WorldWideScience

Sample records for conversion weigh-in-motion system

  1. Static Scale Conversion Weigh-In-Motion System; FINAL

    International Nuclear Information System (INIS)

    Beshears, D.L.

    2001-01-01

    In support of the Air Mobility Battle Lab (AMBL), the Defense Advanced Research Projects Agency (DARPA) Advanced Logistics Program and the U. S. Transportation Command (USTRANSCOM), the ultimate objective of this project is to develop and demonstrate a full-scale prototype static scale conversion weigh-in-motion/Profilometry (SSC-WIM/P) system to measure and record dimensional and weight information for the Department of Defense (DoD) equipment and cargo. The Oak Ridge National Laboratory (ORNL), along with the AMBL, and Intercomp, Inc. have developed a long-range plan for developing a dual-use system which can be used as a standard static scale or an accurate weigh-in-motion system. AMBL will work to define requirements for additional activities with U.S. Transportation Command, Air Mobility Command, and the Joint Warfighting Battle Lab for both the SSC-WIM/P and a portable Weigh-in-Motion System for individual units. The funding goal is to fully fund the development of two prototype test articles (a SSC-WIM kit, and a laser profilometer) and have at least one fully operational system by the early 2002 timeframe. The objective of this portion of the project will be to develop a SSC-WIM system, which at a later date can be fully integrated with a profilometry system; to fully characterize DOD wheeled vehicles and cargo (individual axle weights, total vehicle weight, center of balance, height, width and length measurements). The program will be completed in phases with the initial AMBL/DARPA funding being used to initiate the efforts while AMBL/USTC obtains funding to complete the first generation system effort. At the completion of an initial effort, the interface hardware and the data acquisition/analysis hardware will be developed, fabricated, and system principles and basic functionality evaluated, tested, and demonstrated. Additional funding, when made available, will allow the successful completion of a first generation prototype system. This effort will be

  2. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    Directory of Open Access Journals (Sweden)

    Min-Seok Park

    2009-10-01

    Full Text Available This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  3. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    Science.gov (United States)

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  4. Traffic volume and load data measurement using a portable weigh in motion system: A case study

    Directory of Open Access Journals (Sweden)

    Abu N.M. Faruk

    2016-05-01

    Full Text Available Traditionally, traffic loading characteristics are collected for pavement design and performance prediction purposes using permanent roadside weigh-in-motion (WIM stations. However, high installation and maintenance costs associated with these permanent WIM stations dictate that their deployment be mostly limited to major highways, such as the interstate network. Quite often however, pavement damage on high volume rural highways with heavy truck proportions is more severe than anticipated, and there is no effective way of quantifying the traffic loading on these highways. Therefore, this study was conducted to evaluate the potential application of portable WIM systems as a means for bringing the WIM technology to these high volume rural highways. A portable WIM unit was deployed in the Texas overweight corridor in Hidalgo County (Pharr District near the USA-Mexico border on highway FM 1016 for collecting traffic data for a minimum of three weeks in each direction. The collected traffic data were analyzed to generate traffic parameters such as volume, load spectra, and overloading information both in terms of the gross vehicle weight (GVW and axle weight. The computed traffic parameters were successful in partially explaining some of the existing pavement conditions on this highway. Overall, the study findings indicated that the portable WIM unit can be used as a convenient and cost-effective means for collecting reliable traffic information for design, analysis, and monitoring purposes. However, proper in-situ calibration of the portable WIM unit at each site is imperative prior to any real-time traffic data collection. Keywords: Traffic data, Load spectra, Truck overweight, Weigh-in-motion (WIM, Portable WIM, Texas overweight corridor

  5. The Effect of Flexible Pavement Mechanics on the Accuracy of Axle Load Sensors in Vehicle Weigh-in-Motion Systems.

    Science.gov (United States)

    Burnos, Piotr; Rys, Dawid

    2017-09-07

    Weigh-in-Motion systems are tools to prevent road pavements from the adverse phenomena of vehicle overloading. However, the effectiveness of these systems can be significantly increased by improving weighing accuracy, which is now insufficient for direct enforcement of overloaded vehicles. Field tests show that the accuracy of Weigh-in-Motion axle load sensors installed in the flexible (asphalt) pavements depends on pavement temperature and vehicle speeds. Although this is a known phenomenon, it has not been explained yet. The aim of our study is to fill this gap in the knowledge. The explanation of this phenomena which is presented in the paper is based on pavement/sensors mechanics and the application of the multilayer elastic half-space theory. We show that differences in the distribution of vertical and horizontal stresses in the pavement structure are the cause of vehicle weight measurement errors. These studies are important in terms of Weigh-in-Motion systems for direct enforcement and will help to improve the weighing results accuracy.

  6. Weigh-in-Motion Stations

    Data.gov (United States)

    Department of Homeland Security — The data included in the GIS Traffic Stations Version database have been assimilated from station description files provided by FHWA for Weigh-in-Motion (WIM), and...

  7. Effectiveness of vehicle weight enforcement in a developing country using weigh-in-motion sorting system considering vehicle by-pass and enforcement capability

    Directory of Open Access Journals (Sweden)

    Mohamed Rehan Karim

    2014-03-01

    Full Text Available Vehicle overloading has been identified as one of the major contributors to road pavement damage in Malaysia. In this study, the weigh-in-motion (WIM system has been used to function as a vehicle weight sorting tool to complement the exsiting static weigh bridge enforcement station. Data collected from the developed system is used to explore the effectiveness of using WIM system in terms of generating more accurate data for enforcement purposes and at the same time improving safety and reducing the number of vehicle weight violations on the roads. This study specifically focus on the effect of vehicle by-pass and static weigh station enforcement capability on the overall effectiveness of vehicle weight enforcement system in a developing country. Results from this study suggest that the WIM system will significantly enhance the effectiveness and efficiency of the current vehicle weight enforcement, thus generating substantial revenue that would greatly off-set the current road maintenance budget that comes from tax payers money. If there is substantial reduction in overloaded vehicles, the public will still gain through reduction in road maintenance budget, less accident risks involving heavy trucks, and lesser greenhouse gases (GHGs emissions.

  8. Improving truck safety: Potential of weigh-in-motion technology

    Directory of Open Access Journals (Sweden)

    Bernard Jacob

    2010-07-01

    Full Text Available Trucks exceeding the legal mass limits increase the risk of traffic accidents and damage to the infrastructure. They also result in unfair competition between transport modes and companies. It is therefore important to ensure truck compliance to weight regulation. New technologies are being developed for more efficient overload screening and enforcement. Weigh-in-Motion (WIM technologies allow trucks to be weighed in the traffic flow, without any disruption to operations. Much progress has been made recently to improve and implement WIM systems, which can contribute to safer and more efficient operation of trucks.

  9. The Potential and Beneficial Use of Weigh-In-Motion (WIM) Systems Integrated with Radio Frequency Identification (RFID) Systems for Characterizing Disposal of Waste Debris to Optimize the Waste Shipping Process

    International Nuclear Information System (INIS)

    Abercrombie, Robert K.; Buckner, Dooley Jr.; Newton, David D.

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) Weigh-In-Motion (WIM) system provides a portable and/or semi-portable means of accurately weighing vehicles and its cargo as each vehicle crosses the scales (while in motion), and determining (1) axle weights and (2) axle spacing for vehicles (for determination of Bridge Formula compliance), (3) total vehicle/cargo weight and (4) longitudinal center of gravity (for safety considerations). The WIM system can also weigh the above statically. Because of the automated nature of the WIM system, it eliminates the introduction of human errors caused by manual computations and data entry, adverse weather conditions, and stress. Individual vehicles can be weighed continuously at low speeds (approximately 3-10 mph) and at intervals of less than one minute. The ORNL WIM system operates and is integrated into the Bethel Jacobs Company Transportation Management and Information System (TMIS, a Radio-Frequency Identification (RFID) enabled information system). The integrated process is as follows: Truck Identification Number and Tare Weight are programmed into a RFID Tag. Handheld RFID devices interact with the RFID Tag, and Electronic Shipping Document is written to the RFID Tag. The RFID tag read by an RFID tower identifies the vehicle and its associated cargo, the specific manifest of radioactive debris for the uniquely identified vehicle. The weight of the cargo (in this case waste debris) is calculated from total vehicle weight information supplied from WIM to TMIS and is further processed into the Information System and kept for historical and archival purposes. The assembled data is the further process in downstream information systems where waste coordination activities at the Y-12 Environmental Management Waste Management Facility (EMWMF) are written to RFID Tag. All cycle time information is monitored by Transportation Operations and Security personnel.

  10. Analysis of axle and vehicle load properties through Bayesian networks based on weigh-in-motion data

    NARCIS (Netherlands)

    Morales Napoles, O.; Steenbergen, R.D.J.M.

    2014-01-01

    Weigh-in-Motion (WIM) systems are used, among other applications, in pavement and bridge reliability. The system measures quantities such as individual axle load, vehicular loads, vehicle speed, vehicle length and number ofaxles. Because ofthe nature ofúamc configuration, the quantities measured are

  11. Weigh-in-Motion Sensor and Controller Operation and Performance Comparison

    Science.gov (United States)

    2018-01-01

    This research project utilized statistical inference and comparison techniques to compare the performance of different Weigh-in-Motion (WIM) sensors. First, we analyzed test-vehicle data to perform an accuracy check of the results reported by the sen...

  12. Portable bench tester for piezo weigh-in-motion equipment : final report, June 2006.

    Science.gov (United States)

    2006-06-01

    The Ohio Department of Transportation's (ODOT) piezo weigh-in-motion (WIM) equipment must be tested for initial working operation and to insure continued correct operation. Currently, the only available method to verify the vehicle classification par...

  13. Portable bench tester for piezo weigh-in-motion equipment : executive summary report.

    Science.gov (United States)

    2006-06-01

    The Ohio Department of Transportation's (ODOT) piezo weigh-in-motion (WIM) equipment must be tested for initial working operation and to insure continued correct operation. Currently, the only available method to verify the vehicle classification par...

  14. Use of Finite Elements Analysis for a Weigh-in-Motion Sensor Design

    Directory of Open Access Journals (Sweden)

    Viorel Goanta

    2012-05-01

    Full Text Available High speed weigh-in-motion (WIM sensors are utilized as components of complex traffic monitoring and measurement systems. They should be able to determine the weights on wheels, axles and vehicle gross weights, and to help the classification of vehicles (depending on the number of axles. WIM sensors must meet the following main requirements: good accuracy, high endurance, low price and easy installation in the road structure. It is not advisable to use cheap materials in constructing these devices for lower prices, since the sensors are normally working in harsh environmental conditions such as temperatures between –40 °C and +70 °C, dust, temporary water immersion, shocks and vibrations. Consequently, less expensive manufacturing technologies are recommended. Because the installation cost in the road structure is high and proportional to the WIM sensor cross section (especially with its thickness, the device needs to be made as flat as possible. The WIM sensor model presented and analyzed in this paper uses a spring element equipped with strain gages. Using Finite Element Analysis (FEA, the authors have attempted to obtain a more sensitive, reliable, lower profile and overall cheaper elastic element for a new WIM sensor.

  15. Weighing in motion and characterization of the railroad traffic with using the B-WIM technique

    Directory of Open Access Journals (Sweden)

    J. A. DE CARVALHO NETO

    Full Text Available AbstractThe knowledge on the active moving load of a bridge is crucial for the achievement of the information on the behavior of the structure, and thus foresee maintenance, repairs and better definition of the logistics of its active vehicles. This paper presents the development of the algorithms for the application of the Bridge-Weigh In Motion (B-WIM method created by Moses for the weighing of trains during motion and also for the characterization of the rail traffic, allowing the obtainment of information like passage's train velocity and number and spacing of axles, eliminating the dynamic effect. There were implemented algorithms for the determination of the data referring to the geometry of the train and its loads, which were evaluated using a theoretical example, in which it was simulated the passage of the train over a bridge and the loads of its axles were determined with one hundred percent of precision. In addition, it was made a numerical example in finite elements of a reinforced concrete viaduct from the Carajás' Railroad, in which the developed system reached great results on the characterization and weighing of the locomotive when the constitutive equation of the Brazilian Standards was substituted by the one proposed by Collins and Mitchell.

  16. Using weigh-in-motion data to determine bridge dynamic amplification factor

    Directory of Open Access Journals (Sweden)

    Kalin Jan

    2015-01-01

    Full Text Available The dynamic component of bridge traffic loading is commonly taken into account with a Dynamic Amplification Factor (DAF – the ratio between the maximum dynamic and static load effects on a bridge. In the design codes, this factor is generally higher than in reality. While this is fine for new bridges that must account for various risks during their life-time, it imposes unnecessary conservativism into assessment of the existing well defined bridges. Therefore, analysis of existing bridges should apply more realistic DAF values. One way of obtaining them experimentally is by bridge weigh-in-motion (B-WIM measurements, which use an existing instrumented bridge or culvert to weigh all crossing vehicles at highway speeds. The B-WIM system had been equipped with two methods of obtaining an approximation to the static response of the. The first method uses the sum of influence lines. This method relies on accurate axle identification, the failure of which can have a large influence on the DAF value. The other method uses a pre-determined low-pass filter to remove the dynamic component of the measured signal; however an expert is needed to set the filter parameters. A new approach that tries to eliminate these two drawbacks has been developed. In this approach the parameters for the filter are determined automatically by fitting the filtered response to the sum of the influence lines. The measurement of DAF on a typical bridge site agrees with experiments performed in the ARCHES [1] project: dynamic amplification decreases as static loading increases.

  17. Probability Based Evaluation of Vehicular Bridge Load using Weigh-in-Motion Data

    OpenAIRE

    Widi Nugraha; Indra Djati Sidi

    2016-01-01

    Load and Resistance Factored Design (LRFD) method for designing bridge in Indonesia have been implemented for more than 25 years. LRFD method treating loads and strengths variables as random variables with specific safety factors for different loads and strengths variables type. The nominal loads, load factors, reduction factors, and other criteria for bridge design code can be determined to meet the reliability criteria. Statistical data of weigh-in-motion (WIM) vehicular loads measurement i...

  18. Second Interim Report on the Installation and Evaluation of Weigh-In-Motion Utilizing Quartz-Piezo Sensor Technology

    Science.gov (United States)

    1999-11-01

    The objective of this study is to determine the sensor survivability, accuracy and reliability of quartz-piezoelectric weigh-in-motion (WIM) sensors under actual traffic conditions in Connecticut's environment. This second interim report provides a s...

  19. Sampling optimization for high-speed weigh-in-motion measurements using in-pavement strain-based sensors

    International Nuclear Information System (INIS)

    Zhang, Zhiming; Huang, Ying; Bridgelall, Raj; Palek, Leonard; Strommen, Robert

    2015-01-01

    Weigh-in-motion (WIM) measurement has been widely used for weight enforcement, pavement design, freight management, and intelligent transportation systems to monitor traffic in real-time. However, to use such sensors effectively, vehicles must exit the traffic stream and slow down to match their current capabilities. Hence, agencies need devices with higher vehicle passing speed capabilities to enable continuous weight measurements at mainline speeds. The current practices for data acquisition at such high speeds are fragmented. Deployment configurations and settings depend mainly on the experiences of operation engineers. To assure adequate data, most practitioners use very high frequency measurements that result in redundant samples, thereby diminishing the potential for real-time processing. The larger data memory requirements from higher sample rates also increase storage and processing costs. The field lacks a sampling design or standard to guide appropriate data acquisition of high-speed WIM measurements. This study develops the appropriate sample rate requirements as a function of the vehicle speed. Simulations and field experiments validate the methods developed. The results will serve as guidelines for future high-speed WIM measurements using in-pavement strain-based sensors. (paper)

  20. Sampling optimization for high-speed weigh-in-motion measurements using in-pavement strain-based sensors

    Science.gov (United States)

    Zhang, Zhiming; Huang, Ying; Bridgelall, Raj; Palek, Leonard; Strommen, Robert

    2015-06-01

    Weigh-in-motion (WIM) measurement has been widely used for weight enforcement, pavement design, freight management, and intelligent transportation systems to monitor traffic in real-time. However, to use such sensors effectively, vehicles must exit the traffic stream and slow down to match their current capabilities. Hence, agencies need devices with higher vehicle passing speed capabilities to enable continuous weight measurements at mainline speeds. The current practices for data acquisition at such high speeds are fragmented. Deployment configurations and settings depend mainly on the experiences of operation engineers. To assure adequate data, most practitioners use very high frequency measurements that result in redundant samples, thereby diminishing the potential for real-time processing. The larger data memory requirements from higher sample rates also increase storage and processing costs. The field lacks a sampling design or standard to guide appropriate data acquisition of high-speed WIM measurements. This study develops the appropriate sample rate requirements as a function of the vehicle speed. Simulations and field experiments validate the methods developed. The results will serve as guidelines for future high-speed WIM measurements using in-pavement strain-based sensors.

  1. Probability Based Evaluation of Vehicular Bridge Load using Weigh-in-Motion Data

    Directory of Open Access Journals (Sweden)

    Widi Nugraha

    2016-02-01

    Full Text Available Load and Resistance Factored Design (LRFD method for designing bridge in Indonesia have been implemented for more than 25 years. LRFD method treating loads and strengths variables as random variables with specific safety factors for different loads and strengths variables type. The nominal loads, load factors, reduction factors, and other criteria for bridge design code can be determined to meet the reliability criteria. Statistical data of weigh-in-motion (WIM vehicular loads measurement in Northern Java highway, Cikampek - Pamanukan, West Java (2011, used in as statistical loads variable. A 25 m simple span bridge with reinforced concrete T-girder is used as a model for structural analysis due to WIM measured and nominal vehicular load based on RSNI T-02-2005, with applied bending moment of girder as the output. The distribution fitting result of applied bending moment due to WIM measured vehicular loads is lognormal. The maximum bending moment due to RSNI T-02-2005 nominal vehicular load is 842.45 kN-m and has probability of exceedance of 5x10-5. It can be concluded, for this study, that the bridge designed using RSNI T-02-2005 is safely designed, since it has reliability index, β of 5.02, higher than target reliability, β ranging from 3.50 or 3.72.

  2. The analysis of overloaded trucks in indonesia based on weigh in motion data (east of sumatera national road case study

    Directory of Open Access Journals (Sweden)

    Jihanny Jongga

    2018-01-01

    Full Text Available Overloaded trucks phenomena generally common in developing countries where the traffic control is poor. In Indonesia, the percentage of overloaded trucks can reach more than 60% in the total number of trucks and may be one of the substantial factors that reduce the service life of the road pavements. This paper presents the analysis results of the weigh in motion survey data at East of Sumatera National Road (Jalintim in Indonesia and the impact of overloaded trucks on the pavement. For the analysis the simplified approach was used, the axle loads were converted into representative single-axle loads based on 4th power formula by AASHTO 1993 equation. The vehicle damage factor of vehicles is presented and will be compared with the Highways National Standard to estimate the remaining service life of pavement and IRI value prediction. The analysis showed that the vehicle damage factor that determined from weigh in motion data is extremely greater than vehicle damage factor of the national standard in Indonesia which may lead to accelerated deterioration, reducing the service life of the pavement structures and significantly influence the IRI value.

  3. Low-cost, distributed, sensor-based weigh-in-motion systems.

    Science.gov (United States)

    2009-12-01

    Monitoring truck weights is essential for traffic operations, roadway design, traffic safety, and regulations. : Traditional roadside static truck weighing stations have many operational shortcomings, and so there have : been ongoing efforts to devel...

  4. Installation and evaluation of weigh-in-motion utilizing quartz-piezo sensor technology.

    Science.gov (United States)

    2016-06-28

    The objective of the research study was: to install a quartz-piezo based WIM system, and to : determine sensor survivability, accuracy and reliability under actual traffic conditions in : Connecticuts environment. If the systems prove dependable a...

  5. International Conference on Heavy Vehicles : HVParis 2008 : Weigh-In-Motion (ICWIM5)

    OpenAIRE

    JACOB, Bernard; O'BRIEN, Eugene; O'CONNOR, Alan; BOUTELDJA, Mohamed

    2008-01-01

    The conference addresses the broad range of technical issues related to heavy vehicles, surface transport technology, safety and weight measurement systems. It provides access to current research, best practice and related policy issues. It is a multi-disciplinary, inter-agency supported event.

  6. Applications of fiber optics sensors in weigh-in-motion (WIM) systems for monitoring truck weights on pavements and structures.

    Science.gov (United States)

    2003-04-01

    The main objective of this project was to investigate emerging technologies and to establish criteria for evaluating fiber optic sensors used to measure actual dynamic loads on pavements and structures. The dynamic load of particular interest for thi...

  7. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  8. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  9. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  10. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  11. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  12. Photovoltaic Energy Conversion Systems

    DEFF Research Database (Denmark)

    Kouro, Samir; Wu, Bin; Abu-Rub, Haitham

    2014-01-01

    This chapter presents a comprehensive overview of grid-connected PV systems, including power curves, grid-connected configurations, different converter topologies (both single- and three-phase), control schemes, MPPT, and anti-islanding detection methods. The focus of the chapter has been on the ...

  13. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  14. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  15. Advanced energy conversion & mechatronics systems

    NARCIS (Netherlands)

    Lomonova, E.A.

    2015-01-01

    Ultra-high precision systems are encountered in high-tech industrial applications including semiconductor lithography equipment, pick-and-place machines for the manufacturing of electronic components, microsurgery equipment, MRI equipment and calibration devices in electron microscopes. The

  16. TFTR power conversion and plasma feedback systems

    International Nuclear Information System (INIS)

    Neumeyer, C.

    1985-01-01

    Major components of the Tokamak Fusion Test Reactor (TFTR) power conversion system include 39 thyristor rectifier power supplies, 12 energy storage capacitor banks, and 6 ohmic heating interrupters. These components are connected in various series/parallel configurations to provide controlled pulses of current to the Toroidal Field (TF), Ohmic Heating (OH), Equilibrium (vertical) Field (EF), and Horizontal Field (HF) magnet coil systems. Real-time control of the power conversion system is accomplished by a centralized dedicated computer; local control is minimal. Power supply firing angles, capacitor bank charge and discharge commands, interrupter commands, etc., are all determined and issued by the central computer. Plasma Position and Current Control (PPCC) reference signals to power conversion (OH, EF, HF) are determined by separate analog electronics but invoked through the power conversion computer. Real-time fault sensing of plasma parameters, gas injection, neutral beams, etc., are monitored by a separate Discharge Fault System (DFS) but routed through the power conversion computer for pre-programmed shutdown response

  17. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  18. Optical Energy Transfer and Conversion System

    Science.gov (United States)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2018-01-01

    An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.

  19. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  20. Systems and methods for wave energy conversion

    Science.gov (United States)

    MacDonald, Daniel G.; Cantara, Justin; Nathan, Craig; Lopes, Amy M.; Green, Brandon E.

    2017-02-28

    Systems for wave energy conversion that have components that can survive the harsh marine environment and that can be attached to fixed structures, such as a pier, and having the ability to naturally adjust for tidal height and methods for their use are presented.

  1. Light distribution system comprising spectral conversion means

    DEFF Research Database (Denmark)

    2012-01-01

    , longer wavelength,a spectral conversion characteristics of the spectral conversion fibre being essentially determined by the spectral absorption and emission properties of the photoluminescent agent, the amount of photo- luminescent agent,and the distribution of the photoluminescent agent in the spectral......System (200, 300) for the distribution of white light, having a supply side (201, 301, 401) and a delivery side (202, 302, 402), the system being configured for guiding light with a multitude of visible wavelengths in a propagation direction P from the supply side to the distribution side...... of providing a light distribution system and a method of correcting the spectral transmission characteristics of a light distribution system are disclosed....

  2. The Conversion of Wiswesser Line Notations to Ring Codes. I. The Conversion of Ring Systems

    Science.gov (United States)

    Granito, Charles E.; And Others

    1972-01-01

    The computerized conversion of Wiswesser Line Notations to Ring Codes, using a two-part approach, and the set of computer programs generated for the conversion of ring systems are described. (9 references) (Author)

  3. EPR's energy conversion system. Alstom's solutions

    International Nuclear Information System (INIS)

    Ledermann, P.

    2009-01-01

    ARABELLE steam turbines have been developed by Alstom to be used as the energy conversion system of light water reactors with high output power like the N4 PWR and the EPR. ARABELLE turbines cumulate 200.000 hours of service with a reliability ratio of 99.97 per cent. This series of slides presents the main features of the turbine including: the use of the simple flux, the very large shape of low pressure blades, the technology of welded rotors. The other main equipment like the alternator, the condenser, the moisture separator-reheaters, the circulating pumps that Alstom integrates in the energy conversion system have benefited with technological improvements that are also presented. (A.C.)

  4. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  5. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    International Nuclear Information System (INIS)

    Neil Todreas; Pavel Hejzlar

    2008-01-01

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  6. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  7. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  8. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  9. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  10. Modeling on a PWR power conversion system with system program

    International Nuclear Information System (INIS)

    Gao Rui; Yang Yanhua; Lin Meng

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Daya Bay Power Station, this paper models the thermal-hydraulic systems of primary and secondary loops for PWR by using the PWR best-estimate program-RELAP5. To simulate the full-scope power conversion system, not only the traditional basic system models of nuclear island, but also the major system models of conventional island are all considered and modeled. A comparison between the calculated results and the actual data of reactor demonstrates a fine match for Daya Bay Nuclear Power Station, and manifests the feasibility in simulating full-scope power conversion system of PWR by RELAP5 at the same time. (authors)

  11. Nova frequency conversion and focusing system

    International Nuclear Information System (INIS)

    Summers, M.A.; Seppala, L.G.; Williams, J.D.

    1985-01-01

    New developments in crystal array technology provided significant improvements in the mechanical design and optical performance of the Nova 2 omega/3 omega array hardware. The final Nova array configuration was tested on the Novette laser and on the first arm of Nova. Ten Nova 2 omega/3 omega crystal arrays were assembled and tested for crystal alignment and wave front distortion before installation on the Nova target chamber. Ten Nova focus lens positioners were assembled and tested last year. The positioning accuracy and repeatability of each assembly were evaluated before installation on the target chamber. A cylindrical focusing system was also developed for installation in the Nova lens positioner assembly. Finally, 10 completed frequency conversion and focusing systems were activated

  12. Electrical Systems for Wave Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Cecilia

    2011-07-01

    Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system

  13. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  14. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  15. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  16. Standard-Cell, Open-Architecture Power Conversion Systems

    National Research Council Canada - National Science Library

    Boroyevich, D; Wang, F; Lee, F. C; Odendaal, W. G; Edwards, S

    2005-01-01

    ...). This project was purposefully aimed to develop a standardized hierarchical design and analysis methodology for modular power electronics conversion systems using as basis the ISO/OSI seven-layer reference model...

  17. The Research and Development of the Radioisotope Energy Conversion System

    International Nuclear Information System (INIS)

    Steinfelds, E.V.; Ghosh, T.K.; Prelas, M.A.; Tompson, R.V.; Loyalka, S.K.

    2001-01-01

    The project of developing radioisotope energy conversion system (RECS) involves analytical computational assisted design and modeling and also laboratory research. The computational analysis consists of selecting various geometries and materials for the main RECS container and the internally located radioisotope, computing the fluxes of the beta (-) particles and of the visible (or ultraviolet) photons produced by the beta (-) s, computing the transport of these photons to the photovoltaic cells, and computing the overall efficiency of useful conversion of the radioisotope power

  18. Care and Conversing in Dialogical Systems

    DEFF Research Database (Denmark)

    Steffensen, Sune Vork

    2012-01-01

    positions, a theory of dialogical systems is developed, on the basis of current thinking within the enactive program (e.g. De Jaegher and Di Paolo, 2007), the distributed language movement (e.g. Cowley, 2011b), and values-realizing theory (e.g. Hodges, 2009). Dialogical systems are systems of co......This article promotes a point of view on human interaction in terms of dialogical systems. The approach draws on recent, so-called third wave, developments in cognitive science. After an introduction to three waves in cognitive science, and their counterparts in linguistics, the article is placed......-present human beings engaged in interactivity that bring forth situated behavioural coordination (or a communicative, structural coupling). Dialogical systems, however, have emergent properties irreducible to individual actions or microsocial norms. Among the emergent properties one find a tendency to establish...

  19. A system approach to high quality picture-rate conversion

    NARCIS (Netherlands)

    Bartels, C.L.L.; Cordes, C.N.; Riemens, B.; Haan, de G.

    2010-01-01

    Various techniques have been implemented to improve the motion portrayal of flat-panel displays, of which the widespread introduction of motion-compensated picture-rate conversion systems is an essential part. However, a careful design of such systems is critical as they have the potential to

  20. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  1. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  2. 5 CFR 9901.371 - Conversion into NSPS pay system.

    Science.gov (United States)

    2010-01-01

    ... Section 9901.371 Administrative Personnel DEPARTMENT OF DEFENSE HUMAN RESOURCES MANAGEMENT AND LABOR RELATIONS SYSTEMS (DEPARTMENT OF DEFENSE-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF DEFENSE NATIONAL....231 for conversion rules related to determining an employee's career group, pay schedule, and band...

  3. Inertial confinement fusion reaction chamber and power conversion system study

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Battaglia, J.M.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li 2 O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li 2 O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li 2 O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive

  4. Adaptability of solar energy conversion systems on ships

    Science.gov (United States)

    Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.

    2016-08-01

    International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.

  5. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  6. Thermodynamic limits to the conversion of blackbody radiation by quantum systems. [with application to solar energy conversion devices

    Science.gov (United States)

    Buoncristiani, A. M.; Smith, B. T.; Byvik, C. E.

    1982-01-01

    Using general thermodynamic arguments, we analyze the conversion of the energy contained in the radiation from a blackbody to useful work by a quantum system. We show that the energy available for conversion is bounded above by the change in free energy in the incident and reradiated fields and that this free energy change depends upon the temperature of the receiving device. Universal efficiency curves giving the ultimate thermodynamic conversion efficiency of the quantum system are presented in terms of the blackbody temperature and the temperature and threshold energy of the quantum system. Application of these results is made to a variety of systems including biological photosynthetic, photovoltaic, and photoelectrochemical systems.

  7. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  8. Direct energy conversion system for D-3He fusion

    International Nuclear Information System (INIS)

    Tomita, Y.; Shu, L.Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D- 3 He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC.' The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DECs bring about the high efficient fusion plant. (author)

  9. Conversion to biofuel based heating systems - local environmental effects

    International Nuclear Information System (INIS)

    Jonsson, Anna

    2003-01-01

    One of the most serious environmental problems today is the global warming, i.e.climate changes caused by emissions of greenhouse gases. The greenhouse gases originate from combustion of fossil fuels and changes the atmospheric composition. As a result of the climate change, the Swedish government has decided to make a changeover of the Swedish energy system. This involves an increase of the supply of electricity and heating from renewable energy sources and a decrease in the amount electricity used for heating, as well as a more efficient use of the existing electricity system. Today, a rather large amount electricity is used for heating in Sweden. Furthermore, nuclear power will be phased out by the year 2010 in Sweden. Bio fuels are a renewable energy source and a conceivable alternative to the use of fossil fuels. Therefore, an increase of bio fuels will be seen the coming years. Bio fuels have a lot of environmental advantages, mainly for the global environment, but might also cause negative impacts such as depletion of the soils where the biomass is grown and local deterioration of the air quality where the bio fuels are combusted. These negative impacts are a result of the use of wrong techniques and a lack of knowledge and these factors have to be improved if the increase of the use of bio fuels is to be made effectively. The aim of this master thesis is to evaluate the possibilities for heating with bio fuel based systems in housing areas in the municipalities of Trollhaettan, Ulricehamn and Goetene in Vaestra Goetalands County in the South West of Sweden and to investigate which environmental and health effects are caused by the conversion of heating systems. The objective is to use the case studies as examples on preferable bio fuel based heating systems in different areas, and to what environmental impact this conversion of heating systems might cause. The housing areas for this study have been chosen on the basis of present heating system, one area

  10. Analysis of dynamic effects in solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  11. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  12. Carbon balances during land conversion in early bioenergy systems

    Science.gov (United States)

    Zenone, T.; Chen, J.; Gelfand, I.; Robertson, G. P.; Hamilton, S. K.

    2012-12-01

    In this study, we established a field experiment and deployed seven eddy-covariance towers to quantify the roles of land use change and the subsequent carbon (C) balances of three different bioenergy systems (corn, switchgrass, and mixed prairie species) that were developed from two historical land use types: monocultural grasslands dominated by smooth brome (Bromus inermis Leyss) and lands in the Conservation Reserve Program (CRP). Three CRP fields and three cropland fields were converted to soybean in 2009 (conversion year) before establishing the cellulosic biofuel cropping systems in 2010 (establishment year). A CRP perennial grassland site was kept undisturbed as a reference. Conversion of CRP to soybean induced net C emissions during the conversion year (134 -262 g C m-2 yr-1), while in the same year the net C balance at the CRP grassland reference was -35 g C m-2 yr-1 (i.e., net C sequestration). The establishment of switchgrass and mixed prairie induced a cumulative C balance of -113 g C m-2 (switchgrass from CRP), 250 g C m-2 (switchgrass from cropland), 706 g C m-2 (mixed prairie from CRP), and 59 g C m-2 (mixed prairie from cropland) over the three-year study period. The cumulative three-year C balance of corn converted from CRP and from cropland was -151 g C m-2 and -183 g C m-2, respectively. Eddy flux measurements during cellulosic biofuel crop establishment reveal annual changes in C balance that cannot be detected using conventional mass balance approaches. When end-use of harvested biomass was considered, the C balances for all studied systems, except the reference site, exhibited large C emissions ranging from 150 to 990 g C m-2 over the three-year conversion phase.

  13. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Muharnif; Zainal, Z.A.

    2006-01-01

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 10 6 ty -1 ) of palm oil from 38.6 x 10 6 ty - 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 10 6 ty - 1 ), shell (2.3 x 10 6 ty - 1 ), and empty fruit bunches (8.8 x 10 6 ty - 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  14. Code conversion for system design and safety analysis of NSSS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Cho; Kim, Young Tae; Choi, Young Gil; Kim, Hee Kyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    This report describes overall project works related to conversion, installation and validation of computer codes which are used in NSSS design and safety analysis of nuclear power plants. Domain/os computer codes for system safety analysis are installed and validated on Apollo DN10000, and then Apollo version are converted and installed again on HP9000/700 series with appropriate validation. Also, COOLII and COAST which are cyber version computer codes are converted into versions of Apollo DN10000 and HP9000/700, and installed with validation. This report details whole processes of work involved in the computer code conversion and installation, as well as software verification and validation results which are attached to this report. 12 refs., 8 figs. (author)

  15. Onboard energy conversion and thermal analysis of the MTL system

    International Nuclear Information System (INIS)

    Kadiramangalam, M.N.; Hoffert, M.I.; Miller, G.

    1989-01-01

    A non-nuclear energy conversion concept-MTL (microwave power to low earth orbits) was previously presented in order to supply SDI platforms power in the housekeeping, alert and burst power modes. In this paper the major issues addressed are: system design, integration and analysis. Parametric design of the major subsystems of the MTL bus, which includes the rectenna, the monolithic solid oxide fuel cell etc., is presented. The results of the parametric design, and of computer simulation are used as inputs to construct a comprehensive systems design code. A reference MTL system design which meets the requirements of duty cycles spelled out in open literature is presented. A comparison of mass and power is made between the MTL system and the SP-100 and burst power systems, which demonstrates the competitiveness of the proposed MTL design

  16. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  17. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  18. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  19. 5 CFR 9901.231 - Conversion of positions and employees to NSPS classification system.

    Science.gov (United States)

    2010-01-01

    ... HUMAN RESOURCES MANAGEMENT AND LABOR RELATIONS SYSTEMS (DEPARTMENT OF DEFENSE-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF DEFENSE NATIONAL SECURITY PERSONNEL SYSTEM (NSPS) Classification Transitional... employee's career group, pay schedule, and band upon conversion. (d) Grade retention prior to conversion...

  20. Two-Stage Variable Sample-Rate Conversion System

    Science.gov (United States)

    Tkacenko, Andre

    2009-01-01

    A two-stage variable sample-rate conversion (SRC) system has been pro posed as part of a digital signal-processing system in a digital com munication radio receiver that utilizes a variety of data rates. The proposed system would be used as an interface between (1) an analog- todigital converter used in the front end of the receiver to sample an intermediatefrequency signal at a fixed input rate and (2) digita lly implemented tracking loops in subsequent stages that operate at v arious sample rates that are generally lower than the input sample r ate. This Two-Stage System would be capable of converting from an input sample rate to a desired lower output sample rate that could be var iable and not necessarily a rational fraction of the input rate.

  1. In situ conversion process utilizing a closed loop heating system

    Science.gov (United States)

    Sandberg, Chester Ledlie [Palo Alto, CA; Fowler, Thomas David [Houston, TX; Vinegar, Harold J [Bellaire, TX; Schoeber, Willen Jan Antoon Henri

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  2. Life cycle integrated thermoeconomic assessment method for energy conversion systems

    International Nuclear Information System (INIS)

    Kanbur, Baris Burak; Xiang, Liming; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Highlights: • A new LCA integrated thermoeconomic approach is presented. • The new unit fuel cost is found 4.8 times higher than the classic method. • The new defined parameter increased the sustainability index by 67.1%. • The case studies are performed for countries with different CO 2 prices. - Abstract: Life cycle assessment (LCA) based thermoeconomic modelling has been applied for the evaluation of energy conversion systems since it provided more comprehensive and applicable assessment criteria. This study proposes an improved thermoeconomic method, named as life cycle integrated thermoeconomic assessment (LCiTA), which combines the LCA based enviroeconomic parameters in the production steps of the system components and fuel with the conventional thermoeconomic method for the energy conversion systems. A micro-cogeneration system is investigated and analyzed with the LCiTA method, the comparative studies show that the unit cost of fuel by using the LCiTA method is 3.8 times higher than the conventional thermoeconomic model. It is also realized that the enviroeconomic parameters during the operation of the system components do not have significant impacts on the system streams since the exergetic parameters are dominant in the thermoeconomic calculations. Moreover, the improved sustainability index is found roundly 67.2% higher than the previously defined sustainability index, suggesting that the enviroeconomic and thermoeconomic parameters decrease the impact of the exergy destruction in the sustainability index definition. To find the feasible operation conditions for the micro-cogeneration system, different assessment strategies are presented. Furthermore, a case study for Singapore is conducted to see the impact of the forecasted carbon dioxide prices on the thermoeconomic performance of the micro-cogeneration system.

  3. Computer-Assisted English Learning System Based on Free Conversation by Topic

    Science.gov (United States)

    Choi, Sung-Kwon; Kwon, Oh-Woog; Kim, Young-Kil

    2017-01-01

    This paper aims to describe a computer-assisted English learning system using chatbots and dialogue systems, which allow free conversation outside the topic without limiting the learner's flow of conversation. The evaluation was conducted by 20 experimenters. The performance of the system based on a free conversation by topic was measured by the…

  4. ASTRID power conversion system: Assessment on steam and gas options

    International Nuclear Information System (INIS)

    Laffont, Guy; Cachon, Lionel; Jourdain, Vincent; Fauque, Jean Marie

    2013-01-01

    Conclusion: ◆ Two power conversion systems have been investigated for the ASTRID prototype. ◆ Steam PCS: • Most mature system based on a well-developed turbomachinery technology. • High plant efficiency. • Studies on steam generators designs and leak detection systems in progress with the aim of reducing the risk of large SWRs and of limiting its consequences. • Design and licensing safety assessment of a SFR must deal with the Sodium Water Air reaction (SWAR). ◆ Gas PCS: • Strong advantage as it inherently eliminates the SWR and SWAR risks. • Very innovative option: major breakthroughs but feasibility and viability not yet demonstrated. • Remaining technological challenges but no showstopper indentified. • General architecture: investigations in progress to improve performances, operability and maintainability

  5. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Peterson, M.; Arent, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  6. Designing Energy Conversion Systems for the Next Decade

    Directory of Open Access Journals (Sweden)

    Slobodan N. Vukosavić

    2012-12-01

    Full Text Available Sustainable growth in energy consumption requires transition to clean and green energy sources and energy systems. Environment friendly and renewable energy systems deal with electrical energy and rely on efficient electrical power converters. High power electronics is the key technology to deal with the next generation of electrical energy systems. The door to future breakthroughs in high power electronics is opened by major improvement in semiconductor power devices and their packaging technologies. New materials allow for much higher junction temperatures and higher operating voltages. Most importantly, advanced power semiconductor devices and novel converter topology open the possibility to increase the energy efficiency of power conversion and reduce the amount of heat. Although the waste heat created by high power converters can be put to use by adding on to heating systems, this option is not always available and the conversion losses are mostly wasted. At the same time, wasted heat is a form of pollution that threatens the environment. Another task for high power converters is efficient harvesting of renewable energy sources, such as the wind energy and the sun. Intermittent in nature, they pose a difficult task to power converter topology and controls. Eventually, high power converters are entering power distribution and transmission networks. With their quick reaction, with fast communication between the grid nodes and with advanced controllability of high power converters, a number of innovations can be introduced, facilitating the power system control and allowing for optimizations and loss reduction. Coined smart grid, this solution comprises two key elements, and these are intelligent controls and large static power converters. At virtually no cost, smart grids allow for a better utilization of available resources and it enlarges the stable operating range of the transmission systems. Therefore, it is of interest to review the

  7. Assessment of dynamic energy conversion systems for radioisotope heat sources

    International Nuclear Information System (INIS)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745 0 C, and case III with a BOL source temperature of 945 0 C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of 238 Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass

  8. Mirror hybrid reactor blanket and power conversion system conceptual design

    International Nuclear Information System (INIS)

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  9. Aerojet Energy Conversion Company mobile volume reduction system

    International Nuclear Information System (INIS)

    Smith, K.R.

