WorldWideScience

Sample records for conversion electron coincidences

  1. Alpha and conversion electron spectroscopy of {sup 238,239}Pu and {sup 241}Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P., E-mail: michael.dion@pnnl.gov; Miller, Brian W.; Warren, Glen A.

    2016-09-11

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of {sup 241}Am, {sup 238}Pu and {sup 239}Pu using a dual-stage peltier-cooled 25 mm{sup 2} silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for {sup 241}Am.

  2. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.

  3. Correlation of the Auger electrons direction of movement with the internal electron conversion direction of movement

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.; Kupryashkin, V.T.; Sidorenko, L.P.

    2013-01-01

    On installation of coincidences of γ-quanta with electrons and with law energy electrons about zero area the spatial correlation of the direction emitting Auger-electrons and electron of internal conversion was investigated at the 152 Eu decay. Auger-electrons were registered on e 0 -electrons of the secondary electron emission (γ e IC e 0 -coincidences). It was established, that Auger-electrons of M-series, as well as electrons 'shake-off' at β-decay and internal conversion, are strongly correlated at the direction of movement with the direction of movement of basic particle (β -particle, conversion electron), moving together mainly in the forward hemisphere. The intensity of correlated M-Auger radiation in range energy 1000 - 1700 eV is equal to intensity of correlated radiation 'shake-off' electron from internal conversion in this range. The assumption, that the presence of spatial correlating Auger-electron and conversion electron caused by cur-rent components of electron-electron interaction of particles in the final state is made

  4. Electron-electron coincidence spectroscopies at surfaces

    International Nuclear Information System (INIS)

    Stefani, G.; Iacobucci, S.; Ruocco, A.; Gotter, R.

    2002-01-01

    In the past 20 years, a steadily increasing number of electron-electron coincidence experiments on atoms and molecules have contributed to a deeper understanding of electron-electron correlation effects. In more recent years this technique has been extended to the study of solid surfaces. This class of one photon IN two electrons OUT experiments will be discussed with an emphasis on grazing incidence geometry, that is expected to be particularly suited for studying surfaces. The crucial question of which is the dominant mechanism that leads to ejection of pairs of electron from the surface will be addressed. It will be shown that, depending on the kinematics chosen, the correlated behaviour of the pairs of electrons detected might be singled out from independent particle one

  5. Photoion Auger-electron coincidence measurements near threshold

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Keller, N.; Liljeby, L.; Short, R.T.; Sellin, I.A.; Lindle, D.W.

    1990-01-01

    The vacancy cascade which fills an atomic inner-shell hole is a complex process which can proceed by a variety of paths, often resulting in a broad distribution of photoion charge states. We have measured simplified argon photoion charge distributions by requiring a coincidence with a K-LL or K-LM Auger electron, following K excitation with synchrotron radiation, as a function of photon energy, and report here in detail the argon charge distributions coincident with K-L 1 L 23 Auger electrons. The distributions exhibit a much more pronounced photon-energy dependence than do the more complicated non-coincident spectra. Resonant excitation of the K electron to np levels, shakeoff of these np electrons by subsequent decay processes, double-Auger decay, and recapture of the K photoelectron through postcollision interaction occur with significant probability. 17 refs

  6. Absorption and backscatter of internal conversion electrons in the measurements of surface contamination of 137Cs

    International Nuclear Information System (INIS)

    Yunoki, A.; Kawada, Y.; Yamada, T.; Unno, Y.; Sato, Y.; Hino, Y.

    2013-01-01

    We measured 4π and 2π counting efficiencies for internal conversion electrons (ICEs), gross β-particles and also β-rays alone with various source conditions regarding absorber and backing foil thickness using e-X coincidence technique. Dominant differences regarding the penetration, attenuation and backscattering properties among ICEs and β-rays were revealed. Although the abundance of internal conversion electrons of 137 Cs- 137 Ba is only 9.35%, 60% of gross counts may be attributed to ICEs in worse source conditions. This information will be useful for radionuclide metrology and for surface contamination monitoring. - Highlights: • Counting efficiencies for internal conversion electrons from 137 Cs were measured, and compared with those for β-rays. • Electron-X coincidence technique was employed. • A thin NaI(Tl) scintillation detector was used for X-ray detection. • Backscattering fractions of electrons and beta particles were studied by similar experiments

  7. Electron emission relevant to inner-shell photoionization of condensed water studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hikosaka, Y., E-mail: hikosaka@las.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Mashiko, R.; Konosu, Y.; Soejima, K. [Department of Environmental Science, Niigata University, Niigata 950-2181 (Japan); Shigemasa, E. [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); SOKENDAI, Okazaki 444-8585 (Japan)

    2016-11-15

    Highlights: • Multi-electron coincidence spectroscopy is applied to the study of electron emissions from condensed H2O molecules. • Coincidence Auger spectra are obtained for different photoelectron energies. • The energy distribution of the slow electrons ejected in the Auger decay is deduced from three-fold coincidences. - Abstract: Multi-electron coincidence spectroscopy using a magnetic-bottle electron spectrometer has been applied to the study of the Auger decay following O1s photoionization of condensed H{sub 2}O molecules. Coincidence Auger spectra are obtained for three different photoelectron energy ranges. In addition, the energy distribution of the slow electrons ejected in the Auger decay of the O1s core hole is deduced from three-fold coincidences.

  8. A coincidence study between photo- and Auger electrons

    International Nuclear Information System (INIS)

    Ricz, S.; Koever, A.; Varga, D.; Molnar, J.; Aksela, S.; Jurvansuu, M.

