WorldWideScience

Sample records for convex manifolds

  1. Strictly convex functions on complete Finsler manifolds

    Indian Academy of Sciences (India)

    YOE ITOKAWA; KATSUHIRO SHIOHAMA; BANKTESHWAR TIWARI

    2016-10-01

    The purpose of the present paper is to investigate the influence of strictly convex functions on the metric structures of complete Finsler manifolds. More precisely we discuss the properties of the group of isometries and the exponential maps on a complete Finsler manifold admitting strictly convex functions.

  2. The convexity radius of a Riemannian manifold

    OpenAIRE

    Dibble, James

    2014-01-01

    The ratio of convexity radius over injectivity radius may be made arbitrarily small within the class of compact Riemannian manifolds of any fixed dimension at least two. This is proved using Gulliver's method of constructing manifolds with focal points but no conjugate points. The approach is suggested by a characterization of the convexity radius that resembles a classical result of Klingenberg about the injectivity radius.

  3. The Identification of Convex Function on Riemannian Manifold

    Directory of Open Access Journals (Sweden)

    Li Zou

    2014-01-01

    Full Text Available The necessary and sufficient condition of convex function is significant in nonlinear convex programming. This paper presents the identification of convex function on Riemannian manifold by use of Penot generalized directional derivative and the Clarke generalized gradient. This paper also presents a method for judging whether a point is the global minimum point in the inequality constraints. Our objective here is to extend the content and proof the necessary and sufficient condition of convex function to Riemannian manifolds.

  4. Convex functions and optimization methods on Riemannian manifolds

    CERN Document Server

    Udrişte, Constantin

    1994-01-01

    This unique monograph discusses the interaction between Riemannian geometry, convex programming, numerical analysis, dynamical systems and mathematical modelling. The book is the first account of the development of this subject as it emerged at the beginning of the 'seventies. A unified theory of convexity of functions, dynamical systems and optimization methods on Riemannian manifolds is also presented. Topics covered include geodesics and completeness of Riemannian manifolds, variations of the p-energy of a curve and Jacobi fields, convex programs on Riemannian manifolds, geometrical constructions of convex functions, flows and energies, applications of convexity, descent algorithms on Riemannian manifolds, TC and TP programs for calculations and plots, all allowing the user to explore and experiment interactively with real life problems in the language of Riemannian geometry. An appendix is devoted to convexity and completeness in Finsler manifolds. For students and researchers in such diverse fields as pu...

  5. HOLOMORPHIC MANIFOLDS ON LOCALLY CONVEX SPACES

    Institute of Scientific and Technical Information of China (English)

    Tsoy-Wo Ma

    2005-01-01

    Based on locally compact perturbations of the identity map similar to the Fredholm structures on real Banach manifolds, complex manifolds with inverse mapping theorem as part of the defintion are proposed. Standard topics including holomorphic maps, morphisms, derivatives, tangent bundles, product manifolds and submanifolds are presented. Although this framework is elementary, it lays the necessary foundation for all subsequent developments.

  6. Convexity of Spheres in a Manifold without Conjugate Points

    Indian Academy of Sciences (India)

    Akhil Ranjan; Hemangi Shah

    2002-11-01

    For a non-compact, complete and simply connected manifold without conjugate points, we prove that if the determinant of the second fundamental form of the geodesic spheres in is a radial function, then the geodesic spheres are convex. We also show that if is two or three dimensional and without conjugate points, then, at every point there exists a ray with no focal points on it relative to the initial point of the ray. The proofs use a result from the theory of vector bundles combined with the index lemma.

  7. Homotopy formulas and ■-equation on local q- convex domains in Stein manifolds

    Institute of Scientific and Technical Information of China (English)

    钟同德

    1997-01-01

    The homotopy formulas of (r,s) differential forms and the solution of equation of type (r,s) on local q-convex domains in Stein manifolds are obtained.The homotopy formulas on local q-convex domains have important applications in uniform estimates of equation and holomorphic extension of CR-manifolds.

  8. Nehari manifold for non-local elliptic operator with concave–convex nonlinearities and sign-changing weight functions

    Indian Academy of Sciences (India)

    Sarika Goyal; K Sreenadh

    2015-11-01

    In this article, we study the existence and multiplicity of non-negative solutions of the following p-fractional equation: \\begin{equation*} \\left\\{ \\begin{matrix} -2 {\\displaystyle\\int}_{\\mathbb{R}^n} \\frac{|u(y) - u (x)|^{p-2} (u(y)-u(x))}{|x-y|^{n+p}} dy = h (x) |u|^{q-1} u + b (x)|u|^{r-1} u \\text{ in } ,\\\\ u = 0 \\quad \\text{ in } \\mathbb{R}^n \\setminus , \\quad u \\in W^{,p} (\\mathbb{R}^n) \\end{matrix} \\right. \\end{equation*} where is a bounded domain in $\\mathbb{R}^n$ with continuous boundary, $p ≥ 2$, $n > p $, $ \\in (0,1)$, $0 < q < p -1 < r < p^* - 1$ with $p^* = np (n -p)^{-1}$, $ > 0$ and $h, b$ are signchanging continuous functions. We show the existence and multiplicity of solutions by minimization on the suitable subset of Nehari manifold using the fibering maps. We find that there exists 0 such that for $ \\in (0, _0)$, it has at least two non-negative solutions.

  9. Global approximation of convex functions

    CERN Document Server

    Azagra, D

    2011-01-01

    We show that for every (not necessarily bounded) open convex subset $U$ of $\\R^n$, every (not necessarily Lipschitz or strongly) convex function $f:U\\to\\R$ can be approximated by real analytic convex functions, uniformly on all of $U$. In doing so we provide a technique which transfers results on uniform approximation on bounded sets to results on uniform approximation on unbounded sets, in such a way that not only convexity and $C^k$ smoothness, but also local Lipschitz constants, minimizers, order, and strict or strong convexity, are preserved. This transfer method is quite general and it can also be used to obtain new results on approximation of convex functions defined on Riemannian manifolds or Banach spaces. We also provide a characterization of the class of convex functions which can be uniformly approximated on $\\R^n$ by strongly convex functions.

  10. Convexity Adjustments

    DEFF Research Database (Denmark)

    M. Gaspar, Raquel; Murgoci, Agatha

    2010-01-01

    of particular importance to practitioners: yield convexity adjustments, forward versus futures convexity adjustments, timing and quanto convexity adjustments. We claim that the appropriate way to look into any of these adjustments is as a side effect of a measure change, as proposed by Pelsser (2003...

  11. Undergraduate Convexity

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    -Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point...

  12. Learning Smooth Pattern Transformation Manifolds

    CERN Document Server

    Vural, Elif

    2011-01-01

    Manifold models provide low-dimensional representations that are useful for processing and analyzing data in a transformation-invariant way. In this paper, we study the problem of learning smooth pattern transformation manifolds from image sets that represent observations of geometrically transformed signals. In order to construct a manifold, we build a representative pattern whose transformations accurately fit various input images. We examine two objectives of the manifold building problem, namely, approximation and classification. For the approximation problem, we propose a greedy method that constructs a representative pattern by selecting analytic atoms from a continuous dictionary manifold. We present a DC (Difference-of-Convex) optimization scheme that is applicable to a wide range of transformation and dictionary models, and demonstrate its application to transformation manifolds generated by rotation, translation and anisotropic scaling of a reference pattern. Then, we generalize this approach to a s...

  13. Nash manifolds

    CERN Document Server

    Shiota, Masahiro

    1987-01-01

    A Nash manifold denotes a real manifold furnished with algebraic structure, following a theorem of Nash that a compact differentiable manifold can be imbedded in a Euclidean space so that the image is precisely such a manifold. This book, in which almost all results are very recent or unpublished, is an account of the theory of Nash manifolds, whose properties are clearer and more regular than those of differentiable or PL manifolds. Basic to the theory is an algebraic analogue of Whitney's Approximation Theorem. This theorem induces a "finiteness" of Nash manifold structures and differences between Nash and differentiable manifolds. The point of view of the author is topological. However the proofs also require results and techniques from other domains so elementary knowledge of commutative algebra, several complex variables, differential topology, PL topology and real singularities is required of the reader. The book is addressed to graduate students and researchers in differential topology and real algebra...

  14. A plasticity principle of convex quadrilaterals on a complete convex surface of bounded specific curvature

    CERN Document Server

    Zachos, Anastasios

    2010-01-01

    We obtain the plasticity equations for convex quadrilaterals on a complete convex surface with bounded specific curvature and derive a plasticity principle which states that: Given four shortest arcs which meet at the weighted Fermat-Torricelli point P_F and their endpoints form a convex quadrilateral, an increase of the weight that corresponds to a shortest arc causes a decrease to the two weights that correspond to the two neighboring shortest arcs and an increase to the weight that corresponds to the opposite shortest arc. We show a connection between the plasticity of convex quadrilaterals on a complete convex surface with bounded specific curvature with the plasticity of generalized convex quadrilaterals on a manifold which is composed by triangles located on a complete convex surface of bounded specific curvature and triangles located on a two dimensional sphere whose constant Gaussian curvature equals to the infimum or supremum of the specific curvature. Furthermore, we give some cases of geometrizatio...

  15. Cubes convexes

    CERN Document Server

    Nedjar, Sebastien; Cicchetti, Rosine; Lakhal, Lotfi; 10.3166/isi.11.6.11-31

    2010-01-01

    In various approaches, data cubes are pre-computed in order to answer efficiently OLAP queries. The notion of data cube has been declined in various ways: iceberg cubes, range cubes or differential cubes. In this paper, we introduce the concept of convex cube which captures all the tuples of a datacube satisfying a constraint combination. It can be represented in a very compact way in order to optimize both computation time and required storage space. The convex cube is not an additional structure appended to the list of cube variants but we propose it as a unifying structure that we use to characterize, in a simple, sound and homogeneous way, the other quoted types of cubes. Finally, we introduce the concept of emerging cube which captures the significant trend inversions. characterizations.

  16. Lower bounds on volumes of hyperbolic Haken 3-manifolds

    Science.gov (United States)

    Agol, Ian; Storm, Peter A.; Thurston, William P.

    2007-10-01

    We prove a volume inequality for 3-manifolds having C^{0} metrics ``bent'' along a surface and satisfying certain curvature conditions. The result makes use of Perelman's work on the Ricci flow and geometrization of closed 3-manifolds. Corollaries include a new proof of a conjecture of Bonahon about volumes of convex cores of Kleinian groups, improved volume estimates for certain Haken hyperbolic 3-manifolds, and a lower bound on the minimal volume of orientable hyperbolic 3-manifolds. An appendix compares estimates of volumes of hyperbolic 3-manifolds drilled along a closed embedded geodesic with experimental data.

  17. Topological Manifolds

    Directory of Open Access Journals (Sweden)

    Pąk Karol

    2015-02-01

    Full Text Available Let us recall that a topological space M is a topological manifold if M is second-countable Hausdorff and locally Euclidean, i.e. each point has a neighborhood that is homeomorphic to an open ball of E n for some n. However, if we would like to consider a topological manifold with a boundary, we have to extend this definition. Therefore, we introduce here the concept of a locally Euclidean space that covers both cases (with and without a boundary, i.e. where each point has a neighborhood that is homeomorphic to a closed ball of En for some n.

  18. Differential manifolds

    CERN Document Server

    Kosinski, Antoni A

    2007-01-01

    The concepts of differential topology form the center of many mathematical disciplines such as differential geometry and Lie group theory. Differential Manifolds presents to advanced undergraduates and graduate students the systematic study of the topological structure of smooth manifolds. Author Antoni A. Kosinski, Professor Emeritus of Mathematics at Rutgers University, offers an accessible approach to both the h-cobordism theorem and the classification of differential structures on spheres.""How useful it is,"" noted the Bulletin of the American Mathematical Society, ""to have a single, sho

  19. Convex polytopes

    CERN Document Server

    Klee, Victor; Ziegler, Günter

    2003-01-01

    "The appearance of Grünbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way." (Gil Kalai, The Hebrew University of Jerusalem) "The original book of Grünbaum has provided the central reference for work in this active area of mathematics for the past 35 years...I first consulted this book as a graduate student in 1967; yet, even today, I am surprised again and again by what I find there. It is an amazingly complete reference for work on this subject up to that time and continues to be a major influence on research to this day." (Louis J. Billera, Cornell University) "The or...

  20. Remarks on homogeneous manifolds satisfying Levi conditions

    CERN Document Server

    Huckleberry, Alan

    2010-01-01

    Homogeneous complex manifolds satisfying various types of Levi conditions are considered. Classical results which were of particular interest to Andreotti are recalled. Convexity and concavity properties of flag domains are discussed in some detail. A precise classification of pseudoconvex flag domains is given. It is shown that flag domains which are in a certain sense generic are pseudoconcave.

  1. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  2. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  3. Uniformly convex and strictly convex Orlicz spaces

    Science.gov (United States)

    Masta, Al Azhary

    2016-02-01

    In this paper we define the new norm of Orlicz spaces on ℝn through a multiplication operator on an old Orlicz spaces. We obtain some necessary and sufficient conditions that the new norm to be a uniformly convex and strictly convex spaces.

  4. Quasi-rigidity of hyperbolic 3-manifolds and scattering theory

    CERN Document Server

    Borthwick, D; Taylor, E; Borthwick, David; Rae, Alan Mc; Taylor, Edward

    1996-01-01

    Take two isomorphic convex co-compact co-infinite volume Kleinian groups, whose regular sets are diffeomorphic. The quotient of hyperbolic 3-space by these groups gives two hyperbolic 3-manifolds whose scattering operators may be compared. We prove that the operator norm of the difference between the scattering operators is small, then the groups are related by a coorespondingly small quasi-conformal deformation. This in turn implies that the two hyperbolic 3-manifolds are quasi-isometric.

  5. Some properties of Fr\\'echet medians in Riemannian manifolds

    CERN Document Server

    Yang, Le

    2011-01-01

    The consistency of Fr\\'echet medians is proved for probability measures in proper metric spaces. In the context of Riemannian manifolds, assuming that the probability measure has more than a half mass lying in a convex ball and verifies some concentration conditions, the positions of its Fr\\'echet medians are estimated. It is also shown that, in compact Riemannian manifolds, the Fr\\'echet sample medians of generic data points are always unique.

  6. Dynamics and zeta functions on conformally compact manifolds

    CERN Document Server

    Rowlett, Julie; Tapie, Samuel

    2011-01-01

    In this note, we study the dynamics and associated zeta functions of conformally compact manifolds with variable negative sectional curvatures. We begin with a discussion of a larger class of manifolds known as convex co-compact manifolds with variable negative curvature. Applying results from dynamics on these spaces, we obtain optimal meromorphic extensions of weighted dynamical zeta functions and asymptotic counting estimates for the number of weighted closed geodesics. A meromorphic extension of the standard dynamical zeta function and the prime orbit theorem follow as corollaries. Finally, we investigate interactions between the dynamics and spectral theory of these spaces.

  7. Bornological Locally Convex Cones

    Directory of Open Access Journals (Sweden)

    Davood Ayaseh

    2014-10-01

    Full Text Available In this paper we define bornological and b-bornological cones and investigate their properties. We give some characterization for these cones. In the special case of locally convex topological vector space both these concepts reduce to the known concept  of bornological spaces. We introduce and investigate the  convex quasiuniform   structures U_{tau}, U_{sigma}(P,P* and \\U_{beta}(P,P* on locally convex cone (P,U.

  8. Uniformly Convex Metric Spaces

    OpenAIRE

    Kell Martin

    2014-01-01

    In this paper the theory of uniformly convex metric spaces is developed. These spaces exhibit a generalized convexity of the metric from a fixed point. Using a (nearly) uniform convexity property a simple proof of reflexivity is presented and a weak topology of such spaces is analyzed. This topology called co-convex topology agrees with the usualy weak topology in Banach spaces. An example of a $CAT(0)$-spaces with weak topology which is not Hausdorff is given. This answers questions raised b...

  9. Theory of convex structures

    CERN Document Server

    van de Vel, MLJ

    1993-01-01

    Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) and of geodesically convex sets (Menger) are directly inspired by intuition; they go back to the first half of this century. An axiomatic approach started to develop in the early Fifties. The author became attracted to it in the mid-Seventies, resulting in the present volume, in which graphs appear si

  10. Manifolds, Tensors, and Forms

    Science.gov (United States)

    Renteln, Paul

    2013-11-01

    Preface; 1. Linear algebra; 2. Multilinear algebra; 3. Differentiation on manifolds; 4. Homotopy and de Rham cohomology; 5. Elementary homology theory; 6. Integration on manifolds; 7. Vector bundles; 8. Geometric manifolds; 9. The degree of a smooth map; Appendixes; References; Index.

  11. TQFT and Whitehead's manifold

    CERN Document Server

    Funar, L

    1995-01-01

    The aim of this note is to derive some invariants at infinity for open 3-manifolds in the framework of Topological Quantum Field Theories. These invariants may be used to test if an open manifold is simply connected at infinity as we done for Whitehead's manifold in case of the sl_{2}({\\bf C})-TQFT in level 4.

  12. On convexity in complex networks

    CERN Document Server

    Marc, Tilen

    2016-01-01

    Metric graph properties lie in the heart of the analysis of complex networks, while in this paper we study their convexity. We analyze the expansion of convex subsets of nodes in empirical networks and also convexity of small subgraphs known as graphlets. We demonstrate that convexity is an inherent property of complex networks not present in a random graph. According to our perception of convexity, a convex network is such in which every connected subset of nodes induces a convex subgraph. Especially convex are technological networks and social collaboration graphs, whereas food webs are the only networks studied that are truly non-convex. Many other networks can be divided into a non-convex core surrounded by a convex periphery. We interpret convexity in terms of redundancy of shortest paths in a network and discuss possible applications.

  13. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Jacob, Riko

    We determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the data structure...... is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects the convex hull......, and the tangent queries to determine whether a given point is inside the convex hull. The space usage of the data structure is O(n). We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....

  14. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølfting; Jacob, Rico

    2002-01-01

    In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage...... of the data structure is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects...... the convex hull, and the tangent queries to determine whether a given point is inside the convex hull. We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....

  15. Two-Manifold Problems

    CERN Document Server

    Boots, Byron

    2011-01-01

    Recently, there has been much interest in spectral approaches to learning manifolds---so-called kernel eigenmap methods. These methods have had some successes, but their applicability is limited because they are not robust to noise. To address this limitation, we look at two-manifold problems, in which we simultaneously reconstruct two related manifolds, each representing a different view of the same data. By solving these interconnected learning problems together and allowing information to flow between them, two-manifold algorithms are able to succeed where a non-integrated approach would fail: each view allows us to suppress noise in the other, reducing bias in the same way that an instrumental variable allows us to remove bias in a {linear} dimensionality reduction problem. We propose a class of algorithms for two-manifold problems, based on spectral decomposition of cross-covariance operators in Hilbert space. Finally, we discuss situations where two-manifold problems are useful, and demonstrate that sol...

  16. Causes for "ghost" manifolds

    Science.gov (United States)

    Borok, S.; Goldfarb, I.; Gol'dshtein, V.

    2009-05-01

    The paper concerns intrinsic low-dimensional manifold (ILDM) method suggested in [Maas U, Pope SB. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, combustion and flame 1992;88:239-64] for dimension reduction of models describing kinetic processes. It has been shown in a number of publications [Goldfarb I, Gol'dshtein V, Maas U. Comparative analysis of two asymptotic approaches based on integral manifolds. IMA J Appl Math 2004;69:353-74; Kaper HG, Kaper TJ, Asymptotic analysis of two reduction methods for systems of chemical reactions. Phys D 2002;165(1-2):66-93; Rhodes C, Morari M, Wiggins S. Identification of the low order manifolds: validating the algorithm of Maas and Pope. Chaos 1999;9(1):108-23] that the ILDM-method works successfully and the intrinsic low-dimensional manifolds belong to a small vicinity of invariant slow manifolds. The ILDM-method has a number of disadvantages. One of them is appearance of so-called "ghost"-manifolds, which do not have connection to the system dynamics [Borok S, Goldfarb I, Gol'dshtein V. "Ghost" ILDM - manifolds and their discrimination. In: Twentieth Annual Symposium of the Israel Section of the Combustion Institute, Beer-Sheva, Israel; 2004. p. 55-7; Borok S, Goldfarb I, Gol'dshtein V. About non-coincidence of invariant manifolds and intrinsic low-dimensional manifolds (ILDM). CNSNS 2008;71:1029-38; Borok S, Goldfarb I, Gol'dshtein V, Maas U. In: Gorban AN, Kazantzis N, Kevrekidis YG, Ottinger HC, Theodoropoulos C, editors. "Ghost" ILDM-manifolds and their identification: model reduction and coarse-graining approaches for multiscale phenomena. Berlin-Heidelberg-New York: Springer; 2006. p. 55-80; Borok S, Goldfarb I, Gol'dshtein V. On a modified version of ILDM method and its asymptotic analysis. IJPAM 2008; 44(1): 125-50; Bykov V, Goldfarb I, Gol'dshtein V, Maas U. On a modified version of ILDM approach: asymptotic analysis based on integral manifolds. IMA J Appl Math 2006

  17. Statistical properties of convex clustering

    OpenAIRE

    Tan, Kean Ming; Witten, Daniela

    2015-01-01

    In this manuscript, we study the statistical properties of convex clustering. We establish that convex clustering is closely related to single linkage hierarchical clustering and $k$-means clustering. In addition, we derive the range of the tuning parameter for convex clustering that yields a non-trivial solution. We also provide an unbiased estimator of the degrees of freedom, and provide a finite sample bound for the prediction error for convex clustering. We compare convex clustering to so...

  18. Compressed gas manifold

    Science.gov (United States)

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  19. Adaptive manifold learning.

    Science.gov (United States)

    Zhang, Zhenyue; Wang, Jing; Zha, Hongyuan

    2012-02-01

    Manifold learning algorithms seek to find a low-dimensional parameterization of high-dimensional data. They heavily rely on the notion of what can be considered as local, how accurately the manifold can be approximated locally, and, last but not least, how the local structures can be patched together to produce the global parameterization. In this paper, we develop algorithms that address two key issues in manifold learning: 1) the adaptive selection of the local neighborhood sizes when imposing a connectivity structure on the given set of high-dimensional data points and 2) the adaptive bias reduction in the local low-dimensional embedding by accounting for the variations in the curvature of the manifold as well as its interplay with the sampling density of the data set. We demonstrate the effectiveness of our methods for improving the performance of manifold learning algorithms using both synthetic and real-world data sets.

  20. Notions of convexity

    CERN Document Server

    Hörmander, Lars

    1994-01-01

    The first two chapters of this book are devoted to convexity in the classical sense, for functions of one and several real variables respectively. This gives a background for the study in the following chapters of related notions which occur in the theory of linear partial differential equations and complex analysis such as (pluri-)subharmonic functions, pseudoconvex sets, and sets which are convex for supports or singular supports with respect to a differential operator. In addition, the convexity conditions which are relevant for local or global existence of holomorphic differential equations are discussed, leading up to Trépreau’s theorem on sufficiency of condition (capital Greek letter Psi) for microlocal solvability in the analytic category. At the beginning of the book, no prerequisites are assumed beyond calculus and linear algebra. Later on, basic facts from distribution theory and functional analysis are needed. In a few places, a more extensive background in differential geometry or pseudodiffer...

  1. Convex Geometry and Stoichiometry

    CERN Document Server

    Jer-Chin,

    2011-01-01

    We demonstrate the benefits of a convex geometric perspective for questions on chemical stoichiometry. We show that the balancing of chemical equations, the use of "mixtures" to explain multiple stoichiometry, and the half-reaction for balancing redox actions all yield nice convex geometric interpretations. We also relate some natural questions on reaction mechanisms with the enumeration of lattice points in polytopes. Lastly, it is known that a given reaction mechanism imposes linear constraints on observed stoichiometries. We consider the inverse question of deducing reaction mechanism consistent with a given set of linear stoichiometric restrictions.

  2. Ensemble manifold regularization.

    Science.gov (United States)

    Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng

    2012-06-01

    We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.

  3. SMOOTHING BY CONVEX QUADRATIC PROGRAMMING

    Institute of Scientific and Technical Information of China (English)

    Bing-sheng He; Yu-mei Wang

    2005-01-01

    In this paper, we study the relaxed smoothing problems with general closed convex constraints. It is pointed out that such problems can be converted to a convex quadratic minimization problem for which there are good programs in software libraries.

  4. Analysis on manifolds

    CERN Document Server

    Munkres, James R

    1997-01-01

    A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.

  5. Egalitarianism in Convex Fuzzy Games

    NARCIS (Netherlands)

    Brânzei, R.; Dimitrov, D.A.; Tijs, S.H.

    2002-01-01

    In this paper the egalitarian solution for convex cooperative fuzzy games is introduced.The classical Dutta-Ray algorithm for finding the constrained egalitarian solution for convex crisp games is adjusted to provide the egalitarian solution of a convex fuzzy game.This adjusted algorithm is also a f

  6. Average Convexity in Communication Situations

    NARCIS (Netherlands)

    Slikker, M.

    1998-01-01

    In this paper we study inheritance properties of average convexity in communication situations. We show that the underlying graph ensures that the graphrestricted game originating from an average convex game is average convex if and only if every subgraph associated with a component of the underlyin

  7. Hierarchical manifold learning.

    Science.gov (United States)

    Bhatia, Kanwal K; Rao, Anil; Price, Anthony N; Wolz, Robin; Hajnal, Jo; Rueckert, Daniel

    2012-01-01

    We present a novel method of hierarchical manifold learning which aims to automatically discover regional variations within images. This involves constructing manifolds in a hierarchy of image patches of increasing granularity, while ensuring consistency between hierarchy levels. We demonstrate its utility in two very different settings: (1) to learn the regional correlations in motion within a sequence of time-resolved images of the thoracic cavity; (2) to find discriminative regions of 3D brain images in the classification of neurodegenerative disease,

  8. On manifolds with corners

    CERN Document Server

    Joyce, Dominic

    2009-01-01

    Manifolds without boundary, and manifolds with boundary, are universally known in Differential Geometry, but manifolds with corners (locally modelled on [0,\\infty)^k x R^{n-k}) have received comparatively little attention. The basic definitions in the subject are not agreed upon, there are several inequivalent definitions in use of manifolds with corners, of boundary, and of smooth map, depending on the applications in mind. We present a theory of manifolds with corners which includes a new notion of smooth map f : X --> Y. Compared to other definitions, our theory has the advantage of giving a category Man^c of manifolds with corners which is particularly well behaved as a category: it has products and direct products, boundaries behave in a functorial way, and there are simple conditions for the existence of fibre products X x_Z Y in Man^c. Our theory is tailored to future applications in Symplectic Geometry, and is part of a project to describe the geometric structure on moduli spaces of J-holomorphic curv...

  9. Efficient Approximation of Convex Recolorings

    OpenAIRE

    Moran, Shlomo; Snir, Sagi

    2005-01-01

    A coloring of a tree is convex if the vertices that pertain to any color induce a connected subtree; a partial coloring (which assigns colors to some of the vertices) is convex if it can be completed to a convex (total) coloring. Convex coloring of trees arise in areas such as phylogenetics, linguistics, etc. eg, a perfect phylogenetic tree is one in which the states of each character induce a convex coloring of the tree. Research on perfect phylogeny is usually focused on finding a tree so t...

  10. Total Variation Regularization for Functions with Values in a Manifold

    KAUST Repository

    Lellmann, Jan

    2013-12-01

    While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.

  11. Convex Graph Invariants

    Science.gov (United States)

    2010-12-02

    evaluating the function ΘP (A) for any fixed A,P is equivalent to solving the so-called Quadratic Assignment Problem ( QAP ), and thus we can employ various...tractable linear programming, spectral, and SDP relaxations of QAP [40, 11, 33]. In particular we discuss recent work [14] on exploiting group...symmetry in SDP relaxations of QAP , which is useful for approximately computing elementary convex graph invariants in many interesting cases. Finally in

  12. Riemannian manifold learning.

    Science.gov (United States)

    Lin, Tong; Zha, Hongbin

    2008-05-01

    Recently, manifold learning has been widely exploited in pattern recognition, data analysis, and machine learning. This paper presents a novel framework, called Riemannian manifold learning (RML), based on the assumption that the input high-dimensional data lie on an intrinsically low-dimensional Riemannian manifold. The main idea is to formulate the dimensionality reduction problem as a classical problem in Riemannian geometry, i.e., how to construct coordinate charts for a given Riemannian manifold? We implement the Riemannian normal coordinate chart, which has been the most widely used in Riemannian geometry, for a set of unorganized data points. First, two input parameters (the neighborhood size k and the intrinsic dimension d) are estimated based on an efficient simplicial reconstruction of the underlying manifold. Then, the normal coordinates are computed to map the input high-dimensional data into a low-dimensional space. Experiments on synthetic data as well as real world images demonstrate that our algorithm can learn intrinsic geometric structures of the data, preserve radial geodesic distances, and yield regular embeddings.

  13. Hybrid manifold embedding.

    Science.gov (United States)

    Liu, Yang; Liu, Yan; Chan, Keith C C; Hua, Kien A

    2014-12-01

    In this brief, we present a novel supervised manifold learning framework dubbed hybrid manifold embedding (HyME). Unlike most of the existing supervised manifold learning algorithms that give linear explicit mapping functions, the HyME aims to provide a more general nonlinear explicit mapping function by performing a two-layer learning procedure. In the first layer, a new clustering strategy called geodesic clustering is proposed to divide the original data set into several subsets with minimum nonlinearity. In the second layer, a supervised dimensionality reduction scheme called locally conjugate discriminant projection is performed on each subset for maximizing the discriminant information and minimizing the dimension redundancy simultaneously in the reduced low-dimensional space. By integrating these two layers in a unified mapping function, a supervised manifold embedding framework is established to describe both global and local manifold structure as well as to preserve the discriminative ability in the learned subspace. Experiments on various data sets validate the effectiveness of the proposed method.

  14. Manifolds, sheaves, and cohomology

    CERN Document Server

    Wedhorn, Torsten

    2016-01-01

    This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples. Content Topological Preliminaries - Algebraic Topological Preliminaries - Sheaves - Manifolds - Local Theory of Manifolds - Lie Groups - Torsors and Non-abelian Cech Cohomology - Bundles - Soft Sheaves - Cohomology of Complexes of Sheaves - Cohomology of Sheaves of Locally Constant Functions - Appendix: Basic Topology, The Language of Categories, Basic Algebra, Homological Algebra, Local Analysis Readership Graduate Students in Mathematics / Master of Science in Mathematics About the Author Prof. Dr. Torsten Wedhorn, Department of Mathematics, Technische Universität Darmstadt, Germany.

  15. Manifold Learning by Graduated Optimization.

    Science.gov (United States)

    Gashler, M; Ventura, D; Martinez, T

    2011-12-01

    We present an algorithm for manifold learning called manifold sculpting , which utilizes graduated optimization to seek an accurate manifold embedding. An empirical analysis across a wide range of manifold problems indicates that manifold sculpting yields more accurate results than a number of existing algorithms, including Isomap, locally linear embedding (LLE), Hessian LLE (HLLE), and landmark maximum variance unfolding (L-MVU), and is significantly more efficient than HLLE and L-MVU. Manifold sculpting also has the ability to benefit from prior knowledge about expected results.

  16. Manifold Regularized Reinforcement Learning.

    Science.gov (United States)

    Li, Hongliang; Liu, Derong; Wang, Ding

    2017-01-27

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  17. Cusp geometry of fibered 3-manifolds

    CERN Document Server

    Futer, David

    2011-01-01

    Let F be a surface and suppose that \\phi: F -> F is a pseudo-Anosov homeomorphism fixing a puncture p of F. The mapping torus M = M_\\phi\\ is hyperbolic and contains a maximal cusp C about the puncture p. We show that the area and height of the cusp torus bounding C are equal, up to explicit multiplicative error, to the stable translation distance of \\phi\\ acting on the arc complex A(F,p). Our proofs rely on elementary facts about the hyperbolic geometry of pleated surfaces. In particular, we do not use any deep results in Teichmueller theory, Kleinian group theory, or the coarse geometry of A(F,p). A similar result holds for quasi-Fuchsian manifolds N = (F x R). In that setting, we prove a combinatorial estimate on the area and height of the cusp annulus in the convex core of N and give explicit multiplicative and additive errors.

  18. Introducing the Adaptive Convex Enveloping

    CERN Document Server

    Yu, Sheng

    2011-01-01

    Convexity, though extremely important in mathematical programming, has not drawn enough attention in the field of dynamic programming. This paper gives conditions for verifying convexity of the cost-to-go functions, and introduces an accurate, fast and reliable algorithm for solving convex dynamic programs with multivariate continuous states and actions, called Adaptive Convex Enveloping. This is a short introduction of the core technique created and used in my dissertation, so it is less formal, and misses some parts, such as literature review and reference, compared to a full journal paper.

  19. Convex polytopes and quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Wilmott, Colin; Kampermann, Hermann; Bruss, Dagmar [Institut fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)

    2010-07-01

    A convex polytope is defined as the convex hull of a finite non-empty set of vectors. We present a theorem of Rado (1952) which characterizes the convex hull of the collection of all permutations of a given real d-tuple in terms of the Hardy-Littlewood-Polya spectral order relation prec. We give a necessary and sufficient condition to construct a d-dimensional convex polytope which utilizes Rado's original (d-1)-dimensional characterization, and we describe how the resulting polytope may be placed in a quantum mechanical framework.

  20. Yamabe flow on Berwald manifolds

    Science.gov (United States)

    Azami, Shahroud; Razavi, Asadollah

    2015-12-01

    Studying the geometric flow plays a powerful role in mathematics and physics. We introduce the Yamabe flow on Finsler manifolds and we will prove the existence and uniqueness for solution of Yamabe flow on Berwald manifolds.

  1. Space Manifold dynamics

    OpenAIRE

    Gómez, Gerard; Barrabés Vera, Esther

    2011-01-01

    The term Space Manifold Dynamics (SMD) has been proposed for encompassing the various applications of Dynamical Systems methods to spacecraft mission analysis and design, ranging from the exploitation of libration orbits around the collinear Lagrangian points to the design of optimal station-keeping and eclipse avoidance manoeuvres or the determination of low energy lunar and interplanetary transfers

  2. Eigenvalue pinching on spinc manifolds

    Science.gov (United States)

    Roos, Saskia

    2017-02-01

    We derive various pinching results for small Dirac eigenvalues using the classification of spinc and spin manifolds admitting nontrivial Killing spinors. For this, we introduce a notion of convergence for spinc manifolds which involves a general study on convergence of Riemannian manifolds with a principal S1-bundle. We also analyze the relation between the regularity of the Riemannian metric and the regularity of the curvature of the associated principal S1-bundle on spinc manifolds with Killing spinors.

  3. Manifold Insulation for Solar Collectors

    Science.gov (United States)

    1982-01-01

    Results of computer analysis of effects of various manifold insulation detailed in 23-page report show that if fluid is distributed to and gathered from array of solar collectors by external rather than internal manifold, effectiveness of manifold insulation has major influence on efficiency. Report describes required input data and presents equations that govern computer model. Provides graphs comparing collector efficiencies for representative manifold sizes and insulations.

  4. Pulse Distributing Manifold; Pulse Distributing Manifold

    Energy Technology Data Exchange (ETDEWEB)

    Schutting, Eberhard [Technische Univ. Graz (Austria); Sams, Theodor [AVL List GmbH, Graz (Austria); Glensvig, Michael [Forschungsgesellschaft mbH, Graz (AT). Kompetenzzentrum ' ' Das virtuelle Fahrzeug' ' (VIF)

    2011-07-01

    The Pulse Distributing Manifold is a new charge exchange method for turbocharged diesel engines with exhaust gas recirculation (EGR). The method is characterized in that the EGR mass flow is not diverted from the exhaust gas mass flow continuously, but over time broken into sub-streams. The temporal interruption is achieved by two phase-shifted outlet valves which are connected via separate manifolds only with the turbocharger or only with the EGR path. The time points of valve opening are chosen such that the turbocharger and the aftertreatment process of exhaust gas is perfused by high-energy exhaust gas of the blowdown phase while cooler and less energy-rich exhaust gas of the exhaust period is used for the exhaust gas recirculation. This increases the enthalpy for the turbocharger and the temperature for the exhaust gas treatment, while the cooling efficiency at the EGR cooler is reduced. The elimination of the continuous EGR valve has a positive effect on pumping losses. The principle functioning and the potential of this system could be demonstrated by means of a concept study using one-dimensional simulations. Without disadvantages in fuel consumption for the considered commercial vehicle engine, a reduction the EGR cooler performance by 15 % and an increase in exhaust temperature of 35 K could be achieved. The presented charge exchange method was developed, evaluated and patented within the scope of the research program 'K2-mobility' of the project partners AVL (Mainz, Federal Republic of Germany) and University of Technology Graz (Austria). The research project 'K2-Mobility' is supported by the competence center 'The virtual vehicle' Forschungsgesellschaft mbH (Graz, Austria).

  5. Hashing on nonlinear manifolds.

    Science.gov (United States)

    Shen, Fumin; Shen, Chunhua; Shi, Qinfeng; van den Hengel, Anton; Tang, Zhenmin; Shen, Heng Tao

    2015-06-01

    Learning-based hashing methods have attracted considerable attention due to their ability to greatly increase the scale at which existing algorithms may operate. Most of these methods are designed to generate binary codes preserving the Euclidean similarity in the original space. Manifold learning techniques, in contrast, are better able to model the intrinsic structure embedded in the original high-dimensional data. The complexities of these models, and the problems with out-of-sample data, have previously rendered them unsuitable for application to large-scale embedding, however. In this paper, how to learn compact binary embeddings on their intrinsic manifolds is considered. In order to address the above-mentioned difficulties, an efficient, inductive solution to the out-of-sample data problem, and a process by which nonparametric manifold learning may be used as the basis of a hashing method are proposed. The proposed approach thus allows the development of a range of new hashing techniques exploiting the flexibility of the wide variety of manifold learning approaches available. It is particularly shown that hashing on the basis of t-distributed stochastic neighbor embedding outperforms state-of-the-art hashing methods on large-scale benchmark data sets, and is very effective for image classification with very short code lengths. It is shown that the proposed framework can be further improved, for example, by minimizing the quantization error with learned orthogonal rotations without much computation overhead. In addition, a supervised inductive manifold hashing framework is developed by incorporating the label information, which is shown to greatly advance the semantic retrieval performance.