    1984-01-01

    Over the past few years, rapidly increasing costs for the disposal of low level radioactive waste (LLW) have generated the need for utilities to volume-reduce their LLW prior to shipment and burial. Incineration systems have been selected by several utilities to fulfill this need for maximum volume reduction. Until recently, all of the incineration systems selected by utilities were designed to be housed and operated in a facility erected by the utility. Now, however, lack of capital and rising design/erection costs are causing utilities to reevaluate their plans for purchasing incineration systems to process their LLW. The result is a growing demand for incineration services. Once again, Commonwealth Edison Company (Com-Ed) is leading the industry with an ongoing program to utilize incineration services provided by Aerojet Energy Conversion Company (AECC) for the Dresden Quad Cities, LaSalle, and Zion Nuclear Stations. At the stations, combustible dry active waste and contaminated oil will be processed in a Mobile Volume Reduction System (MVRS) designed and fabricated by AECC. The MVRS is a totally self-contained system consisting of a controlled-air incinerator and a liquid offgas cleanup system. No buildings are required to house the system, and the MVRS achieves volume reduction factors similar to systems currently available for permanent in-plant installation. The result is an option for the utility having the benefits of volume reduction without the capital commitment normally required by the utility

  10. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  11. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  12. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  13. Automated logic conversion method for plant controller systems

    International Nuclear Information System (INIS)

    Wada, Yutaka; Kobayashi, Yasuhiro; Miyo, Tsunemasa; Okano, Masato.

    1990-01-01

    An automated method is proposed for logic conversion from functional description diagrams to detailed logic schematics by incorporating expertise knowledge in plant controller systems design. The method uses connection data of function elements in the functional description diagram as input, and synthesizes a detailed logic structure by adding elements to the given connection data incrementally, and to generate detailed logic schematics. In logic synthesis, for building up complex synthesis procedures by combining generally-described knowledge, knowledge is applied by groups. The search order of the groups is given by upper-level knowledge. Furthermore, the knowledge is expressed in terms of two classes of rules; one for generating a hypothesis of individual synthesis operations and the other for considering several hypotheses to determine the connection ordering of elements to be added. In the generation of detailed logic schematics, knowledge is used as rules for deriving various kinds of layout conditions on schematics, and rules for generating two-dimensional coordinates of layout objects. Rules in the latter class use layout conditions to predict intersections among layout objects without their coordinates being fixed. The effectiveness of the method with 150 rules was verified by its experimental application to some logic conversions in a real power plant design. Evaluation of the results showed them to be equivalent to those obtained by well qualified designers. (author)

  14. Solid waste information and tracking system server conversion project management plan

    International Nuclear Information System (INIS)

    MAY, D.L.

    1999-01-01

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents

  15. 76 FR 55213 - Technical Amendments to Federal Employees' Retirement System; Present Value Conversion Factors...

    Science.gov (United States)

    2011-09-07

    ... Employees' Retirement System; Present Value Conversion Factors for Spouses of Deceased Separated Employees... to read as follows: Appendix A to Subpart C of Part 843--Present Value Conversion Factors for Earlier...

  16. Process systems engineering issues and applications towards reducing carbon dioxide emissions through conversion technologies

    DEFF Research Database (Denmark)

    Roh, Kosan; Frauzem, Rebecca; Gani, Rafiqul

    2016-01-01

    This paper reviews issues and applications for design of sustainable carbon dioxide conversion processes, specifically through chemical conversion, and the integration of the conversion processes with other systems from a process systems engineering (PSE) view-point. Systematic and computer......-aided methods and tools for reaction network generation, processing route generation, process design/optimization, and sustainability analysis are reviewed with respect to carbon dioxide conversion. Also, the relevant gaps and opportunities are highlighted. In addition, the integration of carbon dioxide...

  17. High efficiency Dual-Cycle Conversion System using Kr-85.

    Science.gov (United States)

    Prelas, Mark A; Tchouaso, Modeste Tchakoua

    2018-04-26

    This paper discusses the use of one of the safest isotopes known isotopes, Kr-85, as a candidate fuel source for deep space missions. This isotope comes from 0.286% of fission events. There is a vast quantity of Kr-85 stored in spent fuel and it is continually being produced by nuclear reactors. In using Kr-85 with a novel Dual Cycle Conversion System (DCCS) it is feasible to boost the system efficiency from 26% to 45% over a single cycle device while only increasing the system mass by less than 1%. The Kr-85 isotope is the ideal fuel for a Photon Intermediate Direct Energy Conversion (PIDEC) system. PIDEC is an excellent choice for the top cycle in a DCCS. In the top cycle, ionization and excitation of the Kr-85:Cl gas mixture (99% Kr and 1% Cl) from beta particles creates KrCl* excimer photons which are efficiently absorbed by diamond photovoltaic cells on the walls of the pressure vessels. The benefit of using the DCCS is that Kr-85 is capable of operating at high temperatures in the primary cycle and the residual heat can then be converted into electrical power in the bottom cycle which uses a Stirling Engine. The design of the DCCS begins with a spherical pressure vessel of radius 13.7 cm with 3.7 cm thick walls and is filled with a Kr-85:Cl gas mixture. The inner wall has diamond photovoltaic cells attached to it and there is a sapphire window between the diamond photovoltaic cells and the Kr-85:Cl gas mixture which shields the photovoltaic cells from beta particles. The DCCS without a gamma ray shield has specific power of 6.49 W/kg. A removable 6 cm thick tungsten shield is used to safely limit the radiation exposure levels of personnel. A shadow shield remains in the payload to protect the radiation sensitive components in the flight package. The estimated specific power of the unoptimized system design in this paper is about 2.33 W/kg. The specific power of an optimized system should be higher. The Kr-85 isotope is relatively safe because it

  18. Progress on PEP-II magnet power conversion system

    International Nuclear Information System (INIS)

    Bellomo, P.; Genova, L.; Jackson, T.; Shimer, D.

    1996-01-01

    The various power systems for supplying the PEP-II DC magnets rely exclusively on switchmode conversion, utilizing a variety of means depending on the requirements. All of the larger power supplies, ranging from 10 to 200 kW, are powered from DC sources utilizing rectified 480 V AC. Choppers can be used for the series connected strings, but for smaller groups and individual magnets, inverters driving high-frequency transformers with rectifiers comprise the best approach. All of the various systems use a ''building block'' approach of multiple standard-size units connected in series or parallel to most cost-effectively deal with a great range of voltage and current requirements. Utilization of existing infrastructure from PEP-I has been a cost-effective determinant. Equipment is being purchased either off-the-shelf, through performance specification, or by hardware purchase based on design-through-prototype. The corrector magnet power system, utilizing inexpensive, off-the-shelf, four-quadrant switching motor-controllers, has already proven very reliable: 120 of the total of 900 units have been running on the injection system for four months with no failures

  19. Progress on PEP-II magnet power conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Bellomo, P.; Genova, L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Jackson, T. [Lawrence Berkeley National Lab., CA (United States); Shimer, D. [Lawrence Livermore National Lab., CA (United States)

    1996-06-04

    The various power systems for supplying the PEP-II DC magnets rely exclusively on switchmode conversion, utilizing a variety of means depending on the requirements. All of the larger power supplies, ranging from 10 to 200 kW, are powered from DC sources utilizing rectified 480 V AC. Choppers can be used for the series connected strings, but for smaller groups and individual magnets, inverters driving high-frequency transformers with rectifiers comprise the best approach. All of the various systems use a ``building block`` approach of multiple standard-size units connected in series or parallel to most cost-effectively deal with a great range of voltage and current requirements. Utilization of existing infrastructure from PEP-I has been a cost-effective determinant. Equipment is being purchased either off-the-shelf, through performance specification, or by hardware purchase based on design-through-prototype. The corrector magnet power system, utilizing inexpensive, off-the-shelf, four-quadrant switching motor-controllers, has already proven very reliable: 120 of the total of 900 units have been running on the injection system for four months with no failures.

  20. 5 CFR 9701.231 - Conversion of positions and employees to the DHS classification system.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Conversion of positions and employees to... Provisions § 9701.231 Conversion of positions and employees to the DHS classification system. (a) This... from the GS system, a prevailing rate system, the SL/ST system, or the SES system, as provided in...

  1. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  2. Socio-economic overview of wind energy conversion systems

    International Nuclear Information System (INIS)

    Hardy, D.R.

    1992-01-01

    A social scientist's perspective is presented on the socio-economic impacts of wind energy conversion systems (WECS) in Ontario. The main organization for delivering electricity in Ontario is Ontario Hydro. This utility has two WECS, an experimental 3.5 kW generator and a hybrid wind/diesel facility at a remote northern community. Ontario Hydro is reviewing its supply options and anticipates wind power would likely be used in niche applications involving off-grid hybrid systems where the cost of displaced generation is high. On-grid applications would likely be in the form of dispersed non-utility generation. The potential contribution of wind power to Ontario's electricity supply mix could be as little as 1 MW by the year 2000 or as high as 40 MW by the year 2014, depending on costs and technological developments. Socio-economic criteria used by the utility for assessing individual supply options include job creation, regional economic development, local community impacts, social acceptance, and distribution of risks and benefits. Initial observations of potential effects of WECS are discussed, including site selection, manufacturing, construction, and operation. Barriers to implementation of WECS in Ontario include the limited number of good wind sites, the intermittent nature of WECS power, and the currently uneconomic nature of WECS for bulk electricity systems. However, WECS have environmentally attractive features and are socially acceptable. 10 refs., 3 figs

  3. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    Science.gov (United States)

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  4. Experimental model of a wind energy conversion system

    Science.gov (United States)

    Vasar, C.; Rat, C. L.; Prostean, O.

    2018-01-01

    The renewable energy domain represents an important issue for the sustainable development of the mankind in the actual context of increasing demand for energy along with the increasing pollution that affect the environment. A significant quota of the clean energy is represented by the wind energy. As a consequence, the developing of wind energy conversion systems (WECS) in order to achieve high energetic performances (efficiency, stability, availability, competitive cost etc) represents a topic of permanent actuality. Testing and developing of an optimized control strategy for a WECS direct implemented on a real energetic site is quite difficult and not cost efficient. Thus a more convenient solution consists in a flexible laboratory setup which requires an experimental model of a WECS. Such approach would allow the simulation of various real conditions very similar with existing energetic sites. This paper presents a grid-connected wind turbine emulator. The wind turbine is implemented through a real-time Hardware-in-the-Loop (HIL) emulator, which will be analyzed extensively in the paper. The HIL system uses software implemented in the LabVIEW programming environment to control an ABB ACS800 electric drive. ACS800 has the task of driving an induction machine coupled to a permanent magnet synchronous generator. The power obtained from the synchronous generator is rectified, filtered and sent to the main grid through a controlled inverter. The control strategy is implemented on a NI CompactRIO (cRIO) platform.

  5. Intelligent control with implementation on the wind energy conversion system

    International Nuclear Information System (INIS)

    Basma, Mohamad Khalil

    1997-05-01

    In this thesis our main job is to compare intelligent control and conventional control algorithms, by applying each scheme to the same control problem. Based on simulation, we analyze and compare the results of applying fuzzy logic and neural networks controllers on a popular control problem: variable speed wind energy conversion system. The reason behind our choice is the challenging nature of the problem where the plant should be controlled to maximize the power generated, while respecting its hardware constraints under varying operating conditions and disturbances. We have shown the effectiveness of fuzzy logic exciter controller for the adopted wind energy generator when compared to a conventional PI exciter. It showed better performance in the whole operating range. However, in the high wind speeds region, both controllers were unable to deliver the rpm requirements. We proposed the use of neural network intelligent techniques to supply us the optimal pitch. Our aim was to develop a simple and reliable controller that can deliver this optimal output, while remaining adaptive to system uncertainties and disturbances. The proposed fuzzy controller with a neural pitch controller showed best dynamic and robust performance as compared to the adaptive pitch controller together with the PI exciter. This study has shown that artificial neural networks and fuzzy logic control algorithms can be implemented for real time control implementations. the neuro-fuzzy control approach is robust and its performance is superior to that of traditional control methods. (author)

  6. HYLIFE-II power conversion system design and cost study

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-09-01

    The power conversion system for the HYLIFE-2 fusion power plant has been defined to include the IHX's (intermediate heat exchangers) and everything that support the exchange of energy from the reactor. It is referred to simply as the BOP (balance of plant) in the rest of this report. The above is a convenient division between the reactor equipment and the rest of the fusion power plant since the BOP design and cost then depend only on the specification of the thermal power to the IHX's and the temperature of the primary Flibe coolant into and out of the IHX's, and is almost independent of the details of the reactor design. The main efforts during the first year have been on the definition and thermal-hydraulics of the IHX's, the steam generators and the steam power plant, leading to the definition of a reference BOP with the molten salt, Flibe, as the primary coolant. A summary of the key results in each of these areas is given in this report

  7. Near-infrared (NIR) optogenetics using up-conversion system

    Science.gov (United States)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu

    2015-03-01

    Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.

  8. Ultra-capacitors in power conversion systems analysis, modeling and design in theory and practice

    CERN Document Server

    Grbovic, Petar J

    2014-01-01

    Divided into five parts, this book is focused on ultra-capacitors and their applications in power conversion systems. It discusses ultra-capacitor analysis, modelling and module design from a macroscopic (application) perspective. It also describes power conversion applications, interface dc-dc converter design and entire conversion system design. Part One covers the background of energy storage technologies, with particular attention on state-of-the-art ultra-capacitor energy storage technologies. In Chapter four of this part, power conversion systems with integrated energy storage is discus

  9. Innovative power conversion system for the French SFR prototype, ASTRID

    International Nuclear Information System (INIS)

    Cachon, L.; Biscarrat, C.; Morin, F.; Haubensack, D.; Rigal, E.; Moro, I.; Baque, F.; Madeleine, S.; Rodriguez, G.; Laffont, G.

    2012-01-01

    In the framework of the French Act of 28 June 2006 about nuclear materials and waste management, the prototype ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), foreseen in operation by the 20's, will have to demonstrate not only the minor actinide transmutation capability, but also the progress made in Sodium Fast Reactor (SFR) technology on an industrial scale, by qualifying innovative options. Some of these options still require improvements, especially in the field of operability and safety. In fact, one of the main issues with the standard steam/water Power Conversion System (PCS) of SFR is the fast and energetic chemical reaction between water and sodium, which could occur in steam generators in case of tube failure. To manage the sodium/water reaction, one way consists in minimizing the impact of such event: hence studies are carried out on steam generator design, improvement of the physical knowledge of this phenomenon, development of numerical simulation to predict the reaction onset and consequences, and associated detection improvement. On the other hand, the other way consists in eliminating sodium/water reaction. In this frame, the CEA contribution to the feasibility evaluation of an alternative innovative PCS (replacing steam/water by 180 bar pressurised nitrogen) is focused on the following main topics: - The parametric study leading to nitrogen selection: the thermodynamic cycle efficiency optimisation on Brayton cycles is performed with several gases at different pressures. - The design of innovative compact heat exchangers for the gas loop: here the key points are the nuclear codification associated with inspection capability, the innovative welding process and the thermal-hydraulic and thermal-mechanic optimisations. After a general introduction of the ASTRID project, this paper presents in detail these different feasibility studies being led on the innovative gas PCS for an SFR. (authors)

  10. Protective coatings on structural materials for energy conversion systems

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Srinivasa, R.S.

    2000-01-01

    Full text: Structural Materials and Components used in coal fired energy conversion systems, crude oil refineries and coal gasification plants are subjected to degradation due to oxidation, sulfidation, carbonization and halogenation. Suitable protective coatings can significantly enhance their life. Protective coatings work by forming a highly stable, self-healing and slow growing protective scale at the operating temperatures. These scales act as barriers between the corrosive environment and the alloy and prevent degradation of the substitute. Three types of scales that provide such protection are based on Al 2 O 3 , Cr 2 O 3 and SiO 2 . Aluminide coatings are major alumina forming protecting coatings, applied on nickel, cobalt and iron base alloys. Aluminide coatings are prepared by enriching the surface of a component by aluminum. In this paper the formation of aluminide coatings of nickel, IN738, Alloy 800, Zircaloy-2 and pure iron by chemical vapor deposition has been described. In this technique, Aluminum chloride vapors from bath kept at 353-373 K are carried in a stream of hydrogen gas into a Hot Walled CVD chamber kept at 1173-1373 K. The AlCl 3 vapors were allowed to react with pure aluminum whereby aluminum sub-chlorides like AlCl and AlCl 2 are produced which deposit aluminum on the substrates. At the high temperature of the deposition, aluminum diffuses into the substrate and forms the aluminide coating. The process can be represented by the reaction Al (i) + AlCl 3(g) AlCl 2(s) + AlCl 2 (g) . XRD and optical microscopic studies have characterized the coatings. On pure nickel and Alloy 800 the coating consists of Ni 2 Al 3 and NiAl respectively. On pure iron the coatings consisted of FeAl. On Zircaloy-2, ZrAl 2 was also detected. The CVD coating process, XRD and optical microscopy data will be discussed further

  11. Transient behavior of ASTRID with a gas power conversion system

    International Nuclear Information System (INIS)

    Bertrand, F.; Mauger, G.; Bensalah, M.; Gauthé, P.

    2016-01-01

    Highlights: • CATHARE2 transient calculations have been performed for ASTRID with a gas PCS. • The behavior of the reactor is close for gas and for water PCS in case of LOOP. • The gas PCS enables to cool the core for at least 10 h for pressurized transients. • The depressurization of the PCS induces an over-cooling for breaches on low pressure pipes. • The spurious opening of a by-pass line of the turbomachine can be controlled without scram. - Abstract: The present article is dedicated to preliminary transient studies carried out for the analysis of the system overall behavior of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) demonstrator developed in France by CEA and its industrial partners. ASTRID is foreseen to demonstrate the progress made in SFR technology at an industrial scale by qualifying innovative options, some of which still remain open in the areas requiring improvements, especially safety and operability. Among the innovative options, a gas power conversion systems (PCS) is envisaged. In this innovative PCS, the working gas is nitrogen whose flow rate delivers power to a turbine driving with the same shaft two compressors (low and high pressure) separated by an intercooler. The other part of the work delivered by the gas is used to drive the alternator that produces electricity. The main objective of such a PCS consists in avoiding physically the possibility of a sodium/water reaction with the secondary circuit but the impact of this PCS on the control of incidental and accidental transients has also been studied. The main purpose of the studies presented in the paper is to assess the dynamic behavior of ASTRID including a gas PCS with the CATHARE2 code. The first transient presented deals with a loss of off-site power and has been calculated for the gas PCS but also for a classical steam/water PCS for comparison purpose. Then typical transients of gas system have been investigated. Several families of

  12. Transient behavior of ASTRID with a gas power conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, F., E-mail: frederic.bertrand@cea.fr; Mauger, G.; Bensalah, M.; Gauthé, P.

    2016-11-15

    Highlights: • CATHARE2 transient calculations have been performed for ASTRID with a gas PCS. • The behavior of the reactor is close for gas and for water PCS in case of LOOP. • The gas PCS enables to cool the core for at least 10 h for pressurized transients. • The depressurization of the PCS induces an over-cooling for breaches on low pressure pipes. • The spurious opening of a by-pass line of the turbomachine can be controlled without scram. - Abstract: The present article is dedicated to preliminary transient studies carried out for the analysis of the system overall behavior of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) demonstrator developed in France by CEA and its industrial partners. ASTRID is foreseen to demonstrate the progress made in SFR technology at an industrial scale by qualifying innovative options, some of which still remain open in the areas requiring improvements, especially safety and operability. Among the innovative options, a gas power conversion systems (PCS) is envisaged. In this innovative PCS, the working gas is nitrogen whose flow rate delivers power to a turbine driving with the same shaft two compressors (low and high pressure) separated by an intercooler. The other part of the work delivered by the gas is used to drive the alternator that produces electricity. The main objective of such a PCS consists in avoiding physically the possibility of a sodium/water reaction with the secondary circuit but the impact of this PCS on the control of incidental and accidental transients has also been studied. The main purpose of the studies presented in the paper is to assess the dynamic behavior of ASTRID including a gas PCS with the CATHARE2 code. The first transient presented deals with a loss of off-site power and has been calculated for the gas PCS but also for a classical steam/water PCS for comparison purpose. Then typical transients of gas system have been investigated. Several families of

  13. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  14. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Pablo Rubiolo, Principal Investigator

    2003-03-21

    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

  15. Chart of conversion factors: From English to metric system and metric to English system

    Science.gov (United States)

    ,

    1976-01-01

    The conversion factors in the following tables are for conversion of our customary (English) units of measurement to SI*units, and for convenience, reciprocals are shown for converting SI units back to the English system. The first table contains rule-of-thumb figures, useful for "getting the feel" of SI units or mental estimation. The succeeding tables contain factors accurate to 3 or more significant figures. Please refer to known reference volumes for additional accuracy, as well as for factors dealing with other scientific notation involving SI units.

  16. Integrated bioenergy conversion concepts for small scale gasification power systems

    Science.gov (United States)

    Aldas, Rizaldo Elauria

    microorganisms used to deal with tars are selected and pre-conditioned to the tar environment. Overall, the results provided a basis for operational and design strategy for a combined gasification system but further study is recommended such as determination of the impacts in terms of emissions, power, efficiency and costs associated with the use of producer gas-enriched biogas taking advantage of hydrogen enrichment to reduce NOx and other pollutants in reciprocating engines and other energy conversion systems.

  17. Design of a Capacitive Flexible Weighing Sensor for Vehicle WIM System

    Directory of Open Access Journals (Sweden)

    Qing Li

    2007-08-01

    Full Text Available With the development of the Highway Transportation and Business Trade, vehicle weigh-in-motion (WIM technology has become a key technology and trend of measuring traffic loads. In this paper, a novel capacitive flexible weighing sensor which is light weight, smaller volume and easy to carry was applied in the vehicle WIM system. The dynamic behavior of the sensor is modeled using the Maxwell-Kelvin model because the materials of the sensor are rubbers which belong to viscoelasticity. A signal processing method based on the model is presented to overcome effects of rubber mechanical properties on the dynamic weight signal. The results showed that the measurement error is less than ���±10%. All the theoretic analysis and numerical results demonstrated that appliance of this system to weigh in motion is feasible and convenient for traffic inspection.

  18. Module-level DC/DC conversion for photovotaic systems : the delta-conversion concept

    NARCIS (Netherlands)

    Bergveld, H.J.; Büthker, D.; Castello, C.; Doorn, T.S.; Jong, de A.; van Otten, R.; Waal, de K.

    2013-01-01

    Photovoltaic (PV) systems are increasingly used to generate electrical energy from solar irradiation incident on PV modules. PV modules are formed by placing many PV cells in series. The PV system is then formed by placing a number of PV modules in series in a string. In practical cases, differences

  19. Online optimization of a multi-conversion-level DC home microgrid for system efficiency enhancement

    DEFF Research Database (Denmark)

    Boscaino, V.; Guerrero, J. M.; Ciornei, I.

    2017-01-01

    stages, three paralleled DC/DC converters are implemented. A Genetic Algorithm performs the on-line optimization of the DC network’s global efficiency, generating the optimal current sharing ratios of the concurrent power converters. The overall DC/DC conversion system including the optimization section......In this paper, an on-line management system for the optimal efficiency operation of a multi-bus DC home distribution system is proposed. The operation of the system is discussed with reference to a distribution system with two conversion stages and three voltage levels. In each of the conversion...

  20. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  1. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  2. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems. Final report

    International Nuclear Information System (INIS)

    Harty, R.B.; Durand, R.E.

    1993-03-01

    An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage

  3. Investigation of modeling and simulation on a PWR power conversion system with RELAP5

    International Nuclear Information System (INIS)

    Rui Gao; Yang Yanhua; Lin Meng; Yuan Minghao; Xie Zhengrui

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Dayabay nuclear power station, this paper models the thermal-hydraulic systems for PWR by using the best-estimate program, RELAP5. To simulate the full-scope power conversion system, not only the reactor coolant system (RCP) of nuclear island, but also the main steam system (VVP), turbine steam and drain system (GPV), bypass system (GCT), feedwater system (FW), condensate extraction system (CEX), moisture separator reheater system (GSS), turbine-driven feedwater pump (APP), low-pressure and high-pressure feedwater heater systems (ABP and AHP) of conventional island are considered and modeled. A comparison between the simulated results and the actual data of reactor under full-power demonstrates a fine match for Dayabay, and also manifests the feasibility in simulating full-scope power conversion system of PWR with RELAP5. (author)

  4. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  5. Multi-views storage model and access methods of conversation history in converged IP messaging system

    Science.gov (United States)

    Lu, Meilian; Yang, Dong; Zhou, Xing

    2013-03-01

    Based on the analysis of the requirements of conversation history storage in CPM (Converged IP Messaging) system, a Multi-views storage model and access methods of conversation history are proposed. The storage model separates logical views from physical storage and divides the storage into system managed region and user managed region. It simultaneously supports conversation view, system pre-defined view and user-defined view of storage. The rationality and feasibility of multi-view presentation, the physical storage model and access methods are validated through the implemented prototype. It proves that, this proposal has good scalability, which will help to optimize the physical data storage structure and improve storage performance.

  6. Preliminary conceptual design of the blanket and power conversion system for the Mirror Hybrid Reactor

    International Nuclear Information System (INIS)

    Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-01-01

    A conceptual design of a commercial Mirror Hybrid Reactor, optimized for 239 Pu production, has been completed. This design is the product of a joint effort by Lawrence Livermore Laboratory and General Atomic Company, and follows directly from earlier work on the Mirror Hybrid. This paper describes the blanket and power conversion system of the reactor design. Included are descriptions of the prestressed concrete reactor vessel that supports the magnets and contains the blanket and power conversion system components, the blanket module design, the blanket fuel design, and the power conversion system

  7. The principles of electronic and electromechanic power conversion a systems approach

    CERN Document Server

    Ferreira, Braham

    2013-01-01

    Teaching the principles of power electronics and electromechanical power conversion through a unique top down systems approach, The Principles of Electromechanical Power Conversion takes the role and system context of power conversion functions as the starting point. Following this approach, the text defines the building blocks of the system and describes the theory of how they exchange power with each other. The authors introduce a modern, simple approach to machines, which makes the principles of field oriented control and space vector theory approachable to undergraduate students as well as

  8. Reliability and mass analysis of dynamic power conversion systems with parallel or standby redundancy

    Science.gov (United States)

    Juhasz, Albert J.; Bloomfield, Harvey S.

    1987-01-01

    A combinatorial reliability approach was used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis was also performed, specifically for a 100-kWe nuclear Brayton power conversion system with parallel redundancy. Although this study was done for a reactor outlet temperature of 1100 K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.

  9. Reliability and mass analysis of dynamic power conversion systems with parallel of standby redundancy

    Science.gov (United States)

    Juhasz, A. J.; Bloomfield, H. S.

    1985-01-01

    A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.

  10. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  11. Development of Electro-Microbial Carbon Capture and Conversion Systems

    KAUST Repository

    Al Rowaihi, Israa S.

    2017-05-01

    Carbon dioxide is a viable resource, if used as a raw material for bioprocessing. It is abundant and can be collected as a byproduct from industrial processes. Globally, photosynthetic organisms utilize around 6’000 TW (terawatt) of solar energy to fix ca. 800 Gt (gigaton) of CO2 in the planets largest carbon-capture process. Photosynthesis combines light harvesting, charge separation, catalytic water splitting, generation of reduction equivalents (NADH), energy (ATP) production and CO2 fixation into one highly interconnected and regulated process. While this simplicity makes photosynthetic production of commodity interesting, yet photosynthesis suffers from low energy efficiency, which translates in an extensive footprint for solar biofuels production conditions that store < 2% of solar energy. Electron transfer processes form the core of photosynthesis. At moderate light intensity, the electron transport chains reach maximum transfer rates and only work when photons are at appropriate wavelengths, rendering the process susceptible to oxidative damage, which leads to photo-inhibition and loss of efficiency. Based on our fundamental analysis of the specialized tasks in photosynthesis, we aimed to optimize the efficiency of these processes separately, then combine them in an artificial photosynthesis (AP) process that surpasses the low efficiency of natural photosynthesis. Therefore, by combining photovoltaic light harvesting with electrolytic water splitting or CO2 reduction in combination with microbiological conversion of electrochemical products to higher valuable compounds, we developed an electro-microbial carbon capture and conversion setups that capture CO2 into the targeted bioplastic; polyhydroxybutyrate (PHB). Based on the type of the electrochemical products, and the microorganism that either (i) convert products formed by electrochemical reduction of CO2, e.g. formate (using inorganic cathodes), or (ii) use electrochemically produced H2 to reduce CO2

  12. Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983

    Science.gov (United States)

    Hertzberg, A.

    1983-01-01

    Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.

  13. Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems

    International Nuclear Information System (INIS)

    Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.

    1991-01-01

    To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-μm output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 x 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs

  14. Systems modeling for a laser-driven IFE power plant using direct conversion

    International Nuclear Information System (INIS)

    Meier, W R

    2008-01-01

    A variety of systems analyses have been conducted for laser driver IFE power plants being developed as part of the High Average Power Laser (HAPL) program. A key factor determining the economics attractiveness of the power plant is the net power conversion efficiency which increases with increasing laser efficiency, target gain and fusion-to-electric power conversion efficiency. A possible approach to increasing the power conversion efficiency is direct conversion of ionized target emissions to electricity. This study examines the potential benefits of increased efficiency when the expanding plasma is inductively coupled to an external circuit allowing some of the ion energy to be directly converted to electricity. For base case direct-drive targets with approximately 24% of the target yield in ions, the benefits are modest, especially for chamber designs that operate at high temperature and thus already have relatively high thermal conversion efficiencies. The reduction in the projected cost of electricity is ∼5-10%

  15. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    International Nuclear Information System (INIS)

    Holcomb, R.S.

    1992-01-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion system was carried out in the 1960's which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper

  16. Extended exergy concept to facilitate designing and optimization of frequency-dependent direct energy conversion systems

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2014-01-01

    Highlights: • Proved exergy method is not adequate to optimize frequency-dependent energy conversion. • Exergy concept is modified to facilitate the thermoeconomic optimization of photocell. • The exergy of arbitrary radiation is used for a practical purpose. • The utility of the concept is illustrated using pragmatic examples. - Abstract: Providing the radiation within the acceptable (responsive) frequency range(s) is a common method to increase the efficiency of the frequency-dependent energy conversion systems, such as photovoltaic and nano-scale rectenna. Appropriately designed auxiliary items such as spectrally selective thermal emitters, optical filters, and lenses are used for this purpose. However any energy conversion method that utilizes auxiliary components to increase the efficiency of a system has to justify the potential cost incurred by those auxiliary components through the economic gain emerging from the increased system efficiency. Therefore much effort should be devoted to design innovative systems, effectively integrating the auxiliary items and to optimize the system with economic considerations. Exergy is the widely used method to design and optimize conventional energy conversion systems. Although the exergy concept is used to analyze photovoltaic systems, it has not been used effectively to design and optimize such systems. In this manuscript, we present a modified exergy method in order to effectively design and economically optimize frequency-dependent energy conversion systems. Also, we illustrate the utility of this concept using examples of thermophotovoltaic, Photovoltaic/Thermal and concentrated solar photovoltaic

  17. Perancangan dan Implementasi Sistem Monitoring Beban dan Kecepatan Kendaraan Menggunakan Teknologi Weigh in Motion

    Directory of Open Access Journals (Sweden)

    Trisya Septiana

    2018-03-01

    Full Text Available Weight in Motion (WIM merupakan salah satu solusi inovatif dalam manajemen lalu lintas yang memungkinkan kendaraan ditimbang pada saat dalam perjalanan. Pada penelitian ini dirancang sebuah sistem monitoring yang mampu mengolah dan menghitung data kendaraan berupa beban dan kecepatan kendaraan melalui sistem WIM. Untuk mendukung sistem ini digunakan perangkat keras berupa sensor WIM yang terdiri dari Load Cell, modul penguat HX711 dan Arduino serta untuk data sinyal beban yang telah dihasilkan sistem WIM menggunakan metode analisa pengolahan sinyal. Pengujian sistem ini dilakukan menggunakan sebuah mobil penumpang dengan kecepatan yang berbeda-beda. Dari hasil pengujian didapatkan sistem WIM mampu melakukan pengukuran kendaraan berjalan dengan nilai rata-rata error yang dihasilkan untuk kecepatan 8.94%, jarak sumbu kendaraan 14.64%, dan beban kendaraan 10.21%.

  18. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  19. The state of the art of wind energy conversion systems and technologies: A review

    International Nuclear Information System (INIS)

    Cheng, Ming; Zhu, Ying

    2014-01-01

    Highlights: • This paper reviews the state of the art of wind energy conversion systems. • Different types of common wind energy conversion systems are classified and compared. • The four most popular MPPT control methods are reviewed and compared. • The latest development of wind energy conversion technologies is introduced. • Future trends of the wind energy conversion technologies are discussed. - Abstract: This paper gives a comprehensive review of the state of the art of wind energy conversion systems (WECS) and technologies, with an emphasis on wind power generator and control. First, different types of common WECSs are classified according to their features and drive train types. The WECSs are compared on the basis of the volume, weight, cost, efficiency, system reliability and fault ride through capability. The maximum power point tracking (MPPT) control, which aims to make the generator speed meet an optimum value to ensure the maximum energy yield, plays a key role in the variable speed WECSs. A comprehensive review and comparison of the four most popular MPPT control methods are carried out and improvements for each method are presented. Furthermore, the latest development of wind energy conversion technologies is introduced, such as the brushless doubly fed induction generator (BDFIG), the stator permanent magnet synchronous generators, the magnetic-geared generators, dual power flow WECS with the electrical variable transmission (EVT) machine, and direct grid-connected WECS. Finally, the future trends of the technologies are discussed

  20. GT-MHR power conversion system: Design status and technical issues

    International Nuclear Information System (INIS)

    Etzel, K.; Baccaglini, G.; Schwartz, A.; Hillman, S.; Mathis, D.

    1994-12-01

    The Modular Helium Reactor (MHR) builds on 30 years of international gas-cooled reactor experience utilizing the unique properties of helium gas coolant, graphite moderator and coated particle fuel. To efficiently utilize the high temperature potential of the MHR, an innovative power conversion system has been developed featuring an intercooled and recuperated gas turbine. The gas turbine replaces a conventional steam turbine and its many auxiliary components. The Power Conversion System converts the thermal energy of the helium directly into electrical energy utilizing a closed Brayton cycle. The Power Conversion System draws on even more years of experience than the MHR: the world's first closed-cycle plant, fossil fired and utilizing air as working fluid, started operation in Switzerland in 1939. Shortly thereafter, in 1945, the coupling of a closed-cycle plant to a nuclear heat generation system was conceived. Directly coupling the closed-cycle gas turbine concept to a modern, passively safe nuclear reactor opens a new chapter in power generation technology and brings with it various design challenges. Some of these challenges are associated with the direct coupling of the Power Conversion System to a nuclear reactor. Since the primary coolant is also the working fluid, the Power Conversion System has to be designed for reactor radionuclide plateout. As a result, issues like component maintainability and replaceability, and fission product effects on materials must be addressed. Other issues concern the integration of the Power Conversion System components into a single vessel. These issues include the selection of key technologies for the power conversion components such as submerged generator, magnetic bearings, seals, compact heat exchangers, and the overall system layout

  1. Topological energy conversion through the bulk or the boundary of driven systems

    Science.gov (United States)

    Peng, Yang; Refael, Gil

    2018-04-01

    Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.

  2. Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors

    International Nuclear Information System (INIS)

    White, R.C.

    1988-01-01

    A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs

  3. Structuring Health in Colorectal Cancer Screening Conversations: An Analysis of Intersecting Activity Systems

    OpenAIRE

    Canary, Heather; Bullis, Connie; Cummings, Jennifer; Kinney, Anita Y.

    2015-01-01

    This study used structurating activity theory to analyze 21 conversations between genetic counselors and individuals at increased risk for familial colorectal cancer (CRC). The qualitative analysis revealed ways elements of family, primary healthcare, cancer prevention and treatment, and other systems emerged in intervention conversations as shaping CRC screening attitudes and behaviors. Results indicate that family stories, norms, and roles are resources for enacting health practices in fami...

  4. Design and analysis of Helium Brayton cycle for energy conversion system of RGTT200K

    International Nuclear Information System (INIS)

    Ignatius Djoko Irianto

    2016-01-01

    The helium Brayton cycle for the design of cogeneration energy conversion system for RGTT200K have been analyzed to obtain the higher thermal efficiency and energy utilization factor. The aim of this research is to analyze the potential of the helium Brayton cycle to be implemented in the design of cogeneration energy conversion system of RGTT200K. Three configuration models of cogeneration energy conversion systems have been investigated. In the first configuration model, an intermediate heat exchanger (IHX) is installed in series with the gas turbine, while in the second configuration model, IHX and gas turbines are installed in parallel. The third configuration model is similar to the first configuration, but with two compressors. Performance analysis of Brayton cycle used for cogeneration energy conversion system of RGTT200K has been done by simulating and calculating using CHEMCAD code. The simulation result shows that the three configuration models of cogeneration energy conversion system give the temperature of thermal energy in the secondary side of IHX more than 800 °C at the reactor coolant mass flow rate of 145 kg/s. Nevertheless, the performance parameters, which include thermal efficiency and energy utilization factor (EUF), are different for each configuration model. By comparing the performance parameter in the three configurations of helium Brayton cycle for cogeneration energy conversion systems RGTT200K, it is found that the energy conversion system with a first configuration has the highest thermal efficiency and energy utilization factor (EUF). Thermal efficiency and energy utilization factor for the first configuration of the reactor coolant mass flow rate of 145 kg/s are 35.82 % and 80.63 %. (author)

  5. Theme--Achieving 2020. Goal 3: All Students Are Conversationally Literate in Agriculture, Food, Fiber, and Natural Resource Systems.

    Science.gov (United States)

    Trexler, Cary, Ed.

    2000-01-01

    Nine theme articles focus on the need for students to be conversationally literate about agriculture, food, fiber, and natural resources systems. Discusses the definition of conversational literacy, the human and institutional resources needed, and exemplary models for promoting literacy. (JOW)

  6. Electrochemical conversion technologies for optimal design of decentralized multi-energy systems : Modeling framework and technology assessment

    NARCIS (Netherlands)

    Gabrielli, Paolo; Gazzani, Matteo; Mazzotti, Marco

    2018-01-01

    The design and operation of integrated multi-energy systems require models that adequately describe the behavior of conversion and storage technologies. Typically, linear conversion performance or fixed data from technology manufacturers are employed, especially for new or advanced technologies.

  7. Module-level DC/DC conversion for photovoltaic systems

    NARCIS (Netherlands)

    Bergveld, H.J.; Büthker, D.; Castello, C.; Doorn, T.S.; Jong, de A.; van Otten, R.; Waal, de K.

    2011-01-01

    Photovoltaic (PV) systems are increasingly used to generate electrical energy from solar irradiance incident on PV modules. Each PV module is formed by placing a large amount of PV cells, typically 60, in series. The PV system is then formed by placing a number, typically 10–12, of PV modules in

  8. Analysis of gas turbine systems for sustainable energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie

    2000-02-01

    Increased energy demands and fear of global warming due to the emission of greenhouse gases call for development of new efficient power generation systems with low or no carbon dioxide (CO{sub 2}) emissions. In this thesis, two different gas turbine power generation systems, which are designed with these issues in mind, are theoretically investigated and analyzed. In the first gas turbine system, the fuel is combusted using a metal oxide as an oxidant instead of oxygen in the air. This process is known as Chemical Looping Combustion (CLC). CLC is claimed to decrease combustion exergy destruction and increase the power generation efficiency. Another advantage is the possibility to separate CO{sub 2} without a costly and energy demanding gas separation process. The system analysis presented includes computer-based simulations of CLC gas turbine systems with different metal oxides as oxygen carriers and different fuels. An exergy analysis comparing the exergy destruction of the gas turbine system with CLC and conventional combustion is also presented. The results show that it is theoretically possible to increase the power generation efficiency of a simple gas turbine system by introducing CLC. A combined gas/steam turbine cycle system with CLC is, however, estimated to reach a similar efficiency as the conventional combined cycle system. If the benefit of easy and energy-efficient CO{sub 2} separation is accounted for, a CLC combined cycle system has a potential to be favorable compared to a combined cycle system with CO{sub 2} separation. In the second investigation, a solid, CO{sub 2}-neutral biomass fuel is used in a small-scale externally fired gas turbine system for cogeneration of power and district heating. Both open and closed gas turbines with different working fluids are simulated and analyzed regarding thermodynamic performance, equipment size, and economics. The results show that it is possible to reach high power generation efficiency and total (power

  9. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    National Research Council Canada - National Science Library

    Presby, Andrew L

    2004-01-01

    .... This has potential benefits for space nuclear reactor power systems currently in development. The primary obstacle to space operation of thermophotovoltaic devices appears to be the low heat rejection temperatures which necessitate large radiator areas...