    2000-01-01

    Complete text of publication follows. The investigation of double differential cross sections of photon induced Auger electrons provides very sensitive method for studying the rearrangement process, especially when the angular correlation between photo- and Auger electrons is also studied. Such type of measurements could reveal a new aspect in studying the electron-electron, hole-electron and photoelectron - Auger electron interactions. It enables one to separate the overlapping Auger lines belonging to different initial holes. The traditional coincidence measurement is very time consuming and causes serious calibration problems. In order to overcome these experimental difficulties a new electron-spectrometer (ESA-22) was developed in ATOMKI, Debrecen in cooperation with the Electron spectroscopy group of University of Oulu, Finland. The analyzer consists of a spherical and a cylindrical part. It is very similar to the ESA-21 analyzer. The main differences is that the focal ring can be set different diameters thus either a series of channel detectors can be used to detect the electrons at different angles or a position sensitive channel plate can be applied for simultaneous angular recording of electrons. Furthermore the outer sphere and cylinder are cut into two parts so the spectrometer is capable to analyze two independent angularly resolved electron spectra (in the 0 deg - 180 deg region) at different energy regions, simultaneously. A special electronic control and data handling electronics and software was worked out to control the analyzer. The first results were presented in. In the last year the ESA-22 electron-spectrometer was transported to the I411 beam line of MAX-II synchrotron in Lund, Sweden. The advanced properties of the spectrometer was investigated by measuring coincidences between the photoelectrons originated from the Ar L 3 subshell and the Ar Auger electrons in the 203-207 eV energy region. Fig. 1 shows the single and the coincidence spectra

  9. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  10. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    Science.gov (United States)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  11. Quantifying radionuclide signatures from a γ–γ coincidence system

    International Nuclear Information System (INIS)

    Britton, Richard; Jackson, Mark J.; Davies, Ashley V.

    2015-01-01

    A method for quantifying gamma coincidence signatures has been developed, and tested in conjunction with a high-efficiency multi-detector system to quickly identify trace amounts of radioactive material. The γ–γ system utilises fully digital electronics and list-mode acquisition to time–stamp each event, allowing coincidence matrices to be easily produced alongside typical ‘singles’ spectra. To quantify the coincidence signatures a software package has been developed to calculate efficiency and cascade summing corrected branching ratios. This utilises ENSDF records as an input, and can be fully automated, allowing the user to quickly and easily create/update a coincidence library that contains all possible γ and conversion electron cascades, associated cascade emission probabilities, and true-coincidence summing corrected γ cascade detection probabilities. It is also fully searchable by energy, nuclide, coincidence pair, γ multiplicity, cascade probability and half-life of the cascade. The probabilities calculated were tested using measurements performed on the γ–γ system, and found to provide accurate results for the nuclides investigated. Given the flexibility of the method, (it only relies on evaluated nuclear data, and accurate efficiency characterisations), the software can now be utilised for a variety of systems, quickly and easily calculating coincidence signature probabilities. - Highlights: • Monte-Carlo based software developed to easily create/update a coincidence signal library for environmental radionuclides. • Coincidence library utilised to accurately quantify gamma coincidence signatures. • All coincidence signature probabilities are corrected for cascade summing, conversion electron emission and pair production. • Key CTBTO relevant radionuclides have been tested to verify the calculated correction factors. • Accurately quantifying coincidence signals during routine analysis will allow dramatically improved detection

  12. A new apparatus for electron-ion multiple coincidence momentum imaging spectroscopy

    International Nuclear Information System (INIS)

    Morishita, Y.; Kato, M.; Pruemper, G.; Liu, X.-J.; Lischke, T.; Ueda, K.; Tamenori, Y.; Oura, M.; Yamaoka, H.; Suzuki, I.H.; Saito, N.

    2006-01-01

    We have developed a new experimental apparatus for the electron-ion multiple coincidence momentum imaging spectroscopy in order to obtain the angular distributions of vibration-resolved photoelectrons from molecules fixed in space. The apparatus consists of a four-stage molecular supersonic jet and a spectrometer analyzing three-dimensional momenta of fragment ions and electrons in coincidence

  13. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    International Nuclear Information System (INIS)

    Zhang Chi; Yu Xiaoqi; Yang Tao

    2005-01-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown

  14. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    International Nuclear Information System (INIS)

    Arp, U.

    1996-01-01

    Argon L 2.3 -M 2.3 M 2.3 Auger-electron spectra were measured in coincidence with Kα fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons

  15. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  16. Secondary electron/reflected particle coincidence studies during slow highly charged ion-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, C.T.; Szilagyi, Z.; Shah, M.B.; McCullough, R.W. [Queen' s Univ., Belfast, Northern Ireland (United Kingdom); Woolsey, J.M. [Stirling Univ. (United Kingdom). DBMS; Trassl, R.; Salzborn, E. [Giessen Univ. (Germany). Inst. fuer Kernphysik

    2001-07-01

    We have measured the secondary electron emission statistics (ES) for 5 keV N{sup q+} (q = 1-4) ions incident at 10 on polycrystalline aluminium, in coincidence with specularly reflected N{sup 0}. In this arrangement the kinetic contribution to secondary electron emission is minimised. The experimental data shows that the coincident electron yield, {gamma}, increases linearly with incident ion charge state. The kinetic emission contribution has also been determined from this data. The ES due to 2 and 4 keV He{sup 2+} impact on polycrystalline aluminium in coincidence with specularly reflected He{sup +} and He{sup 0} have also been determined. The process He{sup 2+} {yields} He{sup 0} yields a larger {gamma} value than the process He{sup 2+} {yields} He{sup +}. (orig.)

  17. Conversion electrons in the SDC

    International Nuclear Information System (INIS)

    Wicklund, A.B.

    1991-01-01

    We summarize a preliminary analysis of the rates for conversion electrons in the SDC detector, relative to other interesting sources of prompt electrons. We have used Papageno V3.30, and other available NLO calculations to estimate inclusive rates in the central region (η less than 2.0), and we have cross checked these using CDF data at 1.8 TeV. We have considered three sources of ''isolated'' electrons, namely inclusive W/Z production; top quark (Mt=140); and QCD prompt photon production, followed by conversion in 10% XO. This value approximates the inner silicon detector at SDC. Additional conversions will occur in the outer tracking chamber, but the trigger and track reconstruction efficiency will be lower. We have also considered ''nonisolated'' leptons coming from inclusive bottom production, photon conversions resulting from π 0 ,η production in jets, and high pt hadrons faking electrons

  18. Conversion electron spectroscopy in transfermium nuclei

    International Nuclear Information System (INIS)

    Herzberg, R.D.

    2003-01-01

    Conversion electron spectroscopy is an essential tool for the spectroscopy of heavy deformed nuclei. The conversion electron spectrometer SACRED has been used in conjunction with the gas-filled recoil separator RITU to study conversion electron cascades in 254 No. The spectra reveal the ground state rotational bands down to low spin. A detailed analysis of the background seen for 254 No shows that approximately 40% of the decay path goes via excited high K bands which may be built on an isomer. (orig.)

