprocessing algorithm, it achieves the speedups of about 4x on average and 5x to 6x in the best cases over the cases where the proposed approach is not used. In addition, more than 95 percent of the input points can be discarded in most experimental tests.

  8. The role of convexity in perceptual completion: beyond good continuation.

    Science.gov (United States)

    Liu, Z; Jacobs, D W; Basri, R

    1999-01-01

    Since the seminal work of the Gestalt psychologists, there has been great interest in understanding what factors determine the perceptual organization of images. While the Gestaltists demonstrated the significance of grouping cues such as similarity, proximity and good continuation, it has not been well understood whether their catalog of grouping cues is complete--in part due to the paucity of effective methodologies for examining the significance of various grouping cues. We describe a novel, objective method to study perceptual grouping of planar regions separated by an occluder. We demonstrate that the stronger the grouping between two such regions, the harder it will be to resolve their relative stereoscopic depth. We use this new method to call into question many existing theories of perceptual completion (Ullman, S. (1976). Biological Cybernetics, 25, 1-6; Shashua, A., & Ullman, S. (1988). 2nd International Conference on Computer Vision (pp. 321-327); Parent, P., & Zucker, S. (1989). IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 823-839; Kellman, P. J., & Shipley, T. F. (1991). Cognitive psychology, Liveright, New York; Heitger, R., & von der Heydt, R. (1993). A computational model of neural contour processing, figure-ground segregation and illusory contours. In Internal Conference Computer Vision (pp. 32-40); Mumford, D. (1994). Algebraic geometry and its applications, Springer, New York; Williams, L. R., & Jacobs, D. W. (1997). Neural Computation, 9, 837-858) that are based on Gestalt grouping cues by demonstrating that convexity plays a strong role in perceptual completion. In some cases convexity dominates the effects of the well known Gestalt cue of good continuation. While convexity has been known to play a role in figure/ground segmentation (Rubin, 1927; Kanizsa & Gerbino, 1976), this is the first demonstration of its importance in perceptual completion.

  9. A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Tieyong Zeng

    2013-01-01

    In this paper, a new variational model for restoring blurred images with multiplicative noise is proposed. Based on the statistical property of the noise, a quadratic penalty function technique is utilized in order to obtain a strictly convex model under a mild condition, which guarantees...

  10. A deep cut ellipsoid algorithm for convex programming : Theory and applications

    NARCIS (Netherlands)

    J.B.G. Frenk (Hans); J.A.S. Gromicho (Joaquim); S. Zhang (Shuzhong)

    1994-01-01

    textabstractThis paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algorithm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules

  11. Sequential and Parallel Algorithms for Finding a Maximum Convex Polygon

    DEFF Research Database (Denmark)

    Fischer, Paul

    1997-01-01

    This paper investigates the problem where one is given a finite set of n points in the plane each of which is labeled either ?positive? or ?negative?. We consider bounded convex polygons, the vertices of which are positive points and which do not contain any negative point. It is shown how...... such a polygon which is maximal with respect to area can be found in time O(n³ log n). With the same running time one can also find such a polygon which contains a maximum number of positive points. If, in addition, the number of vertices of the polygon is restricted to be at most M, then the running time...... becomes O(M n³ log n). It is also shown how to find a maximum convex polygon which contains a given point in time O(n³ log n). Two parallel algorithms for the basic problem are also presented. The first one runs in time O(n log n) using O(n²) processors, the second one has polylogarithmic time but needs O...

  12. A one-layer recurrent neural network for non-smooth convex optimization subject to linear inequality constraints

    International Nuclear Information System (INIS)

    Liu, Xiaolan; Zhou, Mi

    2016-01-01

    In this paper, a one-layer recurrent network is proposed for solving a non-smooth convex optimization subject to linear inequality constraints. Compared with the existing neural networks for optimization, the proposed neural network is capable of solving more general convex optimization with linear inequality constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds.

  13. On the Nodal Lines of Eisenstein Series on Schottky Surfaces

    Science.gov (United States)

    Jakobson, Dmitry; Naud, Frédéric

    2017-04-01

    On convex co-compact hyperbolic surfaces {X=Γ backslash H2}, we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)}, where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2}) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ}. As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ}, the number of intersections of nodal lines with any compact segment of geodesic grows like {λ}, up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.

  14. A Peculiarly Cerebroid Convex Zygo-Dodecahedron is an Axiomatically Balanced “House of Blues”: The Circle of Fifths to the Circle of Willis to Cadherin Cadenzas

    Directory of Open Access Journals (Sweden)

    David A. Becker

    2012-11-01

    Full Text Available A bilaterally symmetrical convex dodecahedron consisting of twelve quadrilateral faces is derived from the icosahedron via a process akin to Fuller’s Jitterbug Transformation. The unusual zygomorphic dodecahedron so obtained is shown to harbor a bilaterally symmetrical jazz/blues harmonic code on its twelve faces that is related to such fundamental music theoretical constructs as the Circle of Fifths and Euler’s tonnetz. Curiously, the patterning within the aforementioned zygo-dodecahedron is discernibly similar to that observed in a ventral view of the human brain. Moreover, this same pattern is arguably evident during development of the embryonic pharynx. A possible role for the featured zygo-dodecahedron in cephalogenesis is considered. Recent studies concerning type II cadherins, an important class of proteins that promote cell adhesion, have generated data that is demonstrated to conform to this zygo-dodecahedral brain model in a substantially congruous manner.

  15. Report on the observation of IAEA international emergency response exercise ConvEx-3(2008)

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya; Sumiya, Akihiro

    2009-02-01

    The International Atomic Energy Agency IAEA carried out a large-scale international emergency response exercise under the designated name of ConvEx-3(2008), accompanying the national exercise of Mexico in July 2008. This review report summarizes two simultaneous observations of the exercises in Mexico and the IAEA headquarter during ConvEx-3(2008). Mexico has established a very steady nuclear emergency response system based on that of US, while only two BWR nuclear power units have been operated yet. The Mexican nuclear emergency response system and the emergency response activities of the Incident and Emergency Centre of the IAEA headquarter impressed important knowledge on observers that is helpful for enhancement of Japanese nuclear emergency response system in the future, e.g. establishment of Emergency Action Level and of implementation of long time exercise and enhancement of prompt protective actions. Japan had established the Act on Special Measures Concerning Nuclear Emergency Preparedness and has developed the nuclear disaster prevention system since the JCO Criticality Accident in Tokai-mura. Now is the new stage to enhance the system on the view point of prevention of a nuclear disaster affecting the neighboring countries' or prevention of a nuclear disaster which arise from the neighboring countries'. The ConvEx-3(2008) suggested key issues about nuclear disaster prevention related to the neighboring countries, e.g. establishment of much wider environmental monitoring and of international assistance system against a foreign nuclear disaster. The observations of the IAEA ConvEx-3(2008) exercise described in this review report were funded by the MEXT (Ministry of Education, Culture, Sports, Science and Technology). (author)

  16. A DEEP CUT ELLIPSOID ALGORITHM FOR CONVEX-PROGRAMMING - THEORY AND APPLICATIONS

    NARCIS (Netherlands)

    FRENK, JBG; GROMICHO, J; ZHANG, S

    1994-01-01

    This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algorithm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules that prevent

  17. On the convex hull of the simple integer recourse objective function

    NARCIS (Netherlands)

    Klein Haneveld, Willem K.; Stougie, L.; van der Vlerk, Maarten H.

    1995-01-01

    We consider the objective function of a simple integer recourse problem with fixed technology matrix. Using properties of the expected value function, we prove a relation between the convex hull of this function and the expected value function of a continuous simple recourse program. We present an

  18. Deformation patterning driven by rate dependent non-convex strain gradient plasticity

    NARCIS (Netherlands)

    Yalcinkaya, T.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    A rate dependent strain gradient plasticity framework for the description of plastic slip patterning in a system with non-convex energetic hardening is presented. Both the displacement and the plastic slip fields are considered as primary variables. These fields are determined on a global level by

  19. A Deep Cut Ellipsoid Algorithm for convex Programming: theory and Applications

    NARCIS (Netherlands)

    Frenk, J.B.G.; Gromicho Dos Santos, J.A.; Zhang, S.

    1994-01-01

    This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algorithm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules that prevent

  20. Novel method of finding extreme edges in a convex set of N-dimension vectors

    Science.gov (United States)

    Hu, Chia-Lun J.

    2001-11-01

    As we published in the last few years, for a binary neural network pattern recognition system to learn a given mapping {Um mapped to Vm, m=1 to M} where um is an N- dimension analog (pattern) vector, Vm is a P-bit binary (classification) vector, the if-and-only-if (IFF) condition that this network can learn this mapping is that each i-set in {Ymi, m=1 to M} (where Ymithere existsVmiUm and Vmi=+1 or -1, is the i-th bit of VR-m).)(i=1 to P and there are P sets included here.) Is POSITIVELY, LINEARLY, INDEPENDENT or PLI. We have shown that this PLI condition is MORE GENERAL than the convexity condition applied to a set of N-vectors. In the design of old learning machines, we know that if a set of N-dimension analog vectors form a convex set, and if the machine can learn the boundary vectors (or extreme edges) of this set, then it can definitely learn the inside vectors contained in this POLYHEDRON CONE. This paper reports a new method and new algorithm to find the boundary vectors of a convex set of ND analog vectors.

  1. Studies on surface structures and etch patterns on habit faces of gel-grown crystals of iodates of barium, strontium, and calcium

    International Nuclear Information System (INIS)

    Joshi, M.S.; Trivedi, S.G.

    1986-01-01

    Microtopographical studies on habit faces of gel grown crystals (of different habits) of iodates of Ba, Sr, and Ca are illustrated and described. Etch patterns on these faces are illustrated and correlated to the observed growth patterns on the respective faces. Growth mechanism of the crystals is explained in light of the observed surface structures and etch pits suitably produced. (author)

  2. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    Science.gov (United States)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  3. Experimental Research on Air Propellers III

    Science.gov (United States)

    Durand, W F; Lesley, E P

    1920-01-01

    Report presents the results of wind tunnel tests of propellers that examined the influence of the following characteristics: (1) nominal pitch ratio 1.3 combined with a certain number of the more common or standard forms and proportions; (2) driving face slightly rounded or convex; (3) change in the location of the maximum thickness ordinate of the blade section; (4) pushing forward the leading edge of the blade, thus giving a rounded convex surface on the leading side of the driving face. (5) a series of values for the constant "angle of attack" in forming propellers with radially increasing pitch. In accordance with these purposes tests were carried out on 28 propellers.

  4. Evaluation of surface fractal dimension of carbon for plasma-facing material damaged by hydrogen plasma

    International Nuclear Information System (INIS)

    Nishino, Nobuhiro

    1997-01-01

    The surface structure of the plasma facing materials (PFM) changes due to plasma-surface interaction in a nuclear fusion reactor. Usually B 4 C coated graphite block are used as PFM. In this report, the surface fractal was applied to study the surface structure of plasma-damaged PFM carbon. A convenient flow-type adsorption apparatus was developed to evaluate the surface fractal dimension of materials. Four branched alkanol molecules with different apparent areas were used as the probe adsorbates. The samples used here were B 4 C coated isotopic graphite which were subjected to hydrogen plasma for various periods of exposure. The monolayer capacities of these samples for alkanols were determined by applying BET theory. The surface fractal dimension was calculated using the monolayer capacities and molecular areas for probe molecules and was found to increase from 2 to 3 with the plasma exposure time. (author)

  5. Convex analysis and global optimization

    CERN Document Server

    Tuy, Hoang

    2016-01-01

    This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints;

  6. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

    Science.gov (United States)

    Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung

    2014-06-01

    Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling

  7. Convex order approximations in case of cash flows of mixed signs

    NARCIS (Netherlands)

    Dhaene, J.; Goovaerts, M.J.; Vanmaele, M.; van Weert, K.

    2012-01-01

    In Van Weert et al. (2010), results are obtained showing that, when allowing some of the cash flows to be negative, convex order lower bound approximations can still be used to solve general investment problems in a context of provisioning or terminal wealth. In this paper, a correction and further

  8. SU-D-BRA-02: Motion Assessment During Open Face Mask SRS Using CBCT and Surface Monitoring

    International Nuclear Information System (INIS)

    Williams, BB; Fox, CJ; Hartford, AC; Gladstone, DJ

    2016-01-01

    Purpose: To assess the robustness of immobilization using open-face mask technology for linac-based stereotactic radiosurgery (SRS) with multiple non-coplanar arcs via repeated CBCT acquisition, with comparison to contemporaneous optical surface tracking data. Methods: 25 patients were treated in open faced masks with cranial SRS using 3–4 non-coplanar arcs. Repeated CBCT imaging was performed to verify the maintenance of proper patient positioning during treatment. Initial patient positioning was performed based on prescribed shifts and optical surface tracking. Positioning refinements employed rigid 3D-matching of the planning CT and CBCT images and were implemented via automated 6DOF couch control. CBCT imaging was repeated following the treatment of all non-transverse beams with associated couch kicks. Detected patient translations and rotations were recorded and automatically corrected. Optical surface tracking was applied throughout the treatments to monitor motion, and this contemporaneous patient positioning data was recorded to compare against CBCT data and 6DOF couch adjustments. Results: Initial patient positions were refined on average by translations of 3±1mm and rotations of ±0.9-degrees. Optical surface tracking corroborated couch corrections to within 1±1mm and ±0.4-degrees. Following treatment of the transverse and subsequent superior-oblique beam, average translations of 0.6±0.4mm and rotations of ±0.4-degrees were reported via CBCT, with optical surface tracking in agreement to within 1.1±0.6mm and ±0.6-degrees. Following treatment of the third beam, CBCT indicated additional translations of 0.4±0.2mm and rotations of ±0.3-degrees. Cumulative couch corrections resulted in 0.7 ± 0.4mm average magnitude translations and rotations of ±0.4-degrees. Conclusion: Based on CBCT measurements of patients during SRS, the open face mask maintained patient positioning to within 1.5mm and 1-degree with >95% confidence. Patient positioning

  9. SU-D-BRA-02: Motion Assessment During Open Face Mask SRS Using CBCT and Surface Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Williams, BB; Fox, CJ; Hartford, AC; Gladstone, DJ [Dartmouth-Hitchcock Medical Center, Lebanon, NH (Lebanon)

    2016-06-15

    Purpose: To assess the robustness of immobilization using open-face mask technology for linac-based stereotactic radiosurgery (SRS) with multiple non-coplanar arcs via repeated CBCT acquisition, with comparison to contemporaneous optical surface tracking data. Methods: 25 patients were treated in open faced masks with cranial SRS using 3–4 non-coplanar arcs. Repeated CBCT imaging was performed to verify the maintenance of proper patient positioning during treatment. Initial patient positioning was performed based on prescribed shifts and optical surface tracking. Positioning refinements employed rigid 3D-matching of the planning CT and CBCT images and were implemented via automated 6DOF couch control. CBCT imaging was repeated following the treatment of all non-transverse beams with associated couch kicks. Detected patient translations and rotations were recorded and automatically corrected. Optical surface tracking was applied throughout the treatments to monitor motion, and this contemporaneous patient positioning data was recorded to compare against CBCT data and 6DOF couch adjustments. Results: Initial patient positions were refined on average by translations of 3±1mm and rotations of ±0.9-degrees. Optical surface tracking corroborated couch corrections to within 1±1mm and ±0.4-degrees. Following treatment of the transverse and subsequent superior-oblique beam, average translations of 0.6±0.4mm and rotations of ±0.4-degrees were reported via CBCT, with optical surface tracking in agreement to within 1.1±0.6mm and ±0.6-degrees. Following treatment of the third beam, CBCT indicated additional translations of 0.4±0.2mm and rotations of ±0.3-degrees. Cumulative couch corrections resulted in 0.7 ± 0.4mm average magnitude translations and rotations of ±0.4-degrees. Conclusion: Based on CBCT measurements of patients during SRS, the open face mask maintained patient positioning to within 1.5mm and 1-degree with >95% confidence. Patient positioning

  10. The tritium confinement and surface chemistry of plasma facing materials in controlled D-T fusion devices

    International Nuclear Information System (INIS)

    Wu, C.H.