  6. Convex Games versus Clan Games

    NARCIS (Netherlands)

    Brânzei, R.; Dimitrov, D.A.; Tijs, S.H.

    2006-01-01

    In this paper we provide characterizations of convex games and total clan games by using properties of their corresponding marginal games.We show that a "dualize and restrict" procedure transforms total clan games with zero worth for the clan into monotonic convex games.Furthermore, each monotonic

  7. Stein 4-manifolds and corks

    CERN Document Server

    Akbulut, Selman

    2010-01-01

    It is known that every compact Stein 4-manifolds can be embedded into a simply connected, minimal, closed, symplectic 4-manifold. Using this property, we give simple constructions of various cork structures of 4-manifolds. We also give an example of infinitely many disjoint embeddings of a fixed cork into a non-compact 4-manifold which produce infinitely many exotic smooth structures (recall that [7] gives examples arbitrarily many disjoint imbeddings of different corks in a closed manifold inducing mutually different exotic structures). Furthermore, here we construct arbitrary many simply connected compact codimention zero submanifolds of S^4 which are mutually homeomorphic but not diffeomorphic.

  8. Canonical metrics on complex manifold

    Institute of Scientific and Technical Information of China (English)

    YAU Shing-Tung

    2008-01-01

    @@ Complex manifolds are topological spaces that are covered by coordinate charts where the Coordinate changes are given by holomorphic transformations. For example, Riemann surfaces are one dimensional complex manifolds. In order to understand complex manifolds, it is useful to introduce metrics that are compatible with the complex structure. In general, we should have a pair (M, ds2M) where ds2M is the metric. The metric is said to be canonical if any biholomorphisms of the complex manifolds are automatically isometries. Such metrics can naturally be used to describe invariants of the complex structures of the manifold.

  9. Canonical metrics on complex manifold

    Institute of Scientific and Technical Information of China (English)

    YAU; Shing-Tung(Yau; S.-T.)

    2008-01-01

    Complex manifolds are topological spaces that are covered by coordinate charts where the coordinate changes are given by holomorphic transformations.For example,Riemann surfaces are one dimensional complex manifolds.In order to understand complex manifolds,it is useful to introduce metrics that are compatible with the complex structure.In general,we should have a pair(M,ds~2_M)where ds~2_M is the metric.The metric is said to be canonical if any biholomorphisms of the complex manifolds are automatically isometries.Such metrics can naturally be used to describe invariants of the complex structures of the manifold.

  10. Invariant manifolds and global bifurcations.

    Science.gov (United States)

    Guckenheimer, John; Krauskopf, Bernd; Osinga, Hinke M; Sandstede, Björn

    2015-09-01

    Invariant manifolds are key objects in describing how trajectories partition the phase spaces of a dynamical system. Examples include stable, unstable, and center manifolds of equilibria and periodic orbits, quasiperiodic invariant tori, and slow manifolds of systems with multiple timescales. Changes in these objects and their intersections with variation of system parameters give rise to global bifurcations. Bifurcation manifolds in the parameter spaces of multi-parameter families of dynamical systems also play a prominent role in dynamical systems theory. Much progress has been made in developing theory and computational methods for invariant manifolds during the past 25 years. This article highlights some of these achievements and remaining open problems.

  11. Convex integration theory solutions to the h-principle in geometry and topology

    CERN Document Server

    Spring, David

    1998-01-01

    This book provides a comprehensive study of convex integration theory in immersion-theoretic topology. Convex integration theory, developed originally by M. Gromov, provides general topological methods for solving the h-principle for a wide variety of problems in differential geometry and topology, with applications also to PDE theory and to optimal control theory. Though topological in nature, the theory is based on a precise analytical approximation result for higher order derivatives of functions, proved by M. Gromov. This book is the first to present an exacting record and exposition of all of the basic concepts and technical results of convex integration theory in higher order jet spaces, including the theory of iterated convex hull extensions and the theory of relative h-principles. A second feature of the book is its detailed presentation of applications of the general theory to topics in symplectic topology, divergence free vector fields on 3-manifolds, isometric immersions, totally real embeddings, u...

  12. Convex Optimization without Projection Steps

    CERN Document Server

    Jaggi, Martin

    2011-01-01

    We study the general problem of minimizing a convex function over a compact convex domain. We will investigate a simple iterative approximation algorithm that does not need projection steps in order to stay inside the optimization domain. Instead of a projection step, the linearized problem defined by a current subgradient is solved, which gives a step direction that will naturally stay in the domain. The approach generalizes the sparse greedy algorithm of Clarkson (and the low-rank SDP solver by Hazan) to arbitrary convex domains, and to using subgradients for the case of non-differentiable convex functions. Analogously, we give a convergence proof guaranteeing {\\epsilon}-small duality gap after O(1/{\\epsilon}) iterations. The framework allows us understand the sparsity of approximate solutions for any l1-regularized convex optimization problem, expressed as a function of the approximation quality. We obtain matching upper and lower bounds of {\\Theta}(1/{\\epsilon}) for the sparsity for l1-problems. The same ...

  13. Mumford-Shah and Potts Regularization for Manifold-Valued Data with Applications to DTI and Q-Ball Imaging

    CERN Document Server

    Weinmann, Andreas; Storath, Martin

    2014-01-01

    Mumford-Shah and Potts functionals are powerful variational models for regularization which are widely used in signal and image processing; typical applications are edge-preserving denoising and segmentation. Being both non-smooth and non-convex, they are computationally challenging even for scalar data. For manifold-valued data, the problem becomes even more involved since typical features of vector spaces are not available. In this paper, we propose algorithms for Mumford-Shah and for Potts regularization of manifold-valued signals and images. For the univariate problems, we derive solvers based on dynamic programming combined with (convex) optimization techniques for manifold-valued data. For the class of Cartan-Hadamard manifolds (which includes the data space in diffusion tensor imaging), we show that our algorithms compute global minimizers for any starting point. For the multivariate Mumford-Shah and Potts problems (for image regularization) we propose a splitting into suitable subproblems which we can...

  14. Parabolic Stein Manifolds

    CERN Document Server

    Aytuna, Aydin

    2011-01-01

    An open Riemann surface is called parabolic in case every bounded subharmonic function on it reduces to a constant. Several authors introduced seemingly different analogs of this notion for Stein manifolds of arbitrary dimension. In the first part of this note we compile these notions of parabolicity and give some immediate relations among them. In section 3 we relate some of these notions to the linear topological type of the Fr\\'echet space of analytic functions on the given manifold. In sections 4 and 5 we look at some examples and show, for example, that the complement of the zero set of a Weierstrass polynomial possesses a continuous plurisubharmonic exhaustion function that is maximal off a compact subset.

  15. Solutions to $ar{partial}$-equations on strongly pseudo-convex domains with $L^p$-estimates

    Directory of Open Access Journals (Sweden)

    Osama Abdelkader

    2004-05-01

    Full Text Available We construct a solution to the $ar{partial}$-equation on a strongly pseudo-convex domain of a complex manifold. This is done for forms of type $(0,s$, $sgeq 1 $, with values in a holomorphic vector bundle which is Nakano positive and for complex valued forms of type $(r,s$, $1leq rleq n$, when the complex manifold is a Stein manifold. Using Kerzman's techniques, we find the $L^p$-estimates, $1leq pleq infty$, for the solution.

  16. Unconstrained steepest descent method for multicriteria optimization on Riemmanian manifolds

    CERN Document Server

    Bento, G C; Oliveira, P R

    2010-01-01

    In this paper we present a steepest descent method with Armijo's rule for multicriteria optimization in the Riemannian context. The well definedness of the sequence generated by the method is guaranteed. Under mild assumptions on the multicriteria function, we prove that each accumulation point (if they exist) satisfies first-order necessary conditions for Pareto optimality. Moreover, assuming quasi-convexity of the multicriteria function and non-negative curvature of the Riemannian manifold, we prove full convergence of the sequence to a Pareto critical.

  17. Holonomy groups of Lorentzian manifolds

    CERN Document Server

    Galaev, Anton S

    2016-01-01

    In this paper, a survey of the recent results about the classification of the connected holonomy groups of the Lorentzian manifolds is given. A simplification of the construction of the Lorentzian metrics with all possible connected holonomy groups is obtained. As the applications, the Einstein equation, Lorentzian manifolds with parallel and recurrent spinor fields, conformally flat Walker metrics and the classification of 2-symmetric Lorentzian manifolds are considered.

  18. Quantum manifolds with classical limit

    CERN Document Server

    Hohmann, Manuel; Wohlfarth, Mattias N R

    2008-01-01

    We propose a mathematical model of quantum spacetime as an infinite-dimensional manifold locally homeomorphic to an appropriate Schwartz space. This extends and unifies both the standard function space construction of quantum mechanics and the manifold structure of spacetime. In this picture we demonstrate that classical spacetime emerges as a finite-dimensional manifold through the topological identification of all quantum points with identical position expectation value. We speculate on the possible relevance of this geometry to quantum field theory and gravity.

  19. Decision Problems For Convex Languages

    CERN Document Server

    Brzozowski, Janusz; Xu, Zhi

    2008-01-01

    In this paper we examine decision problems associated with various classes of convex languages, studied by Ang and Brzozowski (under the name "continuous languages''). We show that we can decide whether a given language L is prefix-, suffix-, factor-, or subword-convex in polynomial time if L is represented by a DFA, but that the problem is PSPACE-hard if L is represented by an NFA. In the case that a regular language is not convex, we prove tight upper bounds on the length of the shortest words demonstrating this fact, in terms of the number of states of an accepting DFA. Similar results are proved for some subclasses of convex languages: the prefix-, suffix-, factor-, and subword-closed languages, and the prefix-, suffix-, factor-, and subword-free languages.

  20. Covering Numbers for Convex Functions

    CERN Document Server

    Guntuboyina, Adityanand

    2012-01-01

    In this paper we study the covering numbers of the space of convex and uniformly bounded functions in multi-dimension. We find optimal upper and lower bounds for the $\\epsilon$-covering number of $\\C([a, b]^d, B)$, in the $L_p$-metric, $1 \\le p 0$, and $\\C([a,b]^d, B)$ denotes the set of all convex functions on $[a, b]^d$ that are uniformly bounded by $B$. We summarize previously known results on covering numbers for convex functions and also provide alternate proofs of some known results. Our results have direct implications in the study of rates of convergence of empirical minimization procedures as well as optimal convergence rates in the numerous convexity constrained function estimation problems.

  1. Analysis, manifolds and physics

    CERN Document Server

    Choquet-Bruhat, Y

    2000-01-01

    Twelve problems have been added to the first edition; four of them are supplements to problems in the first edition. The others deal with issues that have become important, since the first edition of Volume II, in recent developments of various areas of physics. All the problems have their foundations in volume 1 of the 2-Volume set Analysis, Manifolds and Physics. It would have been prohibitively expensive to insert the new problems at their respective places. They are grouped together at the end of this volume, their logical place is indicated by a number of parenthesis following the title.

  2. Decompositions of manifolds

    CERN Document Server

    Daverman, Robert J

    2007-01-01

    Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to eve

  3. Complex Convexity of Orlicz Modular Sequence Spaces

    Directory of Open Access Journals (Sweden)

    Lili Chen

    2016-01-01

    Full Text Available The concepts of complex extreme points, complex strongly extreme points, complex strict convexity, and complex midpoint locally uniform convexity in general modular spaces are introduced. Then we prove that, for any Orlicz modular sequence space lΦ,ρ, lΦ,ρ is complex midpoint locally uniformly convex. As a corollary, lΦ,ρ is also complex strictly convex.

  4. Uniformly convex-transitive function spaces

    OpenAIRE

    Rambla-Barreno, Fernando; Talponen, Jarno

    2009-01-01

    We introduce a property of Banach spaces called uniform convex-transitivity, which falls between almost transitivity and convex-transitivity. We will provide examples of uniformly convex-transitive spaces. This property behaves nicely in connection with some Banach-valued function spaces. As a consequence, we obtain new examples of convex-transitive Banach spaces.

  5. On Fuzzy Simplex and Fuzzy Convex Hull

    Institute of Scientific and Technical Information of China (English)

    Dong QIU; Wei Quan ZHANG

    2011-01-01

    In this paper,we discuss fuzzy simplex and fuzzy convex hull,and give several representation theorems for fuzzy simplex and fuzzy convex hull.In addition,by giving a new characterization theorem of fuzzy convex hull,we improve some known results about fuzzy convex hull.

  6. The Convex Coordinates of the Symmedian Point

    Science.gov (United States)

    Boyd, J. N.; Raychowdhury, P. N.

    2006-01-01

    In this note, we recall the convex (or barycentric) coordinates of the points of a closed triangular region. We relate the convex and trilinear coordinates of the interior points of the triangular region. We use the relationship between convex and trilinear coordinates to calculate the convex coordinates of the symmedian point of the triangular…

  7. Convexity Adjustments for ATS Models

    DEFF Research Database (Denmark)

    Murgoci, Agatha; Gaspar, Raquel M.

    Practitioners are used to value a broad class of exotic interest rate derivatives simply by preforming for what is known as convexity adjustments (or convexity corrections). We start by exploiting the relations between various interest rate models and their connections to measure changes. As a re......Practitioners are used to value a broad class of exotic interest rate derivatives simply by preforming for what is known as convexity adjustments (or convexity corrections). We start by exploiting the relations between various interest rate models and their connections to measure changes....... As a result we classify convexity adjustments into forward adjustments and swaps adjustments. We, then, focus on affine term structure (ATS) models and, in this context, conjecture convexity adjustments should be related of affine functionals. In the case of forward adjustments, we show how to obtain exact...... formulas. Concretely for LIBOR in arrears (LIA) contracts, we derive the system of Riccatti ODE-s one needs to compute to obtain the exact adjustment. Based upon the ideas of Schrager and Pelsser (2006) we are also able to derive general swap adjustments useful, in particular, when dealing with constant...

  8. Moment-angle manifolds, intersection of quadrics and higher dimensional contact manifolds

    OpenAIRE

    Barreto, Yadira; Verjovsky, Alberto

    2013-01-01

    We construct new examples of contact manifolds in arbitrarily large dimensions. These manifolds which we call quasi moment-angle manifolds, are closely related to the classical moment-angle manifolds.

  9. Compactly convex sets in linear topological spaces

    CERN Document Server

    Banakh, T; Ravsky, O

    2012-01-01

    A convex subset X of a linear topological space is called compactly convex if there is a continuous compact-valued map $\\Phi:X\\to exp(X)$ such that $[x,y]\\subset\\Phi(x)\\cup \\Phi(y)$ for all $x,y\\in X$. We prove that each convex subset of the plane is compactly convex. On the other hand, the space $R^3$ contains a convex set that is not compactly convex. Each compactly convex subset $X$ of a linear topological space $L$ has locally compact closure $\\bar X$ which is metrizable if and only if each compact subset of $X$ is metrizable.

  10. Incremental Alignment Manifold Learning

    Institute of Scientific and Technical Information of China (English)

    Zhi Han; De-Yu Meng; Zong-Sen Xu; Nan-Nan Gu

    2011-01-01

    A new manifold learning method, called incremental alignment method (IAM), is proposed for nonlinear dimensionality reduction of high dimensional data with intrinsic low dimensionality. The main idea is to incrementally align low-dimensional coordinates of input data patch-by-patch to iteratively generate the representation of the entire dataset. The method consists of two major steps, the incremental step and the alignment step. The incremental step incrementally searches neighborhood patch to be aligned in the next step, and the alignment step iteratively aligns the low-dimensional coordinates of the neighborhood patch searched to generate the embeddings of the entire dataset. Compared with the existing manifold learning methods, the proposed method dominates in several aspects: high efficiency, easy out-of-sample extension, well metric-preserving, and averting of the local minima issue. All these properties are supported by a series of experiments performed on the synthetic and real-life datasets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically argued and experimentally demonstrated.

  11. Powers of Convex-Cyclic Operators

    Directory of Open Access Journals (Sweden)

    Fernando León-Saavedra

    2014-01-01

    Full Text Available A bounded operator T on a Banach space X is convex cyclic if there exists a vector x such that the convex hull generated by the orbit Tnxn≥0 is dense in X. In this note we study some questions concerned with convex-cyclic operators. We provide an example of a convex-cyclic operator T such that the power Tn fails to be convex cyclic. Using this result we solve three questions posed by Rezaei (2013.

  12. A class of free locally convex spaces

    Science.gov (United States)

    Sipacheva, O. V.

    2003-04-01

    Stratifiable spaces are a natural generalization of metrizable spaces for which Dugundji's theorem holds. It is proved that the free locally convex space of a stratifiable space is stratifiable. This means, in particular, that the space of finitely supported probability measures on a stratifiable space is a retract of a locally convex space, and that each stratifiable convex subset of a locally convex space is a retract of a locally convex space.

  13. Manifold statistics for essential matrices

    NARCIS (Netherlands)

    Dubbelman, G.; Dorst, L.; Pijls, H.; Fitzgibbon, A.; et al.,

    2012-01-01

    Riemannian geometry allows for the generalization of statistics designed for Euclidean vector spaces to Riemannian manifolds. It has recently gained popularity within computer vision as many relevant parameter spaces have such a Riemannian manifold structure. Approaches which exploit this have been

  14. Multiple positive solutions for Kirchhoff type problems involving concave and convex nonlinearities in R^3

    Directory of Open Access Journals (Sweden)

    Xiaofei Cao

    2016-11-01

    Full Text Available In this article, we consider the multiplicity of positive solutions for a class of Kirchhoff type problems with concave and convex nonlinearities. Under appropriate assumptions, we prove that the problem has at least two positive solutions, moreover, one of which is a positive ground state solution. Our approach is mainly based on the Nehari manifold, Ekeland variational principle and the theory of Lagrange multipliers.

  15. Finsler geodesics in the presence of a convex function and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Caponio, Erasmo; Masiello, Antonio [Dipartimento di Matematica, Politecnico di Bari, Via Orabona 4, 70125 Bari (Italy); Javaloyes, Miguel Angel [Departamento de GeometrIa y TopologIa, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada (Spain)], E-mail: caponio@poliba.it, E-mail: ma.javaloyes@gmail.com, E-mail: majava@ugr.es, E-mail: masiello@poliba.it

    2010-04-24

    In this paper, we obtain a result about the existence of only a finite number of geodesics between two fixed non-conjugate points in a Finsler manifold endowed with a convex function. We apply it to Randers and Zermelo metrics. As a by-product, we also get a result about the finiteness of the number of lightlike and timelike geodesics connecting an event to a line in a standard stationary spacetime.

  16. The genealogy of convex solids

    CERN Document Server

    Domokos, Gabor; Szabó, Timea

    2012-01-01

    The shape of homogeneous, smooth convex bodies as described by the Euclidean distance from the center of gravity represents a rather restricted class M_C of Morse-Smale functions on S^2. Here we show that even M_C exhibits the complexity known for general Morse-Smale functions on S^2 by exhausting all combinatorial possibilities: every 2-colored quadrangulation of the sphere is isomorphic to a suitably represented Morse-Smale complex associated with a function in M_C (and vice versa). We prove our claim by an inductive algorithm, starting from the path graph P_2 and generating convex bodies corresponding to quadrangulations with increasing number of vertices by performing each combinatorially possible vertex splitting by a convexity- preserving local manipulation of the surface. Since convex bodies carrying Morse-Smale complexes isomorphic to P_2 exist, this algorithm not only proves our claim but also defines a hierarchical order among convex solids and general- izes the known classification scheme in [35], ...

  17. NP-completeness of weakly convex and convex dominating set decision problems

    Directory of Open Access Journals (Sweden)

    Joanna Raczek

    2004-01-01

    Full Text Available The convex domination number and the weakly convex domination number are new domination parameters. In this paper we show that the decision problems of convex and weakly convex dominating sets are \\(NP\\-complete for bipartite and split graphs. Using a modified version of Warshall algorithm we can verify in polynomial time whether a given subset of vertices of a graph is convex or weakly convex.

  18. Local Routing in Convex Subdivisions

    DEFF Research Database (Denmark)

    Bose, Prosenjit; Durocher, Stephane; Mondal, Debajyoti;

    2015-01-01

    In various wireless networking settings, node locations determine a network’s topology, allowing the network to be modelled by a geometric graph drawn in the plane. Without any additional information, local geometric routing algorithms can guarantee delivery to the target node only in restricted...... classes of geometric graphs, such as triangulations. In order to guarantee delivery on more general classes of geometric graphs (e.g., convex subdivisions or planar subdivisions), previous local geometric routing algorithms required Θ(logn) state bits to be stored and passed with the message. We present...... the first local geometric routing algorithm using only one state bit to guarantee delivery on convex subdivisions and the first local geometric memoryless routing algorithm that guarantees delivery on edge-augmented monotone subdivisions (including all convex subdivisions) when the algorithm has knowledge...

  19. Cohomotopy sets of 4-manifolds

    CERN Document Server

    Kirby, Robion; Teichner, Peter

    2012-01-01

    Elementary geometric arguments are used to compute the group of homotopy classes of maps from a 4-manifold X to the 3-sphere, and to enumerate the homotopy classes of maps from X to the 2-sphere. The former completes a project initiated by Steenrod in the 1940's, and the latter provides geometric arguments for and extensions of recent homotopy theoretic results of Larry Taylor. These two results complete the computation of all the cohomotopy sets of closed oriented 4-manifolds and provide a framework for the study of Morse 2-functions on 4-manifolds, a subject that has garnered considerable recent attention.

  20. Quantum information and convex optimization

    Energy Technology Data Exchange (ETDEWEB)

    Reimpell, Michael

    2008-07-01

    This thesis is concerned with convex optimization problems in quantum information theory. It features an iterative algorithm for optimal quantum error correcting codes, a postprocessing method for incomplete tomography data, a method to estimate the amount of entanglement in witness experiments, and it gives necessary and sufficient criteria for the existence of retrodiction strategies for a generalized mean king problem. (orig.)

  1. Haantjes Manifolds and Integrable Systems

    CERN Document Server

    Tempesta, Piergiulio

    2014-01-01

    A general theory of integrable systems is proposed, based on the theory of Haantjes manifolds. We introduce the notion of symplectic-Haantjes manifold (or $\\omega \\mathcal{H}$ manifold), as the natural setting where the notion of integrability can be formulated. We propose an approach to the separation of variables for classical systems, related to the geometry of Haantjes manifolds. A special class of coordinates, called Darboux-Haantjes coordinates, will be constructed from the Haantjes structure associated with an integrable systems. They enable the additive separation of variables of the Hamilton-Jacobi equation. We also present an application of our approach to the study of some finite-dimensional integrable models, as the H\\'enon-Heiles systems and a stationary reduction of the KdV hierarchy.

  2. An introduction to differential manifolds

    CERN Document Server

    Lafontaine, Jacques

    2015-01-01

    This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergra...

  3. Vector Fields on Product Manifolds

    CERN Document Server

    Kurz, Stefan

    2011-01-01

    This short report establishes some basic properties of smooth vector fields on product manifolds. The main results are: (i) On a product manifold there always exists a direct sum decomposition into horizontal and vertical vector fields. (ii) Horizontal and vertical vector fields are naturally isomorphic to smooth families of vector fields defined on the factors. Vector fields are regarded as derivations of the algebra of smooth functions.

  4. Invariant Manifolds and Collective Coordinates

    CERN Document Server

    Papenbrock, T

    2001-01-01

    We introduce suitable coordinate systems for interacting many-body systems with invariant manifolds. These are Cartesian in coordinate and momentum space and chosen such that several components are identically zero for motion on the invariant manifold. In this sense these coordinates are collective. We make a connection to Zickendraht's collective coordinates and present certain configurations of few-body systems where rotations and vibrations decouple from single-particle motion. These configurations do not depend on details of the interaction.

  5. A Microscopic Convexity Principle for Spacetime Convex Solutions of Fully Nonlinear Parabolic Equations

    Institute of Scientific and Technical Information of China (English)

    Chuan Qiang CHEN; Bo Wen HU

    2013-01-01

    We study microscopic spacetime convexity properties of fully nonlinear parabolic partial differential equations.Under certain general structure condition,we establish a constant rank theorem for the spacetime convex solutions of fully nonlinear parabolic equations.At last,we consider the parabolic convexity of solutions to parabolic equations and the convexity of the spacetime second fundamental form of geometric flows.

  6. Revisiting separation properties of convex fuzzy sets

    Science.gov (United States)

    Separation of convex sets by hyperplanes has been extensively studied on crisp sets. In a seminal paper separability and convexity are investigated, however there is a flaw on the definition of degree of separation. We revisited separation on convex fuzzy sets that have level-wise (crisp) disjointne...

  7. A Note on Permutationally Convex Games

    NARCIS (Netherlands)

    van Velzen, S.; Hamers, H.J.M.; Norde, H.W.

    2005-01-01

    In this paper we generalise marginal vectors and permutational convexity.We show that if a game is generalised permutationally convex, then the corresponding generalised marginal vector is a core element.Furthermore we refine the concept of permutational convexity and show that this refinement yield

  8. On Uniform Convexity of Banach Spaces

    Institute of Scientific and Technical Information of China (English)

    Qing Jin CHENG; Bo WANG; Cui Ling WANG

    2011-01-01

    This paper gives some relations and properties of several kinds of generalized convexity in Banach spaces. As a result, it proves that every kind of uniform convexity implies the Banach-Sakes property, and several notions of uniform convexity in literature are actually equivalent.

  9. Computing farthest neighbors on a convex polytope

    NARCIS (Netherlands)

    Cheong, O.; Shin, C.S.; Vigneron, A.

    2002-01-01

    Let N be a set of n points in convex position in R3. The farthest-point Voronoi diagram of N partitions R³ into n convex cells. We consider the intersection G(N) of the diagram with the boundary of the convex hull of N. We give an algorithm that computes an implicit representation of G(N) in expecte

  10. Computing farthest neighbors on a convex polytope

    NARCIS (Netherlands)

    Cheong, O.; Shin, C.S.; Vigneron, A.

    2002-01-01

    Let N be a set of n points in convex position in R3. The farthest-point Voronoi diagram of N partitions R³ into n convex cells. We consider the intersection G(N) of the diagram with the boundary of the convex hull of N. We give an algorithm that computes an implicit representation of G(N) in

  11. Generalized geometrically convex functions and inequalities.

    Science.gov (United States)

    Noor, Muhammad Aslam; Noor, Khalida Inayat; Safdar, Farhat

    2017-01-01

    In this paper, we introduce and study a new class of generalized functions, called generalized geometrically convex functions. We establish several basic inequalities related to generalized geometrically convex functions. We also derive several new inequalities of the Hermite-Hadamard type for generalized geometrically convex functions. Several special cases are discussed, which can be deduced from our main results.

  12. Firey linear combinations of convex bodies

    Institute of Scientific and Technical Information of China (English)

    XIONG Ge; XIAO Qi-ming; CHEUNG Wing-Sum

    2009-01-01

    For convex bodies, the Firey linear combinations were introduced and studied in several papers. In this paper the mean width of the Firey linear combinations of convex bodies is studied, and the lower bound of the mean width of the Firey linear combinations of convex body and its polar body is given.

  13. An Explicit Nonlinear Mapping for Manifold Learning

    OpenAIRE

    Qiao, Hong; Zhang, Peng; Wang, Di; Zhang, Bo

    2010-01-01

    Manifold learning is a hot research topic in the field of computer science and has many applications in the real world. A main drawback of manifold learning methods is, however, that there is no explicit mappings from the input data manifold to the output embedding. This prohibits the application of manifold learning methods in many practical problems such as classification and target detection. Previously, in order to provide explicit mappings for manifold learning methods, many methods have...

  14. Nonlinear manifold representations for functional data

    OpenAIRE

    Chen, Dong; Müller, Hans-Georg

    2012-01-01

    For functional data lying on an unknown nonlinear low-dimensional space, we study manifold learning and introduce the notions of manifold mean, manifold modes of functional variation and of functional manifold components. These constitute nonlinear representations of functional data that complement classical linear representations such as eigenfunctions and functional principal components. Our manifold learning procedures borrow ideas from existing nonlinear dimension reduction methods, which...

  15. A noncommutative convexity in C*-bimodules

    Directory of Open Access Journals (Sweden)

    Mohsen Kian

    2017-02-01

    Full Text Available Let A and B be C*-algebras. We consider a noncommutative convexity in Hilbert A-B-bimodules, called A-B-convexity, as a generalization of C*-convexity in C*-algebras. We show that if X is a Hilbert A-B-bimodule, then Mn(X is a Hilbert Mn(A-Mn(B-bimodule and apply it to show that the closed unit ball of every Hilbert A-B-bimodule is A-B-convex. Some properties of this kind of convexity and various examples have been given.

  16. Evaluating convex roof entanglement measures.

    Science.gov (United States)

    Tóth, Géza; Moroder, Tobias; Gühne, Otfried

    2015-04-24

    We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples.

  17. Convex Hulls of Algebraic Sets

    CERN Document Server

    Gouveia, João

    2010-01-01

    This article describes a method to compute successive convex approximations of the convex hull of a set of points in R^n that are the solutions to a system of polynomial equations over the reals. The method relies on sums of squares of polynomials and the dual theory of moment matrices. The main feature of the technique is that all computations are done modulo the ideal generated by the polynomials defining the set to the convexified. This work was motivated by questions raised by Lov\\'asz concerning extensions of the theta body of a graph to arbitrary real algebraic varieties, and hence the relaxations described here are called theta bodies. The convexification process can be seen as an incarnation of Lasserre's hierarchy of convex relaxations of a semialgebraic set in R^n. When the defining ideal is real radical the results become especially nice. We provide several examples of the method and discuss convergence issues. Finite convergence, especially after the first step of the method, can be described expl...

  18. Principal Curves on Riemannian Manifolds.

    Science.gov (United States)

    Hauberg, Soren

    2016-09-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.

  19. Fivebranes and 3-manifold homology

    CERN Document Server

    Gukov, Sergei; Vafa, Cumrun

    2016-01-01

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[M_3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.

  20. Principal Curves on Riemannian Manifolds

    DEFF Research Database (Denmark)

    Hauberg, Søren

    2015-01-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only...... in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimize a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend...... from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls...

  1. Lattice QCD on nonorientable manifolds

    Science.gov (United States)

    Mages, Simon; Tóth, Bálint C.; Borsányi, Szabolcs; Fodor, Zoltán; Katz, Sándor D.; Szabó, Kálmán K.

    2017-05-01

    A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a nonorientable manifold and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is that translational invariance is preserved up to exponentially small corrections. A Dirac fermion on a nonorientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem.

  2. Parallel spinors on flat manifolds

    Science.gov (United States)

    Sadowski, Michał

    2006-05-01

    Let p(M) be the dimension of the vector space of parallel spinors on a closed spin manifold M. We prove that every finite group G is the holonomy group of a closed flat spin manifold M(G) such that p(M(G))>0. If the holonomy group Hol(M) of M is cyclic, then we give an explicit formula for p(M) another than that given in [R.J. Miatello, R.A. Podesta, The spectrum of twisted Dirac operators on compact flat manifolds, Trans. Am. Math. Soc., in press]. We answer the question when p(M)>0 if Hol(M) is a cyclic group of prime order or dim⁡M≤4.

  3. Motion Planning via Manifold Samples

    CERN Document Server

    Salzman, Oren; Raveh, Barak; Halperin, Dan

    2011-01-01

    We present a general and modular algorithmic framework for path planning of robots. Our framework combines geometric methods for exact and complete analysis of low-dimensional configuration spaces, together with practical, considerably simpler sampling-based approaches that are appropriate for higher dimensions. In order to facilitate the transfer of advanced geometric algorithms into practical use, we suggest taking samples that are entire low-dimensional manifolds of the configuration space that capture the connectivity of the configuration space much better than isolated point samples. Geometric algorithms for analysis of low-dimensional manifolds then provide powerful primitive operations. The modular design of the framework enables independent optimization of each modular component. Indeed, we have developed, implemented and optimized a primitive operation for complete and exact combinatorial analysis of a certain set of manifolds, using arrangements of curves of rational functions and concepts of generi...

  4. Fivebranes and 3-manifold homology

    Science.gov (United States)

    Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun

    2017-07-01

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[ M 3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.

  5. Killing Symmetry on Finsler Manifold

    CERN Document Server

    Ootsuka, Takayoshi; Ishida, Muneyuki

    2016-01-01

    Killing vector fields $K$ are defined on Finsler manifold. The Killing symmetry is reformulated simply as $\\delta K^\\flat =0$ by using the Killing non-linear 1-form $K^\\flat$ and the spray operator $\\delta$ with the Finsler non-linear connection. $K^\\flat$ is related to the generalization of Killing tensors on Finsler manifold, and the condition $\\delta K^\\flat =0$ gives an analytical method of finding higher derivative conserved quantities, which may be called hidden conserved quantities. We show two examples: the Carter constant on Kerr spacetime and the Runge-Lentz vectors in Newtonian gravity.

  6. Invariant manifolds and collective coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Papenbrock, T. [Centro Internacional de Ciencias, Cuernavaca, Morelos (Mexico); Institute for Nuclear Theory, University of Washington, Seattle, WA (United States); Seligman, T.H. [Centro Internacional de Ciencias, Cuernavaca, Morelos (Mexico); Centro de Ciencias Fisicas, University of Mexico (UNAM), Cuernavaca (Mexico)

    2001-09-14

    We introduce suitable coordinate systems for interacting many-body systems with invariant manifolds. These are Cartesian in coordinate and momentum space and chosen such that several components are identically zero for motion on the invariant manifold. In this sense these coordinates are collective. We make a connection to Zickendraht's collective coordinates and present certain configurations of few-body systems where rotations and vibrations decouple from single-particle motion. These configurations do not depend on details of the interaction. (author)

  7. Stein Manifolds and Holomorphic Mappings

    CERN Document Server

    Forstneric, Franc

    2011-01-01

    The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. This book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applicat

  8. Variations of the boundary geometry of 3-dimensional hyperbolic convex cores

    CERN Document Server

    Bonahon, F

    1997-01-01

    A fundamental object in a hyperbolic 3-manifold M is its convex core C(M), defined as the smallest closed non-empty convex subset of M. We investigate the way the geometry of the boundary S of C(M) varies as we vary the hyperbolic metric of M. Thurston observed that the intrinsic metric of S is hyperbolic, and that its bending is described by a measured geodesic lamination. We show that, as the hyperbolic metric of the 3--manifold M varies differentiably, the hyperbolic metric of the surface S varies in a C^1, but usually not C^2, manner. Differentiability properties for the bending measured lamination are conceptually less simple, because the space ML(S) of measured geodesic laminations on S has no natural differentiable structure. However, ML(S) is a piecewise linear manifold, and we also show that the bending measured geodesic lamination varies differentiably in a piecewise linear sense. The two results are proved simultaneously, mixing the differentiable and piecewise linear contexts. In particular, the '...

  9. Layered models for closed 3-manifolds

    CERN Document Server

    Johnson, Jesse

    2010-01-01

    We define a combinatorial structure on 3-manifolds that combines the model manifolds constructed in Minsky's proof of the ending lamination conjecture with the layered triangulations defined by Jaco and Rubinstein.

  10. Holomorphic flexibility properties of complex manifolds

    OpenAIRE

    2004-01-01

    We obtain results on approximation of holomorphic maps by algebraic maps, jet transversality theorems for holomorphic and algebraic maps, and the homotopy principle for holomorphic submersions of Stein manifolds to certain algebraic manifolds.

  11. Nonlinear manifold representations for functional data

    CERN Document Server

    Chen, Dong; 10.1214/11-AOS936

    2012-01-01

    For functional data lying on an unknown nonlinear low-dimensional space, we study manifold learning and introduce the notions of manifold mean, manifold modes of functional variation and of functional manifold components. These constitute nonlinear representations of functional data that complement classical linear representations such as eigenfunctions and functional principal components. Our manifold learning procedures borrow ideas from existing nonlinear dimension reduction methods, which we modify to address functional data settings. In simulations and applications, we study examples of functional data which lie on a manifold and validate the superior behavior of manifold mean and functional manifold components over traditional cross-sectional mean and functional principal components. We also include consistency proofs for our estimators under certain assumptions.

  12. Use of Convexity in Ostomy Care

    Science.gov (United States)

    Salvadalena, Ginger; Pridham, Sue; Droste, Werner; McNichol, Laurie; Gray, Mikel

    2017-01-01

    Ostomy skin barriers that incorporate a convexity feature have been available in the marketplace for decades, but limited resources are available to guide clinicians in selection and use of convex products. Given the widespread use of convexity, and the need to provide practical guidelines for appropriate use of pouching systems with convex features, an international consensus panel was convened to provide consensus-based guidance for this aspect of ostomy practice. Panelists were provided with a summary of relevant literature in advance of the meeting; these articles were used to generate and reach consensus on 26 statements during a 1-day meeting. Consensus was achieved when 80% of panelists agreed on a statement using an anonymous electronic response system. The 26 statements provide guidance for convex product characteristics, patient assessment, convexity use, and outcomes. PMID:28002174

  13. Periodic solutions and slow manifolds

    NARCIS (Netherlands)

    Verhulst, F.

    2006-01-01

    After reviewing a number of results from geometric singular perturbation theory, we give an example of a theorem for periodic solutions in a slow manifold. This is illustrated by examples involving the van der Pol-equation and a modified logistic equation. Regarding nonhyperbolic transitions we disc

  14. Melnikov Vector and Heteroclinic Manifolds

    Institute of Scientific and Technical Information of China (English)

    朱德明

    1994-01-01

    Using the exponential dichotomies,the transversality theory and the generalized Melnikov method,we consider the conditions for the persistence and the transversality of the singular orbit,with high degeneracy,situated on the heteroclinic or homoclinic manifold under perturbation.The results obtained extend,include and improve the corresponding ones given in certain papers well known in this area.