  19. Photoelectron-Auger electron coincidence spectroscopy of free molecules: New experiments

    International Nuclear Information System (INIS)

    Ulrich, Volker; Barth, Silko; Lischke, Toralf; Joshi, Sanjeev; Arion, Tiberiu; Mucke, Melanie; Foerstel, Marko; Bradshaw, Alex M.; Hergenhahn, Uwe

    2011-01-01

    Photoelectron-Auger electron coincidence spectroscopy probes the dicationic states produced by Auger decay following the photoionization of core or inner valence levels in atoms, molecules or clusters. Moreover, the technique provides valuable insight into the dynamics of core hole decay. This paper serves the dual purpose of demonstrating the additional information obtained by this technique compared to Auger spectroscopy alone as well as of describing the new IPP/FHI apparatus at the BESSY II synchrotron radiation source. The distinguishing feature of the latter is the capability to record both the photoelectron and Auger electron with good energy and angle resolution, for which purpose a large hemispherical electrostatic analyser is combined with several linear time-of-flight spectrometers. New results are reported for the K-shell photoionization of oxygen (O 2 ) and the subsequent KVV Auger decay. Calculations in the literature for non-coincident O 2 Auger spectra are found to be in moderately good agreement with the new data.

  20. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics

    International Nuclear Information System (INIS)

    Bodi, Andras; Johnson, Melanie; Gerber, Thomas; Gengeliczki, Zsolt; Sztaray, Balint; Baer, Tomas

    2009-01-01

    An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or thermal gas-phase sample. Photoelectrons are velocity focused, with better than 1 meV resolution for threshold electrons, and also act as start signal for the ion time-of-flight analysis. The ions are accelerated in a relatively low, 40-80 V cm -1 field, which enables the direct measurement of rate constants in the 10 3 -10 7 s -1 range. All electron and ion events are recorded in a triggerless multiple-start/multiple-stop setup, which makes it possible to carry out coincidence experiments at >100 kHz event frequencies. As examples, the threshold photoelectron spectrum of the argon dimer and the breakdown diagrams for hydrogen atom loss in room temperature methane and the chlorine atom loss in cold chlorobenzene are shown and discussed.

  1. Angular correlations of coincident electron-positron pairs in heavy ion collisions

    International Nuclear Information System (INIS)

    Graf, O.

    1988-10-01

    In the present thesis angular correlations of coincident electron-positron pairsnin heavy ion collisions are studied. It is meant as a contribution to the answer of fundamental questions in the quantum electrodynamics of strong fields. (orig./HSI) [de

  2. Interaction of multicharged ions with molecules (CO2, C60) by coincident electron spectroscopy

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    2001-01-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems 18 O 8+ +Ar, CO 2 and C 60 have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C n + fragments (n=1 to 8) produced in multiple capture processes from C 60 target are given. A detailed investigation of the double capture process with CO 2 molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO 2 2+ molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  3. In-beam conversion electron spectroscopy using the SACRED array

    International Nuclear Information System (INIS)

    Jones, P.M.; Cann, K.J.; Cocks, J.F.C.; Jones, G.D.; Julin, R.; Schulze, B.; Smith, J.F.; Wilson, A.N.

    1997-01-01

    Conversion electron studies of medium-heavy to heavy nuclear mass systems are important where the internal conversion process begins to dominate over gamma-ray emission. The use of a segmented detector array sensitive to conversion electrons has been used to study multiple conversion electron cascades from nuclear transitions. The application of the silicon array for conversion electron detection (SACRED) for in-beam measurements has successfully been implemented. (orig.). With 2 figs

  4. Multiple capture investigated by coincident electron spectroscopy in X7++Ar, at 70 keV

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    1999-01-01

    The multiple electron capture in N 7+ + Ar and F 7+ (1s 2 ) + Ar systems is investigated at 70 keV with a new electron-recoil ion charge coincidence experiment. The whole electron energy range has been studied. Up to six electrons are found to be captured into autoionizing states. The recoil ion charge distribution associated with the emission of electrons is similar for both systems and found to be in good agreement with the prediction of Niehaus's model roughly adapted to take into account autoionizing cascades. New findings for the coincident double and triple captures are briefly discussed. A capture of an inner L-shell electron of Ar into the K-shell of the projectile is also observed in N 7+ + Ar collisions. (orig.)

  5. Multiple capture investigated by coincident electron spectroscopy in X{sup 7+}+Ar, at 70 keV

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Lab. Collisions-Agregats-Reactivite

    1999-11-01

    The multiple electron capture in N{sup 7+} + Ar and F{sup 7+}(1s{sup 2}) + Ar systems is investigated at 70 keV with a new electron-recoil ion charge coincidence experiment. The whole electron energy range has been studied. Up to six electrons are found to be captured into autoionizing states. The recoil ion charge distribution associated with the emission of electrons is similar for both systems and found to be in good agreement with the prediction of Niehaus`s model roughly adapted to take into account autoionizing cascades. New findings for the coincident double and triple captures are briefly discussed. A capture of an inner L-shell electron of Ar into the K-shell of the projectile is also observed in N{sup 7+} + Ar collisions. (orig.) 10 refs.

  6. Energy and resolution calibration of detectors for noble gas β-γ coincidence system

    International Nuclear Information System (INIS)

    Jia Huaimao; Wang Shilian; Li Qi; Wang Jun; Zhao Yungang; Zhang Xinjun; Fan Yuanqing

    2010-01-01

    The β-γ coincidence technique is a kind of important method to detect radioactive xenon isotopes for the Comprehensive Nuclear-Test-Ban Treaty(CTBT). The energy and resolution calibration of detectors is the first key technique. This paper describes in detail the energy and resolution calibration methods of NaI (Tl) and plastic scintillator detectors for the noble gas β-γ coincidence system SAUNA II-Lab. NaI (Tl) detector's energy and resolution for γ-ray were calibrated with γ radioactive point sources. Plastic scintillator detector's energy and resolution for β-ray were calibrated by Compton scattering electrons of 137 Cs 661.66 keV γ-ray. And the results of β-ray energy resolution calibrated by Compton scattering electrons of 137 Cs were compared with the results of conversion electron of 131 Xe m . In conclusion,it is an easy and feasible method of calibrating plastic scintillator detector's energy by Compton scattering electrons of 137 Cs,but detector's resolution calibrated by Compton scattering electrons is higher than factual result. (authors)

  7. Studies of the electron-impact double-ionisation process in magnesium using coincidence techniques

    International Nuclear Information System (INIS)

    Ford, M.J.