    1987-01-01

    Tritium permeation through first walls, limiters or divertors subjected to energetic tritium charge exchange neutral bombardment is a potentially serious problem area for advanced D-T reactors operating at elevated temperatures. High concentrations of tritium in the near surface region can be reached by implantation of the charge neutral flux combined with a relatively slow recombination of these atoms into molecules at the plasma/ first wall interface. A concentration gradient is established, causing tritium to diffuse into the bulk and essentially to the outer wall surface where it can enter the first wall coolant. Since tritium separation from cooling water is very costly, release of even a small fraction of tritium to the environment could pose undesirable safety problems. Therefore, it is necessary to reduce the tritium permeation. An analysis of the way of inhibition has been made. The tritium interacts with the solid surface of the plasma facing components, resulting in trapping and material erosion, and posing problems with respect to plasma density control. The erosion of the plasma facing component materials is mainly caused by physical and chemical erosion. A detailed analysis of chemical erosion by tritium has been performed and the results are described. (author)

  11. Gröbner bases and convex polytopes

    CERN Document Server

    Sturmfels, Bernd

    1995-01-01

    This book is about the interplay of computational commutative algebra and the theory of convex polytopes. It centers around a special class of ideals in a polynomial ring: the class of toric ideals. They are characterized as those prime ideals that are generated by monomial differences or as the defining ideals of toric varieties (not necessarily normal). The interdisciplinary nature of the study of Gröbner bases is reflected by the specific applications appearing in this book. These applications lie in the domains of integer programming and computational statistics. The mathematical tools presented in the volume are drawn from commutative algebra, combinatorics, and polyhedral geometry.

  12. The role of concavo-convex walls of a nanopore on the density profile, adsorption, solvation force, and capillary condensation of confined fluids: A DFT study

    International Nuclear Information System (INIS)

    Helmi, Abbas; Keshavarzi, Ezat

    2014-01-01

    Highlights: • The effect of concavo-convex walls of nanopores on the density profile was studied. • For HS fluids the contact density at concave wall is greater than for convex wall. • For Yukawa fluid the contact density at concave wall can be less than convex wall. • Capillary condensation was observed for Yukawa fluids in the homocentric pores. - Abstract: We investigate the effects of concavo-convex walls of a nanopore on the structure and certain thermodynamic properties of confined fluids. Adsorption, solvation force, and capillary condensation in a nanopore formed between two homocentric spheres will be determined using the MFMT. For hard sphere fluids, contact density is greater at the concave wall than it is at the convex wall. In Yukawa fluids, for the thermodynamic state in which the energy effect is the dominant factor, contact density at a concave wall is less than that at a convex wall; this will be reversed for the thermodynamic state in which the entropy effect is the dominant factor. It is possible to find thermodynamic states in which contact densities at concave and convex walls become identical. The adsorption and solvation force of hard sphere fluid show an oscillatory behavior versus H. Capillary condensation is in certain cases observed for Yukawa fluids

  13. Convex Bodies With Minimal Volume Product in R^2 --- A New Proof

    OpenAIRE

    Lin, Youjiang

    2010-01-01

    In this paper, a new proof of the following result is given: The product of the volumes of an origin symmetric convex bodies $K$ in R^2 and of its polar body is minimal if and only if $K$ is a parallelogram.

  14. Effect of Nonsmooth Nose Surface of the Projectile on Penetration Using DEM Simulation

    Directory of Open Access Journals (Sweden)

    Jing Han

    2017-01-01

    Full Text Available The nonsmooth body surface of the reptile in nature plays an important role in reduction of resistance and friction when it lives in a soil environment. To consider whether it was feasible for improving the performance of penetrating projectile we investigated the influence of the convex as one of nonsmooth surfaces for the nose of projectile. A numerical simulation study of the projectile against the concrete target was developed based on the discrete element method (DEM. The results show that the convex nose surface of the projectile is beneficial for reducing the penetration resistance greatly, which is also validated by the experiments. Compared to the traditional smooth nose structure, the main reason of difference is due to the local contact normal pressure, which increases dramatically due to the abrupt change of curvature caused by the convex at the same condition. Accordingly, the broken particles of the concrete target obtain more kinetic energy and their average radial flow velocities will drastically increase simultaneously, which is in favor of decreasing the interface friction and the compaction density of concrete target around the nose of projectile.

  15. Equilibrium prices supported by dual price functions in markets with non-convexities

    International Nuclear Information System (INIS)

    Bjoerndal, Mette; Joernsten, Kurt

    2004-06-01

    The issue of finding market clearing prices in markets with non-convexities has had a renewed interest due to the deregulation of the electricity sector. In the day-ahead electricity market, equilibrium prices are calculated based on bids from generators and consumers. In most of the existing markets, several generation technologies are present, some of which have considerable non-convexities, such as capacity limitations and large start up costs. In this paper we present equilibrium prices composed of a commodity price and an uplift charge. The prices are based on the generation of a separating valid inequality that supports the optimal resource allocation. In the case when the sub-problem generated as the integer variables are held fixed to their optimal values possess the integrality property, the generated prices are also supported by non-linear price-functions that are the basis for integer programming duality. (Author)

  16. A Total Variation Model Based on the Strictly Convex Modification for Image Denoising

    Directory of Open Access Journals (Sweden)

    Boying Wu

    2014-01-01

    Full Text Available We propose a strictly convex functional in which the regular term consists of the total variation term and an adaptive logarithm based convex modification term. We prove the existence and uniqueness of the minimizer for the proposed variational problem. The existence, uniqueness, and long-time behavior of the solution of the associated evolution system is also established. Finally, we present experimental results to illustrate the effectiveness of the model in noise reduction, and a comparison is made in relation to the more classical methods of the traditional total variation (TV, the Perona-Malik (PM, and the more recent D-α-PM method. Additional distinction from the other methods is that the parameters, for manual manipulation, in the proposed algorithm are reduced to basically only one.

  17. A formulation of combinatorial auction via reverse convex programming

    Directory of Open Access Journals (Sweden)

    Henry Schellhorn

    2005-01-01

    of this problem, where orders are aggregated and integrality constraints are relaxed. It was proved that this problem could be solved efficiently in two steps by calculating two fixed points, first the fixed point of a contraction mapping, and then of a set-valued function. In this paper, we generalize the problem to incorporate constraints on maximum price changes between two auction rounds. This generalized problem cannot be solved by the aforementioned methods and necessitates reverse convex programming techniques.

  18. Determining Representative Elementary Volume For Multiple Petrophysical Parameters using a Convex Hull Analysis of Digital Rock Data

    Science.gov (United States)

    Shah, S.; Gray, F.; Yang, J.; Crawshaw, J.; Boek, E.

    2016-12-01

    Advances in 3D pore-scale imaging and computational methods have allowed an exceptionally detailed quantitative and qualitative analysis of the fluid flow in complex porous media. A fundamental problem in pore-scale imaging and modelling is how to represent and model the range of scales encountered in porous media, starting from the smallest pore spaces. In this study, a novel method is presented for determining the representative elementary volume (REV) of a rock for several parameters simultaneously. We calculate the two main macroscopic petrophysical parameters, porosity and single-phase permeability, using micro CT imaging and Lattice Boltzmann (LB) simulations for 14 different porous media, including sandpacks, sandstones and carbonates. The concept of the `Convex Hull' is then applied to calculate the REV for both parameters simultaneously using a plot of the area of the convex hull as a function of the sub-volume, capturing the different scales of heterogeneity from the pore-scale imaging. The results also show that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size suggesting a computationally efficient way to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.

  19. Extreme points of the convex set of joint probability distributions with ...

    Indian Academy of Sciences (India)

    Here we address the following problem: If G is a standard ... convex set of all joint probability distributions on the product Borel space (X1 ×X2, F1 ⊗. F2) which .... cannot be identically zero when X and Y vary in A1 and u and v vary in H2. Thus.

  20. Environmental protection stability of river bed and banks using convex, concave, and linear bed sills.

    Science.gov (United States)

    Keshavarzi, Alireza; Noori, Lila Khaje

    2010-12-01

    River bed scourings are a major environmental problem for fish and aquatic habitat resources. In this study, to prevent river bed and banks from scouring, different types of bed sills including convex, concave and linear patterns were installed in a movable channel bed in a laboratory flume. The bed sills were tested with nine different arrangements and under different flow conditions. To find the most effective bed sill pattern, the scouring depth was measured downstream of the bed sill for a long experimental duration. The scour depth was measured at the middle and at the end of each experimental test for different ratios of the arch radius to the channel width [r/w]. The experimental results indicated that the convex pattern with r/w=0.35 produced minimum bed scouring depth at the center line whereas the concave pattern with r/w=0.23 produced the minimum scour depth at the wall banks. Therefore, the convex pattern was the most effective configuration for prevention of scouring at the center line of the river while the concave pattern was very effective to prevent scouring at the river banks. These findings can be suggested to be used in practical applications.

  1. Method of convex rigid frames and applications in studies of multipartite quNit pure states

    International Nuclear Information System (INIS)

    Zhong Zaizhe

    2005-01-01

    In this letter, we suggest a method of convex rigid frames in the studies of multipartite quNit pure states. We illustrate what the convex rigid frames are, and what is their method. As applications, we use this method to solve some basic problems and give some new results (three theorems): the problem of the partial separability of the multipartite quNit pure states and its geometric explanation; the problem of the classification of multipartite quNit pure states, giving a perfect explanation of the local unitary transformations; thirdly, we discuss the invariants of classes and give a possible physical explanation. (letter to the editor)

  2. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    Science.gov (United States)

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  3. Parthood and Convexity as the Basic Notions of a Theory of Space

    DEFF Research Database (Denmark)

    Robering, Klaus

    A deductive system of geometry is presented which is based on atomistic mereology ("mereology with points'') and the notion of convexity. The system is formulated in a liberal many-sorted logic which makes use of class-theoretic notions without however adopting any comprehension axioms. The geome...

  4. On the Monotonicity and Log-Convexity of a Four-Parameter Homogeneous Mean

    Directory of Open Access Journals (Sweden)

    Yang Zhen-Hang

    2008-01-01

    Full Text Available Abstract A four-parameter homogeneous mean is defined by another approach. The criterion of its monotonicity and logarithmically convexity is presented, and three refined chains of inequalities for two-parameter mean values are deduced which contain many new and classical inequalities for means.

  5. Hermite-Hadamard Type Integral Inequalities for Functions Whose Second-Order Mixed Derivatives Are Coordinated (s,m-P-Convex

    Directory of Open Access Journals (Sweden)

    Yu-Mei Bai

    2018-01-01

    Full Text Available We establish some new Hermite-Hadamard type integral inequalities for functions whose second-order mixed derivatives are coordinated (s,m-P-convex. An expression form of Hermite-Hadamard type integral inequalities via the beta function and the hypergeometric function is also presented. Our results provide a significant complement to the work of Wu et al. involving the Hermite-Hadamard type inequalities for coordinated (s,m-P-convex functions in an earlier article.

  6. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  7. From a Nonlinear, Nonconvex Variational Problem to a Linear, Convex Formulation

    International Nuclear Information System (INIS)

    Egozcue, J.; Meziat, R.; Pedregal, P.

    2002-01-01

    We propose a general approach to deal with nonlinear, nonconvex variational problems based on a reformulation of the problem resulting in an optimization problem with linear cost functional and convex constraints. As a first step we explicitly explore these ideas to some one-dimensional variational problems and obtain specific conclusions of an analytical and numerical nature

  8. Registration of 3D Face Scans with Average Face Models

    NARCIS (Netherlands)

    A.A. Salah (Albert Ali); N. Alyuz; L. Akarun

    2008-01-01

    htmlabstractThe accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a costly one-to-all registration approach, which requires the registration of each facial surface to all

  9. Structural Health Monitoring of Tall Buildings with Numerical Integrator and Convex-Concave Hull Classification

    Directory of Open Access Journals (Sweden)

    Suresh Thenozhi

    2012-01-01

    Full Text Available An important objective of health monitoring systems for tall buildings is to diagnose the state of the building and to evaluate its possible damage. In this paper, we use our prototype to evaluate our data-mining approach for the fault monitoring. The offset cancellation and high-pass filtering techniques are combined effectively to solve common problems in numerical integration of acceleration signals in real-time applications. The integration accuracy is improved compared with other numerical integrators. Then we introduce a novel method for support vector machine (SVM classification, called convex-concave hull. We use the Jarvis march method to decide the concave (nonconvex hull for the inseparable points. Finally the vertices of the convex-concave hull are applied for SVM training.