  10. Rectenna System Design. [energy conversion solar power satellites

    Science.gov (United States)

    Woodcock, G. R.; Andryczyk, R. W.

    1980-01-01

    The fundamental processes involved in the operation of the rectenna system designed for the solar power satellite system are described. The basic design choices are presented based on the desired microwave rf field concentration prior to rectification and based on the ground clearance requirements for the rectenna structure. A nonconcentrating inclined planar panel with a 2 meter minimum clearance configuration is selected as a representative of the typical rectenna.

  11. Double barrier system for an in situ conversion process

    Science.gov (United States)

    McKinzie, Billy John [Houston, TX; Vinegar, Harold J [Bellaire, TX; Cowan, Kenneth Michael [Sugar land, TX; Deeg, Wolfgang Friedrich Johann [Houston, TX; Wong, Sau-Wai [Rijswijk, NL

    2009-05-05

    A barrier system for a subsurface treatment area is described. The barrier system includes a first barrier formed around at least a portion of the subsurface treatment area. The first barrier is configured to inhibit fluid from exiting or entering the subsurface treatment area. A second barrier is formed around at least a portion of the first barrier. A separation space exists between the first barrier and the second barrier.

  12. A comparison of energy conversion systems for meeting the power requirements of manned rover for Mars missions

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Morley, N.; Cataldo, R.; Bloomfield, H.

    1990-01-01

    Minimizing system mass for interplanetary missions is of utmost importance in order to keep launch cost within reasonable bounds. For a manned Mars rover, powered by a nuclear reactor power system, the choice of the energy conversion system can play a significant role in lowering the overall system mass. Not only is the mass of the conversion unit affected by the choice, but also the masses of the reactor core, waste heat rejection system, and the radiation shield which are strongly influenced by the system conversion efficiency and operating condition. Several types of conversion systems are of interest for a nuclear reactor Mars manned application. These conversion systems include: free piston Stirling engines, He/XE closed Brayton cycle (CBC), CO 2 open Brayton, and SiGe/GaP thermoelectric. Optimization studies are conducted to determine the impact of the conversion system on the overall mass of the nuclear power system as well as the mobility power requirement of the Rover vehicle

  13. Towards ontology personalization to enrich social conversations on AAC systems

    Science.gov (United States)

    Mancilla V., Daniela; Sastoque H., Sebastian; Iregui G., Marcela

    2015-01-01

    Communication is one of the essential needs of human beings. Augmentative and Alternative Communication Systems (AAC) seek to help in the generation of oral and written language to people with physical disorders that limit their natural communication. These systems present significant challenges such as: the composition of consistent messages according to syntactic and semantic rules, the improvement of message production times, the application to social contexts and, consequently, the incorporation of user-specific information. This work presents an original ontology personalization approach for an AAC instant messaging system incorporating personalized information to improve the efficacy and efficiency of the message production. This proposal is based on a projection of a general ontology into a more specific one, avoiding storage redundancy and data coupling, representing a big opportunity to enrich communication capabilities of current AAC systems. The evaluation was performed for a study case based on an AAC system for assistance in composing messages. The results show that adding user-specific information allows generation of enriched phrases, so improving the accuracy of the message, facilitating the communication process.

  14. A rationale plan for conversion of Malaysia for solar hydrogen energy system and its benefits

    International Nuclear Information System (INIS)

    Ludin, N.A.; Kamaruddin, W.N.; Kamaruzzaman Sopian; Verizoglu, T.N.

    2006-01-01

    It expected that early in the next century, Malaysia production of petroleum and natural gas will peak, and thereafter production will decline. In parallel with this production decline, Malaysia income from fossil fuels will start to decline, which would hurt the economy. One possible solution for Malaysia is the of Malaysia is the conversion to a hydrogen energy system. In order to move towards a sustainable hydrogen energy system, a future strategy must be outlined, followed, and continually revised. This paper will underline the available hydrogen technologies for production, storage, delivery, conversion, transportation and end use energy applications for the implementation of hydrogen energy system. Therefore, this paper will also emphasis the key success factors to drive the rationale plan for conversion to hydrogen energy system for Malaysia

  15. The conversion of smectite to illite in hydrothermal systems

    International Nuclear Information System (INIS)

    Johnston, R.M.

    1983-06-01

    In natural diagenetic shale systems, smectite converts to illite and mixed-layer illite-smectite in less than a million years at temperatures between 75 degrees C and 200 degrees C. This has raised questions as to the stability of smectite-based bentonite buffers under nuclear waste disposal vault conditions. Experimental and geological evidence indicate that the reaction is dependent on the availability of K + , and that the rate of reaction in K + -poor systems (such as the disposal vault) may be much lower than that observed in shale. The presence of Na + , Ca 2+ and Mg 2+ in the system slows the reaction and may halt it altogether at lower temperatures. Two different reaction mechanisms have been proposed; the evidence for, and implication of, each are discussed

  16. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  17. Solid waste information and tracking system client-server conversion project management plan

    International Nuclear Information System (INIS)

    May, D.L.

    1998-01-01

    This Project Management Plan is the lead planning document governing the proposed conversion of the Solid Waste Information and Tracking System (SWITS) to a client-server architecture. This plan presents the content specified by American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards for software development, with additional information categories deemed to be necessary to describe the conversion fully. This plan is a living document that will be reviewed on a periodic basis and revised when necessary to reflect changes in baseline design concepts and schedules. This PMP describes the background, planning and management of the SWITS conversion. It does not constitute a statement of product requirements. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents

  18. Solar power conversion system with directionally- and spectrally-selective properties based on a reflective cavity

    Science.gov (United States)

    Boriskina, Svetlana; Kraemer, Daniel; McEnaney, Kenneth; Weinstein, Lee A.; Chen, Gang

    2018-03-13

    Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.

  19. Chatbots as Conversational Recommender Systems in Urban Contexts

    OpenAIRE

    Kucherbaev, Pavel; Psyllidis, Achilleas; Bozzon, Alessandro

    2017-01-01

    In this paper, we outline the vision of chatbots that facilitate the interaction between citizens and policy-makers at the city scale. We report the results of a co-design session attended by more than 60 participants. We give an outlook of how some challenges associated with such chatbot systems could be addressed in the future.

  20. White Pine Co. Public School System Biomass Conversion Heating Project

    Energy Technology Data Exchange (ETDEWEB)

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  1. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  2. Microchemical Systems for Fuel Processing and Conversion to Electrical Power

    Science.gov (United States)

    2007-03-15

    Models As a case study for the optimization of a fixed process structures an ammonia cracking based process, using butane catalytic combustion for...microreactor system. Future studies will involve the optimization of the microreactor design and catalyst loading to obtain a controlled autothermal...Figure 44: XRD patterns for ( a ) Ni-Sn/YSZ cermet prepared by reduction of the oxide composite, and (b) Ni- Sn/YSZ cermet and (c) Ni/YSZ cermet

  3. Foreign Language Tutoring in Oral Conversations Using Spoken Dialog Systems

    Science.gov (United States)

    Lee, Sungjin; Noh, Hyungjong; Lee, Jonghoon; Lee, Kyusong; Lee, Gary Geunbae

    Although there have been enormous investments into English education all around the world, not many differences have been made to change the English instruction style. Considering the shortcomings for the current teaching-learning methodology, we have been investigating advanced computer-assisted language learning (CALL) systems. This paper aims at summarizing a set of POSTECH approaches including theories, technologies, systems, and field studies and providing relevant pointers. On top of the state-of-the-art technologies of spoken dialog system, a variety of adaptations have been applied to overcome some problems caused by numerous errors and variations naturally produced by non-native speakers. Furthermore, a number of methods have been developed for generating educational feedback that help learners develop to be proficient. Integrating these efforts resulted in intelligent educational robots — Mero and Engkey — and virtual 3D language learning games, Pomy. To verify the effects of our approaches on students' communicative abilities, we have conducted a field study at an elementary school in Korea. The results showed that our CALL approaches can be enjoyable and fruitful activities for students. Although the results of this study bring us a step closer to understanding computer-based education, more studies are needed to consolidate the findings.

  4. Successive approximation analog to digital conversion system with good differential linearity

    Energy Technology Data Exchange (ETDEWEB)

    Carter, D E; Randers-Pehrson, G [Ohio Univ., Athens (USA). Dept. of Physics

    1982-08-15

    A high speed modified successive approximation 4 input ADC system has been designed and constructed. Throughput rates of 250 kHz at 12 bit conversion gain with good differential linearity is achieved at low cost, using the MPX4 ADC system.

  5. Expanding Learning and Social Interaction through Intelligent Systems Design: Implementing a Reputation and Recommender System for the Claremont Conversation Online

    Science.gov (United States)

    Thoms, Brian

    2009-01-01

    In this dissertation I examine the design, construction and implementation of an online blog ratings and user recommender system for the Claremont Conversation Online (CCO). In line with constructivist learning models and practical information systems (IS) design, I implemented a blog ratings system (a system that can be extended to allow for…

  6. Sperry Low Temperature Geothermal Conversion System, Phase 1 and Phase 2. Volume 3: Systems description

    Science.gov (United States)

    Matthews, H. B.

    The major fraction of hydrothermal resources with the prospect of economic usefulness for the generation of electricity are in the 300(0)F to 425(0)F temperature range. Cost effective conversion of the geothermal energy to electricity requires new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low temperature resource, and in geothermal economics some of these problems are explained. The energy expended by the down hole pump; the difficulty in designing reliable down hole equipment; fouling of heat exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect, a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat exchanger costs, the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW; the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.

  7. Application of Circuit Model for Photovoltaic Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Natarajan Pandiarajan

    2012-01-01

    Full Text Available Circuit model of photovoltaic (PV module is presented in this paper that can be used as a common platform by material scientists and power electronic circuit designers to develop better PV power plant. Detailed modeling procedure for the circuit model with numerical dimensions is presented using power system blockset of MATLAB/Simulink. The developed model is integrated with DC-DC boost converter with closed-loop control of maximum power point tracking (MPPT algorithm. Simulation results are validated with the experimental setup.

  8. HVDC transmission power conversion applications in power systems

    CERN Document Server

    Kim, Chan-Ki; Jang, Gil-Soo; Lim, Seong-Joo; Lee, Seok-Jin

    2009-01-01

    HVDC is a critical solution to several major problems encountered when trying to maintain systemic links and quality in large-scale renewable energy environments. HDVC can resolve a number of issues, including voltage stability of AC power networks, reducing fault current, and optimal management of electric power, ensuring the technology will play an increasingly important role in the electric power industry. To address the pressing need for an up-to-date and comprehensive treatment of the subject, Kim, Sood, Jang, Lim and Lee have collaborated to produce this key text and reference.  Combin

  9. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  10. Open cycle ocean thermal energy conversion system structure

    Science.gov (United States)

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating

  11. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  12. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  13. Output power maximization of low-power wind energy conversion systems revisited: Possible control solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vlad, Ciprian; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Ceanga, Emil [' ' Dunarea de Jos' ' University of Galati, 47, Domneasca, 800008-Galati (Romania)

    2010-02-15

    This paper discusses the problem of output power maximization for low-power wind energy conversion systems operated in partial load. These systems are generally based on multi-polar permanent-magnet synchronous generators, who exhibit significant efficiency variations over the operating range. Unlike the high-power systems, whose mechanical-to-electrical conversion efficiency is high and practically does not modify the global optimum, the low-power systems global conversion efficiency is affected by the generator behavior and the electrical power optimization is no longer equivalent with the mechanical power optimization. The system efficiency has been analyzed by using both the maxima locus of the mechanical power versus the rotational speed characteristics, and the maxima locus of the electrical power delivered versus the rotational speed characteristics. The experimental investigation has been carried out by using a torque-controlled generator taken from a real-world wind turbine coupled to a physically simulated wind turbine rotor. The experimental results indeed show that the steady-state performance of the conversion system is strongly determined by the generator behavior. Some control solutions aiming at maximizing the energy efficiency are envisaged and thoroughly compared through experimental results. (author)

  14. Output power maximization of low-power wind energy conversion systems revisited: Possible control solutions

    International Nuclear Information System (INIS)

    Vlad, Ciprian; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Ceanga, Emil

    2010-01-01

    This paper discusses the problem of output power maximization for low-power wind energy conversion systems operated in partial load. These systems are generally based on multi-polar permanent-magnet synchronous generators, who exhibit significant efficiency variations over the operating range. Unlike the high-power systems, whose mechanical-to-electrical conversion efficiency is high and practically does not modify the global optimum, the low-power systems global conversion efficiency is affected by the generator behavior and the electrical power optimization is no longer equivalent with the mechanical power optimization. The system efficiency has been analyzed by using both the maxima locus of the mechanical power versus the rotational speed characteristics, and the maxima locus of the electrical power delivered versus the rotational speed characteristics. The experimental investigation has been carried out by using a torque-controlled generator taken from a real-world wind turbine coupled to a physically simulated wind turbine rotor. The experimental results indeed show that the steady-state performance of the conversion system is strongly determined by the generator behavior. Some control solutions aiming at maximizing the energy efficiency are envisaged and thoroughly compared through experimental results.

  15. On the conversion of dose to bone to dose to water in radiotherapy treatment planning systems

    Directory of Open Access Journals (Sweden)

    Nick Reynaert

    2018-01-01

    Full Text Available Background and purpose: Conversion factors between dose to medium (Dm,m and dose to water (Dw,w provided by treatment planning systems that model the patient as water with variable electron density are currently based on stopping power ratios. In the current paper it will be illustrated that this conversion method is not correct. Materials and methods: Monte Carlo calculations were performed in a phantom consisting of a 2 cm bone layer surrounded by water. Dw,w was obtained by modelling the bone layer as water with the electron density of bone. Conversion factors between Dw,w and Dm,m were obtained and compared to stopping power ratios and ratios of mass-energy absorption coefficients in regions of electronic equilibrium and interfaces. Calculations were performed for 6 MV and 20 MV photon beams. Results: In the region of electronic equilibrium the stopping power ratio of water to bone (1.11 largely overestimates the conversion obtained using the Monte Carlo calculations (1.06. In that region the MC dose conversion corresponds to the ratio of mass energy absorption coefficients. Near the water to bone interface, the MC ratio cannot be determined from stopping powers or mass energy absorption coefficients. Conclusion: Stopping power ratios cannot be used for conversion from Dm,m to Dw,w provided by treatment planning systems that model the patient as water with variable electron density, either in regions of electronic equilibrium or near interfaces. In regions of electronic equilibrium mass energy absorption coefficient ratios should be used. Conversions at interfaces require detailed MC calculations. Keywords: Dose to water, Monte Carlo, Dosimetry, TPS comparison

  16. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    International Nuclear Information System (INIS)

    Brown, E.J.; Ballinger, C.T.; Burger, S.R.; Charache, G.W.; Danielson, L.R.; DePoy, D.M.; Donovan, T.J.; LoCascio, M.

    2000-01-01

    The performance of a 1 cm 2 thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage

  17. A theoretical analysis of price elasticity of energy demand in multistage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, R.

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases. (author)

  18. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, Robert

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases

  19. Technical evaluation of Aerojet Energy Conversion Company's topical report on a mobile volume reduction system

    International Nuclear Information System (INIS)

    Henscheid, J.W.

    1984-01-01

    This report summarizes EG and G Idaho's review of Aerojet Energy Conversion Company's (AECC's) topical report on a Mobile Volume Reduction System. The review evaluated compliance with pertinent codes, standards and regulations. The initial review was discussed with AECC by EG and G Idaho and the NRC, and all outstanding issues resolved before this final evaluation was made

  20. Dynamic modelling and robust control of a wind energy conversion system

    NARCIS (Netherlands)

    Steinbuch, M.

    1989-01-01

    The application of wind energy conversion systems for the production of electrical energy requires a cheap and reliable operation. Especially at high wind velocities fluctuations from the wind field result in large mechanical loads of the wind turbine. Also fluctuations in the grid voltage may yield

  1. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    Science.gov (United States)

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  2. Direct Student Loans: Overpayments during the Department of Education's Conversion to a New Payment System.

    Science.gov (United States)

    Joyner, Carlotta C.

    This report addresses concerns that the Department of Education may have erroneously made overpayments of as much as $400 million to schools participating in the William D. Ford Federal Direct Loan Program (FDLP) during the Department's conversion to a new computerized payment system. The investigation found that because the transition to the new…

  3. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...

  4. Artificial vesicles with incorporated photosynthetic materials for potential solar energy conversion systems

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2009-07-01

    Full Text Available WITH INCORPORATED PHOTOSYNTHETIC MATERIALS FOR POTENTIAL SOLAR ENERGY CONVERSION SYSTEMS J E Smit1, A F Grobler2, A E Karsten1, R W Sparrow3 1 CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2 Unit for drug development and research, North...

  5. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  6. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  7. Collaborative role construction in a conversation with dementia: an application of systemic functional linguistics.

    Science.gov (United States)

    Müller, Nicole; Wilson, Brent T

    2008-01-01

    This study applies the tools provided by Systemic Functional Linguistics (SFL) to the description of patterns in a conversation between a person with dementia and a person without. It shows how, in the presence of, on the one hand, considerable communicative and cognitive deficits, and on the other, a collaborative interlocutor, a person with dementia succeeds in leading and sustaining a lengthy conversation, and of constructing for himself a positive role in the interaction, namely that of the elder advising a much younger man.

  8. Experimental-demonstrative system for energy conversion using hydrogen fuel cell - preliminary results

    International Nuclear Information System (INIS)

    Stoenescu, D.; Stefanescu, I.; Patularu, I.; Culcer, M.; Lazar, R.E.; Carcadea, E.; Mirica, D. . E-mail address of corresponding author: daniela@icsi.ro; Stoenescu, D.)

    2005-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (natural gas, methane, biomass, etc.), it can be burned or chemically react having a high yield of energy conversion, being a non-polluted fuel. This paper presents the preliminary results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system made by a sequence of hydrogen purification units and a CO removing reactors until a CO level lower than 10ppm, that finally feeds a hydrogen fuel stack. (author)

  9. Gas turbine power conversion systems for modular HTGRs. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-08-01

    The Technical Committee Meeting (TCM) on Gas Turbine Power Conversion Systems for Modular HTGRs held in Palo Alto, California, USA was convened by the IAEA on the recommendation of its International Working Group on Gas Cooled Reactors (IWGGCR). The meeting was attended by 27 participants from 9 Member States (Argentina, China, France, Japan, Netherlands, Russian Federation, South Africa, United Kingdom and the United States of America). In addition to presentations on relevant technology development activities in participating Member States, 16 technical papers were presented covering the areas of: Power conversion system design; Power conversion system analysis; and Power conversion system component design. A panel discussion was held on technology issues associated with gas turbine modular HTGR power conversion systems and the potential for international collaboration to address these issues. The purpose of this Technical Committee Meeting was to foster the international exchange of information and perspectives on gas turbine power conversion systems and components for modular HTGRs. The overall objectives were to provide: a current overview of designs under consideration; information on the commercial availability or development status of key components; exchange of information on the issues involved and potential solutions; identification of further development needs for both initial deployment and longer term performance enhancement, and the potential for addressing needs through international collaboration. The following conclusions and recommendations were identified as a result of the discussions at the meeting. International review and collaboration is of interest for China and Japan in the planning and conduct of their test programs: both the HTTR and HTR-10 reactor projects are exploring scale model testing of a gas turbine, with the HTTR project considering a 7 MWt gas heated loop, and HTR-10 a direct or indirect cycle connected to the reactor; the HTR

  10. Performance testing and economic analysis of a photovoltaic flywheel energy storage and conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R. D.; Millner, A. R.; Jarvinen, P. O.

    1980-01-01

    A subscale prototype of a flywheel energy storage and conversion system for use with photovoltaic power systems of residential and intermediate load-center size has been designed, built and tested by MIT Lincoln Laboratory. System design, including details of such key components as magnetic bearings, motor generator, and power conditioning electronics, is described. Performance results of prototype testing are given and indicate that this system is the equal of or superior to battery-inverter systems for the same application. Results of cost and user-worth analysis show that residential systems are economically feasible in stand-alone and in some utility-interactive applications.

  11. Software engineering for the EBR-II data acquisition system conversion

    International Nuclear Information System (INIS)

    Schorzman, W.

    1988-01-01

    The purpose of this paper is to outline how EBR-II engineering approached the data acquisition system (DAS) software conversion project with the restraints of operational transparency and six weeks for final implementation and testing. Software engineering is a relatively new discipline that provides a structured philosopy for software conversion. The software life cycle is structured into six basic steps: 1) initiation, 2) requirements definition, 3) design, 4) programming, 5) testing, and 6) operations. These steps are loosely defined and can be altered to fit specific software applications. DAS software is encompassed from three sources: 1) custom software, 2) system software, and 3) in-house application software. A data flow structure is used to describe the DAS software. The categories are: 1) software used to bring signals into the central processer, 2) software that transforms the analog data to engineering units and then logs the data in the data store, and 3) software used to transport and display the data. The focus of this paper is to describe how the conversion team used a structured engineering approach and utilized the resources available to produce a quality system on time. Although successful, the conversion process provided some pit falls and stumbling blocks. Working through these obstacles enhanced our understanding and surfaced in the form of LESSONS LEARNED, which are gracefully shared in this paper

  12. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    International Nuclear Information System (INIS)

    Siamidis, John; Mason, Lee

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed excel analytical model, HRS O pt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids

  13. Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, V.K.; Bora, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2004-07-01

    Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing in situ is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at 10{sup -3} mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper. (authors)

  14. Low-temperature system for simultaneous counting of conversion electrons and backscattered [gamma]-rays in Moessbauer effect experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruskov, Todor (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Passage, Guener (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Rastanawi, Abdallah (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Radev, Rumen (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria))

    1994-12-01

    A system for simultaneous detection of conversion electrons, emitted after resonant exciting of [sup 57]Fe, and resonant backscattered [gamma]-rays and X-rays, accompanying the conversion electrons, is described. The system includes a helium proportional counter, for detection of conversion electrons, and a toroidal ''Keisch-type'' proportional counter, connected to the vacuum part of a helium cryostat. ((orig.))

  15. Photovoltaic module with integrated power conversion and interconnection system - the European project PV-MIPS

    OpenAIRE

    Henze, N.; Engler, A.; Zacharias, P.

    2006-01-01

    Within the 6th framework program funded by the European Commission the project PV-MIPS (Photovoltaic Module with Integrated Power Conversion System) was launched in November 2004. Together with eleven European partners from Germany, Austria, Greece and the Netherlands a solar module with integrated in-verter shall be developed that can feed solar electricity directly into the grid. The challenging objective of the project is to reduce the total costs of a PV system. At the same time lifetime ...

  16. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator

    OpenAIRE

    Naggar H. Saad; Ahmed A. El-Sattar; Mohamed I. Marei

    2016-01-01

    The main challenges of wind energy conversion systems (WECS) are to maximize the energy capture from the wind and injecting reactive power during the fault. This paper presents a current controlled matrix converter to interface Permanent Magnet Synchronous Generators (PMSG) based WECS with the grid. To achieve fast dynamic response with reduced current ripples, a hysteresis current control is utilized. The proposed control system decouples the active and reactive components of the PMSG curren...

  17. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    OpenAIRE

    Jain, Bhavna; Singh, Sameer; Jain, Shailendra; Nema, R. K.

    2015-01-01

    Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL) and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding...

  18. Nuclear reactor closed Brayton cycle power conversion system optimization trends for extra-terrestrial applications

    International Nuclear Information System (INIS)

    Ashe, T.L.; Baggenstoss, W.G.; Bons, R.

    1990-01-01

    Extra-terrestrial exploration and development missions of the next century will require reliable, low-mass power generation modules of 100 kW e and more. These modules will be required to support both fixed-base and manned rover/explorer power needs. Low insolation levels at and beyond Mars and long periods of darkness on the moon make solar conversion less desirable for surface missions. For these missions, a closed Brayton cycle energy conversion system coupled with a reactor heat source is a very attractive approach. The authors conducted parametric studies to assess optimized system design trends for nuclear-Brayton systems as a function of operating environment and user requirements. The inherent design flexibility of the closed Brayton cycle energy conversion system permits ready adaptation of the system to future design constraints. This paper describes a dramatic contrast between system designs requiring man-rated shielding. The paper also considers the ramification of using indigenous materials to provide reactor shielding for a fixed-base power source

  19. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Energy conversion system characteristics

    Science.gov (United States)

    1980-01-01

    Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.

  20. Complex thermal energy conversion systems for efficient use of locally available biomass

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2016-01-01

    This paper is focused on a theoretical study in search for new technological solutions in the field of electricity generation from biomass in small-scale distributed cogeneration systems. The purpose of this work is to draw readers' attention to possibilities of design complex multi-component hybrid and combined technological structures of energy conversion plants for effective use of locally available biomass resources. As an example, there is presented analysis of cogeneration system that consists of micro-turbine, high temperature fuel cell, inverted Bryton cycle module and biomass gasification island. The project assumes supporting use of natural gas and cooperation of the plant with a low-temperature district heating network. Thermodynamic parameters, energy conversion effectiveness and economic performance are examined. Results show relatively high energy conversion performance and on the other hand weak financial indices of investment projects at the current level of energy prices. It is however possible under certain conditions to define an optimistic business model that leads to a feasible project. - Highlights: • Concept of biomass energy conversion plant is proposed and theoretically analysed. • MCFC type fuel cell is fuelled with biomass gasification gas. • Natural gas fired microturbine is considered as a source of continuous power. • Inverted Bryton Cycle is considered for utilisation of high temperature exhaust gas.

  1. EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas

    International Nuclear Information System (INIS)

    Girardin, Luc; Marechal, Francois; Dubuis, Matthias; Calame-Darbellay, Nicole; Favrat, Daniel

    2010-01-01

    A geographical information system has been developed to model the energy requirements of an urban area. The purpose of the platform is to model with sufficient detail the energy services requirements of a given geographical area in order to allow the evaluation of the integration of advanced integrated energy conversion systems. This tool is used to study the emergence of more efficient cities that realize energy efficiency measures, integrate energy efficient conversion technologies and promote the use of endogenous renewable energy. The model is illustrated with case studies for the energetic planning of the Geneva district (Switzerland).

  2. EXAMINING A SERIES RESONANT INVERTER CIRCUIT TO USE IN THE PHOTOVOLTAIC ENERGY CONVERSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Engin ÇETİN

    2004-03-01

    Full Text Available As we know, solar energy is the energy source which is environment friendly, renewable, and can be found easily. Particularly, in the recent years, interest on producing electrical energy by alternative energy sources increased because of the fact that underground sources are not enough to produce energy in the future and also these sources cause enviromental pollution. The solar energy is one of the most popular one among the alternative energy sources. Photovoltaic systems produce the electrical energy from the sunlight. In this study, a series resonant inverter circuit which is used in the photovoltaic energy conversion systems has been examined.Effects of the series resonant inverter circuit on the photovoltaic energy conversion system have been investigated and examined

  3. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  4. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    Science.gov (United States)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  5. Study on thermal electric conversion system for FBR plant. Investigation for effective EVST waste heat recovery system

    International Nuclear Information System (INIS)

    Maekawa, Isamu; Kurata, Chikatoshi

    2004-02-01

    Recently, it has been important to reuse discharged heat energy from present nuclear plant, especially from sodium cooled FBR, which are typical high temperature system, in the view of reduction of environmental burden and improvement of heat efficiency for plant. The thermal electric conversion system can work only the temperature difference and has been applied to the limited fields such as space or military, however, that results show good merits for reliability, maintenance free, and so on. Recently, the development of new thermal electric conversion elements has made remarkable progress. In this study, for the effective utilization of waste heat from Monju', the prototype plant of FBR, we made an investigation of electric power generating system maintaining the cooling faculty by applying the thermal electric conversion system to sodium cooling line of EVST. Using the new type iron based thermal electric conversion elements, which are plentiful, economical and good for environmental harmonization, we have calculated the amount of heat exchange and power generation from sodium cooling line of EVST, and have investigated the module sizing, cost and subject to be settled. The results were , (1)The amount of power generation from sodium cooling line of EVST is smaller about one figure than motive power of sodium cooler fan. However, if Seebeck coefficient and heat conductivity of iron based thermal electric conversion elements shall be improved, power from sodium cooling line shall be able to cover the motive power. (2) The amount of heat released from sodium cooling line after the installation of thermal electric conversion module covers the necessity to maintain the sodium cooling faculty. (3) In case of the installation of module to the sodium cooler, it should be reconstructed because of tube arrangement modification. In case of the installation of module to the sodium connecting line, air ventilation system is needed to suppress the room temperature. (4) As

  6. Electric utility application of wind energy conversion systems on the island of Oahu

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, C.A.; Melton, W.C.

    1979-02-23

    This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

  7. System Requirements Document for the Molten Salt Reactor Experiment 233U conversion system

    International Nuclear Information System (INIS)

    Aigner, R.D.

    2000-01-01

    The purpose of the conversion process is to convert the 233 U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019

  8. [Changes of soil physical properties during the conversion of cropland to agroforestry system].

    Science.gov (United States)

    Wang, Lai; Gao, Peng Xiang; Liu, Bin; Zhong, Chong Gao; Hou, Lin; Zhang, Shuo Xin

    2017-01-01

    To provide theoretical basis for modeling and managing agroforestry systems, the influence of conversion of cropland to agroforestry system on soil physical properties was investigated via a walnut (Juglans regia)-wheat (Triticum aestivum) intercropping system, a wide spreading local agroforestry model in northern Weihe River of loess area, with the walnut and wheat monoculture systems as the control. The results showed that the improvement of the intercropping system on soil physical properties mainly appeared in the 0-40 cm soil layer. The intercropping system could prevent soil bulk density rising in the surface soil (0-20 cm), and the plow pan in the 20-40 cm soil layer could be significantly alleviated. The intercropping system had conti-nuous improvement on soil field capacity in each soil layer with the planting age increase, and the soil field capacity was higher than that of each monoculture system in each soil layer (except 20-40 cm soil layer) since the 5th year after planting. The intercropping system had continuous improvement on soil porosity in each soil layer, but mainly in the 0-20 and 20-40 cm soil layer, and the ratio of capillary porosity was also improved. The soil bulk density, field capacity and soil porosity obtained continuous improvement during the conversion of cropland to agroforestry system, and the improvement on soil physical properties was stronger in shallow soil layer than in deep soil.

  9. A proposed strategy for power optimization of a wind energy conversion system connected to the grid

    International Nuclear Information System (INIS)

    Taraft, S.; Rekioua, D.; Aouzellag, D.; Bacha, S.

    2015-01-01

    Highlights: • Wind energy conversion based doubly fed induction generator controlled by matrix converter. • Operation at both sub and super-synchronous regions is possible with the proposed drive system. • Double the power generated by the DFIG at a twice of speed rated. • Sliding mode control is used to achieve active and reactive power control. - Abstract: Many strategies have been developed in last decade to optimize power extracted from wind energy conversion system where many of them can produce only 30% more than the rated power. With the considered strategy, the generated wind power can reach twice its nominal value using a fast and reliable fully rugged electrical control. Indeed, by employing a suitable control technique where the produced power in super-synchronous mode is derived from both the stator and the rotor. Also, the rotor provided power in this case grows up 100% comparing to stator rated power. However, this solution permits to maintain the wind energy conversion system operation in its stable area. The considered system consists of a double fed induction generator whose stator is connected directly to the grid and its rotor is supplied by matrix converter. In this paper, the sliding mode approach to achieve active and reactive power control is used. This latter is combined with de Perturbation and Observation Maximum Power Point Tracking used in the second operation zone. The obtained simulations results are assessed and carried out using Matlab/Simulink package and show the performance and the effectiveness of the proposed control

  10. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    Science.gov (United States)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  11. Two Level Versus Matrix Converters Performance in Wind Energy Conversion Systems Employing DFIG

    Science.gov (United States)

    Reddy, Gongati Pandu Ranga; Kumar, M. Vijaya

    2017-10-01

    Wind power capacity has received enormous growth during past decades. With substantial development of wind power, it is expected to provide a fifth of world's electricity by the end of 2030. In wind energy conversion system, the power electronic converters play an important role. This paper presents the two level and matrix converters performance in wind energy conversion system employing Doubly Fed Induction Generator (DFIG). The DFIG is a wound rotor induction generator. Because of the advantages of the DFIG over other generators it is being used for most of the wind applications. This paper also discusses control of converters using the space vector pulse width modulation technique. The MATLAB/SIMULINK ® software is used to study the performance of the converters.

  12. Software engineering for the EBR-II data acquisition system conversion

    International Nuclear Information System (INIS)

    Schorzman, W.

    1988-01-01

    The original data acquisition system (DAS) for the Experimental Breeder Reactor II (EBR-II) was placed into service with state-of-the-art computer and peripherals in 1970. Software engineering principles for real-time data acquisition were in their infancy, and the original software design was dictated by limited hardware resources. The functional requirements evolved from creative ways to gather and display data. This abstract concept developed into an invaluable tool for system analysis, data reporting, and as a plant monitor for operations. In this paper the approach is outlined to the software conversion project with the restraints of operational transparency and 6 weeks for final conversion and testing. The outline is then compared with the formal principles of software engineering to show the way that bridge the gap can be bridged between the theoretical and real world by analyzing the work and listing the lessons learned

  13. Biomass-fuelled PEMFC systems: Evaluation of two conversion paths relevant for different raw materials

    International Nuclear Information System (INIS)

    Guan, Tingting; Chutichai, Bhawasut; Alvfors, Per; Arpornwichanop, Amornchai

    2015-01-01

    Highlights: • Anaerobic digestion and gasification are viable biomass conversion technologies. • GF-PEMFC system yields a 20% electric efficiency and 57% thermal efficiency. • AD-PEMFC system has a 9% electric efficiency and 13% thermal efficiency. • AD-PEMFC system has an efficient land-use. • GF-PEMFC system has a high CO_2 emissions offset factor. - Abstract: Biomass-fuelled polymer electrolyte membrane fuel cells (PEMFCs) offer a solution for replacing fossil fuel with hydrogen production. This paper uses simulation methods for investigating biomass-fuelled PEMFCs for different raw materials and conversion paths. For liquid and solid biomass, anaerobic digestion (AD) and gasification (GF), respectively, are relatively viable and developed conversion technologies. Therefore, the AD-PEMFC system and the GF-PEMFC system are simulated for residential applications in order to evaluate the performance of the biomass-fuelled PEMFC systems. The results of the evaluation show that renewable hydrogen-rich gas from manure or forest residues is usable for the PEMFCs and makes the fuel cell stack work in a stable manner. For 100 kWe generation, the GF-PEMFC system yields an excellent technical performance with a 20% electric efficiency and 57% thermal efficiency, whereas the AD-PEMFC system only has an 9% electric efficiency and 13% thermal efficiency due to the low efficiency of the anaerobic digester (AD) and the high internal heat consumption of the AD and the steam reformer (SR). Additionally, in this study, the environmental performances of the AD-PEMFC and the GF-PEMFC in terms of CO_2 emission offset and land-use efficiency are discussed.

  14. Theoretical analysis of a wind heating conversion and long distance transmission system

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Han, Bing-Chuan; Nian, Yong-Le; Han, Bing-Bing

    2017-01-01

    Highlights: • A novel long distance wind power heating system was proposed. • Heat losses could be reduced effectively due to latent heat transmission. • Power consumption and cost would drop greatly compared to hot water convey system. • The maximum transmission distance is 10 times that of conventional system. - Abstract: As a clean and renewable energy, wind power gets a rapid growth in recent years. With the increasing proportion of wind power generation, the fluctuation and intermittency of wind energy impedes the safe and stable operation of national power grids, which causes wind curtailment and energy waste, hindering further development of wind power industry in China. To solve this problem, wind heating conversion was proposed. However, long distance transmission between wind fields and residential areas for thermal energy is an urgent issue for wind heating. This paper presents a novel wind heating conversion and long distance transmission system. A simple device was utilized for wind heating conversion in the present system, then thermal energy was transported to heat demand site through latent heat transmission of the working fluids. A model of the novel system was built and thermodynamics analysis showed that maximum transmission distance of the novel system could extended to 240 km, 9.6 times of that of typical hot water transmission system. And the novel system also could cut down the cost by greatly reducing pump work and pipe diameter. In addition, efficiency and circulation ratio was almost unchanged while wind power density increased from 350 W/m 2 to 650 W/m 2 .

  15. Electrochemical Systems for Renewable Energy Conversion from Salinity and Proton Gradients

    OpenAIRE

    Morais, William G.; Lima, Gilberto; Gomes, Wellington J. A. S.; Huguenin, Fritz

    2018-01-01

    Ever-rising energy demand, fossil fuel dependence, and climate issues have harmful consequences to the society. Exploring clean and renewable energy to diversify the world energy matrix has become an urgent matter. Less explored or unexplored renewable energy sources like the salinity and proton gradient energy are an attractive alternative with great energy potential. This paper discusses important electrochemical systems for energy conversion from natural and artificial concentration gradie...

  16. Legal-institutional arrangements facilitating offshore wind energy conversion systems (WECS) utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, L.H.

    1977-09-01

    Concern for the continuing sufficiency of energy supplies in the U.S. has tended to direct increasing attention to unconventional sources of supply, including wind energy. Some of the more striking proposals for the utilization of wind energy relate to offshore configurations. The legal-institutional arrangements for facilitating the utilization of offshore wind energy conversion systems (WECS) are examined by positioning three program alternatives and analyzing the institutional support required for the implementation of each.

  17. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    International Nuclear Information System (INIS)

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Highlights: • Novel optimization-based methodology to integrate renewable energy systems in cities. • Multiperiod model including storage, heat integration and Life Cycle Assessment. • Case study: systematic assessment of deep geothermal and wood conversion pathways. • Identification of novel wood-geothermal hybrid systems leading to higher efficiencies. • Extensive Supplementary Material to ensure full reproducibility of the work. - Abstract: Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and woody biomass in an urban energy system. The city is modeled in its entirety as a multiperiod optimization problem with the total annual cost as an objective, assessing as well the environmental impact with a Life Cycle Assessment approach. For geothermal energy, deep aquifers and Enhanced Geothermal Systems are considered for stand-alone production of heat and electricity, and for cogeneration. For biomass, besides direct combustion and cogeneration, conversion to biofuels by a set of alternative processes (pyrolysis, Fischer-Tropsch synthesis and synthetic natural gas production) is studied. With a scenario-based approach, all pathways are first individually evaluated. Secondly, all possible combinations between geothermal and biomass options are systematically compared, taking into account the possibility of hybrid systems. Results show that integrating these two resources generates configurations featuring both lower costs and environmental impacts. In particular, synergies are found in innovative hybrid systems using

  18. Solid Waste Information and Tracking System Server Conversion Project Management Plan

    International Nuclear Information System (INIS)

    GLASSCOCK, J.A.

    2000-01-01

    The Project Management Plan governing the conversion of SWITS to a client-server architecture. The PMP describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion

  19. Geo-spatial multi-criteria analysis for wave energy conversion system deployment

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Ana; Pacheco, Miguel [Data Centre, Instituto Hidrografico, Portuguese Navy, Rua das Trinas 49, 1249-093 Lisboa (Portugal); Jorge, Raquel; Lopes, M.F.P.; Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Avenida Rovisco Pais 1, 1049-001, Lisboa (Portugal)

    2009-01-15

    The growing requirements for renewable energy production lead to the development of a new series of systems, including wave energy conversion systems. Due to their sensitivity and the impact of the aggressive marine environment, the selection of the most adequate location for these systems is a major and very important task. Several factors, such as technological limitations, environmental conditions, administrative and logistic conditions, have to be taken into account in order to support the decision for best location. This paper describes a geo-spatial multi-criteria analysis methodology, based on geographic information systems technology, for identification of the best location to deploy a wave energy farm. This methodology is not conversion system dependent and therefore can be easily customized for different systems and implementation conditions. Selection factors can include, for example, ocean depth, sea bottom type, existing underwater cables, marine protected areas, ports location, shoreline, power grid location, military exercise areas, climatology of wave significant height, period and power. A case study demonstrating this methodology is presented, for an area offshore the Portuguese southwest coast. The system output allows a clear differential identification of the best spots for implementing a wave energy farm. It is not just a simple Boolean result showing valid and invalid locations, but a layer with a valued suitability for farm deployment. (author)

  20. Making sense of the emerging conversation in evaluation about systems thinking and complexity science.

    Science.gov (United States)

    Gates, Emily F

    2016-12-01

    In the last twenty years, a conversation has emerged in the evaluation field about the potential of systems thinking and complexity science (STCS) to transform the practice of evaluating social interventions. Documenting and interpreting this conversation are necessary to advance our understanding of the significance of using STCS in planning, implementing, and evaluating social interventions. Guided by a generic framework for evaluation practice, this paper reports on an inter-disciplinary literature review and argues that STCS raises some new ways of thinking about and carrying out the following six activities: 1) supporting social problem solving; 2) framing interventions and contexts; 3) selecting and using methods; 4) engaging in valuing; 5) producing and justifying knowledge; and 6) facilitating use. Following a discussion of these issues, future directions for research and practice are suggested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nuclear material control and accounting system evaluation in uranium conversion operations

    International Nuclear Information System (INIS)

    Moreira, Jose Pontes

    1994-01-01

    The Nuclear Material Control and Accounting Systems in uranium conversion operations are described. The conversion plant, uses ammonium diuranate (ADU), as starting material for the production of uranium hexafluoride. A combination of accountability and verification measurement is used to verify physical inventory quantities. Two types of inspection are used to minimize the measurements uncertainty of the Material Unaccounted For (MUF) : Attribute inspection and Variation inspection. The mass balance equation is the base of an evaluation of a Material Balance Area (MBA). Statistical inference is employed to facilitate rapid inventory taking and enhance material control of Safeguards. The calculation of one sampling plan for a MBA and the methodology of inspection evaluation are also described. We have two kinds of errors : no detection and false delation. (author)

  2. Progress of conversion system from CAD data to MCNP geometry data in Japan

    International Nuclear Information System (INIS)

    Sato, S.; Nashif, H.; Masuda, F.; Morota, H.; Iida, H.; Konno, C.