    1998-01-01

    This article will review recent measurements of the electron-impact double-ionisation of atomic magnesium. Results for the resonant Auger double-ionisation process with coincident detection of all three outgoing electrons, the (e, 3e) experiment, and for the direct double-ionisation process where only two outgoing electrons are detected, the (e, (3 -1)e) experiment, will be discussed. The results are analysed with reference to ionisation mechanisms and comparisons are made with calculated double-ionisation cross sections. Copyright (1998) CSIRO Australia

  8. Determination of 131mXe and 133mXe in the presence of 133gXe via combined beta-spectroscopy and delayed coincidence

    International Nuclear Information System (INIS)

    Reeder, P.L.; Bowyer, T.W.; McIntyre, J.I.; Pitts, W.K.

    2001-01-01

    The International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty will include measurements of Xe fission products. Pacific Northwest National Laboratory has developed an automated system for separating Xe from air which detects Xe fission products using a beta-gamma counting system for 131m Xe, 133m Xe, 133g Xe, and 135g Xe. Betas and conversion electrons are detected in a plastic scintillation cell containing the Xe sample. Gamma and X-rays are detected in a NaI(Tl) scintillation detector which surrounds the plastic scintillator sample cell. Two-dimensional pulse-height spectra of gamma-energy versus beta-energy are obtained. The plastic scintillator spectrum in coincidence with the 31-keV X-rays from 131m Xe. 133m Xe, and 133g Xe is a complex mixture of conversion electrons and betas. A new technique to simultaneously measure the delayed coincidence (T 1/2 = 6.27 ns) between beta-particles from 133g Xe and conversion electrons depopulating the 81-keV state in 133 Cs is being developed. This technique allows separation of the 133g Xe beta spectrum from the conversion electrons due to 131m Xe and 133m Xe and uniquely quantifies all three nuclides. (author)

  9. Determination of 131m Xe and 133m Xe in the presence of 133gXe via combined beta-spectroscopy and delayed coincidence

    International Nuclear Information System (INIS)

    Reeder, Paul L.; Bowyer, Ted W.; McIntyre, Justin I.; Pitts, W K.

    2001-01-01

    The International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty will include measurements of Xe fission products. Pacific Northwest National Laboratory has developed an automated system for separating Xe from air which detects Xe fission products using a beta-gamma counting system for 131mXe, 133mXe, 133Xe, and 135Xe. Betas and conversion electrons are detected in a plastic scintillation cell containing the Xe sample. Gamma and X-rays are detected in a NaI(Tl) scintillation detector which surrounds the plastic scintillator sample cell. Two-dimensional pulse height spectra of gamma energy versus beta energy are obtained. The plastic scintillator spectrum in coincidence with the 31-keV X-rays from 131mXe. 133mXe, and 133Xe is a complex mixture of conversion electrons and betas. A new technique to simultaneously measure the delayed coincidence (t1/2 = 6.27 ns) between beta particles from 133Xe and conversion electrons depopulating the 81-keV state in 133Cs is being developed. This technique will allow separation of the 133Xe spectrum from the conversion electrons due to 131mXe and 133mXe and will uniquely quantify all three nuclides

  10. Interaction of multicharged ions with molecules (CO{sub 2}, C{sub 60}) by coincident electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Lab. CAR-IRSAMC

    2001-07-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems {sup 18}O{sup 8+}+Ar, CO{sub 2} and C{sub 60} have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C{sub n}{sup +} fragments (n=1 to 8) produced in multiple capture processes from C{sub 60} target are given. A detailed investigation of the double capture process with CO{sub 2} molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO{sub 2}{sup 2+} molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  11. Evidence of sequential interatomic decay in argon trimers obtained by electron-triple-ion coincidence spectroscopy

    International Nuclear Information System (INIS)

    Liu, X-J; Saito, N; Fukuzawa, H; Morishita, Y; Stoychev, S; Kuleff, A; Suzuki, I H; Tamenori, Y; Richter, R; Pruemper, G; Ueda, K

    2007-01-01

    Sequential interatomic decay, where the first step is an Auger decay with interatomic character and the second step is a pure interatomic Coulombic decay (ICD), is identified in Ar trimers Ar 3 . The 2p hole state in Ar 3 decays via the L 2,3 M 1 M 2,3 Auger to the one-site two-hole states Ar ++ (3s -1 3p -1 )-Ar-Ar that couples to the two-site satellite states Ar + (3p -2 nl)-Ar + (3p -1 )-Ar. These states are subject to ICD to the states Ar + (3p -1 )-Ar + (3p -1 )-Ar + (3p -1 ), in which the nl electron fills the 3p hole in the same Ar site and one of the 3p electrons in the third Ar site is emitted as a slow ICD electron. This ICD process is identified unambiguously by electron-ion-ion-ion coincidence spectroscopy in which the kinetic energy of the slow ICD electron and the kinetic energy release among the three Ar + ions are measured in coincidence. (fast track communication)

  12. Development of a mini-orange spectrometer for conversion electron study

    International Nuclear Information System (INIS)

    Mishra, N.R.; Chakravarty, V.; Chintalapudi, S.N.; Ghugre, S.S.; Sastry, D.L.