  10. Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power

    DEFF Research Database (Denmark)

    Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun

    2016-01-01

    There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar...... panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today’s distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large...... scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order...

  11. Iterative Schemes for Convex Minimization Problems with Constraints

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We first introduce and analyze one implicit iterative algorithm for finding a solution of the minimization problem for a convex and continuously Fréchet differentiable functional, with constraints of several problems: the generalized mixed equilibrium problem, the system of generalized equilibrium problems, and finitely many variational inclusions in a real Hilbert space. We prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another implicit iterative algorithm for finding a fixed point of infinitely many nonexpansive mappings with the same constraints, and derive its strong convergence under mild assumptions.

  12. On the structure of self-affine convex bodies

    Energy Technology Data Exchange (ETDEWEB)

    Voynov, A S [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  13. Geometry of Moishezon and 1-convex spaces II: Projectivity of Moishezon spaces and its non-compact version

    International Nuclear Information System (INIS)

    Sitaramayya, M.

    1993-11-01

    After a brief review of the geometry of Moishezon spaces, their relation with l-convex spaces and a reasonable and up to date understanding of the obstructions for projectivity of Moishezon objects both in singular and non-singular case is given. The geometry of l-convex manifolds and with l-dimensional exceptional set is studied and some problems and conjectures are stated. The tools of cohomology vanishing theorems important for the subject are briefly sketched. Compactifications of C 3 and Stein spaces are finally outlined. given. 111 refs, 2 figs

  14. Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Zhao, Haoran

    2016-01-01

    Renewable energies are increasingly integrated in electric distribution networks and will cause severe overvoltage issues. Smart grid technologies make it possible to use coordinated control to mitigate the overvoltage issues and the optimal power flow (OPF) method is proven to be efficient...... in the applications such as curtailment management and reactive power control. Nonconvex nature of the OPF makes it difficult to solve and convex relaxation is a promising method to solve the OPF very efficiently. This paper investigates the geometry of the power flows and the convex-relaxed power flows when high...

  15. First-order convex feasibility algorithms for x-ray CT

    DEFF Research Database (Denmark)

    Sidky, Emil Y.; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2013-01-01

    Purpose: Iterative image reconstruction (IIR) algorithms in computed tomography (CT) are based on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore, is aided by knowledge of the solution to the optimization problem on which it is based. Often times...... problems. Conclusions: Formulation of convex feasibility problems can provide a useful alternative to unconstrained optimization when designing IIR algorithms for CT. The approach is amenable to recent methods for accelerating first-order algorithms which may be particularly useful for CT with limited...

  16. Coarse-convex-compactification approach to numerical solution of nonconvex variational problems

    Czech Academy of Sciences Publication Activity Database

    Meziat, R.; Roubíček, Tomáš; Patino, D.

    2010-01-01

    Roč. 31, č. 4 (2010), s. 460-488 ISSN 0163-0563 Grant - others:GA MŠk(CZ) LC06052 Program:LC Institutional research plan: CEZ:AV0Z20760514 Keywords : convex approximations * method of moments * relaxed variational problems Subject RIV: BA - General Mathematics Impact factor: 0.687, year: 2010 http://www.informaworld.com/smpp/content~db=all~content=a922886514~frm=titlelink

  17. Convex Hypersurfaces and $L^p$ Estimates for Schr\\"odinger Equations

    OpenAIRE

    Zheng, Quan; Yao, Xiaohua; Fan, Da

    2004-01-01

    This paper is concerned with Schr\\"odinger equations whose principal operators are homogeneous elliptic. When the corresponding level hypersurface is convex, we show the $L^p$-$L^q$ estimate of solution operator in free case. This estimate, combining with the results of fractionally integrated groups, allows us to further obtain the $L^p$ estimate of solutions for the initial data belonging to a dense subset of $L^p$ in the case of integrable potentials.

  18. Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities

    Czech Academy of Sciences Publication Activity Database

    Imre, C.; Matúš, František

    2012-01-01

    Roč. 48, č. 4 (2012), s. 637-689 ISSN 0023-5954 R&D Projects: GA ČR GA201/08/0539; GA ČR GAP202/10/0618 Institutional support: RVO:67985556 Keywords : maximum entropy * moment constraint * generalized primal/dual solutions * normal integrand * convex duality * Bregman projection * inference principles Subject RIV: BA - General Mathematics Impact factor: 0.619, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/matus-0381750.pdf

  19. Lp-dual affine surface area forms of Busemann–Petty type problems

    Indian Academy of Sciences (India)

    Associated with the notion of Lp-intersection body which was defined ... Lp-dual affine surface area; Lp-intersection body; Busemann–Petty ..... [11] Schneider R, Convex Bodies: The Brunn–Minkowski Theory (1993) (Cambridge: Cam-.

  20. Fullerenes and disk-fullerenes

    International Nuclear Information System (INIS)

    Deza, M; Dutour Sikirić, M; Shtogrin, M I

    2013-01-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles

  1. Fullerenes and disk-fullerenes

    Science.gov (United States)

    Deza, M.; Dutour Sikirić, M.; Shtogrin, M. I.

    2013-08-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles.

  2. Computation of complexity measures of morphologically significant zones decomposed from binary fractal sets via multiscale convexity analysis

    International Nuclear Information System (INIS)

    Lim, Sin Liang; Koo, Voon Chet; Daya Sagar, B.S.

    2009-01-01

    Multiscale convexity analysis of certain fractal binary objects-like 8-segment Koch quadric, Koch triadic, and random Koch quadric and triadic islands-is performed via (i) morphologic openings with respect to recursively changing the size of a template, and (ii) construction of convex hulls through half-plane closings. Based on scale vs convexity measure relationship, transition levels between the morphologic regimes are determined as crossover scales. These crossover scales are taken as the basis to segment binary fractal objects into various morphologically prominent zones. Each segmented zone is characterized through normalized morphologic complexity measures. Despite the fact that there is no notably significant relationship between the zone-wise complexity measures and fractal dimensions computed by conventional box counting method, fractal objects-whether they are generated deterministically or by introducing randomness-possess morphologically significant sub-zones with varied degrees of spatial complexities. Classification of realistic fractal sets and/or fields according to sub-zones possessing varied degrees of spatial complexities provides insight to explore links with the physical processes involved in the formation of fractal-like phenomena.

  3. Face pareidolia in the rhesus monkey

    OpenAIRE

    Taubert, Jessica; Wardle, Susan G.; Flessert, Molly; Leopold, David A.; Ungerleider, Leslie G.

    2017-01-01

    Face perception in humans and non-human primates is rapid and accurate[1–4]. In the human brain, a network of visual processing regions is specialized for faces[5–7]. Although face processing is a priority of the primate visual system, face detection is not infallible. Face pareidolia is the compelling illusion of perceiving facial features on inanimate objects, such as the illusory face on the surface of the moon. Although face pareidolia is commonly experienced by humans, its presence in ot...

  4. Convex models and probabilistic approach of nonlinear fatigue failure

    International Nuclear Information System (INIS)

    Qiu Zhiping; Lin Qiang; Wang Xiaojun

    2008-01-01

    This paper is concerned with the nonlinear fatigue failure problem with uncertainties in the structural systems. In the present study, in order to solve the nonlinear problem by convex models, the theory of ellipsoidal algebra with the help of the thought of interval analysis is applied. In terms of the inclusion monotonic property of ellipsoidal functions, the nonlinear fatigue failure problem with uncertainties can be solved. A numerical example of 25-bar truss structures is given to illustrate the efficiency of the presented method in comparison with the probabilistic approach

  5. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  6. Elastic energy of liquid crystals in convex polyhedra

    International Nuclear Information System (INIS)

    Majumdar, A; Robbins, J M; Zyskin, M

    2004-01-01

    We consider nematic liquid crystals in a bounded, convex polyhedron described by a director field n(r) subject to tangent boundary conditions. We derive lower bounds for the one-constant elastic energy in terms of topological invariants. For a right rectangular prism and a large class of topologies, we derive upper bounds by introducing test configurations constructed from local conformal solutions of the Euler-Lagrange equation. The ratio of the upper and lower bounds depends only on the aspect ratios of the prism. As the aspect ratios are varied, the minimum-energy conformal state undergoes a sharp transition from being smooth to having singularities on the edges. (letter to the editor)

  7. On the Fermat-Lagrange principle for mixed smooth convex extremal problems

    International Nuclear Information System (INIS)

    Brinkhuis, Ya

    2001-01-01

    A simple geometric condition that can be attached to an extremal problem of a fairly general form included in a family of problems is indicated. This is used to demonstrate that the task of formulating a uniform condition for smooth convex problems can be satisfactorily accomplished. On the other hand, the necessity of this new condition of optimality is proved under certain technical assumptions

  8. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  9. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs

  10. Measurement of laser welding pool geometry using a closed convex active contour model

    International Nuclear Information System (INIS)

    Zheng, Rui; Zhang, Pu; Duan, Aiqing; Xiao, Peng

    2014-01-01

    The purpose of this study was to develop a computer vision method to measure geometric parameters of the weld pool in a deep penetration CO 2 laser welding system. Accurate measurement was achieved by removing a huge amount of interference caused by spatter, arc light and plasma to extract the true weld pool contour. This paper introduces a closed convex active contour (CCAC) model derived from the active contour model (snake model), which is a more robust high-level vision method than the traditional low-level vision methods. We made an improvement by integrating an active contour with the information that the weld pool contour is almost a closed convex curve. An effective thresholding method and an improved greedy algorithm are also given to complement the CCAC model. These influences can be effectively removed by using the CCAC model to acquire and measure the weld pool contour accurately and relatively fast. (paper)

  11. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    Science.gov (United States)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  12. Functional analysis and applied optimization in Banach spaces applications to non-convex variational models

    CERN Document Server

    Botelho, Fabio

    2014-01-01

    This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.

  13. A Sequential Convex Semidefinite Programming Algorithm for Multiple-Load Free Material Optimization

    Czech Academy of Sciences Publication Activity Database

    Stingl, M.; Kočvara, Michal; Leugering, G.

    2009-01-01

    Roč. 20, č. 1 (2009), s. 130-155 ISSN 1052-6234 R&D Projects: GA AV ČR IAA1075402 Grant - others:commision EU(XE) EU-FP6-30717 Institutional research plan: CEZ:AV0Z10750506 Keywords : structural optimization * material optimization * semidefinite programming * sequential convex programming Subject RIV: BA - General Mathematics Impact factor: 1.429, year: 2009

  14. Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms

    NARCIS (Netherlands)

    Zhao, J.; Basto, Fernandes V.; Jiao, L.; Yevseyeva, I.; Asep, Maulana A.; Li, R.; Bäck, T.H.W.; Tang, T.; Michael, Emmerich T. M.

    2016-01-01

    The receiver operating characteristic (ROC) and detection error tradeoff(DET) curves are frequently used in the machine learning community to analyze the performance of binary classifiers. Recently, the convex-hull-based multiobjective genetic programming algorithm was proposed and successfully

  15. Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion

    Science.gov (United States)

    Matthes, Christopher Stanley Rutter

    A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also

  16. Perimeter generating functions for the mean-squared radius of gyration of convex polygons

    International Nuclear Information System (INIS)

    Jensen, Iwan

    2005-01-01

    We have derived long series expansions for the perimeter generating functions of the radius of gyration of various polygons with a convexity constraint. Using the series we numerically find simple (algebraic) exact solutions for the generating functions. In all cases the size exponent ν 1. (letter to the editor)

  17. Mechanized covering application in equipment surfaces; Aplicacao mecanizada de revestimento em superficies de equipamentos

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Billy A. de; Broering, Carlos E. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica

    2004-07-01

    Facing such challenges, the main objective of this work is to develop automated equipment and new welding procedures to be used to repair tank reservoirs operating in corrosive media. The equipment is expected to be applied directly in the maintenance of petrochemical plants. The project consists on a mechanical displacement device, able to move along a flexible rail, which can be fixed to a concave or convex surface and fitting itself to the geometry. A transversal arm gives it a second movement ability, allowing oscillatory displacements and the exact positioning of the pistol. As it is widely known, the automated welding process results in a considerably increase in productivity and quality, when comparing to the hand made process. Therefore, knowing the parameters involved and adjusted the welding variables to the best values, it is expected to achieve welding free of imperfections, inconsistencies and errors, and able to be repetitive. (author)

  18. Annuity factors, duration and convexity : insights from a financial engineering perspective

    OpenAIRE

    Ekern, Steinar

    1998-01-01

    This paper applies a unified and integrative financial engineering perspective to key derived concepts in traditional fixed income analysis, with the purpose of enhancing conceptual insights and motivating computational applications. The emphasis on annuity factors and their impact on duration and convexity differs from the focus prevailing in related discussions. By decomposing the cashflow streams of a coupon bond into different, specific, and clearly defined portfolios of component bonds w...

  19. Multilayer Spectral Graph Clustering via Convex Layer Aggregation: Theory and Algorithms

    OpenAIRE

    Chen, Pin-Yu; Hero, Alfred O.

    2017-01-01

    Multilayer graphs are commonly used for representing different relations between entities and handling heterogeneous data processing tasks. Non-standard multilayer graph clustering methods are needed for assigning clusters to a common multilayer node set and for combining information from each layer. This paper presents a multilayer spectral graph clustering (SGC) framework that performs convex layer aggregation. Under a multilayer signal plus noise model, we provide a phase transition analys...

  20. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Honda, Satoshi; Yuasa, Tatsuhiko; Iwamura, Akihide; Shibata, Eri; Ohba, Hideki

    2008-01-01

    The aim of this study was to determine the performance of axial and coronal magnetic resonance imaging (MRI) in detecting the narrowing of the cerebrospinal fluid (CSF) space at the high convexity and high midline areas, which is speculated to be one of the clinical characteristics of idiopathic normal pressure hydrocephalus (iNPH). We retrospectively examined axial and coronal T1-weighted images of 14 iNPH patients and 12 age-matched controls. The narrowness of the CSF space at the high convexity/midline was blindly evaluated by five raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. Axial and coronal imaging accurately determined the presence of the narrow cisterns/sulci at the high convexity/midline and was capable of predicting probable/definite iNPH with a high degree of accuracy. there were also no significant differences in the detection of this finding between the axial and coronal images. Both axial and coronal T1-weighted MRI can detect the narrow CSF space at the high convexity/midline accurately and may therefore facilitate clinicians in choosing a management strategy for iNPH patients. (orig.)