  15. Cobordism Independence of Grassmann Manifolds

    Indian Academy of Sciences (India)

    Ashish Kumar Das

    2004-02-01

    This note proves that, for $F=\\mathbb{R},\\mathbb{C}$ or $\\mathbb{H}$, the bordism classes of all non-bounding Grassmannian manifolds $G_k(F^{n+k})$, with < and having real dimension , constitute a linearly independent set in the unoriented bordism group $\\mathfrak{N}_d$ regarded as a $\\mathbb{Z}_2$-vector space.

  16. CONVEX CLASS OF STARLIKE FUNCTIONS

    OpenAIRE

    Gupta, V. P.

    1984-01-01

    Let $S$ denote the class of functions of the form $f(z)=z-¥sum_{n=2}^{¥infty}|a_{n}|z^{n}$ that are analytic and univalent in the unit disk $U$. Let $S(¥alpha, ¥beta)$ and $K(¥alpha, ¥beta)$ denote the subclasses of $S$ consisting respectively, of starlike and close-to-convex functions of order $¥alpha(0¥leqq¥alpha

  17. Finite dimensional convexity and optimization

    CERN Document Server

    Florenzano, Monique

    2001-01-01

    The primary aim of this book is to present notions of convex analysis which constitute the basic underlying structure of argumentation in economic theory and which are common to optimization problems encountered in many applications. The intended readers are graduate students, and specialists of mathematical programming whose research fields are applied mathematics and economics. The text consists of a systematic development in eight chapters, with guided exercises containing sometimes significant and useful additional results. The book is appropriate as a class text, or for self-study.

  18. Fluid delivery manifolds and microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Renzi, Ronald F.; Sommer, Gregory J.; Singh, Anup K.; Hatch, Anson V.; Claudnic, Mark R.; Wang, Ying-Chih; Van de Vreugde, James L.

    2017-02-28

    Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.

  19. Uniformly convex subsets of the Hilbert space with modulus of convexity of the second order

    OpenAIRE

    Balashov, Maxim V.; Repovš, Dušan,

    2011-01-01

    We prove that in the Hilbert space every uniformly convex set with modulus of convexity of the second order at zero is an intersection of closed balls of fixed radius. We also obtain an estimate of this radius.

  20. Various Expressions for Modulus of Random Convexity

    Institute of Scientific and Technical Information of China (English)

    Xiao Lin ZENG

    2013-01-01

    We first prove various kinds of expressions for modulus of random convexity by using an Lo(F,R)-valued function's intermediate value theorem and the well known Hahn-Banach theorem for almost surely bounded random linear functionals,then establish some basic properties including continuity for modulus of random convexity.In particular,we express the modulus of random convexity of a special random normed module Lo(F,X) derived from a normed space X by the classical modulus of convexity of X.

  1. Quantization of Presymplectic Manifolds and Circle Actions

    CERN Document Server

    Silva, A C; Tolman, S; Silva, Ana Canas da; Karshon, Yael; Tolman, Susan

    1997-01-01

    We prove several versions of "quantization commutes with reduction" for circle actions on manifolds that are not symplectic. Instead, these manifolds possess a weaker structure, such as a spin^c structure. Our theorems work whenever the quantization data and the reduction data are compatible; this condition always holds if we start from a presymplectic (in particular, symplectic) manifold.

  2. Natural Connections on Riemannian Product Manifolds

    OpenAIRE

    Gribacheva, Dobrinka

    2011-01-01

    A Riemannian almost product manifold with integrable almost product structure is called a Riemannian product manifold. In the present paper the natural connections on such manifolds are studied, i.e. the linear connections preserving the almost product structure and the Riemannian metric.

  3. Invariant manifolds for flows in Banach Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Lu Kening.

    1989-01-01

    The author considers the existence, smoothness and exponential attractivity of global invariant manifolds for flow in Banach Spaces. He shows that every global invariant manifold can be expressed as a graph of a C{sup k} map, provided that the invariant manifolds are exponentially attractive. Applications go to the Reaction-Diffusion equation, the Kuramoto-Sivashinsky equation, and singular perturbed wave equation.

  4. Local Schrodinger flow into Kahler manifolds

    Institute of Scientific and Technical Information of China (English)

    丁伟岳; 王友德

    2001-01-01

    In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the Schrodinger flow for maps from a compact Riemannian manifold into a complete Kahler manifold, or from a Euclidean space Rm into a compact Kahler manifold. As a consequence, we prove that Heisenberg spin system is locally well-posed in the appropriate Sobolev spaces.

  5. On the manifold-mapping optimization technique

    NARCIS (Netherlands)

    Echeverria, D.; Hemker, P.W.

    2006-01-01

    In this paper, we study in some detail the manifold-mapping optimization technique introduced in an earlier paper. Manifold mapping aims at accelerating optimal design procedures that otherwise require many evaluations of time-expensive cost functions. We give a proof of convergence for the manifold

  6. DIFFERENTIABILITY OF CONVEX FUNCTIONS ON SUBLINEAR TOPOLOGICAL SPACES AND VARIATIONAL PRINCIPLES IN LOCALLY CONVEX SPACES

    Institute of Scientific and Technical Information of China (English)

    CHENG LIXIN; TENG YANMEI

    2005-01-01

    This paper presents a type of variational principles for real valued w* lower semicon tinuous functions on certain subsets in duals of locally convex spaces, and resolve a problem concerning differentiability of convex functions on general Banach spaces. They are done through discussing differentiability of convex functions on nonlinear topological spaces and convexification of nonconvex functions on topological linear spaces.

  7. A simple view on convex analysis and its applications

    NARCIS (Netherlands)

    J. Brinkhuis (Jan); V. Tikhomirov

    2005-01-01

    textabstractOur aim is to give a simple view on the basics and applications of convex analysis. The essential feature of this account is the systematic use of the possibility to associate to each convex object---such as a convex set, a convex function or a convex extremal problem--- a cone, without

  8. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.

    2013-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. Entropy coherent and entropy convex measures of risk are special cases of φ-coherent and φ-convex measures of risk. Contrary to the classical use of coherent and convex measur

  9. Singular reduction of generalized complex manifolds

    CERN Document Server

    Goldberg, Timothy E

    2010-01-01

    In this paper, we develop the analogue of Sjamaar and Lerman's singular reduction of Hamiltonian symplectic manifolds in the context of Hamiltonian generalized complex manifolds (in the sense of Lin and Tolman). Specifically, we prove that if a compact Lie group acts on a generalized complex manifold in a Hamiltonian fashion, then the partition of the global quotient by orbit types induces a partition of the Lin-Tolman quotient into generalized complex manifolds. This result holds also for reduction of Hamiltonian generalized Kaehler manifolds.

  10. Manifold seal structure for fuel cell stack

    Science.gov (United States)

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  11. Efficient Line Searching for Convex Functions

    NARCIS (Netherlands)

    den Boef, E.; den Hertog, D.

    2004-01-01

    In this paper we propose two new line search methods for convex functions. These new methods exploit the convexity property of the function, contrary to existing methods.The worst method is an improved version of the golden section method.For the second method it is proven that after two evaluations

  12. Introduction to Convex and Quasiconvex Analysis

    NARCIS (Netherlands)

    J.B.G. Frenk (Hans); G. Kassay

    2004-01-01

    textabstractIn the first chapter of this book the basic results within convex and quasiconvex analysis are presented. In Section 2 we consider in detail the algebraic and topological properties of convex sets within Rn together with their primal and dual representations. In Section 3 we apply the re

  13. Stochastic Dominance: Convexity and Some Efficiency Tests

    NARCIS (Netherlands)

    A.M. Lizyayev (Andrey)

    2009-01-01

    textabstractThis paper points out the importance of Stochastic Dominance (SD) efficient sets being convex. We review classic convexity and efficient set characterization results on SD efficiency of a given portfolio relative to a diversified set of assets and generalize them in the following

  14. Convex trace functions of several variables

    DEFF Research Database (Denmark)

    Hansen, Frank

    2002-01-01

    We prove that the function (x1,...,xk)¿Tr(f(x1,...,xk)), defined on k-tuples of symmetric matrices of order (n1,...,nk) in the domain of f, is convex for any convex function f of k variables. The matrix f(x1,...,xk) is defined by the functional calculus for functions of several variables, and it ...

  15. Polar DuaLs of Convex Bodies

    Science.gov (United States)

    1990-01-01

    to Convex Bodies, Geometriae Dedicata 2" (1973) 225-248. 10. H. Guggenheimer, "The Analytic Geometry of the Unsymmetric Minkowski Plane," Lecture...Mathematics, Vol. 58, No. 2, 1975. 19. E. Lutwak, "On Cross-Sectional Measures of Polar Reciprocal Convex Bodies," Geometriae Dedicata 5, (1976) 79-80

  16. Differential analysis of matrix convex functions II

    DEFF Research Database (Denmark)

    Hansen, Frank; Tomiyama, Jun

    2009-01-01

    We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of matrix convex functions. Linear Algebra Appl., 420:102--116, 2007] of matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divide...

  17. The Band around a Convex Body

    Science.gov (United States)

    Swanson, David

    2011-01-01

    We give elementary proofs of formulas for the area and perimeter of a planar convex body surrounded by a band of uniform thickness. The primary tool is a integral formula for the perimeter of a convex body which describes the perimeter in terms of the projections of the body onto lines in the plane.

  18. Minimal Webs in Riemannian Manifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2008-01-01

    are of instrumental importance for the applications. We apply these properties to show that minimal webs in ambient Riemannian spaces share several analytic and geometric properties with their smooth (minimal submanifold) counterparts in such spaces. In particular we use appropriate versions of the divergence......)$ into Riemannian manifolds $(N^{n}, h)$. Such immersions we call {\\em{minimal webs}}. They admit a natural 'geometric' extension of the intrinsic combinatorial discrete Laplacian. The geometric Laplacian on minimal webs enjoys standard properties such as the maximum principle and the divergence theorems, which...... theorems together with the comparison techniques for distance functions in Riemannian geometry and obtain bounds for the first Dirichlet eigenvalues, the exit times and the capacities as well as isoperimetric type inequalities for so-called extrinsic $R-$webs of minimal webs in ambient Riemannian manifolds...

  19. Invariance for Single Curved Manifold

    KAUST Repository

    Castro, Pedro Machado Manhaes de

    2012-08-01

    Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.

  20. Symmetries from the solution manifold

    Science.gov (United States)

    Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco

    2015-07-01

    We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.

  1. Rigid subsets of symplectic manifolds

    CERN Document Server

    Entov, Michael

    2007-01-01

    We show that there is an hierarchy of intersection rigidity properties of sets in a closed symplectic manifold: some sets cannot be displaced by symplectomorphisms from more sets than the others. We also find new examples of rigidity of intersections involving, in particular, specific fibers of moment maps of Hamiltonian torus actions, monotone Lagrangian submanifolds (following the previous work of P.Albers) as well as certain, possibly singular, sets defined in terms of Poisson-commutative subalgebras of smooth functions. In addition, we get some geometric obstructions to semi-simplicity of the quantum homology of symplectic manifolds. The proofs are based on the Floer-theoretical machinery of partial symplectic quasi-states.

  2. Torsions of 3-dimensional manifolds

    CERN Document Server

    Wurzbacher, T

    2002-01-01

    From the reviews: "This is an excellent exposition about abelian Reidemeister torsions for three-manifolds." ―Zentralblatt Math "This monograph contains a wealth of information many topologists will find very handy. …Many of the new points of view pioneered by Turaev are gradually becoming mainstream and are spreading beyond the pure topology world. This monograph is a timely and very useful addition to the scientific literature." ―Mathematical Reviews

  3. Koppelman formulas on flag manifolds

    CERN Document Server

    Samuelsson, Håkan

    2010-01-01

    We construct Koppelman formulas on manifolds of flags in $\\C^N$ for forms with values in any holomorphic line bundle as well as in the tautological vector bundles and their duals. As an application we obtain new explicit proofs of some vanishing theorems of the Bott-Borel-Weil type by solving the corresponding $\\debar$-equation. We also construct reproducing kernels for harmonic $(p,q)$-forms in the case of Grassmannians.

  4. Polynomial Regression on Riemannian Manifolds

    CERN Document Server

    Hinkle, Jacob; Fletcher, P Thomas; Joshi, Sarang

    2012-01-01

    In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds and Lie groups. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein as well as the analysis of the shape changes associated with aging of the corpus callosum from the OASIS Alzheimer's study.

  5. Deformations of extremal toric manifolds

    CERN Document Server

    Rollin, Yann

    2012-01-01

    Let $X$ be a compact toric extremal K\\"ahler manifold. Using the work of Sz\\'ekelyhidi, we provide a simple criterion on the fan describing $X$ to ensure the existence of complex deformations of $X$ that carry extremal metrics. As an example, we find new CSC metrics on 4-points blow-ups of $\\C\\P^1\\times\\C\\P^1$.

  6. The Operator Manifold Formalism, 1

    CERN Document Server

    Ter-Kazarian, G T

    1998-01-01

    The suggested operator manifold formalism enables to develop an approach to the unification of the geometry and the field theory. We also elaborate the formalism of operator multimanifold yielding the multiworld geometry involving the spacetime continuum and internal worlds, where the subquarks are defined implying the Confinement and Gauge principles. This formalism in Part II (hep-th/9812182) is used to develop further the microscopic approach to some key problems of particle physics.

  7. Coincidence classes in nonorientable manifolds

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We study Nielsen coincidence theory for maps between manifolds of same dimension regardless of orientation. We use the definition of semi-index of a class, review the definition of defective classes, and study the occurrence of defective root classes. We prove a semi-index product formula for lifting maps and give conditions for the defective coincidence classes to be the only essential classes.

  8. Manifolds of interconvertible pure states

    OpenAIRE

    Sinolecka, Magdalena M.; Zyczkowski, Karol; Kus, Marek

    2001-01-01

    Local orbits of a pure state of an N x N bi-partite quantum system are analyzed. We compute their dimensions which depends on the degeneracy of the vector of coefficients arising by the Schmidt decomposition. In particular, the generic orbit has 2N^2 -N-1 dimensions, the set of separable states is 4(N-1) dimensional, while the manifold of maximally entangled states has N^2-1 dimensions.

  9. Manifolds of interconvertible pure states

    CERN Document Server

    Sinolecka, M M; Kus, M; Sinolecka, Magdalena M.; Zyczkowski, Karol; Kus, Marek

    2002-01-01

    Local orbits of a pure state of an N x N bi-partite quantum system are analyzed. We compute their dimensions which depends on the degeneracy of the vector of coefficients arising by the Schmidt decomposition. In particular, the generic orbit has 2N^2 -N-1 dimensions, the set of separable states is 4(N-1) dimensional, while the manifold of maximally entangled states has N^2-1 dimensions.

  10. On Einstein, Hermitian 4-Manifolds

    CERN Document Server

    LeBrun, Claude

    2010-01-01

    Let (M,h) be a compact 4-dimensional Einstein manifold, and suppose that h is Hermitian with respect to some complex structure J on M. Then either (M,J,h) is Kaehler-Einstein, or else, up to rescaling and isometry, it is one of the following two exceptions: the Page metric on CP2 # (-CP2), or the Einstein metric on CP2 # 2 (-CP2) constructed in Chen-LeBrun-Weber.

  11. Toric geometry of convex quadrilaterals

    CERN Document Server

    Legendre, Eveline

    2009-01-01

    We provide an explicit resolution of the Abreu equation on convex labeled quadrilaterals. This confirms a conjecture of Donaldson in this particular case and implies a complete classification of the explicit toric K\\"ahler-Einstein and toric Sasaki-Einstein metrics constructed in [6,23,14]. As a byproduct, we obtain a wealth of extremal toric (complex) orbi-surfaces, including K\\"ahler-Einstein ones, and show that for a toric orbi-surface with 4 fixed points of the torus action, the vanishing of the Futaki invariant is a necessary and sufficient condition for the existence of K\\"ahler metric with constant scalar curvature. Our results also provide explicit examples of relative K-unstable toric orbi-surfaces that do not admit extremal metrics.

  12. Convex analysis and global optimization

    CERN Document Server

    Tuy, Hoang

    2016-01-01

    This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints;

  13. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    The set of all surface tensors of a convex body K (Minkowski tensors derived from the surface area measure of K) determine K up to translation, and hereby, the surface tensors of K contain all information on the shape of K. Here, shape means the equivalence class of all convex bodies...... that are translates of each other. An algorithm for reconstructing an unknown convex body in R 2 from its surface tensors up to a certain rank is presented. Using the reconstruction algorithm, the shape of an unknown convex body can be approximated when only a finite number s of surface tensors are available....... The output of the reconstruction algorithm is a polytope P, where the surface tensors of P and K are identical up to rank s. We establish a stability result based on a generalization of Wirtinger’s inequality that shows that for large s, two convex bodies are close in shape when they have identical surface...

  14. Convex functions, monotone operators and differentiability

    CERN Document Server

    Phelps, Robert R

    1993-01-01

    The improved and expanded second edition contains expositions of some major results which have been obtained in the years since the 1st edition. Theaffirmative answer by Preiss of the decades old question of whether a Banachspace with an equivalent Gateaux differentiable norm is a weak Asplund space. The startlingly simple proof by Simons of Rockafellar's fundamental maximal monotonicity theorem for subdifferentials of convex functions. The exciting new version of the useful Borwein-Preiss smooth variational principle due to Godefroy, Deville and Zizler. The material is accessible to students who have had a course in Functional Analysis; indeed, the first edition has been used in numerous graduate seminars. Starting with convex functions on the line, it leads to interconnected topics in convexity, differentiability and subdifferentiability of convex functions in Banach spaces, generic continuity of monotone operators, geometry of Banach spaces and the Radon-Nikodym property, convex analysis, variational princ...

  15. A Note on Upper Convex Density

    Institute of Scientific and Technical Information of China (English)

    YIN JIAN-DONG; ZHOU ZUO-LING

    2010-01-01

    For a self-similar set E satisfying the open set condition,upper convex density is an important concept for the computation of its Hausdorff measure,and it is well known that the set of relative interior points with upper convex density 1has a full Hausdorff measure.But whether the upper convex densities of E at all the relative interior points are equal to 1? In other words,whether there exists a relative interior point of E such that the upper convex density of E at this point is less than 1?In this paper,the authors construct a self-similar set satisfying the open set condition,which has a relative interior point with upper convex density less than 1.Thereby,the above problem is sufficiently answered.

  16. Generalized convexity, generalized monotonicity recent results

    CERN Document Server

    Martinez-Legaz, Juan-Enrique; Volle, Michel

    1998-01-01

    A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo­ metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man­ agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized conve...

  17. Model Reduction by Manifold Boundaries

    Science.gov (United States)

    Transtrum, Mark K.; Qiu, Peng

    2015-01-01

    Understanding the collective behavior of complex systems from their basic components is a difficult yet fundamental problem in science. Existing model reduction techniques are either applicable under limited circumstances or produce “black boxes” disconnected from the microscopic physics. We propose a new approach by translating the model reduction problem for an arbitrary statistical model into a geometric problem of constructing a low-dimensional, submanifold approximation to a high-dimensional manifold. When models are overly complex, we use the observation that the model manifold is bounded with a hierarchy of widths and propose using the boundaries as submanifold approximations. We refer to this approach as the manifold boundary approximation method. We apply this method to several models, including a sum of exponentials, a dynamical systems model of protein signaling, and a generalized Ising model. By focusing on parameters rather than physical degrees of freedom, the approach unifies many other model reduction techniques, such as singular limits, equilibrium approximations, and the renormalization group, while expanding the domain of tractable models. The method produces a series of approximations that decrease the complexity of the model and reveal how microscopic parameters are systematically “compressed” into a few macroscopic degrees of freedom, effectively building a bridge between the microscopic and the macroscopic descriptions. PMID:25216014

  18. Quasi-convex Functions in Carnot Groups

    Institute of Scientific and Technical Information of China (English)

    Mingbao SUN; Xiaoping YANG

    2007-01-01

    In this paper, the authors introduce the concept of h-quasiconvex functions on Carnot groups G. It is shown that the notions of h-quasiconvex functions and h-convex sets are equivalent and the L∞ estimates of first derivatives of h-quasiconvex functions are given. For a Carnot group G of step two, it is proved that h-quasiconvex functions are locally bounded from above. Furthermore, the authors obtain that h-convex functions are locally Lipschitz continuous and that an h-convex function is twice differentiable almost everywhere.

  19. On the vertex index of convex bodies

    CERN Document Server

    Bezdek, Karoly

    2011-01-01

    We introduce the vertex index, vein(K), of a given centrally symmetric convex body K, which, in a sense, measures how well K can be inscribed into a convex polytope with small number of vertices. This index is closely connected to the illumination parameter of a body, introduced earlier by the first named author, and, thus, related to the famous conjecture in Convex Geometry about covering of a d-dimensional body by 2^d smaller positively homothetic copies. We provide asymptotically sharp estimates (up to a logarithmic term) of this index in the general case. Also, we provide sharp estimates in dimensions 2 and 3.

  20. Smooth Maps of a Foliated Manifold in a Symplectic Manifold

    Indian Academy of Sciences (India)

    Mahuya Datta; Md Rabiul Islam

    2009-06-01

    Let be a smooth manifold with a regular foliation $\\mathcal{F}$ and a 2-form which induces closed forms on the leaves of $\\mathcal{F}$ in the leaf topology. A smooth map $f:(M,\\mathcal{F})\\longrightarrow(N, )$ in a symplectic manifold $(N, )$ is called a foliated symplectic immersion if restricts to an immersion on each leaf of the foliation and further, the restriction of $f^∗$ is the same as the restriction of on each leaf of the foliation. If is a foliated symplectic immersion then the derivative map $Df$ gives rise to a bundle morphism $F:TM\\longrightarrow TN$ which restricts to a monomorphism on $T\\mathcal{F}\\subseteq TM$ and satisfies the condition $F^∗=$ on $T\\mathcal{F}$. A natural question is whether the existence of such a bundle map ensures the existence of a foliated symplectic immersion . As we shall see in this paper, the obstruction to the existence of such an is only topological in nature. The result is proved using the ℎ-principle theory of Gromov.

  1. Differential Calculus on N-Graded Manifolds

    OpenAIRE

    Sardanashvily, G.; W. Wachowski

    2017-01-01

    The differential calculus, including formalism of linear differential operators and the Chevalley–Eilenberg differential calculus, over N-graded commutative rings and on N-graded manifolds is developed. This is a straightforward generalization of the conventional differential calculus over commutative rings and also is the case of the differential calculus over Grassmann algebras and on Z2-graded manifolds. We follow the notion of an N-graded manifold as a local-ringed space whose body is a s...

  2. Discrete equations and the singular manifold method

    CERN Document Server

    Estévez, P G

    1999-01-01

    The Painleve expansion for the second Painleve equation (PII) and fourth Painleve equation (PIV) have two branches. The singular manifold method therefore requires two singular manifolds. The double singular manifold method is used to derive Miura transformations from PII and PIV to modified Painleve type equations for which auto-Backlund transformations are obtained. These auto-Backlund transformations can be used to obtain discrete equations.

  3. OBJECTORIENTED NUMERICAL MANIFOLD METHOD

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The design and management of the objects about the numerical manifold method are studied by abstracting the finite cover system of numerical manifold method as independent data classes and the theoretical basis for the researching and expanding of numerical manifold method is also put forward. The Hammer integration of triangular area coordinates is used in the integration of the element. The calculation result shows that the program is accuracy and effective.

  4. Homology group on manifolds and their foldings

    Directory of Open Access Journals (Sweden)

    M. Abu-Saleem

    2010-03-01

    Full Text Available In this paper, we introduce the definition of the induced unfolding on the homology group. Some types of conditional foldings restricted on the elements of the homology groups are deduced. The effect of retraction on the homology group of a manifold is dicussed. The unfolding of variation curvature of manifolds on their homology group are represented. The relations between homology group of the manifold and its folding are deduced.

  5. Similarity Learning of Manifold Data.

    Science.gov (United States)

    Chen, Si-Bao; Ding, Chris H Q; Luo, Bin

    2015-09-01

    Without constructing adjacency graph for neighborhood, we propose a method to learn similarity among sample points of manifold in Laplacian embedding (LE) based on adding constraints of linear reconstruction and least absolute shrinkage and selection operator type minimization. Two algorithms and corresponding analyses are presented to learn similarity for mix-signed and nonnegative data respectively. The similarity learning method is further extended to kernel spaces. The experiments on both synthetic and real world benchmark data sets demonstrate that the proposed LE with new similarity has better visualization and achieves higher accuracy in classification.

  6. Noah, Joseph and Convex Hulls

    Science.gov (United States)

    Watkins, N. W.; Chau, Y.; Chapman, S. C.

    2010-12-01

    The idea of describing animal movement by mathematical models based on diffusion and Brownian motion has a long heritage. It has thus been natural to account for those aspects of motion that depart from the Brownian by the use of models incorporating long memory & subdiffusion (“the Joseph effect”) and/or heavy tails & superdiffusion (“the Noah effect”). My own interest in this problem was originally from a geoscience perspective, and was triggered by the need to model time series in space physics where both effects coincide. Subsequently I have been involved in animal foraging studies [e.g. Edwards et al, Nature, 2007]. I will describe some recent work [Watkins et al, PRE, 2009] which studies how fixed-timestep and variable-timestep formulations of anomalous diffusion are related in the presence of heavy tails and long range memory (stable processes versus the CTRW). Quantities for which different scaling relations are predicted between the two approaches are of particular interest, to aid testability. I will also present some of work in progress on the convex hull of anomalously diffusing walkers, inspired by its possible relevance to the idea of home range in biology, and by Randon-Furling et al’s recent analytical results in the Brownian case [PRL, 2009].

  7. Hidden torsion, 3-manifolds, and homology cobordism

    CERN Document Server

    Cha, Jae Choon

    2011-01-01

    This paper continues our exploration of homology cobordism of 3-manifolds using our recent results on Cheeger-Gromov rho-invariants associated to amenable representations. We introduce a new type of torsion in 3-manifold groups we call hidden torsion, and an algebraic approximation we call local hidden torsion. We construct infinitely many hyperbolic 3-manifolds which have local hidden torsion in the transfinite lower central subgroup. By realizing Cheeger-Gromov invariants over amenable groups, we show that our hyperbolic 3-manifolds are not pairwise homology cobordant, yet remain indistinguishable by any prior known homology cobordism invariants.

  8. Differential Calculus on N-Graded Manifolds

    Directory of Open Access Journals (Sweden)

    G. Sardanashvily

    2017-01-01

    Full Text Available The differential calculus, including formalism of linear differential operators and the Chevalley–Eilenberg differential calculus, over N-graded commutative rings and on N-graded manifolds is developed. This is a straightforward generalization of the conventional differential calculus over commutative rings and also is the case of the differential calculus over Grassmann algebras and on Z2-graded manifolds. We follow the notion of an N-graded manifold as a local-ringed space whose body is a smooth manifold Z. A key point is that the graded derivation module of the structure ring of graded functions on an N-graded manifold is the structure ring of global sections of a certain smooth vector bundle over its body Z. Accordingly, the Chevalley–Eilenberg differential calculus on an N-graded manifold provides it with the de Rham complex of graded differential forms. This fact enables us to extend the differential calculus on N-graded manifolds to formalism of nonlinear differential operators, by analogy with that on smooth manifolds, in terms of graded jet manifolds of N-graded bundles.

  9. Pro jective vector fields on Finsler manifolds

    Institute of Scientific and Technical Information of China (English)

    TIAN Huang-jia

    2014-01-01

    In this paper, we give the equation that characterizes projective vector fields on a Finsler manifold by the local coordinate. Moreover, we obtain a feature of the projective fields on the compact Finsler manifold with non-positive flag curvature and the non-existence of projective vector fields on the compact Finsler manifold with negative flag curvature. Furthermore, we deduce some expectable, but non-trivial relationships between geometric vector fields such as projective, affine, conformal, homothetic and Killing vector fields on a Finsler manifold.

  10. Stability of Strongly Gauduchon Manifolds under Modifications

    CERN Document Server

    Popovici, Dan

    2010-01-01

    In our previous works on deformation limits of projective and Moishezon manifolds, we introduced and made crucial use of the notion of strongly Gauduchon metrics as a reinforcement of the earlier notion of Gauduchon metrics. Using direct and inverse images of closed positive currents of type $(1, \\, 1)$ and regularisation, we now show that compact complex manifolds carrying strongly Gauduchon metrics are stable under modifications. This stability property, known to fail for compact K\\"ahler manifolds, mirrors the modification stability of balanced manifolds proved by Alessandrini and Bassanelli.

  11. The Fibered Isomorphism Conjecture for Complex Manifolds

    Institute of Scientific and Technical Information of China (English)

    S. K. ROUSHON

    2007-01-01

    In this paper we show that the Fibered Isomorphism Conjecture of Farrell and Jones,corresponding to the stable topological pseudoisotopy functor, is true for the fundamental groups of a class of complex manifolds. A consequence of this result is that the Whitehead group, reduced projective class groups and the negative K-groups of the fundamental groups of these manifolds vanish whenever the fundamental group is torsion free. We also prove the same results for a class of real manifolds including a large class of 3-manifolds which has a finite sheeted cover fibering over the circle.

  12. Manifold knowledge extraction and target recognition

    Science.gov (United States)

    Chao, Cai; Hua, Zhou

    2009-10-01

    Advanced mammalian target identification derived from the perception of target's manifold and measurement manifolddistance. It does not rely on object's segmented accuracy, not depend on target's variety model, and adapt to a range of changes on targets. In this paper, based on the existed manifold learning algorithm, set up a new bionic automatic target recognition model, discussed the targets manifold knowledge acquisition and the knowledge expression architecture, gave a manifold knowledge-based new method for automatic target recognition. Experiments show that the new method has a strong adaptability to targets various transform, and has a very high correctly identification probability.

  13. Spectral gaps, inertial manifolds and kinematic dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)]. E-mail: mnjmhd@am.uva.es

    2005-10-17

    Inertial manifolds are desirable objects when ones wishes a dynamical process to behave asymptotically as a finite-dimensional ones. Recently [Physica D 194 (2004) 297] these manifolds are constructed for the kinematic dynamo problem with time-periodic velocity. It turns out, however, that the conditions imposed on the fluid velocity to guarantee the existence of inertial manifolds are too demanding, in the sense that they imply that all the solutions tend exponentially to zero. The inertial manifolds are meaningful because they represent different decay rates, but the classical dynamos where the magnetic field is maintained or grows are not covered by this approach, at least until more refined estimates are found.

  14. Revising incompletely specified convex probabilistic belief bases

    CSIR Research Space (South Africa)

    Rens, G

    2016-04-01

    Full Text Available International Workshop on Non-Monotonic Reasoning (NMR), 22-24 April 2016, Cape Town, South Africa Revising Incompletely Specified Convex Probabilistic Belief Bases Gavin Rens CAIR_, University of KwaZulu-Natal, School of Mathematics, Statistics...

  15. Relations between Lipschitz functions and convex functions

    Institute of Scientific and Technical Information of China (English)

    RUAN Yingbin

    2005-01-01

    We discuss the relationship between Lipschitz functions and convex functions.By these relations, we give a sufficient condition for the set of points where Lipschitz functions on a Hilbert space is Frechet differentiable to be residual.

  16. Some integral inequalities for logarithmically convex functions

    Directory of Open Access Journals (Sweden)

    Mevlüt Tunç

    2014-07-01

    Full Text Available The main aim of the present note is to establish new Hadamard like integral inequalities involving log-convex function. We also prove some Hadamard-type inequalities, and applications to the special means are given.

  17. Convex analysis and optimization in Hadamard spaces

    CERN Document Server

    Bacak, Miroslav

    2014-01-01

    This book gives a first systematic account on the subject of convex analysis and optimization in Hadamard spaces. It is primarily aimed at both graduate students and researchers in analysis and optimization.

  18. Linearization functors on real convex sets

    OpenAIRE

    Velasco, Mauricio

    2012-01-01

    We prove that linearizing certain families of polynomial optimization problems leads to new functorial operations in real convex sets. We show that under some conditions these operations can be computed or approximated in ways amenable to efficient computation. These operations are convex analogues of Hom functors, tensor products, symmetric powers, exterior powers and general Schur functors on vector spaces and lead to novel constructions even for polyhedra.

  19. Deformation in locally convex topological linear spaces

    Institute of Scientific and Technical Information of China (English)

    DING; Yanheng

    2004-01-01

    We are concerned with a deformation theory in locally convex topological linear spaces. A special "nice" partition of unity is given. This enables us to construct certain vector fields which are locally Lipschitz continuous with respect to the locally convex topology. The existence, uniqueness and continuous dependence of flows associated to the vector fields are established. Deformations related to strongly indefinite functionals are then obtained. Finally, as applications, we prove some abstract critical point theorems.

  20. Manifold learning in protein interactomes.

    Science.gov (United States)

    Marras, Elisabetta; Travaglione, Antonella; Capobianco, Enrico

    2011-01-01

    Many studies and applications in the post-genomic era have been devoted to analyze complex biological systems by computational inference methods. We propose to apply manifold learning methods to protein-protein interaction networks (PPIN). Despite their popularity in data-intensive applications, these methods have received limited attention in the context of biological networks. We show that there is both utility and unexplored potential in adopting manifold learning for network inference purposes. In particular, the following advantages are highlighted: (a) fusion with diagnostic statistical tools designed to assign significance to protein interactions based on pre-selected topological features; (b) dissection into components of the interactome in order to elucidate global and local connectivity organization; (c) relevance of embedding the interactome in reduced dimensions for biological validation purposes. We have compared the performances of three well-known techniques--kernel-PCA, RADICAL ICA, and ISOMAP--relatively to their power of mapping the interactome onto new coordinate dimensions where important associations among proteins can be detected, and then back projected such that the corresponding sub-interactomes are reconstructed. This recovery has been done selectively, by using significant information according to a robust statistical procedure, and then standard biological annotation has been provided to validate the results. We expect that a byproduct of using subspace analysis by the proposed techniques is a possible calibration of interactome modularity studies. Supplementary Material is available online at www.libertonlinec.com.

  1. Characterizing humans on Riemannian manifolds.

    Science.gov (United States)

    Tosato, Diego; Spera, Mauro; Cristani, Marco; Murino, Vittorio

    2013-08-01

    In surveillance applications, head and body orientation of people is of primary importance for assessing many behavioral traits. Unfortunately, in this context people are often encoded by a few, noisy pixels so that their characterization is difficult. We face this issue, proposing a computational framework which is based on an expressive descriptor, the covariance of features. Covariances have been employed for pedestrian detection purposes, actually a binary classification problem on Riemannian manifolds. In this paper, we show how to extend to the multiclassification case, presenting a novel descriptor, named weighted array of covariances, especially suited for dealing with tiny image representations. The extension requires a novel differential geometry approach in which covariances are projected on a unique tangent space where standard machine learning techniques can be applied. In particular, we adopt the Campbell-Baker-Hausdorff expansion as a means to approximate on the tangent space the genuine (geodesic) distances on the manifold in a very efficient way. We test our methodology on multiple benchmark datasets, and also propose new testing sets, getting convincing results in all the cases.

  2. Convexity conditions and normal structure of Banach spaces

    Science.gov (United States)

    Saejung, Satit

    2008-08-01

    We prove that F-convexity, the property dual to P-convexity of Kottman, implies uniform normal structure. Moreover, in the presence of the WORTH property, normal structure follows from a weaker convexity condition than F-convexity. The latter result improves the known fact that every uniformly nonsquare space with the WORTH property has normal structure.

  3. Entropy Coherent and Entropy Convex Measures of Risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.A.

    2011-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. We prove that convex, entropy convex and entropy coherent measures of risk emerge as certainty equivalents under variational, homothetic and multiple priors preferences, respe

  4. A further characteristic of abstract convexity structures on topological spaces

    Science.gov (United States)

    Xiang, Shu-Wen; Xia, Shunyou

    2007-11-01

    In this paper, we give a characteristic of abstract convexity structures on topological spaces with selection property. We show that if a convexity structure defined on a topological space has the weak selection property then satisfies H0-condition. Moreover, in a compact convex subset of a topological space with convexity structure, the weak selection property implies the fixed point property.

  5. Exact and Approximate Sizes of Convex Datacubes

    Science.gov (United States)

    Nedjar, Sébastien

    In various approaches, data cubes are pre-computed in order to efficiently answer Olap queries. The notion of data cube has been explored in various ways: iceberg cubes, range cubes, differential cubes or emerging cubes. Previously, we have introduced the concept of convex cube which generalizes all the quoted variants of cubes. More precisely, the convex cube captures all the tuples satisfying a monotone and/or antimonotone constraint combination. This paper is dedicated to a study of the convex cube size. Actually, knowing the size of such a cube even before computing it has various advantages. First of all, free space can be saved for its storage and the data warehouse administration can be improved. However the main interest of this size knowledge is to choose at best the constraints to apply in order to get a workable result. For an aided calibrating of constraints, we propose a sound characterization, based on inclusion-exclusion principle, of the exact size of convex cube as long as an upper bound which can be very quickly yielded. Moreover we adapt the nearly optimal algorithm HyperLogLog in order to provide a very good approximation of the exact size of convex cubes. Our analytical results are confirmed by experiments: the approximated size of convex cubes is really close to their exact size and can be computed quasi immediately.