    1996-01-01

    Conversion electrons provide with an unique tool to have an unambiguous multipolarity assignment for the observed gamma transitions. The fabrication of an electron spectrometer to detect these conversion electrons is a non-trivial task

  13. Electron spectrometers with internal conversion

    International Nuclear Information System (INIS)

    Suita, J.C.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The efforts that the Department of Physics (DEFI) of Institute of Nuclear Engineering (IEN) are being made aiming at adjusting the electron spectrometers with internal conversion to its necessity, are shown. (E.G.) [pt

  14. Resonant Auger electron-photoion coincidence study of the fragmentation dynamics of an acrylonitrile molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kooser, K; Ha, D T; Granroth, S; Itaelae, E; Nommiste, E; Kukk, E [Department of Physics, University of Turku, FIN-20014 Turku (Finland); Partanen, L; Aksela, H, E-mail: kunkoo@utu.f [Department of Physics, University of Oulu, Box 3000, FIN-90014 Oulu (Finland)

    2010-12-14

    Monochromatic synchrotron radiation was used to promote K-shell electrons of nitrogen and carbon from the cyano group (C {identical_to} N) of gaseous acrylonitrile (C{sub 2}H{sub 3}-CN) to the unoccupied antibonding {pi}*{sub C} {sub {identical_to} N} orbital. Photofragmentation of acrylonitrile molecules following selective resonant core excitations of carbon and nitrogen core electrons to the {pi}*{sub C} {sub {identical_to} N} orbital was investigated using the electron-energy-resolved photoelecton-photoion coincidence technique. The fragment ion mass spectra were recorded in coincidence with the resonant Auger electrons, emitted in the decay process of the core-excited states. Singly and triply deuterated samples were used for fragment identification. The results showed the initial core-hole localization to be of minor importance in determining the dissociation pattern of the molecular cation. The participator and spectator Auger transitions produce entirely different fragmentation patterns and the latter indicates that complex nuclear rearrangements take place. It is suggested that the calculated kinetic energy releases are caused by the existence of metastable states, which appear with the opening of the spectator Auger channels.

  15. Improvements of low-level radioxenon detection sensitivity by a state-of-the art coincidence setup.

    Science.gov (United States)

    Cagniant, A; Le Petit, G; Gross, P; Douysset, G; Richard-Bressand, H; Fontaine, J-P

    2014-05-01

    The ability to quantify isotopic ratios of 135, 133 m, 133 and 131 m radioxenon is essential for the verification of the Comprehensive Nuclear-Test Ban Treaty (CTBT). In order to improve detection limits, CEA has developed a new on-site setup using photon/electron coincidence (Le Petit et al., 2013. J. Radioanal. Nucl. Chem., DOI : 10.1007/s 10697-013-2525-8.). Alternatively, the electron detection cell equipped with large silicon chips (PIPS) can be used with HPGe detector for laboratory analysis purpose. This setup allows the measurement of β/γ coincidences for the detection of (133)Xe and (135)Xe; and K-shell Conversion Electrons (K-CE)/X-ray coincidences for the detection of (131m)Xe, (133m)Xe and (133)Xe as well. Good energy resolution of 11 keV at 130 keV and low energy threshold of 29 keV for the electron detection were obtained. This provides direct discrimination between K-CE from (133)Xe, (133m)Xe and (131m)Xe. Estimation of Minimum Detectable Activity (MDA) for (131m)Xe is in the order of 1mBq over a 4 day measurement. An analysis of an environmental radioxenon sample using this method is shown. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  16. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  17. A magnetic-lens - mini-orange coincidence spectrometer

    International Nuclear Information System (INIS)

    Bargholtz, C.; Holmberg, L.; Ruus, N.; Tegner, P.E.; Weiss, G.

    1997-04-01

    A coincidence spectrometer consisting of a Gerholm type magnetic lens and a permanent magnet mini-orange spectrometer is described. Electron-electron or electron-positron coincidences may be registered in various angular settings. The spectrometer has been developed mainly to search for anomalous contributions to Bhabha scattering or positrons and is at present used for such studies. 6 refs

  18. Scattering of polarized electrons from polarized targets: Coincidence reactions and prescriptions for polarized half-off-shell single-nucleon cross sections

    International Nuclear Information System (INIS)

    Caballero, J.A.; Massachusetts Inst. of Tech., Cambridge, MA; Donnelly, T.W.; Massachusetts Inst. of Tech., Cambridge, MA; Poulis, G.I.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-01-01

    Coincidence reactions of the type vector A( vector e, e'N)B involving the scattering of polarized electrons from polarized targets are discussed within the context of the plane-wave impulse approximation. Prescriptions are developed for polarized half-off single-nucleon cross sections; the different prescriptions are compared for typical quasi-free kinematics. Illustrative results are presented for coincidence polarized electron scattering from typical polarized nuclei. (orig.)

  19. An energy resolved electron-ion coincidence study near the S 2p thresholds of the SF6 molecule

    International Nuclear Information System (INIS)

    Kivimaeki, A; Ruiz, J Alvarez; Erman, P; Hatherly, P; Garcia, E Melero; Rachlew, E; Rius i Riu, J; Stankiewicz, M

    2003-01-01

    The fragmentation dynamics of the SF 6 molecule following the excitations of S 2p electrons into unoccupied molecular orbitals has been studied using the energy-resolved electron-ion coincidence technique. Fragmentation patterns were found to depend on the particular excitation and on the electronic state of the molecular ion. The spectator resonant Auger decay at the 2p → 6a 1g resonance induces changes in the ion distributions as compared to direct photoionization. Furthermore, coincidence spectra related to the same Auger structure display different ion abundances at the 2t 2g and 4e g shape resonances. Differences were also found in the Auger decay spectra. These findings give further support for the previously suggested many-electron character of the 4e g shape resonance

  20. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  1. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  2. The determination of electron momentum densities by inelastic scattering gamma-ray-electron coincidence measurements: The (γ,eγ)-experiment

    International Nuclear Information System (INIS)

    Rollason, A.J.; Bell, F.; Schneider, J.R.

    1989-09-01

    Measurements have been made of the recoiling electron in 320 keV gamma ray inelastic scattering collisions in thin aluminium targets. The angular correlation of these electrons detected in coincidence with the scattered photon is in agreement with the kinematic requirements of the Compton effect and is correctly predicted by Monte Carlo simulations based on the impulse approximation. Further simulations of ideal-geometry experiments indicate that information about the initial electron momenta is available from an examination of those electron-photon events originating in a surface layer of one electronic mean free path depth and that elastic scattering of the recoil electrons from greater depths produces a nearly flat background to this signal. The results clearly demonstrate the feasibility of the (γ,eγ) experiment for studying electron momentum densities with synchrotron radiation. (orig.) With 23 refs., 17 figs

  3. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    International Nuclear Information System (INIS)

    Hollander, R.W.; Bom, V.R.; Van Eijk, C.W.E.; Faber, J.S.; Hoevers, H.; Kruit, P.