  1. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Makoto [Iwate Medical University, Department of Radiology, Morioka (Japan); Honda, Satoshi [St. Luke' s International Hospital, Department of Radiology, Tokyo (Japan); Yuasa, Tatsuhiko; Iwamura, Akihide [Kohnodai Hospital, National Center of Neurology and Psychiatry, Department of Neurology, Ichikawa (Japan); Shibata, Eri [Iwate Medical University, Department of Neuropsychiatry, Morioka (Japan); Ohba, Hideki [Iwate Medical University, Department of Neurology, Morioka (Japan)

    2008-02-15

    The aim of this study was to determine the performance of axial and coronal magnetic resonance imaging (MRI) in detecting the narrowing of the cerebrospinal fluid (CSF) space at the high convexity and high midline areas, which is speculated to be one of the clinical characteristics of idiopathic normal pressure hydrocephalus (iNPH). We retrospectively examined axial and coronal T1-weighted images of 14 iNPH patients and 12 age-matched controls. The narrowness of the CSF space at the high convexity/midline was blindly evaluated by five raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. Axial and coronal imaging accurately determined the presence of the narrow cisterns/sulci at the high convexity/midline and was capable of predicting probable/definite iNPH with a high degree of accuracy. there were also no significant differences in the detection of this finding between the axial and coronal images. Both axial and coronal T1-weighted MRI can detect the narrow CSF space at the high convexity/midline accurately and may therefore facilitate clinicians in choosing a management strategy for iNPH patients. (orig.)

  2. Multi-Period Trading via Convex Optimization

    DEFF Research Database (Denmark)

    Boyd, Stephen; Busseti, Enzo; Diamond, Steve

    2017-01-01

    We consider a basic model of multi-period trading, which can be used to evaluate the performance of a trading strategy. We describe a framework for single-period optimization, where the trades in each period are found by solving a convex optimization problem that trades off expected return, risk......, transaction cost and holding cost such as the borrowing cost for shorting assets. We then describe a multi-period version of the trading method, where optimization is used to plan a sequence of trades, with only the first one executed, using estimates of future quantities that are unknown when the trades....... In this paper, we do not address a critical component in a trading algorithm, the predictions or forecasts of future quantities. The methods we describe in this paper can be thought of as good ways to exploit predictions, no matter how they are made. We have also developed a companion open-source software...

  3. Parameter sensitivity study of a Field II multilayer transducer model on a convex transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2009-01-01

    A multilayer transducer model for predicting a transducer impulse response has in earlier works been developed and combined with the Field II software. This development was tested on current, voltage, and intensity measurements on piezoceramics discs (Bæk et al. IUS 2008) and a convex 128 element...... ultrasound imaging transducer (Bæk et al. ICU 2009). The model benefits from its 1D simplicity and hasshown to give an amplitude error around 1.7‐2 dB. However, any prediction of amplitude, phase, and attenuation of pulses relies on the accuracy of manufacturer supplied material characteristics, which may...... is a quantitative calibrated model for a complete ultrasound system. This includes a sensitivity study aspresented here.Statement of Contribution/MethodsThe study alters 35 different model parameters which describe a 128 element convex transducer from BK Medical Aps. The changes are within ±20 % of the values...

  4. Sufficient Descent Conjugate Gradient Methods for Solving Convex Constrained Nonlinear Monotone Equations

    Directory of Open Access Journals (Sweden)

    San-Yang Liu

    2014-01-01

    Full Text Available Two unified frameworks of some sufficient descent conjugate gradient methods are considered. Combined with the hyperplane projection method of Solodov and Svaiter, they are extended to solve convex constrained nonlinear monotone equations. Their global convergence is proven under some mild conditions. Numerical results illustrate that these methods are efficient and can be applied to solve large-scale nonsmooth equations.

  5. Fixed point theorems in locally convex spaces—the Schauder mapping method

    Directory of Open Access Journals (Sweden)

    S. Cobzaş

    2006-03-01

    Full Text Available In the appendix to the book by F. F. Bonsal, Lectures on Some Fixed Point Theorems of Functional Analysis (Tata Institute, Bombay, 1962 a proof by Singbal of the Schauder-Tychonoff fixed point theorem, based on a locally convex variant of Schauder mapping method, is included. The aim of this note is to show that this method can be adapted to yield a proof of Kakutani fixed point theorem in the locally convex case. For the sake of completeness we include also the proof of Schauder-Tychonoff theorem based on this method. As applications, one proves a theorem of von Neumann and a minimax result in game theory.

  6. On semiautomatic estimation of surface area

    DEFF Research Database (Denmark)

    Dvorak, J.; Jensen, Eva B. Vedel

    2013-01-01

    and the surfactor. For ellipsoidal particles, it is shown that the flower estimator is equal to the pivotal estimator based on support function measurements along four perpendicular rays. This result makes the pivotal estimator a powerful approximation to the flower estimator. In a simulation study of prolate....... If the segmentation is correct the estimate is computed automatically, otherwise the expert performs the necessary measurements manually. In case of convex particles we suggest to base the semiautomatic estimation on the so-called flower estimator, a new local stereological estimator of particle surface area....... For convex particles, the estimator is equal to four times the area of the support set (flower set) of the particle transect. We study the statistical properties of the flower estimator and compare its performance to that of two discretizations of the flower estimator, namely the pivotal estimator...

  7. Unifying kinetic approach to phoretic forces and torques onto moving and rotating convex particles

    NARCIS (Netherlands)

    Kröger, M.; Hütter, M.

    2006-01-01

    We derive general expressions and present several examples for the phoretic forces and torques acting on a translationally moving and rotating convex tracer particle, usually a submicrosized aerosol particle, assumed to be small compared to the mean free path of the surrounding nonequilibrium gas.

  8. Comparisons of Energy Management Methods for a Parallel Plug-In Hybrid Electric Vehicle between the Convex Optimization and Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Renxin Xiao

    2018-01-01

    Full Text Available This paper proposes a comparison study of energy management methods for a parallel plug-in hybrid electric vehicle (PHEV. Based on detailed analysis of the vehicle driveline, quadratic convex functions are presented to describe the nonlinear relationship between engine fuel-rate and battery charging power at different vehicle speed and driveline power demand. The engine-on power threshold is estimated by the simulated annealing (SA algorithm, and the battery power command is achieved by convex optimization with target of improving fuel economy, compared with the dynamic programming (DP based method and the charging depleting–charging sustaining (CD/CS method. In addition, the proposed control methods are discussed at different initial battery state of charge (SOC values to extend the application. Simulation results validate that the proposed strategy based on convex optimization can save the fuel consumption and reduce the computation burden obviously.

  9. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R E

    1987-11-01

    The aims of this research are the creation of new surface forms and the determination of geometric and physical properties of surfaces. The full sweep from constructive mathematics through the implementation of algorithms and the interactive computer graphics display of surfaces is utilized. Both three-dimensional and multi- dimensional surfaces are considered. Particular emphasis is given to the scientific computing solution of Department of Energy problems. The methods that we have developed and that we are proposing to develop allow applications such as: Producing smooth contour maps from measured data, such as weather maps. Modeling the heat distribution inside a furnace from sample measurements. Terrain modeling based on satellite pictures. The investigation of new surface forms includes the topics of triangular interpolants, multivariate interpolation, surfaces defined on surfaces and monotone and/or convex surfaces. The geometric and physical properties considered include contours, the intersection of surfaces, curvatures as a interrogation tool, and numerical integration.

  10. Well-Posedness and Primal-Dual Analysis of Some Convex Separable Optimization Problems

    Directory of Open Access Journals (Sweden)

    Stefan M. Stefanov

    2013-01-01

    Full Text Available We focus on some convex separable optimization problems, considered by the author in previous papers, for which problems, necessary and sufficient conditions or sufficient conditions have been proved, and convergent algorithms of polynomial computational complexity have been proposed for solving these problems. The concepts of well-posedness of optimization problems in the sense of Tychonov, Hadamard, and in a generalized sense, as well as calmness in the sense of Clarke, are discussed. It is shown that the convex separable optimization problems under consideration are calm in the sense of Clarke. The concept of stability of the set of saddle points of the Lagrangian in the sense of Gol'shtein is also discussed, and it is shown that this set is not stable for the “classical” Lagrangian. However, it turns out that despite this instability, due to the specificity of the approach, suggested by the author for solving problems under consideration, it is not necessary to use modified Lagrangians but only the “classical” Lagrangians. Also, a primal-dual analysis for problems under consideration in view of methods for solving them is presented.

  11. An Efficient Algorithm to Calculate the Minkowski Sum of Convex 3D Polyhedra

    NARCIS (Netherlands)

    Bekker, Henk; Roerdink, Jos B.T.M.

    2001-01-01

    A new method is presented to calculate the Minkowski sum of two convex polyhedra A and B in 3D. These graphs are given edge attributes. From these attributed graphs the attributed graph of the Minkowski sum is constructed. This graph is then transformed into the Minkowski sum of A and B. The running

  12. A numerical study on the behavior of the water meniscus formed between a flat surface and a flat or circular tip

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Wan; Ha, Man Yeong; Yoon, Hyun Sik; Kim, Chang Min [Pusan National University, Busan (Korea, Republic of); Kim, Sang Sun [Korea Aerospace Industries, Sacheon (Korea, Republic of)

    2014-04-15

    We numerically investigated the behavior of the water meniscus formed between a flat surface and a tip surface, which is flat or circular in shape, using the lattice Boltzmann method (LBM). The shape of the water meniscus formed between the flat bottom surface and the tip surface depends on the tip shape and the interaction between the water meniscus and the bottom or tip surface. The interaction is determined by the contact angles of the bottom and tip surfaces, resulting in different contact lengths between the water meniscus and the bottom or tip surface. The difference in these contact lengths depends on the effects of both the tip curvature and the interaction between the water meniscus and the bottom or tip surface. We classified the shapes of the water meniscus into seven different patterns as a function of the contact angles of the flat bottom and tip surfaces: concave, semi-concave, inverse semi-concave, column, convex, semiconvex, and inverse semi-convex.

  13. A numerical study on the behavior of the water meniscus formed between a flat surface and a flat or circular tip

    International Nuclear Information System (INIS)

    Son, Sung Wan; Ha, Man Yeong; Yoon, Hyun Sik; Kim, Chang Min; Kim, Sang Sun

    2014-01-01

    We numerically investigated the behavior of the water meniscus formed between a flat surface and a tip surface, which is flat or circular in shape, using the lattice Boltzmann method (LBM). The shape of the water meniscus formed between the flat bottom surface and the tip surface depends on the tip shape and the interaction between the water meniscus and the bottom or tip surface. The interaction is determined by the contact angles of the bottom and tip surfaces, resulting in different contact lengths between the water meniscus and the bottom or tip surface. The difference in these contact lengths depends on the effects of both the tip curvature and the interaction between the water meniscus and the bottom or tip surface. We classified the shapes of the water meniscus into seven different patterns as a function of the contact angles of the flat bottom and tip surfaces: concave, semi-concave, inverse semi-concave, column, convex, semiconvex, and inverse semi-convex

  14. Radar Echo Scattering Modeling and Image Simulations of Full-scale Convex Rough Targets at Terahertz Frequencies

    Directory of Open Access Journals (Sweden)

    Gao Jingkun

    2018-02-01

    Full Text Available Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.

  15. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    International Nuclear Information System (INIS)

    Allain, J.P.; Rokusek, D.L.; Harilal, S.S.; Nieto-Perez, M.; Skinner, C.H.; Kugel, H.W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-01-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  16. WE-G-207-02: Full Sequential Projection Onto Convex Sets (FS-POCS) for X-Ray CT Reconstruction

    International Nuclear Information System (INIS)

    Liu, L; Han, Y; Jin, M

    2015-01-01

    Purpose: To develop an iterative reconstruction method for X-ray CT, in which the reconstruction can quickly converge to the desired solution with much reduced projection views. Methods: The reconstruction is formulated as a convex feasibility problem, i.e. the solution is an intersection of three convex sets: 1) data fidelity (DF) set – the L2 norm of the difference of observed projections and those from the reconstructed image is no greater than an error bound; 2) non-negativity of image voxels (NN) set; and 3) piecewise constant (PC) set - the total variation (TV) of the reconstructed image is no greater than an upper bound. The solution can be found by applying projection onto convex sets (POCS) sequentially for these three convex sets. Specifically, the algebraic reconstruction technique and setting negative voxels as zero are used for projection onto the DF and NN sets, respectively, while the projection onto the PC set is achieved by solving a standard Rudin, Osher, and Fatemi (ROF) model. The proposed method is named as full sequential POCS (FS-POCS), which is tested using the Shepp-Logan phantom and the Catphan600 phantom and compared with two similar algorithms, TV-POCS and CP-TV. Results: Using the Shepp-Logan phantom, the root mean square error (RMSE) of reconstructed images changing along with the number of iterations is used as the convergence measurement. In general, FS- POCS converges faster than TV-POCS and CP-TV, especially with fewer projection views. FS-POCS can also achieve accurate reconstruction of cone-beam CT of the Catphan600 phantom using only 54 views, comparable to that of FDK using 364 views. Conclusion: We developed an efficient iterative reconstruction for sparse-view CT using full sequential POCS. The simulation and physical phantom data demonstrated the computational efficiency and effectiveness of FS-POCS

  17. A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields

    Science.gov (United States)

    Domokos, Gábor; Holmes, Philip; Lángi, Zsolt

    2016-12-01

    Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work, it was shown that these classifications are complete in that no class is empty. Here, we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g., by abrasion of sedimentary particles.