    2010-01-01

    Automatic conversion systems from CAD data to MCNP geometry input data have been developed to convert the CAD data of the fusion reactor with very complicated structure. So far, two conversion systems (GEOMIT-1 and ARCMCP) have been developed and the third system (GEOMIT-2) is under developing. The void data can be created in these systems. GEOMIT-1 was developed in 2007, but a lot of manual shape splitting work for the CAD data was required to convert the complicated geometry. ARCMCP was developed in 2008. The algorithm has been drastically improved on automatic creation of ambiguous surface in ARCMCP, but it still required a little manual shape splitting work. The latest system, GEOMIT-2, does not require additional commercial software packages, though the previous systems require them. It also has functions of the CAD data healing and the automatic shape splitting. Geometrical errors of CAD data can be automatically revised by the healing function, and complicated geometries can be automatically split into simple geometries by the shape splitting function. Any manual works for CAD data are not required in GEOMIT-2. GEOMIT-2 is very useful for nuclear analyses of fusion reactors.

  3. A comparative study between three sensorless control strategies for PMSG in wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Brahmi, Jemaa; Krichen, Lotfi; Ouali, Abderrazak [Advanced Control and Energy Management Research Unit ENIS, Department of Electrical Engineering, University of Sfax, 3038 Sfax (Tunisia)

    2009-09-15

    This paper presents a comparative study of sliding mode, artificial neural network and model reference adaptive speed observers for a speed sensorless permanent magnet synchronous generator (PMSG) in wind energy conversion system (WECS). Wind velocity and position sensorless operating methods for wind generation system using observer are proposed only by measuring phase voltages and currents. Maximum wind energy extraction is achieved by running the wind turbine generator in variable-speed mode. In addition the three speed observers are compared to verify the robustness against parameter variations. (author)

  4. Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R.; Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-10-15

    This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn. (author)

  5. New Multiphase Hybrid Boost Converter with Wide Conversion Ratio for PV System

    Directory of Open Access Journals (Sweden)

    Ioana-Monica Pop-Calimanu

    2014-01-01

    Full Text Available A new multiphase hybrid boost converter, with wide conversion ratio as a solution for photovoltaic energy system, is presented in this paper. To ensure that all the phases of the converter operate at the same switching frequency we use interleaving topology. The proposed converter can be used as an interface between the PV system and the DC load/inverter. This multiphase converter has the advantage of reduced value and physical size of the input and output capacitor as well as the effort for the inductors. To validate the operation of the converter we provide the analyses and the simulation results of the converter.

  6. Productivity of coffee crop (Coffea arabica L.) in conversion to the organic production system

    OpenAIRE

    Malta, Marcelo Ribeiro; Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG; Pereira, Rosemary Gualberto Fonseca Alvarenga; Universidade Federal de Lavras - UFLA; Chagas, Sílvio Júlio de Rezende; Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG; Guimarães, Rubens José; Universidade Federal de Lavras - UFLA

    2008-01-01

    This experiment was carried out in Lavras, MG, to verify the productivity of coffee crop (Coffea arabica L.) in conversion to the organic production system. The experiment was set in a six-year old coffee crop of the cultivar Catuaí Amarelo IAC 86, with spacing of 4,0 x 0,6 m, previously cultivated under the conventional system. In the organic treatments a 4 x 4 balanced lattice design with 5 replications in a 3 x 2 x 2 factorial scheme was used, besides 4 additional treatments. The f...

  7. Construction of a system for up-conversion detection in vitroceramics doped with rare earths

    International Nuclear Information System (INIS)

    Santa Cruz, P.A.; Azevedo, W.M. de; Sa, G.F. de

    1983-01-01

    A system capable of detecting up-conversion processes by energy transference or cooperative luminescence was developed. Pulverized vitroceramic samples containing PbF 2 and GeO 2 , doped with Yb 2 O 3 as sensitizer and Tm 2 O 3 or Er 2 O 3 as activator, were used. A diagram of the detection system, as well as graphs showing the variation of the emission intensity of these doped vitroceramics as a function of excitation intensity (970 mn), are presented. (C.L.B.) [pt

  8. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 1: Introduction and summary and general assumptions. [energy conversion systems for electric power plants using coal - feasibility

    Science.gov (United States)

    Beecher, D. T.

    1976-01-01

    Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.

  9. Conversion of the US State System of Accountancy to be Year 2000 compliant

    International Nuclear Information System (INIS)

    Proco, G.; Brown, S.

    1999-01-01

    The Nuclear Materials Management and Safeguards System (NMMSS) is the US government's state system of accountancy, maintaining current and historical data on the possession, use and transfer of nuclear material. The system is an important tool in maintaining and monitoring accounting data for nuclear materials inventory and transactions and reporting under the US Atomic Energy Act of 1954, as amended, the safeguards agreement between the US and the International Atomic Energy Agency and agreements for cooperation between the US and its international partners for peaceful uses of atomic energy. Accounting information is provided to the system by nuclear facilities under the reporting requirements issued by relevant US government entities: the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). The NMMSS is operated for the DOE and the NRC by NAC International, Norcross, Georgia. The state system of accountancy was identified by the US government as a 'mission essential' system, an accounting system considered essential to government missions. As such, the system is held to a high standard of reliability. This system was identified in 1996 by the DOE as a system that should be made Year 2000 compliant at an early date - by March 1999. Very detailed planning for system conversion was necessary including: risk and vulnerability assessments, a comprehensive test plan and a contingency plan to be followed in case the conversion was not completed on time. Actual compliance was accomplished well in advance of March 1999. The conversion was complete, tested and capable of receiving data in the revised format in July 1998. All date fields in the data base are now eight characters, with the year reported in four characters. All incoming data that is only six characters is modified through software into an eight-character format by a default provision in the system. Also, output reports now contain eight-character date fields. If any of the systems that

  10. Assessment of control strategies for fault ride through of SCIG-based wind energy conversion systems

    Directory of Open Access Journals (Sweden)

    Manaullah

    2016-01-01

    Full Text Available With increasing penetration of wind energy into the power grid, researchers have started focusing more on control and coordination of wind energy conversion systems (WECS with the other components at system level, especially during fault. It is important to implement a suitable fault ride through control strategy to avoid tripping of the generators when the power system is subjected to voltage dips normally below 90% of nominal voltage. The dips below 90% may lead to a significant loss of generation and frequency collapse, followed by a blackout. This article implements and assesses the methodologies to deal with such situations for squirrel cage induction generator-based wind energy conversion systems employing fully rated power electronic converters. Three distinct control techniques—namely, balanced positive sequence control, positive negative sequence control, and dual current control—have been simulated and applied to grid side converter of SCIG-based WECS. The performance of all the three control strategies has been compared and presented in this work. During this study, the system is subjected to the most common unsymmetrical line to ground (LG fault and most severe symmetrical LLL fault on grid for the purpose of anaysis.

  11. Permanent Magnet Synchronous Generator Driven Wind Energy Conversion System Based on Parallel Active Power Filter

    Directory of Open Access Journals (Sweden)

    FERDI Brahim

    2014-05-01

    Full Text Available This paper proposes a novel application of the instantaneous P-Q theory in a wind energy conversion system (WECS. The proposed WECS is formed by permanent magnet synchronous generator (PMSG wind turbine system connected to the grid through parallel active power filter (PAPF. PAPF uses the generated wind energy to feed loads connected at the point of common coupling (PPC, compensates current harmonics and injects the excess of this energy into the grid using P-Q theory as control method. To demonstrate the feasibility and the performance of the proposed control scheme, simulation of this wind system has been realized using MATLAB/SIMULINK software. Simulation results show the accuracy and validity of the proposed control scheme for the PMSGPAPF system.

  12. Evaluation of maximum power point tracking in hydrokinetic energy conversion systems

    Directory of Open Access Journals (Sweden)

    Jahangir Khan

    2015-11-01

    Full Text Available Maximum power point tracking is a mature control issue for wind, solar and other systems. On the other hand, being a relatively new technology, detailed discussion on power tracking of hydrokinetic energy conversion systems are generally not available. Prior to developing sophisticated control schemes for use in hydrokinetic systems, existing know-how in wind or solar technologies can be explored. In this study, a comparative evaluation of three generic classes of maximum power point scheme is carried out. These schemes are (a tip speed ratio control, (b power signal feedback control, and (c hill climbing search control. In addition, a novel concept for maximum power point tracking: namely, extremum seeking control is introduced. Detailed and validated system models are used in a simulation environment. Potential advantages and drawbacks of each of these schemes are summarised.

  13. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  14. Speed-sensorless control strategy for multi-phase induction generator in wind energy conversion systems

    Directory of Open Access Journals (Sweden)

    Dumnić Boris P.

    2016-01-01

    Full Text Available Renewable energy sources, especially wind energy conversion systems (WECS, exhibit constant growth. Increase in power and installed capacity led to advances in WECS topologies. Multi-phase approach presents a new development direction, with several key advantages over three-phase systems. Paired with a sensorless control strategy, multi-phase machines are expected to take primacy over standard solutions. This paper presents speed sensorless vector control of an asymmetrical six-phase induction generator based on a model reference adaptive system (MRAS. Suggested topology and developed control algorithm show that sensorless control can yield appropriate dynamic characteristics for the use in WECS with increase in reliability and robustness. [Projekat Ministarstva nauke Republike Srbije, br. III 042004: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  15. Dynamic modeling and sensitivity analysis of solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1977-01-01

    Since the energy input to solar thermal conversion systems is both time variant and probabilistic, it is unlikely that simple steady-state methods for estimating lifetime performance will provide satisfactory results. The work described here uses dynamic modeling to begin identifying what must be known about input radiation and system dynamic characteristics to estimate performance reliably. Daily operation of two conceptual solar energy systems was simulated under varying operating strategies with time-dependent radiation intensity ranging from smooth input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours. Integrated daily system output and efficiency were functions of both level and dynamic characteristics of insolation. Sensitivity of output to changes in total input was greater than one.

  16. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  17. The closed Brayton cycle: An energy conversion system for near-term military space missions

    Science.gov (United States)

    Davis, Keith A.

    The Particle Bed Reactor (PBR)-closed Brayton cycle (CBC) provides a 5 to 30 kWe class nuclear power system for surveillance and communication missions during the 1990s and will scale to 100 kWe and beyond for other space missions. The PBR-CBC is technically feasible and within the existing state of the art. The PBR-CBC system is flexible, scaleable, and offers development economy. The ability to operate over a wide power range promotes commonality between missions with similar but not identical power spectra. The PBR-CBC system mass is very competitive with rival nuclear dynamic and static power conversion and systems. The PBR-CBC provides growth potential for the future with even lower specific masses.

  18. Optical signal demultiplexing and conversion in the fullerene–oligothiophene–CdS system

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska, Kornelia [Polish Academy of Science, Institute of Molecular Physics, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Podborska, Agnieszka; Kwolek, Przemysław [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Kim, Tae-Dong; Lee, Kwang-Sup [Department of Advanced Materials, Hannam University, Daejeon 305-811 (Korea, Republic of); Szaciłowski, Konrad, E-mail: szacilow@agh.edu.pl [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Jagiellonian University, Faculty of Chemistry, ul. R. Ingardena 3, 30-60 Kraków (Poland)

    2014-11-15

    Graphical abstract: - Highlights: • Photoelectrochemical photocurrent switching (PEPS) effect in the C{sub 60} derivatives system. • Systems for optical-to-electrical signal conversion. • Fullerene–oligothiophene dyad system as 1:2-demultiplexer. - Abstract: We report the photoelectrochemical photocurrent switching (PEPS) effect in the system based on a C{sub 60} derivatives and nanostructured cadmium sulfide. Rapid and efficient photocurrent switching upon changes of the electrode potential was observed. This process relies on the photocurrent generation by semiconducting particles and interfacial electron transfer reactions governed by the redox chemistry of fullerene derivatives (fullerene–oligothiophene dyads) with molecular oxygen as a final electron acceptor. Surprisingly, fullerene derivatives without thiophene moieties were much less efficient as CdS modifiers. These peculiar photoelectrochemical properties were applied for construction of an optoelectronic logic device.

  19. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  20. Environmental Monitoring Techniques and Equipment related to the installation and operation of Marine Energy Conversion Systems

    International Nuclear Information System (INIS)

    Scanu, Sergio; Carli, Filippo Maria; Piermattei, Viviana; Bonamano, Simone; Paladini de Mendoza, Francesco; Marcelli, Marco; Peviani, Maximo Aurelio; Dampney, Keith; Norris, Jennifer

    2015-01-01

    Results of activities under project Marine Renewables Infrastructure Network for Emerging Energy Technologies (MaRINET) are reported, which led to DEMTE, a database, created on the basis of standardized monitoring of the marine environment during installation, operation and decommissioning of Marine Energy Conversion Systems. Obtained with the consortium partners’ available techniques and equipment, the database shows that such instruments cover all identified marine environmental compartments, despite the lack of underwater vehicles and the reduced skills in using satellite technologies. These weaknesses could be overcome by an accurate planning of equipment, techniques and knowledge sharing. The approach here presented also leads to an effective analysis even in non-marine contexts

  1. Applying systemic functional linguistics to conversations with dementia: the linguistic construction of relationships between participants.

    Science.gov (United States)

    Müller, Nicole; Mok, Zaneta

    2012-02-01

    Social isolation in dementia is a growing concern as the incidence and prevalence of dementing conditions is on the rise in many societies. Positive social interactions, which foster the construction and enactment of positive interpersonal relationships and therefore positive discursive identities, make an important contribution to emotional well-being. In this article, we investigate how two women diagnosed with dementia of the Alzheimer's type use language to relate to each other and two visiting graduate students. We use Systemic Functional Linguistics as an analytical framework, specifically investigating the use of vocatives and naming, and conversational moves and exchanges. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Line filter design of parallel interleaved VSCs for high power wind energy conversion systems

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2015-01-01

    The Voltage Source Converters (VSCs) are often connected in parallel in a Wind Energy Conversion System (WECS) to match the high power rating of the modern wind turbines. The effect of the interleaved carriers on the harmonic performance of the parallel connected VSCs is analyzed in this paper...... limit. In order to achieve the desired filter performance with optimal values of the filter parameters, the use of a LC trap branch with the conventional LCL filter is proposed. The expressions for the resonant frequencies of the proposed line filter are derived and used in the design to selectively...

  3. Recent laser physics results on power balance and frequency conversion with the Phebus laser system

    International Nuclear Information System (INIS)

    Thiell, G.; Paye, J.; Graillot, H.; Mathieu, F.; Boscheron, A.; Reynier, F.; Estraillier, P.; Bruneau, J.L.

    1995-01-01

    The Phebus laser system has been mainly devoted to plasma physics experiments such as implosion and hydrodynamical instability studies since it was completed in 1985. But during the last two years, the three Phebus beamlines (2 main beams and a backlighter beam) are also utilized to perform some laser physics studies in view of the Megajoule laser project. The goal of the laser physics experiments conducted at the Phebus facility in 1994--1995 is to validate some design issues of the Megajoule Laser project concerning namely power balance and frequency conversion

  4. Analog-to-digital conversion of spectrometric data in information-control systems of activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mamonov, E I

    1972-01-01

    Analog-digital conversion (ADC) techniques in nuclear radiation spectrometer channels is a most important link of information control systems in activation analysis. For the development of the ADC of spectrometer channels logico-structural methods of increasing the capacity, procedures for boosting frequency modes and improving the accuracy are promising. Procedures are suggested for increasing the ADC capacity. Insufficient stability and noticeable non-linearity of the spectrometer channel can be corrected at the information processing stage if their regularities are known. Capacity limitations make the development of ADC featuring high stability, capacity and linearity quite urgent.

  5. Integrated automation system for a pilot plant for energy conversion using PEMFCs

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Raceanu, Mircea; Stanciu, Vasile; Stefanescu, Ioan; Enache, Adrian; Lazaro, Pavel Gabriel; Lazaroiu, Gheorghe; Badea, Adrian

    2007-01-01

    Based on Hydrogen and Fuel Cells researches and technological capabilities achieved in the National R and D Programs, ICIT Rm. Valcea built an experimental-demonstrative pilot plant for energy conversion using hydrogen PEMFCs. This pilot plant consists of a fuel processor based on steam methane reforming (SMR) process, a hydrogen purification unit, a PEM fuel cells stack (FCS) and a power electronics unit. The paper deals with the dedicated controlling system that provides automated data acquisition, manual or on-line operational control, gas management, humidification, temperature and flow controls. (authors)

  6. Survey of Historical and Current Site Selection Techniques for the Placement of Small Wind Energy Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    The purpose of this study was to identify and document methods and practices used in siting of wind energy conversion systems (WECS). The study covers the period from the early 1900s to the present day.

  7. Adoption of nitrogen power conversion system for small scale ultra-long cycle fast reactor eliminating intermediate sodium loop

    International Nuclear Information System (INIS)

    Seo, Seok Bin; Seo, Han; Bang, In Cheol

    2016-01-01

    Highlights: • N 2 power conversion system for both safety and thermal performance aspects. • Sensitivity studies of several controlled parameters on N 2 power conversion system. • The elimination of the intermediate loop increased the cycle thermal efficiency. • The elimination of the intermediate loop expects economic advantages. - Abstract: As one of SFRs, the ultra-long cycle fast reactor with a power rating of 100 MW e (UCFR-100) was introduced for a 60-year operation. As an alternative to the traditional steam Rankine cycle for the power conversion system, gas based Brayton cycle has been considered for UCFR-100. Among Supercritical CO 2 (S-CO 2 ), Helium (He), Nitrogen (N 2 ) as candidates for the power conversion system for UCFR-100, an N 2 power conversion system was chosen considering both safety and thermal performance aspects. The elimination of the intermediate sodium loop could be achieved due to the safety and stable characteristics of nitrogen working fluid. In this paper, sensitivity studies with respect to several controlled parameters on N 2 power conversion system were performed to optimize the system. Furthermore, the elimination of the intermediate loop was evaluated with respect to its impact on the thermodynamic performance and other aspects.

  8. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    Directory of Open Access Journals (Sweden)

    Bhavna Jain

    2015-01-01

    Full Text Available Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding and grid connected mode as well. In particular, a proper monitoring and control algorithm is required for transition between the modes. A wavelet based energy function is used for detection of grid disturbances as well as recovery of grid so that transition between the modes is made. To obtain good power quality LCL filter is used to reduce ripples. PLL is used for synchronization whenever mode changes from stand-alone to grid connected. Simulation results from a 10 kW wind energy conversion system are included to show the usefulness of the proposed methods. The control method is tested by generated gate pulses for single phase bridge inverter using field programmable gate array (FPGA.

  9. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system

    Science.gov (United States)

    Zhang, Zecen; Ng, Geok Ing; Hu, Ting; Qiu, Haodong; Guo, Xin; Wang, Wanjun; Rouifed, Mohamed Saïd; Liu, Chongyang; Wang, Hong

    2017-08-01

    A conversion between the electromagnetically induced transparency (EIT) transmission and Fano transmission is theoretically and experimentally demonstrated in an all-pass microring-Bragg grating (APMR-BG) coupled-resonator system. In this work, the coupling between the two resonators (the microring resonator and the Fabry-Perot resonator formed by two Bragg gratings) gives rise to the EIT and Fano transmissions. The resonant status strongly depends on the round-trip attenuation of the microring and the coupling strength. By tuning the coupling strength, the EIT and Fano transmissions can be controlled and converted. The device performance has been theoretically calculated and analyzed with a specially developed numerical model based on the transfer matrix method. The APMR-BG coupled-resonator systems with different gap widths were designed, fabricated, and characterized on a silicon-on-insulator (SOI) platform. The conversion of resonance was experimentally observed and verified. In addition, this on-chip system has the advantage of a small footprint, and the fabrication process is compatible with the planar waveguide fabrication process.

  10. An assessment of dynamic energy conversion systems for terrestrial radioisotope heat sources

    International Nuclear Information System (INIS)

    Thayer, G.R.

    1985-01-01

    The use of dynamic conversion systems to convert to electricity the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source is examined. Brayton Cycle, three Organic Rankine systems (Barber-Nichols/ORMAT, Sundstrand, and TRW concepts), Organic Rankine plus thermoelectrics, and Stirling Engine systems were studied. The systems were ranked for a North Warning System mission using a Los Alamos Multi-Attribute Decision Theory code. Three different heat source designs were used: Case I with a beginning of life (BOL) source temperature of 640 0 C, Case II with a BOL source temperature of 745 0 C, and Case III with a BOL source temperature of 945 0 C. The Stirling Engine system was the top-ranked system for Cases I and II, closely followed by the ORC systems in Case I and ORC and thermoelectrics in Case II. The Brayton-Cycle system was top-ranked for Case III, with the Stirling Engine system a close second

  11. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

  12. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    International Nuclear Information System (INIS)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment

  13. Consideration of ultra-high temperature nuclear heat sources for MHD conversion systems

    International Nuclear Information System (INIS)

    Holman, R.R.; Tobin, J.M.; Young, W.E.

    1975-01-01

    The nuclear technology reactors developed and tested in the Nuclear Engine Rocket Vehicle Application (NERVA) program operated with fuel exit gas temperatures in excess of 2600 K. This experience provided a significant ultra-high temperature technology base and design insight for commercial power applications. Design approaches to accommodate fission product retention and other key prevailing requirements are examined in view of the basic overriding functional requirements, and some interesting reconsiderations are suggested. Predicted overall system performance potentials for a 2000 K MHD conversion system and reactor parameter requirements are compared and related to existing technology status. Needed verification and development efforts are suggested. A reconsideration of basic design approaches is suggested that could open the door for immediate development of ultrahigh temperature nuclear heat sources for advanced energy systems

  14. Three-Port dc-dc Conversion in Light-to-Light Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen

    conversion efficiency under low irradiation conditions. This work is part of a Ph.D. research project to study the feasibility of implementing three-port converter (TPC) topologies in solar powered LED, light-to-light (LtL) systems. After the introduction in Chapter 1, an overview of the state-of-the art...... conventional light sources based on heated filaments (incandescent and halogen) and gas discharge (fluorescent, sodium, etc). The rapid development of this technology makes it possible to replace the conventional technologies towards high brightness LED lighting systems. The combination of these technologies......—solar cells, energy storage elements and LEDs—in a stand-alone solar powered LED system, can provide light where otherwise it would be cumbersome; in rural areas, where cabling can be challenging and expensive, and also in the urban environment, where the cost of digging and construction is very expensive...

  15. FM-AM Conversion Induced by Polarization Mode Dispersion in Fiber Systems

    International Nuclear Information System (INIS)

    Xiao-Dong, Huang; Sheng-Zhi, Zhao; Jian-Jun, Wang; Ming-Zhong, Li; Dang-Peng, Xu; Hong-Huan, Lin; Rui, Zhang; Ying, Deng; Xiao-Min, Zhang

    2010-01-01

    The conversion of the frequency modulated pulse induced from frequency modulation (FM) to amplitude modulation (AM) by the polarization mode dispersion (PMD) is theoretically and experimentally investigated. When there is no polarizer at the output end of a fiber system, the amplitude modulation depth is stable by 8%. Random amplitude modulation is observed when a polarizer is placed at the output end of the fiber system. The observed minimum and maximum modulation depths in our experiment are 5% and 80%, respectively. Simulation results show that the amplitude modulation is stable by 4% induced mainly by group velocity dispersion (GVD) when there is no polarizer, and the amplitude modulation depth displays the random variation character induced by the GVD and PMD. Lastly, a new fiber system scheme is proposed and little amplitude modulation is observed at the top of the output pulse

  16. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...... constraints in both systems. An iterative method is proposed to deal with the nonlinearity in the proposed model. The models of the natural gas and power system are linearized in every iterative step. Simulation results demonstrate the effectiveness of the approach. Applicability of the proposed method...... is tested in the sample case. Finally, the effect of Power to Gas (P2G) on the daily economic dispatch is also investigated....

  17. 120-keV beam direct conversion system for TFTR injectors

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1976-01-01

    Several practical motivations exist for the development of beam direct conversion systems that are compatible with the injection systems of large experiments such as the Tokamak Fusion Test Reactor (TFTR). We present a preliminary design in which we analyze the most acute problems involved in scaling up existing designs and apparatus to fulfill TFTR requirements. Some of the questions addressed are the requirements for electron suppression, gas pumping, compactness, and power densities. A new idea is presented that allows for the handling of higher beam power. The gross savings in the capital cost of injector power supplies for the TFTR will be about $7.2 million, but the net savings will be somewhat less than this. This preliminary design has not yet revealed fundamental limitations with respect to the development of beam energy-recovery systems operating at high levels of current, voltage, and power densities

  18. Archetype-based conversion of EHR content models: pilot experience with a regional EHR system

    Science.gov (United States)

    2009-01-01

    Background Exchange of Electronic Health Record (EHR) data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of representing EHR content models from a regional EHR system as openEHR archetypes and inversely to convert archetypes to the proprietary format. Methods The openEHR EHR Reference Model (RM) and Archetype Model (AM) specifications were used. The template model of the Cambio COSMIC, a regional EHR product from Sweden, was analyzed and compared to the openEHR RM and AM. This study was focused on the convertibility of the EHR semantic models. A semantic mapping between the openEHR RM/AM and the COSMIC template model was produced and used as the basis for developing prototype software that performs automated bi-directional conversion between openEHR archetypes and COSMIC templates. Results Automated bi-directional conversion between openEHR archetype format and COSMIC template format has been achieved. Several archetypes from the openEHR Clinical Knowledge Repository have been imported into COSMIC, preserving most of the structural and terminology related constraints. COSMIC templates from a large regional installation were successfully converted into the openEHR archetype format. The conversion from the COSMIC templates into archetype format preserves nearly all structural and semantic definitions of the original content models. A strategy of gradually adding archetype support to legacy EHR systems was formulated in order to allow sharing of clinical content models defined using different formats. Conclusion The openEHR RM and AM are expressive enough to represent the existing clinical

  19. Archetype-based conversion of EHR content models: pilot experience with a regional EHR system

    Directory of Open Access Journals (Sweden)

    Karlsson Daniel

    2009-07-01

    Full Text Available Abstract Background Exchange of Electronic Health Record (EHR data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of representing EHR content models from a regional EHR system as openEHR archetypes and inversely to convert archetypes to the proprietary format. Methods The openEHR EHR Reference Model (RM and Archetype Model (AM specifications were used. The template model of the Cambio COSMIC, a regional EHR product from Sweden, was analyzed and compared to the openEHR RM and AM. This study was focused on the convertibility of the EHR semantic models. A semantic mapping between the openEHR RM/AM and the COSMIC template model was produced and used as the basis for developing prototype software that performs automated bi-directional conversion between openEHR archetypes and COSMIC templates. Results Automated bi-directional conversion between openEHR archetype format and COSMIC template format has been achieved. Several archetypes from the openEHR Clinical Knowledge Repository have been imported into COSMIC, preserving most of the structural and terminology related constraints. COSMIC templates from a large regional installation were successfully converted into the openEHR archetype format. The conversion from the COSMIC templates into archetype format preserves nearly all structural and semantic definitions of the original content models. A strategy of gradually adding archetype support to legacy EHR systems was formulated in order to allow sharing of clinical content models defined using different formats. Conclusion The openEHR RM and AM are expressive enough to

  20. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    Directory of Open Access Journals (Sweden)

    Leticia Ferreira de Freitas BRIANEZZI

    Full Text Available Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC, water sorption (WS, and water solubility (WSB of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU]. Square-shaped specimens were prepared and assigned into 4 groups (n=5: SB and SU (control groups – no laser irradiation and SB-L and SU-L [SB and SU laser (L – irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5 of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10 were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm, irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2. Results Laser irradiation immediately before photopolymerization increased the DC (% of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3, only the dentin bonding system (DBS was a significant factor (pSU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.

  1. Novel high efficient speed sensorless controller for maximum power extraction from wind energy conversion systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel sensorless MPPT technique without drawbacks of other sensor/sensorless methods. • Tracking the actual MPP of WECSs, no tracking the MPP of their wind turbines. • Actually extracting the highest output power from WECSs. • Novel MPPT technique having the MPPT efficiency more than 98.5% for WECSs. • Novel MPPT technique having short convergence time for WECSs. - Abstract: In this study, a novel high accurate sensorless maximum power point tracking (MPPT) method is proposed. The technique tracks the actual maximum power point of a wind energy conversion system (WECS) at which maximum output power is extracted from the system, not the maximum power point of its wind turbine at which maximum mechanical power is obtained from the turbine, so it actually extracts the highest output power from the system. The technique only uses input voltage and current of the converter used in the system, and neither needs any speed sensors (anemometer and tachometer) nor has the drawbacks of other sensor/sensorless based MPPT methods. The technique has been implemented as a MPPT controller by constructing a WECS. Theoretical results, the technique performance, and its advantages are validated by presenting real experimental results. The real static-dynamic response of the MPPT controller is experimentally obtained that verifies the proposed MPPT technique high accurately extracts the highest instant power from wind energy conversion systems with the MPPT efficiency of more than 98.5% and a short convergence time that is only 25 s for the constructed system having a total inertia and friction coefficient of 3.93 kg m 2 and 0.014 N m s, respectively.

  2. Continuous mercury monitors conditioning/conversion systems : what we have learned

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, D.L.; Dunham, G.E.; Thompson, J.S. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

    2006-07-01

    The challenges of continuous mercury monitoring (CMM) in flue gas were discussed with reference to conditioning/conversion systems where a sample of gas of an unknown composition is conditioned to elemental mercury. Flue gas composition varies greatly depending on coal type and plant configuration. The widely used wet-chemistry systems remove interfering gas constituents by bubbling the sample gas through reactive solutions. Some concerns with the wet systems are the amount of chemicals used and the volume of the waste generated; capture of CO{sub 2} which affects the sample volume; mercury hang-up; condensation of flue gas constituents; and, potential for unidentified chemical reactions. The advantages of dry systems were discussed, such as the ability to convert all of the mercury present in the flue gas to elemental mercury. Some of the main concerns with dry systems are that some systems will require a correction for moisture, which means installing a moisture monitor. Dry systems can also be prone to mercury hang-up and calibration of some of the dilution systems remains a concern. The systems can also be susceptible a significant decrease in catalyst life. figs.

  3. R and D on the power conversion system for gas turbine high temperature reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Takada, Shoji; Yan Xing; Kosugiyama, Shinichi; Katanishi, Shoji; Kunitomi, Kazuhiko

    2004-01-01

    JAERI is conducting R and D on the power conversion system of the GTHTR300 plant, in parallel with plant design work. The design of the power conversion system is based on a regenerative, non-intercooled, closed Brayton cycle with helium gas as the working fluid. A single-shaft, axial-flow turbo-compressor and a directly coupled electric generator run on magnetic bearings. Major R and D issues for the power conversion system are aerodynamic performance of the helium gas compressor, high load capacity magnetic bearings and performance of magnetic bearing supported rotor, and operability and controllability of the closed-cycle gas turbine system. Three test plans were set up to address theses issues, aiming at verifying the design of the GTHTR300 power conversion system and establishing key technologies of a closed-cycle helium gas turbine system. The compressor aerodynamic performance test is aiming at verifying the aerodynamic performance and design method of the helium compressor. A 1/3-scale, four-stage compressor test model and a helium gas loop were designed and fabricated. The model was designed to simulate the repeating stage flow, and at the same time have satisfactorily high machining precision, Reynolds number and measurement accuracy. The helium gas operating pressure is varied to investigate the effects of the Reynolds number on the efficiency and surge margin. Two sets of blades were fabricated to evaluate the effects of the end-wall over-camber angle. Test results will provide the basis for further improvement in the GTHTR300 compressor design. The magnetic bearing development test is aiming at developing the technology of the magnetic bearing supported rotor system. The test rig composed of 1/3-scale turbo-compressor and generator rotor models that are connected together by a flexible coupling. Each rotor models are supported by two radial magnetic bearings with a high load capacity that is about 1/10 of the GTHTR300 design. The rotor models were

  4. Preliminary Study of Printed Circuit Heat Exchanger (PCHE) for various power conversion systems for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jinsu; Baik, Seungjoon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The steam-Rankine cycle was the most widely used power conversion system for a nuclear power plant. The size of the heat exchanger is important for the modulation. Such a challenge was conducted by Kang et al. They change the steam generator type for the SMART from helical type heat exchanger to Printed Circuit Heat Exchanger (PCHE). Recently, there has been a growing interest in the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle as the most promising power conversion system. The reason is high efficiency with simple layout and compact power plant due to small turbomachinery and compact heat exchanger technology. That is why the SCO{sub 2} Brayton cycle can enhance the existing advantages of Small Modular Reactor (SMR) like SMART, such as reduction in size, capital cost, and construction period. Thermal hydraulic and geometric parameters of a PCHE for the S-CO{sub 2} power cycle coupled to SMART. The results show that the water - CO{sub 2} printed circuit heat exchanger size is smaller than printed circuit steam generator for the superheated steam Rankine cycle. This results show the potential benefit of using the S-CO-2 Brayton power cycle to a water-cooled small modular reactor.

  5. Adaptability of Brayton cycle conversion systems to fast, epithermal and thermal spectrum space nuclear reactors

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1988-01-01

    The two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) are carrying out joint preliminary studies on space nuclear power systems for future ARIANE 5 launch vehicle applications. The Brayton cycle is the reference conversion system, whether the heat source is a liquid metal-cooled (NaK, Na or Li) reactor or a gas-cooled direct cycle concept. The search for an adequate utilization of this energy conversion means has prompted additional evaluations featuring the definition of satisfactory cycle conditions for these various kinds of reactor concepts. In addition to firstly studied fast and epithermal spectrum ones, thermal spectrum reactors can offer an opportunity of bringing out some distinctive features of the Brayton cycle, in particular for the temperature conditioning of the efficient metal hydrides (ZrH, Li/sub 7/H) moderators. One of the purposes of the paper is to confirm the potential of long lifetime ZrH moderated reactors associated with a gas cycle and to assess the thermodynamical consequences for both Nak(Na)-cooled or gas-cooled nuclear heat sources. This investigation is complemented by the definition of appropriate reactor arrangements which could be presented on a further occasion

  6. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    Science.gov (United States)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  7. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator

    Directory of Open Access Journals (Sweden)

    Naggar H. Saad

    2016-05-01

    Full Text Available The main challenges of wind energy conversion systems (WECS are to maximize the energy capture from the wind and injecting reactive power during the fault. This paper presents a current controlled matrix converter to interface Permanent Magnet Synchronous Generators (PMSG based WECS with the grid. To achieve fast dynamic response with reduced current ripples, a hysteresis current control is utilized. The proposed control system decouples the active and reactive components of the PMSG current to extract the maximum power from the wind at a given wind velocity and to inject reactive power to the grid. Reactive power injection during the fault satisfying the grid-codes requirement. The proposed WECS has been modeled and simulated using PSCAD/EMTDC software package.

  8. Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor

    International Nuclear Information System (INIS)

    Sager, G.T.; Wong, C.P.C.; Kapich, D.D.; McDonald, C.F.; Schleicher, R.W.

    1993-11-01

    The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankie and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed

  9. Comparative study of energy conversion system dedicated to a small wind turbine

    International Nuclear Information System (INIS)

    Mirecki, A.

    2005-01-01

    This study presents a comparison of architectures and strategies of energy management dedicated to VAWT turbines such as Savonius. A Maximum Power Point Tracking must be implemented in order to optimize the energetic behavior. A torque or a speed control, or an indirect control of the DC bus current is possible. In the fact that the wind turbine characteristic is unknown, an operational research based on fuzzy logic is proposed. Aiming to minimize the cost of the static conversion structure, simple structures (diode bridge inverter, associated with DC-DC chopper) are analyzed and compared with a system based on a PWM Voltage Source Inverter. A test bench has been realized in the meantime as a system simulation. Comparisons of the provided energy are made for different wind speeds allowing to evaluate the performance of each structure and of the control strategies. (author)

  10. 5 CFR 9701.373 - Conversion of employees to the DHS pay system.

    Science.gov (United States)

    2010-01-01

    ... under § 9701.333). (b) When an employee receiving a special rate under 5 U.S.C. 5305 before conversion... locality or special rate supplement, the conversion will not be considered as resulting in a reduction in... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Conversion of employees to the DHS pay...

  11. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  12. Supercritical CO2 Brayton Cycle Energy Conversion System Coupled with SFR

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2008-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For a system development, a computer code was developed to calculate heat balance of normal operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Computer codes were developed to analysis for the S-CO 2 turbomachinery. Based on the design codes, the design parameters were prepared to configure the KALIMER-600 S-CO 2 turbomachinery models. A one-dimensional analysis computer code was developed to evaluate the performance of the previous PCHE heat exchangers and a design data for the typical type PCHE was produced. In parallel with the PCHE-type heat exchanger design, an airfoil shape fin PCHE heat exchanger was newly designed. The new design concept was evaluated by three-dimensional CFD analyses. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. The MMS-LMR code was also developed to analyze the transient phenomena in a SFR with a supercritical CO 2 Brayton cycle to develop the control logic. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na-CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na-CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  13. Controlling system for an experimental demonstration plant for energy conversion using PEMFCs

    International Nuclear Information System (INIS)

    Culcer, Mihail; Iliescu, Mariana; Stefanescu, Ioan; Raceanu, Mircea; Enache, Adrian; Patularu, Laurentiu

    2006-01-01

    Full text: In the last decades of the previous century, due to global environmental problems, energy security and supply issues, many studies were conducted to investigate the uses for hydrogen energy and facilitate its penetration as an energy carrier. Subsequently, many industries worldwide began developing and producing hydrogen, hydrogen-powered vehicles, hydrogen fuel cells, and other hydrogen-based technologies. In view of the substantial long-term public and private benefits arising from hydrogen and fuel cells, the European Union and national governments throughout Europe, including the Romanian one, are working towards developing a consistent policy framework preparing the transition to a hydrogen based economy. ICIT Rm Valcea developed a research program on energy conversion using fuel cells, a project supported by the Romanian Ministry of Education and Research within the National R and D Program. An experimental demonstration pilot plant of energy conversion using PEMFCs and hydrogen producing via steam methane reforming (SMR) was achieved in order to investigate the development of small-scale SMR technologies and to allow testing and developing of specific components. The paper deals with the dedicated controlling system that provides automated data acquisition, manual or 'on line' operational control, gas management, humidification, temperature and flow controls of the pilot plant. (authors)

  14. Inertial confinement fusion reaction chamber and power conversion system study. Final report

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Bourque, R.F.

    1985-10-01

    This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO 2 granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO 2 granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs

  15. Development of polarized beam conversion system for the linear collider complex

    International Nuclear Information System (INIS)

    Viilleval'd, G.S.; Vsevolozhskaya, T.A.; Karasyuk, V.N.; Sil'vestrov, G.I.; Chernyakin, A.D.

    1983-01-01

    Results of development of the polarized beam conversion system for the 150 GeV linear collider aiming at the linear collider operation with a high repetition rate (approximately 10 Hz), are presented. It is shown, that the conversion can be realized by means of ondulator radiation. Structurally, the spiral ondulator is two identical solenoids, inserted in each other in such a way, that their winding turns are alternating in the direction along the axis and they are supplied by countercurrents. The main parameters of the ondulator are as follows : winding pitch -0.7 cm, the ondulator length 150 m. For generation a field of the intensity 5 kOe it has been suggested that solenoids should be supplied by sinusoidal pulse current of duration approximately 200 μs. It is shown, that the introduction of iron into solenoid increases the efficiency by a factor of 2.1 and 2.7 in the ondulator with iron only in interloop gaps and with the addition of iron locking magnetic counterflow

  16. Observation of changing of the internal conversion coefficient under Moessbauer effect at magnetic transition in Rh-Fe system

    International Nuclear Information System (INIS)

    Ruskov, T.