    1994-01-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the ''true'' to ''accidental'' ratio will be 5. The dead time is 15%. ((orig.))

  4. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    CERN Document Server

    Bourva, L C A

    1999-01-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP sup T sup M , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents...

  5. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    Science.gov (United States)

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy

    Science.gov (United States)

    Reeder, P. L.; Bowyer, T. W.

    1998-02-01

    Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.

  7. Energy and angle resolved studies of double photo-ionisation of helium by electron time-of-flight coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Viefhaus, J.; Avaldi, L.; Heiser, F.; Hentges, R.; Gessner, O.; Ruedel, A.; Wiedenhoeft, M.; Wieliczek, K.; Becker, U. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany)

    1996-10-28

    Helium double photo-ionization is studied by a novel coincidence technique which employs time-of-flight spectrometers. Using this technique it is possible to collect simultaneously all the electron pairs, with different energy sharing, emitted by the absorption of a single energetic incident photon. The measurements, in a configuration where the two electrons emerge at 180{sup o} relative angle, provide the more complete information on the contribution of the ungerade amplitude to the triple differential cross section and allow the establishment of a relative scale for the full coincidence angular distribution measured by other experiments at the same photon energies, but only for a few selected energy-sharing conditions. (author).

  8. Conversion electrons from high-statistics β-decay measurements with the 8π spectrometer at TRIUMF-ISAC

    Science.gov (United States)

    Garrett, P. E.; Jigmeddorj, B.; Radich, A. J.; Andreoiu, C.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Green, K. L.; Hackman, G.; Hadinia, B.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2016-09-01

    The 8π spectrometer, located at TRIUMF-ISAC, was the world's most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Cs decay scheme, are shown. With suffcient statistics, measurements of conversion coeffcients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted.

  9. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Bourva, L.C.A.; Croft, S.

    1999-01-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP TM , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents a new evaluation technique for the estimation of gate utilisation factors. It uses the die-away profile of a neutron coincidence chamber generated either by MCNP TM , or by other means, to simulate the neutron detection arrival time pattern originating from independent spontaneous fission events. A shift register simulation algorithm, embedded in the MCF code, then calculates the coincidence counts scored within the electronics gate. The gate utilisation factor is then deduced by dividing the coincidence counts obtained with that obtained in the same Monte Carlo run, but for an ideal detection system with a coincidence gate utilisation factor equal to unity. The MCF code has been benchmarked against analytical results calculated for both single and double exponential die-away profiles. These results are presented along with the development of the closed form algebraic expressions for the two cases. Results of this validity check showed very good agreement. On this

  10. Coincidence Doppler broadening study on hydrocarbons with pi and sigma valence electrons: positronium correction

    International Nuclear Information System (INIS)

    Djourelov, N.; Suzuki, T.; Yu, R.S.; Ito, Y.

    2005-01-01

    The coincidence Doppler broadening (CDB) technique was applied to study the electron momentum distribution in anthracene, diphenyl, naphthalene, and polystyrene. A method for separation of the positron and positronium (Ps) components from the Doppler-broadened annihilation line (DBAL) was developed further to be applicable to hydrocarbons with different π and σ valence electron distributions. This method allows extraction of the electron momentum distribution (EMD) from DBAL for samples when Ps formation occurs. The annihilation on π valence electrons was detected as broadening of the EMD compared to that obtained for a polymer sample only with σ valence electrons. The broadening appeared as a significant change in the shape of the CDB ratio of the corresponding positronium-corrected curves: a slight enhancement above the unity line in the low-momentum region and a drop in the momentum region, 10-20x10 -3 m o c

  11. COINCIDENCES BETWEEN ELECTRONS AND TARGET IONS TO IDENTIFY CAPTURE CHANNELS IN COLLISIONS OF MULTIPLY CHARGED IONS ON GAS TARGETS

    NARCIS (Netherlands)

    POSTHUMUS, JH; MORGENSTERN, R

    1992-01-01

    We have investigated multielectron capture processes in collisions of Ar9+ on Ar by measuring the resulting Auger electrons in coincidence with charge-state-analyzed target ions. In this way it was possible to reconstruct partial electron energy spectra, each corresponding to a particular number of

  12. Evaluation of accidental coincidences for time-differential Moessbauer-spectroscopy

    International Nuclear Information System (INIS)

    Alflen, M.; Meyer, W.

    1995-01-01

    The accidental coincidences of a measuring system based on time-to-amplitude conversion are considered in some detail for the case of low starting and high stopping rates. Two types of accidental coincidences are distinguished, those carrying time information and those without time information. Neglecting any deadtime effects of the detectors, analytical expressions for the calculation of the time distribution of the random coincidences are evaluated. The analytical expressions have been confirmed by Monte Carlo simulations. The procedure is applied to time-differential Moessbauer spectroscopy in order to extract the time spectra of true coincidences. The measured spectrum in a time channel turns out to be a superposition of the true spectrum (true coincidences), a time integral spectrum (random coincidences), and a weighted superposition of true spectra of other time channels (random but time carrying information). A measurement with a single line 57 Co/Rh-source and single line K[Fe(CN) 6 ].3H 2 O-absorber with stopping rates of 1 MBq shows agreement between the theoretical time-filtered spectra and the corrected measured spectra of true coincidences. ((orig.))

  13. Channel coincidence counter: version 1

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1980-06-01

    A thermal neutron coincidence counter has been designed for the assay of fast critical assembly fuel drawers and plutonium-bearing fuel rods. The principal feature of the detector is a 7-cm by 7-cm by 97-cm detector channel, which provides a uniform neutron detection efficiency of 16% along the central 40 cm of the channel. The electronics system is identical to that used for the High-Level Neutron Coincidence Counter

  14. Testing of the SPEDE conversion electron spectrometer at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2157167

    2017-04-24

    The aim of this work was to test the performance of the SPEDE detector in the MINIBALL setup at CERN’s ISOLDE laboratory. The main research objective of MINIBALL is to study properties of atomic nuclei employing radioactive ion beams. Radioactive Bi-207 and Hg-191 were used in this experiment. SPEDE detects internal conversion electrons which are created in transitions between states in atomic nucleus. The internal conversion is competing process to more common γ-ray emission. This way it is possible to measure different properties of nuclear structure for example the E0-transitions. The simultaneous γ and electron measurements are possible when SPEDE is used in conjunction with the MINIBALL spectrometer. The GEANT4 simulation results were used to help interpretation of experimental results. As a result, αK/L-ratio was determined for Bi-207 conversion electrons, for the 5^2− -> 1^2− transition αK/L = 3.29±0.06 and for the 13^2+-> 5^2− transition αK/L = 3.11±0.05 were obtained. Also, the partial...