  18. Convexity and Weighted Integral Inequalities for Energy Decay Rates of Nonlinear Dissipative Hyperbolic Systems

    International Nuclear Information System (INIS)

    Alabau-Boussouira, Fatiha

    2005-01-01

    This work is concerned with the stabilization of hyperbolic systems by a nonlinear feedback which can be localized on a part of the boundary or locally distributed. We show that general weighted integral inequalities together with convexity arguments allow us to produce a general semi-explicit formula which leads to decay rates of the energy in terms of the behavior of the nonlinear feedback close to the origin. This formula allows us to unify for instance the cases where the feedback has a polynomial growth at the origin, with the cases where it goes exponentially fast to zero at the origin. We also give three other significant examples of nonpolynomial growth at the origin. We also prove the optimality of our results for the one-dimensional wave equation with nonlinear boundary dissipation. The key property for obtaining our general energy decay formula is the understanding between convexity properties of an explicit function connected to the feedback and the dissipation of energy

  19. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    Science.gov (United States)

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-12-01

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. On Difference of Convex Optimization to Visualize Statistical Data and Dissimilarities

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero

    2016-01-01

    In this talk we address the problem of visualizing in a bounded region a set of individuals, which has attached a dissimilarity measure and a statistical value. This problem, which extends the standard Multidimensional Scaling Analysis, is written as a global optimization problem whose objective...... is the difference of two convex functions (DC). Suitable DC decompositions allow us to use the DCA algorithm in a very efficient way. Our algorithmic approach is used to visualize two real-world datasets....

  1. Renorming c0 and closed, bounded, convex sets with fixed point property for affine nonexpansive mappings

    Science.gov (United States)

    Nezir, Veysel; Mustafa, Nizami

    2017-04-01

    In 2008, P.K. Lin provided the first example of a nonreflexive space that can be renormed to have fixed point property for nonexpansive mappings. This space was the Banach space of absolutely summable sequences l1 and researchers aim to generalize this to c0, Banach space of null sequences. Before P.K. Lin's intriguing result, in 1979, Goebel and Kuczumow showed that there is a large class of non-weak* compact closed, bounded, convex subsets of l1 with fixed point property for nonexpansive mappings. Then, P.K. Lin inspired by Goebel and Kuczumow's ideas to give his result. Similarly to P.K. Lin's study, Hernández-Linares worked on L1 and in his Ph.D. thesis, supervisored under Maria Japón, showed that L1 can be renormed to have fixed point property for affine nonexpansive mappings. Then, related questions for c0 have been considered by researchers. Recently, Nezir constructed several equivalent norms on c0 and showed that there are non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings. In this study, we construct a family of equivalent norms containing those developed by Nezir as well and show that there exists a large class of non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings.

  2. A Shape-Based Account for Holistic Face Processing

    Science.gov (United States)

    Zhao, Mintao; Bülthoff, Heinrich H.; Bülthoff, Isabelle

    2016-01-01

    Faces are processed holistically, so selective attention to 1 face part without any influence of the others often fails. In this study, 3 experiments investigated what type of facial information (shape or surface) underlies holistic face processing and whether generalization of holistic processing to nonexperienced faces requires extensive…

  3. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    Science.gov (United States)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  4. Reaction of the (111) faces of single-crystal indium phosphide with alkylating agents: evidence for selective reaction of the p-rich face

    Energy Technology Data Exchange (ETDEWEB)

    Spool, A.M.; Daube, K.A.; Mallouk, T.E.; Belmont, J.A.; Wrighton, M.S.

    1986-05-28

    We wish to report that the P-rich, (111)B, face of single-crystal InP, but not the In-rich, (111)A, face of the same crystal, reacts with molecular reagents to yield surface-bound material derived from the apparent alkylation of a surface P atom. Exploitation of surface functional groups has been demonstrated to be very important in the attachment of molecular reagents and polymers to electrode surfaces. Electrodes derivatized with molecules have potential uses in analysis, fuel cells, electrosynthetic cells, and photoelectrochemical cells. We now wish to present evidence showing that an important photoelectrode material, InP, can be functionalized with molecules by reaction of the P-rich, (111)B, face with alkylating reagents.

  5. [Facial rejuvenation and concentric malar lift: the FACE RECURVE concept].

    Science.gov (United States)

    Le Louarn, C; Buthiau, D; Buis, J

    2006-04-01

    Cell ageing is responsible for the increasingly creased appearance of our skin. The ageing of the structures of the face is attributed primarily to the effect of gravity on the tissues. The theory expounded below sets out to prove that the main and initial cause of this ageing is the repeated contractions of the mimic muscles. This concept attributes only a secondary role to gravity in the ageing process, which is initially brought about by muscular contractions. An MRI study recently made it possible to demonstrate the anterior convexity curve of the mimic muscles in the young subject. This curve is due to the existence at the back of these muscles of a deep fat pad. In the young subject, the extent of its convexity and its location give a specific, youthful character to the movements, in terms of direction and amplitude, of the facial muscles. With age, the muscle gradually straightens and shortens due to the repeated contractions that expel the underlying fat and increase the tonus at rest. The application of these new findings to the ageing of the face gives rise to new technical possibilities both in the field of medicine and aesthetic surgery. These new techniques have the same targets: segments of the mimic muscles (maintain over time a good muscular curve and a low tonus at rest) and the underlying fatty convexities. As far as medicine is concerned, the combination of botulinum toxin and filling has proved its worth. But two technical elements are new: the filling products must, at several points, be injected primarily behind the muscle to treat the depressions naturally and restore the initial curve of the overlying muscle. A very low number of units (a quarter to one unit) of botulinum toxin must be injected into certain muscles to diminish the tonus at rest of these muscles without diminishing their strength in maximum contraction. In surgery, new possibilities to treat premature ageing include procedures that combine segmentary muscular weakening, micro

  6. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  7. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks.

    Science.gov (United States)

    Cheng, Long; Hou, Zeng-Guang; Lin, Yingzi; Tan, Min; Zhang, Wenjun Chris; Wu, Fang-Xiang

    2011-05-01

    A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of the proposed neural network. It is proved that the equilibrium point set of the proposed neural network is equivalent to the optimal solution of the original optimization problem by using the Lagrangian saddle-point theorem. Under weak conditions, the proposed neural network is proved to be stable, and the state of the neural network is convergent to one of its equilibrium points. Compared with the existing neural network models for non-smooth optimization problems, the proposed neural network can deal with a larger class of constraints and is not based on the penalty method. Finally, the proposed neural network is used to solve the identification problem of genetic regulatory networks, which can be transformed into a non-smooth convex optimization problem. The simulation results show the satisfactory identification accuracy, which demonstrates the effectiveness and efficiency of the proposed approach.

  8. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    International Nuclear Information System (INIS)

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.

    2014-01-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ∼ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ∼ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity

  9. Using Fisher Information Criteria for Chemical Sensor Selection via Convex Optimization Methods

    Science.gov (United States)

    2016-11-16

    burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis...10 3.4 Defining the Mean Response Vector, ECD Scale Matrix, Slack Variables and their Con- straints for Convex Optimization...parametrized for optimization and the objective function thus becomes, ln(det(C(θ )))≥ ln(det(F−1(θ ;s))) =− ln(det(F (θ ;s))) (29) where s are the slack

  10. Critical heat flux for downward-facing pool boiling on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, Azin, E-mail: behdada@mcmaster.ca; Talebi, Farshad; Luxat, John

    2017-04-15

    Highlights: • Pressure tube-calandria tube contact may challenge fuel channel integrity in CANDU. • Critical heat flux variation is predicted on the outer surface of CANDU calandria tube. • A two-phase boundary layer flow driven by buoyancy is modeled on the surface. • Different slip ratios and flow regimes are considered inside the boundary layer. • Subcooling effects are added to the model using wall heat flux partitioning. - Abstract: One accident scenario in CANDU reactors that can challenge the integrity of the primary pressure boundary is a loss of coolant accident, referred to as critical break LOCA, in which the pressure tube (PT) can undergo thermal creep strain deformation and contact its calandria tube (CT). In such case, rapid redistribution of stored heat from PT to CT, leads to a large spike in heat flux to the moderator which can cause bubble accumulation and dryout on the CT surface. A challenge to fuel channel integrity is posed if critical heat flux occurs on the surface of the CT and results in sustained film boiling. If the post-dryout temperature becomes sufficiently high then continued creep strain of the PT and CT may lead to fuel channel failure. In this study, a mechanistic model is developed to predict the critical heat flux variations along the downward facing outer surface of CT. The hydrodynamic model considers a liquid macrolayer beneath an elongated vapor slug on the surface. Local dryout is postulated to occur whenever the fresh liquid supply to the macrolayer is not sufficient to compensate for the liquid depletion. A boundary layer analysis is performed, treating the two phase motion as an external buoyancy driven flow. The model shows good agreement with the available experimental data and has been modified to take into account the effect of subcooling.

  11. Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2013-01-01

    This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free

  12. On the rank 1 convexity of stored energy functions of physically linear stress-strain relations

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav; Bertram, A.; Böhlke, T.

    2007-01-01

    Roč. 86, č. 3 (2007), s. 235-243 ISSN 0374-3535 Institutional research plan: CEZ:AV0Z10190503 Keywords : generalized linear elastic law s * generalized strain measures * rank 1 convexity Subject RIV: BA - General Mathematics Impact factor: 0.743, year: 2007

  13. Nonparametric instrumental regression with non-convex constraints

    International Nuclear Information System (INIS)

    Grasmair, M; Scherzer, O; Vanhems, A

    2013-01-01

    This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, such as integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition. (paper)

  14. Nonparametric instrumental regression with non-convex constraints

    Science.gov (United States)

    Grasmair, M.; Scherzer, O.; Vanhems, A.

    2013-03-01

    This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, such as integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition.

  15. Molecular Dynamics Simulations of Slip on Curved Surfaces

    Directory of Open Access Journals (Sweden)

    Ross D.A.

    2016-07-01

    Full Text Available We present Molecular Dynamics (MD simulations of liquid water confined within nanoscale geometries, including slit-like and cylindrical graphitic pores. These equilibrium results are used for calculating friction coefficients, which in turn can be used to calculate slip lengths. The slip length is a material property independent of the fluid flow rate. It is therefore a better quantity for study than the fluid velocity at the wall, also known as the slip velocity. Once the slip length has been found as a function of surface curvature, it can be used to parameterise Lattice Boltzmann (LB simulations. These larger scale simulations are able to tell us about how fluid transport is affected by slip in complex geometries; not just limited to single pores. Applications include flow and transport in nano-porous engine valve deposits and gas shales. The friction coefficient is found to be a function of curvature and is higher for fluid on convex surfaces and lower for concave surfaces. Both concave and convex surfaces approach the same value of the friction coefficient, which is constant above some critical radius of curvature, here found to be 7.4 ± 2.9 nm. The constant value of the friction coefficient is 10,000 ± 600 kg m−2 s−1, which is equivalent to a slip length of approximately 67 ± 4 nm.

  16. Surface topography of a palladium cathode after electrolysis in heavy water

    International Nuclear Information System (INIS)

    Silver, D.S.; Dash, J.; Keefe, P.S.

    1993-01-01

    Electrolysis was performed with a palladium cathode and an electrolyte containing both hydrogen and deuterium ions. The cathode bends toward the anode during this process. Examination of both the concave and the convex surfaces with the scanning electron microscope, scanning tunneling microscope, and atomic force microscope shows unusual surface characteristics. Rimmed craters with faceted crystals inside and multitextural surfaces were observed on an electrolyzed palladium cathode but not on palladium that has not been electrolyzed. 9 refs., 9 figs

  17. Expression robust 3D face recognition via mesh-based histograms of multiple order surface differential quantities

    KAUST Repository

    Li, Huibin

    2011-09-01

    This paper presents a mesh-based approach for 3D face recognition using a novel local shape descriptor and a SIFT-like matching process. Both maximum and minimum curvatures estimated in the 3D Gaussian scale space are employed to detect salient points. To comprehensively characterize 3D facial surfaces and their variations, we calculate weighted statistical distributions of multiple order surface differential quantities, including histogram of mesh gradient (HoG), histogram of shape index (HoS) and histogram of gradient of shape index (HoGS) within a local neighborhood of each salient point. The subsequent matching step then robustly associates corresponding points of two facial surfaces, leading to much more matched points between different scans of a same person than the ones of different persons. Experimental results on the Bosphorus dataset highlight the effectiveness of the proposed method and its robustness to facial expression variations. © 2011 IEEE.

  18. Application of identifying transmission spheres for spherical surface testing

    Science.gov (United States)

    Han, Christopher B.; Ye, Xin; Li, Xueyuan; Wang, Quanzhao; Tang, Shouhong; Han, Sen

    2017-06-01

    We developed a new application on Microsoft Foundation Classes (MFC) to identify correct transmission spheres (TS) for Spherical Surface Testing (SST). Spherical surfaces are important optical surfaces, and the wide application and high production rate of spherical surfaces necessitates an accurate and highly reliable measuring device. A Fizeau Interferometer is an appropriate tool for SST due to its subnanometer accuracy. It measures the contour of a spherical surface using a common path, which is insensitive to the surrounding circumstances. The Fizeau Interferometer transmits a wide laser beam, creating interference fringes from re-converging light from the transmission sphere and the test surface. To make a successful measurement, the application calculates and determines the appropriate transmission sphere for the test surface. There are 3 main inputs from the test surfaces that are utilized to determine the optimal sizes and F-numbers of the transmission spheres: (1) the curvatures (concave or convex), (2) the Radii of Curvature (ROC), and (3) the aperture sizes. The application will firstly calculate the F-numbers (i.e. ROC divided by aperture) of the test surface, secondly determine the correct aperture size of a convex surface, thirdly verify that the ROC of the test surface must be shorter than the reference surface's ROC of the transmission sphere, and lastly calculate the percentage of area that the test surface will be measured. However, the amount of interferometers and transmission spheres should be optimized when measuring large spherical surfaces to avoid requiring a large amount of interferometers and transmission spheres for each test surface. Current measuring practices involve tedious and potentially inaccurate calculations. This smart application eliminates human calculation errors, optimizes the selection of transmission spheres (including the least number required) and interferometer sizes, and increases efficiency.