  6. A coordinate-free condition number for convex programming

    CERN Document Server

    Amelunxen, Dennis

    2011-01-01

    We introduce and analyze a natural geometric version of Renegar's condition number R, which we call Grassmann condition number, for the homogeneous convex feasibility problem associated with a regular cone C\\subseteq R^n. Let Gr_{n,m} denote the Grassmann manifold of m-dimensional linear subspaces of R^n with the Riemannian distance metric d_g. The set of ill-posed instances \\Sigma_m\\subset Gr_{n,m} consists of the linear subspaces W touching C. We define the Grassmann condition number \\CG(W) of an m-dimensional subspace W\\in\\Gr_{n,m} as \\CG(W)^{-1} := sin d_g(W,\\Sigma_m). We also provide other characterizations of \\CG(W) and prove that \\CG(W) <= R(A) <= \\CG(W) \\kappa(A), where W =\\im A^T, and where \\kappa(A) =||A|| ||A^\\dagger|| denotes the matrix condition number. This extends work by Belloni and Freund in Math. Program. 119:95-107 (2009). Based on the Grassmann condition number, in a forthcoming paper, we shall provide, for the first time, a probabilistic analysis of Renegar's condition number for an...

  7. Integrability conditions on Engel-type manifolds

    Science.gov (United States)

    Calin, Ovidiu; Chang, Der-Chen; Hu, Jishan

    2015-09-01

    We introduce the concept of Engel manifold, as a manifold that resembles locally the Engel group, and find the integrability conditions of the associated sub-elliptic system , . These are given by , . Then an explicit construction of the solution involving an integral representation is provided, which corresponds to a Poincaré-type lemma for the Engel's distribution.

  8. Target manifold formation using a quadratic SDF

    Science.gov (United States)

    Hester, Charles F.; Risko, Kelly K. D.

    2013-05-01

    Synthetic Discriminant Function (SDF) formulation of correlation filters provides constraints for forming target subspaces for a target set. In this paper we extend the SDF formulation to include quadratic constraints and use this solution to form nonlinear manifolds in the target space. The theory for forming these manifolds will be developed and demonstrated with data.

  9. Einstein Constraints on Asymptotically Euclidean Manifolds

    CERN Document Server

    Choquet-Bruhat, Y; York, J W; Choquet-Bruhat, Yvonne; Isenberg, James; York, James W.

    2000-01-01

    We consider the Einstein constraints on asymptotically euclidean manifolds $M$ of dimension $n \\geq 3$ with sources of both scaled and unscaled types. We extend to asymptotically euclidean manifolds the constructive method of proof of existence. We also treat discontinuous scaled sources. In the last section we obtain new results in the case of non-constant mean curvature.

  10. Rank and genus of 3-manifolds

    CERN Document Server

    Li, Tao

    2011-01-01

    We construct a counterexample to the Rank versus Genus Conjecture, i.e. a closed orientable hyperbolic 3-manifold with rank of its fundamental group smaller than its Heegaard genus. Moreover, we show that the discrepancy between rank and Heegaard genus can be arbitrarily large for hyperbolic 3-manifolds. We also construct toroidal such examples containing hyperbolic JSJ pieces.

  11. An Explicit Nonlinear Mapping for Manifold Learning.

    Science.gov (United States)

    Qiao, Hong; Zhang, Peng; Wang, Di; Zhang, Bo

    2013-02-01

    Manifold learning is a hot research topic in the held of computer science and has many applications in the real world. A main drawback of manifold learning methods is, however, that there are no explicit mappings from the input data manifold to the output embedding. This prohibits the application of manifold learning methods in many practical problems such as classification and target detection. Previously, in order to provide explicit mappings for manifold learning methods, many methods have been proposed to get an approximate explicit representation mapping with the assumption that there exists a linear projection between the high-dimensional data samples and their low-dimensional embedding. However, this linearity assumption may be too restrictive. In this paper, an explicit nonlinear mapping is proposed for manifold learning, based on the assumption that there exists a polynomial mapping between the high-dimensional data samples and their low-dimensional representations. As far as we know, this is the hrst time that an explicit nonlinear mapping for manifold learning is given. In particular, we apply this to the method of locally linear embedding and derive an explicit nonlinear manifold learning algorithm, which is named neighborhood preserving polynomial embedding. Experimental results on both synthetic and real-world data show that the proposed mapping is much more effective in preserving the local neighborhood information and the nonlinear geometry of the high-dimensional data samples than previous work.

  12. Gauged supergravities from Bianchi's group manifolds

    NARCIS (Netherlands)

    Bergshoeff, E; Gran, U; Linares, R; Nielsen, M; Ortin, T; Roest, D

    2004-01-01

    We construct maximal D = 8 gauged supergravities by the reduction of D = I I supergravity over three-dimensional group manifolds. Such manifolds are classified into two classes, A and B, and eleven types. This Bianchi classification carries over to the gauged supergravities. The class A theories hav

  13. Simplicial approach to derived differential manifolds

    CERN Document Server

    Borisov, Dennis

    2011-01-01

    Derived differential manifolds are constructed using the usual homotopy theory of simplicial rings of smooth functions. They are proved to be equivalent to derived differential manifolds of finite type, constructed using homotopy sheaves of homotopy rings (D.Spivak), thus preserving the classical cobordism ring. This reduction to the usual algebraic homotopy can potentially lead to virtual fundamental classes beyond obstruction theory.

  14. Persistence of noncompact normally hyperbolic invariant manifolds in bounded geometry

    CERN Document Server

    Eldering, Jaap

    2012-01-01

    We prove a persistence result for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. The bounded geometry of the ambient manifold is a crucial assumption in order to control the uniformity of all estimates throughout the proof.

  15. Warped product submanifolds of Lorentzian paracosymplectic manifolds

    CERN Document Server

    Perkta\\cs, Selcen Yüksel; Kele\\cs, Sad\\ik

    2011-01-01

    In this paper we study the warped product submanifolds of a Lorentzian paracosymplectic manifold and obtain some nonexistence results. We show that a warped product semi-invariant submanifold in the form {$M=M_{T}\\times_{f}M_{\\bot}$} of Lorentzian paracosymplectic manifold such that the characteristic vector field is normal to $M$ is an usual Riemannian product manifold where totally geodesic and totally umbilical submanifolds of warped product are invariant and anti-invariant, respectively. We prove that the distributions involved in the definition of a warped product semi-invariant submanifold are always integrable. A necessary and sufficient condition for a semi-invariant submanifold of a Lorentzian paracosymplectic manifold to be warped product semi-invariant submanifold is obtained. We also investigate the existence and nonexistence of warped product semi-slant and warped product anti-slant submanifolds in a Lorentzian paracosymplectic manifold.

  16. Manifold-based learning and synthesis.

    Science.gov (United States)

    Huang, Dong; Yi, Zhang; Pu, Xiaorong

    2009-06-01

    This paper proposes a new approach to analyze high-dimensional data set using low-dimensional manifold. This manifold-based approach provides a unified formulation for both learning from and synthesis back to the input space. The manifold learning method desires to solve two problems in many existing algorithms. The first problem is the local manifold distortion caused by the cost averaging of the global cost optimization during the manifold learning. The second problem results from the unit variance constraint generally used in those spectral embedding methods where global metric information is lost. For the out-of-sample data points, the proposed approach gives simple solutions to transverse between the input space and the feature space. In addition, this method can be used to estimate the underlying dimension and is robust to the number of neighbors. Experiments on both low-dimensional data and real image data are performed to illustrate the theory.

  17. Heterotic model building: 16 special manifolds

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang-Hui [Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); School of Physics, NanKai University,Tianjin, 300071 (China); Merton College, University of Oxford,Oxford OX14JD (United Kingdom); Lee, Seung-Joo [School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Lukas, Andre; Sun, Chuang [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2014-06-12

    We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10) GUTs, which lead to consistent supersymmetric string vacua and have three chiral families. A total of about 29000 models is found, most of them corresponding to SO(10) GUTs. These models constitute a starting point for detailed heterotic model building on Calabi-Yau manifolds in the Kreuzer-Skarke list. The data for these models can be downloaded http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html.

  18. Heisenberg symmetry and hypermultiplet manifolds

    CERN Document Server

    Antoniadis, Ignatios; Petropoulos, P Marios; Siampos, Konstantinos

    2015-01-01

    We study the emergence of Heisenberg (Bianchi II) algebra in hyper-K\\"ahler and quaternionic spaces. This is motivated by the r\\^ole these spaces with this symmetry play in $\\mathcal{N}=2$ hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-K\\"ahler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing cosmological constant. We further apply this method for the two hyper-K\\"ahler spaces with Heisenberg algebra, which is reduced to $U(1)\\times U(1)$ at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry -- as opposed to $\\text{Heisenberg} \\ltimes U(1)$. We finally discuss the realization of the latter by gauging appropriate $Sp(2,4)$ generators in $\\mathcal{N}=2$ conformal supergravity.

  19. Moving Manifolds in Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2017-08-01

    Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.

  20. Heisenberg symmetry and hypermultiplet manifolds

    Directory of Open Access Journals (Sweden)

    Ignatios Antoniadis

    2016-04-01

    Full Text Available We study the emergence of Heisenberg (Bianchi II algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N=2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U(1×U(1 at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry – as opposed to Heisenberg⋉U(1. We finally discuss the realization of the latter by gauging appropriate Sp(2,4 generators in N=2 conformal supergravity.

  1. Function theory on symplectic manifolds

    CERN Document Server

    Polterovich, Leonid

    2014-01-01

    This is a book on symplectic topology, a rapidly developing field of mathematics which originated as a geometric tool for problems of classical mechanics. Since the 1980s, powerful methods such as Gromov's pseudo-holomorphic curves and Morse-Floer theory on loop spaces gave rise to the discovery of unexpected symplectic phenomena. The present book focuses on function spaces associated with a symplectic manifold. A number of recent advances show that these spaces exhibit intriguing properties and structures, giving rise to an alternative intuition and new tools in symplectic topology. The book provides an essentially self-contained introduction into these developments along with applications to symplectic topology, algebra and geometry of symplectomorphism groups, Hamiltonian dynamics and quantum mechanics. It will appeal to researchers and students from the graduate level onwards. I like the spirit of this book. It formulates concepts clearly and explains the relationship between them. The subject matter is i...

  2. Harmonic space and quaternionic manifolds

    CERN Document Server

    Galperin, A; Ogievetsky, O V

    1994-01-01

    We find a principle of harmonic analyticity underlying the quaternionic (quaternion-K\\"ahler) geometry and solve the differential constraints which define this geometry. To this end the original $4n$-dimensional quaternionic manifold is extended to a bi-harmonic space. The latter includes additional harmonic coordinates associated with both the tangent local $Sp(1)$ group and an extra rigid $SU(2)$ group rotating the complex structures. Then the constraints can be rewritten as integrability conditions for the existence of an analytic subspace in the bi-harmonic space and solved in terms of two unconstrained potentials on the analytic subspace. Geometrically, the potentials have the meaning of vielbeins associated with the harmonic coordinates. We also establish a one-to-one correspondence between the quaternionic spaces and off-shell $N=2$ supersymmetric sigma-models coupled to $N=2$ supergravity. The general $N=2$ sigma-model Lagrangian when written in the harmonic superspace is composed of the quaternionic ...

  3. Manifold Matching for High-Dimensional Pattern Recognition

    OpenAIRE

    HOTTA, Seiji

    2008-01-01

    In this chapter manifold matching for high-dimensional pattern classification was described. The topics described in this chapter were summarized as follows: The meaning and effectiveness of manifold matching The similarity between various classifiers from the point of view of manifold matching Accuracy improvement for manifold matching Learning rules for manifold matching Experimental results on handwritten digit datasets showed that manifold matching achieved lower error rates than other cl...

  4. Harmonic Riemannian Maps on Locally Conformal Kaehler Manifolds

    Indian Academy of Sciences (India)

    Bayram Sahin

    2008-11-01

    We study harmonic Riemannian maps on locally conformal Kaehler manifolds ($lcK$ manifolds). We show that if a Riemannian holomorphic map between $lcK$ manifolds is harmonic, then the Lee vector field of the domain belongs to the kernel of the Riemannian map under a condition. When the domain is Kaehler, we prove that a Riemannian holomorphic map is harmonic if and only if the $lcK$ manifold is Kaehler. Then we find similar results for Riemannian maps between $lcK$ manifolds and Sasakian manifolds. Finally, we check the constancy of some maps between almost complex (or almost contact) manifolds and almost product manifolds.

  5. Discriminative sparse coding on multi-manifolds

    KAUST Repository

    Wang, J.J.-Y.

    2013-09-26

    Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics. However, the conventional sparse coding algorithms and their manifold-regularized variants (graph sparse coding and Laplacian sparse coding), learn codebooks and codes in an unsupervised manner and neglect class information that is available in the training set. To address this problem, we propose a novel discriminative sparse coding method based on multi-manifolds, that learns discriminative class-conditioned codebooks and sparse codes from both data feature spaces and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditioned codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data sample-manifold matching-based strategy to classify the unlabeled data samples. Experimental results on somatic mutations identification and breast tumor classification based on ultrasonic images demonstrate the efficacy of the proposed data representation and classification approach. 2013 The Authors. All rights reserved.

  6. Optimal convex shapes for concave functionals

    CERN Document Server

    Bucur, Dorin; Lamboley, Jimmy

    2011-01-01

    Motivated by a long-standing conjecture of Polya and Szeg\\"o about the Newtonian capacity of convex bodies, we discuss the role of concavity inequalities in shape optimization, and we provide several counterexamples to the Blaschke-concavity of variational functionals, including capacity. We then introduce a new algebraic structure on convex bodies, which allows to obtain global concavity and indecomposability results, and we discuss their application to isoperimetriclike inequalities. As a byproduct of this approach we also obtain a quantitative version of the Kneser-S\\"uss inequality. Finally, for a large class of functionals involving Dirichlet energies and the surface measure, we perform a local analysis of strictly convex portions of the boundary via second order shape derivatives. This allows in particular to exclude the presence of smooth regions with positive Gauss curvature in an optimal shape for Polya-Szeg\\"o problem.

  7. On the convexity of Relativistic Ideal Magnetohydrodynamics

    CERN Document Server

    Ibáñez, José-María; Aloy, Miguel-Ángel; Martí, José-María; Miralles, Juan-Antonio

    2015-01-01

    We analyze the influence of the magnetic field in the convexity properties of the relativistic magnetohydrodynamics system of equations. To this purpose we use the approach of Lax, based on the analysis of the linearly degenerate/genuinely non-linear nature of the characteristic fields. Degenerate and non-degenerate states are discussed separately and the non-relativistic, unmagnetized limits are properly recovered. The characteristic fields corresponding to the material and Alfv\\'en waves are linearly degenerate and, then, not affected by the convexity issue. The analysis of the characteristic fields associated with the magnetosonic waves reveals, however, a dependence of the convexity condition on the magnetic field. The result is expressed in the form of a generalized fundamental derivative written as the sum of two terms. The first one is the generalized fundamental derivative in the case of purely hydrodynamical (relativistic) flow. The second one contains the effects of the magnetic field. The analysis ...

  8. A generalization of the convex Kakeya problem

    KAUST Repository

    Ahn, Heekap

    2012-01-01

    We consider the following geometric alignment problem: Given a set of line segments in the plane, find a convex region of smallest area that contains a translate of each input segment. This can be seen as a generalization of Kakeya\\'s problem of finding a convex region of smallest area such that a needle can be turned through 360 degrees within this region. Our main result is an optimal Θ(n log n)-time algorithm for our geometric alignment problem, when the input is a set of n line segments. We also show that, if the goal is to minimize the perimeter of the region instead of its area, then the optimum placement is when the midpoints of the segments coincide. Finally, we show that for any compact convex figure G, the smallest enclosing disk of G is a smallest-perimeter region containing a translate of any rotated copy of G. © 2012 Springer-Verlag Berlin Heidelberg.

  9. Cost Allocation and Convex Data Envelopment

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tind, Jørgen

    This paper considers allocation rules. First, we demonstrate that costs allocated by the Aumann-Shapley and the Friedman-Moulin cost allocation rules are easy to determine in practice using convex envelopment of registered cost data and parametric programming. Second, from the linear programming...... such as Data Envelopment Analysis (DEA). The convexity constraint of the BCC model introduces a non-zero slack in the objective function of the multiplier problem and we show that the cost allocation rules discussed in this paper can be used as candidates to allocate this slack value on to the input (or output...... problems involved it becomes clear that the allocation rules, technically speaking, allocate the non-zero value of the dual variable for a convexity constraint on to the output vector. Hence, the allocation rules can also be used to allocate inefficiencies in non-parametric efficiency measurement models...

  10. Non-convex multi-objective optimization

    CERN Document Server

    Pardalos, Panos M; Žilinskas, Julius

    2017-01-01

    Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in...

  11. Space time manifolds and contact structures

    Directory of Open Access Journals (Sweden)

    K. L. Duggal

    1990-01-01

    Full Text Available A new class of contact manifolds (carring a global non-vanishing timelike vector field is introduced to establish a relation between spacetime manifolds and contact structures. We show that odd dimensional strongly causal (in particular, globally hyperbolic spacetimes can carry a regular contact structure. As examples, we present a causal spacetime with a non regular contact structure and a physical model [Gödel Universe] of Homogeneous contact manifold. Finally, we construct a model of 4-dimensional spacetime of general relativity as a contact CR-submanifold.

  12. Higher Order Hessian Structures on Manifolds

    Indian Academy of Sciences (India)

    R David Kumar

    2005-08-01

    In this paper we define th order Hessian structures on manifolds and study them. In particular, when =3, we make a detailed study and establish a one-to-one correspondence between third-order Hessian structures and a certain class of connections on the second-order tangent bundle of a manifold. Further, we show that a connection on the tangent bundle of a manifold induces a connection on the second-order tangent bundle. Also we define second-order geodesics of special second-order connection which gives a geometric characterization of symmetric third-order Hessian structures.

  13. Loops in Reeb Graphs of 2-Manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Cole-McLaughlin, K; Edelsbrunner, H; Harer, J; Natarajan, V; Pascucci, V

    2004-12-16

    Given a Morse function f over a 2-manifold with or without boundary, the Reeb graph is obtained by contracting the connected components of the level sets to points. We prove tight upper and lower bounds on the number of loops in the Reeb graph that depend on the genus, the number of boundary components, and whether or not the 2-manifold is orientable. We also give an algorithm that constructs the Reeb graph in time O(n log n), where n is the number of edges in the triangulation used to represent the 2-manifold and the Morse function.

  14. Loops in Reeb Graphs of 2-Manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Cole-McLaughlin, K; Edelsbrunner, H; Harer, J; Natarajan, V; Pascucci, V

    2003-02-11

    Given a Morse function f over a 2-manifold with or without boundary, the Reeb graph is obtained by contracting the connected components of the level sets to points. We prove tight upper and lower bounds on the number of loops in the Reeb graph that depend on the genus, the number of boundary components, and whether or not the 2-manifold is orientable. We also give an algorithm that constructs the Reeb graph in time O(n log n), where n is the number of edges in the triangulation used to represent the 2-manifold and the Morse function.

  15. Non-convex onion peeling using a shape hull algorithm

    OpenAIRE

    Fadili, Jalal M.; Melkemi, Mahmoud; Elmoataz, Abderrahim

    2004-01-01

    International audience; The convex onion-peeling of a set of points is the organization of these points into a sequence of interpolating convex polygons. This method is adequate to detect the shape of the “center” of a set of points when this shape is convex. However it reveals inadequate to detect non-convex shapes. Alternatively, we propose an extension of the convex onion-peeling method. It consists in representing a set of points with a sequence of non-convex polylines which are computed ...

  16. Uniform convexity and the splitting problem for selections

    CERN Document Server

    Balashov, Maxim V; 10.1016/j.jmaa.2009.06.045

    2009-01-01

    We continue to investigate cases when the Repov\\v{s}-Semenov splitting problem for selections has an affirmative solution for continuous set-valued mappings. We consider the situation in infinite-dimensional uniformly convex Banach spaces. We use the notion of Polyak of uniform convexity and modulus of uniform convexity for arbitrary convex sets (not necessary balls). We study general geometric properties of uniformly convex sets. We also obtain an affirmative solution of the splitting problem for selections of certain set-valued mappings with uniformly convex images.

  17. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    2016-01-01

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... of surface tensors are available for reconstruction, we recommend to use certain values of the surface tensors, namely harmonic intrinsic volumes instead of the surface tensors evaluated at the standard basis. The second algorithm we present is based on harmonic intrinsic volumes and allows for noisy...

  18. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...

  19. Cost Allocation and Convex Data Envelopment

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tind, Jørgen

    problems involved it becomes clear that the allocation rules, technically speaking, allocate the non-zero value of the dual variable for a convexity constraint on to the output vector. Hence, the allocation rules can also be used to allocate inefficiencies in non-parametric efficiency measurement models...... such as Data Envelopment Analysis (DEA). The convexity constraint of the BCC model introduces a non-zero slack in the objective function of the multiplier problem and we show that the cost allocation rules discussed in this paper can be used as candidates to allocate this slack value on to the input (or output...

  20. Convex functions and the rolling circle criterion

    OpenAIRE

    1995-01-01

    Given 0≤R1≤R2≤∞, CVG(R1,R2) denotes the class of normalized convex functions f in the unit disc U, for which ∂f(U) satisfies a Blaschke Rolling Circles Criterion with radii R1 and R2. Necessary and sufficient conditions for R1=R2, growth and distortion theorems for CVG(R1,R2) and rotation theorem for the class of convex functions of bounded type, are found.

  1. A Complete Characterization of the Gap between Convexity and SOS-Convexity

    CERN Document Server

    Ahmadi, Amir Ali

    2011-01-01

    Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials via the definition of convexity, its first order characterization, and its second order characterization are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming whereas deciding convexity is NP-hard. If we denote the set of convex and sos-convex polynomials in $n$ variables of degree $d$ with $\\tilde{C}_{n,d}$ and $\\tilde{\\Sigma C}_{n,d}$ respectively, then our main contribution is to prove that $\\tilde{C}_{n,d}=\\tilde{\\Sigma C}_{n,d}$ if and only if $n=1$ or $d=2$ or $(n,d)=(2,4)$. We also present a complete characterization for forms (homogeneous polynomials) except for the case $(n,d)=(3,4)$ which is joint work with G. Blekherman and is to be published elsewhere. Our result states that the set $C_{n,d}$ of convex forms in $n$ variables of degree $d$ equals the set $\\Sigma C_{...

  2. Nonparametric Information Geometry: From Divergence Function to Referential-Representational Biduality on Statistical Manifolds

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2013-12-01

    Full Text Available Divergence functions are the non-symmetric “distance” on the manifold, Μθ, of parametric probability density functions over a measure space, (Χ,μ. Classical information geometry prescribes, on Μθ: (i a Riemannian metric given by the Fisher information; (ii a pair of dual connections (giving rise to the family of α-connections that preserve the metric under parallel transport by their joint actions; and (iii a family of divergence functions ( α-divergence defined on Μθ x Μθ, which induce the metric and the dual connections. Here, we construct an extension of this differential geometric structure from Μθ (that of parametric probability density functions to the manifold, Μ, of non-parametric functions on X, removing the positivity and normalization constraints. The generalized Fisher information and α-connections on M are induced by an α-parameterized family of divergence functions, reflecting the fundamental convex inequality associated with any smooth and strictly convex function. The infinite-dimensional manifold, M, has zero curvature for all these α-connections; hence, the generally non-zero curvature of M can be interpreted as arising from an embedding of Μθ into Μ. Furthermore, when a parametric model (after a monotonic scaling forms an affine submanifold, its natural and expectation parameters form biorthogonal coordinates, and such a submanifold is dually flat for α = ± 1, generalizing the results of Amari’s α-embedding. The present analysis illuminates two different types of duality in information geometry, one concerning the referential status of a point (measurable function expressed in the divergence function (“referential duality” and the other concerning its representation under an arbitrary monotone scaling (“representational duality”.

  3. Foundations of complex analysis in non locally convex spaces function theory without convexity condition

    CERN Document Server

    Bayoumi, A

    2003-01-01

    All the existing books in Infinite Dimensional Complex Analysis focus on the problems of locally convex spaces. However, the theory without convexity condition is covered for the first time in this book. This shows that we are really working with a new, important and interesting field. Theory of functions and nonlinear analysis problems are widespread in the mathematical modeling of real world systems in a very broad range of applications. During the past three decades many new results from the author have helped to solve multiextreme problems arising from important situations, non-convex and

  4. The Hodge theory of projective manifolds

    CERN Document Server

    de Cataldo, Mark Andrea

    2007-01-01

    This book is a written-up and expanded version of eight lectures on the Hodge theory of projective manifolds. It assumes very little background and aims at describing how the theory becomes progressively richer and more beautiful as one specializes from Riemannian, to Kähler, to complex projective manifolds. Though the proof of the Hodge Theorem is omitted, its consequences - topological, geometrical and algebraic - are discussed at some length. The special properties of complex projective manifolds constitute an important body of knowledge and readers are guided through it with the help of selected exercises. Despite starting with very few prerequisites, the concluding chapter works out, in the meaningful special case of surfaces, the proof of a special property of maps between complex projective manifolds, which was discovered only quite recently.

  5. A Class of Homogeneous Einstein Manifolds

    Institute of Scientific and Technical Information of China (English)

    Yifang KANG; Ke LIANG

    2006-01-01

    A Riemannian manifold (M,g) is called Einstein manifold if its Ricci tensor satisfies r=c·g for some constant c. General existence results are hard to obtain,e.g., it is as yet unknown whether every compact manifold admits an Einstein metric. A natural approach is to impose additional homogeneous assumptions. M. Y. Wang and W. Ziller have got some results on compact homogeneous space G/H. They investigate standard homogeneous metrics, the metric induced by Killing form on G/H, and get some classification results. In this paper some more general homogeneous metrics on some homogeneous space G/H are studies, and a necessary and sufficient condition for this metric to be Einstein is given. The authors also give some examples of Einstein manifolds with non-standard homogeneous metrics.

  6. Branched standard spines of 3-manifolds

    CERN Document Server

    Benedetti, Riccardo

    1997-01-01

    This book provides a unified combinatorial realization of the categroies of (closed, oriented) 3-manifolds, combed 3-manifolds, framed 3-manifolds and spin 3-manifolds. In all four cases the objects of the realization are finite enhanced graphs, and only finitely many local moves have to be taken into account. These realizations are based on the notion of branched standard spine, introduced in the book as a combination of the notion of branched surface with that of standard spine. The book is intended for readers interested in low-dimensional topology, and some familiarity with the basics is assumed. A list of questions, some of which concerning relations with the theory of quantum invariants, is enclosed.

  7. CURVATURE COMPUTATIONS OF 2-MANIFOLDS IN IRk

    Institute of Scientific and Technical Information of China (English)

    Guo-liang Xu; Chandrajit L. Bajaj

    2003-01-01

    In this paper, we provide simple and explicit formulas for computing Riemannian cur-vatures, mean curvature vectors, principal curvatures and principal directions for a 2-dimensional Riemannian manifold embedded in IRk with k ≥ 3.

  8. 3-manifold groups are virtually residually p

    CERN Document Server

    Aschenbrenner, Matthias

    2010-01-01

    Given a prime $p$, a group is called residually $p$ if the intersection of its $p$-power index normal subgroups is trivial. A group is called virtually residually $p$ if it has a finite index subgroup which is residually $p$. It is well-known that finitely generated linear groups over fields of characteristic zero are virtually residually $p$ for all but finitely many $p$. In particular, fundamental groups of hyperbolic $3$-manifolds are virtually residually $p$. It is also well-known that fundamental groups of $3$-manifolds are residually finite. In this paper we prove a common generalization of these results: every $3$-manifold group is virtually residually $p$ for all but finitely many~$p$. This gives evidence for the conjecture (Thurston) that fundamental groups of $3$-manifolds are linear groups.

  9. Hierarchical manifold learning for regional image analysis.

    Science.gov (United States)

    Bhatia, Kanwal K; Rao, Anil; Price, Anthony N; Wolz, Robin; Hajnal, Joseph V; Rueckert, Daniel

    2014-02-01

    We present a novel method of hierarchical manifold learning which aims to automatically discover regional properties of image datasets. While traditional manifold learning methods have become widely used for dimensionality reduction in medical imaging, they suffer from only being able to consider whole images as single data points. We extend conventional techniques by additionally examining local variations, in order to produce spatially-varying manifold embeddings that characterize a given dataset. This involves constructing manifolds in a hierarchy of image patches of increasing granularity, while ensuring consistency between hierarchy levels. We demonstrate the utility of our method in two very different settings: 1) to learn the regional correlations in motion within a sequence of time-resolved MR images of the thoracic cavity; 2) to find discriminative regions of 3-D brain MR images associated with neurodegenerative disease.

  10. Regional manifold learning for disease classification.

    Science.gov (United States)

    Ye, Dong Hye; Desjardins, Benoit; Hamm, Jihun; Litt, Harold; Pohl, Kilian M

    2014-06-01

    While manifold learning from images itself has become widely used in medical image analysis, the accuracy of existing implementations suffers from viewing each image as a single data point. To address this issue, we parcellate images into regions and then separately learn the manifold for each region. We use the regional manifolds as low-dimensional descriptors of high-dimensional morphological image features, which are then fed into a classifier to identify regions affected by disease. We produce a single ensemble decision for each scan by the weighted combination of these regional classification results. Each weight is determined by the regional accuracy of detecting the disease. When applied to cardiac magnetic resonance imaging of 50 normal controls and 50 patients with reconstructive surgery of Tetralogy of Fallot, our method achieves significantly better classification accuracy than approaches learning a single manifold across the entire image domain.

  11. Particle Filtering on the Audio Localization Manifold

    CERN Document Server

    Ettinger, Evan

    2010-01-01

    We present a novel particle filtering algorithm for tracking a moving sound source using a microphone array. If there are N microphones in the array, we track all $N \\choose 2$ delays with a single particle filter over time. Since it is known that tracking in high dimensions is rife with difficulties, we instead integrate into our particle filter a model of the low dimensional manifold that these delays lie on. Our manifold model is based off of work on modeling low dimensional manifolds via random projection trees [1]. In addition, we also introduce a new weighting scheme to our particle filtering algorithm based on recent advancements in online learning. We show that our novel TDOA tracking algorithm that integrates a manifold model can greatly outperform standard particle filters on this audio tracking task.

  12. Polynomial chaos representation of databases on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallée, Cedex 2 (France); Ghanem, R., E-mail: ghanem@usc.edu [University of Southern California, 210 KAP Hall, Los Angeles, CA 90089 (United States)

    2017-04-15

    Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. The method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.

  13. Cohomogeneity Two Actions on Flat Riemannian Manifolds

    Institute of Scientific and Technical Information of China (English)

    R. MIRZAIE

    2007-01-01

    In this paper, we study fiat Riemannian manifolds which have codimension two orbits,under the action of a closed and connected Lie group G of isometries. We assume that G has fixedpoints, then characterize M and orbits of M.

  14. Mathematical Background of Formalism of Operator Manifold

    CERN Document Server

    Ter-Kazarian, G T

    1997-01-01

    The analysis of mathematical structure of the method of operator manifold guides our discussion. The latter is a still wider generalization of the method of secondary quantization with appropriate expansion over the geometric objects. The nature of operator manifold provides its elements with both quantum field and geometry aspects, a detailed study of which is a subject of present paper. It yields a quantization of geometry differing in principle from all earlier suggested schemes.

  15. Multiply manifolded molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.; Roche, M.F.; Geyer, H.K.; Johnson, S.A.

    1994-08-01

    This study consists of research and development activities related to the concept of a molten carbonate fuel cell (MCFC) with multiple manifolds. Objective is to develop an MCFC having a higher power density and a longer life than other MCFC designs. The higher power density will result from thinner gas flow channels; the extended life will result from reduced temperature gradients. Simplification of the gas flow channels and current collectors may also significantly reduce cost for the multiply manifolded MCFC.

  16. Blowing up generalized Kahler 4-manifolds

    CERN Document Server

    Cavalcanti, Gil R

    2011-01-01

    We show that the blow-up of a generalized Kahler 4-manifold in a nondegenerate complex point admits a generalized Kahler metric. As with the blow-up of complex surfaces, this metric may be chosen to coincide with the original outside a tubular neighbourhood of the exceptional divisor. To accomplish this, we develop a blow-up operation for bi-Hermitian manifolds.

  17. On some applications of invariant manifolds

    Institute of Scientific and Technical Information of China (English)

    Xi-Yun Hou; Lin Liu; Yu-Hui Zhao

    2011-01-01

    Taking transfer orbits of a collinear libration point probe, a lunar probe and an interplanetary probe as examples, some applications of stable and unstable invariant manifolds of the restricted three-body problem are discussed. Research shows that transfer energy is not necessarily conserved when invariant manifolds are used. For the cases in which the transfer energy is conserved, the cost is a much longer transfer time.

  18. Quaternionic-like manifolds and homogeneous twistor spaces.

    Science.gov (United States)

    Pantilie, Radu

    2016-12-01

    Motivated by the quaternionic geometry corresponding to the homogeneous complex manifolds endowed with (holomorphically) embedded spheres, we introduce and initiate the study of the 'quaternionic-like manifolds'. These contain, as particular subclasses, the CR quaternionic and the ρ-quaternionic manifolds. Moreover, the notion of 'heaven space' finds its adequate level of generality in this setting: (essentially) any real analytic quaternionic-like manifold admits a (germ) unique heaven space, which is a ρ-quaternionic manifold. We, also, give a natural construction of homogeneous complex manifolds endowed with embedded spheres, thus, emphasizing the abundance of the quaternionic-like manifolds.

  19. Robinson manifolds and Cauchy-Riemann spaces

    CERN Document Server

    Trautman, A

    2002-01-01

    A Robinson manifold is defined as a Lorentz manifold (M, g) of dimension 2n >= 4 with a bundle N subset of C centre dot TM such that the fibres of N are maximal totally null and there holds the integrability condition [Sec N, Sec N] subset of Sec N. The real part of N intersection N-bar is a bundle of null directions tangent to a congruence of null geodesics. This generalizes the notion of a shear-free congruence of null geodesics (SNG) in dimension 4. Under a natural regularity assumption, the set M of all these geodesics has the structure of a Cauchy-Riemann manifold of dimension 2n - 1. Conversely, every such CR manifold lifts to many Robinson manifolds. Three definitions of a CR manifold are described here in considerable detail; they are equivalent under the assumption of real analyticity, but not in the smooth category. The distinctions between these definitions have a bearing on the validity of the Robinson theorem on the existence of null Maxwell fields associated with SNGs. This paper is largely a re...

  20. Tropicalized Lambda Lengths, Measured Laminations and Convexity

    DEFF Research Database (Denmark)

    C. Penner, R.

    cell decomposition of a surface is discovered in the limit. Finally, the tropical analogue of the convex hull construction in Minkowski space is formulated as an explicit algorithm that serially simplifies a triangulation with respect to a fixed lamination and has its own independent applications....

  1. Some Characterizations of Convex Interval Games

    NARCIS (Netherlands)

    Brânzei, R.; Tijs, S.H.; Alparslan-Gok, S.Z.

    2008-01-01

    This paper focuses on new characterizations of convex interval games using the notions of exactness and superadditivity. We also relate big boss interval games with concave interval games and obtain characterizations of big boss interval games in terms of exactness and subadditivity.

  2. A generalization of the convex Kakeya problem

    KAUST Repository

    Ahn, Heekap

    2013-09-19

    Given a set of line segments in the plane, not necessarily finite, what is a convex region of smallest area that contains a translate of each input segment? This question can be seen as a generalization of Kakeya\\'s problem of finding a convex region of smallest area such that a needle can be rotated through 360 degrees within this region. We show that there is always an optimal region that is a triangle, and we give an optimal Θ(nlogn)-time algorithm to compute such a triangle for a given set of n segments. We also show that, if the goal is to minimize the perimeter of the region instead of its area, then placing the segments with their midpoint at the origin and taking their convex hull results in an optimal solution. Finally, we show that for any compact convex figure G, the smallest enclosing disk of G is a smallest-perimeter region containing a translate of every rotated copy of G. © 2013 Springer Science+Business Media New York.

  3. Robust Utility Maximization Under Convex Portfolio Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Matoussi, Anis, E-mail: anis.matoussi@univ-lemans.fr [Université du Maine, Risk and Insurance institut of Le Mans Laboratoire Manceau de Mathématiques (France); Mezghani, Hanen, E-mail: hanen.mezghani@lamsin.rnu.tn; Mnif, Mohamed, E-mail: mohamed.mnif@enit.rnu.tn [University of Tunis El Manar, Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l’Ingénieur, ENIT (Tunisia)

    2015-04-15

    We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption–investment strategy by studying the associated quadratic backward stochastic differential equation. We characterize the optimal control by using the duality method and deriving a dynamic maximum principle.

  4. Tropicalized Lambda Lengths, Measured Laminations and Convexity

    DEFF Research Database (Denmark)

    C. Penner, R.

    This work uncovers the tropical analogue for measured laminations of the convex hull construction of decorated Teichmueller theory, namely, it is a study in coordinates of geometric degeneration to a point of Thurston's boundary for Teichmueller space. This may offer a paradigm for the extension...

  5. On fixed points and uniformly convex spaces

    OpenAIRE

    Gelander, Tsachik

    2008-01-01

    The purpose of this note is to present two elementary, but useful, facts concerning actions on uniformly convex spaces. We demonstrate how each of them can be used in an alternative proof of the triviality of the first $L_p$-cohomology of higher rank simple Lie groups, proved in [BFGM].

  6. Dynamic Matchings in Convex Bipartite Graphs

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Georgiadis, Loukas; Hansen, Kristoffer Arnsfelt

    2007-01-01

    We consider the problem of maintaining a maximum matching in a convex bipartite graph G = (V,E) under a set of update operations which includes insertions and deletions of vertices and edges. It is not hard to show that it is impossible to maintain an explicit representation of a maximum matching...

  7. Minimizing convex functions by continuous descent methods

    Directory of Open Access Journals (Sweden)

    Sergiu Aizicovici

    2010-01-01

    Full Text Available We study continuous descent methods for minimizing convex functions, defined on general Banach spaces, which are associated with an appropriate complete metric space of vector fields. We show that there exists an everywhere dense open set in this space of vector fields such that each of its elements generates strongly convergent trajectories.