  15. A superconducting electron spectrometer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Huebel, H.; Grumbkow, A. von

    1983-03-01

    The set-up and tests of an electron spectrometer for in-beam conversion electron measurements are described. A superconducting solenoid is used to transport the electrons from the target to cooled Si(Li) detectors. The solenoid is designed to produce either a homogeneous axially symmetric field of up to 2 Tesla or a variety of field profiles by powering the inner and outer set of coils of the solenoid separately. The electron trajectories resulting for various field profiles are discussed. In-beam electron spectra taken in coincidence with electrons, gammas and alpha-particles are shown. (Auth.)

  16. Coincidence measurements with the use of detectors measuring the energy of the radiances (proportional meters and scintillation counter); Mesures de coincidences avec utilisation de detecteurs mesurant l'energie des rayonnements (compteurs proportionnels et compteur a scintillations)

    Energy Technology Data Exchange (ETDEWEB)

    Sartory, M [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    In the setting of the realization of a set of installations permitting of the measures of coincidences between sorted radiances according to their energies, an installation understanding a proportional counter and a scintillation counter has been constructed and optimized. It has been used to do some measures of coincidences between X{sub K} photons and photons {gamma} issued at the time of the radioactive transformation of the selenium 75 (electronic capture). The efficiency of the proportional meter has been determined roughly. Besides, a proportional counter of solid angle neighboring of 4{pi} was able to achieve measures of coincidences while only doing one selection of amplitudes: indeed, the simultaneity of the detection of two radiances appear by an impulse whose amplitude is the sum of the amplitudes of the impulses resulting from each of the studied radiations. This method, applied to the coincidences between X-rays, permitted to bring the information on the diagram of decay of the arsenic 73. Besides, the coefficient of internal conversion of a consecutive transition to this decay has been valued. (author) [French] Dans le cadre de la realisation d'une serie de montages permettant des mesures de coincidences entre rayonnements tries d'apres leurs energies, un montage comprenant un compteur proportionnel et un compteur a scintillations a ete construit et mis au point. Il a ete utilise pour effectuer quelques mesures de coincidences entre photons X{sub K} et photons {gamma} emis lors de la transformation radioactive du selenium 75 (capture electronique). L'efficacite du compteur proportionnel a ete approximativement determinee. De plus, un compteur proportionnel d'angle solide voisin de 4{pi} a pu etre utilise pour realiser des mesures de coincidences en n'effectuant qu'une selection d'amplitudes: en effet, la simultaneite de la detection de deux rayonnements se manifeste par une impulsion dont l'amplitude est la somme des amplitudes des impulsions

  17. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    Science.gov (United States)

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Search for Muon to electron conversion at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Chen Wu on behalf of the COMET Collaboration

    2016-12-15

    This article introduces the search for muon to electron conversion at J-PARC, namely COMET (COherent Muon Electron Transition) experiment, including a brief introduction of its physics motivation, a detailed description of COMET experiment and its staged approach, and an overview of its current status.

  19. On the merits of conversion electron Mossbauer spectroscopy in geosciences

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Bertelsen, P.; Budtz-Jørgensen, Carl

    2006-01-01

    Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give on the weath......Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give...

  20. A coincidence-type ion-electron converter detector for low-energy protons

    International Nuclear Information System (INIS)

    Benka, O.; Weinzierl, P.; Dobrozemsky, R.; Stratowa, C.

    1981-04-01

    A coincidence type ion-electron converter detector has been developed and used - together with an electrostatic energy-analyser - for precision measurements of the energy distribution of recoil protons from free-neutron decay. The most important aspect of the development was, besides keeping the background below 0,2 counts/sec in the presence of a certain radiation background, to achieve a high and energy-independent counting probability for protons with energies between 100 and 1000 eV. With an acceleration voltage of about 25 kV and Al-foils (20 to 35 ug/cmsup2) as converter, we obtained counting efficiences of 70 to 85 percent. The design and performance of the detector system, employing six foils with different sensitive areas, are described and discussed in detail. (author)

  1. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode

    International Nuclear Information System (INIS)

    Jones, B.; Efthimion, P.C.; Taylor, G.; Munsat, T.; Wilson, J.R.; Hosea, J.C.; Kaita, R.; Majeski, R.; Maingi, R.; Shiraiwa, S.; Spaleta, J.

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  2. Search for spontaneous conversion of muonium to antimuonium

    International Nuclear Information System (INIS)

    Hughes, V.W.; Ni, B.; Arnold, K.P.

    1987-01-01

    We have searched for spontaneous conversion of muonium (M) to antimuonium M bar by a method involving detection of high-Z muonic X rays. A beam of M atoms with keV energies, produced by electron pickup by μ + from a foil, travels in vacuum and in a magnetic field-free environment to a high-Z target. The event signatures used were a double coincidence of two muonic X rays of the target material and a triple coincidence that also required detection of secondary electrons ejected when M strikes the target. Partial analysis of our 8 x 10 6 triggers indicates upper limits on the effective M →M bar four-dermion coupling constant of G/sub MM bar/ ≤ 30 G/sub F/ (90% C.L.) and G/sub MM bar/ ≤ 8 G/sub F/ (90% C.L.), respectively, from the two signatures. This begins to probe predictions of the left-right symmetric theory with a doubly-charged Higgs triplet

  3. Nonlinear effects and conversion efficiency of free electron laser in compton regime

    International Nuclear Information System (INIS)

    Taguchi, Toshihiro; Mima, Kunioki; Mochizuki, Takayasu

    1980-01-01

    Nonlinear evolutions of free electron laser are analyzed by using quasi-linear theory. By the analysis, the energy conversion rates and the spectral width of the emitted radiations are calculated self-consistently. Moreover, it is found that the energy conversion rate is remarkably improved, when a RF field is applied to reaccelerate electron beam. (author)

  4. Surface-site-selective study of valence electronic states of a clean Si(111)-7x7 surface using Si L23VV Auger electron and Si 2p photoelectron coincidence measurements