  19. Lift-and-fill face lift: integrating the fat compartments.

    Science.gov (United States)

    Rohrich, Rod J; Ghavami, Ashkan; Constantine, Fadi C; Unger, Jacob; Mojallal, Ali

    2014-06-01

    Recent discovery of the numerous fat compartments of the face has improved our ability to more precisely restore facial volume while rejuvenating it through differential superficial musculoaponeurotic system treatment. Incorporation of selective fat compartment volume restoration along with superficial musculoaponeurotic system manipulation allows for improved control in recontouring while addressing one of the key problems in facial aging, namely, volume deflation. This theory was evaluated by assessing the contour changes from simultaneous face "lifting" and "filling" through fat compartment-guided facial fat transfer. A review of 100 face-lift patients was performed. All patients had an individualized component face lift with fat grafting to the nasolabial fold, deep malar, and high/lateral malar fat compartment locations. Photographic analysis using a computer program was conducted on oblique facial views preoperatively and postoperatively, to obtain the most projected malar contour point. Two independent observers visually evaluated the malar prominence and nasolabial fold improvements based on standardized photographs. Nasolabial fold improved by at least one grade in 81 percent and by over one grade in 11 percent. Malar prominence average projection increase was 13.47 percent and the average amount of lift was 12.24 percent. The malar prominence score improved by at least one grade in 62 percent of the patients postoperatively, and 9 percent had a greater than one grade improvement. Twenty-eight percent of the patients had a convex malar prominence postoperatively compared with 6 percent preoperatively. Malar prominence improved by at least one grade in 63 percent and by over one grade in 10 percent. The lift-and-fill face lift merges two key concepts in facial rejuvenation: (1) effective tissue manipulation by means of lifting and tightening in differential vectors according to original facial asymmetry and shape; and (2) selective fat compartment filling

  20. Preliminary In-Vivo Evaluation of Convex Array Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Gammelmark, Kim; Jensen, Jørgen Arendt

    2004-01-01

    of STA imaging in comparison to conventional imaging. The purpose is to evaluate whether STA imaging is feasible in-vivo. and whether the image quality obtained is comparable to traditional scanned imaging in terms of penetration depth, spatial resolution, contrast resolution, and artifacts. Acquisition...... was done using our RASMUS research scanner and a 5.5 MHz convex array transducer. STA imaging applies spherical wave emulation using multi-element subapertures and a 20 mus linear FM signal as excitation pulse. For conventional imaging a 64 element aperture was used in transmit and receive with a 1.5 cycle...

  1. Oracle Inequalities for Convex Loss Functions with Non-Linear Targets

    DEFF Research Database (Denmark)

    Caner, Mehmet; Kock, Anders Bredahl

    This paper consider penalized empirical loss minimization of convex loss functions with unknown non-linear target functions. Using the elastic net penalty we establish a finite sample oracle inequality which bounds the loss of our estimator from above with high probability. If the unknown target...... of the same order as that of the oracle. If the target is linear we give sufficient conditions for consistency of the estimated parameter vector. Next, we briefly discuss how a thresholded version of our estimator can be used to perform consistent variable selection. We give two examples of loss functions...

  2. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    International Nuclear Information System (INIS)

    Yu, Ying; Zhan, Qingfeng; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Wang, Baomin; Li, Run-Wei; Wei, Jinwu; Wang, Jianbo; Xie, Shuhong

    2015-01-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices

  3. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    Science.gov (United States)

    Yu, Ying; Zhan, Qingfeng; Wei, Jinwu; Wang, Jianbo; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Xie, Shuhong; Wang, Baomin; Li, Run-Wei

    2015-04-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.

  4. Neural network for solving convex quadratic bilevel programming problems.

    Science.gov (United States)

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Restoration of the analytically reconstructed OpenPET images by the method of convex projections

    Energy Technology Data Exchange (ETDEWEB)

    Tashima, Hideaki; Murayama, Hideo; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan); Katsunuma, Takayuki; Suga, Mikio [Chiba Univ. (Japan). Graduate School of Engineering; Kinouchi, Shoko [National Institute of Radiological Sciences, Chiba (Japan); Chiba Univ. (Japan). Graduate School of Engineering; Obi, Takashi [Tokyo Institute of Technology (Japan). Interdisciplinary Graduate School of Science and Engineering; Kudo, Hiroyuki [Tsukuba Univ. (Japan). Graduate School of Systems and Information Engineering

    2011-07-01

    We have proposed the OpenPET geometry which has gaps between detector rings and physically opened field-of-view. The image reconstruction of the OpenPET is classified into an incomplete problem because it does not satisfy the Orlov's condition. Even so, the simulation and experimental studies have shown that applying iterative methods such as the maximum likelihood expectation maximization (ML-EM) algorithm successfully reconstruct images in the gap area. However, the imaging process of the iterative methods in the OpenPET imaging is not clear. Therefore, the aim of this study is to analytically analyze the OpenPET imaging and estimate implicit constraints involved in the iterative methods. To apply explicit constraints in the OpenPET imaging, we used the method of convex projections for restoration of the images reconstructed by the analytical way in which low-frequency components are lost. Numerical simulations showed that the similar restoration effects are involved both in the ML-EM and the method of convex projections. Therefore, the iterative methods have advantageous effect of restoring lost frequency components of the OpenPET imaging. (orig.)

  6. Numerical Simulation of Recycled Concrete Using Convex Aggregate Model and Base Force Element Method

    Directory of Open Access Journals (Sweden)

    Yijiang Peng

    2016-01-01

    Full Text Available By using the Base Force Element Method (BFEM on potential energy principle, a new numerical concrete model, random convex aggregate model, is presented in this paper to simulate the experiment under uniaxial compression for recycled aggregate concrete (RAC which can also be referred to as recycled concrete. This model is considered as a heterogeneous composite which is composed of five mediums, including natural coarse aggregate, old mortar, new mortar, new interfacial transition zone (ITZ, and old ITZ. In order to simulate the damage processes of RAC, a curve damage model was adopted as the damage constitutive model and the strength theory of maximum tensile strain was used as the failure criterion in the BFEM on mesomechanics. The numerical results obtained in this paper which contained the uniaxial compressive strengths, size effects on strength, and damage processes of RAC are in agreement with experimental observations. The research works show that the random convex aggregate model and the BFEM with the curve damage model can be used for simulating the relationship between microstructure and mechanical properties of RAC.

  7. T.I.Tech./K.E.S. Conference on Nonlinear and Convex Analysis in Economic Theory

    CERN Document Server

    Takahashi, Wataru

    1995-01-01

    The papers collected in this volume are contributions to T.I.Tech./K.E.S. Conference on Nonlinear and Convex Analysis in Economic Theory, which was held at Keio University, July 2-4, 1993. The conference was organized by Tokyo Institute of Technology (T. I. Tech.) and the Keio Economic Society (K. E. S.) , and supported by Nihon Keizai Shimbun Inc .. A lot of economic problems can be formulated as constrained optimiza­ tions and equilibrations of their solutions. Nonlinear-convex analysis has been supplying economists with indispensable mathematical machineries for these problems arising in economic theory. Conversely, mathematicians working in this discipline of analysis have been stimulated by various mathematical difficulties raised by economic the­ ories. Although our special emphasis was laid upon "nonlinearity" and "con­ vexity" in relation with economic theories, we also incorporated stochastic aspects of financial economics in our project taking account of the remark­ able rapid growth of this dis...

  8. Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming

    OpenAIRE

    Díaz-García, José A.; Caro-Lopera, Francisco J.

    2015-01-01

    An explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods.

  9. Multiple carrier transport in N-face indium nitride

    International Nuclear Information System (INIS)

    Koblmueller, Gregor; Gallinat, Chad S.; Speck, James S.; Umana-Membreno, Gilberto A.; Nener, Brett D.; Parish, Giacinta; Fehlberg, Tamara B.

    2008-01-01

    We present temperature (20-300 K) dependent multi-carrier measurements of electron species in N-face indium nitride. N-face InN samples were grown to different thicknesses (500-2000 nm) via plasma-assisted molecular beam epitaxy on C-face SiC substrates. Surface and bulk electron transport properties were extracted using a quantitative mobility spectrum analysis. Mobility of both bulk and surface electron species increase with film thickness. The temperature dependence of the mobility of both species differs to that of In-polar samples studied previously, while the mobility of surface electrons is more than twice that of In-polar samples with only a slight corresponding reduction in sheet concentration. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints

    International Nuclear Information System (INIS)

    Zhang Yunong; Li Zhan

    2009-01-01

    In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.

  11. An Alternating Direction Method for Convex Quadratic Second-Order Cone Programming with Bounded Constraints

    Directory of Open Access Journals (Sweden)

    Xuewen Mu

    2015-01-01

    quadratic programming over second-order cones and a bounded set. At each iteration, we only need to compute the metric projection onto the second-order cones and the projection onto the bound set. The result of convergence is given. Numerical results demonstrate that our method is efficient for the convex quadratic second-order cone programming problems with bounded constraints.

  12. F-SVM: Combination of Feature Transformation and SVM Learning via Convex Relaxation

    OpenAIRE

    Wu, Xiaohe; Zuo, Wangmeng; Zhu, Yuanyuan; Lin, Liang

    2015-01-01

    The generalization error bound of support vector machine (SVM) depends on the ratio of radius and margin, while standard SVM only considers the maximization of the margin but ignores the minimization of the radius. Several approaches have been proposed to integrate radius and margin for joint learning of feature transformation and SVM classifier. However, most of them either require the form of the transformation matrix to be diagonal, or are non-convex and computationally expensive. In this ...

  13. A study on the upward and downward facing pool boiling heat transfer characteristics of graphene-modified surface

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Ahn, Ho Seon; Kim, Ji Min

    2016-01-01

    Recently, graphene, carbon in two dimensions, were highlighted as a good heat transfer materials, according to its high thermal conductivity. Lateral conduction and water absorption into the structure helped graphene films to inhibit the formation of hot spots, which means increasing of critical heat flux (CHF) and boiling heat transfer coefficient (BHTC) performances. In this study, we report a promising increase of CHF and BHTC results with 2D graphene films. Furthermore, we tried to observe bubble behavior via high-speed visualization to investigate a relationship between bubble behavior and pool boiling performances in downward facing boiling. The effect of graphene film coating on the pool boiling performances of upward and downward facing heater surface were examined. 2D- and 3D- graphene film showed good enhancement results on the CHF (by 111% and 60%) and BHTC (by 40% and 20-25%) performances. Bubble behavior change was significant factor on the CHF and BHTC performances in downward facing boiling. The amount of evaporation heat flux was calculated from the velocity, bubble diameter, frequency, orientation angle and superheat that the post-products of the high-speed visualization

  14. Regular growth of systems of functions and systems of non-homogeneous convolution equations in convex domains of the complex plane

    International Nuclear Information System (INIS)

    Krivosheev, A S

    2000-01-01

    In this paper we introduce the notion of regular growth for a system of entire functions of finite order and type. This is a direct and natural generalization of the classical completely regular growth of an entire function. We obtain sufficient and necessary conditions for the solubility of a system of non-homogeneous convolution equations in convex domains of the complex plane. These conditions depend on whether the system of Laplace transforms of the analytic functionals that generate the convolution equations has regular growth. In the case of smooth convex domains, these solubility conditions form a criterion

  15. An Implementable First-Order Primal-Dual Algorithm for Structured Convex Optimization

    Directory of Open Access Journals (Sweden)

    Feng Ma

    2014-01-01

    Full Text Available Many application problems of practical interest can be posed as structured convex optimization models. In this paper, we study a new first-order primaldual algorithm. The method can be easily implementable, provided that the resolvent operators of the component objective functions are simple to evaluate. We show that the proposed method can be interpreted as a proximal point algorithm with a customized metric proximal parameter. Convergence property is established under the analytic contraction framework. Finally, we verify the efficiency of the algorithm by solving the stable principal component pursuit problem.

  16. Optimal Energy Consumption in Refrigeration Systems - Modelling and Non-Convex Optimisation

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Skovrup, Morten J.

    2012-01-01

    Supermarket refrigeration consumes substantial amounts of energy. However, due to the thermal capacity of the refrigerated goods, parts of the cooling capacity delivered can be shifted in time without deteriorating the food quality. In this study, we develop a realistic model for the energy...... consumption in super market refrigeration systems. This model is used in a Nonlinear Model Predictive Controller (NMPC) to minimise the energy used by operation of a supermarket refrigeration system. The model is non-convex and we develop a computational efficient algorithm tailored to this problem...

  17. The Distortion Theorems for Harmonic Mappings with Analytic Parts Convex or Starlike Functions of Order β

    Directory of Open Access Journals (Sweden)

    Mengkun Zhu

    2015-01-01

    Full Text Available Some sharp estimates of coefficients, distortion, and growth for harmonic mappings with analytic parts convex or starlike functions of order β are obtained. We also give area estimates and covering theorems. Our main results generalise those of Klimek and Michalski.

  18. On the impact of a concave nosed axisymmetric body on a free surface

    Science.gov (United States)

    Mathai, Varghese; Govardhan, Raghuraman N.; Arakeri, Vijay H.

    2015-02-01

    We report on an experimental study of the vertical impact of a concave nosed axisymmetric body on a free surface. Previous studies have shown that bodies with a convex nose, like a sphere, produce a well defined splash with a relatively large cavity behind the model. In contrast, we find that with a concave nose, there is hardly a splash and the cavity extent is greatly reduced. This may be explained by the fact that in the concave nosed case, the initial impact is between a confined air pocket and the free surface unlike in the convex nosed case. From measurements of the unsteady pressure in the concave nose portion, we show that in this case, the maximum pressures are significantly lower than the classically expected "water hammer" pressures and also lower than those generally measured on other geometries. Thus, the presence of an air pocket in the case of a concave nosed body adds an interesting dimension to the classical problem of impact of solid bodies on to a free surface.

  19. Convex Relaxations for a Generalized Chan-Vese Model

    KAUST Repository

    Bae, Egil

    2013-01-01

    We revisit the Chan-Vese model of image segmentation with a focus on the encoding with several integer-valued labeling functions. We relate several representations with varying amount of complexity and demonstrate the connection to recent relaxations for product sets and to dual maxflow-based formulations. For some special cases, it can be shown that it is possible to guarantee binary minimizers. While this is not true in general, we show how to derive a convex approximation of the combinatorial problem for more than 4 phases. We also provide a method to avoid overcounting of boundaries in the original Chan-Vese model without departing from the efficient product-set representation. Finally, we derive an algorithm to solve the associated discretized problem, and demonstrate that it allows to obtain good approximations for the segmentation problem with various number of regions. © 2013 Springer-Verlag.

  20. Path Following in the Exact Penalty Method of Convex Programming.

    Science.gov (United States)

    Zhou, Hua; Lange, Kenneth

    2015-07-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.