    1998-01-01

    The magnetic disorder-order transition in the Rh-Fe alloy is studied by conversion electron Moessbauer spectroscopy. The drastic increase of the area under the Moessbauer spectrum at the transition from the paramagnetic to the magnetic state could be explained by diminishing the internal conversion coefficient. Thus our experimental results directly confirm the theory of the collective effect in the system of radiating developed by Yukalov

  17. Accident analysis of heat pipe cooled and AMTEC conversion space reactor system

    International Nuclear Information System (INIS)

    Yuan, Yuan; Shan, Jianqiang; Zhang, Bin; Gou, Junli; Bo, Zhang; Lu, Tianyu; Ge, Li; Yang, Zijiang

    2016-01-01

    Highlights: • A transient analysis code TAPIRS for HPS has been developed. • Three typical accidents are analyzed using TAPIRS. • The reactor system has the self-stabilization ability under accident conditions. - Abstract: A space power with high power density, light weight, low cost and high reliability is of crucial importance to future exploration of deep space. Space reactor is an excellent candidate because of its unique characteristics of high specific power, low cost, strong environment adaptability and so on. Among all types of space reactors, heat pipe cooled space reactor, which adopts the passive heat pipe (HP) as core cooling component, is considered as one of the most promising choices and is widely studied all over the world. This paper develops a transient analysis code (TAPIRS) for heat pipe cooled space reactor power system (HPS) based on point reactor kinetics model, lumped parameter core heat transfer model, combined HP model (self-diffusion model, flat-front startup model and network model), energy conversion model of Alkali Metal Thermal-to-Electric Conversion units (AMTEC), and HP radiator model. Three typical accidents, i.e., control drum failure, AMTEC failure and partial loss of the heat transfer area of radiator are then analyzed using TAPIRS. By comparing the simulation results of the models and steady state with those in the references, the rationality of the models and the solution method is validated. The results show the following. (1) After the failure of one set of control drums, the reactor power finally reaches a stable value after two local peaks under the temperature feedback. The fuel temperature rises rapidly, however it is still under safe limit. (2) The fuel temperature is below a safe limit under the AMTEC failure and partial loss of the heat transfer area of radiator. This demonstrates the rationality of the system design and the potential applicability of the TAPIRS code for the future engineering application of

  18. Materials considerations for molten salt accelerator-based plutonium conversion systems

    International Nuclear Information System (INIS)

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-03-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF 2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  19. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad

    2018-03-22

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  20. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Oh, Seung Jin; Ng, Kim Choon

    2018-01-01

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  1. Materials considerations for molten salt accelerator-based plutonium conversion systems

    International Nuclear Information System (INIS)

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-02-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF 2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  2. A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-05-01

    Full Text Available This paper proposes a novel optimal current given (OCG maximum power point tracking (MPPT control strategy based on the theory of power feedback and hill climb searching (HCS for a permanent magnet direct drive wind energy conversion system (WECS. The presented strategy not only has the advantages of not needing the wind speed and wind turbine characteristics of the traditional HCS method, but it also improves the stability and accuracy of MPPT by estimating the exact loss torque. The OCG MPPT control strategy is first carried out by simulation, then an experimental platform based on the dSPACE1103 controller is built and a 5.5 kW permanent magnet synchronous generator (PMSG is tested. Furthermore, the proposed method is compared experimentally with the traditional optimum tip speed ratio (TSR MPPT control. The experiments verify the effectiveness of the proposed OCG MPPT strategy and demonstrate its better performance than the traditional TSR MPPT control.

  3. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Zaragoza, Jordi; Pou, Josep; Arias, Antoni [Electronic Engineering Dept., Technical University of Catalonia, Campus Terrassa, C. Colom 1, 08222 Terrassa (Spain); Spiteri, Cyril [Department of Industrial Electrical Power Conversion, University of Malta, Faculty of Engineering, Msida (Malta); Robles, Eider; Ceballos, Salvador [Energy Unit, Robotiker-Tecnalia Technology Corporation, Zamudio, Basque Country (Spain)

    2011-05-15

    This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype. (author)

  4. Clean energy systems in the subsurface. Production, storage and conversion. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhengmeng Michael; Were, Patrick (eds.) [Clausthal Univ. of Technology, Goslar (Germany). Energie-Forschungszentrum Niedersachsen (EFZN); Xie, Heping [Sichuan Univ., Chengdu (China)

    2013-04-01

    Recent research on Integrated Energy and Environmental Utilization of Deep Underground Space. Results of the 3{sup rd} Sino-German Conference ''Underground Storage of CO{sub 2} and Energy'', held at Goslar, Germany, 21-23 May 2013. Researchers and professionals from academia and industry discuss the future of deep underground space technologies for an integrated energy and environmental utilization. Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group ''Underground Storage of CO{sub 2} and Energy'', is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3{sup rd} Sino-German conference on the theme ''Clean Energy Systems in the Subsurface: Production, Storage and Conversion''.

  5. Zeolite synthesis from the pyrrolidine containing system and their catalytic properties in the methanol conversion reaction

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kunio; Kiyozumi, Yoshimichi; Shin, Shigemitsu; Ogawa, Kiyoshi; Yamazaki, Yasuyoshi; Watanabe, Hideo

    1987-12-18

    Systhesis of zeolite from a system containing cheaper pyrrolidine as a crystallization regulator than quaternary ammonium ion was carried out and the methanol conversion reaction was studied over the systhesized zeolite to get C/sub 2/ and C/sub 3/ olefins. Hydrous gels were prepared by adding and agitating pyrrolidine, water glass and sulfuric acid to aluminum sulfate solution; and aluminum nitrate, colloidal silica and pyrrolidine to NaOH solution. Five zeolite, that is, ZSM-5, ZSM-35, ZSM-39, ZSM-48 and KZ-1 were synthesized by changing gel components. X-ray powder diffraction, BET specific surface areas, micropore diameters, micropore volumes, oxygen contents by scanning electron photomicrographs and infra-red spectra were examined. The organic base in hydrous gels influenced greatly on the zeolite composition and structure. The ZSM-5 zeolite exhibited the superior performance as to a high selectivity of light olefins over the target of development. (12 figs, 1 tab, 20 refs)

  6. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    Science.gov (United States)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  7. Conversations with the community: the Methodist Hospital System's experience with social media.

    Science.gov (United States)

    Angelle, Denny; Rose, Clare L

    2011-01-01

    The Methodist Hospital System has maintained a social media presence on Facebook, Twitter, and YouTube since 2009. After initial unofficial excursions into the world of social media, we discovered that social media can be a useful tool to extend a conversation with our patients and the community at large and share our hospital's culture with a larger base of like-minded people. But with this new power comes a heightened responsibility--platforms that can potentially reach millions of viewers and readers also provide a potential for misuse that can jeopardize patient privacy and place hospitals at risk. Because of their unique restrictions, even hospitals that use the tools regularly have much left to learn about social media. With constant monitoring and stewardship and a commitment to educating staff, hospitals can effectively use social media tools for marketing and education.

  8. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically-Coupled Configuration

    Science.gov (United States)

    Geng, S. M.; Briggs, M. H.; Hervol, D. S.

    A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  9. Financial problems facing the manufacturers of small wind energy conversion systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bolle, T G

    1979-11-01

    The financial barriers faced by the manufacturers of small wind energy conversion systems (SWECS) are assessed and found to be similar to those faced by other start up businesses. However, these problems are found to be aggravated by the high expectations for accelerated SWECS industry growth in the face of moderate government support and lack of investment capital. The underlying conditions of limited SWECS entrepreneur business experience, the highly competitive venture capital market, the inability of existing financial institutions to aid infant busineses and public unawareness of SWECS are reviewed. Specific manufacturer-oriented recommendations and federal, state and regulatory policy-oriented recommendations are made. In addition, the dynamics of the SWECS commercialization process are assessed and the variety of financial institutions playing a role in this process is detailed. Issues related to inflation, tax policy, regulation and federal R and D procurement policies are analyzed.

  10. Utilization of salt ammoniacates in fluidized beds in energy conversion thermochemical systems

    International Nuclear Information System (INIS)

    Romero, Jesus

    1984-01-01

    This research thesis notably reports the design and development of a thermochemical storage device involving equilibria of thermal decomposition of ammoniacates of strontium chlorides and calcium chloride in fluidized beds. The experimental study of this device allowed operating conditions and the most important concomitant effects of fluidization to be highlighted. The measured thermal exchange coefficient is about twenty times the measured value in equivalent devices using fixed beds. An irreversibility of the operation has been noticed, and seems to be associated with the irreversible change of grain size of solids. The author also reports a study of the properties of ammoniacates of metallic salts, and of the influence of fluidization on the performance of energy conversion thermochemical systems [fr

  11. Mathematical programming models for the economic design and assessment of wind energy conversion systems

    Science.gov (United States)

    Reinert, K. A.

    The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of $1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.

  12. NLCC controller for SEPIC-based micro-wind energy conversion system

    Science.gov (United States)

    Justin Nayagam, Brintha Jane; Sathi, Rama Reddy; Olimuthu, Divya

    2017-04-01

    The growth of the power industry is gaining greater momentum as the usage of the non-conventional energy sources that include fuel, solar, and wind energies, increases. Wind energy conversion systems (WECSs) are gaining more popularity and are expected to be able to control the power at the output. This paper describes the current control (CC), non-linear carrier charge control (NLCCC), and fuzzy logic control (FLC) applied to the single-ended primary inductor converter (SEPIC)-based WECS. The current controller has an inherent overcurrent protection with better line noise rejection. The pulses for the switch of the SEPIC are obtained by comparing the current flowing through it with the virtual current reference. FLC is also investigated for the micro-wind energy conversion system (μWECS), since it improves the damping characteristics of WECS over a wide range of operating points. This cannot attain the unity power factor rectification. In this paper, NLCCC is proposed for high-power factor rectifier-based SEPIC in continuous conduction mode (CCM) for μWECS. The proposed converter provides an output voltage with low input current ripple due to the presence of the inductor at the input side. By comparing the signal proportional to the integral of switch current with a periodic non-linear carrier wave, the duty ratio of the converter switch is determined for the NLCC controller. By selecting the shape of the periodic non-linear carrier wave the input-line current can be made to follow the input-line voltage. This work employs a parabolic carrier waveform generator. The output voltage is regulated for changes in the wind speed. The results obtained prove the effectiveness of the NLCC controller in improving the power factor.

  13. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  14. Advances in defining a closed brayton conversion system for future ARIANE 5 space nuclear power applications

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1986-06-01

    The present European ARIANE space program will expand into the large ARIANE 5 launch vehicle from 1995. It is assumed that important associated missions would require the generation of 200 kWe or more in space during several years at the very beginning of the next century. It is the reason why, in 1983, the French C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) have initiated preliminary studies of a space nuclear power system. The currently selected conversion system is a closed Brayton cycle. Reasons for this choice are given: high efficiency of a dynamic system; monophasic, inert working fluid; extensive turbomachinery experience, etc... A key aspect of the project is the adaptation to the heat rejection conditions, namely to the radiator geometry which depends upon the dimensions of the ARIANE 5 spacecraft. In addition to usual concepts already studied for space applications, another cycle arrangement is being investigated which could offer satisfactory compromises among many considerations, increase the efficiency of the system and make it more attractive as far as the specific mass (kg/kWe), the specific radiator area (m 2 /kWe) and various technological aspects are concerned. Comparative details are presented

  15. Maximum power tracking in WECS (Wind energy conversion systems) via numerical and stochastic approaches

    International Nuclear Information System (INIS)

    Elnaggar, M.; Abdel Fattah, H.A.; Elshafei, A.L.

    2014-01-01

    This paper presents a complete design of a two-level control system to capture maximum power in wind energy conversion systems. The upper level of the proposed control system adopts a modified line search optimization algorithm to determine a setpoint for the wind turbine speed. The calculated speed setpoint corresponds to the maximum power point at given operating conditions. The speed setpoint is fed to a generalized predictive controller at the lower level of the control system. A different formulation, that treats the aerodynamic torque as a disturbance, is postulated to derive the control law. The objective is to accurately track the setpoint while keeping the control action free from unacceptably fast or frequent variations. Simulation results based on a realistic model of a 1.5 MW wind turbine confirm the superiority of the proposed control scheme to the conventional ones. - Highlights: • The structure of a MPPT (maximum power point tracking) scheme is presented. • The scheme is divided into the optimization algorithm and the tracking controller. • The optimization algorithm is based on an online line search numerical algorithm. • The tracking controller is treating the aerodynamics torque as a loop disturbance. • The control technique is simulated with stochastic wind speed by Simulink and FAST

  16. A Power Supply System with ZVS and Current-Doubler Features for Hybrid Renewable Energy Conversion

    Directory of Open Access Journals (Sweden)

    Jye-Chau Su

    2013-09-01

    Full Text Available In this paper, a power supply system for hybrid renewable energy conversion is proposed, which can process PV (photovoltaic power and wind-turbine energy simultaneously for step-down voltage and high current applications. It is a dual-input converter and mainly contains a PV energy source, a wind turbine energy source, a zero-voltage-switching (ZVS forward converter, and a current-doubler rectifier. The proposed power supply system has the following advantages: (1 PV-arrays and wind-energy sources can alternatively deliver power to the load during climate or season alteration; (2 maximum power point tracking (MPPT can be accomplished for both different kinds of renewable-energy sources; (3 ZVS and synchronous rectification techniques for the active switches of the forward converter are embedded so as to reduce switching and conducting losses; and (4 electricity isolation is naturally obtained. To achieve an optimally dynamic response and to increase control flexibility, a digital signal processor (DSP is investigated and presented to implement MPPT algorithm and power regulating scheme. Finally, a 240 W prototype power supply system with ZVS and current-doubler features to deal with PV power and wind energy is built and implemented. Experimental results are presented to verify the performance and the feasibility of the proposed power supply system.

  17. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  18. Comparative study of energy conversion system dedicated to a small wind turbine; Etude comparative de chaines de conversion d'energie dediees a une eolienne de petite puissance

    Energy Technology Data Exchange (ETDEWEB)

    Mirecki, A

    2005-07-01

    This study presents a comparison of architectures and strategies of energy management dedicated to VAWT turbines such as Savonius. A Maximum Power Point Tracking must be implemented in order to optimize the energetic behavior. A torque or a speed control, or an indirect control of the DC bus current is possible. In the fact that the wind turbine characteristic is unknown, an operational research based on fuzzy logic is proposed. Aiming to minimize the cost of the static conversion structure, simple structures (diode bridge inverter, associated with DC-DC chopper) are analyzed and compared with a system based on a PWM Voltage Source Inverter. A test bench has been realized in the meantime as a system simulation. Comparisons of the provided energy are made for different wind speeds allowing to evaluate the performance of each structure and of the control strategies. (author)

  19. Design study on evaluation for power conversion system concepts in high temperature gas cooled reactor with gas turbine

    International Nuclear Information System (INIS)

    Minatsuki, Isao; Mizokami, Yorikata

    2007-01-01

    The design studies on High Temperature Gas Cooled Reactor with Gas Turbine (HTGR-GT) have been performed, which were mainly promoted by Japan Atomic Energy Agency (JAEA) and supported by fabricators in Japan. HTGR-GT plant feature is almost determined by selection of power conversion system concepts. Therefore, plant design philosophy is observed characteristically in selection of them. This paper describes the evaluation and analysis of the essential concepts of the HTGR-GT power conversion system through the investigations based on our experiences and engineering knowledge as a fabricator. As a result, the following concepts were evaluated that have advantages against other competitive one, such as the horizontal turbo machine rotor, the turbo machine in an individual vessel, the turbo machine with single shaft, the generator inside the power conversion vessel, and the power conversion system cycle with an intercooler. The results of the study can contribute as reference data when the concepts will be selected. Furthermore, we addressed reasonableness about the concept selection of the Gas Turbine High Temperature Reactor GTHTR300 power conversion system, which has been promoted by JAEA. As a conclusion, we recognized the GTHTR300 would be one of the most promising concepts for commercialization in near future. (author)

  20. An optimized power conversion system concept of the integral, inherently-safe light water reactor

    International Nuclear Information System (INIS)

    Memmott, Matthew J.; Wilding, Paul R.; Petrovic, Bojan

    2017-01-01

    Highlights: • Three power conversion systems (PCS) for the I"2S-LWR are presented. • An optimization analyses was performed to evaluate these PCS alternatives. • The ideal PCS consists of 5 turbines, and obtains an overall efficiency of 35.7%. - Abstract: The integral, inherently safe light water reactor (I"2S-LWR) has been developed to significantly enhance passive safety capabilities while maintaining cost competitiveness relative to the current light water reactor (LWR) fleet. The compact heat exchangers of the I"2S-LWR preclude boiling of the secondary fluid, which decreases the probability of heat exchanger failure, but this requires the addition of a flash drum, which negatively affects the overall plant thermodynamic efficiency. A state of the art Rankine cycle is proposed for the I"2S-LWR to increase the thermodynamic efficiency by utilizing a flash drum with optimized operational parameters. In presenting this option for power conversion in the I"2S-LWR power plant, the key metric used in rating the performance is the overall net thermodynamic efficiency of the cycle. In evaluating the flash-Rankine cycle, three basic industrial concepts are evaluated, one without an intermediate pressure turbine, one with an intermediate turbine and one reheat stream, and one with an intermediate turbine and two reheat streams. For each configuration, a single-path multi-variable optimization is undertaken to maximize the thermal efficiency. The third configuration with an intermediate turbine and 2 reheat streams is the most effective concept, with an optimized efficiency of 35.7%.

  1. Systemic Lupus Erythematosus and Sjögren's Syndrome Complicated by Conversion Disorder: a Case Report.

    Science.gov (United States)

    Nakamura, Misa; Tanaka, Seiji; Inoue, Tadashi; Maeda, Yasuto; Okumiya, Kiyohito; Esaki, Takuya; Shimomura, G O; Masunaga, Kenji; Nagamitsu, Shinichiro; Yamashita, Yushiro

    2018-05-21

    Conversion disorder (CD) is sometimes accompanied by motor and sensory impairments, such as muscle weakness, paralysis, sensory hypersensitivity, and sensory loss. Sjögren's syndrome (SS) complicates 5-10% of cases of systemic lupus erythematosus (SLE). Patients with SS or SLE present with various neurological symptoms and psychiatric manifestations. When neurological symptoms are present, it is important to distinguish whether the symptoms are caused by a neurological or a mental disorder because the former requires early intensive intervention, such as methylprednisolone pulse therapy (MPT), whereas psychotherapy or antidepressant drugs are recommended for mental disorders. We noticed SS- and SLE-like symptoms just after a diagnosis of idiopathic thrombocytopenic purpura in a 14-year-old girl. At approximately the same time, paralysis started in her lower limbs and subsequently spread to her upper limbs. An examination for neurological symptoms revealed no abnormalities. Because of the conversion reaction between her neurological symptoms and her disease state, CD was suspected as the etiology of her physical symptoms. Nevertheless, because of the progressive nature of the neurological symptoms, MPT was initiated with concurrent administration of intravenous immunoglobulin, but it failed to achieve a good outcome. The patient's symptoms eventually improved after she underwent psychotherapy treatment for a few months. Because early diagnosis of the cause of neurological symptoms accompanying SS and SLE is difficult, it may be necessary to combine the two lines of treatment in the early stages. However, when a mental disorder is suspected, psychotherapy should be started early to minimize the use of unnecessary neurological treatment.

  2. Hybrid Intelligent Control Method to Improve the Frequency Support Capability of Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Shin Young Heo

    2015-10-01

    Full Text Available This paper presents a hybrid intelligent control method that enables frequency support control for permanent magnet synchronous generators (PMSGs wind turbines. The proposed method for a wind energy conversion system (WECS is designed to have PMSG modeling and full-scale back-to-back insulated-gate bipolar transistor (IGBT converters comprising the machine and grid side. The controller of the machine side converter (MSC and the grid side converter (GSC are designed to achieve maximum power point tracking (MPPT based on an improved hill climb searching (IHCS control algorithm and de-loaded (DL operation to obtain a power margin. Along with this comprehensive control of maximum power tracking mode based on the IHCS, a method for kinetic energy (KE discharge control of the supporting primary frequency control scheme with DL operation is developed to regulate the short-term frequency response and maintain reliable operation of the power system. The effectiveness of the hybrid intelligent control method is verified by a numerical simulation in PSCAD/EMTDC. Simulation results show that the proposed approach can improve the frequency regulation capability in the power system.

  3. Conceptual design of free-piston Stirling conversion system for solar power units

    Science.gov (United States)

    Loktionov, Iu. V.

    A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.

  4. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  5. Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System

    Science.gov (United States)

    Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.

    2008-01-01

    Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.

  6. Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor

    International Nuclear Information System (INIS)

    Halimi, Burhanuddin; Suh, Kune Y.

    2012-01-01

    Highlights: ► Computational analysis of S-CO 2 Brayton cycle power conversion system. ► Validation of numerical model with literature data. ► Recompression S-CO 2 Brayton cycle thermal efficiency of 42.44%. ► Reheating concept to enhance the cycle thermal efficiency. ► Higher efficiency achieved by the proposed concept. - Abstract: The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO 2 ) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO 2 is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.

  7. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    Science.gov (United States)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).

  8. A Condensed Introduction to the Doubly Fed Induction Generator Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Julius Mwaniki

    2017-01-01

    Full Text Available The increase in wind power penetration, at 456 GW as of June 2016, has resulted in more stringent grid codes which specify that the wind energy conversion systems (WECS must remain connected to the system during and after a grid fault and, furthermore, must offer grid support by providing reactive currents. The doubly fed induction generator (DFIG WECS is a well-proven technology, having been in use in wind power generation for many years and having a large world market share due to its many merits. Newer technologies such as the direct drive gearless permanent magnet synchronous generator have come up to challenge its market share, but the large number of installed machines ensures that it remains of interest in the wind industry. This paper presents a concise introduction of the DFIG WECS covering its construction, operation, merits, demerits, modelling, control types, levels and strategies, faults and their proposed solutions, and, finally, simulation. Qualities for the optimal control strategy are then proposed. The paper is intended to cover major issues related to the DFIG WECS that are a must for an overview of the system and hence serve as an introduction especially for new entrants into this area of study.

  9. The influence of external source intensity in accelerator/target/blanket system on conversion ratio and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kochurov, B.P. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    1995-10-01

    The analysis of neutron balance relation for a subcritical system with external source shows that a high ratio of neutron utilization (conversion ratio, breeding ratio) much exceeding similar values for nuclear reactors (both thermal or fast spectrum) is reachable in accelerator/target/blanket system with high external neutron source intensity. An accelerator/target/blanket systems with thermal power in blanket about 1850 Mwt and operating during 30 years have been investigated. Continual feed up by plutonium (fissile material) and Tc-99 (transmuted material) was assumed. Accelerator beam intensity differed 6.3 times (16 mA - Case 1, and 100 mA-Case 2). Conversion ratio (CR) was defined as the ratio of Tc-99 nuclei transmuted to the number of Pu nuclei consumed. High value of conversion ratio considerably exceeding 1 (CR=1.66) was obtained in the system with high source intensity as compared with low source system (CR=0.77). Net output of electric power of high source intensity system is about twice lower due to consumption of electric power for accelerator feed up. The loss of energy for Tc-99 transmutation is estimated as 40 Mev(el)/nuclei. Yet high conversion ratio (or breeding ratio) achievable in electronuclear installations with high intensity of external source can effectively be used to close fuel cycle (including incineration of wastes) or to develop growing nuclear power production system.

  10. 5 CFR 9901.372 - Conversion or movement out of NSPS pay system.

    Science.gov (United States)

    2010-01-01

    ... worksite, and pay as of the day immediately before the date of conversion or movement out of NSPS. An... employee's pay band. If the employee's adjusted salary equals or exceeds the step 4 rate of the second... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Conversion or movement out of NSPS pay...

  11. Adequacy assessment of composite generation and transmission systems incorporating wind energy conversion systems

    Science.gov (United States)

    Gao, Yi

    The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important

  12. Modeling and Coordinated Control Strategy of Large Scale Grid-Connected Wind/Photovoltaic/Energy Storage Hybrid Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Lingguo Kong

    2015-01-01

    Full Text Available An AC-linked large scale wind/photovoltaic (PV/energy storage (ES hybrid energy conversion system for grid-connected application was proposed in this paper. Wind energy conversion system (WECS and PV generation system are the primary power sources of the hybrid system. The ES system, including battery and fuel cell (FC, is used as a backup and a power regulation unit to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic resources. Static synchronous compensator (STATCOM is employed to support the AC-linked bus voltage and improve low voltage ride through (LVRT capability of the proposed system. An overall power coordinated control strategy is designed to manage real-power and reactive-power flows among the different energy sources, the storage unit, and the STATCOM system in the hybrid system. A simulation case study carried out on Western System Coordinating Council (WSCC 3-machine 9-bus test system for the large scale hybrid energy conversion system has been developed using the DIgSILENT/Power Factory software platform. The hybrid system performance under different scenarios has been verified by simulation studies using practical load demand profiles and real weather data.

  13. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Fang, Jiakun; Li, Jinghua

    2016-01-01

    Nowadays, the electric power system and natural gas network are becoming increasingly coupled and interdependent. A harmonized integration of natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables in terms of system...... flexibility. This work focuses on the steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. A unified energy flow formulation is developed to describe the nodal balance and branch flow in both systems and it is solved with the Newton......–Raphson method. Both the unification of units and the per-unit system are proposed to simplify the system description and to enhance the computation efficiency. The applicability of the proposed method is demonstrated by analyzing an IEEE-9 test system integrated with a 7-node natural gas network. Later, time...

  14. Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems

    Science.gov (United States)

    Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu

    2013-10-01

    This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.

  15. A multi-agent conversational system with heterogeneous data sources access

    KAUST Repository

    Eisman, Eduardo M.

    2016-01-28

    In many of the problems that can be found nowadays, information is scattered across different heterogeneous data sources. Most of the natural language interfaces just focus on a very specific part of the problem (e.g. an interface to a relational database, or an interface to an ontology). However, from the point of view of users, it does not matter where the information is stored, they just want to get the knowledge in an integrated, transparent, efficient, effective, and pleasant way. To solve this problem, this article proposes a generic multi-agent conversational architecture that follows the divide and conquer philosophy and considers two different types of agents. Expert agents are specialized in accessing different knowledge sources, and decision agents coordinate them to provide a coherent final answer to the user. This architecture has been used to design and implement SmartSeller, a specific system which includes a Virtual Assistant to answer general questions and a Bookseller to query a book database. A deep analysis regarding other relevant systems has demonstrated that our proposal provides several improvements at some key features presented along the paper.

  16. Ecological and socio-economic functions across tropical land use systems after rainforest conversion.

    Science.gov (United States)

    Drescher, Jochen; Rembold, Katja; Allen, Kara; Beckschäfer, Philip; Buchori, Damayanti; Clough, Yann; Faust, Heiko; Fauzi, Anas M; Gunawan, Dodo; Hertel, Dietrich; Irawan, Bambang; Jaya, I Nengah S; Klarner, Bernhard; Kleinn, Christoph; Knohl, Alexander; Kotowska, Martyna M; Krashevska, Valentyna; Krishna, Vijesh; Leuschner, Christoph; Lorenz, Wolfram; Meijide, Ana; Melati, Dian; Nomura, Miki; Pérez-Cruzado, César; Qaim, Matin; Siregar, Iskandar Z; Steinebach, Stefanie; Tjoa, Aiyen; Tscharntke, Teja; Wick, Barbara; Wiegand, Kerstin; Kreft, Holger; Scheu, Stefan

    2016-05-19

    Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes. © 2016 The Authors.

  17. A Concise Presentation of Doubly Fed Induction Generator Wind Energy Conversion Systems Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Julius Mwaniki

    2017-01-01

    Full Text Available There is increased worldwide wind power generation, a large percentage of which is grid connected. The doubly fed induction generator (DFIG wind energy conversion system (WECS has many merits and, as a result, large numbers have been installed to date. The DFIG WECS operation, under both steady state and fault conditions, is of great interest since it impacts on grid performance. This review paper presents a condensed look at the various applied solutions to the challenges of the DFIG WECS including maximum power point tracking, common mode voltages, subsynchronous resonance, losses, modulation, power quality, and faults both internal and from the grid. It also looks at approaches used to meet the increasingly stringent grid codes requirements for the DFIG WECS to not only ride through faults but also provide voltage support. These are aspects of the DFIG WECS that are critical for system operators and prospective investors and can also serve as an introduction for new entrants into this area of study.

  18. A multi-agent conversational system with heterogeneous data sources access

    KAUST Repository

    Eisman, Eduardo M.; Navarro, Marí a; Castro, Juan Luis

    2016-01-01

    In many of the problems that can be found nowadays, information is scattered across different heterogeneous data sources. Most of the natural language interfaces just focus on a very specific part of the problem (e.g. an interface to a relational database, or an interface to an ontology). However, from the point of view of users, it does not matter where the information is stored, they just want to get the knowledge in an integrated, transparent, efficient, effective, and pleasant way. To solve this problem, this article proposes a generic multi-agent conversational architecture that follows the divide and conquer philosophy and considers two different types of agents. Expert agents are specialized in accessing different knowledge sources, and decision agents coordinate them to provide a coherent final answer to the user. This architecture has been used to design and implement SmartSeller, a specific system which includes a Virtual Assistant to answer general questions and a Bookseller to query a book database. A deep analysis regarding other relevant systems has demonstrated that our proposal provides several improvements at some key features presented along the paper.

  19. Power management of a wind energy conversion system equipped by DFIG

    Directory of Open Access Journals (Sweden)

    Iman Zangiabadi

    2016-06-01

    Full Text Available Today wind is one of the attractive points of energy area which has got the noticeable amount of investment and studies in this field. Considering the importance of the wind energy and its potentials as one of the renewable energy sources, in this paper managing the production of active and reactive powers of a wind energy conversion system equipped with DFIG has been studied. In this regard, a structure based on vector control is offered to achieve an independent control of active and reactive powers. The strategy of managing the production of active and reactive power is applied to network by rotor side converter of a DFIG. The production of active power according to the maximum power point taking (MPPT strategy to get a maximum power of the wind energy has been done and also improvement of power quality based on strategies of power factor correction and harmonics reduction have been arranged for a power network. In order to evaluate the performance of the proposed method, a DFIG connected with a power network in different conditions of the reactive load has been simulated by MATLAB software.Obviously, the results state the proper operation of the power control of wind energy converting system , improvement of the network power factor, and Reduction of harmonic current of network based on the proposed method.

  20. Modeling the impact of large-scale energy conversion systems on global climate

    International Nuclear Information System (INIS)

    Williams, J.

    There are three energy options which could satisfy a projected energy requirement of about 30 TW and these are the solar, nuclear and (to a lesser extent) coal options. Climate models can be used to assess the impact of large scale deployment of these options. The impact of waste heat has been assessed using energy balance models and general circulation models (GCMs). Results suggest that the impacts are significant when the heat imput is very high and studies of more realistic scenarios are required. Energy balance models, radiative-convective models and a GCM have been used to study the impact of doubling the atmospheric CO 2 concentration. State-of-the-art models estimate a surface temperature increase of 1.5-3.0 0 C with large amplification near the poles, but much uncertainty remains. Very few model studies have been made of the impact of particles on global climate, more information on the characteristics of particle input are required. The impact of large-scale deployment of solar energy conversion systems has received little attention but model studies suggest that large scale changes in surface characteristics associated with such systems (surface heat balance, roughness and hydrological characteristics and ocean surface temperature) could have significant global climatic effects. (Auth.)

  1. Speech-To-Text Conversion STT System Using Hidden Markov Model HMM

    Directory of Open Access Journals (Sweden)

    Su Myat Mon

    2015-06-01

    Full Text Available Abstract Speech is an easiest way to communicate with each other. Speech processing is widely used in many applications like security devices household appliances cellular phones ATM machines and computers. The human computer interface has been developed to communicate or interact conveniently for one who is suffering from some kind of disabilities. Speech-to-Text Conversion STT systems have a lot of benefits for the deaf or dumb people and find their applications in our daily lives. In the same way the aim of the system is to convert the input speech signals into the text output for the deaf or dumb students in the educational fields. This paper presents an approach to extract features by using Mel Frequency Cepstral Coefficients MFCC from the speech signals of isolated spoken words. And Hidden Markov Model HMM method is applied to train and test the audio files to get the recognized spoken word. The speech database is created by using MATLAB.Then the original speech signals are preprocessed and these speech samples are extracted to the feature vectors which are used as the observation sequences of the Hidden Markov Model HMM recognizer. The feature vectors are analyzed in the HMM depending on the number of states.

  2. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    Science.gov (United States)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  3. Solar-energy conversion system provides electrical power and thermal control for life-support systems

    Science.gov (United States)

    Davis, B. K.

    1974-01-01

    System utilizes Freon cycle and includes boiler turbogenerator with heat exchanger, regenerator and thermal-control heat exchangers, low-pressure and boiler-feed pumps, and condenser. Exchanger may be of interest to engineers and scientists investigating new energy sources.

  4. On the equivalence between the minimum entropy generation rate and the maximum conversion rate for a reactive system

    International Nuclear Information System (INIS)

    Bispo, Heleno; Silva, Nilton; Brito, Romildo; Manzi, João

    2013-01-01

    Highlights: • Minimum entropy generation (MEG) principle improved the reaction performance. • MEG rate and the maximum conversion equivalence have been analyzed. • Temperature and residence time are used to the domain establishment of MEG. • Satisfying the temperature and residence time relationship results a optimal performance. - Abstract: The analysis of the equivalence between the minimum entropy generation (MEG) rate and the maximum conversion rate for a reactive system is the main purpose of this paper. While being used as a strategy of optimization, the minimum entropy production was applied to the production of propylene glycol in a Continuous Stirred-Tank Reactor (CSTR) with a view to determining the best operating conditions, and under such conditions, a high conversion rate was found. The effects of the key variables and restrictions on the validity domain of MEG were investigated, which raises issues that are included within a broad discussion. The results from simulations indicate that from the chemical reaction standpoint a maximum conversion rate can be considered as equivalent to MEG. Such a result can be clearly explained by examining the classical Maxwell–Boltzmann distribution, where the molecules of the reactive system under the condition of the MEG rate present a distribution of energy with reduced dispersion resulting in a better quality of collision between molecules with a higher conversion rate

  5. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems

    Science.gov (United States)

    Ghaffari, Azad

    Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty

  6. Conversion from Filgrastim to Tbo-filgrastim: Experience of a Large Health Care System.

    Science.gov (United States)

    Agboola, Foluso; Reddy, Prabashni

    2017-12-01

    In 2008, tbo-filgrastim was approved as a biosimilar in Europe and then approved in the United States by the FDA in 2012 as a biologic product with 1 similar indication to filgrastim. Because tbo-filgrastim was less expensive than filgrastim, and clinical information and expert opinion supported similarity, the Pharmacy & Therapeutics Committee of a large health care system approved tbo-filgrastim as the preferred granulocyte-colony stimulating factor (G-CSF) product in March 2014. To (a) assess the use of filgrastim and tbo-filgrastim products by comparing baseline characteristics, setting of care, indication for use, and payer type and (b) understand potential barriers of conversion to tbo-filgrastim. A retrospective evaluation of filgrastim and tbo-filgrastim use was conducted on all patients (N = 204) who received the drugs between July 2015 and December 2015 at the 2 largest hospitals in the health system. Baseline characteristics, indication requiring use of filgrastim or tbo-filgrastim, setting of care, and payer information were collected from electronic medical records, and descriptive analyses were conducted. Overall, G-CSFs were administered to 204 patients for 261 episodes of care (filgrastim and tbo-filgrastim were used in 65 and 196 episodes of care, respectively). Baseline characteristics were similar between the 59 patients who received filgrastim and the 174 patients who received tbo-filgrastim. G-CSF was primarily used in the inpatient setting (163 episodes of care, 63%) with 90% of patients using tbo-filgrastim. In the outpatient setting (98 episodes of care, 38%), filgrastim and tbo-filgrastim were each used by 50% of patients. Tbo-filgrastim was the preferred G-CSF by clinical providers for all indications, except for stem cell mobilization, where filgrastim use was higher (55% vs. 45% of 71 episodes of care). In the outpatient setting, analysis by payers showed that the majority of patients on commercial plans were using filgrastim (58

  7. Design of a power conversion system for an indirect cycle, helium cooled pebble bed reactor system

    International Nuclear Information System (INIS)

    Wang, C.; Ballinger, R.G.; Stahle, P.W.; Demetri, E.; Koronowski, M.

    2002-01-01

    A design is presented for the turbomachinery for an indirect cycle, closed, helium cooled modular pebble bed reactor system. The design makes use of current technology and will operate with an overall efficiency of 45%. The design uses an intermediate heat exchanger which isolated the reactor cycle from the turbomachinery. This design excludes radioactive fission products from the turbomachinery. This minimizes the probability of an air ingress accident and greatly simplifies maintenance. (author)

  8. Conversational sensemaking

    Science.gov (United States)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  9. Supercritical carbon dioxide Brayton power conversion cycle for battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Kim, T. W.; Kim, N. H.; Suh, K. Y.

    2007-01-01

    Supercritical carbon dioxide (SCO 2 ) promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. The SCO 2 Brayton cycle efficiency as high as 45% furnishes small sized nuclear reactors with economical benefits on the plant construction and maintenance. A 23 MWth lead-cooled Battery Optimized Reactor Integral System (BORIS) is being developed as an ultra-long-life, versatile-purpose, fast-spectrum reactor. BORIS is coupled to the SCO 2 Brayton cycle needing less room relative to the Rankine steam cycle because of its smaller components. The SCO 2 Brayton cycle of BORIS consists of a 16 MW turbine, a 32 MW high temperature recuperator, a 14 MW low temperature recuperator, an 11 MW precooler and 2 and 2.8 MW compressors. Entering six heat exchangers between primary and secondary system at 19.9 MPa and 663 K, the SCO 2 leaves the heat exchangers at 19.9 MPa and 823 K. The promising secondary system efficiency of 45% was calculated by a theoretical method in which the main parameters include pressure, temperature, heater power, the turbine's, recuperators' and compressors' efficiencies, and the flow split ratio of SCO 2 going out from the low temperature recuperator. Development of Modular Optimized Brayton Integral System (MOBIS) is being devised as the SCO 2 Brayton cycle energy conversion cycle for BORIS. MOBIS consists of Loop Operating Brayton Optimization Study (LOBOS) for experimental Brayton cycle loop and Gas Advanced Turbine Operation Study (GATOS) for the SCO 2 turbine. Liquid-metal Energy Exchanger Integral System (LEXIS) serves to couple BORIS and MOBIS. LEXIS comprises Physical Aspect Thermal Operation System (PATOS) for SCO 2 thermal hydraulic characteristics, Shell-and-tube Overall Layout Optimization Study (SOLOS) for shell-and-tube heat exchanger, Printed

  10. Howden-Microcoal system for the conversion of industrial oil or gas fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J

    1985-01-01

    The technical and economic aspects of the conversion of an industrial boiler designed for oil firing at Courtaulds plc Greenfield site in North Wales to Howden-Microcoal firing are discussed. The production of Howden-Micro coal (an ultrafine or 'micronised' coal) is described and the Howden-Microcoal processor is compared with other fluid energy and mechanical mills. A typical boiler installation and modifications required for conversion to Howden-Microcoal firing are presented along with the main results of the Courtauld's tests. Cost, conversion time and the effect on average steam generation costs are considered.

  11. Technology transfer and design conversion of a dry spent fuel storage system in Ukraine

    International Nuclear Information System (INIS)

    Peacock, R.C.; Marcelli, D.G.

    1998-01-01

    A number of unique issues surfaced in the technology transfer and design conversion of a US dry spent fuel storage technology in Ukraine. Unique challenges were encountered in the areas of nuclear design conversion, technical codes and standards, material selection and qualification, fabrication, construction and testing, quality assurance, documentation, and translation and verification processes. Technology transfer and design conversion were undertaken for both concrete and steel components for the project. The overall effort presented significant technical and cultural challenges to both the US and Ukrainian side, but technical exchange and design improvements to achieve a common goal have been reached. (author)

  12. Maintenance for power conversion system of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Kosugiyama, Shinichi; Takada, Shoji; Katanishi, Shoji; Yan, Xing; Takizuka, Takakazu; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2002-11-01

    In order to be a suitable next generation nuclear power plant from reliable and economical points of view, it is necessary for GTHTR300 to have good maintenability and inspectability. Appropriate maintenance concept for the power conversion system of GTHTR300 consisting of a gas turbine, a compressor, a generator, a recuperator, a precooler and so on was studied based on results of the basic design of GTHTR300 in fiscal 2001. Considering degradation phenomena which could occur on each objective equipment, it is technically possible to reduce several maintenance items and extend maintenance interval for some equipment compared to those for existing LWR power plants and combined cycle fossil power plants. But owing to structural feature and installed location of each equipment, and fission product plate-out on each equipment, it became clear that some problems must be solved for making the maintenance works realistic and efficient. Solving the problems and confirming appropriateness of the proposed maintenance concept and plans will be done in coming detailing work of GTHTR300 design. (author)

  13. A Voltage and Frequency Control Strategy for Stand-Alone Full Converter Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Andrés Peña Asensio

    2018-02-01

    Full Text Available This paper addresses the design and analysis of a voltage and frequency control (VFC strategy for full converter (FC-based wind energy conversion systems (WECSs and its applicability for the supply of an isolated load. When supplying an isolated load, the role of the back-to-back converters in the FC must change with respect to a grid-connected application. Voltage and frequency are established by the FC line side converter (LSC, while the generator side converter (GSC is responsible for maintaining constant voltage in the DC link. Thus, the roles of the converters in the WECS are inverted. Under such control strategies, the LSC will automatically supply the load power and hence, in order to maintain a stable operation of the WECS, the wind turbine (WT power must also be controlled in a load-following strategy. The proposed VFC is fully modelled and a stability analysis is performed. Then, the operation of the WECS under the proposed VFC is simulated and tested on a real-time test bench, demonstrating the performance of the VFC for the isolated operation of the WECS.