  8. Differential analysis of matrix convex functions

    DEFF Research Database (Denmark)

    Hansen, Frank; Tomiyama, Jun

    2007-01-01

    We analyze matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided differences given by Kraus [F. Kraus, Über konvekse Matrixfunktionen, Math. Z. 41 (1936) 18-42]. We obtain for each order conditions for ma...

  9. Estimates for oscillatory integrals with convex phase

    Energy Technology Data Exchange (ETDEWEB)

    Chakhkiev, M A [Moscow State Social University, Moscow (Russian Federation)

    2006-02-28

    We consider methods for estimating one-dimensional oscillatory integrals with convex phase and amplitudes of bounded variation or Lipschitz class amplitudes. In particular, we improve the estimate for the Piercey integral with near-caustic parameter values, and also consider estimation methods for n-dimensional oscillatory integrals.

  10. Some Characterizations of Convex Interval Games

    NARCIS (Netherlands)

    Brânzei, R.; Tijs, S.H.; Alparslan-Gok, S.Z.

    2008-01-01

    This paper focuses on new characterizations of convex interval games using the notions of exactness and superadditivity. We also relate big boss interval games with concave interval games and obtain characterizations of big boss interval games in terms of exactness and subadditivity.

  11. Directional Convexity and Finite Optimality Conditions.

    Science.gov (United States)

    1984-03-01

    system, Necessary Conditions for optimality. Work Unit Number 5 (Optimization and Large Scale Systems) *Istituto di Matematica Applicata, Universita...that R(T) is convex would then imply x(u,T) e int R(T). Cletituto di Matematica Applicata, Universita di Padova, 35100 ITALY. Sponsored by the United

  12. Convex bodies of states and maps

    Science.gov (United States)

    Grabowski, Janusz; Ibort, Alberto; Kuś, Marek; Marmo, Giuseppe

    2013-10-01

    We give a general solution to the question of when the convex hulls of orbits of quantum states on a finite-dimensional Hilbert space under unitary actions of a compact group have a non-empty interior in the surrounding space of all density operators. The same approach can be applied to study convex combinations of quantum channels. The importance of both problems stems from the fact that, usually, only sets with non-vanishing volumes in the embedding spaces of all states or channels are of practical importance. For the group of local transformations on a bipartite system we characterize maximally entangled states by the properties of a convex hull of orbits through them. We also compare two partial characteristics of convex bodies in terms of the largest balls and maximum volume ellipsoids contained in them and show that, in general, they do not coincide. Separable states, mixed-unitary channels and k-entangled states are also considered as examples of our techniques.

  13. Convexity properties of Hamiltonian group actions

    CERN Document Server

    Guillemin, Victor

    2005-01-01

    This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been made in recent years following a breakthrough by Klyachko. The book presents a simple local model for the moment polytope, valid in the "generic&rdquo case, and an elementary Morse-theoretic argument deriving the Klyachko inequalities and some of their generalizations. It reviews various infinite-dimensional manifestations of moment convexity, such as the Kostant type theorems for orbits of a loop group (due to Atiyah and Pressley) or a symplectomorphism group (due to Bloch, Flaschka and Ratiu). Finally, it gives an account of a new convexity theorem for moment map images of orbits of a Borel sub...

  14. Subset Selection by Local Convex Approximation

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman; Madsen, Henrik

    1999-01-01

    least squares criterion. We propose an optimization technique for the posed probelm based on a modified version of the Newton-Raphson iterations, combined with a backward elimination type algorithm. THe Newton-Raphson modification concerns iterative approximations to the non-convex cost function...

  15. Conference on Convex Analysis and Global Optimization

    CERN Document Server

    Pardalos, Panos

    2001-01-01

    There has been much recent progress in global optimization algo­ rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun­ damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon­ vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en­ dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by th...

  16. Relations between Lipschitz functions and convex functions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [1]Zajicek, J., On the differentation of convex functions in finite and infinite dimensional spaces, Czech J. Math.,1979, 29: 340-348.[2]Hu, T. C., Klee, V. L., Larman, D. G., Optimization of globally convex functions, SIAM J. Control Optim., 1989,27: 1026-1047.[3]Cepedello Boiso, M., Approximation of Lipschitz functions by △-convex functions in Banach spaces, Israel J.Math., 1998, 106: 269-284.[4]Asplund, E., Frechet differentiability of convex functions, Acta Math., 1968, 121: 31-47.[5]Johnson, J. A., Lipschitz spaces, Pacific J. Math, 1974, 51: 177-186.[6]Stromberg, T., The operation of infimal convolution, Dissert. Math., (Rozprawy Mat.), 1996, 325: 58.[7]Kadison, R. V., Ringrose, J. R., Fundamentals of the theory of operator algebras, volume Ⅰ: Elementary Theory,Graduate Studies in Math., vol. 15, Amer. Math. Soc., 1997.[8]Phelps, R. R., Convex functions,monotone operators and differentiability, Lect. Notes in Math., vol. 1364,Springer-Verlag, 1977.[9]Lindenstrauss, J., On operators which attain their norm, Israel J. Math., 1963, 1: 139-148.[10]Press, D., Gateaux differentiable functions are somewhere Frechet differentiable, Rend. Circ. Mat. Palermo,1984, 33: 122-133.[11]Press, D., Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal., 1990, 91:312-345.[12]Lindenstrauss, J., Press, D., On Frechet differentiability of Lipschitz maps between Banach spaces, Annals of Math., 2003, 157: 257-288.[13]Press, D., Gateaux differentiable Lipschitz functions need not be Frechet differentiable on a residual set, Supplemento Rend. Circ. Mat. Palermo, Serie Ⅱ, 1982, 2: 217-222.

  17. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika

    2013-02-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  18. On the convexity of N-Chebyshev sets

    Science.gov (United States)

    Borodin, Petr A.

    2011-10-01

    We define N-Chebyshev sets in a Banach space X for every positive integer N (when N=1, these are ordinary Chebyshev sets) and study conditions that guarantee their convexity. In particular, we prove that all N-Chebyshev sets are convex when N is even and X is uniformly convex or N\\ge 3 is odd and X is smooth uniformly convex.

  19. ON THE PRODUCT OF GATEAUX DIFFERENTIABILITY LOCALLY CONVEX SPACES

    Institute of Scientific and Technical Information of China (English)

    Shen Xisheng; Cheng Lixin

    2005-01-01

    A locally convex space is said to be a Gateaux differentiability space (GDS)provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in D.This paper shows that the product of a GDS and a family of separable Frechet spaces is a GDS,and that the product of a GDS and an arbitrary locally convex space endowed with the weak topology is a GDS.

  20. Allometric relationships between traveltime channel networks, convex hulls, and convexity measures

    Science.gov (United States)

    Tay, Lea Tien; Sagar, B. S. Daya; Chuah, Hean Teik

    2006-06-01

    The channel network (S) is a nonconvex set, while its basin [C(S)] is convex. We remove open-end points of the channel connectivity network iteratively to generate a traveltime sequence of networks (Sn). The convex hulls of these traveltime networks provide an interesting topological quantity, which has not been noted thus far. We compute lengths of shrinking traveltime networks L(Sn) and areas of corresponding convex hulls C(Sn), the ratios of which provide convexity measures CM(Sn) of traveltime networks. A statistically significant scaling relationship is found for a model network in the form L(Sn) ˜ A[C(Sn)]0.57. From the plots of the lengths of these traveltime networks and the areas of their corresponding convex hulls as functions of convexity measures, new power law relations are derived. Such relations for a model network are CM(Sn) ˜ ? and CM(Sn) ˜ ?. In addition to the model study, these relations for networks derived from seven subbasins of Cameron Highlands region of Peninsular Malaysia are provided. Further studies are needed on a large number of channel networks of distinct sizes and topologies to understand the relationships of these new exponents with other scaling exponents that define the scaling structure of river networks.

  1. Reverse convex problems: an approach based on optimality conditions

    Directory of Open Access Journals (Sweden)

    Ider Tseveendorj

    2006-01-01

    Full Text Available We present some results concerning reverse convex problems. Global optimality conditions for the problems with a nonsmooth reverse convex constraint are established and convergence of an algorithm in the case of linear program with an additional quadratic reverse convex constraint is studied.

  2. On Quasi E-Convex Bilevel Programming Problem

    Directory of Open Access Journals (Sweden)

    E. A. Youness

    2005-01-01

    Full Text Available Bilevel programming problems involve two optimization problems where the data of the first one is implicity determined by the solution of the second. This study introduces the notions of E-convexity and quasi E-convexity in bilevel programming problems to generalize quasi convex bilevel programming problems.

  3. Reverse convex problems: an approach based on optimality conditions

    OpenAIRE

    Ider Tseveendorj

    2006-01-01

    We present some results concerning reverse convex problems. Global optimality conditions for the problems with a nonsmooth reverse convex constraint are established and convergence of an algorithm in the case of linear program with an additional quadratic reverse convex constraint is studied.

  4. A Generalization of Uniformly Extremely Convex Banach Spaces

    OpenAIRE

    Suyalatu Wulede; Wurichaihu Bai; Wurina Bao

    2016-01-01

    We discuss a new class of Banach spaces which are the generalization of uniformly extremely convex spaces introduced by Wulede and Ha. We prove that the new class of Banach spaces lies strictly between either the classes of k-uniformly rotund spaces and k-strongly convex spaces or classes of fully k-convex spaces and k-strongly convex spaces and has no inclusive relation with the class of locally k-uniformly convex spaces. We obtain in addition some characterizations and properties of this ne...

  5. The heart of a convex body

    CERN Document Server

    Brasco, Lorenzo

    2012-01-01

    We investigate some basic properties of the {\\it heart} $\\heartsuit(\\mathcal{K})$ of a convex set $\\mathcal{K}.$ It is a subset of $\\mathcal{K},$ whose definition is based on mirror reflections of euclidean space, and is a non-local object. The main motivation of our interest for $\\heartsuit(\\mathcal{K})$ is that this gives an estimate of the location of the hot spot in a convex heat conductor with boundary temperature grounded at zero. Here, we investigate on the relation between $\\heartsuit(\\mathcal{K})$ and the mirror symmetries of $\\mathcal{K};$ we show that $\\heartsuit(\\mathcal{K})$ contains many (geometrically and phisically) relevant points of $\\mathcal{K};$ we prove a simple geometrical lower estimate for the diameter of $\\heartsuit(\\mathcal{K});$ we also prove an upper estimate for the area of $\\heartsuit(\\mathcal{K}),$ when $\\mathcal{K}$ is a triangle.

  6. Coalescence between two convex liquid surfaces

    Science.gov (United States)

    Yang, Fan; Jian, Zhen; Li, Erqiang; Thoroddsen, S. T.

    2015-11-01

    We study the coalescence of two convex surfaces of the same liquid. One of the convex free surfaces is formed at a circular opening of a closed tank by imposing a negative pressure difference. The other surface is a droplet of larger curvature, which is pendant from a concentric nozzle. The coalescence starts from near-zero velocity, so the configuration can be characterized by two dimensionless numbers: the Ohnesorge number Oh = μ /√{ ργL } and the radius ratio between the two surfaces α =rd /rs . We use high-speed video, PIV and numerical simulations, using the Gerris program, to study the dynamics of the coalescence. Our focus is on the interface shapes, the growth-rate of the neck connecting the two surfaces and the formation of a vortex ring. The growth-rate is compared to earlier models for the coalescence of drops or bubbles.

  7. Convex Modeling of Interactions with Strong Heredity

    Science.gov (United States)

    Haris, Asad; Witten, Daniela; Simon, Noah

    2015-01-01

    We consider the task of fitting a regression model involving interactions among a potentially large set of covariates, in which we wish to enforce strong heredity. We propose FAMILY, a very general framework for this task. Our proposal is a generalization of several existing methods, such as VANISH [Radchenko and James, 2010], hierNet [Bien et al., 2013], the all-pairs lasso, and the lasso using only main effects. It can be formulated as the solution to a convex optimization problem, which we solve using an efficient alternating directions method of multipliers (ADMM) algorithm. This algorithm has guaranteed convergence to the global optimum, can be easily specialized to any convex penalty function of interest, and allows for a straightforward extension to the setting of generalized linear models. We derive an unbiased estimator of the degrees of freedom of FAMILY, and explore its performance in a simulation study and on an HIV sequence data set. PMID:28316461

  8. Convex Arrhenius plots and their interpretation

    Science.gov (United States)

    Truhlar, Donald G.; Kohen, Amnon

    2001-01-01

    This paper draws attention to selected experiments on enzyme-catalyzed reactions that show convex Arrhenius plots, which are very rare, and points out that Tolman's interpretation of the activation energy places a fundamental model-independent constraint on any detailed explanation of these reactions. The analysis presented here shows that in such systems, the rate coefficient as a function of energy is not just increasing more slowly than expected, it is actually decreasing. This interpretation of the data provides a constraint on proposed microscopic models, i.e., it requires that any successful model of a reaction with a convex Arrhenius plot should be consistent with the microcanonical rate coefficient being a decreasing function of energy. The implications and limitations of this analysis to interpreting enzyme mechanisms are discussed. This model-independent conclusion has broad applicability to all fields of kinetics, and we also draw attention to an analogy with diffusion in metastable fluids and glasses. PMID:11158559

  9. On the convexity of Relativistic Hydrodynamics

    CERN Document Server

    Ibáñez, José María; Martí, José María; Miralles, Juan Antonio; 10.1088/0264-9381/30/5/057002

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\\it Rev. Mod. Phys.} {\\bf 61} 75). The classical limit is recovered.

  10. Coefficient inequalities for starlikeness and convexity

    Directory of Open Access Journals (Sweden)

    Ali Rosihan M.

    2013-06-01

    Full Text Available For an analytic function $f(z=z+\\sum_{n=2}^\\infty a_n z^n$ satisfying the inequality $\\sum_{n=2}^\\infty n(n-1|a_n|\\leq \\beta$, sharp bound on $\\beta$ is determined so that $f$ is either starlike or convex of order $\\alpha$. Several other coefficient inequalities related to certain subclasses are also investigated.

  11. When is multidimensional screening a convex program?

    CERN Document Server

    Figalli, Alessio; McCann, Robert J

    2009-01-01

    A principal wishes to transact business with a multidimensional distribution of agents whose preferences are known only in the aggregate. Assuming a twist (= generalized Spence-Mirrlees single-crossing) hypothesis and that agents can choose only pure strategies, we identify a structural condition on the preference b(x,y) of agent type x for product type y -- and on the principal's costs c(y) -- which is necessary and sufficient for reducing the profit maximization problem faced by the principal to a convex program. This is a key step toward making the principal's problem theoretically and computationally tractable; in particular, it allows us to derive uniqueness and stability of the principal's optimum strategy -- and similarly of the strategy maximizing the expected welfare of the agents when the principal's profitability is constrained. We call this condition non-negative cross-curvature: it is also (i) necessary and sufficient to guarantee convexity of the set of b-convex functions, (ii) invariant under r...

  12. On convex relaxation of graph isomorphism.

    Science.gov (United States)

    Aflalo, Yonathan; Bronstein, Alexander; Kimmel, Ron

    2015-03-10

    We consider the problem of exact and inexact matching of weighted undirected graphs, in which a bijective correspondence is sought to minimize a quadratic weight disagreement. This computationally challenging problem is often relaxed as a convex quadratic program, in which the space of permutations is replaced by the space of doubly stochastic matrices. However, the applicability of such a relaxation is poorly understood. We define a broad class of friendly graphs characterized by an easily verifiable spectral property. We prove that for friendly graphs, the convex relaxation is guaranteed to find the exact isomorphism or certify its inexistence. This result is further extended to approximately isomorphic graphs, for which we develop an explicit bound on the amount of weight disagreement under which the relaxation is guaranteed to find the globally optimal approximate isomorphism. We also show that in many cases, the graph matching problem can be further harmlessly relaxed to a convex quadratic program with only n separable linear equality constraints, which is substantially more efficient than the standard relaxation involving n2 equality and n2 inequality constraints. Finally, we show that our results are still valid for unfriendly graphs if additional information in the form of seeds or attributes is allowed, with the latter satisfying an easy to verify spectral characteristic.

  13. Lattice QCD on Non-Orientable Manifolds

    CERN Document Server

    Mages, Simon; Borsanyi, Szabolcs; Fodor, Zoltan; Katz, Sandor; Szabo, Kalman K

    2015-01-01

    A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge, when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the field configuration space becomes connected. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance completely. Here we propose to use a non-orientable manifold, and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is, that translational invariance is preserved up to exponentially small corrections. A Dirac-fermion on a non-orientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to...

  14. New Spinor Fields on Lorentzian 7-Manifolds

    CERN Document Server

    Bonora, L

    2016-01-01

    This paper deals with the classification of spinor fields according to the bilinear covariants in 7 dimensions. It extends to higher dimensions the so-called Lounesto spinor fields classification in Minkowski spacetime, which encompasses Dirac, Weyl, Majorana, and more generally flagpoles, flag-dipoles and dipole spinor fields. A generalized classification according to the bilinear covariants was previously studied on Euclidean 7-manifolds. It presents either just one spinor field class, in the real case of Majorana spinors, or three non-trivial classes in the most general case. In this paper we show that by imposing appropriate conditions on spinor fields in 7d manifolds with Lorentzian metric, the formerly obtained obstructions for new classes of spinor fields can be circumvented. New spinor fields classes are then explicitly constructed. In particular, on 7-manifolds with asymptotically flat black hole background, by means of such spinors one can introduce a generalized current density which further serves...

  15. Cork twisting exotic Stein 4-manifolds

    CERN Document Server

    Akbulut, Selman

    2011-01-01

    From any 4-dimensional oriented handlebody X without 3- and 4-handles and with $b_2\\geq 1$, we construct arbitrary many compact Stein 4-manifolds which are mutually homeomorphic but not diffeomorphic to each other, so that their topological invariants (their fundamental groups, homology groups, boundary homology groups, and intersection forms) coincide with those of X. We also discuss the induced contact structures on their boundaries. Furthermore, for any smooth 4-manifold pair (Z,Y) such that the complement $Z-\\textnormal{int}\\,Y$ is a handlebody without 3- and 4-handles and with $b_2\\geq 1$, we construct arbitrary many exotic embeddings of a compact 4-manifold Y' into Z, such that Y' has the same topological invariants as Y.

  16. Unknotting tunnels in hyperbolic 3-manifolds

    CERN Document Server

    Adams, Colin

    2012-01-01

    An unknotting tunnel in a 3-manifold with boundary is a properly embedded arc, the complement of an open neighborhood of which is a handlebody. A geodesic with endpoints on the cusp boundary of a hyperbolic 3-manifold and perpendicular to the cusp boundary is called a vertical geodesic. Given a vertical geodesic in a hyperbolic 3-manifold M, we find sufficient conditions for it to be an unknotting tunnel. In particular, if the vertical geodesic corresponds to a 4-bracelet, 5-bracelet or 6-bracelet in the universal cover and has short enough length, it must be an unknotting tunnel. Furthermore, we consider a vertical geodesic that satisfies the elder sibling property, which means that in the universal cover, every horoball except the one centered at infinity is connected to a larger horoball by a lift of the vertical geodesic. Such a vertical geodesic with length less than ln(2) is then shown to be an unknotting tunnel.

  17. Duality constructions from quantum state manifolds

    CERN Document Server

    Kriel, J N; Scholtz, F G

    2015-01-01

    The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS_2/CFT_1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et. al. the corresponding state manifol...

  18. Roughly isometric minimal immersions into Riemannian manifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    A given metric (length-) space $X$ (whether compact or not) is roughly isometric to any one of its Kanai graphs $G$, which in turn can be {\\em{geometrized}} by considering each edge of $G$ as a 1-dimensional manifold with an associated metric $g$ giving the 'correct' length of the edge. In this t......A given metric (length-) space $X$ (whether compact or not) is roughly isometric to any one of its Kanai graphs $G$, which in turn can be {\\em{geometrized}} by considering each edge of $G$ as a 1-dimensional manifold with an associated metric $g$ giving the 'correct' length of the edge....... In this talk we will mainly be concerned with {\\em{minimal}} isometric immersions of such geometrized approximations $(G, g)$ of $X$ into Riemannian manifolds $N$ with bounded curvature. When such an immersion exists, we will call it an $X$-web in $N$. Such webs admit a natural 'geometric' extension...

  19. Burning invariant manifolds in reactive front propagation

    CERN Document Server

    Mahoney, John; Mitchell, Kevin; Solomon, Tom

    2011-01-01

    We present theory and experiments on the dynamics of reaction fronts in a two-dimensional flow composed of a chain of alternating vortices. Inspired by the organization of passive transport by invariant manifolds, we introduce burning invariant manifolds (BIMs), which act as one-sided barriers to front propagation. The BIMs emerge from the theory when the advection-reaction- diffusion system is recast as an ODE for reaction front elements. Experimentally, we demonstrate how these BIMs can be measured and compare their behavior with simulation. Finally, a topological BIM formalism yields a maximum front propagation speed.

  20. Radio Interferometric Calibration Using a Riemannian Manifold

    CERN Document Server

    Yatawatta, Sarod

    2013-01-01

    In order to cope with the increased data volumes generated by modern radio interferometers such as LOFAR (Low Frequency Array) or SKA (Square Kilometre Array), fast and efficient calibration algorithms are essential. Traditional radio interferometric calibration is performed using nonlinear optimization techniques such as the Levenberg-Marquardt algorithm in Euclidean space. In this paper, we reformulate radio interferometric calibration as a nonlinear optimization problem on a Riemannian manifold. The reformulated calibration problem is solved using the Riemannian trust-region method. We show that calibration on a Riemannian manifold has faster convergence with reduced computational cost compared to conventional calibration in Euclidean space.

  1. The "Parity" Anomaly On An Unorientable Manifold

    CERN Document Server

    Witten, Edward

    2016-01-01

    The "parity" anomaly -- more accurately described as an anomaly in time-reversal or reflection symmetry -- arises in certain theories of fermions coupled to gauge fields and/or gravity in a spacetime of odd dimension. The "parity" anomaly has traditionally been studied on orientable manifolds only, but recent developments involving topological superconductors have made it clear that one can get more information by asking what happens on an unorientable manifold. In this paper, we analyze the "parity" anomaly for fermions coupled to gauge fields and gravity in $2+1$ dimensions. We consider applications to gapped boundary states of a topological superconductor and to M2-branes in string/M-theory.

  2. Wilson Fermions on a Randomly Triangulated Manifold

    CERN Document Server

    Burda, Z; Krzywicki, A

    1999-01-01

    A general method of constructing the Dirac operator for a randomly triangulated manifold is proposed. The fermion field and the spin connection live, respectively, on the nodes and on the links of the corresponding dual graph. The construction is carried out explicitly in 2-d, on an arbitrary orientable manifold without boundary. It can be easily converted into a computer code. The equivalence, on a sphere, of Majorana fermions and Ising spins in 2-d is rederived. The method can, in principle, be extended to higher dimensions.

  3. Unraveling flow patterns through nonlinear manifold learning.

    Science.gov (United States)

    Tauro, Flavia; Grimaldi, Salvatore; Porfiri, Maurizio

    2014-01-01

    From climatology to biofluidics, the characterization of complex flows relies on computationally expensive kinematic and kinetic measurements. In addition, such big data are difficult to handle in real time, thereby hampering advancements in the area of flow control and distributed sensing. Here, we propose a novel framework for unsupervised characterization of flow patterns through nonlinear manifold learning. Specifically, we apply the isometric feature mapping (Isomap) to experimental video data of the wake past a circular cylinder from steady to turbulent flows. Without direct velocity measurements, we show that manifold topology is intrinsically related to flow regime and that Isomap global coordinates can unravel salient flow features.

  4. Unraveling flow patterns through nonlinear manifold learning.

    Directory of Open Access Journals (Sweden)

    Flavia Tauro

    Full Text Available From climatology to biofluidics, the characterization of complex flows relies on computationally expensive kinematic and kinetic measurements. In addition, such big data are difficult to handle in real time, thereby hampering advancements in the area of flow control and distributed sensing. Here, we propose a novel framework for unsupervised characterization of flow patterns through nonlinear manifold learning. Specifically, we apply the isometric feature mapping (Isomap to experimental video data of the wake past a circular cylinder from steady to turbulent flows. Without direct velocity measurements, we show that manifold topology is intrinsically related to flow regime and that Isomap global coordinates can unravel salient flow features.

  5. Inertial manifold of the atmospheric equations

    Institute of Scientific and Technical Information of China (English)

    李建平; 丑纪范

    1999-01-01

    For a class of nonlinear evolution equations, their global attractors are studied and the existence of their inertial manifolds is discussed using the truncated method. Then, on the basis of the properties of operators of the atmospheric equations, it is proved that the operator equation of the atmospheric motion with dissipation and external forcing belongs to the class of nonlinear evolution equations. Therefore, it is known that there exists an inertial manifold of the atmospheric equations if the spectral gap condition for the dissipation operator is satisfied. These results furnish a basis for further studying the dynamical properties of global attractor of the atmospheric equations and for designing better numerical scheme.

  6. Tangent bundles of Hantzsche-Wendt manifolds

    Science.gov (United States)

    Gaşior, A.; Szczepański, A.

    2013-08-01

    We formulate a condition for the existence of a SpinC-structure on an oriented flat manifold Mn with H2(Mn,R)=0. We prove that Mn has a SpinC-structure if and only if there exists a homomorphism ɛ:π1(Mn)→SpinC(n) such that λ∘ɛ=h, where h:π1(Mn)→SO(n) is a holonomy homomorphism and λ:SpinC(n)→SO(n) is a standard homomorphism defined. As an application we shall prove that all cyclic Hantzsche-Wendt manifolds do not have the SpinC-structure.

  7. Beyond Sentiment: The Manifold of Human Emotions

    CERN Document Server

    Kim, Seungyeon; Lebanon, Guy; Essa, Irfan

    2012-01-01

    Sentiment analysis predicts the presence of positive or negative emotions in a text document. In this paper we consider higher dimensional extensions of the sentiment concept, which represent a richer set of human emotions. Our approach goes beyond previous work in that our model contains a continuous manifold rather than a finite set of human emotions. We investigate the resulting model, compare it to psychological observations, and explore its predictive capabilities. Besides obtaining significant improvements over a baseline without manifold, we are also able to visualize different notions of positive sentiment in different domains.

  8. Generalized nonuniform dichotomies and local stable manifolds

    CERN Document Server

    Bento, António J G

    2010-01-01

    We establish the existence of local stable manifolds for semiflows generated by nonlinear perturbations of nonautonomous ordinary linear differential equations in Banach spaces, assuming the existence of a general type of nonuniform dichotomy for the evolution operator that contains the nonuniform exponential and polynomial dichotomies as a very particular case. The family of dichotomies considered allow situations for which the classical Lyapunov exponents are zero. Additionally, we give new examples of application of our stable manifold theorem and study the behavior of the dynamics under perturbations.

  9. Extreme properties of quermassintegrals of convex bodies

    Institute of Scientific and Technical Information of China (English)

    LENG; Gangsong

    2001-01-01

    [1]Ball,K.,Shadows of convex bodies,Trans.Amer.Math.Soc.,1991,327:891-901.[2]Lutwak,E.,Mixed projection inequalities,Trans.Amer.Math.Soc.,1985,287:92-106.[3]Bourgain,J.,Lindenstrauss,J.,Projection bodies,Israel Seminar (G.A.F.A) 1986-1987,Lecture Notes in Math.Vol.1317,Berlin-New York:Springer-Verlag,1988,250-269.[4]Chakerian,G.D.,Lutwak,E.,Bodies with similar projections,Trans.Amer.Math.Soc.,1997,349:1811-1820.[5]Schneider,R.,Weil,W.,Zonoids and related topics,Convexity and its Applications (eds.Gruber,P.M.,Wills,J.M.),Basel:Birkhuser,1983,296-316.[6]Schneider,R.,Convex Bodies:the Brunn-Minkowski Theory,Cambridge:Cambridge University Press,1993.[7]Schneider,R.,On the determination of convex bodies by projection and girth functions,Result Math.,1998,33:155-160.[8]Thompson,A.C.,Minkowski Geometry,Cambridge:Cambridge University Press,1996.[9]Petty,C.M.,Projection bodies,in Proceedings,Coll Convexity,Copenhagen,1965,Kbenhavns Univ.Mat.Inst.,1967,234-241.[10]Schneider,R.,Zu einem problem von Shephard über die projectionen konvexer kirper,Math.Z.,1967,101:71-81.[11]Ball,K.,Volume ratios and a reverse isoprimetric inequalitity,J.London Math.Soc.,1991,44(2):351-359.[12]Gardner,R.J.,Intersection bodies and the Busemann-Petty problem,Trans.Amer.Math.Soc.,1994,342:435-445.[13]Gardner,R.J.,A positive answer to the Busemann-petty problem in three dimensions,Annals of Math.,1994,140:435-447.[14]Grinberg,E.L.,Isoperimetric inequalities and identities fork-dimensional cross-sections of convex bodies,Math.Ann.,1991,291:75-86.[15]Goodey,P.,Schneider,R.,Weil,W.,On the determination of convex bodies by projection functions,Bull.London Math.Soc.,1997,29:82-88.[16]Lutwak,E.,Intersection bodies and dual mixed volumes,Adv.Math.,1988,71:232-261.[17]Zhang,G.,Centered bodies and dual mixed volumes,Trans.Amer.Soc.,1994,345:777-801.[18]Zhang,G.,Dual Kinematic formulas,Trans.Amer.Soc.,1999,351:985-995.[19

  10. Convergence of inexact descent methods for nonconvex optimization on Riemannian manifolds

    CERN Document Server

    Bento, G C; Oliveira, P R

    2011-01-01

    In this paper we present an abstract convergence analysis of inexact descent methods in Riemannian context for functions satisfying Kurdyka-Lojasiewicz inequality. In particular, without any restrictive assumption about the sign of the sectional curvature of the manifold, we obtain full convergence of a bounded sequence generated by the proximal point method, in the case that the objective function is nonsmooth and nonconvex, and the subproblems are determined by a quasi distance which does not necessarily coincide with the Riemannian distance. Moreover, if the objective function is $C^1$ with $L$-Lipschitz gradient, not necessarily convex, but satisfying Kurdyka-Lojasiewicz inequality, full convergence of a bounded sequence generated by the steepest descent method is obtained.

  11. On Kähler–Norden Manifolds-Erratum

    Indian Academy of Sciences (India)

    M Iscan; A A Salimov

    2009-02-01

    This paper is concerned with the problem of the geometry of Norden manifolds. Some properties of Riemannian curvature tensors and curvature scalars of Kähler–Norden manifolds using the theory of Tachibana operators is presented.

  12. $\\rm G_2$ holonomy manifolds are superconformal

    CERN Document Server

    Díaz, Lázaro O Rodríguez

    2016-01-01

    We study the chiral de Rham complex (CDR) over a manifold $M$ with holonomy $\\rm G_2$. We prove that the vertex algebra of global sections of the CDR associated to $M$ contains two commuting copies of the Shatashvili-Vafa $\\rm G_2$ superconformal algebra. Our proof is a tour de force, based on explicit computations.

  13. Four-manifolds, geometries and knots

    CERN Document Server

    Hillman, Jonathan A

    2007-01-01

    The goal of this book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such manifolds and knots. The first chapter is purely algebraic. The rest of the book may be divided into three parts: general results on homotopy and surgery (Chapters 2-6), geometries and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18). In many cases the Euler characteristic, fundamental group and Stiefel-Whitney classes together form a complete system of invariants for the homotopy type of such manifolds, and the possible values of the invariants can be described explicitly. The strongest results are characterizations of manifolds which fibre homotopically over S^1 or an aspherical surface (up to homotopy equivalence) and infrasolvmanifolds (up to homeomorphism). As a consequence 2-knots whose groups are poly-Z are determined up to Gluck reconstruc...

  14. Einstein constraints on n dimensional compact manifolds

    CERN Document Server

    Choquet-Bruhat, Y

    2004-01-01

    We give a general survey of the solution of the Einstein constraints by the conformal method on n dimensional compact manifolds. We prove some new results about solutions with low regularity (solutions in $H_{2}$ when n=3), and solutions with unscaled sources.

  15. M-theory and G_2 Manifolds

    CERN Document Server

    Becker, Katrin; Robbins, Daniel

    2015-01-01

    In this talk we report on recent progress in describing compactifications of string theory and M-theory on G_2 and Spin(7) manifolds. We include the infinite set of alpha'-corrections and describe the entire tower of massless and massive Kaluza-Klein modes resulting from such compactifications.

  16. Exponential estimates of symplectic slow manifolds

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Wulff, C.

    2016-01-01

    is motivated by a paper of MacKay from 2004. The method does not notice resonances, and therefore we do not pose any restrictions on the motion normal to the slow manifold other than it being fast and analytic. We also present a stability result and obtain a generalization of a result of Gelfreich and Lerman...

  17. Modelling of the Manifold Filling Dynamics

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Chevalier, Alain Marie Roger; Jensen, Michael

    1996-01-01

    Mean Value Engine Models (MVEMs) are dynamic models which describe dynamic engine variable (or state) responses on time scales slightly longer than an engine event. This paper describes a new model of the intake manifold filling dynamics which is simple and easy to calibrate for use in engine con...

  18. Duality constructions from quantum state manifolds

    Science.gov (United States)

    Kriel, J. N.; van Zyl, H. J. R.; Scholtz, F. G.

    2015-11-01

    The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS 2 /CF T 1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et al. [1] the corresponding state manifold is seen to be exactly AdS 2 with a scalar curvature determined by the representation of the symmetry algebra. It is also shown that the dilaton field itself is given by the quantum mechanical expectation values of the dynamical symmetry generators and as a result exhibits dynamics equivalent to that of a conformal mechanical system.

  19. Heat Kernel Renormalization on Manifolds with Boundary

    OpenAIRE

    Albert, Benjamin I.

    2016-01-01

    In the monograph Renormalization and Effective Field Theory, Costello gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. In this paper, we extend Costello's renormalization procedure to a class of manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  20. Geometrical description of denormalized thermodynamic manifold

    Institute of Scientific and Technical Information of China (English)

    Wu Li-Ping; Sun Hua-Fei; Cao Li-Mei

    2009-01-01

    In view of differential geometry,the state space of thermodynamic parameters is investigated. Here the geometrical structures of the denormalized thermodynamic manifold are considered. The relation of their geometrical metrics is obtained. Moreover an example is used to illustrate our conclusions.

  1. On homological stability for configuration spaces on closed background manifolds

    OpenAIRE

    Cantero, Federico; Palmer, Martin

    2014-01-01

    We introduce a new map between configuration spaces of points in a background manifold - the replication map - and prove that it is a homology isomorphism in a range with certain coefficients. This is particularly of interest when the background manifold is closed, in which case the classical stabilisation map does not exist. We then establish conditions on the manifold and on the coefficients under which homological stability holds for configuration spaces on closed manifolds. These conditio...

  2. Royden's lemma in infinite dimensions and Hilbert-Hartogs manifolds

    CERN Document Server

    Ivashkovich, S

    2011-01-01

    We prove the Royden's Lemma for complex Hilbert manifolds, i.e., that a holomorphic imbedding of the closure of a finite dimensional, strictly pseudoconvex domain into a complex Hilbert manifold extends to a biholomorphic mapping onto a product of this domain with the unit ball in Hilbert space. This reduces several problems concerning complex Hilbert manifolds to open subsets of a Hilbert space. As an illustration we prove some results on generalized loop spaces of complex manifolds.

  3. Fluid manifold design for a solar energy storage tank

    Science.gov (United States)

    Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.

    1975-01-01

    A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.

  4. A Mean Point Based Convex Hull Computation Algorithm

    Directory of Open Access Journals (Sweden)

    Digvijay Singh

    2016-11-01

    Full Text Available The optimal solution of a Linear Programming problem (LPP is a basic feasible solution and all basic feasible solutions are extreme or boundary points of a convex region formed by the constraint functions of the LPP. In fact, the feasible solution space is not always a convex set so the verification of extreme points for optimality is quite difficult. In order to cover the non-convex feasible points within a convex set, a convex hull is imagined so that the extreme or boundary points may be checked for evaluation of the optimum solution in the decision-making process. In this article a computer assisted convex hull computation algorithm using the Mean Point and Python code verified results of the designed algorithm are discussed.

  5. On Self-Mapping Degrees of S3- Geometry Manifolds

    Institute of Scientific and Technical Information of China (English)

    Xiao Ming DU

    2009-01-01

    In this paper we determined all of the possible self-mapping degrees of the manifolds with S3-geometry, which are supposed to be all 3-manifolds with finite fundamental groups. This is a part of a project to determine all possible self-mapping degrees of all closed orientable 3-manifold in Thurston's picture.

  6. Canonical connection on a class of Riemannian almost product manifolds

    CERN Document Server

    Mekerov, Dimitar

    2009-01-01

    The canonical connection on a Riemannian almost product manifolds is an analogue to the Hermitian connection on an almost Hermitian manifold. In this paper we consider the canonical connection on a class of Riemannian almost product manifolds with nonintegrable almost product structure.

  7. NUMERICAL MANIFOLD METHOD AND ITS APPLICATION IN UNDERGROUND POENINGS

    Institute of Scientific and Technical Information of China (English)

    王芝银; 李云鹏

    1998-01-01

    A brief introduction is made for the Numerical Manifold Method and its analysingprocess in rock mechanics. Some aspects of the manifold method are improved in implementingprocess according to the practice of excavating underground openings. Corresponding formulasare given and a computer program of the Numerical Manifold Method has been completed in thispaper.

  8. Holomorphic Cartan geometries, Calabi--Yau manifolds and rational curves

    CERN Document Server

    Biswas, Indranil; 10.1016/j.difgeo.2009.09.003

    2010-01-01

    We prove that if a Calabi--Yau manifold $M$ admits a holomorphic Cartan geometry, then $M$ is covered by a complex torus. This is done by establishing the Bogomolov inequality for semistable sheaves on compact K\\"ahler manifolds. We also classify all holomorphic Cartan geometries on rationally connected complex projective manifolds.

  9. Wave equations on anti self dual (ASD) manifolds

    Science.gov (United States)

    Bashingwa, Jean-Juste; Kara, A. H.