  1. Effect of surface conditions on blast wave propagation

    International Nuclear Information System (INIS)

    Song, Seung Ho; Li, Yi Bao; Lee, Chang Hoon; Choi, Jung Il

    2016-01-01

    We performed numerical simulations of blast wave propagations on surfaces by solving axisymmetric two-dimensional Euler equations. Assuming the initial stage of fireball at the breakaway point after an explosion, we investigated the effect of surface conditions considering surface convex or concave elements and thermal conditions on blast wave propagations near the ground surface. Parametric studies were performed by varying the geometrical factors of the surface element as well as thermal layer characteristics. We found that the peak overpressure near the ground zero was increased due to the surface elements, while modulations of the blast wave propagations were limited within a region for the surface elements. Because of the thermal layer, the precursor was formed in the propagations, which led to the attenuation of the peak overpressure on the ground surface

  2. Dimpled/grooved face on a fuel injection nozzle body for flame stabilization and related method

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo; Zuo, Baifang

    2013-08-20

    A fuel injection head for a fuel nozzle used in a gas turbine combustor includes a substantially hollow body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween. A plurality of pre-mix tubes or passages extend axially through the hollow body with inlets at the upstream end face and outlets at the downstream end face. An exterior surface of the downstream end face is formed with three-dimensional surface features that increase a total surface area of the exterior surface as compared to a substantially flat, planar downstream end face.

  3. Log-Log Convexity of Type-Token Growth in Zipf's Systems

    Science.gov (United States)

    Font-Clos, Francesc; Corral, Álvaro

    2015-06-01

    It is traditionally assumed that Zipf's law implies the power-law growth of the number of different elements with the total number of elements in a system—the so-called Heaps' law. We show that a careful definition of Zipf's law leads to the violation of Heaps' law in random systems, with growth curves that have a convex shape in log-log scale. These curves fulfill universal data collapse that only depends on the value of Zipf's exponent. We observe that real books behave very much in the same way as random systems, despite the presence of burstiness in word occurrence. We advance an explanation for this unexpected correspondence.

  4. Convex hull and tour crossings in the Euclidean traveling salesperson problem : implications for human performance studies

    NARCIS (Netherlands)

    Rooij, van I.; Stege, U.; Schactman, A.

    2003-01-01

    Recently there has been growing interest among psychologists in human performance on the Euclidean traveling salesperson problem (E-TSP). A debate has been initiated on what strategy people use in solving visually presented E-TSP instances. The most prominent hypothesis is the convex-hull

  5. Style of the surface deformation by the 1999 Chichi earthquake at the central segment of Chelungpu fault, Taiwan, with special reference to the presence of the main and subsidiary faults and their progressive deformation in the Tsauton area

    Science.gov (United States)

    Ota, Y.; Watanabe, M.; Suzuki, Y.; Yanagida, M.; Miyawaki, A.; Sawa, H.

    2007-11-01

    We describe the style of surface deformation in the 1999 Chichi earthquake in the central segment of the Chelungpu Fault. The study covers the Kung-fu village, north of Han River, to the south of Tsauton area. A characteristic style of the surface deformation is a convex scarp in profile and sinuous plan view, due to the low angle thrust fault. Two subparallel faults, including the west facing Tsauton West fault, and the east facing Tsauton East fault, limit the western and eastern margin of the Tsauton terraced area. The Tsauton West fault is the continuation of the main Chelungpu fault and the Tsauton East fault is located about 2 km apart. Both faults record larger amounts of vertical displacement on the older terraces. The 1999 surface rupture occurred exactly on a pre-existing fault scarp of the Tsauton West and East faults. Thus, repeated activities of these two faults during the Holocene, possibly since the late Quaternary, are confirmed. The amount of vertical offset of the Tsauton East fault is smaller, and about 40-50% of that of the Tsauton West fault for the pre-existing fault. This indicates that the Tsauton East fault is a subsidiary fault and moved together with the main fault, but accommodated less amount.

  6. Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra

    OpenAIRE

    M. Khouil; N. Saber; M. Mestari

    2014-01-01

    In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the coll...

  7. Study on Dynamic Development of Three-dimensional Weld Pool Surface in Stationary GTAW

    Science.gov (United States)

    Huang, Jiankang; He, Jing; He, Xiaoying; Shi, Yu; Fan, Ding

    2018-04-01

    The weld pool contains abundant information about the welding process. In particular, the type of the weld pool surface shape, i. e., convex or concave, is determined by the weld penetration. To detect it, an innovative laser-vision-based sensing method is employed to observe the weld pool surface of the gas tungsten arc welding (GTAW). A low-power laser dots pattern is projected onto the entire weld pool surface. Its reflection is intercepted by a screen and captured by a camera. Then the dynamic development process of the weld pool surface can be detected. By observing and analyzing, the change of the reflected laser dots reflection pattern, for shape of the weld pool surface shape, was found to closely correlate to the penetration of weld pool in the welding process. A mathematical model was proposed to correlate the incident ray, reflected ray, screen and surface of weld pool based on structured laser specular reflection. The dynamic variation of the weld pool surface and its corresponding dots laser pattern were simulated and analyzed. By combining the experimental data and the mathematical analysis, the results show that the pattern of the reflected laser dots pattern is closely correlated to the development of weld pool, such as the weld penetration. The concavity of the pool surface was found to increase rapidly after the surface shape was changed from convex to concave during the stationary GTAW process.

  8. Airfoil

    Science.gov (United States)

    Ristau, Neil; Siden, Gunnar Leif

    2015-07-21

    An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.

  9. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  10. A Depth-Adjustment Deployment Algorithm Based on Two-Dimensional Convex Hull and Spanning Tree for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-07-01

    Full Text Available Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs just consider how to optimize network coverage and connectivity rate. However, these literatures don’t discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D convex hull and spanning tree (NDACS for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability.

  11. Topographic characterization of nanostructures on curved polymer surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Petersen, Jan C.; Taboryski, Rafael J.

    2014-01-01

    The availability of portable instrumentation for characterizing surface topography on the micro- and nanometer scale is very limited. Particular the handling of curved surfaces, both concave and convex, is complicated or not possible on current instrumentation. However, the currently growing use...... method with a portable instrument that can be used in a production environment, and topographically characterize nanometer-scale surface structures on both flat and curved surfaces. To facilitate the commercialization of injection moulded polymer parts featuring nanostructures, it is pivotal...... of injection moulding of polymer parts featuring nanostructured surfaces, requires an instrument that can characterize these structures to ensure replication-confidence between master structure and replicated polymer parts. This project concerns the development of a metrological traceable quality control...

  12. Entropies from Coarse-graining: Convex Polytopes vs. Ellipsoids

    Directory of Open Access Journals (Sweden)

    Nikos Kalogeropoulos

    2015-09-01

    Full Text Available We examine the Boltzmann/Gibbs/Shannon SBGS and the non-additive Havrda-Charvát/Daróczy/Cressie-Read/Tsallis Sq and the Kaniadakis κ-entropy Sκ from the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that the functional form of such entropies can be ascribed to a discordance in phase-space coarse-graining between two generally different approaches: the Euclidean/Riemannian metric one that reflects independence and picks cubes as the fundamental cells in coarse-graining and the symplectic/canonical one that picks spheres/ellipsoids for this role. Our discussion is motivated by and confined to the behaviour of Hamiltonian systems of many degrees of freedom. We see that Dvoretzky’s theorem provides asymptotic estimates for the minimal dimension beyond which these two approaches are close to each other. We state and speculate about the role that dualities may play in this viewpoint.

  13. Decomposability and convex structure of thermal processes

    Science.gov (United States)

    Mazurek, Paweł; Horodecki, Michał

    2018-05-01

    We present an example of a thermal process (TP) for a system of d energy levels, which cannot be performed without an instant access to the whole energy space. This TP is uniquely connected with a transition between some states of the system, that cannot be performed without access to the whole energy space even when approximate transitions are allowed. Pursuing the question about the decomposability of TPs into convex combinations of compositions of processes acting non-trivially on smaller subspaces, we investigate transitions within the subspace of states diagonal in the energy basis. For three level systems, we determine the set of extremal points of these operations, as well as the minimal set of operations needed to perform an arbitrary TP, and connect the set of TPs with thermomajorization criterion. We show that the structure of the set depends on temperature, which is associated with the fact that TPs cannot increase deterministically extractable work from a state—the conclusion that holds for arbitrary d level system. We also connect the decomposability problem with detailed balance symmetry of an extremal TPs.

  14. An inequality for convex functionals and its application to a maxwellian gas

    Directory of Open Access Journals (Sweden)

    G. Toscani

    1991-05-01

    Full Text Available We study the trend towards equilibrium of the solution of the spatially homogeneous Boltzmann equation for a gas of Maxwellian molecules. The cases of axially symmetric and plane initial densities are investigated. In these situations, the strong L1 convergence to equilibrium follows by a suitable use of some convex and isotropic functionals, with monotonic behaviour in time along the solution. The initial density is required to have finite energy and entropy. It is shown that the functionals satisfy a common convolution inequality.

  15. Silicon microneedle formation using modified mask designs based on convex corner undercut

    Science.gov (United States)

    Wilke, N.; Morrissey, A.

    2007-02-01

    In this work, we present microneedle fabrication using the mechanism of silicon convex corner undercutting for modified etch masks in aqueous KOH solution (29% KOH, 79 °C). The presented modified mask designs include three different shapes, as well as different compensation structures applied to a square mask shape. We have found that square mask shapes present an optimum needle structure in contrast to circular or diamond shapes. The use of compensation structures facilitates an increase in needle density of 33-50% over that otherwise achieved.

  16. High-Dimensional Analysis of Convex Optimization-Based Massive MIMO Decoders

    KAUST Repository

    Ben Atitallah, Ismail

    2017-04-01

    A wide range of modern large-scale systems relies on recovering a signal from noisy linear measurements. In many applications, the useful signal has inherent properties, such as sparsity, low-rankness, or boundedness, and making use of these properties and structures allow a more efficient recovery. Hence, a significant amount of work has been dedicated to developing and analyzing algorithms that can take advantage of the signal structure. Especially, since the advent of Compressed Sensing (CS) there has been significant progress towards this direction. Generally speaking, the signal structure can be harnessed by solving an appropriate regularized or constrained M-estimator. In modern Multi-input Multi-output (MIMO) communication systems, all transmitted signals are drawn from finite constellations and are thus bounded. Besides, most recent modulation schemes such as Generalized Space Shift Keying (GSSK) or Generalized Spatial Modulation (GSM) yield signals that are inherently sparse. In the recovery procedure, boundedness and sparsity can be promoted by using the ℓ1 norm regularization and by imposing an ℓ∞ norm constraint respectively. In this thesis, we propose novel optimization algorithms to recover certain classes of structured signals with emphasis on MIMO communication systems. The exact analysis permits a clear characterization of how well these systems perform. Also, it allows an automatic tuning of the parameters. In each context, we define the appropriate performance metrics and we analyze them exactly in the High Dimentional Regime (HDR). The framework we use for the analysis is based on Gaussian process inequalities; in particular, on a new strong and tight version of a classical comparison inequality (due to Gordon, 1988) in the presence of additional convexity assumptions. The new framework that emerged from this inequality is coined as Convex Gaussian Min-max Theorem (CGMT).

  17. Image restoration by the method of convex projections: part 2 applications and numerical results.

    Science.gov (United States)

    Sezan, M I; Stark, H

    1982-01-01

    The image restoration theory discussed in a previous paper by Youla and Webb [1] is applied to a simulated image and the results compared with the well-known method known as the Gerchberg-Papoulis algorithm. The results show that the method of image restoration by projection onto convex sets, by providing a convenient technique for utilizing a priori information, performs significantly better than the Gerchberg-Papoulis method.

  18. Neurocomputational bases of object and face recognition.

    OpenAIRE

    Biederman, I; Kalocsai, P

    1997-01-01

    A number of behavioural phenomena distinguish the recognition of faces and objects, even when members of a set of objects are highly similar. Because faces have the same parts in approximately the same relations, individuation of faces typically requires specification of the metric variation in a holistic and integral representation of the facial surface. The direct mapping of a hypercolumn-like pattern of activation onto a representation layer that preserves relative spatial filter values in...

  19. Reachability by paths of bounded curvature in a convex polygon

    KAUST Repository

    Ahn, Heekap; Cheong, Otfried; Matoušek, Jiřǐ; Vigneron, Antoine E.

    2012-01-01

    Let B be a point robot moving in the plane, whose path is constrained to forward motions with curvature at most 1, and let P be a convex polygon with n vertices. Given a starting configuration (a location and a direction of travel) for B inside P, we characterize the region of all points of P that can be reached by B, and show that it has complexity O(n). We give an O(n2) time algorithm to compute this region. We show that a point is reachable only if it can be reached by a path of type CCSCS, where C denotes a unit circle arc and S denotes a line segment. © 2011 Elsevier B.V.

  20. FY 1999 project on the development of new industry support type international standards. Standardization of test/evaluation methods of telecommunication use fine ceramics; 1999 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Tsushin kikiyo fine ceramics no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    As to high frequency/ultra-high frequency band use fine ceramics, the R and D were conducted with the aim of establishing the evaluation method of electric characteristics such as dielectric constants and dielectric losses, and at standardizing and internationally standardizing the principle of the measuring method, preparation method of equipment and test pieces, measuring procedures, etc. The FY 1999 results were summed up. As to the measuring method of electric characteristics, enhancement of measuring accuracy was made for the millimeter wave coaxial exciting cavity resonator method and the Fabry Perot method. Further, field survey was made of the developmental trend of the measuring method in Europe and the U.S. Concerning measuring use standard test pieces, candidate materials were trially manufactured, and the shape/dimension of a part of the candidate materials were determined. As to surface basic properties, effects of surface shape and convex/concave faces of test pieces on characteristic evaluation were studied, and it was made clear that convex/concave faces were greatly influential. In the technical committee, how to proceed with the development was discussed in the first meeting, and evaluation methods and candidate standard substances were selected in the second meeting. (NEDO)

  1. Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals.