  14. Analysis Of Functional Stability Of The Triphased Asynchronous Generator Used In Conversion Systems Of A Eolian Energy Into Electric Energy

    Directory of Open Access Journals (Sweden)

    Ion VONCILA

    2003-12-01

    Full Text Available This paper presents a study of the influence of the main perturbation agent over the functional stability of the triphased asynchronous generator (for the two alternative: with coiled and short circuit rotor, used for the conversion systems from a eolian energy into electric energy.

  15. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems

    International Nuclear Information System (INIS)

    Ostrum, Lee; Manic, Milos

    2017-01-01

    The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses on is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.

  16. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ostrum, Lee [Univ. of Idaho and Idaho Falls Center, Idaho Falls, ID (United States); Manic, Milos [Virginia Commonwealth Univ., Richmond, VA (United States)

    2017-09-28

    The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses on is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.

  17. Development of a system for characterizing biomass quality of lignocellulosic feedstocks for biochemical conversion

    Science.gov (United States)

    Murphy, Patrick Thomas

    The purpose of this research was twofold: (i) to develop a system for screening lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to evaluate brown midrib corn stover as feedstock for ethanol production. In the first study (Chapter 2), we investigated the potential of corn stover from bm1-4 hybrids for increased ethanol production and reduced pretreatment intensity compared to corn stover from the isogenic normal hybrid. Corn stover from hybrid W64A X A619 and respective isogenic bm hybrids was pretreated by aqueous ammonia steeping using ammonium hydroxide concentrations from 0 to 30%, by weight, and the resulting residues underwent simultaneous saccharification and cofermentation (SSCF) to ethanol. Dry matter (DM) digested by SSCF increased with increasing ammonium hydroxide concentration across all genotypes (P>0.0001) from 277 g kg-1 DM in the control to 439 g kg-1 DM in the 30% ammonium hydroxide pretreatment. The bm corn stover materials averaged 373 g kg-1 DM of DM digested by SSCF compared with 335 g kg-1 DM for the normal corn stover (Pdetergent fiber (NDF) as a cell-wall isolation procedure, and (iii) elimination of the fermentation organism in the SSCF procedures used to determine biochemically available carbohydrates. The original and the HTP assay methods were compared using corn cobs, hybrid poplar, kenaf, and switchgrass. Biochemically available carbohydrates increased with the HTP methods in the corn cobs, hybrid poplar, and switchgrass, but remained the same in the kenaf. Total available carbohydrates increased and unavailable carbohydrates decreased with the HTP methods in the corn cobs and switchgrass and remained the same in the hybrid poplar and kenaf. There were no differences in total carbohydrates (CT) between the two methods. The final study evaluated the variability of biomass quality parameters in a set of corn stover samples, and developed calibration equations for determining parameter values using near

  18. Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator

    Directory of Open Access Journals (Sweden)

    Mohamed Zribi

    2017-05-01

    Full Text Available This paper deals with the control of a variable-speed wind energy conversion (WEC system using a squirrel cage induction generator (SCIG connected to the grid through a back-to-back three phase (AC-DC-AC power converter. The sliding mode control technique is used to control the WEC system. The objective of the controllers is to force the states of the system to track their desired states. One controller is used to regulate the generator speed and the flux so that maximum power is extracted from the wind. Another controller is used to control the grid side converter, which controls the DC bus voltage and the active and reactive powers injected into the grid. The performance of the controlled wind energy conversion system is verified through MATLAB simulations, which show that the controlled system performs well.

  19. Development of fluoric compound treatment system in conversion for recycle in metal industry

    International Nuclear Information System (INIS)

    Kim, P.O.; Cho, N.C.

    1998-01-01

    Korea Nuclear Fuel Company (KNFC) has been operating AUC conversion process from UF 6 to UO 2 from 1990. In 1997, KNFC constructed another conversion line called dry conversion to meet the increasing demand for nuclear fuel fabrication. In the dry conversion, two kinds of hydrofluoric acid (HF) are produced as a by-product. The first one is 50% concentration HF and the other one is diluted HF ranging from 10% to 49%. The high concentration HF can be used in metal industry, but there is no use for diluted one. The diluted HF should be disposed of as liquid waste after some treatment. To solve this problem we have developed the process to convert the diluted hydrofluoric acid to the sodium fluoride, which is readily used in the metal industry. By developing the process we could make a contribution to the environment as well as cost reduction in manufacturing nuclear fuel. (author)

  20. Tribromoisocyanuric acid/triphenylphosphine: a new system for conversion of alcohols into alkyl bromides

    International Nuclear Information System (INIS)

    Andrade, Vitor S.C. de; Mattos, Marcio C.S. de

    2014-01-01

    An efficient and facile method has been developed for the conversion of alcohols into alkyl bromides under neutral conditions using tribromoisocyanuric acid and triphenylphosphine (molar ratio 1.0:0.7:2.0, alcohol/tribromoisocyanuric acid/triphenylphosphine) in dichloromethane at room temperature. This method can be applied for the conversion of primary, secondary, benzilic and allylic alcohols, and their corresponding bromides are obtained in 67-82 % yield. Tertiary alcohols do not react under these conditions. (author)

  1. Tribromoisocyanuric acid/triphenylphosphine: a new system for conversion of alcohols into alkyl bromides

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Vitor S.C. de; Mattos, Marcio C.S. de, E-mail: mmattos@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Quimica. Departamento de Quimica Organica

    2014-05-15

    An efficient and facile method has been developed for the conversion of alcohols into alkyl bromides under neutral conditions using tribromoisocyanuric acid and triphenylphosphine (molar ratio 1.0:0.7:2.0, alcohol/tribromoisocyanuric acid/triphenylphosphine) in dichloromethane at room temperature. This method can be applied for the conversion of primary, secondary, benzilic and allylic alcohols, and their corresponding bromides are obtained in 67-82 % yield. Tertiary alcohols do not react under these conditions. (author)

  2. Study of the application of a near-real-time materials accountancy system for a model plutonium conversion plants

    International Nuclear Information System (INIS)

    Ihara, Hitoshi; Ikawa, Koji

    1986-11-01

    An assessment was done on the potential capability of a Near-Real-Time materials accountancy system for a model plutonium conversion plant. To this end, a computer simulation system, DYSAS-C, has been developed and evaluated through this assessment study. This study showed that N.R.T.A system could be used not only as a good operator's accounting system but also as a useful inspectorate's system to detect an abrupt diversion. It also showed, however, that more elaborated NRTA system which have not yet evaluated in this study should be considerered when we wish to improve of detecting protracted diversion. (author)

  3. Influence on moisture and hydrocarbons on conversion rate of tritium in catalytic reactors of fusion-DEMO detritiation system

    International Nuclear Information System (INIS)

    Edao, Yuki; Sato, Katsumi; Iwai, Yasunori; Hayashi, Takumi

    2017-01-01

    Thoughtful consideration of abnormal events such as fire is required to design and qualify a detritiation system (DS) of a nuclear fusion facility. Since conversion of tritium to tritiated vapor over catalyst is the key process of the DS, it is indispensable to evaluate the effect of excess moisture and hydrocarbons produced by combustion of cables on tritium conversion rate considering fire events. We conducted demonstration tests on tritium conversion under the following representative conditions: (I) leakage of tritium, (II) leakage of tritium plus moisture, and (III) leakage of tritium plus hydrocarbons. Detritiation behavior in the simulated room was assessed, and the amount of catalyst to fulfill the requirement on tritium conversion rate was evaluated. The dominant parameters for detritiation are the concentration of hydrogen in air and catalyst temperature. The tritium in the simulated room was decreased for condition (I) following ventilation theory. An initial reduction in conversion rate was measured for condition (II). To recover the reduction smoothly, it is suggested to optimize the power of preheater. An increase in catalyst temperature by heat of reaction of hydrocarbon combustion was evaluated for condition (III). The heat balance of catalytic reactor is a point to be carefully investigated to avoid runaway of catalyst temperature. (author)

  4. The use of conversation mapping to frame key perceptual issues facing the general dental practice system in England.

    Science.gov (United States)

    Harris, R V; Dancer, J M; Smith, D; Campbell, S

    2009-06-01

    To demonstrate the use of a novel qualitative methodology namely conversation mapping, which can be used to capture differences in stakeholder perspectives and give a root definition of the problem in a complex policy area. The methodology is used in the context of the changes introduced in the English general dental practice system in April 2006, to investigate the key issues facing the system, as perceived by general dental practitioners (GDPs). From a broad trigger statement, three transformational statements were produced. Each participant recorded their contribution on a hard diagrammatic form as a 'map', with others responding with their own written comment, thus generating three conversation maps. Thematic analysis resulted in the generation of a preliminary model summarising key perceptual issues. The five emergent themes identified were: financing, dentists' wants/needs, the role of the public and patients, system goals and policy level decision making. Financing was identified as the core category to which all other categories were related. Conversation mapping, a methodology arising from a systems approach, can be used to develop a 'rich picture' of an oral health care system in order to define the core problem within this policy area. Findings suggest that GDPs identify the financing of the system as a fundamental source of problems within the general dental practice system. This appears to be at variance with the perception of policy makers, who report a more limited view, identifying the system of remuneration as the 'heart of the problem'.

  5. Performance testing of a Fresnel/Stirling micro solar energy conversion system

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Karabulut, Halit

    2013-01-01

    Highlights: • Solar energy has a big importance among the renewable energy sources. • A micro solar energy system consisted of a Stirling engine and Fresnel lens was tested. • Solar radiation was directly focused into a cavity. • Cavities made of copper, aluminium and stainless steel were used. • The maximum performance was obtained with aluminium cavity. - Abstract: In this study, a beta-type Stirling engine was tested with concentrated solar radiation. The displacer cylinder of the engine was modified by integrating a concentrated solar radiation receiver. Basically, the receiver is a cavity drilled in a separate part mounted on top of the displacer cylinder by screws. Tests were conducted with three cavities made of aluminium, copper and stainless steel. The solar radiation was concentrated by a Fresnel lens with 1.4 m 2 capture area. Among the cavities, the highest performance was provided by aluminium cavity and followed by the stainless steel and copper cavities respectively. The maximum shaft power was observed as 64.4 W at systematic tests conducted with the aluminium cavity. The maximum shaft power corresponded to 218 rpm engine speed and 2.82 Nm torque. For this shaft power, the overall conversion efficiency of the system was estimated to be 5.64%. The maximum torque measured with aluminium cavity was 2.93 Nm corresponding to 177 rpm below which the engine stopped. The Fresnel-lens/Stirling-engine micro power plant established in this investigation was more efficient than the micro power plants presented in the literature

  6. Microbial community response to chlorine conversion in a chloraminated drinking water distribution system.

    Science.gov (United States)

    Wang, Hong; Proctor, Caitlin R; Edwards, Marc A; Pryor, Marsha; Santo Domingo, Jorge W; Ryu, Hodon; Camper, Anne K; Olson, Andrew; Pruden, Amy

    2014-09-16

    Temporary conversion to chlorine (i.e., "chlorine burn") is a common approach to controlling nitrification in chloraminated drinking water distribution systems, yet its effectiveness and mode(s) of action are not fully understood. This study characterized occurrence of nitrifying populations before, during and after a chlorine burn at 46 sites in a chloraminated distribution system with varying pipe materials and levels of observed nitrification. Quantitative polymerase chain reaction analysis of gene markers present in nitrifying populations indicated higher frequency of detection of ammonia oxidizing bacteria (AOB) (72% of samples) relative to ammonia oxidizing archaea (AOA) (28% of samples). Nitrospira nitrite oxidizing bacteria (NOB) were detected at 45% of samples, while presence of Nitrobacter NOB could not be confirmed at any of the samples. During the chlorine burn, the numbers of AOA, AOB, and Nitrospira greatly reduced (i.e., 0.8-2.4 log). However, rapid and continued regrowth of AOB and Nitrospira were observed along with nitrite production in the bulk water within four months after the chlorine burn, and nitrification outbreaks appeared to worsen 6-12 months later, even after adopting a twice annual burn program. Although high throughput sequencing of 16S rRNA genes revealed a distinct community shift and higher diversity index during the chlorine burn, it steadily returned towards a condition more similar to pre-burn than burn stage. Significant factors associated with nitrifier and microbial community composition included water age and sampling location type, but not pipe material. Overall, these results indicate that there is limited long-term effect of chlorine burns on nitrifying populations and the broader microbial community.

  7. Energy Conversion and Transmission Characteristics Analysis of Ice Storage Air Conditioning System Driven by Distributed Photovoltaic Energy System

    Directory of Open Access Journals (Sweden)

    Yongfeng Xu

    2016-01-01

    Full Text Available In order to reduce the investment and operation cost of distributed PV energy system, ice storage technology was introduced to substitute batteries for solar energy storage. Firstly, the ice storage air conditioning system (ISACS driven by distributed photovoltaic energy system (DPES was proposed and the feasibility studies have been investigated in this paper. And then, the theoretical model has been established and experimental work has been done to analyze the energy coupling and transferring characteristics in light-electricity-cold conversion process. In addition, the structure optimization analysis was investigated. Results revealed that energy losses were high in ice making process of ice slide maker with only 17.38% energy utilization efficiency and the energy efficiency and exergy efficiency of ISACS driven by DPES were 5.44% and 67.30%, respectively. So the immersed evaporator and cointegrated exchanger were adopted for higher energy utilization efficiency and better financial rewards in structure optimization. The COP and exergy efficiency of ice maker can be increased to 1.48 and 81.24%, respectively, after optimization and the energy utilization efficiency of ISACS driven by DPES could be improved 2.88 times. Moreover, ISACS has the out-of-the-box function of ordinary air conditioning system. In conclusion, ISACS driven by DPES will have good application prospects in tropical regions without power grid.

  8. Evaluation for reasonableness of power conversion system concepts in the gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Minatsuki, I.; Mizokami, Y.

    2007-01-01

    The conceptual design study for the Gas Turbine High Temperature Reactor (GTHTR300) was completed in 2004. In GTHTR300, SECO (Simple, Economical Competitiveness and Originality) is advocated as design philosophy in order to minimize technical and economical requirement. Furthermore the design of the GTHTR300 was developed with reflecting various view points from utilities, manufacturers and research organizations. In GTHTR300, the horizontal turbo machine rotor, the turbo machine in a separated vessel, the turbo machine with single rotor, the generator inside the power conversion vessel, and the power conversion system without inter-coolers were selected as major power conversion system concepts. This paper describes the investigation and analysis about the major concepts of GTHTR300 power conversion system in order to evaluate reasonableness of GTHTR300 design approach and acceptability with using experience and engineering knowledge of Mitsubishi Heavy Industries, Ltd., which were accumulated through the activities of HTGR-GT and HTTR (High Temperature Engineering Test Reactor) designing, manufacturing, fabricating and testing. From the result of the evaluation, it was concluded that the selection of each concept in GTHTR300 was reasonable as based on the original design philosophy SECO. As a conclusion, we expect the GTHTR300 to become one of the most promising concepts for commercialization in near future. (authors)

  9. Real time implementation and control validation of the wind energy conversion system

    Science.gov (United States)

    Sattar, Adnan

    The purpose of the thesis is to analyze dynamic and transient characteristics of wind energy conversion systems including the stability issues in real time environment using the Real Time Digital Simulator (RTDS). There are different power system simulation tools available in the market. Real time digital simulator (RTDS) is one of the powerful tools among those. RTDS simulator has a Graphical User Interface called RSCAD which contains detail component model library for both power system and control relevant analysis. The hardware is based upon the digital signal processors mounted in the racks. RTDS simulator has the advantage of interfacing the real world signals from the external devices, hence used to test the protection and control system equipments. Dynamic and transient characteristics of the fixed and variable speed wind turbine generating systems (WTGSs) are analyzed, in this thesis. Static Synchronous Compensator (STATCOM) as a flexible ac transmission system (FACTS) device is used to enhance the fault ride through (FRT) capability of the fixed speed wind farm. Two level voltage source converter based STATCOM is modeled in both VSC small time-step and VSC large time-step of RTDS. The simulation results of the RTDS model system are compared with the off-line EMTP software i.e. PSCAD/EMTDC. A new operational scheme for a MW class grid-connected variable speed wind turbine driven permanent magnet synchronous generator (VSWT-PMSG) is developed. VSWT-PMSG uses fully controlled frequency converters for the grid interfacing and thus have the ability to control the real and reactive powers simultaneously. Frequency converters are modeled in the VSC small time-step of the RTDS and three phase realistic grid is adopted with RSCAD simulation through the use of optical analogue digital converter (OADC) card of the RTDS. Steady state and LVRT characteristics are carried out to validate the proposed operational scheme. Simulation results show good agreement with real

  10. TRIGA Research Reactor Conversion to LEU and Modernization of Safety Related Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sanda, R. M. [Institute for Nuclear Research Piteşti (SCN-Piteşti), Piteşti (Romania)

    2014-08-15

    The USA and IAEA proposed an international programme to reduce the enrichment of uranium in research reactors by converting nuclear fuel containing HEU into fuel containing 20% enriched uranium. The Government of Romania joined the programme and actively supported political, scientific, technical and economic actions that led to the conversion of the active area of the 14 MW TRIGA reactor at the Institute for Nuclear Research in Piteşti in May 2006. This confirmed the continuity of the Romanian Government’s non-proliferation policy and their active support of international cooperation. Conversion of the Piteşti research reactor was made possible by completion of milestones in the Research Agreement for Reactor Conversion, a contract signed with the US Department of Energy and Argonne National Laboratory. This agreement provided scientific and technical support and the possibility of delivery of all HEU TRIGA fuel to the United States. Additionally, about 65% of the fresh LEU fuel needed to start the conversion was delivered in the period 1992–1994. Furthermore, conversion was promoted through IAEA Technical Cooperation project ROM/4/024 project funded primarily by the United States that supported technical and scientific efforts and the delivery of the remaining required LEU nuclear fuel to complete the conversion. Nuclear fuel to complete the conversion was made by the French company CERCA with a tripartite contract among the IAEA, CERCA and Romania. The contract was funded by the US Department of Energy with a voluntary contribution by the Romanian Government. The contract stipulated manufacturing and delivery of LEU fuel by CERCA with compliance measures for quality, delivery schedule and safety requirements set by IAEA standards and Romanian legislation. The project was supported by the ongoing technical cooperation, safeguards, legal and procurement assistance of the IAEA, in particular its Department of Nuclear Safety. For Romanian research, the

  11. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  12. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  13. Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage

    International Nuclear Information System (INIS)

    Zhang, Yuan; Yang, Ke; Li, Xuemei; Xu, Jianzhong

    2014-01-01

    A simulation model consisting of wind speed, wind turbine and AA-CAES (advanced adiabatic compressed air energy storage) system is developed in this paper, and thermodynamic analysis on energy conversion and transfer in hybrid system is carried out. The impacts of stable wind speed and unstable wind speed on the hybrid system are analyzed and compared from the viewpoint of energy conversion and system efficiency. Besides, energy conversion relationship between wind turbine and AA-CAES system is investigated on the basis of process analysis. The results show that there are several different forms of energy in hybrid system, which have distinct conversion relationship. As to wind turbine, power coefficient determines wind energy utilization efficiency, and in AA-CAES system, it is compressor efficiency that mainly affects energy conversion efficiencies of other components. The strength and fluctuation of wind speed have a direct impact on energy conversion efficiencies of components of hybrid system, and within proper wind speed scope, the maximum of system efficiency could be expected. - Highlights: • A hybrid system consisting of wind, wind turbine and AA-CAES system is established. • Energy conversion in hybrid system with stable and unstable wind speed is analyzed. • Maximum efficiency of hybrid system can be reached within proper wind speed scope. • Thermal energy change in hybrid system is more sensitive to wind speed change. • Compressor efficiency can affect other efficiencies in AA-CAES system

  14. Microencapsulated Phase Change Materials in Solar-Thermal Conversion Systems: Understanding Geometry-Dependent Heating Efficiency and System Reliability.

    Science.gov (United States)

    Zheng, Zhaoliang; Chang, Zhuo; Xu, Guang-Kui; McBride, Fiona; Ho, Alexandra; Zhuola, Zhuola; Michailidis, Marios; Li, Wei; Raval, Rasmita; Akhtar, Riaz; Shchukin, Dmitry

    2017-01-24

    The performance of solar-thermal conversion systems can be improved by incorporation of nanocarbon-stabilized microencapsulated phase change materials (MPCMs). The geometry of MPCMs in the microcapsules plays an important role for improving their heating efficiency and reliability. Yet few efforts have been made to critically examine the formation mechanism of different geometries and their effect on MPCMs-shell interaction. Herein, through changing the cooling rate of original emulsions, we acquire MPCMs within the nanocarbon microcapsules with a hollow structure of MPCMs (h-MPCMs) or solid PCM core particles (s-MPCMs). X-ray photoelectron spectroscopy and atomic force microscopy reveals that the capsule shell of the h-MPCMs is enriched with nanocarbons and has a greater MPCMs-shell interaction compared to s-MPCMs. This results in the h-MPCMs being more stable and having greater heat diffusivity within and above the phase transition range than the s-MPCMs do. The geometry-dependent heating efficiency and system stability may have important and general implications for the fundamental understanding of microencapsulation and wider breadth of heating generating systems.

  15. Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels

    International Nuclear Information System (INIS)

    Gnanapragasam, Nirmal V.; Reddy, Bale V.; Rosen, Marc A.

    2010-01-01

    A large-scale hydrogen production system is proposed using solid fuels and designed to increase the sustainability of alternative energy forms in Canada, and the technical and economic aspects of the system within the Canadian energy market are examined. The work investigates the feasibility and constraints in implementing such a system within the energy infrastructure of Canada. The proposed multi-conversion and single-function system produces hydrogen in large quantities using energy from solid fuels such as coal, tar sands, biomass, municipal solid waste (MSW) and agricultural/forest/industrial residue. The proposed system involves significant technology integration, with various energy conversion processes (such as gasification, chemical looping combustion, anaerobic digestion, combustion power cycles-electrolysis and solar-thermal converters) interconnected to increase the utilization of solid fuels as much as feasible within cost, environmental and other constraints. The analysis involves quantitative and qualitative assessments based on (i) energy resources availability and demand for hydrogen, (ii) commercial viability of primary energy conversion technologies, (iii) academia, industry and government participation, (iv) sustainability and (v) economics. An illustrative example provides an initial road map for implementing such a system. (author)

  16. Development of large scale wind energy conservation system. Development of large scale wind energy conversion system; Ogata furyoku hatsuden system no kaihatsu. Ogata furyoku hatsuden system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for development of large scale wind energy conversion system. The study on technological development of key components evaluates performance of, and confirms reliability and applicability of, hydraulic systems centered by those equipped with variable pitch mechanisms and electrohydraulic servo valves that control them. The study on blade conducts fatigue and crack-propagation tests, which show that the blades developed have high strength. The study on speed-increasing gear conducts load tests, confirming the effects of reducing vibration and noise by modification of the gear teeth. The study on NACELLE cover conducts vibration tests to confirm its vibration characteristics, and analyzes three-dimensional vibration by the finite element method. Some components for a 500kW commercial wind mill are fabricated, including rotor heads, variable pitch mechanisms, speed-increasing gears, YAW systems, and hydraulic control systems. The others fabricated include a remote supervisory control system for maintenance, system to integrate the wind mill into a power system, and electrical control devices in which site conditions, such as atmospheric temperature and lightening, are taken into consideration.

  17. The adhesive system and root canal region do not influence the degree of conversion of dual resin cement

    Directory of Open Access Journals (Sweden)

    Priscilla Cristoforides Pereira

    2010-10-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate the influence of two adhesive systems and the post space region on the degree of conversion of dual resin cement and its bond strength to root dentin. MATERIAL AND METHODS: One three-step etch-and-rinse (All-bond 2, Bisco and another one-step self-etch (Xeno III, Dentsply adhesive systems were applied on 20 (n=10 crownless bovine incisors, at 12-mm-deep post space preparation, and a fiber post (FRC Postec, Ivoclar was cemented using a dual cure resin cement (Duo-Link, Bisco. Three transverse sections (3 mm were obtained, being one from each study region (cervical, middle and apical. The degree of conversion of the dual cure resin cement was determined by a micro-Raman spectrometer. The data (% were submitted to repeated-measures analysis of variance and Tukey's test (p<0.05. RESULTS: For both groups, the degree of conversion means (% (All bond 2cervical = 69.3; All bond 2middle = 55.1; All bond 2apical= 56; Xeno III cervical = 68.7; Xeno IIImiddle = 68.8; Xeno III apical = 54.3 were not significantly different along the post space regions (p<0.05. CONCLUSION: Neither the adhesive nor the post space region influenced the degree of conversion of the cement layer.

  18. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  19. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    Science.gov (United States)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  20. Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride.

    Science.gov (United States)

    Qing, Qing; Guo, Qi; Zhou, Linlin; Wan, Yilun; Xu, Youqing; Ji, Huilong; Gao, Xiaohang; Zhang, Yue

    2017-02-01

    Catalytic conversion of corncob pretreatment hydrolysate and raw corncob into furfural in a modified biphasic system by SO 4 2- /SnO 2 - MMT solid catalyst has been developed. The influence of the organic solvent type, organic to water phase ratio, sodium chloride concentration, reaction temperature and time on the furfural production were comparatively evaluated. The results showed that furfural yields of 81.7% and 66.1% were achieved at 190°C for 15mins and 190°C for 20mins, respectively, for corncob pretreatment hydrolysate and raw corncob by this solid catalyst. The solid catalyst used in this study exhibited good stability and high efficiency applied in the modified biphasic system in addition to excellent recyclability. The proposed catalytic system displayed high performance for catalytic conversion of lignocellulosic biomass into important platform chemicals and has great potential in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system

    OpenAIRE

    Jon, Hery; Takahashi, Shoutarou; Sasaki, Hitoshi; Oumi, Yasunori; Sano, Tsuneji

    2008-01-01

    The highly crystalline and pure RUT (RUB-10) zeolite could be obtained from the hydrothermal conversion of FAU zeolite used as a crystalline Si/Al source in tetramethylammonium hydroxide (TMAOH) media. As compared to amorphous silica/Al(OH)3 and amorphous silica/γ-Al2O3 sources, the crystallization rate for the formation of RUT zeolite was clearly faster when FAU zeolite was employed as the Si/Al source. Moreover, it was found that the hydrothermal conversion of FAU zeolite into RUT zeolite d...

  2. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVternary or quaternary III-V semiconductor active layers.

  3. Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata.

    Science.gov (United States)

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans.

  4. Simulating the Conversion of Rural Settlements to Town Land Based on Multi-Agent Systems and Cellular Automata

    Science.gov (United States)

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472

  5. Conversion of plutonium-containing materials into borosilicate glass using the glass material oxidation and dissolution system

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1996-01-01

    The end of the cold war has resulted in excess plutonium-containing materials (PCMs) in multiple chemical forms. Major problems are associated with the long-term management of these materials: safeguards and nonproliferation issues; health, environment, and safety concerns; waste management requirements; and high storage costs. These issues can be addressed by conversion of the PCMs to glass: however, conventional glass processes require oxide-like feed materials. Conversion of PCMs to oxide-like materials followed by vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS) to allow direct conversion of PCMs to glass. GMODS directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, multiple oxides, and other materials to glass. Equipment options have been identified for processing rates between 1 and 100,000 t/y. Significant work, including a pilot plant, is required to develop GMODS for applications at an industrial scale

  6. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  7. U-AVLIS feed conversion using continuous metallothermic reduction of UF4: System description and cost estimate

    International Nuclear Information System (INIS)

    1994-04-01

    The purpose of this document is to present a system description and develop baseline capital and operating cost estimates for commercial facilities which produced U-Fe feedstock for AVLIS enrichment plants using the continuous fluoride reduction (CFR) process. These costs can then be used together with appropriate economic assumptions to calculate estimated unit costs to the AVLIS plant owner (or utility customer) for such conversion services. Six cases are being examined. All cases assume that the conversion services are performed by a private company at a commercial site which has an existing NRC license to possess source material and which has existing uranium processing operations. The cases differ in terms of annual production capacity and whether the new process system is installed in a new building or in an existing building on the site. The six cases are summarized here

  8. L1 Adaptive Speed Control of a Small Wind Energy Conversion System for Maximum Power Point Tracking

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard

    2014-01-01

    This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wi......) is used to carry out case studies using Matlab/Simulink. The case study results show that the designed L1 adaptive controller has good tracking performance even with unmodeled dynamics and in the presence of parameter uncertainties and unknown disturbances.......This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wind...

  9. Design of a Highly Stable, High-Conversion-Efficiency, Optical Parametric Chirped-Pulse Amplification System with Good Beam Quality

    International Nuclear Information System (INIS)

    Guardalben, M.J.; Keegan, J.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Puth, J.; Zuegel, J.D.

    2003-01-01

    OAK B204 An optical parametric chirped-pulse amplifier (OPCPA) design that provides 40% pump-to-signal conversion efficiency and over-500-mJ signal energy at 1054 nm for front-end injection into a Nd:glass amplifier chain is presented. This OPCPA system is currently being built as the prototype front end for the OMEGA EP (extended performance) laser system at the University of Rochester's Laboratory for Laser Energetics. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good output stability, and good beam quality are discussed. The dependence of OPCPA output on the pump beam's spatiotemporal shape and the relative size of seed and pump beams is described. This includes the effects of pump intensity modulation and pump-signal walk-off. The trade-off among efficiency, stability, and low output beam intensity modulation is discussed

  10. U-AVLIS feed conversion using continuous metallothermic reduction of UF{sub 4}: System description and cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The purpose of this document is to present a system description and develop baseline capital and operating cost estimates for commercial facilities which produced U-Fe feedstock for AVLIS enrichment plants using the continuous fluoride reduction (CFR) process. These costs can then be used together with appropriate economic assumptions to calculate estimated unit costs to the AVLIS plant owner (or utility customer) for such conversion services. Six cases are being examined. All cases assume that the conversion services are performed by a private company at a commercial site which has an existing NRC license to possess source material and which has existing uranium processing operations. The cases differ in terms of annual production capacity and whether the new process system is installed in a new building or in an existing building on the site. The six cases are summarized here.

  11. Survey of historical and current site selection techniques for the placement of small wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Katzenberg, Rick; Pierson, Chris; Fry, Sheldon; Drees, Herman; Drees, Carolyn; Wolff, Ben; Blake, Steve; Saylor, John; Park, Jack; Park, Helen

    1977-12-01

    Individuals and groups who purchase and install wind energy conversion systems (WECS) for either generation of electricity or pumping water have to go through a process by which a specific location is selected for each WECS. The purpose of this study was to identify and document methods and practices used in siting of WECS. The study covers the period from the early 1900s to the present day. 174 references.

  12. Analysis of technician-economic viability of vehicles conversion to bio combustible, natural gas -gasoline systems for the Colombian case

    International Nuclear Information System (INIS)

    Agudelo S, John Ramiro; Munoz B, Juan; Trujillo R, Luis

    2000-01-01

    This paper shows from an economical and technical point of view the conversion to bi fuel systems for operation with natural gas. The cost benefits obtained is near 49%. The return internal rate analysis is around 12 months and it is function of distance and vehicles efficiency for carbureted spark ignition engines the loss of power and torque is around 25-30%, which affects vehicle velocity in 15-25%

  13. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  14. Conversational module-based simulation system as a human interface to versatile dynamic simulation of nuclear power plant

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Nakaya, K.; Wakabayashi, J.

    1986-01-01

    A new conversational simulation system is proposed which aims at effective re-utilization of software resources as module database, and conducting versatile simulations easily by automatic module integration with the help of user-friendly interfaces. The whole simulation system is composed of the four parts: master module library and pre-compiler system as the core system, while module database management system and simulation execution support system for the user interfaces. Basic methods employed in the system are mentioned with their knowledge representation and the relationship with the human information processing. An example practice of an LMFBR reactor dynamic simulation by the system demonstrated its capability to integrate a large simulation program and the related input/output files automatically by a single user

  15. Preference dominance reasoning for conversational recommender systems: a comparison between a comparative preferences and a sum of weights approach

    OpenAIRE

    Trabelsi, Walid; Wilson, Nic; Bridge, Derek G.; Ricci, Francesco

    2011-01-01

    A conversational recommender system iteratively shows a small set of options for its user to choose between. In order to select these options, the system may analyze the queries tried by the user to derive whether one option is dominated by others with respect to the user's preferences. The system can then suggest that the user try one of the undominated options, as they represent the best options in the light of the user preferences elicited so far. This paper describes a framework for prefe...

  16. The photochemical conversion of solar energy into electrical energy: Eosin-Arabinose system

    Energy Technology Data Exchange (ETDEWEB)

    Gangotri, K.M. [Department of Chemistry, Solar Energy Laboratory, Jai Narain Vyas University, Jodhpur 342 033, Rajasthan (India); Bhimwal, Mukesh Kumar [Solar Energy Laboratory, Jai Narain Vyas University, Jodhpur 342 033, Rajasthan (India)

    2010-12-15

    A photosensitizer -Eosin and a reductant- Arabinose have been used in the photogalvanic cell for photochemical conversion of solar energy into electrical energy. The generated photopotential and photocurrent are 679.0 mV and 240.0 {mu}A respectively. The maximum power of the cell is 162.96 {mu}W whereas the observed power at power point is 73.08 {mu}W. The conversion efficiency is 0.7026% and the fill factor is 0.2856 at the power point of the photogalvanic cell. The photogalvanic cell so developed can work for 85.0 min in dark if it is irradiated for 140.0 min i.e. the storage capacity of photogalvanic cell is 60.71%. The effects of different parameters on the electrical output of the photogalvanic cell have been observed. A mechanism has also been proposed for the photogeneration of electrical energy. (author)

  17. Kinetics of gas to particle conversion in the NH/sub 3/-Chl system

    Energy Technology Data Exchange (ETDEWEB)

    Luria, M; Cohen, B

    1980-01-01

    Particle formation in the reaction of NH/sub 3/ and Chl under 1 atm of N/sub 2/ and at 25/sup 0/C was studied in a flow reactor. The critical concentration below which NO particle can be formed was found to be 3.5 x 10/sup +14/ molecule/CM/sup 3/ for (NH/sub 3/)=(HCl). Above this concentration, gas-particle conversion percentage increases rapidly to approach 100%.

  18. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    OpenAIRE

    Yazdi, Fatemeh-Maleknejad; Moosavi, Horieh; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (?SBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% ...

  19. Development of optimal enzymatic and microbial conversion systems for biofuel production

    Science.gov (United States)

    Aramrueang, Natthiporn

    The increase in demand for fuels, along with the concerns over the depletion of fossil fuels and the environmental problems associated with the use of the petroleum-based fuels, has driven the exploitation of clean and renewable energy. Through a collaboration project with Mendota Bioenergy LLC to produce advanced biofuel from sugar beet and other locally grown crops in the Central Valley of California through demonstration and commercial-scale biorefineries, the present study focused on the investigation of selected potential biomass as biofuel feedstock and development of bioconversion systems for sustainable biofuel production. For an efficient biomass-to-biofuel conversion process, three important steps, which are central to this research, must be considered: feedstock characterization, enzymatic hydrolysis of the feedstock, and the bioconversion process. The first part of the research focused on the characterization of various lignocellulosic biomass as feedstocks and investigated their potential ethanol yields. Physical characteristics and chemical composition were analyzed for four sugar beet varieties, three melon varieties, tomato, Jose tall wheatgrass, wheat hay, and wheat straw. Melons and tomato are those products discarded by the growers or processors due to poor quality. The mass-based ethanol potential of each feedstock was determined based on the composition. The high sugar-containing feedstocks are sugar beet roots, melons, and tomato, containing 72%, 63%, and 42% average soluble sugars on a dry basis, respectively. Thus, for these crops, the soluble sugars are the main substrate for ethanol production. The potential ethanol yields, on average, for sugar beet roots, melons, and tomato are 591, 526, and 448 L ethanol/metric ton dry basis (d.b.), respectively. Lignocellulosic biomass, including Jose Tall wheatgrass and wheat straw, are composed primarily of cellulose (27-39% d.b.) and hemicellulose (26-30% d.b.). The ethanol yields from these

  20. Solar electric and thermal conversion system in close proximity to the consumer. [solar panels on house roofs

    Science.gov (United States)

    Boeer, K. W.

    1975-01-01

    Solar cells may be used to convert sunlight directly into electrical energy and into lowgrade heat to be used for large-scale terrestrial solar-energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). Cadmium-sulfide/copper-sulfide (CdS/Cu2S) solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, and stability of performance, are discussed. Systems-design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental house of the University of Delaware, are given. Economic aspects are discussed. Different modes of operation are discussed in respect to the power utility and consumer incentives.

  1. Clinical evaluation of digital angiographic system equipped with the Safire' flat-panel detector of a direct conversion type

    International Nuclear Information System (INIS)

    Miura, Yoshiaki; Miura, Yusuke; Goto, Keiichi

    2003-01-01

    This report presents a report on clinical evaluation of our newly developed flat-panel X-ray detector of a direct conversion type, designed to provide images of a resolution higher than, or at least equal to, that ensured by X-ray photographic films, in clinical digital X-ray cinematography. This new detector was named 'Safire' the acronym of 'Shimadzu advanced flat imaging receptor', emphasizing its high technological level, such as the capability to ensure high quality of images. The clinical evaluation of Shimadzu DIGITEX Premier digital angiography system, equipped with this new flat-panel X-ray detector of a direct conversion type, has been started in March, 2003, at the Kokura Memorial Hospital in Kyushu, Japan. (author)

  2. Influence of the photoinitiator system and light photoactivation units on the degree of conversion of dental composites.

    Science.gov (United States)

    Porto, Isabel Cristina Celerino de Moraes; Soares, Luis Eduardo Silva; Martin, Airton Abrahão; Cavalli, Vanessa; Liporoni, Priscila Christiane Suzy

    2010-01-01

    The aim of this study was to observe the influence of two light polymerization units (LED or halogen light) on the degree of conversion (DC) of three dental composites with lighter shades and a different photoinitiator system. The top (T) and bottom (B) surfaces of 60 discs of composite resin (Filtek™ Supreme, Filtek™ Z250, Tetric™ Ceram Bleach) cured either by LED or by halogen lamp (HL) were studied using an FT-Raman spectrometer. The degree of conversion (DC) was evaluated by following the changes in the intensity of the methacrylate C=C stretching mode at 1640 cm⁻¹. The calculated DC ranged from 54.2% (B) to 73.4% (T) and from 60.2% (B) to 76.6% (T) for the LED and HL, respectively. LED and halogen devices were able to produce an adequate DC for all the resins tested.

  3. Influence of the photoinitiator system and light photoactivation units on the degree of conversion of dental composites

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Celerino de Moraes Porto

    2010-12-01

    Full Text Available The aim of this study was to observe the influence of two light polymerization units (LED or halogen light on the degree of conversion (DC of three dental composites with lighter shades and a different photoinitiator system. The top (T and bottom (B surfaces of 60 discs of composite resin (Filtek™ Supreme, Filtek™ Z250, Tetric™ Ceram Bleach cured either by LED or by halogen lamp (HL were studied using an FT-Raman spectrometer. The degree of conversion (DC was evaluated by following the changes in the intensity of the methacrylate C=C stretching mode at 1640 cm-1. The calculated DC ranged from 54.2% (B to 73.4% (T and from 60.2% (B to 76.6% (T for the LED and HL, respectively. LED and halogen devices were able to produce an adequate DC for all the resins tested.

  4. Conversion of Hanford site well locations to Washington coordinate system of 1983, South Zone 1991 (WCS83S)

    International Nuclear Information System (INIS)

    Burnett, R.A.; Tzemos, S.; Dietz, L.A.

    1993-12-01

    Past construction and survey practices have resulted in the use of multiple local coordinate systems for measuring and reporting the horizontal position of wells and other facilities and locations on the Hanford Site. This report describes the development of a coordinate transformation process and algorithm and its application to the conversion of the horizontal coordinates of Hanford site wells from the various local coordinate systems and datums to a single standard coordinate system, the Washington Coordinate system of 1983, South Zone 1991 (WCS83S). The coordinate transformation algorithm, implemented as a computer program called CTRANS, uses standard two-dimensional translation, rotation, and scaling transformation equations and can be applied to any set of horizontal point locations. For each point to be transformed, the coefficients of the transformation equations are calculated locally, using the coordinates of the three nearest registration points (points with known locations in both coordinate systems). The report contains a discussion of efforts to verify and validate both the software and the well location data, a description of the methods used to estimate transformation and registration point accuracy, instructions for using the computer program, and a summary of the Hanford well conversion results for each local coordinate system and datum. Also included are the results of using recent U.S. Army Corps of Engineers survey data to obtain estimated measures of location errors in wells for which the local coordinate data source is undocumented, unverified, and therefore of unknown accuracy

  5. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    Science.gov (United States)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  6. Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes.