    2017-06-01

    In this paper, we study and perform analyses of the wave equation on some manifolds with non diagonal metric g_{ij} which are of neutral signatures. These include the invariance properties, variational symmetries and conservation laws. In the recent past, wave equations on the standard (space time) Lorentzian manifolds have been performed but not on the manifolds from metrics of neutral signatures.

  10. Poisson Manifolds, Lie Algebroids, Modular Classes: a Survey

    Directory of Open Access Journals (Sweden)

    Yvette Kosmann-Schwarzbach

    2008-01-01

    Full Text Available After a brief summary of the main properties of Poisson manifolds and Lie algebroids in general, we survey recent work on the modular classes of Poisson and twisted Poisson manifolds, of Lie algebroids with a Poisson or twisted Poisson structure, and of Poisson-Nijenhuis manifolds. A review of the spinor approach to the modular class concludes the paper.

  11. Local topology in deformation spaces of hyperbolic 3-manifolds

    CERN Document Server

    Brock, Jeffrey F; Canary, Richard D; Minsky, Yair N

    2009-01-01

    We prove that the deformation space AH(M) of marked hyperbolic 3-manifolds homotopy equivalent to a fixed compact 3-manifold M with incompressible boundary is locally connected at minimally parabolic points. Moreover, spaces of Kleinian surface groups are locally connected at quasiconformally rigid points. Similar results are obtained for deformation spaces of acylindrical 3-manifolds and Bers slices.

  12. On the conformal geometry of transverse Riemann Lorentz manifolds

    Science.gov (United States)

    Aguirre, E.; Fernández, V.; Lafuente, J.

    2007-06-01

    Physical reasons suggested in [J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815-1834] for the Quantum Gravity Problem lead us to study type-changing metrics on a manifold. The most interesting cases are Transverse Riemann-Lorentz Manifolds. Here we study the conformal geometry of such manifolds.

  13. Einstein Metrics, Four-Manifolds, and Differential Topology

    OpenAIRE

    2004-01-01

    This article presents a new and more elementary proof of the main Seiberg-Witten-based obstruction to the existence of Einstein metrics on smooth compact 4-manifolds. It also introduces a new smooth manifold invariant which conveniently encapsulates those aspects of Seiberg-Witten theory most relevant to the study of Riemannian variational problems on 4-manifolds.

  14. On the modulus of U-convexity

    Directory of Open Access Journals (Sweden)

    Satit Saejung

    2005-01-01

    Full Text Available We prove that the moduli of U-convexity, introduced by Gao (1995, of the ultrapower X˜ of a Banach space X and of X itself coincide whenever X is super-reflexive. As a consequence, some known results have been proved and improved. More precisely, we prove that uX(1>0 implies that both X and the dual space X∗ of X have uniform normal structure and hence the “worth” property in Corollary 7 of Mazcuñán-Navarro (2003 can be discarded.

  15. Convex and Radially Concave Contoured Distributions

    Directory of Open Access Journals (Sweden)

    Wolf-Dieter Richter

    2015-01-01

    Full Text Available Integral representations of the locally defined star-generalized surface content measures on star spheres are derived for boundary spheres of balls being convex or radially concave with respect to a fan in Rn. As a result, the general geometric measure representation of star-shaped probability distributions and the general stochastic representation of the corresponding random vectors allow additional specific interpretations in the two mentioned cases. Applications to estimating and testing hypotheses on scaling parameters are presented, and two-dimensional sample clouds are simulated.

  16. Width Distributions for Convex Regular Polyhedra

    CERN Document Server

    Finch, Steven R

    2011-01-01

    The mean width is a measure on three-dimensional convex bodies that enjoys equal status with volume and surface area [Rota]. As the phrase suggests, it is the mean of a probability density f. We verify formulas for mean widths of the regular tetrahedron and the cube. Higher-order moments of f_tetra and f_cube have not been examined until now. Assume that each polyhedron has edges of unit length. We deduce that the mean square width of the regular tetrahedron is 1/3+(3+sqrt(3))/(3*pi) and the mean square width of the cube is 1+4/pi.

  17. Measuring Voting Power in Convex Policy Spaces

    Directory of Open Access Journals (Sweden)

    Sascha Kurz

    2014-03-01

    Full Text Available Classical power index analysis considers the individual’s ability to influence the aggregated group decision by changing its own vote, where all decisions and votes are assumed to be binary. In many practical applications we have more options than either “yes” or “no”. Here we generalize three important power indices to continuous convex policy spaces. This allows the analysis of a collection of economic problems like, e.g., tax rates or spending that otherwise would not be covered in binary models.

  18. Trace-Inequalities and Matrix-Convex Functions

    Directory of Open Access Journals (Sweden)

    Ando Tsuyoshi

    2010-01-01

    Full Text Available Abstract A real-valued continuous function on an interval gives rise to a map via functional calculus from the convex set of Hermitian matrices all of whose eigenvalues belong to the interval. Since the subpace of Hermitian matrices is provided with the order structure induced by the cone of positive semidefinite matrices, one can consider convexity of this map. We will characterize its convexity by the following trace-inequalities: for . A related topic will be also discussed.

  19. Recovery of Sparse Probability Measures via Convex Programming

    OpenAIRE

    Pilanci, Mert; El Ghaoui, Laurent; Chandrasekaran, Venkat

    2012-01-01

    We consider the problem of cardinality penalized optimization of a convex function over the probability simplex with additional convex constraints. The classical ℓ_1 regularizer fails to promote sparsity on the probability simplex since ℓ_1 norm on the probability simplex is trivially constant. We propose a direct relaxation of the minimum cardinality problem and show that it can be efficiently solved using convex programming. As a first application we consider recovering a spa...

  20. Lower Bound for Convex Hull Area and Universal Cover Problems

    CERN Document Server

    Khandhawit, Tirasan; Sriswasdi, Sira

    2011-01-01

    In this paper, we provide a lower bound for an area of the convex hull of points and a rectangle in a plane. We then apply this estimate to establish a lower bound for a universal cover problem. We showed that a convex universal cover for a unit length curve has area at least 0.232239. In addition, we show that a convex universal cover for a unit closed curve has area at least 0.0879873.

  1. Approximation of Convex Bodies by Convex Bodies%凸体间的逼近

    Institute of Scientific and Technical Information of China (English)

    国起; Sten Kaijser

    2003-01-01

    For the affine distance d(C,D)between two convex bodies C,D(∈)Rn,which reduces to the Banach-Mazur distance for symmetric convex bodies, the bounds of d(C,D)have been studied for many years. Some well known estimates for the upper-bounds are as follows: F. John proved d(C,D)≤n1/2 if one is an ellipsoid and another is symmetric,d(C,D)≤n if both are symmetric, and fromF. John's result and d(C1,C2)≤d(C1,C3)d(C2,C3) one has d(C,D)≤n2 for general convex bodies;M.Lassak proved d(C,D)≤(2n-1) if one of them is symmetric.In this paper we get an estimate which includes all the results above as special cases and refines some of them in terms of measures of asymmetry for convex bodies.

  2. Error bound results for convex inequality systems via conjugate duality

    CERN Document Server

    Bot, Radu Ioan

    2010-01-01

    The aim of this paper is to implement some new techniques, based on conjugate duality in convex optimization, for proving the existence of global error bounds for convex inequality systems. We deal first of all with systems described via one convex inequality and extend the achieved results, by making use of a celebrated scalarization function, to convex inequality systems expressed by means of a general vector function. We also propose a second approach for guaranteeing the existence of global error bounds of the latter, which meanwhile sharpens the classical result of Robinson.

  3. Gleason grading of prostate histology utilizing manifold regularization via statistical shape model of manifolds

    Science.gov (United States)

    Sparks, Rachel; Madabhushi, Anant

    2012-03-01

    Gleason patterns of prostate cancer histopathology, characterized primarily by morphological and architectural attributes of histological structures (glands and nuclei), have been found to be highly correlated with disease aggressiveness and patient outcome. Gleason patterns 4 and 5 are highly correlated with more aggressive disease and poorer patient outcome, while Gleason patterns 1-3 tend to reflect more favorable patient outcome. Because Gleason grading is done manually by a pathologist visually examining glass (or digital) slides, subtle morphologic and architectural differences of histological attributes may result in grading errors and hence cause high inter-observer variability. Recently some researchers have proposed computerized decision support systems to automatically grade Gleason patterns by using features pertaining to nuclear architecture, gland morphology, as well as tissue texture. Automated characterization of gland morphology has been shown to distinguish between intermediate Gleason patterns 3 and 4 with high accuracy. Manifold learning (ML) schemes attempt to generate a low dimensional manifold representation of a higher dimensional feature space while simultaneously preserving nonlinear relationships between object instances. Classification can then be performed in the low dimensional space with high accuracy. However ML is sensitive to the samples contained in the dataset; changes in the dataset may alter the manifold structure. In this paper we present a manifold regularization technique to constrain the low dimensional manifold to a specific range of possible manifold shapes, the range being determined via a statistical shape model of manifolds (SSMM). In this work we demonstrate applications of the SSMM in (1) identifying samples on the manifold which contain noise, defined as those samples which deviate from the SSMM, and (2) accurate out-of-sample extrapolation (OSE) of newly acquired samples onto a manifold constrained by the SSMM. We

  4. Long Wave Dynamics along a Convex Bottom

    CERN Document Server

    Didenkulova, Ira; Soomere, Tarmo

    2008-01-01

    Long linear wave transformation in the basin of varying depth is studied for a case of a convex bottom profile in the framework of one-dimensional shallow water equation. The existence of travelling wave solutions in this geometry and the uniqueness of this wave class is established through construction of a 1:1 transformation of the general 1D wave equation to the analogous wave equation with constant coefficients. The general solution of the Cauchy problem consists of two travelling waves propagating in opposite directions. It is found that generally a zone of a weak current is formed between these two waves. Waves are reflected from the coastline so that their profile is inverted with respect to the calm water surface. Long wave runup on a beach with this profile is studied for sine pulse, KdV soliton and N-wave. Shown is that in certain cases the runup height along the convex profile is considerably larger than for beaches with a linear slope. The analysis of wave reflection from the bottom containing a s...

  5. Molecular Graphics of Convex Body Fluids.

    Science.gov (United States)

    Gabriel, Adrian T; Meyer, Timm; Germano, Guido

    2008-03-01

    Coarse-grained modeling of molecular fluids is often based on nonspherical convex rigid bodies like ellipsoids or spherocylinders representing rodlike or platelike molecules or groups of atoms, with site-site interaction potentials depending both on the distance among the particles and the relative orientation. In this category of potentials, the Gay-Berne family has been studied most extensively. However, conventional molecular graphics programs are not designed to visualize such objects. Usually the basic units are atoms displayed as spheres or as vertices in a graph. Atomic aggregates can be highlighted through an increasing amount of stylized representations, e.g., Richardson ribbon diagrams for the secondary structure of proteins, Connolly molecular surfaces, density maps, etc., but ellipsoids and spherocylinders are generally missing, especially as elementary simulation units. We fill this gap providing and discussing a customized OpenGL-based program for the interactive, rendered representation of large ensembles of convex bodies, useful especially in liquid crystal research. We pay particular attention to the performance issues for typical system sizes in this field. The code is distributed as open source.

  6. Local Schrodinger flow into Kahler manifolds

    Institute of Scientific and Technical Information of China (English)

    DlNG; Weiyue(

    2001-01-01

    [1]Ding, W. Y. , Wang, Y. D. , Schrodinger flows of maps into symplectic manifolds, Science in China, Ser. A, 1998, 41(7): 746.[2]Landau, L. D., Lifshitz, E. M., On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z.Sowj., 1935, 8: 153; reproduced in Collected Papers of L. D. Landau, New York: Pergaman Press, 1965, 101-114.[3]Faddeev, L., Takhtajan, L. A. , Hamiltonian Methods in the Theory of Solitons, Berlin-Heidelberg-New York: Springer-Verlag, 1987.[4]Nakamura, K., Sasada, T., Soliton and wave trains in ferromagnets, Phys. Lett. A, 1974, 48: 321.[5]Zhou, Y. , Guo, B. , Tan, S. , Existence and uniqueness of smooth solution for system of ferromagnetic chain, Science in China, Ser. A, 1991, 34(3): 257.[6]Pang, P. , Wang, H. , Wang, Y. D. , Schrodinger flow of maps into Kahler manifolds, Asian J. of Math. , in press.[7]Wang, H. , Wang, Y. D. , Global inhomogeneous Schrodinger flow, Int. J. Math., 2000, 11: 1079.[8]Pang, P., Wang, H., Wang, Y. D., Local existence for inhomogeneous Schrodinger flow of maps into Kahler manifolds,Acta Math. Sinica, English Series, 2000, 16: 487.[9]Temg, C. L., Uhlenbeck, K., Schrodinger flows on Grassmannians, in Integrable Systems, Geometry and Topology,Somervi11e, MA: International Press, in press.[10]Chang, N., Shatah, J., Uhlenbeck, K., Schrodinger maps, Commun. Pure Appl. Math., 2000, 53: 157.[11]Wang, Y. D., Ferromagnetic chain equation from a closed Riemannian manifold into S2, Int. J. Math., 1995, 6: 93.[12]Wang, Y. D., Heisenberg chain systems from compact manifolds into S2, J. Math. Phys., 1998, 39(1): 363.[13]Sulem, P., Sulem, C., Bardos, C., On the continuous limit for a system of classical spins, Commun. Math. Phys., 1986,107: 431.[14]Aubin, T., Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Berlin-Heidelberg-New York: Springer-Verlag,1982.[15]Eells, J. , Lemaire, L. , Another report on harmonic maps, Bull. London

  7. THEORETICAL STUDY OF THREE-DIMENSIONAL NUMERICAL MANIFOLD METHOD

    Institute of Scientific and Technical Information of China (English)

    LUO Shao-ming; ZHANG Xiang-wei; L(U) Wen-ge; JIANG Dong-ru

    2005-01-01

    The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable.

  8. New Calabi-Yau Manifolds with Small Hodge Numbers

    CERN Document Server

    Candelas, Philip

    2008-01-01

    It is known that many Calabi-Yau manifolds form a connected web. The question of whether all Calabi-Yau manifolds form a single web depends on the degree of singularity that is permitted for the varieties that connect the distinct families of smooth manifolds. If only conifolds are allowed then, since shrinking two-spheres and three-spheres to points cannot affect the fundamental group, manifolds with different fundamental groups will form disconnected webs. We examine these webs for the tip of the distribution of Calabi-Yau manifolds where the Hodge numbers (h^{11}, h^{21}) are both small. In the tip of the distribution the quotient manifolds play an important role. We generate via conifold transitions from these quotients a number of new manifolds. These include a manifold with \\chi =-6 that is an analogue of the Tian-Yau manifold and manifolds with an attractive structure that may prove of interest for string phenomenology. We also examine the relation of some of these manifolds to the remarkable Gross-Pop...

  9. Manifold learning-based subspace distance for machinery damage assessment

    Science.gov (United States)

    Sun, Chuang; Zhang, Zhousuo; He, Zhengjia; Shen, Zhongjie; Chen, Binqiang

    2016-03-01

    Damage assessment is very meaningful to keep safety and reliability of machinery components, and vibration analysis is an effective way to carry out the damage assessment. In this paper, a damage index is designed by performing manifold distance analysis on vibration signal. To calculate the index, vibration signal is collected firstly, and feature extraction is carried out to obtain statistical features that can capture signal characteristics comprehensively. Then, manifold learning algorithm is utilized to decompose feature matrix to be a subspace, that is, manifold subspace. The manifold learning algorithm seeks to keep local relationship of the feature matrix, which is more meaningful for damage assessment. Finally, Grassmann distance between manifold subspaces is defined as a damage index. The Grassmann distance reflecting manifold structure is a suitable metric to measure distance between subspaces in the manifold. The defined damage index is applied to damage assessment of a rotor and the bearing, and the result validates its effectiveness for damage assessment of machinery component.

  10. Calabi-Yau Manifolds Over Finite Fields, 1

    CERN Document Server

    Candelas, Philip; Rodríguez-Villegas, F; Candelas, Philip; Ossa, Xenia de la; Rodriguez-Villegas, Fernando

    2000-01-01

    We study Calabi-Yau manifolds defined over finite fields. These manifolds have parameters, which now also take values in the field and we compute the number of rational points of the manifold as a function of the parameters. The intriguing result is that it is possible to give explicit expressions for the number of rational points in terms of the periods of the holomorphic three-form. We show also, for a one parameter family of quintic threefolds, that the number of rational points of the manifold is closely related to as the number of rational points of the mirror manifold. Our interest is primarily with Calabi-Yau threefolds however we consider also the interesting case of elliptic curves and even the case of a quadric in CP_1 which is a zero dimensional Calabi-Yau manifold. This zero dimensional manifold has trivial dependence on the parameter over C but a not trivial arithmetic structure.

  11. Quaternionic Kahler Manifolds, Constrained Instantons and the Magic Square: I

    CERN Document Server

    Dasgupta, Keshav; Wissanji, Alisha

    2007-01-01

    The classification of homogeneous quaternionic manifolds has been done by Alekseevskii, Wolf et al using transitive solvable group of isometries. These manifolds are not generically symmetric, but there is a subset of quaternionic manifolds that are symmetric and Einstein. A further subset of these manifolds are the magic square manifolds. We show that all the symmetric quaternionic manifolds including the magic square can be succinctly classified by constrained instantons. These instantons are mostly semilocal, and their constructions for the magic square can be done from the corresponding Seiberg-Witten curves for certain N = 2 gauge theories that are in general not asymptotically free. Using these, we give possible constructions, such as the classical moduli space metrics, of constrained instantons with exceptional global symmetries. We also discuss the possibility of realising the Kahler manifolds in the magic square using other solitonic configurations in the theory, and point out an interesting new sequ...

  12. Constructing Dualities from Quantum State Manifolds

    CERN Document Server

    van Zyl, H J R

    2015-01-01

    The thesis develops a systematic procedure to construct semi-classical gravitational duals from quantum state manifolds. Though the systems investigated are simple quantum mechanical systems without gauge symmetry many familiar concepts from the conventional gauge/gravity duality come about in a very natural way. The investigation of the low-dimensional manifolds link existing results in the $AdS_2/CFT_1$ literature. We are able to extend these in various ways and provide an explicit dictionary. The higher dimensional investigation is also concluded with a simple dictionary, but this dictionary requires the inclusion of many bulk coordinates. Consequently further work is needed to relate these results to existing literature. Possible ways to achieve this are discussed.

  13. Dynamical systems on 2- and 3-manifolds

    CERN Document Server

    Grines, Viacheslav Z; Pochinka, Olga V

    2016-01-01

    This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed. < The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are present...

  14. New spinor fields on Lorentzian 7-manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L. [International School for Advanced Studies (SISSA),Via Bonomea 265, 34136 Trieste (Italy); Rocha, Roldão da [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC,Avenida dos Estados, 5001, Santo André (Brazil)

    2016-01-21

    This paper deals with the classification of spinor fields according to the bilinear covariants in 7 dimensions. The previously investigated Riemannian case is characterized by either one spinor field class, in the real case of Majorana spinors, or three non-trivial classes in the most general complex case. In this paper we show that by imposing appropriate conditions on spinor fields in 7d manifolds with Lorentzian metric, the formerly obtained obstructions for new classes of spinor fields can be circumvented. New spinor fields classes are then explicitly constructed. In particular, on 7-manifolds with asymptotically flat black hole background, these spinors can define a generalized current density which further defines a time Killing vector at the spatial infinity.

  15. Manifold Learning by Preserving Distance Orders.

    Science.gov (United States)

    Ataer-Cansizoglu, Esra; Akcakaya, Murat; Orhan, Umut; Erdogmus, Deniz

    2014-03-01

    Nonlinear dimensionality reduction is essential for the analysis and the interpretation of high dimensional data sets. In this manuscript, we propose a distance order preserving manifold learning algorithm that extends the basic mean-squared error cost function used mainly in multidimensional scaling (MDS)-based methods. We develop a constrained optimization problem by assuming explicit constraints on the order of distances in the low-dimensional space. In this optimization problem, as a generalization of MDS, instead of forcing a linear relationship between the distances in the high-dimensional original and low-dimensional projection space, we learn a non-decreasing relation approximated by radial basis functions. We compare the proposed method with existing manifold learning algorithms using synthetic datasets based on the commonly used residual variance and proposed percentage of violated distance orders metrics. We also perform experiments on a retinal image dataset used in Retinopathy of Prematurity (ROP) diagnosis.

  16. Adaptive graph construction for Isomap manifold learning

    Science.gov (United States)

    Tran, Loc; Zheng, Zezhong; Zhou, Guoqing; Li, Jiang

    2015-03-01

    Isomap is a classical manifold learning approach that preserves geodesic distance of nonlinear data sets. One of the main drawbacks of this method is that it is susceptible to leaking, where a shortcut appears between normally separated portions of a manifold. We propose an adaptive graph construction approach that is based upon the sparsity property of the l1 norm. The l1 enhanced graph construction method replaces k-nearest neighbors in the classical approach. The proposed algorithm is first tested on the data sets from the UCI data base repository which showed that the proposed approach performs better than the classical approach. Next, the proposed approach is applied to two image data sets and achieved improved performances over standard Isomap.

  17. Cosmic Topology of Double Action Manifolds

    CERN Document Server

    Aurich, Ralf

    2012-01-01

    The cosmic microwave background (CMB) anisotropies in spherical 3-spaces with a non-trivial topology are studied. This paper discusses the special class of the so-called double action manifolds, which are for the first time analysed with respect to their CMB anisotropies. The CMB anisotropies are computed for all double action manifolds generated by a dihedral and a cyclic group with a group order of up to 180 leading to 33 different topologies. Several spaces are found which show a suppression of the CMB anisotropies on large angular distances as it is found on the real CMB sky. It turns out that these spaces possess fundamental cells defined as Voronoi domains which are close to highly symmetric polyhedra like Platonic or Archimedean ones.

  18. Geometry of manifolds with area metric

    CERN Document Server

    Schuller, F P

    2005-01-01

    We construct the differential geometry of smooth manifolds equipped with an algebraic curvature map acting as an area measure. Area metric geometry provides a spacetime structure suitable for the discussion of gauge theories and strings, and is considerably more general than Lorentzian geometry. Our construction of geometrically relevant objects, such as an area metric compatible connection and derived tensors, makes essential use of a decomposition theorem due to Gilkey, showing that a general area metric is generated by a finite collection of metrics rather than by a single one. Employing curvature invariants for area metric manifolds we devise an entirely new class of gravity theories with inherently stringy character, and discuss gauge matter actions.

  19. BOCHNER TECHNIQUE IN REAL FINSLER MANIFOLDS

    Institute of Scientific and Technical Information of China (English)

    钟同德; 钟春平

    2003-01-01

    Using non-linear connection of Finsler manifold M, the existence of localcoordinates which is normalized at a point x is proved, and the Laplace operator △ on1-form of M is defined by non-linear connection and its curvature tensor. After proving themaximum principle theorem of Hopf-Bochner on M, the Bochner type vanishing theoremof Killing vectors and harmonic 1-form are obtained.

  20. Lightlike Submanifolds of Indefinite Sasakian Manifolds

    Directory of Open Access Journals (Sweden)

    K. L. Duggal

    2007-01-01

    submanifolds of indefinite Sasakian manifolds. Then, we introduce a general notion of contact Cauchy-Riemann (CR lightlike submanifolds and study the geometry of leaves of their distributions. We also study a class, namely, contact screen Cauchy-Riemann (SCR lightlike submanifolds which include invariant and screen real subcases. Finally, we prove characterization theorems on the existence of contact SCR, screen real, invariant, and contact CR minimal lightlike submanifolds.

  1. Proper holomorphic mappings between hyperbolic product manifolds

    CERN Document Server

    Janardhanan, Jaikrishnan

    2011-01-01

    We generalize a result of Remmert and Stein, on proper holomorphic mappings between domains that are products of certain planar domains, to finite proper holomorphic mappings between complex manifolds that are products of hyper- bolic Riemann surfaces. While an important special case of our result follows from the ideas developed by Remmert and Stein, our proof of the full result relies on the interplay of the latter ideas and a finiteness theorem for Riemann surfaces.

  2. Symplectic Manifolds, Coherent States and Semiclassical Approximation

    CERN Document Server

    Rajeev, S G; Sen, S; Sen, Siddhartha

    1994-01-01

    We describe the symplectic structure and Hamiltonian dynamics for a class of Grassmannian manifolds. Using the two dimensional sphere ($S^2$) and disc ($D^2$) as illustrative cases, we write their path integral representations using coherent state techniques. These path integrals can be evaluated exactly by semiclassical methods, thus providing examples of localisation formula. Along the way, we also give a local coordinate description for a class of Grassmannians.

  3. Nonsmoothable Involutions on Spin 4-Manifolds

    Indian Academy of Sciences (India)

    Changtao Xue; Ximin Liu

    2011-02-01

    Let be a closed, simply-connected, smooth, spin 4-manifold whose intersection form is isomorphic to $n(-E_8)\\oplus mH$, where is the hyperbolic form. In this paper, we prove that for such that $n≡ 2\\mathrm{mod} 4$, there exists a locally linear pseudofree $\\mathbb{Z}_2$-action on which is nonsmoothable with respect to any possible smooth structure on .

  4. Weak Sharp Minima and Finite Termination of the Proximal Point Method for Convex Functions on Hadamard Manifolds

    CERN Document Server

    Bento, G C

    2012-01-01

    In this paper we proved that the sequence generated by the proximal point method, associated to a unconstrained optimization problem in the Riemannian context, has finite termination when the objective function has a weak sharp minima on the solution set of the problem.

  5. Convexity-preserving Bernstein–Bézier quartic scheme

    Directory of Open Access Journals (Sweden)

    Maria Hussain

    2014-07-01

    Full Text Available A C1 convex surface data interpolation scheme is presented to preserve the shape of scattered data arranged over a triangular grid. Bernstein–Bézier quartic function is used for interpolation. Lower bound of the boundary and inner Bézier ordinates is determined to guarantee convexity of surface. The developed scheme is flexible and involves more relaxed constraints.

  6. Finding sets of points without empty convex 6-gons

    NARCIS (Netherlands)

    Overmars, M.H.

    2001-01-01

    Erdös asked whether every large enough set of points in general position in the plane contains six points that form a convex 6-gon without any points from the set in its interior. In this note we show how a set of 29 points was found that contains no empty convex 6-gon. To this end a fast

  7. Convex bodies in Euclidean and Weil-Petersson geometries

    CERN Document Server

    Yamada, Sumio

    2011-01-01

    On a convex body in a Euclidean space, we introduce a new variational formulation for its Funk metric, a Finsler metric compatible with the tautological Finsler structure of the convex body. We generalize the metric on Teichmuller spaces with the Weil-Petersson distance function. A set of similarities the resulting metric structure shares with Thurston's asymmetric metric is noted.

  8. Convergence of Algorithms for Reconstructing Convex Bodies and Directional Measures

    DEFF Research Database (Denmark)

    Gardner, Richard; Kiderlen, Markus; Milanfar, Peyman

    2006-01-01

    We investigate algorithms for reconstructing a convex body K in Rn from noisy measurements of its support function or its brightness function in k directions u1, . . . , uk. The key idea of these algorithms is to construct a convex polytope Pk whose support function (or brightness function) best ...

  9. In-vivo Convex Array Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Brandt, Andreas Hjelm; Nielsen, Michael Bachmann

    2014-01-01

    In-vivo VFI scans obtained from the abdomen of a human volunteer using a convex array transducers and trans- verse oscillation vector flow imaging (VFI) are presented. A 3 MHz BK Medical 8820e (Herlev, Denmark) 192-element convex array probe is used with the SARUS experimental ultrasound scanner....

  10. Locally uniformly convex norms in Banach spaces and their duals

    OpenAIRE

    Haydon, Richard

    2006-01-01

    It is shown that a Banach space with locally uniformly convex dual admits an equivalent norm which is itself locally uniformly convex. It follows that on any such space all continuous real-valued functions may be uniformly approximated by C^1 functions.

  11. On a-order-convexity of Fuzzy Syntopogenous Spaces

    Institute of Scientific and Technical Information of China (English)

    WANG Hong

    2007-01-01

    In this paper,we combine L-fuzzy syntopogenous structure on X with algebraic structure on X.First,the *-increasing and *-decreasing spaces have been studied.Second,we define a-order-convexity on syntopogenous structures (X,S,≤).some important properties of a-order-convexity have been obtained.

  12. Transverse-Mode Control of VCSELs With Convex Mirror

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We propose the transverse-mode control of vertical-cavity surface-emitting lasers (VCSELs) with a convex mirror. A possibility of improvements on single-mode output power and higher-order mode suppression is presented by optimizing a convex mirror.

  13. Infinitesimal nonrigidity of convex surfaces with planar boundary

    Institute of Scientific and Technical Information of China (English)

    LI Chunhe; HONG Jiaxing

    2005-01-01

    In the present paper infinitesimal nonrigidity of a class of convex surfaces with planar boundary is given. This result shows that if the image of the Gauss map of an evolution convex surface with planar boundary covers some hemisphere, this surface may be of infinitesimal nonrigidity for the isometric deformation of planar boundary.

  14. Homotopy Method for Non-convex Programming in Unbonded Set

    Institute of Scientific and Technical Information of China (English)

    徐庆; 于波

    2005-01-01

    In the past few years, much and much attention has been paid to the method for solving non-convex programming. Many convergence results are obtained for bounded sets. In this paper, we get global convergence results for non-convex programming in unbounded sets under suitable conditions.

  15. (Average-) convexity of common pool and oligopoly TU-games

    NARCIS (Netherlands)

    Driessen, T.S.H.; Meinhardt, H.

    2000-01-01

    The paper studies both the convexity and average-convexity properties for a particular class of cooperative TU-games called common pool games. The common pool situation involves a cost function as well as a (weakly decreasing) average joint production function. Firstly, it is shown that, if the rele

  16. Simple sufficient conditions for starlikeness and convexity for meromorphic functions

    Directory of Open Access Journals (Sweden)

    Goswami Pranay

    2016-01-01

    Full Text Available In this paper we investigate some extensions of sufficient conditions for meromorphic multivalent functions in the open unit disk to be meromorphic multivalent starlike and convex of order α. Our results unify and extend some starlikeness and convexity conditions for meromorphic multivalent functions obtained by Xu et al. [2], and some interesting special cases are given.

  17. The inverse moment problem for convex polytopes

    CERN Document Server

    Gravin, Nick; Pasechnik, Dmitrii; Robins, Sinai

    2011-01-01

    The goal of this paper is to present a general and novel approach for the reconstruction of any convex d-dimensional polytope P, from knowledge of its moments. In particular, we show that the vertices of an N-vertex polytope in R^d can be reconstructed from the knowledge of O(DN) axial moments (w.r.t. to an unknown polynomial measure od degree D) in d+1 distinct generic directions. Our approach is based on the collection of moment formulas due to Brion, Lawrence, Khovanskii-Pukhikov, and Barvinok that arise in the discrete geometry of polytopes, and what variously known as Prony's method, or Vandermonde factorization of finite rank Hankel matrices.

  18. Convex functions, monotone operators and differentiability

    CERN Document Server

    Phelps, Robert R

    1989-01-01

    These notes start with an introduction to the differentiability of convex functions on Banach spaces, leading to the study of Asplund spaces and their intriguing relationship to monotone operators (and more general set-values maps) and Banach spaces with the Radon-Nikodym property. While much of this is classical, some of it is presented using streamlined proofs which were not available until recently. Considerable attention is paid to contemporary results on variational principles and perturbed optimization in Banach spaces, exhibiting their close connections with Asplund spaces. An introductory course in functional analysis is adequate background for reading these notes which can serve as the basis for a seminar of a one-term graduate course. There are numerous excercises, many of which form an integral part of the exposition.

  19. non-Lipschitzian mappings without convexity

    Directory of Open Access Journals (Sweden)

    G. Li

    1999-01-01

    real Hilbert space H, and ℑ={Tt:t∈G} a representation of G as asymptotically nonexpansive type mappings of C into itself. Let L(x={z∈H:infs∈Gsupt∈G‖Tts x−z‖=inft∈G‖Tt x−z‖} for each x∈C and L(ℑ=∩x∈C L(x. In this paper, we prove that ∩s∈Gconv¯{Tts x:t∈G}∩L(ℑ is nonempty for each x∈C if and only if there exists a unique nonexpansive retraction P of C into L(ℑ such that PTs=P for all s∈G and P(x∈conv¯{Ts x:s∈G} for every x∈C. Moreover, we prove the ergodic convergence theorem for a semitopological semigroup of non-Lipschitzian mappings without convexity.

  20. DIFFERENTIAL SUBORDINATIONS AND α-CONVEX FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    Jacek DZIOK; Ravinder Krishna RAINA; Janusz SOK(O)L

    2013-01-01

    This article presents some new results on the class SLMα of functions that are analytic in the open unit discu ={z:[z[< 1} satisfying the conditions that f(0)=0,f'(0)=1,and α (1+ zf"(z)/f'(z)) + (1-α)zf'(z)/f(x) ∈(p)(u)for all z ∈ u,where α is a real number and (p)(z) =1 + τ2z2/ 1-τz-τ2z2 (z ∈ u).The number τ =(1-√5)/2 is such that τ2 =1 + T.The class SLMα introduced by J.Dziok,R.K.Raina,and J.Sokól [3,Appl.Math.Comput.218 (2011),996-1002] is closely related to the classes of starlike and convex functions.The article deals with several ideas and techniques used in geometric function theory and differential subordinations theory.

  1. Quantification of small, convex particles by TEM

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Sigmund J. [SINTEF Materials and Chemistry, Department of Synthesis and Properties, Material Physics, NO-7465 Trondheim (Norway)], E-mail: sigmund.j.andersen@sintef.no; Holme, Borge [SINTEF Materials and Chemistry, P.O. Box 124, Blindern, NO-0314 Oslo (Norway); Marioara, Calin D. [SINTEF Materials and Chemistry, Department of Synthesis and Properties, Material Physics, NO-7465 Trondheim (Norway)

    2008-07-15

    It is shown how size distributions of arbitrarily oriented, convex, non-overlapping particles extracted from conventional transmission electron microscopy (TEM) images may be determined by a variation of the Schwartz-Saltykov method. In TEM, particles cut at the surfaces have diminished projections, which alter the observed size distribution. We represent this distribution as a vector and multiply it with the inverse of a matrix comprising thickness-dependent Scheil or Schwartz-Saltykov terms. The result is a corrected size distribution of the projections of uncut particles. It is shown how the real (3D) distribution may be estimated when particle shape is considered. Computer code to generate the matrix is given. A log-normal distribution of spheres and a real distribution of pill-box-shaped dispersoids in an Al-Mg-Si alloy are given as examples. The errors are discussed in detail.

  2. Weighted composition operators and locally convex algebras

    Institute of Scientific and Technical Information of China (English)

    Edoardo Vesentini

    2005-01-01

    The Gleason-Kahane-Zelazko theorem characterizes the continuous homomorphism of an associative, locally multiplicatively convex, sequentially complete algebra A into the field C among all linear forms on A. This characterization will be applied along two different directions. In the case in which A is a commutative Banach algebra, the theorem yields the representation of some classes of continuous linear maps A: A → A as weighted composition operators, or as composition operators when A is a continuous algebra endomorphism. The theorem will then be applied to explore the behaviour of continuous linear forms on quasi-regular elements, when A is either the algebra of all Hilbert-Schmidt operators or a Hilbert algebra.

  3. The problem of convexity of Chebyshev sets

    Science.gov (United States)

    Balaganskii, V. S.; Vlasov, L. P.

    1996-12-01

    Contents Introduction §1. Definitions and notation §2. Reference theorems §3. Some results Chapter I. Characterization of Banach spaces by means of the relations between approximation properties of sets §1. Existence, uniqueness §2. Prom approximate compactness to 'sun'-property §3. From 'sun'-property to approximate compactness §4. Differentiability in the direction of the gradient is sufficient for Fréchet and Gâteaux differentiability §5. Sets with convex complement Chapter II. The structure of Chebyshev and related sets §1. The isolated point method §2. Restrictions of the type \\vert\\overline{W}\\vert Klee (discrete Chebyshev set) §4. A survey of some other results Conclusion Bibliography

  4. Convex Decomposition Based Cluster Labeling Method for Support Vector Clustering

    Institute of Scientific and Technical Information of China (English)

    Yuan Ping; Ying-Jie Tian; Ya-Jian Zhou; Yi-Xian Yang

    2012-01-01

    Support vector clustering (SVC) is an important boundary-based clustering algorithm in multiple applications for its capability of handling arbitrary cluster shapes. However,SVC's popularity is degraded by its highly intensive time complexity and poor label performance.To overcome such problems,we present a novel efficient and robust convex decomposition based cluster labeling (CDCL) method based on the topological property of dataset.The CDCL decomposes the implicit cluster into convex hulls and each one is comprised by a subset of support vectors (SVs).According to a robust algorithm applied in the nearest neighboring convex hulls,the adjacency matrix of convex hulls is built up for finding the connected components; and the remaining data points would be assigned the label of the nearest convex hull appropriately.The approach's validation is guaranteed by geometric proofs.Time complexity analysis and comparative experiments suggest that CDCL improves both the efficiency and clustering quality significantly.

  5. ANALYSIS TO NEYMAN-PEARSON CLASSIFICATION WITH CONVEX LOSS FUNCTION

    Institute of Scientific and Technical Information of China (English)

    Min Han; Dirong Chen; Zhaoxu Sun

    2008-01-01

    Neyman-Pearson classification has been studied in several articles before.But they all proceeded in the classes of indicator functions with indicator function as the loss function,which make the calculation to be difficult.This paper investigates NeymanPearson classification with convex loss function in the arbitrary class of real measurable functions.A general condition is given under which Neyman-Pearson classification with convex loss function has the same classifier as that with indicator loss function.We give analysis to NP-ERM with convex loss function and prove it's performance guarantees.An example of complexity penalty pair about convex loss function risk in terms of Rademacher averages is studied,which produces a tight PAC bound of the NP-ERM with convex loss function.