    Science.gov (United States)

    Bergeest, Jan-Philip; Rohr, Karl

    2012-10-01

    In high-throughput applications, accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression and the understanding of cell function. We propose an approach for segmenting cell nuclei which is based on active contours using level sets and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We consider three different well-known energy functionals for active contour-based segmentation and introduce convex formulations of these functionals. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images from different experiments comprising different cell types. We have also performed a quantitative comparison with previous segmentation approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Face Gear Technology for Aerospace Power Transmission Progresses

    Science.gov (United States)

    2005-01-01

    The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate

  3. Geometry of convex polygons and locally minimal binary trees spanning these polygons

    International Nuclear Information System (INIS)

    Ivanov, A O; Tuzhilin, A A

    1999-01-01

    In previous works the authors have obtained an effective classification of planar locally minimal binary trees with convex boundaries. The main aim of the present paper is to find more subtle restrictions on the possible structure of such trees in terms of the geometry of the given boundary set. Special attention is given to the case of quasiregular boundaries (that is, boundaries that are sufficiently close to regular ones in a certain sense). In particular, a series of quasiregular boundaries that cannot be spanned by a locally minimal binary tree is constructed

  4. Weighted mining of massive collections of [Formula: see text]-values by convex optimization.

    Science.gov (United States)

    Dobriban, Edgar

    2018-06-01

    Researchers in data-rich disciplines-think of computational genomics and observational cosmology-often wish to mine large bodies of [Formula: see text]-values looking for significant effects, while controlling the false discovery rate or family-wise error rate. Increasingly, researchers also wish to prioritize certain hypotheses, for example, those thought to have larger effect sizes, by upweighting, and to impose constraints on the underlying mining, such as monotonicity along a certain sequence. We introduce Princessp , a principled method for performing weighted multiple testing by constrained convex optimization. Our method elegantly allows one to prioritize certain hypotheses through upweighting and to discount others through downweighting, while constraining the underlying weights involved in the mining process. When the [Formula: see text]-values derive from monotone likelihood ratio families such as the Gaussian means model, the new method allows exact solution of an important optimal weighting problem previously thought to be non-convex and computationally infeasible. Our method scales to massive data set sizes. We illustrate the applications of Princessp on a series of standard genomics data sets and offer comparisons with several previous 'standard' methods. Princessp offers both ease of operation and the ability to scale to extremely large problem sizes. The method is available as open-source software from github.com/dobriban/pvalue_weighting_matlab (accessed 11 October 2017).

  5. Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms With Directed Gossip Communication

    Science.gov (United States)

    Jakovetic, Dusan; Xavier, João; Moura, José M. F.

    2011-08-01

    We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.

  6. Study on feed forward neural network convex optimization for LiFePO4 battery parameters

    Science.gov (United States)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Based on the modern facility agriculture automatic walking equipment LiFePO4 Battery, the parameter identification of LiFePO4 Battery is analyzed. An improved method for the process model of li battery is proposed, and the on-line estimation algorithm is presented. The parameters of the battery are identified using feed forward network neural convex optimization algorithm.

  7. Theoretical study of the influence of decentring on longitudinal stability of a flat-convex lenticular lighted wing

    Energy Technology Data Exchange (ETDEWEB)

    Bouquet, R [Univ. de Poitiers, ENSMA, Poitiers (France)

    1985-07-01

    The flat-convex lenticular wings have a very interesting polar-diagram, with a big relative thickness, good for partial static lifting force by introduction of light gas. But the longitudinal balance can be easily realized only with a notable decentring for the load. The theoretical study of stability conditions, in horizontal propulsed flight, as in gliding without engine power, gives the localization of a balance center, different of the gravity center, and the calculation of an optimal centring, function of a diagram-family c{sub m}(i) established on computer. In this new calculation, described in this paper, the relative of static lifting force is one of the principal parameters. A 16 mm coloured movie in annex shows the flight tests with a motorized wireless-controlled scale-model, realized according to the theory. This experiments give proof of aeronautical possibilities of this flat-convex lenticular lighted air-ship, with the name of: 'flying turtle' project. (author)

  8. Primal-dual convex optimization in large deformation diffeomorphic metric mapping: LDDMM meets robust regularizers

    Science.gov (United States)

    Hernandez, Monica

    2017-12-01

    This paper proposes a method for primal-dual convex optimization in variational large deformation diffeomorphic metric mapping problems formulated with robust regularizers and robust image similarity metrics. The method is based on Chambolle and Pock primal-dual algorithm for solving general convex optimization problems. Diagonal preconditioning is used to ensure the convergence of the algorithm to the global minimum. We consider three robust regularizers liable to provide acceptable results in diffeomorphic registration: Huber, V-Huber and total generalized variation. The Huber norm is used in the image similarity term. The primal-dual equations are derived for the stationary and the non-stationary parameterizations of diffeomorphisms. The resulting algorithms have been implemented for running in the GPU using Cuda. For the most memory consuming methods, we have developed a multi-GPU implementation. The GPU implementations allowed us to perform an exhaustive evaluation study in NIREP and LPBA40 databases. The experiments showed that, for all the considered regularizers, the proposed method converges to diffeomorphic solutions while better preserving discontinuities at the boundaries of the objects compared to baseline diffeomorphic registration methods. In most cases, the evaluation showed a competitive performance for the robust regularizers, close to the performance of the baseline diffeomorphic registration methods.

  9. On the impact of a concave nosed axisymmetric body on a free surface

    NARCIS (Netherlands)

    Mathai, Varghese; Govardhan, R.N.; Arakeri, V.H.

    2015-01-01

    We report on an experimental study of the vertical impact of a concave nosed axisymmetric body on a free surface. Previous studies have shown that bodies with a convex nose, like a sphere, produce a well defined splash with a relatively large cavity behind the model. In contrast, we find that with a

  10. Geometry intuitive, discrete, and convex : a tribute to László Fejes Tóth

    CERN Document Server

    Böröczky, Károly; Tóth, Gábor; Pach, János

    2013-01-01

    The present volume is a collection of a dozen survey articles, dedicated to the memory of the famous Hungarian geometer, László Fejes Tóth, on the 99th anniversary of his birth. Each article reviews recent progress in an important field in intuitive, discrete, and convex geometry. The mathematical work and perspectives of all editors and most contributors of this volume were deeply influenced by László Fejes Tóth.

  11. Internal reflection of interstitial atoms from close-packed tungsten faces

    International Nuclear Information System (INIS)

    Dranova, Zh.I.; Mikhajlovskij, I.M.

    1981-01-01

    Use of field-ion microscopy methods has shown that changes in microtopography of tungsten specimens irradiated with 2-5 keV helium atoms are mainly related to the liberation of interstitial atoms on the surface. It is established that the atom liberation on the surface is considerably anisotropic: maximum quantity of atoms is observed in the vicinity of faces (100), (111) and (211) along the sections of zone lines (110) oriented along the edge of the first Brillouin zone. The atom liberation on plane sections of the most dense-packed face (110) was not observed as a rule; atomic steps of the face are interstitial atom sinks. It is concluded on the basis of the results obtained that there is the predominant inner reflection of interstitial atoms from the dense-packed faces and a possible contribution of inner reflection to the surface migration processes activated with the ion bombardment as well as material swelling have been analyzed [ru

  12. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard

    2015-05-04

    ​In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport). ​

  13. An Iterative Procedure for Obtaining I-Projections onto the Intersection of Convex Sets.

    Science.gov (United States)

    1984-06-01

    Dykstra Department of Statistics and Actuarial Science The University of Iowa Iowa City, Iowa 52242 Technical Report #106 June 1984D I e ELECTE lSEP...t Theorem ~ ~ 2.. Asm i where the 4 are closed, convex sets of PD’s and R d 0 is a nonnegative vector such that there exists a T E 4 where I(TIR) < M...PERFOMING ORGANIZATION NAME AND ADDRESS 1. PROGIRA ILEMNT. PROJECT. TAK Department of Statistics and Actuarial Science AEAS a WORK UNIT Numaa The

  14. Horn clause verification with convex polyhedral abstraction and tree automata-based refinement

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2017-01-01

    In this paper we apply tree-automata techniques to refinement of abstract interpretation in Horn clause verification. We go beyond previous work on refining trace abstractions; firstly we handle tree automata rather than string automata and thereby can capture traces in any Horn clause derivations...... underlying the Horn clauses. Experiments using linear constraint problems and the abstract domain of convex polyhedra show that the refinement technique is practical and that iteration of abstract interpretation with tree automata-based refinement solves many challenging Horn clause verification problems. We...... compare the results with other state-of-the-art Horn clause verification tools....

  15. Familiar face + novel face = familiar face? Representational bias in the perception of morphed faces in chimpanzees

    Directory of Open Access Journals (Sweden)

    Yoshi-Taka Matsuda

    2016-08-01

    Full Text Available Highly social animals possess a well-developed ability to distinguish the faces of familiar from novel conspecifics to induce distinct behaviors for maintaining society. However, the behaviors of animals when they encounter ambiguous faces of familiar yet novel conspecifics, e.g., strangers with faces resembling known individuals, have not been well characterised. Using a morphing technique and preferential-looking paradigm, we address this question via the chimpanzee’s facial–recognition abilities. We presented eight subjects with three types of stimuli: (1 familiar faces, (2 novel faces and (3 intermediate morphed faces that were 50% familiar and 50% novel faces of conspecifics. We found that chimpanzees spent more time looking at novel faces and scanned novel faces more extensively than familiar or intermediate faces. Interestingly, chimpanzees looked at intermediate faces in a manner similar to familiar faces with regards to the fixation duration, fixation count, and saccade length for facial scanning, even though the participant was encountering the intermediate faces for the first time. We excluded the possibility that subjects merely detected and avoided traces of morphing in the intermediate faces. These findings suggest a bias for a feeling-of-familiarity that chimpanzees perceive familiarity with an intermediate face by detecting traces of a known individual, as 50% alternation is sufficient to perceive familiarity.

  16. Face Pareidolia in the Rhesus Monkey.

    Science.gov (United States)

    Taubert, Jessica; Wardle, Susan G; Flessert, Molly; Leopold, David A; Ungerleider, Leslie G

    2017-08-21

    Face perception in humans and nonhuman primates is rapid and accurate [1-4]. In the human brain, a network of visual-processing regions is specialized for faces [5-7]. Although face processing is a priority of the primate visual system, face detection is not infallible. Face pareidolia is the compelling illusion of perceiving facial features on inanimate objects, such as the illusory face on the surface of the moon. Although face pareidolia is commonly experienced by humans, its presence in other species is unknown. Here we provide evidence for face pareidolia in a species known to possess a complex face-processing system [8-10]: the rhesus monkey (Macaca mulatta). In a visual preference task [11, 12], monkeys looked longer at photographs of objects that elicited face pareidolia in human observers than at photographs of similar objects that did not elicit illusory faces. Examination of eye movements revealed that monkeys fixated the illusory internal facial features in a pattern consistent with how they view photographs of faces [13]. Although the specialized response to faces observed in humans [1, 3, 5-7, 14] is often argued to be continuous across primates [4, 15], it was previously unclear whether face pareidolia arose from a uniquely human capacity. For example, pareidolia could be a product of the human aptitude for perceptual abstraction or result from frequent exposure to cartoons and illustrations that anthropomorphize inanimate objects. Instead, our results indicate that the perception of illusory facial features on inanimate objects is driven by a broadly tuned face-detection mechanism that we share with other species. Published by Elsevier Ltd.

  17. A Novel Method Using Abstract Convex Underestimation in Ab-Initio Protein Structure Prediction for Guiding Search in Conformational Feature Space.

    Science.gov (United States)

    Hao, Xiao-Hu; Zhang, Gui-Jun; Zhou, Xiao-Gen; Yu, Xu-Feng

    2016-01-01

    To address the searching problem of protein conformational space in ab-initio protein structure prediction, a novel method using abstract convex underestimation (ACUE) based on the framework of evolutionary algorithm was proposed. Computing such conformations, essential to associate structural and functional information with gene sequences, is challenging due to the high-dimensionality and rugged energy surface of the protein conformational space. As a consequence, the dimension of protein conformational space should be reduced to a proper level. In this paper, the high-dimensionality original conformational space was converted into feature space whose dimension is considerably reduced by feature extraction technique. And, the underestimate space could be constructed according to abstract convex theory. Thus, the entropy effect caused by searching in the high-dimensionality conformational space could be avoided through such conversion. The tight lower bound estimate information was obtained to guide the searching direction, and the invalid searching area in which the global optimal solution is not located could be eliminated in advance. Moreover, instead of expensively calculating the energy of conformations in the original conformational space, the estimate value is employed to judge if the conformation is worth exploring to reduce the evaluation time, thereby making computational cost lower and the searching process more efficient. Additionally, fragment assembly and the Monte Carlo method are combined to generate a series of metastable conformations by sampling in the conformational space. The proposed method provides a novel technique to solve the searching problem of protein conformational space. Twenty small-to-medium structurally diverse proteins were tested, and the proposed ACUE method was compared with It Fix, HEA, Rosetta and the developed method LEDE without underestimate information. Test results show that the ACUE method can more rapidly and more

  18. A Walking Method for Non-Decomposition Intersection and Union of Arbitrary Polygons and Polyhedrons

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yao, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-28

    We present a method for computing the intersection and union of non- convex polyhedrons without decomposition in O(n log n) time, where n is the total number of faces of both polyhedrons. We include an accompanying Python package which addresses many of the practical issues associated with implementation and serves as a proof of concept. The key to the method is that by considering the edges of the original ob- jects and the intersections between faces as walking routes, we can e ciently nd the boundary of the intersection of arbitrary objects using directional walks, thus handling the concave case in a natural manner. The method also easily extends to plane slicing and non-convex polyhedron unions, and both the polyhedron and its constituent faces may be non-convex.

  19. Experimental and theoretical study on transition boiling concerning downward-facing horizontal surface in confined space

    International Nuclear Information System (INIS)

    Zhao, D.W.; Su, G.H.; Tian, W.X.; Sugiyama, K.; Qiu, S.Z.

    2008-01-01

    Experimental study has been conducted to examine the pool boiling occurs on a relative large downward-facing round surface with a diameter of 300 mm in confined water pool at atmospheric pressure. An artificial neural network (ANN) has been trained successfully based on the experimental data for predicting Nusselt number of transition boiling in the present study. The input parameters of the ANN are wall superheat, ΔT w , the ratio of the gap size to the diameter of the heated surface, δ/D, Prandtl number and Rayleigh number. The output is Nusselt number, Nu. The results show that: Nu decreases with increasing ΔT w , and increases generally with an increase of δ/D. Nu increases with increasing Pr when gap size is smaller than 4.0 mm. And Nu decreases initially and then increases with increasing Pr as gap size bigger than 5.0 mm. The results also indicate that the influence of Grashof number, Gr, could be negligible. Finally, a new correlation was proposed to predict the transition boiling heat transfer under the present condition. The comparisons between the prediction of the new correlation and experimental data show a reasonable agreement

  20. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Science.gov (United States)

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.