    Science.gov (United States)

    Borges, Boniek C D; Souza-Junior, Eduardo Jose; Brandt, William C; Loguercio, Alessandro D; Montes, Marcos A J R; Puppin-Rontani, Regina M; Sinhoreti, Mario Alexandre Coelho

    2012-01-01

    This study evaluated the effect of five methods of solvent volatilization on the degree of conversion (DC) of nine one-bottle adhesive systems using Fourier transform infrared/attenuated total reflectance (FTIR/ATR) analysis. Nine adhesives were tested: Adper Single Bond 2 (SB), Adper Easy One (EO), One Up Bond F Plus (OUP), One Coat Bond SL (OC), XP Bond (XP), Ambar (AM), Natural Bond (NB), GO, and Stae. The adhesive systems were applied to a zinc-selenide pellet and 1) cured without solvent volatilization, 2) left undisturbed for 10 seconds before curing, 3) left undisturbed for 60 seconds before curing, 4) air-dried with an air stream for 10 seconds before curing, and 5) air-dried with an air stream for 60 seconds before curing. FTIR/ATR spectra were obtained, and the DC was calculated by comparing the aliphatic bonds/reference peaks before and after light activation for 10 seconds (FlashLite 1401). The DC means of each material were analyzed by one-way analysis of variance and post hoc Tukey test (pStae adhesive systems was not affected by the five evaporation conditions. Air-drying for 60 seconds before curing yielded the highest DC for SB, EO, and OC. Extended solvent volatilization time (60 seconds) either with or without air-drying before curing provided the highest DC for AM, NB, XP, and OUP. Thus, the monomer conversion of adhesive systems was material dependent. In general, the 60-second passive or active air-drying modes to volatilize solvents before curing enhanced the degree of conversion for the one-bottle simplified adhesive systems.

  7. Development of methane conversion improvement method by recycling of residual methane for steam reforming as a part of R and D of HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Hino, Ryutaro; Koiso, Hiroshi.

    1998-01-01

    The purpose of the present study is to improve methane conversion for an HTGR-steam reforming system by recycling of residual methane. The residual methane in a product gas after steam reforming was recycled with a gas separator of polyimide membrane. Gas separation characteristics of the separator were investigated experimentally and numerically, and an experimental study on recycling system was carried out. The results showed that the recycling system improves apparent methane conversion, ratio of methane conversion to methane supply from a cylinder, from 20 to 32% compared with those without recycling. (author)

  8. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-01-01

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  9. Motor starting a Brayton cycle power conversion system using a static inverter

    Science.gov (United States)

    Curreri, J. S.; Edkin, R. A.; Kruchowy, R.

    1973-01-01

    The power conversion module of a 2- to 15-kWe Brayton engine was motor started using a three-phase, 400-hertz static inverter as the power source. Motor-static tests were conducted for initial gas loop pressures of 10, 14, and 17 N/sq cm (15, 20, and 25 psia) over a range of initial turbine inlet temperatures from 366 to 550 K (200 to 530 F). The data are presented to show the effects of temperature and pressure on the motor-start characteristics of the rotating unit. Electrical characteristics during motoring are also discussed.

  10. Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy Conversion Devices (a.k.a. Understanding Photosystem I as a Biomolecular Reactor for Energy Conversion)

    Science.gov (United States)

    2014-04-01

    Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy Conversion Devices (a.k.a. Understanding Photosystem I as...Laboratory Adelphi, MD 20783-1197 ARL-TR-6904 April 2014 Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy...Final 3. DATES COVERED (From - To) 10/1/2010–10/1/2013 4. TITLE AND SUBTITLE Hydrogen Production from Water by Photosynthesis System I for Use as Fuel

  11. Design of the steam generator in an energy conversion system based on the aluminum combustion with water

    International Nuclear Information System (INIS)

    Mercati, Stefano; Milani, Massimo; Montorsi, Luca; Paltrinieri, Fabrizio

    2012-01-01

    Highlights: ► Development of a numerical approach for the analysis of a co-generation system based on the aluminum water reaction. ► Construction of system operating maps for estimating the system behavior. ► Comparison of two different designs of the steam generator for the system. ► Definition of the operating range where each configuration provides the best performance. -- Abstract: The paper shows the preliminary design of the superheated steam generator to be used in a novel hydrogen production and energy conversion system based on the combustion of aluminum particles with water. The system is aimed at producing hydrogen and pressurized superheated steam, using the heat released by the Al–H 2 O reaction. The interest on this type of technology arises because of the possibility of obtaining hydrogen with very low pollutant and greenhouse gas emissions, compared to the traditional hydrogen production systems, such as the steam reforming from methane. The analysis of the combustion chamber and the heat recovery system is carried out by means of a lumped and distributed parameter numerical approach. The multi phase and gas mixture theoretical principles are used both to characterize the mass flow rate and the heat release in the combustion chamber and within the heat exchangers in order to relate the steam generator performance to the system operating parameters. Finally, the influence of the steam generator performance on the whole energy conversion system behavior is addressed, with particular care to the evaluation of the total power and efficiency variation with the combustion parameters.

  12. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    Science.gov (United States)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  13. A thermoelectric-conversion power supply system using a strontium heat source of high-level radioactive nuclear waste

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka

    2011-01-01

    A thermoelectric-conversion power supply system with radioactive strontium in high-level radioactive waste has been proposed. A combination of Alkali Metal Thermo-Electric Conversion (AMTEC) and a strontium fluoride heat source can provide a compact and long-lived power supply system. A heat source design with strontium fluoride pin bundles with Hastelloy cladding and intermediate copper has been proposed. This design has taken heat transportation into consideration, and, in this regard, the feasibility has been confirmed by a three-dimensional thermal analysis using Star-CD code. This power supply system with an electric output of 1 MW can be arranged in a space of 50 m 2 and approximately 1.1 m height and can be operated for 15 years without refueling. This compact and long-lived power supply is suitable for powering sources for remote places and middle-sized ships. From the viewpoint of geological disposal of high-level waste, the proposed power supply system provides a financial base for strontium-cesium partitioning. That is, a combination of minor-actinide recycling and strontium-cesium partitioning can eliminate a large part of decay heat in high-level waste and thus can save much space for geological disposal. (author)

  14. Very low-energy conversion electron detection (VLECED) system at the isocele on-line isotope separator, Orsay

    International Nuclear Information System (INIS)

    Kilcher, P.; Sauvage, J.; Munsch, J.; Obert, J.; Caruette, A.; Ferro, A.; Boissier, G.; Fournet-Fayas, J.; Ducourtieux, M.; Landois, G.

    1988-01-01

    A system designed and installed at the on-line isotope separator ISOCELE II allows the high resolution detection of low-energy conversion electrons (down to 1 keV) emitted by mass separated radioactive sources: the use of a special tape transport permits both the slowing down of the incoming beam of radioactive ions up to a collection point and the acceleration of the electrons emitted by the collected sources brought to a flat magnetic spectrograph. Typical spectra so obtained are presented

  15. Development of nuclear technologies and conversion of nuclear weapon testing system infrastructure in Kazakhstan

    International Nuclear Information System (INIS)

    Cherepnin, Yu.; Takibaev, Zh.

    2000-01-01

    The article gives a brief description of the work done by the National Nuclear Center of the Republic of Kazakhstan in development of nuclear technology and conversion of nuclear weapon testing infrastructure in Kazakhstan. Content and trends of works are as follows: 1. Peaceful use of all physical facilities, created earlier for nuclear tests in Kazakhstan; 2. Development of methods and technologies for safe nuclear reactors use; 3. Examination of different materials in field of great neutron flow for thermonuclear reactor's first wall development; 4. Liquidation of all wells, which were formed in the results of underground nuclear explosions in Degelen mountain massif of former Semipalatinsk test site; 5. Study of consequences of nuclear tests in West Kazakhstan (territory of Azgir test site and Karachaganak oil field); 6. Study of radiological situation on the Semipalatinsk test site and surrounding territories; 7. Search of ways for high-level radioactive wastes disposal; 8. Construction of safe nuclear power plants in Kazakhstan

  16. Design Concepts for RF-DC Conversion in Particle Accelerator Systems

    CERN Document Server

    Caspers, F; Grudiev, A; Sapotta, H

    2010-01-01

    In many particle accelerators considerable amounts of RF power reaching the megawatt level are converted into heat in dummy loads. After an overview of RF power in the range 200 MHz to 1 GHz dissipated at CERN we discuss several developments that have come up in the past using vacuum tube technology for RF-DC conversion. Amongst those the developments of the cyclotron wave converter CWC appears most suitable. With the availability of powerful Schottky diodes the solid state converter aspect has to be addressed as well. One of the biggest problems of Schottky diode based structures is the junction capacity. GaAs and GaN Schottky diodes show a significant reduction of this junction capacity as compared to silicon. Small rectenna type converter units which have been already developed for microwave powered helicopters can be used in waveguides or with coaxial power dividers.

  17. Status of GT-MHR with emphasis on the power conversion system

    International Nuclear Information System (INIS)

    Neylan, A.J.; Silady, F.A.; Kohler, B.P.; Lomba, D.; Rose, R.

    1996-01-01

    The conceptual design of the Gas Turbine-Modular Helium Reactor (GT-MHR) has made significant progress in the past year. Evaluation of an external versus internal (submerged) generator and modifications as a result of an internal seal task force were completed. Significant progress was also made on the design of the generator utilizing existing technology. Conceptual design of the turbocompressor was confirmed, including extensive evaluation of the entire turbomachine (turbocompressor and generator) rotor dynamics. Results concluded in a revised configuration for the location of magnetic bearings supporting the entire machine. Integration of the turbomachine with the recuperator, precooler, intercooler and internal ducts and seals progressed to improved maintenance and operation. This resulted in some changes and improvements in the overall arrangement of the power conversion module. The paper also provides a summary of the fuel and safety assessment progress. (author). 6 refs, 7 figs, 3 tabs

  18. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  19. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  20. Catalytic properties of pure and K{sup +}-doped Cu O/Mg O system towards 2-propanol conversion

    Energy Technology Data Exchange (ETDEWEB)

    El-Molla, S. A.; Amin, N. H.; Hammed, M. N.; Sultan, S. N. [Ain Shams University, Faculty of Education, Chemistry Department, Roxy, Heliopolis, Cairo 11757 (Egypt); El-Shobaky, G. A., E-mail: saharelmolla@yahoo.com [National Research Center, Dokki, Cairo (Egypt)

    2013-08-01

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K{sup +} species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N{sub 2} at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu{sub 2}O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K{sup +}-doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K{sup +}-doping increased the catalytic activity and catalytic durability. (Author)

  1. Catalytic properties of pure and K+-doped Cu O/Mg O system towards 2-propanol conversion

    International Nuclear Information System (INIS)

    El-Molla, S. A.; Amin, N. H.; Hammed, M. N.; Sultan, S. N.; El-Shobaky, G. A.

    2013-01-01

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K + species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N 2 at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu 2 O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K + -doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K + -doping increased the catalytic activity and catalytic durability. (Author)

  2. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    Science.gov (United States)

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  3. Conversation Analysis.

    Science.gov (United States)

    Schiffrin, Deborah

    1990-01-01

    Summarizes the current state of research in conversation analysis, referring primarily to six different perspectives that have developed from the philosophy, sociology, anthropology, and linguistics disciplines. These include pragmatics; speech act theory; interactional sociolinguistics; ethnomethodology; ethnography of communication; and…

  4. Radioactive waste management issues related to the conversion of the Chernobyl sarcophagus into an ecologically safe system

    International Nuclear Information System (INIS)

    Rudy, C.G.; Vovk, I.F.

    1997-01-01

    The sarcophagus currently suffers from the extreme conditions in which it was hastily built, it may not last for 30 years, as was intended, and it may collapse earlier. Another cause of concern is the interaction of fuel-containing masses with water percolating into the shelter, possibly leading to migration and accumulation of fissile materials which, in turn, may result in reaching the state of criticality. The consistency of nuclear fuel debris is changing with time, and the monitoring and safety systems are deteriorating. With the increasing uncertainties of the data acquired, the confidence of any prediction is very low. The collapse of the sarcophagus would lead to a new radioactive contamination of the territory, groundwater and rivers. Thus, its conversion into an ecologically safe system is a pressing problem. The Gordian knot of the problem is to maintain safe management of a huge amount of messy radioactive waste both inside and outside the sarcophagus. The purpose of this paper is to discuss the issue in the light of the prospects for conversion of the sarcophagus and related activities currently being undertaken or planned in Ukraine

  5. Improved direct torque control of an induction generator used in a wind conversion system connected to the grid.

    Science.gov (United States)

    Abdelli, Radia; Rekioua, Djamila; Rekioua, Toufik; Tounzi, Abdelmounaïm

    2013-07-01

    This paper presents a modulated hysteresis direct torque control (MHDTC) applied to an induction generator (IG) used in wind energy conversion systems (WECs) connected to the electrical grid through a back-to-back converter. The principle of this strategy consists in superposing to the torque reference a triangular signal, as in the PWM strategy, with the desired switching frequency. This new modulated reference is compared to the estimated torque by using a hysteresis controller as in the classical direct torque control (DTC). The aim of this new approach is to lead to a constant frequency and low THD in grid current with a unit power factor and a minimum voltage variation despite the wind variation. To highlight the effectiveness of the proposed method, a comparison was made with classical DTC and field oriented control method (FOC). The obtained simulation results, with a variable wind profile, show an adequate dynamic of the conversion system using the proposed method compared to the classical approaches. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Basic policy of maintenance for the power conversion system of the gas turbine high temperature reactor 300 (GTHTR300)

    International Nuclear Information System (INIS)

    Kosugiyama, Shinichi; Takizuka, Takakazu; Kunitomi, Kazuhiko; Yan, Xing; Katanishi, Shoji; Takada, Shoji

    2003-01-01

    Basic policy of maintenance was determined for major equipment in the power conversion system of the Gas Turbine High Temperature Reactor 300 (GTHTR300). It was developed based on the current maintenance practice in Light Water Reactors (LWRs), High Temperature Engineering Test Reactor (HTTR) and conventional combined cycle power plants while taking into account of unique design features of GTHTR300. First, potential degradation phenomena in operations were identified and corresponding maintenance approaches were proposed for the equipment. Such degradations encountered typically in LWRs as corrosion, erosion and stress corrosion cracking are unlikely to occur since the working fluid of GTHTR300 is inert helium. Main causes of the degradations are high operating temperature and pressure. The gas turbine, compressor, generator, control valves undergo opening and dismantling maintenance in a suitable time interval. The power conversion vessel, heat exchanger vessel, primary system piping and heat exchanging tubes of precooler are subjected to in-service inspections similar to those done in LWRs. As turbine blades represent the severest material degradation because of their high-temperature and high-stress operating conditions, a lifetime management scheme was suggested for them. The longest interval of open-casing maintenance of the gas turbine is estimated to be six to seven years from technical point of view. Present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  7. Environmental studies related to the operation of wind energy conversion systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S.E.; Cornaby, B.W.; Rodman, C.W.; Sticksel, P.R.; Tolle, D.A.

    1977-12-01

    This biophysical impact assessment explores the environmental consequences of the emerging wind energy conversion technology through field studies done at the DOE/NASA 100-kW Experimental Wind Turbine located at NASA Lewis Research Center's Plum Brook Station near Sandusky, Ohio. A micrometeorological field program monitored changes in the downwind wake of the wind turbine. Horizontal and/or vertical measurements of wind speed, temperature, carbon dioxide concentration, precipitation, and incident solar radiation showed measurable variation within the wake only for precipitation and wind speed. The changes were minor and not likely to result in any secondary effects to vegetation, including crops, because they are within the natural range of variability in the site environment. Effects are negligible beyond the physically altered area of the tower pad, access, and control structures. The wind turbine has not proved to be a high risk to airborne fauna, including the most vulnerable night-migrating songbirds. Behavioral studies indicate the birds will avoid the turbine if they can see it.

  8. Design and Properties of an Immobilization Enzyme System for Inulin Conversion.

    Science.gov (United States)

    Hang, Hua; Wang, Changbao; Cheng, Yiqun; Li, Ning; Song, Liuli

    2018-02-01

    A commercial inulinase could convert inulin into fructose, which was optimized to be entrapped in the calcium alginate-gelatin beads with the immobilization yield of 86% for free inulinase activities. The optimum pH values and temperatures were 4.5 and 40 °C for the free enzyme and 5.0-5.5 and 45-50 °C for the immobilized enzyme. The kinetic parameters of V max and K m were 5.24 μmol/min and 57.6 mg/mL for the free inulinase and 4.32 μmol/min and 65.8 mg/mL for the immobilized inulinase, respectively. The immobilized enzyme retained 80% of its initial activities at 45 °C for 4 days, which could exhibit better thermal stability. The reuse of immobilized inulinase throughout the continuous batch operations was explored, which had better reusability of the immobilized biocatalyst. At the same time, the stability of immobilized enzyme in the continuous packed-bed bioreactor was estimated, which showed the better results and had its potential scale-up fructose production for inulin conversion.

  9. Conversion factors from counts to chemical ratios for the EURITRACK tagged neutron inspection system

    International Nuclear Information System (INIS)

    El Kanawati, W.; Perot, B.; Carasco, C.; Eleon, C.; Valkovic, V.; Sudac, D.; Obhodas, J.

    2011-01-01

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) uses 14 MeV neutrons produced by the 3 H(d,n) 4 H fusion reaction to detect explosives and narcotics in cargo containers. Reactions induced by fast neutrons produce gamma rays, which are detected in coincidence with the associated alpha particle to determine the neutron direction. In addition, the neutron path length is obtained from a time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined. Information concerning the chemical composition of the target material is obtained from the analysis of the energy spectrum. The carbon, oxygen, and nitrogen relative count contributions must be converted to chemical proportions to distinguish illicit and benign organic materials. An extensive set of conversion factors based on Monte Carlo numerical simulations has been calculated, taking into account neutron slowing down and photon attenuation in the cargo materials. An experimental validation of the method is presented by comparing the measured chemical fractions of known materials, in the form of bare samples or hidden in a cargo container, to their real chemical composition. Examples of application to real cargo containers are also reported, as well as simulated data with explosives and illicit drugs.

  10. Conversion factors from counts to chemical ratios for the EURITRACK tagged neutron inspection system

    Energy Technology Data Exchange (ETDEWEB)

    El Kanawati, W. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Perot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Carasco, C.; Eleon, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Valkovic, V. [A.C.T.d.o.o., Prilesje 4, 10000 Zagreb (Croatia); Sudac, D.; Obhodas, J. [Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia)

    2011-10-21

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) uses 14 MeV neutrons produced by the {sup 3}H(d,n){sup 4}H fusion reaction to detect explosives and narcotics in cargo containers. Reactions induced by fast neutrons produce gamma rays, which are detected in coincidence with the associated alpha particle to determine the neutron direction. In addition, the neutron path length is obtained from a time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined. Information concerning the chemical composition of the target material is obtained from the analysis of the energy spectrum. The carbon, oxygen, and nitrogen relative count contributions must be converted to chemical proportions to distinguish illicit and benign organic materials. An extensive set of conversion factors based on Monte Carlo numerical simulations has been calculated, taking into account neutron slowing down and photon attenuation in the cargo materials. An experimental validation of the method is presented by comparing the measured chemical fractions of known materials, in the form of bare samples or hidden in a cargo container, to their real chemical composition. Examples of application to real cargo containers are also reported, as well as simulated data with explosives and illicit drugs.

  11. GEO-TEP. Development of thermoelectric materials for geothermal energy conversion systems. Final report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2008-07-01

    Geothermal heat can be directly converted into electricity by using thermoelectric converters. Thermoelectric conversion relies on intrinsic materials properties which have to be optimised. In this work novel environmentally friendly and stable oxide ceramics were developed to fulfil this task. Thus, manganate phases were studied regarding their potential thermoelectric properties for converting geothermal heat into electricity. Perovskite-type phases were synthesized by applying different methods: the ceramic route, and innovative synthesis routes such as the 'chimie douce' method by bulk thermal decomposition of the citrate precursor or using an USC process, and also the polyol-mediated synthesis route. The crystal structures of the manganate phases are evaluated by XRPD, NPD, and ED techniques while specific microstructures such as twinned domains are highlighted by HRTEM imaging. Besides, the thermal stability of the Mn-oxide phases in air atmosphere are controlled over a wide temperature range (T < 1300 K). The thermoelectric figure of merit ZT was enhanced from 0.021 to 0.3 in a broad temperature range for the studied phases which makes these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures. (author)

  12. Proceedings of the fourth biennial conference and workshop on wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Kottler, Jr., R. J. [ed.

    1980-06-01

    Separate abstracts are included for papers presented concerning research and development requirements and utility interface and institutional issues for small-scale systems; design requirements and research and development requirements for large-scale systems; economic and operational requirements of large-scale wind systems; wind characteristics and wind energy siting; international activities; wind energy applications in agriculture; federal commercialization and decentralization plans; and wind energy innovative systems.

  13. High conversion self-curing sealer based on a novel injectable polyurethane system for root canal filling

    International Nuclear Information System (INIS)

    Sun, Bin; Zuo, Yi; Li, Jidong; Wang, Li; Tang, Kuangyun; Huang, Di; Du, Jingjing; Luo, Peipei; Li, Yubao

    2013-01-01

    Low monomer–polymer conversion is the key factor leading to cytotoxicity for resin-containing restorative materials. This paper provides a new root canal filling system based on self-curing injectable polyurethane which can achieve high conversion in a short time. Traced FTIR spectra show more than 90% NCO group participated in the curing reaction after 4 h, and only about 5% remained after 24 h. The calculated data also testified the curing process supports a third-order reaction, and this efficient and sufficient reaction is postulated to weaken the toxic stimulation. By culturing with L929 murine fibroblasts, the PU sealer is shown to be favorable for cell attachment and proliferation. Then physicochemical properties of the injectable PU-based sealer were evaluated according to the Standard [ISO 6876:2001 (E)] for clinical application. A series of physicochemical properties of PU sealer have been tested comparing with AH Plus and Apexit Plus. And the results present that the self-curing PU sealer could not only match the clinic requirements, but even has better properties than the other two commercial sealers. We expect the high conversion PU sealer has a tremendous potential in the field of root canal filling after further biological evaluation. - Highlights: • A new root canal sealer based on self-curing injectable polyurethane was provided. • More than 90% NCO group reacted after 4h, and only about 5% remained after 24 h. • By culturing with L929 murine fibroblasts, the PU sealer showed perfect cytocompatibility. • Volumetric dilatancy after curing will make the sealer achieve a tight seal

  14. High conversion self-curing sealer based on a novel injectable polyurethane system for root canal filling

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China); Zuo, Yi, E-mail: zoae@scu.edu.cn [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China); Li, Jidong; Wang, Li [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China); Tang, Kuangyun [The State Key Laboratory of Oral Diseases and Orthognathic Surgery, Sichuan University West China College of Stomatology, Chengdu 610064 (China); Huang, Di; Du, Jingjing; Luo, Peipei; Li, Yubao [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China)

    2013-08-01

    Low monomer–polymer conversion is the key factor leading to cytotoxicity for resin-containing restorative materials. This paper provides a new root canal filling system based on self-curing injectable polyurethane which can achieve high conversion in a short time. Traced FTIR spectra show more than 90% NCO group participated in the curing reaction after 4 h, and only about 5% remained after 24 h. The calculated data also testified the curing process supports a third-order reaction, and this efficient and sufficient reaction is postulated to weaken the toxic stimulation. By culturing with L929 murine fibroblasts, the PU sealer is shown to be favorable for cell attachment and proliferation. Then physicochemical properties of the injectable PU-based sealer were evaluated according to the Standard [ISO 6876:2001 (E)] for clinical application. A series of physicochemical properties of PU sealer have been tested comparing with AH Plus and Apexit Plus. And the results present that the self-curing PU sealer could not only match the clinic requirements, but even has better properties than the other two commercial sealers. We expect the high conversion PU sealer has a tremendous potential in the field of root canal filling after further biological evaluation. - Highlights: • A new root canal sealer based on self-curing injectable polyurethane was provided. • More than 90% NCO group reacted after 4h, and only about 5% remained after 24 h. • By culturing with L929 murine fibroblasts, the PU sealer showed perfect cytocompatibility. • Volumetric dilatancy after curing will make the sealer achieve a tight seal.

  15. Neural Network Based Maximum Power Point Tracking Control with Quadratic Boost Converter for PMSG—Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Ramji Tiwari

    2018-02-01

    Full Text Available This paper proposes an artificial neural network (ANN based maximum power point tracking (MPPT control strategy for wind energy conversion system (WECS implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O method and Back propagation network (BPN method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC. The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.

  16. Comparison of simulations and offshore measurement data of a prototype of a floating combined wind and wave energy conversion system

    DEFF Research Database (Denmark)

    Yde, Anders; Larsen, Torben J.; Hansen, Anders Melchior

    2015-01-01

    In this paper, results from comparisons of simulations and measured offshore data from a floating combined wind and wave energy conversion system are presented. The device is a downscaled prototype that consists of a floating platform equipped with ten wave energy absorbers and three wind turbines....... The numerical model of the platform is based on the aeroelastic code, HAWC2, developed by DTU Wind Energy, which is coupled with a special external system that reads the output generated directly by the wave analysis software, WAMIT. The model also includes models for the dynamic mooring lines as well...... as the turbines non-linear yaw and teeter motion behavior. The main focus on the comparison will be on the statistical trends of the platform motion, mooring loads and turbine loads in measurements and simulations during different operational conditions such as increasing wind speed, wave height and wind...

  17. Multivariable H{sub 2} and H{infinity} control for a wind energy conversion system - a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Ronilson; Coutinho, Gilmar Alves; Ferreira, Alexandre Jose; Torga, Flavio Allison [Universidade Federal de Ouro Preto (EM/DECAT/UFOP), MG (Brazil). Escola de Minas. Dept. de Engenharia de Controle e Automacao e de Tecnicas Fundamentais], Emails: rocha@em.ufop.br, gacoutinho@gmail.com, aleengaut@yahoo.com.br, torgautomacao@yahoo.com.br

    2010-10-15

    The Wind Energy Conversion System (WECS) is a nonlinear system, highly dependent on a stochastic variable characterized by sudden variations, and subjected to cyclical disturbances caused by operational phenomena. Thus, the quality of a WECS controller is measured by its capacity to deal with unmodeled dynamics, stochastic signals, and periodic, as well as non-periodic disturbances. Since the WECS' objectives can be easily specified in terms of maximum allowable gain in the disturbance-to-output transfer functions, H2 and H{infinity} methodologies can be good options for designing a WECS stabilizing controller, combining specifications such as: disturbance attenuation, asymptotic tracking, bandwidth limitation, robust stability, and trade-off between performance and control effort. Designs for WECS multivariable feedback controllers based on H2 and H{infinity} methodologies are presented in this paper. The performances of both controllers are computationally simulated, analyzed and compared in order to identify the advantages and drawbacks of each controller design. (author)

  18. Advanced energy conversion and application - Decentralized energy systems. Papers; Fortschrittliche Energiewandlung und -anwendung - Schwerpunkt: Dezentrale Energiesysteme. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Decentralized energy systems is the major topic of this VDI report which contains the proceedings of the VDI conference on advanced energy conversion and application. The decentralized energy systems are in the focus because it is expected that they will gain in significance in the course of restructuring and liberalisation of the energy markets and growing commitment to greenhouse gas mitigation. The subjects of the papers are the cogeneration technology in general, and specific systems for combined generation of heat, power and cold,(CHPC systems), systems for renewable energy generation, industrial energy technology, and analysis and optimization of energy systems. The report is intended to serve as a source of guidance and reference for manufacturers and operators of decentralized energy systems, for decision-making on energy policy, and for the energy industry, counselling firms and regulatory/surveillance bodies, and members of universities involved in relevant research and development work. (orig./CB) [German] Themenschwerpunkt des VDI-Berichts sind die dezentralen Energiesysteme, die im Spannungsfeld von fortschreitender Liberalisierung der Energiemaerkte und der Bemuehungen um die Reduzierung von Emissionen an Bedeutung gewinnen. Dabei widmen sich die Beitraege den Systemen zur Kraft-Waerme-Kaelte-Kopplung und zur Nutzung erneuerbarer Energie sowie der industriellen Energietechnik und der Analyse und Optimierung von Energiesystemen. Der Bericht wendet sich an Hersteller und Betreiber dezentraler Energieanlagen, an Entscheidungstraeger aus Politik und Wirtschaft, an Berater und Ueberwachungsinstitutionen sowie an auf diesem Gebiet taetige Hochschullehrer und -mitarbeiter. (orig.)

  19. Modeling and simulation of grid connected permanent magnet generator based small wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Arifujjaman, Md.

    2011-07-01

    In order to recover the maximum energy from small scale wind turbine systems many parameters have to be controlled. The aim of this paper is to propose a control strategy for the grid connected PMG-based small wind turbine systems. A mathematical model of small wind turbine systems was developed and the system simulated. Results show demonstrated that the control strategy is highly efficient. Sure enough it reduces the dependence on system variables, diminishes the system complexity, its furling and maximum power point controllers are efficient and it provides a stable operation for multiple wind speeds. This study developed a modeling and control strategy which was proved to be feasible by simulation results.

  20. Archetype-based conversion of EHR content models : pilot experience with a regional EHR system

    OpenAIRE

    Chen, Rong; Klein, Gunnar O; Sundvall, Erik; Karlsson, Daniel; Åhlfeldt, Hans

    2009-01-01

    Background: Exchange of Electronic Health Record (EHR) data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of re...

  1. Design techniques for modular integrated utility systems. [energy production and conversion efficiency

    Science.gov (United States)

    Wolfer, B. M.

    1977-01-01

    Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.

  2. IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol. 1 - Aerospace power systems

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Various papers on aerospace power systems are presented. The general topics addressed are: advanced aerospace power concepts, aircraft power, analysis of PMAD performance, automation, burst and pulse power, environmental issues, power circuits, power components, simulation, solar dynamics, solar dynamics conversion cycles, space design of PMAD systems, space environmental effects, space high voltage environment, space nuclear systems, space power automation

  3. Model for Calculating Electrolytic Shunt Path Losses in Large Electrochemical Energy Conversion Systems

    Science.gov (United States)

    Prokopius, P. R.

    1976-01-01

    Generalized analysis and solution techniques were developed to evaluate the shunt power losses in electrochemical systems designed with a common or circulating electrolyte supply. Sample data are presented for a hypothetical bulk energy storage redox system, and the general applicability of the analysis technique is discussed.

  4. Proceedings of the third biennial conference and workshop on wind energy conversion systems. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Kornreich, T R [ed.

    1978-05-01

    Separate abstracts are included for 38 papers presented concerning large scale wind systems, small scale wind systems, regional and economic analysis, wind characteristics research, environmental and institutional considerations, and international activities. Four papers were previously input into the energy data base.

  5. Technical characteristic analysis of wind energy conversion systems for sustainable development

    International Nuclear Information System (INIS)

    BoroumandJazi, G.; Rismanchi, B.; Saidur, R.

    2013-01-01

    Highlights: ► Identifying the required technical characteristics of sustainable wind power system. ► Observing Weibull probability function and artificial neural networks for reliability. ► Daily/monthly generation data are used to investigate the system’s availability. - Abstract: Wind energy as a clean, environmentally friendly and cost effective renewable energy resource, is taken into consideration by many developed and developing countries as a promising means to provide electrical energy. In feasibility study stage of the wind energy systems, the sustainability analysis is one of the main issues that can assure the investors and stockholders to invest in this renewable energy. Since a system can be truly sustainable by achieving the energetic, ecological and economic sustainability, the present study will focus on the technical characteristics and performance analysis of the wind energy systems. The relations between reliability, availability, energy and exergy efficiency, risk management and the environmental impact of the wind energy systems are investigated in the context of this study. It is concluded that the wind characteristics data and the wind speed are the main effective parameters on its reliability and availability. It is also revealed that considering the system loss, exergy efficiency results of the wind energy systems are more reliable than the energy efficiencies. Due to avoid future failure of the systems, the causes of the failure are investigated and it was concluded that the structural failures caused by storms and strong winds are known as the most prevalent failures

  6. Design methodology for flexible energy conversion systems accounting for dynamic performance

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Casati, Emiliano; Casella, Francesco

    2014-01-01

    This article presents a methodology to help in the definition of the optimal design of power generation systems. The innovative element is the integration of requirements on dynamic performance into the system design procedure. Operational flexibility is an increasingly important specification...

  7. Reclamation of a molecular beam epitaxy system and conversion for oxide epitaxy

    International Nuclear Information System (INIS)

    Carver, Alexander G.; Henderson, Walter; Doolittle, W. Alan

    2008-01-01

    An early 1980s vintage molecular beam epitaxy system, a Varian Gen II system, originally used for HgCdTe epitaxy, was converted into a system capable of growing thin-film complex metal oxides. The nature of some of the alternative oxides requires a thorough cleaning and, in some cases, complete replacement of system components. Details are provided regarding the chemistry of the etchants used, safety requirements for properly handling, and disposal of large quantities of etchants and etch by-products, and components that can be reused versus components that require replacement are given. Following the given procedures, an ultimate base pressure of 2x10 -10 Torr was obtained. Films grown in the system after reclamation contained no evidence of previously present materials down to the detection limit of secondary ion mass spectrometry

  8. Multi-criteria assessment of energy conversion systems by means of thermodynamic, economic and environmental parameters

    Science.gov (United States)

    Becerra Lopez, Humberto Ruben

    2007-12-01

    High expansion of power demand is expected in the Upper Rio Grande region (El Paso, Hudspeth, Culberson, Jeff Davis, Presidio and Brewster counties) as a result of both electrical demand growth and decommissioning of installed capacity. On the supply side a notable deployment of renewable power technologies can be projected owing to the recent introduction of a new energy policy in Texas, which attempts to reach 10,000 installed-MWe of renewable capacity for 2025. Power generation fueled by natural-gas might consistently expand due to the encouraged use of this fuel. In this context the array of participating technologies can be optimized, which, within a sustainability framework, translates into a multidimensional problem. The solution to the problem is presented through this dissertation in two main parts. The first part solves the thermodynamic-environmental problem through developing a dynamic model to project maximum allowable expansion of technologies. Predetermined alternatives include diverse renewable energy technologies (wind turbine, photovoltaic conversion, hybrid solar thermal parabolic trough, and solid oxide fuel cells), a conventional fossil-fuel technology (natural gas combined-cycle), and a breakthrough fossil-fuel technology (solid oxide fuel cells). The analysis is based on the concept of cumulative exergy consumption, expanded to include abatement of emissions. A Gompertz sigmoid growth is assumed and constrained by both exergetic self-sustenance and regional energy resource availability. This part of the analysis assumes that power demand expansion is met by full deployment of alternative technologies backed up by conventional technology. Results show that through a proper allowance for exergy reinvestment the power demand expansion may be met largely by alternative technologies minimizing the primary resource depletion. The second part of the study makes use of the dynamic model to support a multi-objective optimization routine, where the

  9. FEATURES OF ELECTROMECHANICAL ACOUSTIC ENERGY CONVERSION BY CYLINDRICAL PIEZOCERAMIC TRANSDUCERS WITH INTERNAL SCREENS IN COMPOSITION OF FLAT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. G. Leiko

    2018-01-01

    Full Text Available The problem of sound emission is considered by a system formed from cylindrical piezoceramic radiators with internal acoustically soft screens. Longitudinal axis of emitters lie in one plane. This system is characterized by the interaction of electric, mechanical and acoustic fields in the process of conversion electrical energy to acoustical energy and acoustic fields in the process of forming them in the environments. The purpose of the work is to determine the peculiarities of the electromechanical acoustic transformation of energy by cylindrical piezoceramic radiators with internal screens in the composition of flat systems, taking into account all types of interaction.The research was carried out by the method of bound fields in multiply connected domains with the use of addition theorems for the cylindrical wave functions. The physical fields arising from the emission of sound by such a system are determined by the joint solution of the system of differential equations: the wave equation; equations of motion of thin piezoceramic shells with circular polarization in displacements; the equations of forced electrostatics for piezoceramics at given boundary conditions, the conditions of conjugation of fields at the boundaries of the division of domains and electric conditions.The solution of the problem is reduced to the solution of an infinite system of linear algebraic equations with respect to unknown coefficients of field expansions.An analysis of the results of numerical calculations, performed on the basis of the obtained analytical relations, called to establish a number of features in the electromechanical acoustic transformation of energy by emitters in the composition of flat systems. They include: the role of acoustic interaction in the process of energy conversion; determination of the mechanism of quantitative assessment of the influence of interaction on these processes; the dependence of the degree of violation of the radial

  10. The mercury laser system - An average power, gas-cooled, Yb:S-FAP based system with frequency conversion and wavefront correction

    Energy Technology Data Exchange (ETDEWEB)

    Bibeau, C.; Bayramian, A.; Armstrong, P.; Ault, E.; Beach, R.; Benapfl, M.; Campbell, R.; Dawson, J.; Ebbers, C.; Freitas, B.; Kent, R.; Liao, Z.; Ladran, T.; Menapace, J.; Molander, B.; Moses, E.; Oberhelman, S.; Payne, S.; Peterson, N.; Schaffers, K.; Stolz, C.; Sutton, S.; Tassano, J.; Telford, S.; Utterback, E. [Lawrence Livermore National Lab., Livermore, CA (United States); Randles, M. [Northrop Grumman Space Technologies, Charlotte, NC (United States); Chain, B.; Fei, Y. [Crystal Photonics, Sanford, Fl (United States)

    2006-06-15

    We report on the operation of the Mercury laser with fourteen 4*6 cm{sup 2} Yb:S-FAP amplifier slabs pumped by eight 100 kW peak power diode arrays. The system was continuously run at 55 J and 10 Hz for several hours, (2*10{sup 5} cumulative shots) with over 80% of the energy in a 6 times diffraction limited spot at 1.047 {mu}m. Improved optical quality was achieved in Yb:S-FAP amplifiers with magneto-rheological finishing, a deterministic polishing method. In addition, average power frequency conversion employing YCOB crystal was demonstrated at 50% conversion efficiency or 22.6 J at 10 Hz. (authors)

  11. Computational Analysis of Igbo Numerals in a Number-to-text Conversion System

    Directory of Open Access Journals (Sweden)

    Olufemi Deborah NINAN

    2017-12-01

    Full Text Available System for converting Arabic numerals to their textual equivalence is an important tool in Natural Language processing (NLP especially in high-level speech processing and machine translation. Such system is scarcely available for most African languages including the Igbo language. This translation system is essential as Igbo language is one of the three major Nigerian languages feared to be among the endangered African languages. The system was designed using sequence as well as activity diagram and implemented using the python programming language and PyQt. The qualitative evaluation was done by administering questionnaires to selected native Igbo speakers and experts to provide preferred representation of some random numbers. The responses were compared with the output of the system. The result of the qualitative evaluation showed that the system was able to generate correct and accurate representations for Arabic numbers between 1-1000 in Igbo language being the scope of this study. The resulting system can serve as an effective teaching and learning tool of the Igbo language.

  12. Comparative cost analyses: total flow vs other power conversion systems for the Salton Sea Geothermal Resource

    Energy Technology Data Exchange (ETDEWEB)

    Wright, G.W.

    1978-09-18

    Cost studies were done for Total Flow, double flash, and multistage flash binary systems for electric Energy production from the Salton Sea Geothermal Resource. The purpose was to provide the Department of energy's Division of Geothermal Energy with information by which to judge whether to continue development of the Total Flow system. Results indicate that the Total Flow and double flash systems have capital costs of $1,135 and $1,026 /kW with energy costs of 40.9 and 39.7 mills/kW h respectively. The Total Flow and double flash systems are not distinguishable on a cost basis alone; the multistage flash binary system, with capital cost of $1,343 /kW and energy cost of 46.9 mills/kW h, is significantly more expensive. If oil savings are considered in the total analysis, the Total Flow system could save 30% more oil than the double flash system, $3.5 billion at 1978 oil prices.

  13. Persuasion detection in conversation

    OpenAIRE

    Gilbert, Henry T.

    2010-01-01

    Approved for public release; distribution is unlimited In this thesis, we present a system for annotating persuasion in conversation based on a social-psychological model. We augmented the social model developed by James Cialdini with some of our own categories for annotators to label. The conversations consisted of 37 hostage negotiation transcripts from private and public sources, with all personal information removed from the private source transcripts. We evaluated the level of agre...

  14. Development of a Performance Analysis Code for the Off-design conditions of a S-CO2 Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Yoo, Yong-Hwan; Cha, Jae-Eun; Lee, Tae-Ho; Eoh, Jae-Hyuk; Kim, Seong-O

    2008-01-01

    For the development of a supercritical carbon dioxide (S-CO2) Brayton cycle energy conversion system coupled to KALIMER-600, a thermal balance has been established on 100% power operating conditions including all the reactor system models such as a primary heat transport system (PHTS), an intermediate heat transport system (IHTS), and an energy conversion system. The S-CO2 Brayton cycle energy conversion system consists of a sodium-CO2 heat exchanger (Hx), turbine, high temperature recuperate (HTR), low temperature recuperate (LTR), precooler, compressor no.1, and compressor no.2. Two compressors were employed to avoid a sharp change of the physical properties near their critical point with a corresponding pressure. The component locations and their operating conditions are illustrated. Energy balance of the power conversion system in KALIMER-600 was designed with the full power condition of each component. Therefore, to predict the off-design conditions and to evaluate each component, an off-design performance analysis code should be accomplished. An off-design performance analysis could be classified into overall system control logic and local system control logic. The former means that mass flow rate and power are controlled by valves, and the latter implies that a bypass or inventory control is an admitted system balance. The ultimate goal of this study is development of the overall system control logic

  15. Ocean thermal energy conversion (OTEC). Power system development. Preliminary design report, final

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The preliminary design of the 10 MWe OTEC power module and the 200 kWe test articles is given in detail. System operation and performance; power system cost estimates; 10 MWe heat exchangers; 200 kWe heat exchanger articles; biofouling control;ammonia leak detection, and leak repair; rotating machinery; support subsystem; instrumentation and control; electrical subsystem; installation approach; net energy and resource analysis; and operability, maintainability, and safety are discussed. The conceptual design of the 40 MWe electrical power system includes four or five 10 MWe modules as designed for the 10 MWe pilot plant. (WHK)

  16. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...