  6. Introducing convex layers to the Traveling Salesman Problem

    CERN Document Server

    Liew, Sing

    2012-01-01

    In this paper, we will propose convex layers to the Traveling Salesman Problem (TSP). Firstly, we will focus on human performance on the TSP. Experimental data shows that untrained humans appear to have the ability to perform well in the TSP. On the other hand, experimental data also supports the hypothesis of convex hull i.e. human relies on convex hull to search for the optimal tour for the TSP. Secondly, from the paper published by Bonabeau, Dorigo and Theraulaz, social insect behavior would be able to help in some of the optimizing problems, especially the TSP. Thus, we propose convex layers to the TSP based on the argument that, by the analogy to the social insect behavior, untrained humans' cognition should be able to help in the TSP. Lastly, we will use Tour Improvement algorithms on convex layers to search for an optimal tour for a 13-cities problem to demonstrate the idea.

  7. Efficient protocols for point-convex hull inclusion decision problems

    Directory of Open Access Journals (Sweden)

    Yun Ye

    2010-05-01

    Full Text Available Secure Multi-party Computation (SMC is dedicated to solve trust problems in cooperative computing with each participant’s private data. Privacy Preserving Computational Geometry (PPCG is a special area in SMC and being widely researched. In the real world, PPCG theories can be found being used in various occasions such as military cooperation, commercial competitions and so on. Point-convex hull inclusion problem is a practical case in PPCG and has its profound values. This paper firstly investigates the point inclusion problem with static convex hull, and then marches on to the cases of active convex hull, including the parallel moving and rotating ones. To solve the problems above, we propose a secure protocol to determine the relative position of a private point and a private convex hull in the first place. Compared with previous solutions, our protocols perform better in efficiency, especially when the number of the convex hull’s point is large.

  8. Misunderstanding that the Effective Action is Convex under Broken Symmetry

    CERN Document Server

    Asanuma, Nobu-Hiko

    2016-01-01

    The widespread belief that the effective action is convex and has a flat bottom under broken global symmetry is shown to be wrong. We show spontaneous symmetry breaking necessarily accompanies non-convexity in the effective action for quantum field theory, or in the free energy for statistical mechanics, and clarify the magnitude of non-convexity. For quantum field theory, it is also explicitly proved that translational invariance breaks spontaneously when the system is in the non-convex region, and that different vacua of spontaneously broken symmetry cannot be superposed. As applications of non-convexity, we study the first-order phase transition which happens at the zero field limit of spontaneously broken symmetry, and we propose a simple model of phase coexistence which obeys the Born rule.

  9. CPU timing routines for a CONVEX C220 computer system

    Science.gov (United States)

    Bynum, Mary Ann

    1989-01-01

    The timing routines available on the CONVEX C220 computer system in the Structural Mechanics Division (SMD) at NASA Langley Research Center are examined. The function of the timing routines, the use of the timing routines in sequential, parallel, and vector code, and the interpretation of the results from the timing routines with respect to the CONVEX model of computing are described. The timing routines available on the SMD CONVEX fall into two groups. The first group includes standard timing routines generally available with UNIX 4.3 BSD operating systems, while the second group includes routines unique to the SMD CONVEX. The standard timing routines described in this report are /bin/csh time,/bin/time, etime, and ctime. The routines unique to the SMD CONVEX are getinfo, second, cputime, toc, and a parallel profiling package made up of palprof, palinit, and palsum.

  10. Fundamentals of convex analysis duality, separation, representation, and resolution

    CERN Document Server

    Panik, Michael J

    1993-01-01

    Fundamentals of Convex Analysis offers an in-depth look at some of the fundamental themes covered within an area of mathematical analysis called convex analysis. In particular, it explores the topics of duality, separation, representation, and resolution. The work is intended for students of economics, management science, engineering, and mathematics who need exposure to the mathematical foundations of matrix games, optimization, and general equilibrium analysis. It is written at the advanced undergraduate to beginning graduate level and the only formal preparation required is some familiarity with set operations and with linear algebra and matrix theory. Fundamentals of Convex Analysis is self-contained in that a brief review of the essentials of these tool areas is provided in Chapter 1. Chapter exercises are also provided. Topics covered include: convex sets and their properties; separation and support theorems; theorems of the alternative; convex cones; dual homogeneous systems; basic solutions and comple...

  11. Three-manifolds class field theory (Homology of coverings for a non-virtually Haken manifold)

    CERN Document Server

    Reznikov, A G

    1996-01-01

    This is a first in a series of papers, devoted to the relation betwwen three-manifolds and number fields. The present paper studies first homology of finite coverings of a three-manifold with primary interest in the Thurston $b_1$ conjecture.The main result reads: if $M$ does not yield the Thurston conjecture, then the pro-p completion of its fundamental group is a Poincaré duality pro-p group. Conceptually, it means that we have a ``p-adic'' three-manifold. We develop several algebraic techniques, including a new powerful specral seguence, to actually compute homology of coverings, assumong only information on homology of $M$, a thing never done before.A number of applications to the structure of finite group cohomology rings is also given.

  12. Radius of robust feasibility formulas for classes of convex programs with uncertain polynomial constraints

    OpenAIRE

    Goberna, Miguel A.; Jeyakumar, Vaithilingam; Li, Guoyin; Linh, Nguyen

    2016-01-01

    The radius of robust feasibility of a convex program with uncertain constraints gives a value for the maximal ‘size’ of an uncertainty set under which robust feasibility can be guaranteed. This paper provides an upper bound for the radius for convex programs with uncertain convex polynomial constraints and exact formulas for convex programs with SOS-convex polynomial constraints (or convex quadratic constraints) under affine data uncertainty. These exact formulas allow the radius to be comput...

  13. Generalized Calabi-Yau manifolds and the mirror of a rigid manifold

    CERN Document Server

    Candelas, Philip; Parkes, L

    1993-01-01

    We describe the mirror of the Z orbifold as a representation of a class of generalized Calabi-Yau manifolds that can be realized as manifolds of dimension five and seven. Despite their dimension these correspond to superconformal theories with $c=9$ and so are perfectly good for compactifying the heterotic string to the four dimensions of space-time. As a check of mirror symmetry we compute the structure of the space of complex structures of the mirror and check that this reproduces the known results for the Yukawa couplings and metric appropriate to the Kahler class parameters on the Z orbifold together with their instanton corrections.

  14. An Algorithm Based on the Quadratic Programming for Distance between Two Linear Manifolds%基于二次规划的求两线性流形之间距离的一种算法

    Institute of Scientific and Technical Information of China (English)

    何金花; 张圣贵

    2013-01-01

    Based on the distance between two linear manifolds and the definition of common perpendicular manifold, this article characterizes the distance between two linear manifolds by a convex quadratic program and gives its algorithm by optimal conditions. And we illustrate the feasibility of the proposed algorithm through example.%  本文基于两线性流形之间距离与公垂线性流形的定义,将求解两线性流形之间距离的问题转化为凸二次规划问题,结合全局最优性条件,给出了求解两线性流形之间距离的算法。通过实例,说明了该算法的可行性。

  15. The Ricci Curvature of Half-flat Manifolds

    CERN Document Server

    Ali, T; Ali, Tibra; Cleaver, Gerald B.

    2007-01-01

    We derive expressions for the Ricci curvature tensor and scalar in terms of intrinsic torsion classes of half-flat manifolds by exploiting the relationship between half-flat manifolds and non-compact $G_2$ holonomy manifolds. Our expressions are tested for Iwasawa and more general nilpotent manifolds. We also derive expressions, in the language of Calabi-Yau moduli spaces, for the torsion classes and the Ricci curvature of the \\emph{particular} half-flat manifolds that arise naturally via mirror symmetry in flux compactifications. Using these expressions we then derive a constraint on the K\\"ahler moduli space of type II string theory on these half-flat manifolds.

  16. Complex synchronization manifold in coupled time-delayed systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thang Manh, E-mail: hmt@mail.hut.edu.v [Signal and Information Processing Laboratory, Faculty of Electronics and Telecommunications, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi (Viet Nam)

    2011-01-15

    Research highlights: The complex synchronization manifold in coupled multiple time delay systems is demonstrated for the first time. The complex synchronization manifold is in the form of sum of multiple simple manifolds. The equation for driving signal is the sum of nonlinearly transformed components of delayed state variable. - Abstract: In the present paper, the complex synchronization manifold generated in coupled multiple time delay systems is demonstrated for the first time. There, the manifold is in the form of sum of multiple simple manifolds. The structure of master is identical to that of slave. The equation for driving signal is the sum of nonlinearly transformed components of delayed state variable. The specific examples will demonstrate and verify the effectiveness of the proposed model.

  17. Regional manifold learning for deformable registration of brain MR images.

    Science.gov (United States)

    Ye, Dong Hye; Hamm, Jihun; Kwon, Dongjin; Davatzikos, Christos; Pohl, Kilian M

    2012-01-01

    We propose a method for deformable registration based on learning the manifolds of individual brain regions. Recent publications on registration of medical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regional brain variations. We address this issue by first learning manifolds for specific regions and then computing region-specific deformations from these manifolds. We then determine deformations for the entire image domain by learning the global manifold in such a way that it preserves the region-specific deformations. We evaluate the accuracy of our method by applying it to the LPBA40 dataset and measuring the overlap of the deformed segmentations. The result shows significant improvement in registration accuracy on cortex regions compared to other state of the art methods.

  18. How to Find the Holonomy Algebra of a Lorentzian Manifold

    Science.gov (United States)

    Galaev, Anton S.

    2015-02-01

    Manifolds with exceptional holonomy play an important role in string theory, supergravity and M-theory. It is explained how one can find the holonomy algebra of an arbitrary Riemannian or Lorentzian manifold. Using the de Rham and Wu decompositions, this problem is reduced to the case of locally indecomposable manifolds. In the case of locally indecomposable Riemannian manifolds, it is known that the holonomy algebra can be found from the analysis of special geometric structures on the manifold. If the holonomy algebra of a locally indecomposable Lorentzian manifold ( M, g) of dimension n is different from , then it is contained in the similitude algebra . There are four types of such holonomy algebras. Criterion to find the type of is given, and special geometric structures corresponding to each type are described. To each there is a canonically associated subalgebra . An algorithm to find is provided.

  19. The Structure of some Classes of -Contact Manifolds

    Indian Academy of Sciences (India)

    Mukut Mani Tripathi; Mohit Kumar Dwivedi

    2008-08-01

    We study projective curvature tensor in -contact and Sasakian manifolds. We prove that (1) if a -contact manifold is quasi projectively flat then it is Einstein and (2) a -contact manifold is -projectively flat if and only if it is Einstein Sasakian. Necessary and sufficient conditions for a -contact manifold to be quasi projectively flat and -projectively flat are obtained. We also prove that for a (2+1)-dimensional Sasakian manifold the conditions of being quasi projectively flat, -projectively flat and locally isometric to the unit sphere $S^{2n+1}(1)$ are equivalent. Finally, we prove that a compact -projectively flat -contact manifold with regular contact vector field is a principal $S^1$-bundle over an almost Kaehler space of constant holomorphic sectional curvature 4.

  20. Decomposability of Abstract and Path-Induced Convexities in Hypergraphs

    Directory of Open Access Journals (Sweden)

    Malvestuto Francesco Mario

    2015-08-01

    Full Text Available An abstract convexity space on a connected hypergraph H with vertex set V (H is a family C of subsets of V (H (to be called the convex sets of H such that: (i C contains the empty set and V (H, (ii C is closed under intersection, and (iii every set in C is connected in H. A convex set X of H is a minimal vertex convex separator of H if there exist two vertices of H that are separated by X and are not separated by any convex set that is a proper subset of X. A nonempty subset X of V (H is a cluster of H if in H every two vertices in X are not separated by any convex set. The cluster hypergraph of H is the hypergraph with vertex set V (H whose edges are the maximal clusters of H. A convexity space on H is called decomposable if it satisfies the following three properties:

  1. Two-phase Flow Distribution in Heat Exchanger Manifolds

    OpenAIRE

    Vist, Sivert

    2004-01-01

    The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.

  2. P-connection on Riemannian almost product manifolds

    CERN Document Server

    Mekerov, Dimitar

    2009-01-01

    In the present work, we introduce a linear connection (preserving the almost product structure and the Riemannian metric) on Riemannian almost product manifolds. This connection, called P-connection, is an analogue of the first canonical connection of Lichnerowicz in the Hermitian geometry and the B-connection in the geometry of the almost complex manifolds with Norden metric. Particularly, we consider the P-connection on a the class of manifolds with nonintegrable almost product structure.

  3. Some hyperbolic three-manifolds that bound geometrically

    OpenAIRE

    KOLPAKOV, Alexander; Martelli, Bruno; Tschantz, Steven

    2015-01-01

    A closed connected hyperbolic $n$-manifold bounds geometrically if it is isometric to the geodesic boundary of a compact hyperbolic $(n+1)$-manifold. A. Reid and D. Long have shown by arithmetic methods the existence of infinitely many manifolds that bound geometrically in every dimension. We construct here infinitely many explicit examples in dimension $n=3$ using right-angled dodecahedra and $120$-cells and a simple colouring technique introduced by M. Davis and T. Januszkiewicz. Namely, fo...

  4. Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds

    Science.gov (United States)

    Liu, Chiu-Chu Melissa; Sheshmani, Artan

    2017-07-01

    An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.

  5. Notes on holonomy matrices of hyperbolic 3-manifolds with cusps

    CERN Document Server

    Fukui, Fumitaka

    2013-01-01

    In this paper, we give a method to construct holonomy matrices of hyperbolic 3-manifolds by extending the known method of hyperbolic 2-manifolds. It enables us to consider hyperbolic 3-manifolds with nontrivial holonomies. We apply our method to an ideal tetrahedron and succeed in making the holonomies nontrivial. We also derive the partition function of the ideal tetrahedron with nontrivial holonomies by using the duality proposed by Dimofte, Gaiotto and Gukov.

  6. Frobenius manifolds, quantum cohomology, and moduli spaces

    CERN Document Server

    Manin, Yuri I

    1999-01-01

    This is the first monograph dedicated to the systematic exposition of the whole variety of topics related to quantum cohomology. The subject first originated in theoretical physics (quantum string theory) and has continued to develop extensively over the last decade. The author's approach to quantum cohomology is based on the notion of the Frobenius manifold. The first part of the book is devoted to this notion and its extensive interconnections with algebraic formalism of operads, differential equations, perturbations, and geometry. In the second part of the book, the author describes the con

  7. M-theory and G2 manifolds

    Science.gov (United States)

    Becker, Katrin; Becker, Melanie; Robbins, Daniel

    2015-11-01

    In this talk we report on recent progress in describing compactifications of string theory and M-theory on G2 and Spin(7) manifolds. We include the infinite set of α’-corrections and describe the entire tower of massless and massive Kaluza-Klein modes resulting from such compactifications. Contribution to the ‘Focus Issue on Gravity, Supergravity and Fundamental Physics: the Richard Arnowitt Symposium’, to be published in Physica Scripta. Based on a talk delivered by Becker at the workshop ‘Superstring Perturbation Theory’ at the Perimeter Institute, 22-24 April 2015.

  8. Semiclassical Asymptotics on Manifolds with Boundary

    CERN Document Server

    Koldan, Nilufer; Shubin, Mikhail

    2008-01-01

    We discuss semiclassical asymptotics for the eigenvalues of the Witten Laplacian for compact manifolds with boundary in the presence of a general Riemannian metric. To this end, we modify and use the variational method suggested by Kordyukov, Mathai and Shubin (2005), with a more extended use of quadratic forms instead of the operators. We also utilize some important ideas and technical elements from Helffer and Nier (2006), who were the first to supply a complete proof of the full semi-classical asymptotic expansions for the eigenvalues with fixed numbers.

  9. Lefschetz Fibrations on Compact Stein Manifolds

    CERN Document Server

    Akbulut, Selman

    2010-01-01

    Here we prove that a compact Stein manifold W of dimension 2n+2>4 admits a Lefschetz fibration over the 2-disk with Stein fibers, such that the monodromy of the fibration is a symplectomorphism induced by compositions of "generalized Dehn twists" along imbedded n-spheres on the generic fiber. Also, the open book on the boundary of W, which is determined by the fibration, is compatible with the contact structure induced by the Stein structure. This generalizes the Stein surface case of n=1, previously proven by Loi-Piergallini and Akbulut-Ozbagci.

  10. Manifold parameter space and its applications

    Science.gov (United States)

    Sato, Atsushi

    2004-11-01

    We review the several features of the new parameter space which we presented in the previous paper, and show the differentiable manifold properties of this parameter space coordinate. Using this parameter coordinate we calculate three Feynman amplitudes of the vacuum polarization with a gluon loop, a quark loop and a ghost loop in QCD and show that the results are perfectly equal to those of the usual calculations by the Feynman parametrization technique in the scheme of the dimensional regularization. Then we try to calculate the anomalous magnetic moment of an on-shell quark in QCD by using the dimensional regularization, our new parametrization and integral method.

  11. Laplacian embedded regression for scalable manifold regularization.

    Science.gov (United States)

    Chen, Lin; Tsang, Ivor W; Xu, Dong

    2012-06-01

    Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundations for a large family of SSL algorithms, such as Laplacian support vector machine (LapSVM) and Laplacian regularized least squares (LapRLS). However, most of these algorithms are limited to small scale problems due to the high computational cost of the matrix inversion operation involved in the optimization problem. In this paper, we propose a novel framework called Laplacian embedded regression by introducing an intermediate decision variable into the manifold regularization framework. By using ∈-insensitive loss, we obtain the Laplacian embedded support vector regression (LapESVR) algorithm, which inherits the sparse solution from SVR. Also, we derive Laplacian embedded RLS (LapERLS) corresponding to RLS under the proposed framework. Both LapESVR and LapERLS possess a simpler form of a transformed kernel, which is the summation of the original kernel and a graph kernel that captures the manifold structure. The benefits of the transformed kernel are two-fold: (1) we can deal with the original kernel matrix and the graph Laplacian matrix in the graph kernel separately and (2) if the graph Laplacian matrix is sparse, we only need to perform the inverse operation for a sparse matrix, which is much more efficient when compared with that for a dense one. Inspired by kernel principal component analysis, we further propose to project the introduced decision variable into a subspace spanned by a few eigenvectors of the graph Laplacian matrix in order to better reflect the data manifold, as well as accelerate the calculation of the graph kernel, allowing our methods to efficiently and effectively cope with large scale SSL problems. Extensive experiments on both toy and real

  12. Optical manifold for light-emitting diodes

    Science.gov (United States)

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver

    2008-06-03

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  13. 3-manifolds with(out) metrics of nonpositive curvature

    CERN Document Server

    Leeb, B

    1994-01-01

    In the context of Thurstons geometrisation program we address the question which compact aspherical 3-manifolds admit Riemannian metrics of nonpositive curvature. We show that non-geometric Haken manifolds generically, but not always, admit such metrics. More precisely, we prove that a Haken manifold with, possibly empty, boundary of zero Euler characteristic admits metrics of nonpositive curvature if the boundary is non-empty or if at least one atoroidal component occurs in its canonical topological decomposition. Our arguments are based on Thurstons Hyperbolisation Theorem. We give examples of closed graph-manifolds with linear gluing graph and arbitrarily many Seifert components which do not admit metrics of nonpositive curvature.

  14. Blow-up of generalized complex 4-manifolds

    CERN Document Server

    Cavalcanti, Gil R

    2009-01-01

    We introduce blow-up and blow-down operations for generalized complex 4-manifolds. Combining these with a surgery analogous to the logarithmic transform, we then construct generalized complex structures on nCP2 # m \\bar{CP2} for n odd, a family of 4-manifolds which admit neither complex nor symplectic structures unless n=1. We also extend the notion of a symplectic elliptic Lefschetz fibration, so that it expresses a generalized complex 4-manifold as a fibration over a two-dimensional manifold with boundary.

  15. Backfire prediction in a manifold injection hydrogen internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing-hua; Liu, Fu-shui; Zhou, Lei; Sun, Bai-gang [School of Mechanical and Vehicular Engineering, Beijing Institute of Technology, Beijing 100081 (China); Schock, Harold J. [Engine Research Laboratory, Michigan State University, East Lansing, MI (United States)

    2008-07-15

    Hydrogen internal combustion engine (H2ICE) easily occur inlet manifold backfire and other abnormal combustion phenomena because of the low ignition energy, wide flammability range and rapid combustion speed of hydrogen. In this paper, the effect of injection timing on mixture formation in a manifold injection H2ICE was studied in various engine speed and equivalence ratio by CFD simulation. It was concluded that H2ICE of manifold injection have an limited injection end timing in order to prevent backfire in the inlet manifold. Finally, the limit of injection end timing of the H2ICE was proposed and validated by engine experiment. (author)

  16. Noncommutative Deformations of Locally Symmetric K\\"ahler manifolds

    CERN Document Server

    Hara, Kentaro

    2016-01-01

    We derive algebraic recurrence relations to obtain a deformation quantization with separation of variables for a locally symmetric K\\"ahler manifold. This quantization method is one of the ways to perform a deformation quantization of K\\"ahler manifolds, which is introduced by Karabegov. From the recurrence relations, concrete expressions of star products for one-dimensional local symmetric K\\"ahler manifolds and ${\\mathbb C}P^N$ are constructed. The recurrence relations for a Grassmann manifold $G_{2,2}$ are closely studied too.

  17. LCD OF AIR INTAKE MANIFOLDS PHASE 2: FORD F250 AIR INTAKE MANIFOLD

    Science.gov (United States)

    The life cycle design methodology was applied to the design analysis of three alternatives for the lower plehum of the air intake manifold for us with a 5.4L F-250 truck engine: a sand cast aluminum, a lost core molded nylon composite, and a vibration welded nylon composite. The ...

  18. On the trace-manifold generated by the deformations of a body-manifold

    Directory of Open Access Journals (Sweden)

    Boja Nicolae

    2003-01-01

    Full Text Available In this paper, concerned to the study of continuous deformations of material media using some tools of modem differential geometry, a moving frame of Frenet type along the orbits of an one-parameter group acting on a so-called "trace-manifold", M, associated to the deformations, is constructed. The manifold M is defined as an infinite union of non-disjoint compact manifolds, generated by the consecutive positions in the Euclidean affine 3-space of a body-manifold under deformations in a closed time interval. We put in evidence a skew-symmetric band tensor of second order, ω, which describes the deformation in a small neighborhood of any point along the orbits. The non-null components ωi,i+i, (i =1,2, of ω are assimilated as like curvatures at each point of an orbit in the planes generated by the pairs of vectors (ĕi,ĕi+i of a moving frame in M associated to the orbit in a similar way as the Frenet's frame is. Also a formula for the energy of the orbits is given and its relationship with some stiffness matrices is established.

  19. Exploiting Symmetry in Integer Convex Optimization using Core Points

    CERN Document Server

    Herr, Katrin; Schürmann, Achill

    2012-01-01

    We consider convex programming problems with integrality constraints that are invariant under a linear symmetry group. We define a core point of such a symmetry group as an integral point for which the convex hull of its orbit does not contain integral points other than the orbit points themselves. These core points allow us to decompose symmetric integer convex programming problems. Especially for symmetric integer linear programs we describe two algorithms based on this decomposition. Using a characterization of core points for direct products of symmetric groups, we show that prototype implementations can compete with state-of-the art commercial solvers and solve an open MIPLIB problem.

  20. Properties of distance functions on convex surfaces and Alexandrov spaces

    CERN Document Server

    Rataj, Jan

    2009-01-01

    If $X$ is a convex surface in a Euclidean space, then the squared (intrinsic) distance function $\\dist^2(x,y)$ is d.c. (DC, delta-convex) on $X\\times X$ in the only natural extrinsic sense. For the proof we use semiconcavity (in an intrinsic sense) of $\\dist^2(x,y)$ on $X \\times X$ if $X$ is an Alexandrov space with nonnegative curvature. Applications concerning $r$-boundaries (distance spheres) and the ambiguous locus (exoskeleton) of a closed subset of a convex surface are given.

  1. Plane geometry and convexity of polynomial stability regions

    CERN Document Server

    Henrion, Didier

    2008-01-01

    The set of controllers stabilizing a linear system is generally non-convex in the parameter space. In the case of two-parameter controller design (e.g. PI control or static output feedback with one input and two outputs), we observe however that quite often for benchmark problem instances, the set of stabilizing controllers seems to be convex. In this note we use elementary techniques from real algebraic geometry (resultants and Bezoutian matrices) to explain this phenomenon. As a byproduct, we derive a convex linear matrix inequality (LMI) formulation of two-parameter fixed-order controller design problem, when possible.

  2. Bubbles, convexity and the Black--Scholes equation

    CERN Document Server

    Ekström, Erik; 10.1214/08-AAP579

    2009-01-01

    A bubble is characterized by the presence of an underlying asset whose discounted price process is a strict local martingale under the pricing measure. In such markets, many standard results from option pricing theory do not hold, and in this paper we address some of these issues. In particular, we derive existence and uniqueness results for the Black--Scholes equation, and we provide convexity theory for option pricing and derive related ordering results with respect to volatility. We show that American options are convexity preserving, whereas European options preserve concavity for general payoffs and convexity only for bounded contracts.

  3. Shape preserving rational cubic spline for positive and convex data

    Directory of Open Access Journals (Sweden)

    Malik Zawwar Hussain

    2011-11-01

    Full Text Available In this paper, the problem of shape preserving C2 rational cubic spline has been proposed. The shapes of the positive and convex data are under discussion of the proposed spline solutions. A C2 rational cubic function with two families of free parameters has been introduced to attain the C2 positive curves from positive data and C2 convex curves from convex data. Simple data dependent constraints are derived on free parameters in the description of rational cubic function to obtain the desired shape of the data. The rational cubic schemes have unique representations.

  4. Quadratic growth and stability in convex programming problems

    OpenAIRE

    Bonnans, J. Frederic; Ioffe, Alexander D.

    1994-01-01

    Projet PROMATH; Given a convex program with $C^2$ functions and a convex set $S$ of solutions to the problem, we give a second order condition which guarantees that the problem does not have solutions outside of $S$. This condition is interpreted as a characterization for the quadratic growth of the cost function. The crucial role in the proofs is played by a theorem describing a certain uniform regularity property of critical cones in smooth convex programs. We apply these results to the dis...

  5. A Note on The Convexity of Chebyshev Sets

    Directory of Open Access Journals (Sweden)

    Sangeeta

    2009-07-01

    Full Text Available Perhaps one of the major unsolved problem in Approximation Theoryis: Whether or not every Chebyshev subset of a Hilbert space must be convex. Many partial answers to this problem are available in the literature. R.R. Phelps[Proc. Amer. Math. Soc. 8 (1957, 790-797] showed that a Chebyshev set in an inner product space (or in a strictly convex normed linear space is convex if the associated metric projection is non-expansive. We extend this result to metricspaces.

  6. Global Optimization Approach to Non-convex Problems

    Institute of Scientific and Technical Information of China (English)

    LU Zi-fang; ZHENG Hui-li

    2004-01-01

    A new approach to find the global optimal solution of the special non-convex problems is proposed in this paper. The non-convex objective problem is first decomposed into two convex sub-problems. Then a generalized gradient is introduced to determine a search direction and the evolution equation is built to obtain a global minimum point. By the approach, we can prevent the search process from some local minima and search a global minimum point. Two numerical examples are given to prove the approach to be effective.

  7. Prolonging sensor networks lifetime using convex clusters

    Directory of Open Access Journals (Sweden)

    Payam Salehi

    2013-11-01

    Full Text Available Reducing the energy consumption of nodes in sensor networks and prolonging the network life time has been proposed as one of the most important challenges facing researchers in the field of sensor networks. Therefore, designing an energy-aware protocol to gather data from network level and transmitting it to sink is placed on the agenda at this paper. After presenting an analysis of the processes of clustering in sensory networks and investigating the effect of sending interval on the amount of energy consumption, We have shown that if the use of convex static casters be done such as all the communications within the cluster with the sending distance less than the optimal threshold, it Will help to increase the lifetime of nodes. also have shown that if we create a virtual backbone between cluster heads to transfer far cluster heads data from sink to sink , will has a significant impact on increasing the network lifetime. For this reason, a detailed discussion on how to determine the size of clusters and partitioning of the network environment to them is presented in Chapter 4.Simulation results show considerable improvement of the proposed algorithm.

  8. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard

    2015-05-04

    ​In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport). ​

  9. Flip to Regular Triangulation and Convex Hull.

    Science.gov (United States)

    Gao, Mingcen; Cao, Thanh-Tung; Tan, Tiow-Seng

    2017-02-01

    Flip is a simple and local operation to transform one triangulation to another. It makes changes only to some neighboring simplices, without considering any attribute or configuration global in nature to the triangulation. Thanks to this characteristic, several flips can be independently applied to different small, non-overlapping regions of one triangulation. Such operation is favored when designing algorithms for data-parallel, massively multithreaded hardware, such as the GPU. However, most existing flip algorithms are designed to be executed sequentially, and usually need some restrictions on the execution order of flips, making them hard to be adapted to parallel computation. In this paper, we present an in depth study of flip algorithms in low dimensions, with the emphasis on the flexibility of their execution order. In particular, we propose a series of provably correct flip algorithms for regular triangulation and convex hull in 2D and 3D, with implementations for both CPUs and GPUs. Our experiment shows that our GPU implementation for constructing these structures from a given point set achieves up to two orders of magnitude of speedup over other popular single-threaded CPU implementation of existing algorithms.

  10. Convex weighting criteria for speaking rate estimation

    Science.gov (United States)

    Jiao, Yishan; Berisha, Visar; Tu, Ming; Liss, Julie

    2015-01-01

    Speaking rate estimation directly from the speech waveform is a long-standing problem in speech signal processing. In this paper, we pose the speaking rate estimation problem as that of estimating a temporal density function whose integral over a given interval yields the speaking rate within that interval. In contrast to many existing methods, we avoid the more difficult task of detecting individual phonemes within the speech signal and we avoid heuristics such as thresholding the temporal envelope to estimate the number of vowels. Rather, the proposed method aims to learn an optimal weighting function that can be directly applied to time-frequency features in a speech signal to yield a temporal density function. We propose two convex cost functions for learning the weighting functions and an adaptation strategy to customize the approach to a particular speaker using minimal training. The algorithms are evaluated on the TIMIT corpus, on a dysarthric speech corpus, and on the ICSI Switchboard spontaneous speech corpus. Results show that the proposed methods outperform three competing methods on both healthy and dysarthric speech. In addition, for spontaneous speech rate estimation, the result show a high correlation between the estimated speaking rate and ground truth values. PMID:26167516

  11. Convexity and symmetrization in relativistic theories

    Science.gov (United States)

    Ruggeri, T.

    1990-09-01

    There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.

  12. Willmore Spheres in Compact Riemannian Manifolds

    CERN Document Server

    Mondino, Andrea

    2012-01-01

    The paper is devoted to the variational analysis of the Willmore, and other L^2 curvature functionals, among immersions of 2-dimensional surfaces into a compact riemannian m-manifold (M^m,h) with m>2. The goal of the paper is twofold, on one hand, we give the right setting for doing the calculus of variations (including min max methods) of such functionals for immersions into manifolds and, on the other hand, we prove existence results for possibly branched Willmore spheres under various constraints (prescribed homotopy class, prescribed area) or under curvature assumptions for M^m. To this aim, using the integrability by compensation, we develop first the regularity theory for the critical points of such functionals. We then prove a rigidity theorem concerning the relation between CMC and Willmore spheres. Then we prove that, for every non null 2-homotopy class, there exists a representative given by a Lipschitz map from the 2-sphere into M^m realizing a connected family of conformal smooth (possibly branche...

  13. Real group orbits on flag manifolds

    CERN Document Server

    Akhiezer, Dmitri

    2011-01-01

    In this survey, we gather together various results on the action of a real form of a complex semisimple Lie group on its flag manifolds. We start with the finiteness theorem of J.Wolf implying that at least one of the orbits is open. We give a new proof of the converse statement for real forms of inner type, essentially due to F.M.Malyshev. Namely, if a real semisimple Lie group of inner type has an open orbit on an algebraic homogeneous space of the complexified group then the homogeneous space is a flag manifold. To prove this, we recall, partly with proofs, some results of A.L.Onishchik on the factorizations of reductive groups. Finally, we discuss the cycle spaces of open orbits and define the crown of a symmetric space of non-compact type. With some exceptions, the cycle space agrees with the crown. We sketch a complex analytic proof of this result, due to G.Fels, A.Huckleberry and J.Wolf.

  14. A simple convex optimization problem with many applications

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    1994-01-01

    This paper presents an algorithm for the solution of a simple convex optimization problem. This problem is a generalization of several other optimization problems which have applications to resource allocation, optimal capacity expansion, and vehicle scheduling. The algorithm is based...

  15. Differential subordination for meromorphic multivalent quasi-convex functions

    OpenAIRE

    R. W. Ibrahim; M. Darus

    2010-01-01

    We introduce new classes of meromorphic multivalent quasi-convex functions and find some sufficient differential subordination theorems for such classes in punctured unit disk with applications in fractional calculus.

  16. Differential subordination for meromorphic multivalent quasi-convex functions

    Directory of Open Access Journals (Sweden)

    R. W. Ibrahim

    2010-02-01

    Full Text Available We introduce new classes of meromorphic multivalent quasi-convex functions and find some sufficient differential subordination theorems for such classes in punctured unit disk with applications in fractional calculus.

  17. Global optimization over linear constraint non-convex programming problem

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-Jun; WU Ti-Huan; YE Rong; YANG Hai-qing

    2005-01-01

    A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programmin g problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent problem, in which only the information of convex extremes of feasible space is included, and is more easy for GAs to solve. For avoiding invalid genetic operators, a redesigned convex crossover operator is also performed in evolving. As a integrality, the quality of two problem is proven, and a method is also given to get all extremes in linear constraint space. Simulation result show that new algorithm not only converges faster, but also can maintain an diversity population, and can get the global optimum of test problem.

  18. Lipschitz estimates for convex functions with respect to vector fields

    Directory of Open Access Journals (Sweden)

    Valentino Magnani

    2012-12-01

    Full Text Available We present Lipschitz continuity estimates for a class of convex functions with respect to Hörmander vector fields. These results have been recently obtained in collaboration with M. Scienza, [22].

  19. A novel neural network for nonlinear convex programming.

    Science.gov (United States)

    Gao, Xing-Bao

    2004-05-01

    In this paper, we present a neural network for solving the nonlinear convex programming problem in real time by means of the projection method. The main idea is to convert the convex programming problem into a variational inequality problem. Then a dynamical system and a convex energy function are constructed for resulting variational inequality problem. It is shown that the proposed neural network is stable in the sense of Lyapunov and can converge to an exact optimal solution of the original problem. Compared with the existing neural networks for solving the nonlinear convex programming problem, the proposed neural network has no Lipschitz condition, no adjustable parameter, and its structure is simple. The validity and transient behavior of the proposed neural network are demonstrated by some simulation results.

  20. Entropy and convexity for nonlinear partial differential equations.

    Science.gov (United States)

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  1. Subaperture Stitching Interferometry for Large Convex Aspheric Surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The size and accuracy specifications of telescope mirrors are ever more demanding. This is particularly true for secondary mirrors, as they are convex and thus...

  2. A Convex Optimization Approach to pMRI Reconstruction

    CERN Document Server

    Zhang, Cishen

    2013-01-01

    In parallel magnetic resonance imaging (pMRI) reconstruction without using estimation of coil sensitivity functions, one group of algorithms reconstruct sensitivity encoded images of the coils first followed by the magnitude only image reconstruction, e.g. GRAPPA, and another group of algorithms jointly compute the image and sensitivity functions by regularized optimization which is a non-convex problem with local only solutions. For the magnitude only image reconstruction, this paper derives a reconstruction formulation, which is linear in the magnitude image, and an associated convex hull in the solution space of the formulated equation containing the magnitude of the image. As a result, the magnitude only image reconstruction for pMRI is formulated into a two-step convex optimization problem, which has a globally optimal solution. An algorithm based on split-bregman and nuclear norm regularized optimizations is proposed to implement the two-step convex optimization and its applications to phantom and in-vi...

  3. Two new definitions on convexity and related inequalities

    CERN Document Server

    Tunc, Mevlut

    2012-01-01

    We have made some new definitions using the inequalities of Young' and Nesbitt'. And we have given some features of these new definitions. After, we established new Hadamard type inequalities for convex functions in the Young and Nesbitt sense.

  4. Continuity of Extremal Elements in Uniformly Convex Spaces

    OpenAIRE

    Ferguson, Timothy

    2013-01-01

    In this paper, we study the problem of finding the extremal element for a linear functional over a uniformly convex Banach space. We show that a unique extremal element exists and depends continuously on the linear functional, and vice versa. Using this, we simplify and clarify Ryabykh's proof that for any linear functional on a uniformly convex Bergman space with kernel in a certain Hardy space, the extremal functional belongs to the corresponding Hardy space.

  5. Convex games, clan games, and their marginal games

    OpenAIRE

    Branzei , Rodica; Dimitrov, Dinko; Tijs, Stef

    2005-01-01

    We provide characterizations of convex games and total clan games by using properties of their corresponding marginal games. As it turns out, a cooperative game is convex if and only if all its marginal games are superadditive, and a monotonic game satisfying the veto player property with respect to the members of a coalition C is a total clan game (with clan C) if and only if all its C-based marginal games are subadditive.

  6. Gradient of the Value Function in Parametric Convex Optimization Problems

    OpenAIRE

    Baotić, Mato

    2016-01-01

    We investigate the computation of the gradient of the value function in parametric convex optimization problems. We derive general expression for the gradient of the value function in terms of the cost function, constraints and Lagrange multipliers. In particular, we show that for the strictly convex parametric quadratic program the value function is continuously differentiable at every point in the interior of feasible space for which the Linear Independent Constraint Qualification holds.