  17. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  18. The becoming organisation : a conversation about the added value of Chaordic Systems Thinking for organisational renewal

    NARCIS (Netherlands)

    Eijnatten, van F.M.; Wäfler, T.; Eijnatten, van F.M.

    2002-01-01

    This conceptual contribution explores the added value of Chaordic System Thinking (CST) for organisational renewal, and its consequences for future research. The paper starts with some essentials of CST (concepts of attractor, holon, discontinuous development, nonlinearity, chaordic properties). In

  19. Proceedings of the third biennial conference and workshop on wind energy conversion systems. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Kornreich, T R [ed.

    1978-05-01

    Separate abstracts are included for 34 papers presented concerning technology development, meteorological siting considerations, multi-unit applications, and innovative and advanced systems concepts. Two papers were previously input into the energy data base.

  20. Variable-speed wind power system with improved energy capture via multilevel conversion

    Science.gov (United States)

    Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay

    2005-05-31

    A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.

  1. A 20-KW Wind Energy Conversion System (WECS) at the Marine Corps Air Station, Kaneohe, Hawaii.

    Science.gov (United States)

    1983-01-01

    of propellers and that vertical-axis wind turbines would be more efficient. Several turbines such as the Darrieus and gyro-mill, of this type are... wind turbines , wind systems siting, alternate energy systems, remote site power generation. 20 ABSTRACT (Con!,,u,. - r r... .. do I(3 lI - d #,d e...Corps Air Station (MCAS) Kaneohe Bay, Hawaii. The wind turbine generator chosen for the evaluation was a horizontal-axis-propeller- downwind rotor

  2. Direct conversion of fusion energy into the electric one in the 'Dragon' magnetic confinement system

    International Nuclear Information System (INIS)

    Glagolev, V.M.; Timofeev, A.V.

    1993-01-01

    It is shown that recuperator in which the thermal energy of particles is transformed into electric oue under drift in crossed fields is naturally coupled with dragontype magnetic confinement system, so the recuperation process can be initiated in the dragon magnetic field. A number of questions occuring under analysis of recuperator-dragon system is considered, including the dynamics of particle transfer to the recuperator, the share of particles entering the recuperator, the effect of rotational transform and the recuperation efficiency

  3. AFRRI's conversion to a microprocessor-based reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Moore, Mark L.; Hodgdon, Kenneth M.

    1986-01-01

    The Armed Forces Radiobiology Research Institute (AFRRI) is procuring a state-of- the-art microprocessor-based instrumentation and control system to operate AFRRI's 1 MW (steady-state), 3000 MW (pulse) TRIGA Mark-F reactor. This system will replace the current control console while improving or maintaining the existing operational capabilities and safety characteristics. The new unit will have a 15-year design life using state-of-the-art components

  4. Fuel cell/back-up battery hybrid energy conversion systems: Dynamic modeling and harmonic considerations

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2015-01-01

    Highlights: • Novel technique to completely eliminate the harmful harmonics of fuel cell system. • Presenting a novel high accurate detailed electrochemical dynamic model of fuel cells. • Back-up battery system to compensate the slow dynamic response of fuel cell system. • Exact analysis of real electrochemical reactions occurring inside fuel cells. - Abstract: In this study, a novel dynamic model of fuel cells is presented. High accurate static and dynamic responses of the proposed model are experimentally validated by comparing simulated results with real experimental data. The obtained model together with theoretical results shows that a fuel cell or a fuel cell stack has very slow dynamic response, so that, it cannot adapt itself to the fast variations in load demand. It is shown that for adapting well a fuel cell stack to the load demand, the stack should be equipped with a proposed back-up battery system which compensates the slow dynamic response of the stack by providing a bidirectional path to transmit/absorb the extra instant power. It is proved that the conventional switching waveforms used in the converters of the stacks and back-up systems produce an enormous amount of harmful harmonics. Then, a novel technique is proposed to completely eliminate main harmful harmonics. It is worthwhile to note that all the other techniques only reduce the harmful harmonics. Simulated results verify that the back-up battery system together with applying the proposed technique provide a fast dynamic response for the fuel cell/back-up battery system, and also completely eliminate the main harmful harmonics

  5. Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steven [Auburn Univ., AL (United States)

    2016-07-11

    Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests on forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.

  6. Nature-Inspired Design of Artificial Solar-to-Fuel Conversion Systems based on Copper Phosphate Microflowers.

    Science.gov (United States)

    Wang, Jing; Zhu, Ting; Ho, Ghim Wei

    2016-07-07

    Phosphates play significant roles in plant photosynthesis by mediating electron transportation and furnishing energy for CO2 reduction. Motivated by this, we demonstrate herein an artificial solar-to-fuel conversion system, involving versatile copper phosphate microflowers as template and titanium dioxide nanoparticles as host photocatalyst. The elaborate flowerlike architectures, coupled with a unique proton-reduction cycle from interchangeability of different species of orthophosphate ions, not only offer a 2D nanosheet platform for an optimal heterostructure interface but also effectively augment charge-carrier transfer, thereby contributing to enhanced photoactivity and hydrogen generation. These nature-inspired, phosphate-derived nanocomposites advance the synthesis of a large variety of functional materials, which holds great potential for photochemical, photoelectric and catalytic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fracture-resistant ultralloys for space-power systems: nuclear-thermionic-conversion implications of W,27Re

    International Nuclear Information System (INIS)

    Moraga, N.O.; Jacobsen, D.L.; Morris, J.F.

    1989-01-01

    Rhenium (Re) added to tungsten (W) improves the creep strength, recrystallization resistance and ductility. W,27Re is a good workable ultra alloy for use in space nuclear reactor (SNR) systems and perhaps its most practical processing procedure is sintering. A promising SNR application for such ultralloys is very-high-temperature thermionic energy conversion. Therefore determinations of thermionic and thermal emissive characteristics for sintered W,27Re at temperatures near and above 2000 K in hard vacuum enable both scientific and pragmatic progress. Such research results comprise the data and interpretive presentations in this paper. These findings emphasize the fallacy of characterizing ultralloys similar to W,27Re with single-valued thermophysicochemical properties - such as the work function. They further stress the necessity for investigations of this type to determine and demonstrate effective prototypic ultralloy compositions and processing methods. (author)

  8. Conversion of actinide solutions for the production of MA bearing fuels for Gen IV fast reactor systems

    International Nuclear Information System (INIS)

    Fernandez, A.; McGinley, J.; Somers, J.

    2008-01-01

    The conversion of the solution to solid for fuels containing minor actinides for accelerator driven systems or Gen IV fast reactors cannot be made by conventional ammonia or oxalate precipitation as is the case in today's reprocessing plant. The small particle size and concomitant dust that is produced in subsequent processing steps will not permit use of these processes on industrial scale. Innovation is needed to avoid dust generating powders, and indeed to simplify the processes themselves. Two such processing routes have been developed at the JRC-ITU. The sol gel route has been used to produce fuel containing Am and Np for the SUPERFACT, TRABANT and other irradiation experiments. The infiltration process has also been established and fuels have been produced for the FUTURIX and HELIOS experiments. (authors)

  9. Conversion of actinide solutions for the production of MA bearing fuels for Gen IV fast reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; McGinley, J.; Somers, J. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O.Box 2340, Karlsruhe, D-76125 (Germany)

    2008-07-01

    The conversion of the solution to solid for fuels containing minor actinides for accelerator driven systems or Gen IV fast reactors cannot be made by conventional ammonia or oxalate precipitation as is the case in today's reprocessing plant. The small particle size and concomitant dust that is produced in subsequent processing steps will not permit use of these processes on industrial scale. Innovation is needed to avoid dust generating powders, and indeed to simplify the processes themselves. Two such processing routes have been developed at the JRC-ITU. The sol gel route has been used to produce fuel containing Am and Np for the SUPERFACT, TRABANT and other irradiation experiments. The infiltration process has also been established and fuels have been produced for the FUTURIX and HELIOS experiments. (authors)

  10. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  11. Energy conservation and conversion of electrical heating systems in detached houses

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering, Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund, (Sweden)

    2007-06-15

    In this study, a Swedish house built in 1974, heated with resistance heaters was analysed. Different options for changing the heating system and electricity production were compared for this type of detached house, assuming coal-based electricity production as a reference. Changes in the fuel used, the electricity production technology, the end-use heating technology and the heat demand were analysed. The aim was to show how these different parts of the energy system interact and to evaluate the cost-effectiveness of reducing CO{sub 2} emission and primary energy use by different combinations of changes. The results showed that the CO{sub 2} emission and primary energy use could be reduced by 95 and 70%, respectively, without increased heating costs in a national economic perspective. The choice of end-use heating system had a greater influence than the energy conservation measures on the parameters studied. The energy conservation measures were less cost-effective in combination with the more energy-efficient heating systems, although the fact that they reduced the heat demand, and thus also the investment cost of the new heating system, was taken into account. (Author)

  12. Ocean thermal energy conversion (OTEC) power system development. Preliminary design report, Appendices, Part 1 (Final)

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the developed computer models, water system dynamic studies, miscellaneous performance analysis, materials and processes, detailed equipment lists, turbine design studies, tube cleaner design, ammonia leak detection, and heat exchanger design supporting data. (WHK)

  13. Proportional Systems in the History of Architecture: A Conversation with James S. Ackerman

    Directory of Open Access Journals (Sweden)

    Matthew A Cohen

    2014-06-01

    Full Text Available In November 2010, James S. Ackerman, today the only living participant of the conference ‘De divina proportione’, which was held in Milan in 1951, sat for a video interview that was later shown at the conference ‘Proportional Systems in the History of Architecture’ in Leiden in 2011 to mark the sixtieth anniversary of the Milan conference. In this interview, conducted by Matthew A. Cohen, Ackerman discusses how the study of proportional systems has changed over the past six decades, and thereby provides a unique link between the two conferences. The interview begins with Ackerman’s experiences in northern Italy at the close of World War II, and a few years later at the Milan conference. It considers prevailing twentieth-century attitudes toward proportion up to the time of the conference, and compares them with prevailing medieval and Renaissance attitudes. Ackerman then shares his thoughts on the works and legacies of Rudolf Wittkower, Le Corbusier and Colin Rowe, before exploring the influences of architectural proportional theory on architectural design, and possible relationships between proportional systems and architectural beauty. After exploring changes in the uses of proportional systems that accompanied the rise of Abstract Expressionism, the arc of the interview concludes with Ackerman’s thoughts about the future of proportional systems in light of the evolving role of the computer in architectural practice today.

  14. Pictorial Conversations.

    Science.gov (United States)

    Hooper, Kristina

    1982-01-01

    Provides the rationale for considering communication in a graphic domain and suggests a specific goal for designing work stations which provide graphic capabilities in educational settings. The central element of this recommendation is the "pictorial conversation", a highly interactive exchange that includes pictures as the central elements.…

  15. Experimental enhancement of fuzzy fractional order PI+I controller of grid connected variable speed wind energy conversion system

    International Nuclear Information System (INIS)

    Beddar, Antar; Bouzekri, Hacene; Babes, Badreddine; Afghoul, Hamza

    2016-01-01

    Highlights: • Fuzzy fractional order PI+I for wind energy conversion system is developed. • Investigation of the control methods performances under wind and load variations. • PSO algorithm with frequency method are used for parameters tuning. • Experimental results are presented. - Abstract: In this paper, fuzzy fractional order PI+I (FFOPI+I) controller for grid connected Variable Speed Wind Energy Conversion System (VS-WECS) is proposed. The FFOPI+I controller is applied to control a Permanent Magnet Synchronous Generator (PMSG) connected to the grid and nonlinear load through a back-to-back AC-DC-AC PWM converter. The control strategy of the Machine Side Converter (MSC) aims, at first, to extract a maximum power under fluctuating wind speed. Then, the Grid Side Converter (GSC) is controlled to improve the power quality and ensure sinusoidal current in the grid side. The FFOPI+I controller implements a Fuzzy Logic Controller (FLC) in parallel with Fractional Order PI (FOPI) and conventional PI controllers by having a commune proportional gain. The FLC changes the integral gains at runtime. The initial parameters of the FFOPI+I controller were calculated using a frequency method to create a search space then the PSO algorithm is used to select the optimal parameters. To evaluate the performance of the proposed controller in steady and transient states, an experimental test bench has been built in laboratory using dSPACE1104 card. The experimental results demonstrate the effectiveness and feasibility of the FFOPI+I over FOPI and conventional PI controllers by realizing maximum power extraction and improving the grid-side power factor for a wide range of wind speed.

  16. Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2013-01-01

    implementing tertiary regulation. Moreover, system dynamic is affected when shifting VRs. Therefore, the stability is considered in optimization by constraining the eigenvalues arising from dynamic state space model of the system. Genetic algorithm is used in searching for global efficiency optimum while....... As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart from restoring the voltage deviation, secondary control plays an important role to stabilize dc bus voltage when...

  17. Reorienting India's financial system: In conversation with Dr Duvvuri Subbarao, Governor, Reserve Bank of India

    Directory of Open Access Journals (Sweden)

    Vivek Moorthy

    2012-06-01

    Full Text Available Confronted by a slowing economy, the Reserve Bank of India has undertaken steps to revive it. These measures, however, run the risk of worsening current high levels of inflation. This paper examines certain aspects of India's financial system that have contributed to this situation. It argues that unduly low yields on Government bonds have prevented a healthy financial system from developing, with adverse impact upon inflation and other macroeconomic outcomes. It suggests that India should focus far more on domestic, and less on external, financial liberalisation. Specifically, yields on non-market borrowing, such as Provident Fund deposits, should be benchmarked to a low frequency measure of consumer price inflation.

  18. Automated conversation system before pediatric primary care visits: a randomized trial.

    Science.gov (United States)

    Adams, William G; Phillips, Barrett D; Bacic, Janine D; Walsh, Kathleen E; Shanahan, Christopher W; Paasche-Orlow, Michael K

    2014-09-01

    Interactive voice response systems integrated with electronic health records have the potential to improve primary care by engaging parents outside clinical settings via spoken language. The objective of this study was to determine whether use of an interactive voice response system, the Personal Health Partner (PHP), before routine health care maintenance visits could improve the quality of primary care visits and be well accepted by parents and clinicians. English-speaking parents of children aged 4 months to 11 years called PHP before routine visits and were randomly assigned to groups by the system at the time of the call. Parents' spoken responses were used to provide tailored counseling and support goal setting for the upcoming visit. Data were transferred to the electronic health records for review during visits. The study occurred in an urban hospital-based pediatric primary care center. Participants were called after the visit to assess (1) comprehensiveness of screening and counseling, (2) assessment of medications and their management, and (3) parent and clinician satisfaction. PHP was able to identify and counsel in multiple areas. A total of 9.7% of parents responded to the mailed invitation. Intervention parents were more likely to report discussing important issues such as depression (42.6% vs 25.4%; P PHP improved the quality of their care. Systems like PHP have the potential to improve clinical screening, counseling, and medication management. Copyright © 2014 by the American Academy of Pediatrics.

  19. Droop Control with Improved Disturbance Adaption for PV System with Two Power Conversion Stages

    DEFF Research Database (Denmark)

    Liu, Hongpeng; Loh, Poh Chiang; Wang, Xiongfei

    2016-01-01

    with no or insufficient storage for cushioning climatic changes. In addition, most droop-controlled literatures have assumed a single dc-ac inverter with its input dc source fixed. Front-end dc-dc converter added to a two-stage photovoltaic (PV) system has therefore usually been ignored. To address these unresolved...

  20. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2018-04-03

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  1. A THERMAL-HYDRAULIC SYSTEM FOR THE CONVERSION AND THE STORAGE OF ENERGY

    Directory of Open Access Journals (Sweden)

    MITRAN Tudor

    2016-05-01

    Full Text Available The paper proposes the concept design of a thermal-hydraulic system that converts the thermal energy (from the geothermal water, from the cooling water of power equipment, from exhaust gasses, and so. in hydrostatic energy, that is stored in a hydraulic accumulator. The hydraulic energy can be converted into electrical energy when needed.

  2. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-09-26

    Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  3. Application of 2-dimensional coordinate system conversion in stress measurements with neutron diffraction

    International Nuclear Information System (INIS)

    Wang, D.-Q.; Hubbard, C.R.; Spooner, S.

    2000-01-01

    This paper will present a method and program to precisely calculate the coordinates in a positioner coordinate system from given sample position coordinates with a minimum number of neutron surface scans for three possible circumstances in stress and texture measurement using neutron diffraction

  4. DEVELOPMENT OF AUTOMATED SPEECH RECOGNITION SYSTEM FOR EGYPTIAN ARABIC PHONE CONVERSATIONS

    Directory of Open Access Journals (Sweden)

    A. N. Romanenko

    2016-07-01

    Full Text Available The paper deals with description of several speech recognition systems for the Egyptian Colloquial Arabic. The research is based on the CALLHOME Egyptian corpus. The description of both systems, classic: based on Hidden Markov and Gaussian Mixture Models, and state-of-the-art: deep neural network acoustic models is given. We have demonstrated the contribution from the usage of speaker-dependent bottleneck features; for their extraction three extractors based on neural networks were trained. For their training three datasets in several languageswere used:Russian, English and differentArabic dialects.We have studied the possibility of application of a small Modern Standard Arabic (MSA corpus to derive phonetic transcriptions. The experiments have shown that application of the extractor obtained on the basis of the Russian dataset enables to increase significantly the quality of the Arabic speech recognition. We have also stated that the usage of phonetic transcriptions based on modern standard Arabic decreases recognition quality. Nevertheless, system operation results remain applicable in practice. In addition, we have carried out the study of obtained models application for the keywords searching problem solution. The systems obtained demonstrate good results as compared to those published before. Some ways to improve speech recognition are offered.

  5. Investing in Their Future: Portland’s Purchase and Conversion of an LED Street Lighting System

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosinbum, T. [Portland Bureau of Transportation, Portland, OR (United States)

    2015-08-28

    During the ongoing process of converting its streetlights from high-pressure sodium to LED, the city of Portland, Oregon, purchased a large portion of its street lighting system and encountered a range of issues among the stakeholders. This report identifies some of the challenges involved and discusses how they were addressed, in order to help inform and facilitate future lighting transitions elsewhere.

  6. 5 CFR 534.406 - Conversion to the SES pay system.

    Science.gov (United States)

    2010-01-01

    ... to the SES pay system. (a) On the first day of the first applicable pay period beginning on or after... rate of basic pay that is equal to the employee's rate of basic pay, plus any applicable locality-based... first day of the first applicable pay period beginning on or after January 1, 2004. If an SES member's...

  7. Convincing Conversations : Using a Computer-Based Dialogue System to Promote a Plant-Based Diet

    NARCIS (Netherlands)

    Zaal, Emma; Mills, Gregory; Hagen, Afke; Huisman, Carlijn; Hoeks, Jacobus

    2017-01-01

    In this study, we tested the effectiveness of a computer-based persuasive dialogue system designed to promote a plant-based diet. The production and consumption of meat and dairy has been shown to be a major cause of climate change and a threat to public health, bio-diversity, animal rights and

  8. Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

  9. Feasibility study and energy conversion analysis of stand-alone hybrid renewable energy system

    International Nuclear Information System (INIS)

    Baghdadi, Fazia; Mohammedi, Kamal; Diaf, Said; Behar, Omar

    2015-01-01

    Highlights: • Hybrid stand-alone wind–solar–fossil power system is analyzed. • Measurement data are used to evaluate system performance. • The proposed system can generate about 70% from renewables. • Such a hybrid plant is very promising for remote regions in Algeria. - Abstract: There is a great interest in the development of renewable power technologies in Algeria, and more particularly hybrid concept. The present paper has investigated the performance of hybrid PV–Wind–Diesel–Battery configuration based on hourly measurements of Adrar climate (southern Algeria). Data of global solar radiation, ambient temperature and wind speed for a period of one year have been used. Firstly, the proposed hybrid system has been optimized by means of HOMER software. The optimization process has been carried out taking into account renewable resources potential and energy demand; while maximizing renewable electricity use and fuel saving are the purpose. In the second step, a mathematical model has been developed to ensure efficient energy management on the basis of various operation strategies. The analysis has shown that renewable energy system (PV–Wind) is able to supply about 70% of the demand. Wind power has ranked first with 43% of the annual total electricity production followed by diesel generator (with 31%) while the remaining fraction is being to PV panels. In this context, 69% of the fossil fuel can be saved when using the proposed hybrid configuration instead of the diesel generators that are currently installed in most remote regions in Algeria. Such a concept is very promising to meet the focus of renewable energy program announced in 2011.

  10. Interaction between MHD generator and DC-AC power conversion system

    International Nuclear Information System (INIS)

    Tanaka, D.

    1982-01-01

    Transient characteristics of an MHD power generating system including a DC-AC inverter are analyzed using a time-dependent quasi-one-dimensional approximation. The generator model considered is Faraday type of U-25 class with heavy-oil and air combustion gas. It is found that a short-circuited fault of the invertor may become more serious than an open-circuited fault, resulting in significant gas velocity reduction. An open-circuited fault, if retained for more than 5-8 ms, can substantially increase the gas velocity at the upstream end of the fault region. A protection system composed of a fast-acting DC circuit-breaker and an emergency load resistance is proposed. The switching speed of the DC breaker must be about 500 microsec to stop a pressure increase, resulting, for example, from the short-circuiting of 20 electrode pairs, before it reaches 120% of the initial level

  11. Discriminators for the Accelerator-Based Conversion (ABC) concept using a subcritical molten salt system

    International Nuclear Information System (INIS)

    Arthur, E.; Busksa, J.; Davidson, W.; Poston, D.

    1995-05-01

    Discriminators are described that quantify enhancements added to plutonium destruction and/or nuclear waste transmutation systems through use of an accelerator/fluid fuel combination. This combination produces a robust and flexible nuclear system capable of the destruction of all major long-lived actinides (including plutonium) and fission products. The discriminators discussed in this report are (1) impact of subcritical operation on safety, (2) impact of subcritical and fluid fuel operation on plutonium burnout scenarios, and (3) neutron economy enhancements brought about by subcritical operation. Neutron economy enhancements are quantified through assessment of long-term dose reduction resulting from transmutation of key fission products along with relaxation of processing frequencies afforded by subcritical operation

  12. Bioenergy conversion and storage systems: from conventional electrochemical cells to hybrid bioelectronic devices

    DEFF Research Database (Denmark)

    Pankratov, Dmitrii; Chi, Qijin

    2017-01-01

    The rapid development and popularization of wearable and implantable self-sustainable electronics has increasingly demanded new-generation miniature and biocompatible power systems that can function under near-neutral pH solution and ambient conditions. Towards this end, enzymatic fuel cells (EFCs......) using biocatalysts can offer an effective alternative to conventional batteries or fuel cells attributed to high biocatalytic activity, substrate specified selectivity, and non-toxic end products with ecofriendly impacts. Newly emerging photobioelectrochemical cells (PBCs), exploiting photosynthetic...

  13. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Science.gov (United States)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  14. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    OpenAIRE

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and...

  15. Combined Production and Conversion of Energy in an Urban Integrated System

    Directory of Open Access Journals (Sweden)

    Davide Borelli

    2016-10-01

    Full Text Available Within the framework of the European Combined Efficient Large Scale Integrated Urban Systems (CELSIUS project, the Genoa demonstrator involves the insertion of a turbo expander (TE to substitute the standard throttling process in a natural gas expansion station. In this way, the currently wasted mechanical energy will be recovered, while an internal combustion combined heat and power (CHP unit will be used to meet the heating requirements of the gas before the expansion and to serve a small district heating network (DHN. Both TE and CHP are capable of delivering electric power (EP up to 1 MW. In order to match the EP production vs demand is highly desirable to use the EP extra capacity for local EP final users, such as a nearby public school and a gas refueling station (RS. For limiting the school’s consumption of fossil fuel, it is possible to use the EP surplus generated by the demonstrator to feed a heat pump in parallel to the heating conventional system. With regard to the RS, the compressors are currently driven by electric motors, with a high-energy consumption. The integrated system gives the possibility of exploiting the surplus of electricity production and of recovering heat, which would be otherwise wasted, from the intercooling of compressed gas, thus powering the DHN through a preheating system. The result expected from this strategy is a relevant energy and emissions saving due to an integrated use of the electricity generated by the Genoese demonstrator for feeding the nearby school and RS.

  16. The MIT Lincoln Laboratory RT-04F Diarization Systems: Applications to Broadcast Audio and Telephone Conversations

    Science.gov (United States)

    2004-11-01

    this paper we describe the systems developed by MITLL and used in DARPA EARS Rich Transcription Fall 2004 (RT-04F) speaker diarization evaluation...many types of audio sources, the focus if the DARPA EARS project and the NIST Rich Transcription evaluations is primarily speaker diarization ...present or samples of any of the speakers . An overview of the general diarization problem and approaches can be found in [1]. In this paper, we

  17. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  18. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Directory of Open Access Journals (Sweden)

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  19. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass

    Science.gov (United States)

    Nathaniel Anderson; J. Greg Jones; Deborah Page-Dumroese; Daniel McCollum; Stephen Baker; Daniel Loeffler; Woodam Chung

    2013-01-01

    Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or...

  20. I-deas TMG to NX Space Systems Thermal Model Conversion and Computational Performance Comparison

    Science.gov (United States)

    Somawardhana, Ruwan

    2011-01-01

    CAD/CAE packages change on a continuous basis as the power of the tools increase to meet demands. End -users must adapt to new products as they come to market and replace legacy packages. CAE modeling has continued to evolve and is constantly becoming more detailed and complex. Though this comes at the cost of increased computing requirements Parallel processing coupled with appropriate hardware can minimize computation time. Users of Maya Thermal Model Generator (TMG) are faced with transitioning from NX I -deas to NX Space Systems Thermal (SST). It is important to understand what differences there are when changing software packages We are looking for consistency in results.

  1. On the rejection of internal and external disturbances in a wind energy conversion system with direct-driven PMSG.

    Science.gov (United States)

    Li, Shengquan; Zhang, Kezhao; Li, Juan; Liu, Chao

    2016-03-01

    This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults

    Science.gov (United States)

    Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze

    2017-09-01

    Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.

  3. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  4. Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system

    Science.gov (United States)

    Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph

    2012-03-01

    The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.

  5. Method and circuit for stabilizing conversion gain of radiation detectors of a radiation detection system

    International Nuclear Information System (INIS)

    Stoub, E.W.

    1986-01-01

    A method is described for calibrating the gain of an array of radiation detectors of a radiation detection system comprising the steps of: (a) measuring in parallel for each radiation detector using a predetermined calibration point the energy map status, thereby obtaining an energy response vector whose elements correspond to the individual output of each radiation detector, each predetermined calibration point being a prescribed location corresponding to one of the radiation detectors; (b) multiplying that energy response vector with a predetermined deconvolution matrix, the deconvolution matrix being the inversion of a contribution matrix containing matrix elements C/sub IJ/, each such matrix element C/sub IJ/ of the contribution matrix representing the relative contribution level of a radiation detector j of the detection system for a point radiation source placed at a location i, thereby obtaining a gain vector product for the radiation detectors; (c) adjusting the gains of the radiation detectors with respect to the gain vector product such that a unity gain vector is essentially obtained; (d) measuring again the energy map status according to step (a); and (e) if the energy map status fails to essentially produce a unity gain vector repeat steps (a) to (d) until the energy map status substantially corresponds to unity

  6. The systems of automatic weight control of vehicles in the road and rail transport in Poland

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available . Condition of roads in Poland, despite the on-going modernisation works is still unsatisfactory. One reason is the excessive wear caused by overloaded vehicles. This problem also applies to rail transport, although to a much lesser extent. One solution may be the system of automatic weight control of road and rail vehicles. The article describes the legal and organizational conditions of oversize vehicles inspection in Poland. Characterized current practices weighing road vehicles, based on measurements of static technology. The article includes the description of the existing applications of the automatic dynamic weighing technology, known as systems WIM (Weigh in Motion. Additionally, the weighing technology and construction of weighing stands in road and rail are characterized. The article ends with authors' conclusions indicating the direction and ways of improving the weighing control systems for vehicles.

  7. Quantum conversion

    OpenAIRE

    Mazilu, Michael

    2015-01-01

    ICOAM 2015 The electromagnetic momentum transferred transferred to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ℏk does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the tran...

  8. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  9. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  10. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    Science.gov (United States)

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  11. Pulsed Blue and Ultraviolet Laser System for Fluorescence Diagnostics based on Nonlinear Frequency Conversion

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay

    The motivation for the current thesis work is to build a compact, efficient, pulsed, diode-pumped solid-state (DPSS) laser at 340 nm to be used for autofluorescence imaging and related cancer diagnostic experiments. By exciting endogenous fluorophores in the UV spectrum, autofluorescence imaging...... ns. Comparing this to the 9 ns relative jitter achieved in the passive system shows the performance penalty incurred in using the passive approach. Lastly, practical applications of compact semiconductor and DPSS lasers in the blue and UV spectral region are presented. A CW tapered diode at 808 nm...... applied to other wavelengths; specifically, those in the blue and UV spectral region. Using the passive synchronization technique and the optimization procedure reported for quasi-three-level lasers, a new generation of high peak power, pulsed, blue and UV laser light sources could be realized....

  12. Development and modelisation of a hydro-power conversion system based on vortex induced vibration

    Science.gov (United States)

    Lefebure, David; Dellinger, Nicolas; François, Pierre; Mosé, Robert

    2016-11-01

    The Vortex Induced Vibration (VIV) phenomenon leads to mechanical issues concerning bluff bodies immerged in fluid flows and have therefore been studied by numerous authors. Moreover, an increasing demand for energy implies the development of alternative, complementary and renewable energy solutions. The main idea of EauVIV project consists in the use of VIV rather than its deletion. When rounded objects are immerged in a fluid flow, vortices are formed and shed on their downstream side, creating a pressure imbalance resulting in an oscillatory lift. A convertor modulus consists of an elastically mounted, rigid cylinder on end-springs, undergoing flow- induced motion when exposed to transverse fluid-flow. These vortices induce cyclic lift forces in opposite directions on the circular bar and cause the cylinder to vibrate up and down. An experimental prototype was developed and tested in a free-surface water channel and is already able to recover energy from free-stream velocity between 0.5 and 1 m.s -1. However, the large number of parameters (stiffness, damping coefficient, velocity of fluid flow, etc.) associated with its performances requires optimization and we choose to develop a complete tridimensionnal numerical model solution. A 3D numerical model has been developed in order to represent the real system behavior and improve it through, for example, the addition of parallel cylinders. The numerical model build up was carried out in three phases. The first phase consists in establishing a 2D model to choose the turbulence model and quantify the dependence of the oscillations amplitudes on the mesh size. The second corresponds to a 3D simulation with cylinder at rest in first time and with vertical oscillation in a second time. The third and final phase consists in a comparison between the experimental system dynamic behavior and its numerical model.

  13. Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid.

    Science.gov (United States)

    Van Hecke, Wouter; Bhagwat, Aditya; Ludwig, Roland; Dewulf, Jo; Haltrich, Dietmar; Van Langenhove, Herman

    2009-04-01

    A model has been developed to describe the interaction between two enzymes and an intermediary redox mediator. In this bi-enzymatic process, the enzyme cellobiose dehydrogenase oxidizes lactose at the C-1 position of the reducing sugar moiety to lactobionolactone, which spontaneously hydrolyzes to lactobionic acid. 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt is used as electron acceptor and is continuously regenerated by laccase. Oxygen is the terminal electron acceptor and is fully reduced to water by laccase, a copper-containing oxidase. Oxygen is added to the system by means of bubble-free oxygenation. Using the model, the productivity of the process is investigated by simultaneous solution of the rate equations for varying enzyme quantities and redox mediator concentrations, solved with the aid of a numerical solution. The isocharts developed in this work provide an easy-to-use graphical tool to determine optimal process conditions. The model allows the optimization of the employed activities of the two enzymes and the redox mediator concentration for a given overall oxygen mass transfer coefficient by using the isocharts. Model predictions are well in agreement with the experimental data.

  14. Technology of VAr Compensators for Induction Generator Applications in Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    A. F. Zobaa

    2006-09-01

    Full Text Available Many of today utility interconnected wind farms use induction generator (IG to convert the captured wind mechanical power into electricity. Induction generator has some advantages over the synchronous generator (SG. The main advantages are its robustness and its capability to be synchronized directly to the grid. The main disadvantage, however, is its dependency on the grid for supplying its own reactive power ‘VAr’. Whether fixed or adjustable VAr systems are connected across its terminal, IG must operate at unity power factor at the rated loading while the wind power varies. With supervised control and appropriate coordination, VAr can be used to the benefits of both the wind farm developer and the hosting utility. The incorporation of today adjustable reactive power compensators such as the Static VAr Compensation (SVC and Static Synchronous Compensator (STATCOM with IG are vital ingredient toward a successful penetration of wind energy in today distribution grid to ensure voltage stability during the steady state and transient periods.

  15. Biomass boiler energy conversion system analysis with the aid of exergy-based methods

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Donaldson, Burl

    2015-01-01

    Highlights: • Conventional exergy analysis and advanced exergy analysis are performed. • The combustion process dominates the exergy destruction. • Increase excess air will decrease the overall boiler exergy efficiency. • Increase the SH temperatures will increase the overall boiler exergy efficiency. • The avoidable exergy destructions in the air heaters are very small. - Abstract: The objective of this paper is to establish a theoretical framework for the exergy analysis and advanced exergy analysis of a real biomass boiler. These analyses can be used for both the diagnosis and optimization of a biomass boiler as well as for the design of a new biomass boiler. Conventional exergy analysis is performed to recognize the source(s) of inefficiency and irreversibility and identify exergy destruction in different components of the biomass boiler. An advanced exergy analysis is performed to provide comprehensive information about the avoidable exergy destruction and real fuel-saving potential for each component, as well as the overall system. Sensitivity studies of several design parameters including the excess air, biomass moisture and steam parameters were evaluated. The results show that the maximum exergy destruction occurs in the combustion process, followed by the Water Walls (WW) & Radiant Superheater (RSH) and the Low Temperature Superheater (LTSH). The fuel-saving and exergy efficiency improvement strategies for different components are discussed in this paper

  16. Utilization of non-conventional systems for conversion of biomass to food components

    Science.gov (United States)

    Karel, M.; Nakhost, Z.

    1989-01-01

    Described here is work accomplished in investigating the potential use of micro-algae in yielding useful macronutrients for closed ecological life support systems in space habitats. Analysis of the chemical composition of the blue-green alga Synechoccus 6311 was done in the present work, and was compared to values found in previous work on the green algae Scenedesmus obliquus. Similar values were obtained for proteins, and lower values for nucleic acids and lipids. A second part of the work involved fabrication of food products containing various levels of incorporated algae (S. obliquus) proteins and/or lipids. Protein isolate was incorporated into a variety of food products such as bran muffins, fettuccine (spinach noodle imitation), and chocolate chip cookies. In the sensory analysis, the greenish color of the bran muffins and cookies was not found to be objectionable. The mild spinachy flavor was less detectable in chocolate chip cookies than in bran muffins. The color and taste of the algae noodles were found to be pleasant and compared well with commercially available spinach noodles.

  17. Comparative analysis of supercritical CO2 power conversion system control schemes

    International Nuclear Information System (INIS)

    Vilim, R.B.; Moisseytsev, A.

    2008-01-01

    A comparative analysis of control system performance was carried out for the S-CO 2 re-compressing cycle. In this study two control strategies were developed for managing process variables for a change in load at the electrical generator. Both relied on inventory control to reduce power but differed in other significant respects. In inventory control turbomachine mass flow rates are reduced through density change with the goal of preserving velocity triangle similarity and, hence, cycle efficiency. An inventory and low temperature control scheme was operated to maintain a trajectory that avoids close approach to the critical point by controlling the main compressor inlet temperature. Shaft power tracks a setpoint by controlling density. This control scheme may be preferred in plant configurations that use a flow-split. There the rapid density change with pressure near the critical point can lead to flow rate instability. An inventory and turbine bypass control scheme was operated to more closely approach the critical point. Inventory in addition to turbine bypass was used to control shaft power. The first control scheme yielded greater efficiency at reduced power as a result of two factors. First, bypassing coolant around the turbine increases the mass flow rate through the compressors while shaft speed is maintained constant. As a result the compressor velocity triangles are altered from their peak efficiency values. Second, the bypass flow rate results in non-isothermal mixing downstream where the turbine and bypass flow combine which also penalizes efficiency. (authors)

  18. Conversion of native terrestrial ecosystems in Hawai‘i to novel grazing systems: a review

    Science.gov (United States)

    Leopold, Christina R.; Hess, Steven C.

    2017-01-01

    The remote oceanic islands of Hawai‘i exemplify the transformative effects that non-native herbivorous mammals can bring to isolated terrestrial ecosystems. We reviewed published literature containing systematically collected, analyzed, and peer-reviewed original data specifically addressing direct effects of non-native hoofed mammals (ungulates) on terrestrial ecosystems, and indirect effects and interactions on ecosystem processes in Hawai‘i. The effects of ungulates on native vegetation and ecosystems were addressed in 58 original studies and mostly showed strong short-term regeneration of dominant native trees and understory ferns after ungulate removal, but unassisted recovery was dependent on the extent of previous degradation. Ungulates were associated with herbivory, bark-stripping, disturbance by hoof action, soil erosion, enhanced nutrient cycling from the interaction of herbivory and grasses, and increased pyrogenicity and competition between native plants and pasture grasses. No studies demonstrated that ungulates benefitted native ecosystems except in short-term fire-risk reduction. However, non-native plants became problematic and continued to proliferate after release from herbivory, including at least 11 species of non-native pasture grasses that had become established prior to ungulate removal. Competition from non-native grasses inhibited native species regeneration where degradation was extensive. These processes have created novel grazing systems which, in some cases, have irreversibly altered Hawaii’s terrestrial ecology. Non-native plant control and outplanting of rarer native species will be necessary for recovery where degradation has been extensive. Lack of unassisted recovery in some locations should not be construed as a reason to not attempt restoration of other ecosystems.

  19. Investigation of heat exchangers for energy conversion systems of megawatt-class space power plants

    Science.gov (United States)

    Ilmov, D. N.; Mamontov, Yu. N.; Skorohodov, A. S.; Smolyarov, V. A.; Filatov, N. I.

    2016-01-01

    The specifics of operation (high temperatures in excess of 1000 K and large pressure drops of several megapascals between "hot" and "cold" coolant paths) of heat exchangers in the closed circuit of a gasturbine power converter operating in accordance with the Brayton cycle with internal heat recovery are analyzed in the context of construction of space propulsion systems. The design of a heat-exchange matrix made from doubly convex stamped plates with a specific surface relief is proposed. This design offers the opportunity to construct heat exchangers with the required parameters (strength, rigidity, weight, and dimensions) for the given operating conditions. The diagram of the working area of a test bench is presented, and the experimental techniques are outlined. The results of experimental studies of heat exchange and flow regimes in the models of heat exchangers with matrices containing 50 and 300 plates for two pairs of coolants (gas-gas and gas-liquid) are detailed. A criterion equation for the Nusselt number in the range of Reynolds numbers from 200 to 20 000 is proposed. The coefficients of hydraulic resistance for each coolant path are determined as functions of the Reynolds number. It is noted that the pressure in the water path in the "gas-liquid" series of experiments remained almost constant. This suggests that no well-developed processes of vaporization occurred within this heat-exchange matrix design even when the temperature drop between gas and water was as large as tens or hundreds of degrees. The obtained results allow one to design flight heat exchangers for various space power plants.

  20. A Two-Level Sensorless MPPT Strategy Using SRF-PLL on a PMSG Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Amina Echchaachouai

    2017-01-01

    Full Text Available In this paper, a two-level sensorless Maximum Power Point Tracking (MPPT strategy is presented for a variable speed Wind Energy Conversion System (WECS. The proposed system is composed of a wind turbine, a direct-drive Permanent Magnet Synchronous Generator (PMSG and a three phase controlled rectifier connected to a DC load. The realised generator output power maximization analysis justifies the use of the Field Oriented Control (FOC giving the six Pulse Width Modulation (PWM signals to the active rectifier. The generator rotor speed and position required by the FOC and the sensorless MPPT are estimated using a Synchronous Reference Frame Phase Locked Loop (SRF-PLL. The MPPT strategy used consists of two levels, the first level is a power regulation loop and the second level is an extremum seeking bloc generating the coefficient gathering the turbine characteristics. Experimental results validated on a hardware test setup using a DSP digital board (dSPACE 1104 are presented. Figures illustrating the estimated speed and angle confirm that the SRF-PLL is able to give an estimated speed and angle which closely follow the real ones. Also, the power at the DC load and the power at the generator output indicate that the MPPT gives optimum extracted power. Finally, other results show the effectiveness of the adopted approach in real time applications.