  7. Convex Aspherical Surface Testing Using Catadioptric Partial Compensating System

    Science.gov (United States)

    Wang, Jingxian; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Tian, Yuhan; Li, Lin

    2016-01-01

    Aspheric optical components are the indispensable part of modern optics systems. With the constant development of aspheric optical fabrication technique, the systems with large aperture convex aspheric optical components are widely used in astronomy and space optics. Thus, the measurement of the figure error of the whole convex aspherical surface with high precision comes to be a challenge in the area of optical surface manufacture, and surface testing method is also very important. This paper presents a new partial compensating system by the combination of a refractive lens and a reflective mirror for testing convex aspherical surface. The refractive lens is used to compensate the aberration of the tested convex asphere partially. The reflective mirror is a spherical mirror which is coaxial to the refractive lens and reflecting the lights reflected by the tested convex asphere back to the convex asphere itself. With the long focal length and large aperture system we can realize a lighter and more compact system than the refractive partial compensating system because the spheric reflective mirror is more easily to realize and can bending the light conveniently.

  8. THE GEOMETRY OF HYPERSURFACES IN A KAEHLER MANIFOLD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Abstract The geometry of hypersurfaces of a Kaehler manifold are studied. Some wellknown formulas and theorems in theory of surfaces of Euclidean 3-space are generalized to the hypersurfaces in a Kaehler manifold, such as Gauss's formulae, second fundamental form, the equation of Gauss and Codazzi and so forth.

  9. HAMILTONIAN MECHANICS ON K(A)HLER MANIFOLDS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Using the mechanical principle, the theory of modern geometry and advanced calculus, Hamiltonian mechanics was generalized to Kahler manifolds, and the Hamiltonian mechanics on Kahler manifolds was established. Then the complex mathematical aspect of Hamiltonian vector field and Hamilton's equations was obtained, and so on.

  10. The quantum equivariant cohomology of toric manifolds through mirror symmetry

    NARCIS (Netherlands)

    Baptista, J.M.

    2009-01-01

    Using mirror symmetry as described by Hori and Vafa, we compute the quantum equivariant cohomology ring of toric manifolds. This ring arises naturally in topological gauged sigma-models and is related to the Hamiltonian Gromov-Witten invariants of the target manifold.

  11. Modeling the Uniformity of Manifold with Various Configurations

    Directory of Open Access Journals (Sweden)

    Jafar M. Hassan

    2014-01-01

    Full Text Available The flow distribution in manifolds is highly dependent on inlet pressure, configuration, and total inlet flow to the manifold. The flow from a manifold has many applications and in various fields of engineering such as civil, mechanical, and chemical engineering. In this study, physical and numerical models were employed to study the uniformity of the flow distribution from manifold with various configurations. The physical model consists of main manifold with uniform longitudinal section having diameter of 10.16 cm (4 in, five laterals with diameter of 5.08 cm (2 in, and spacing of 22 cm. Different inlet flows were tested and the values of these flows are 500, 750, and 1000 L/min. A manifold with tapered longitudinal section having inlet diameters of 10.16 cm (4 in and dead end diameter of 5.08 cm (2 in with the same above later specifications and flow rates was tested for its uniformity too. The percentage of absolute mean deviation for manifold with uniform diameter was found to be 34% while its value for the manifold with nonuniform diameter was found to be 14%. This result confirms the efficiency of the nonuniform distribution of fluids.

  12. Manifold mapping: a two-level optimization technique

    NARCIS (Netherlands)

    Echeverria, D.; Hemker, P.W.

    2008-01-01

    In this paper, we analyze in some detail the manifold-mapping optimization technique introduced recently [Echeverría and Hemker in space mapping and defect correction. Comput Methods Appl Math 5(2): 107-–136, 2005]. Manifold mapping aims at accelerating optimal design procedures that otherwise requi

  13. Deformations of log-Lagrangian submanifolds of Poisson manifolds

    OpenAIRE

    2013-01-01

    We consider Lagrangian-like submanifolds in certain even-dimensional 'symplectic-like' Poisson manifolds. We show, under suitable transversality hypotheses, that the pair consisting of the ambient Poisson manifold and the submanifold has unobstructed deformations and that the deformations automatically preserve the Lagrangian-like property.

  14. Approximate Inertial Manifolds for Chemotaxis-Growth System

    Institute of Scientific and Technical Information of China (English)

    Hong LUO; Zhilin PU

    2012-01-01

    The long-time behaviour of solution to chemotaxis-growth system with Neumann condition is considered in this paper.The approximate inertial manifolds of such equations are constructed based on the contraction principle,and the orders of approximations of the manifolds to the global attractor are derived.

  15. Embedding universal covers of graph manifolds in products of trees

    CERN Document Server

    Hume, David

    2011-01-01

    We prove that the universal cover of any graph manifold quasi-isometrically embeds into a product of three trees. In particular we show that the Assouad-Nagata dimension of the universal cover of any closed graph manifold is 3, proving a conjecture of Smirnov.

  16. Spectral invariants of operators of Dirac type on partitioned manifolds

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Bleecker, D.

    2004-01-01

    We review the concepts of the index of a Fredholm operator, the spectral flow of a curve of self-adjoint Fredholm operators, the Maslov index of a curve of Lagrangian subspaces in symplectic Hilbert space, and the eta invariant of operators of Dirac type on closed manifolds and manifolds with bou...

  17. Existence and bifurcation of integral manifolds with applications

    Institute of Scientific and Technical Information of China (English)

    HAN; Mao'an; CHEN; Xianfeng

    2005-01-01

    In this paper a bifurcation theorem on the existence of integral manifolds is obtained by using contracting principle. As an application, sufficient conditions for a higher dimensional system to have an integral manifold are given. Especially the existence and uniqueness of a 3-dimensional invariant torus appearing in a 4-dimensional autonomous system with singularity of codimension two are proved.

  18. Variable volume combustor with nested fuel manifold system

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  19. Characterizing pathological deviations from normality using constrained manifold-learning.

    Science.gov (United States)

    Duchateau, Nicolas; De Craene, Mathieu; Piella, Gemma; Frangi, Alejandro F

    2011-01-01

    We propose a technique to represent a pathological pattern as a deviation from normality along a manifold structure. Each subject is represented by a map of local motion abnormalities, obtained from a statistical atlas of motion built from a healthy population. The algorithm learns a manifold from a set of patients with varying degrees of the same pathology. The approach extends recent manifold-learning techniques by constraining the manifold to pass by a physiologically meaningful origin representing a normal motion pattern. Individuals are compared to the manifold population through a distance that combines a mapping to the manifold and the path along the manifold to reach its origin. The method is applied in the context of cardiac resynchronization therapy (CRT), focusing on a specific motion pattern of intra-ventricular dyssynchrony called septal flash (SF). We estimate the manifold from 50 CRT candidates with SF and test it on 38 CRT candidates and 21 healthy volunteers. Experiments highlight the need of nonlinear techniques to learn the studied data, and the relevance of the computed distance for comparing individuals to a specific pathological pattern.

  20. Hetero-manifold Regularisation for Cross-modal Hashing.

    Science.gov (United States)

    Zheng, Feng; Tang, Yi; Shao, Ling

    2016-12-28

    Recently, cross-modal search has attracted considerable attention but remains a very challenging task because of the integration complexity and heterogeneity of the multi-modal data. To address both challenges, in this paper, we propose a novel method termed hetero-manifold regularisation (HMR) to supervise the learning of hash functions for efficient cross-modal search. A hetero-manifold integrates multiple sub-manifolds defined by homogeneous data with the help of cross-modal supervision information. Taking advantages of the hetero-manifold, the similarity between each pair of heterogeneous data could be naturally measured by three order random walks on this hetero-manifold. Furthermore, a novel cumulative distance inequality defined on the hetero-manifold is introduced to avoid the computational difficulty induced by the discreteness of hash codes. By using the inequality, cross-modal hashing is transformed into a problem of hetero-manifold regularised support vector learning. Therefore, the performance of cross-modal search can be significantly improved by seamlessly combining the integrated information of the hetero-manifold and the strong generalisation of the support vector machine. Comprehensive experiments show that the proposed HMR achieve advantageous results over the state-of-the-art methods in several challenging cross-modal tasks.

  1. Manifold mapping: a two-level optimization technique

    NARCIS (Netherlands)

    Echeverría, D.; Hemker, P.W.

    2008-01-01

    In this paper, we analyze in some detail the manifold-mapping optimization technique introduced recently [Echeverría and Hemker in space mapping and defect correction. Comput Methods Appl Math 5(2): 107--136, 2005]. Manifold mapping aims at accelerating optimal design procedures that otherwise requi

  2. 4-manifolds and intersection forms with local coefficients

    DEFF Research Database (Denmark)

    Frøyshov, Kim Anders

    2012-01-01

    We extend Donaldson's diagonalization theorem to intersection forms with certain local coefficients, under some constraints. This provides new examples of non-smoothable topological 4-manifolds.......We extend Donaldson's diagonalization theorem to intersection forms with certain local coefficients, under some constraints. This provides new examples of non-smoothable topological 4-manifolds....

  3. Hilbert manifold structure for asymptotically hyperbolic relativistic initial data

    CERN Document Server

    Fougeirol, Jérémie

    2016-01-01

    We provide a Hilbert manifold structure {\\`a} la Bartnik for the space of asymptotically hyperbolic initial data for the vacuum constraint equations. The adaptation led us to prove new weighted Poincar{\\'e} and Korn type inequalities for AH manifolds with inner boundary and weakly regular metric.

  4. Dynamical systems on a Riemannian manifold that admit normal shift

    Energy Technology Data Exchange (ETDEWEB)

    Boldin, A.Yu.; Dmitrieva, V.V.; Safin, S.S.; Sharipov, R.A. [Bashkir State Univ. (Russian Federation)

    1995-11-01

    Newtonian dynamical systems that admit normal shift on an arbitrary Riemannian manifold are considered. The determining equations for these systems, which constitute the condition of weak normality, are derived. The extension of the algebra of tensor fields to manifolds is considered.

  5. Spectral calibration for convex grating imaging spectrometer

    Science.gov (United States)

    Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Chen, Yuheng; Shen, Weimin

    2013-12-01

    Spectral calibration of imaging spectrometer plays an important role for acquiring target accurate spectrum. There are two spectral calibration types in essence, the wavelength scanning and characteristic line sampling. Only the calibrated pixel is used for the wavelength scanning methods and he spectral response function (SRF) is constructed by the calibrated pixel itself. The different wavelength can be generated by the monochromator. The SRF is constructed by adjacent pixels of the calibrated one for the characteristic line sampling methods. And the pixels are illuminated by the narrow spectrum line and the center wavelength of the spectral line is exactly known. The calibration result comes from scanning method is precise, but it takes much time and data to deal with. The wavelength scanning method cannot be used in field or space environment. The characteristic line sampling method is simple, but the calibration precision is not easy to confirm. The standard spectroscopic lamp is used to calibrate our manufactured convex grating imaging spectrometer which has Offner concentric structure and can supply high resolution and uniform spectral signal. Gaussian fitting algorithm is used to determine the center position and the Full-Width-Half-Maximum(FWHM)of the characteristic spectrum line. The central wavelengths and FWHMs of spectral pixels are calibrated by cubic polynomial fitting. By setting a fitting error thresh hold and abandoning the maximum deviation point, an optimization calculation is achieved. The integrated calibration experiment equipment for spectral calibration is developed to enhance calibration efficiency. The spectral calibration result comes from spectral lamp method are verified by monochromator wavelength scanning calibration technique. The result shows that spectral calibration uncertainty of FWHM and center wavelength are both less than 0.08nm, or 5.2% of spectral FWHM.

  6. Stochastic convex sparse principal component analysis.

    Science.gov (United States)

    Baytas, Inci M; Lin, Kaixiang; Wang, Fei; Jain, Anil K; Zhou, Jiayu

    2016-12-01

    Principal component analysis (PCA) is a dimensionality reduction and data analysis tool commonly used in many areas. The main idea of PCA is to represent high-dimensional data with a few representative components that capture most of the variance present in the data. However, there is an obvious disadvantage of traditional PCA when it is applied to analyze data where interpretability is important. In applications, where the features have some physical meanings, we lose the ability to interpret the principal components extracted by conventional PCA because each principal component is a linear combination of all the original features. For this reason, sparse PCA has been proposed to improve the interpretability of traditional PCA by introducing sparsity to the loading vectors of principal components. The sparse PCA can be formulated as an ℓ1 regularized optimization problem, which can be solved by proximal gradient methods. However, these methods do not scale well because computation of the exact gradient is generally required at each iteration. Stochastic gradient framework addresses this challenge by computing an expected gradient at each iteration. Nevertheless, stochastic approaches typically have low convergence rates due to the high variance. In this paper, we propose a convex sparse principal component analysis (Cvx-SPCA), which leverages a proximal variance reduced stochastic scheme to achieve a geometric convergence rate. We further show that the convergence analysis can be significantly simplified by using a weak condition which allows a broader class of objectives to be applied. The efficiency and effectiveness of the proposed method are demonstrated on a large-scale electronic medical record cohort.

  7. Manifold learning based feature extraction for classification of hyper-spectral data

    CSIR Research Space (South Africa)

    Lunga, D

    2013-08-01

    Full Text Available often lie on sparse, nonlinear manifolds whose geometric and topological structures can be exploited via manifold learning techniques. In this article, we focused on demonstrating the opportunities provided by manifold learning for classification...

  8. Investigating performance of microchannel evaporators with different manifold structures

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junye; Qu, Xiaohua; Qi, Zhaogang; Chen, Jiangping [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240 (China)

    2011-01-15

    In this paper, the performances of microchannel evaporators with different manifold structures are experimentally investigated. Eight evaporator samples with 7 different designs of the I/O manifold and 5 different designs of the return manifold are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant 134A at a real automotive AC condition. The results on the variations of the cooling capacity and air temperature distribution of the evaporator due to the deflector designs in the I/O manifold and flow hole arrangements in the return manifold are presented and analyzed. By studying the KPI's for the performance of an evaporator, the design trade-off for an evaporator designer is summarized and discussed. (author)

  9. Natural connections on conformal Riemannian P-manifolds

    CERN Document Server

    Gribacheva, Dobrinka

    2011-01-01

    The class of conformal Riemannian P-manifolds is the largest class of Riemannian almost product manifolds, which is closed with respect to the group of the conformal transformations of the Riemannian metric. This class is an analogue of the class of conformal Kaehler manifolds in almost Hermitian geometry. In the present work we study on a conformal Riemannian P-manifold (M, P, g) the natural linear connections, i.e. the linear connections preserving the almost product structure P and the Riemannian metric g. We find necessary and sufficient conditions the curvature tensor of such a connection to have similar properties like the ones of the Kaehler tensor in Hermitian geometry. We determine the type of the manifolds admitting a natural connection with a parallel torsion.

  10. MOCVD manifold switching effects on growth and characterization

    Science.gov (United States)

    Clark, Ivan O.; Fripp, Archibald L.; Jesser, William A.

    1991-01-01

    A combined modeling and experimental approach is used to quantify the effects of various manifold components on the switching speed in metalorganic chemical vapor deposition (MOCVD). In particular, two alternative vent-run high-speed switching manifold designs suitable for either continuous or interrupted growth have been investigated. Both designs are incorporated in a common manifold, instrumented with a mass spectrometer. The experiments have been performed using nitrogen as the transport gas and argon as the simulated source gas. The advantages and limitations of two designs are discussed. It is found that while constant flow manifold switching systems may have fluid dynamic advantages, care must be taken to minimize sections of the supply manifold with low flow rates if rapid changes in alloy composition are required.

  11. Some conformally flat spin manifolds, Dirac operators and automorphic forms

    Science.gov (United States)

    Krau[Ss]Har, R. S.; Ryan, John

    2007-01-01

    In this paper we study Clifford and harmonic analysis on some examples of conformal flat manifolds that have a spinor structure, or more generally, at least a pin structure. The examples treated here are manifolds that can be parametrized by U/[Gamma] where U is a subdomain of either Sn or Rn and [Gamma] is a Kleinian group acting discontinuously on U. The examples studied here include RPn and the Hopf manifolds S1xSn-1. Also some hyperbolic manifolds will be treated. Special kinds of Clifford-analytic automorphic forms associated to the different choices of [Gamma] are used to construct explicit Cauchy kernels, Cauchy integral formulas, Green's kernels and formulas together with Hardy spaces and Plemelj projection operators for Lp spaces of hypersurfaces lying in these manifolds.

  12. Local Linear Regression on Manifolds and its Geometric Interpretation

    CERN Document Server

    Cheng, Ming-Yen

    2012-01-01

    We study nonparametric regression with high-dimensional data, when the predictors lie on an unknown, lower-dimensional manifold. In this context, recently \\cite{aswani_bickel:2011} suggested performing the conventional local linear regression (LLR) in the ambient space and regularizing the estimation problem using information obtained from learning the manifold locally. By contrast, our approach is to reduce the dimensionality first and then construct the LLR directly on a tangent plane approximation to the manifold. Under mild conditions, asymptotic expressions for the conditional mean squared error of the proposed estimator are derived for both the interior and the boundary cases. One implication of these results is that the optimal convergence rate depends only on the intrinsic dimension $d$ of the manifold, but not on the ambient space dimension $p$. Another implication is that the estimator is design adaptive and automatically adapts to the boundary of the unknown manifold. The bias and variance expressi...

  13. Noninvariant Hypersurfaces of a Nearly Trans-Sasakian Manifolds

    Directory of Open Access Journals (Sweden)

    Satya Prakash Yadav

    2014-01-01

    Full Text Available The present paper focuses on the study of noninvariant hypersurfaces of a nearly trans-Sasakian manifold equipped with (f,g,u,v,λ-structure. Initially some properties of this structure have been discussed. Further, the second fundamental forms of noninvariant hypersurfaces of nearly trans-Sasakian manifolds and nearly cosymplectic manifolds with (f,g,u,v,λ-structure have been calculated provided f is parallel. In addition, the eigenvalues of f have been found and proved that a noninvariant hypersurface with (f,g,u,v,λ-structure of nearly cosymplectic manifold with contact structure becomes totally geodesic. Finally the paper has been concluded by investigating the necessary condition for totally geodesic or totally umbilical noninvariant hypersurface with (f,g,u,v,λ-structure of a nearly trans-Sasakian manifold.

  14. Model Transport: Towards Scalable Transfer Learning on Manifolds

    DEFF Research Database (Denmark)

    Freifeld, Oren; Hauberg, Søren; Black, Michael J.

    2014-01-01

    “commutes” with learning. Consequently, our compact framework, applicable to a large class of manifolds, is not restricted by the size of either the training or test sets. We demonstrate the approach by transferring PCA and logistic-regression models of real-world data involving 3D shapes and image......We consider the intersection of two research fields: transfer learning and statistics on manifolds. In particular, we consider, for manifold-valued data, transfer learning of tangent-space models such as Gaussians distributions, PCA, regression, or classifiers. Though one would hope to simply use...... ordinary Rn-transfer learning ideas, the manifold structure prevents it. We overcome this by basing our method on inner-product-preserving parallel transport, a well-known tool widely used in other problems of statistics on manifolds in computer vision. At first, this straightforward idea seems to suffer...

  15. Fixed Points of Single- and Set-Valued Mappings in Uniformly Convex Metric Spaces with No Metric Convexity

    Directory of Open Access Journals (Sweden)

    Rafa Espínola

    2010-01-01

    Full Text Available We study the existence of fixed points and convergence of iterates for asymptotic pointwise contractions in uniformly convex metric spaces. We also study the existence of fixed points for set-valued nonexpansive mappings in the same class of spaces. Our results do not assume convexity of the metric which makes a big difference when studying the existence of fixed points for set-valued mappings.

  16. A parameter-dependent refinement of the discrete Jensen's inequality for convex and mid-convex functions

    Directory of Open Access Journals (Sweden)

    Horváth László

    2011-01-01

    Full Text Available Abstract In this paper, a new parameter-dependent refinement of the discrete Jensen's inequality is given for convex and mid-convex functions. The convergence of the introduced sequences is also studied. One of the proofs requires an interesting convergence theorem with probability theoretical background. We apply the results to define some new quasi-arithmetic and mixed symmetric means and study their monotonicity and convergence.

  17. Evolutionary global optimization, manifolds and applications

    CERN Document Server

    Aguiar e Oliveira Junior, Hime

    2016-01-01

    This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory....

  18. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  19. The Operator Manifold Formalism; 2, Physical Applications

    CERN Document Server

    Ter-Kazarian, G T

    1998-01-01

    Within the operator manifold approach (part I, hep-th/9812181) we derive the Gell-Mann-Nishijima relation and flavour group, whereas the leptons are particles with integer electric and leptonic charges and free of confinement, while quarks carry fractional electric and baryonic charges and imply the confinement. We consider the unified electroweak interactions with small number of free parameters, exploit the background of the local expanded symmetry $SU(2)\\otimes U(1)$ and P-violation. The Weinberg mixing angle is shown to have fixed value at $30^{o}$. The Higgs bosons arise on an analogy of the Cooper pairs in superconductivity. Within the present microscopic approach we predict the Kobayashi-Maskawa quark flavour mixing; the appearance of the CP-violation phase; derive the mass-spectrum of leptons and quarks, as well as other emerging particles, and also some useful relations between their masses.

  20. Killing superalgebras for Lorentzian four-manifolds

    CERN Document Server

    de Medeiros, Paul; Santi, Andrea

    2016-01-01

    We determine the Killing superalgebras underpinning field theories with rigid unextended supersymmetry on Lorentzian four-manifolds by re-interpreting them as filtered deformations of $\\mathbb{Z}$-graded subalgebras with maximum odd dimension of the $N{=}1$ Poincar\\'e superalgebra in four dimensions. Part of this calculation involves computing a Spencer cohomology group which, by analogy with a similar result in eleven dimensions, prescribes a notion of Killing spinor, which we identify with the defining condition for bosonic supersymmetric backgrounds of minimal off-shell supergravity in four dimensions. We prove that such Killing spinors always generate a Lie superalgebra, and that this Lie superalgebra is a filtered deformation of a subalgebra of the $N{=}1$ Poincar\\'e superalgebra in four dimensions. Demanding the flatness of the connection defining the Killing spinors, we obtain equations satisfied by the maximally supersymmetric backgrounds. We solve these equations, arriving at the classification of ma...

  1. An Underlying Geometrical Manifold for Hamiltonian Mechanics

    CERN Document Server

    Horwitz, L P; Levitan, J; Lewkowicz, M

    2015-01-01

    We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture) that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamilton-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical pictu...

  2. On timelike surfaces in Lorentzian manifolds

    CERN Document Server

    Hasse, Wolfgang

    2008-01-01

    We discuss the geometry of timelike surfaces (two-dimensional submanifolds) in a Lorentzian manifold and its interpretation in terms of general relativity. A classification of such surfaces is presented which distinguishes four cases of special algebraic properties of the second fundamental form from the generic case. In the physical interpretation a timelike surface can be viewed as the worldsheet of a ``track'', and timelike curves in this surface can be viewed as the worldlines of observers who are bound to the track, like someone sitting in a roller-coaster car. With this interpretation, our classification turns out to be closely related to (i) the visual appearance of the track, (ii) gyroscopic transport along the track, and (iii) inertial forces perpendicular to the track. We illustrate our general results with timelike surfaces in the Kerr-Newman spacetime.

  3. Biomedical data analysis by supervised manifold learning.

    Science.gov (United States)

    Alvarez-Meza, A M; Daza-Santacoloma, G; Castellanos-Dominguez, G

    2012-01-01

    Biomedical data analysis is usually carried out by assuming that the information structure embedded into the biomedical recordings is linear, but that statement actually does not corresponds to the real behavior of the extracted features. In order to improve the accuracy of an automatic system to diagnostic support, and to reduce the computational complexity of the employed classifiers, we propose a nonlinear dimensionality reduction methodology based on manifold learning with multiple kernel representations, which learns the underlying data structure of biomedical information. Moreover, our approach can be used as a tool that allows the specialist to do a visual analysis and interpretation about the studied variables describing the health condition. Obtained results show how our approach maps the original high dimensional features into an embedding space where simple and straightforward classification strategies achieve a suitable system performance.

  4. Stochastic gradient descent on Riemannian manifolds

    CERN Document Server

    Bonnabel, Silvere

    2011-01-01

    Stochastic gradient descent is a simple appproach to find the local minima of a function whose evaluations are corrupted by noise. In this paper, mostly motivated by machine learning applications, we develop a procedure extending stochastic gradient descent algorithms to the case where the function is defined on a Riemannian manifold. We prove that, as in the Euclidian case, the descent algorithm converges to a critical point of the cost function. The algorithm has numerous potential applications, and we show several well-known algorithms can be cast in our versatile geometric framework. We also address the gain tuning issue in connection with the tools of the recent theory of symmetry-preserving observers.

  5. Classification of Framed Links in 3-Manifolds

    Indian Academy of Sciences (India)

    Matija Cencelj; Dušan Repovš; Mikhail B Skopenkov

    2007-08-01

    We present a short and complete proof of the following Pontryagin theorem, whose original proof was complicated and has never been published in detail. Let be a connected oriented closed smooth 3-manifold, $L_1(M)$ be the set of framed links in up to a framed cobordism, and $\\deg: L_1(M)→ H_1(M;\\mathbb{Z})$ be the map taking a framed link to its homology class. Then for each $\\in H_1(M;\\mathbb{Z})$ there is a one-to-one correspondence between the set $\\deg^{-1}$ and the group $\\mathbb{Z}_{2d()}$, where () is the divisibility of the projection of to the free part of $H_1(M;\\mathbb{Z})$.

  6. Diffusion Harmonics and Dual Geometry on Carnot Manifolds

    Science.gov (United States)

    Constantin, Sarah

    The "curse of dimensionality" motivates the importance of techniques for computing low-dimensional approximations of high-dimensional data. It is often necessary to use nonlinear techniques to recover a low-dimensional manifold embedded via a nonlinear map in a high-dimensional space; this family of techniques is referred to as "manifold learning." The accuracy of manifold-learning-based approximations is founded on asymptotic results that assume the data is drawn from a low-dimensional Riemannian manifold. However, in natural datasets, this assumption is often overly restrictive. In the first part of this thesis we examine a more general class of manifolds known as Carnot manifolds, a type of sub-Riemannian manifold that governs natural phenomena such as chemical kinetics and configuration spaces of jointed objects. We find that diffusion maps can be generalized to Carnot manifolds and that the projection onto diffusion harmonics gives an almost isometric embedding; as a side effect, the diffusion distance is a computationally fast estimate for the shortest distance between two points on a Carnot manifold. We apply this theory to biochemical network data and observe that the chemical kinetics of the EGFR network are governed by a Carnot, but not Riemannian, manifold. In the second part of this thesis we examine the Heisenberg group, a classical example of a Carnot manifold. We obtain a representation-theoretic proof that the eigenfunctions of the sub-Laplacian on SU(2) approach the eigenfunctions of the sub-Laplacian on the Heisenberg group, in the limit as the radius of the sphere becomes large, in analogy with the limiting relationship between the Fourier series on the circle and the Fourier transform on the line. This result also illustrates how projecting onto the sub-Laplacian eigenfunctions of a non-compact Carnot manifold can be locally approximated by projecting onto the sub-Laplacian eigenfunctions of a tangent compact Carnot manifold. In the third part

  7. The Knaster-Kuratowski-Mazurkiewicz theorem and abstract convexities

    Science.gov (United States)

    Cain, George L., Jr.; González, Luis

    2008-02-01

    The Knaster-Kuratowski-Mazurkiewicz covering theorem (KKM), is the basic ingredient in the proofs of many so-called "intersection" theorems and related fixed point theorems (including the famous Brouwer fixed point theorem). The KKM theorem was extended from Rn to Hausdorff linear spaces by Ky Fan. There has subsequently been a plethora of attempts at extending the KKM type results to arbitrary topological spaces. Virtually all these involve the introduction of some sort of abstract convexity structure for a topological space, among others we could mention H-spaces and G-spaces. We have introduced a new abstract convexity structure that generalizes the concept of a metric space with a convex structure, introduced by E. Michael in [E. Michael, Convex structures and continuous selections, Canad. J. MathE 11 (1959) 556-575] and called a topological space endowed with this structure an M-space. In an article by Shie Park and Hoonjoo Kim [S. Park, H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996) 173-187], the concepts of G-spaces and metric spaces with Michael's convex structure, were mentioned together but no kind of relationship was shown. In this article, we prove that G-spaces and M-spaces are close related. We also introduce here the concept of an L-space, which is inspired in the MC-spaces of J.V. Llinares [J.V. Llinares, Unified treatment of the problem of existence of maximal elements in binary relations: A characterization, J. Math. Econom. 29 (1998) 285-302], and establish relationships between the convexities of these spaces with the spaces previously mentioned.

  8. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  9. Cohomological rigidity of manifolds defined by 3-dimensional polytopes

    Science.gov (United States)

    Buchstaber, V. M.; Erokhovets, N. Yu.; Masuda, M.; Panov, T. E.; Park, S.

    2017-04-01

    A family of closed manifolds is said to be cohomologically rigid if a cohomology ring isomorphism implies a diffeomorphism for any two manifolds in the family. Cohomological rigidity is established here for large families of 3-dimensional and 6-dimensional manifolds defined by 3-dimensional polytopes. The class \\mathscr{P} of 3-dimensional combinatorial simple polytopes P different from tetrahedra and without facets forming 3- and 4-belts is studied. This class includes mathematical fullerenes, that is, simple 3- polytopes with only 5-gonal and 6-gonal facets. By a theorem of Pogorelov, any polytope in \\mathscr{P} admits in Lobachevsky 3-space a right-angled realisation which is unique up to isometry. Our families of smooth manifolds are associated with polytopes in the class \\mathscr{P}. The first family consists of 3-dimensional small covers of polytopes in \\mathscr{P}, or equivalently, hyperbolic 3-manifolds of Löbell type. The second family consists of 6-dimensional quasitoric manifolds over polytopes in \\mathscr{P}. Our main result is that both families are cohomologically rigid, that is, two manifolds M and M' from either family are diffeomorphic if and only if their cohomology rings are isomorphic. It is also proved that if M and M' are diffeomorphic, then their corresponding polytopes P and P' are combinatorially equivalent. These results are intertwined with classical subjects in geometry and topology such as the combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeomorphism classification of 6-manifolds, and invariance of Pontryagin classes. The proofs use techniques of toric topology. Bibliography: 69 titles.

  10. Persistence of noncompact normally hyperbolic invariant manifolds in bounded geometry

    CERN Document Server

    Eldering, J

    2012-01-01

    We prove a persistence result for noncompact normally hyperbolic invariant manifolds in the setting of Riemannian manifolds of bounded geometry. Bounded geometry of the ambient manifold is a crucial assumption required to control the uniformity of all estimates throughout the proof. The $C^{k,\\alpha}$-smoothness result is optimal with respect to the spectral gap condition involved. The core of the persistence proof is based on the Perron method. In the process we derive new results on noncompact submanifolds in bounded geometry: a uniform tubular neighborhood theorem and uniform smooth approximation of a submanifold. The submanifolds considered are assumed to be uniformly $C^k$ bounded in an appropriate sense.

  11. 4-dimensional locally CAT(0)-manifolds with no Riemannian smoothings

    CERN Document Server

    Davis, M; Lafont, J -F

    2010-01-01

    We construct examples of smooth 4-dimensional manifolds M supporting a locally CAT(0)-metric, whose universal cover X satisfy Hruska's isolated flats condition, and contain 2-dimensional flats F with the property that the boundary at infinity of F defines a nontrivial knot in the boundary at infinity of X. As a consequence, we obtain that the fundamental group of M cannot be isomorphic to the fundamental group of any Riemannian manifold of nonpositive sectional curvature. In particular, M is a locally CAT(0)-manifold which does not support any Riemannian metric of nonpositive sectional curvature.

  12. A global Torelli theorem for hyperkaehler manifolds (after Verbitsky)

    CERN Document Server

    Huybrechts, Daniel

    2011-01-01

    Compact hyperkaehler manifolds are higher-dimensional generalizations of K3 surfaces. The classical Global Torelli theorem for K3 surfaces, however, does not hold in higher dimensions. More precisely, a compact hyperkaehler manifold is in general not determined by its natural weight-two Hodge structure. The text gives an account of a recent theorem of M. Verbitsky, which can be regarded as a weaker version of the Global Torelli theorem phrased in terms of the injectivity of the period map on the connected components of the moduli space of marked manifolds.

  13. Solving Einstein's Equation Numerically on Manifolds with Arbitrary Topologie

    Science.gov (United States)

    Lindblom, Lee

    2017-01-01

    This talk will summarize some of the numerical methods we have developed for solving Einstein's equation numerically on manifolds with arbitrary spatial topologies. These methods include the use of multi-cube representations of arbitrary manifolds, a convenient new way to specify the differential structure on multi-cube representations, and a new fully covariant first-order symmetric hyperbolic representation of Einstein's equation. Progress on the problem of constructing the ``reference metrics'' (which are an essential element of our numerical method) for arbitrary manifolds will be described, and numerical results will be presented for some example simulations.

  14. Understanding 3-manifolds in the context of permutations

    CERN Document Server

    Null, Karoline P

    2011-01-01

    We demonstrate how a 3-manifold, a Heegaard diagram, and a group presentation can each be interpreted as a pair of signed permutations in the symmetric group $S_d.$ We demonstrate the power of permutation data in programming and discuss an algorithm we have developed that takes the permutation data as input and determines whether the data represents a closed 3-manifold. We therefore have an invariant of groups, that is given any group presentation, we can determine if that presentation presents a closed 3-manifold.

  15. Cavitation bubbles collapse characteristics behind a convex body

    Institute of Scientific and Technical Information of China (English)

    李瑶; 许唯临; 张亚磊; 张敬威; 陈春祺; 阿蓉

    2013-01-01

    Cavitation bubbles behind a convex body were experimentally studied by a high speed camera and a hydrophone synch- ronously. The experiments were conducted in a circulating water tunnel with five various contraction ratios:b=0.497,b=0.6,b=0.697,b=0.751, andb=0.799. The distributions of the cavitation bubble collapse positions behind the five different convex bodies were obtained by combining the images taken by the high speed camera. According to the collapse positions, it was found that no cavitation bubble was collapsed in the region near the wall until the ratio of the water head loss over the convex body height was larger than 20, which can be used to predict if the cavitation damage would occur in the tunnel with orifice energy dissipaters.

  16. Trace-Inequalities and Matrix-Convex Functions

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ando

    2010-01-01

    Full Text Available A real-valued continuous function f(t on an interval (α,β gives rise to a map X↦f(X via functional calculus from the convex set of n×n Hermitian matrices all of whose eigenvalues belong to the interval. Since the subpace of Hermitian matrices is provided with the order structure induced by the cone of positive semidefinite matrices, one can consider convexity of this map. We will characterize its convexity by the following trace-inequalities: Tr(f(B−f(A(C−B≤Tr(f(C−f(B(B−A for A≤B≤C. A related topic will be also discussed.

  17. RESEARCH ANNOUNCEMENTS Helly Type Problems for Some Special Convex Polygons

    Institute of Scientific and Technical Information of China (English)

    苑立平; 丁仁

    2001-01-01

    @@In the combinatorial geometry of convex sets the question of how efficiently a family of convex sets can be pierced by points has led to various problems which may be regarded as extensions of the Helly-type problems. A family of sets is said to be n-pierceable (abbreviated as Пn) if there exists a set of n points such that each member of the family contains at least one of them. A family of sets is said to be Пnk if every subfamily of size k or less is Пn. The famous Helly theorem in combinatorial geometry asserts that for finite families of convex sets in the plane П13 implies П1. In a recent paper by M. Katchalski and D. Nashtir[a] the following conjecture of Griinbaum[2] was mentioned again:

  18. Widths of some classes of convex functions and bodies

    Science.gov (United States)

    Konovalov, V. N.; Maiorov, Vitalii E.

    2010-02-01

    We consider classes of uniformly bounded convex functions defined on convex compact bodies in \\mathbb{R}^d and satisfying a Lipschitz condition and establish the exact orders of their Kolmogorov, entropy, and pseudo-dimension widths in the L_1-metric. We also introduce the notions of pseudo-dimension and pseudo-dimension widths for classes of sets and determine the exact orders of the entropy and pseudo-dimension widths of some classes of convex bodies in \\mathbb{R}^drelative to the pseudo-metric defined as the d-dimensional Lebesgue volume of the symmetric difference of two sets. We also find the exact orders of the entropy and pseudo-dimension widths of the corresponding classes of characteristic functions in L_p-spaces, 1\\le p\\le\\infty.

  19. Convex minorants of random walks and L\\'evy processes

    CERN Document Server

    Abramson, Josh; Ross, Nathan; Bravo, Gerónimo Uribe

    2011-01-01

    This article provides an overview of recent work on descriptions and properties of the convex minorant of random walks and L\\'evy processes which summarize and extend the literature on these subjects. The results surveyed include point process descriptions of the convex minorant of random walks and L\\'evy processes on a fixed finite interval, up to an independent exponential time, and in the infinite horizon case. These descriptions follow from the invariance of these processes under an adequate path transformation. In the case of Brownian motion, we note how further special properties of this process, including time-inversion, imply a sequential description for the convex minorant of the Brownian meander.

  20. Small sets in convex geometry and formal independence over ZFC

    Directory of Open Access Journals (Sweden)

    Menachem Kojman

    2005-01-01

    Full Text Available To each closed subset S of a finite-dimensional Euclidean space corresponds a σ-ideal of sets  (S which is σ-generated over S by the convex subsets of S. The set-theoretic properties of this ideal hold geometric information about the set. We discuss the relation of reducibility between convexity ideals and the connections between convexity ideals and other types of ideals, such as the ideals which are generated over squares of Polish space by graphs and inverses of graphs of continuous self-maps, or Ramsey ideals, which are generated over Polish spaces by the homogeneous sets with respect to some continuous pair coloring. We also attempt to present to nonspecialists the set-theoretic methods for dealing with formal independence as a means of geometric investigations.