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Tahara, Masashi; Nagaoka, Shin-ichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2011-01-01

    Valence electronic states of a clean Si(111)-7x7 surface are investigated in a surface-site-selective way using high-resolution coincidence measurements of Si pVV Auger electrons and Si 2p photoelectrons. The Si L 23 VV Auger electron spectra measured in coincidence with energy-selected Si 2p photoelectrons show that the valence band at the highest density of states in the vicinity of the rest atoms is shifted by ∼0.95 eV toward the Fermi level (E F ) relative to that in the vicinity of the pedestal atoms (atoms directly bonded to the adatoms). The valence-band maximum in the vicinity of the rest atoms, on the other hand, is shown to be shifted by ∼0.53 eV toward E F relative to that in the vicinity of the pedestal atoms. The Si 2p photoelectron spectra of Si(111)-7x7 measured in coincidence with energy-selected Si L 23 VV Auger electrons identify the topmost surface components, and suggest that the dimers and the rest atoms are negatively charged while the pedestal atoms are positively charged. Furthermore, the Si 2p-Si L 23 VV photoelectron Auger coincidence spectroscopy directly verifies that the adatom Si 2p component (usually denoted by C 3 ) is correlated with the surface state just below E F (usually denoted by S 1 ), as has been observed in previous angle-resolved photoelectron spectroscopy studies.

  5. The measurement of internal conversion electrons of selected nuclei: A physics undergraduate laboratory experience

    International Nuclear Information System (INIS)

    Nagy, P.; Duggan, J.L.; Desmarais, D.

    1992-01-01

    Thin sources are now commercially available for a wide variety of isotopes that have measurable internal conversion coefficients. The authors have used standard surface barrier detectors, NIM electronics, and a personal computer analyzer to measure conversion electrons from a few of these sources. Conversion electrons energy and intensity were measured for 113 Sn, 133 Ba, 137 Cs, and 207 Bi. From the measured spectra the innershell binding energies of the K ampersand L Shell electrons from the daughter nuclei were determined and compared to theory. The relative conversion coefficients a k /a L and the K/L ration were also measured. The spin and parity change of the transitions will also be assigned based on the selection rules of the transitions

  6. Electron irradiation effect of polyurethane using coincidence doppler-broadening spectroscopy

    International Nuclear Information System (INIS)

    Yang, D.J.; Zhang, J.D.; Leung, J.K.C.; Beling, C.D.; Liu, L.B.

    2006-01-01

    Full text: To understand the electron irradiation effects on polymer, polyether-urethane (ETPU) samples of 2m m in thickness and 1 0 m m in diameter were irradiated by a 1.8M eV electron beam with beam current of 3 ma at room temperature. The irradiated doses are 5 kGy, 10 kGy, 15 kGy, 30 kGy, 100 kGy and 150 kGy. ETPU was manufactured by mixing PTMG-100, TDI-100 and MOCA. The momentum density distributions (MMDs) of electrons taking part in the annihilation processes of positron-electron pairs in ETPU have been measured by coincidence Doppler-broadening spectroscopy (CDBS). By presenting the ratio of the counts in every channel of the measured CDB spectrum to the corresponding counts from a reference spectrum (pristine ETPU), we observed that the change in MMDs is not significant for doses lower than 10 kGy. However, high momentum part of MMDs exhibit an obvious decrease for dose exceeding 15 kGy and then slowly down to steady with doses until 150 kGy. This valley occurs at around 15 x1 0 3m οc and is well known as oxygen-specific, indicative of a less positron trapping by oxygen atoms in some samples of higher dose radiation. It is postulated that the radiation will break the crosslinkings, allowing the trace water and oxygen molecules to be released from the sample surface. Excess NCO groups in ETPU would crosslink with urethane and urea groups to produce allophanate and biuret groups. After receiving a certain amount of electron irradiation, crosslinked allophanate and biuret groups would produce degradation. Thus, residual water and oxygen trapped in ETPU by the crosslinking would diffuse out. However, the irradiation doses up to 150 kGy in this experiment are still not large enough to induce strong degradation of urethane and urea groups

  7. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  8. Saturation mechanism and improvement of conversion efficiency of free electron laser

    International Nuclear Information System (INIS)

    Taguchi, T.; Mima, K.; Mochizuki, T.

    1980-01-01

    Saturation mechanisms of free electron laser are investigated in the Compton regime. It is found that the saturation occurs due to quasi-linear energy spreading of electron beam in the case of many mode excitation. The energy conversion efficiency remains low even if many modes are taken into account. For improvement of the conversion efficiency, effects of reacceleration by a traveling wave are investigated and turn out to increase the efficiency up to more than 50%. (author)

  9. Surface-site-selective study of valence electronic structures of clean Si(100)-2x1 using Si-L23VV Auger electron-Si-2p photoelectron coincidence spectroscopy

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Nagaoka, Shinichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2010-01-01

    Valence electronic structures of a clean Si(100)-2x1 surface are investigated in a surface-site-selective way using Si-L 23 VV Auger electron-Si-2p photoelectron coincidence spectroscopy. The Si-L 23 VV Auger electron spectra measured in coincidence with Si-2p photoelectrons emitted from the Si up-atoms or Si 2nd-layer of Si(100)-2x1 suggest that the position where the highest density of valence electronic states located in the vicinity of the Si up-atoms is shifted by 0.8 eV towards lower binding energy relative to that in the vicinity of the Si 2nd-layer. Furthermore, the valence band maximum in the vicinity of the Si up-atoms is indicated to be shifted by 0.1 eV towards lower binding energy relative to that in the vicinity of the Si 2nd-layer. These results are direct evidence of the transfer of negative charge from the Si 2nd-layer to the Si up-atoms. (author)

  10. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode; TOPICAL

    International Nuclear Information System (INIS)

    B. Jones; P.C. Efthimion; G. Taylor; T. Munsat; J.R. Wilson; J.C. Hosea; R. Kaita; R. Majeski; R. Maingi; S. Shiraiwa; J. Spaleta

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  11. An Optimized Design of Single-Channel Beta-Gamma Coincidence Phoswich Detector by Geant4 Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2011-01-01

    Full Text Available An optimized single-channel phoswich well detector design has been proposed and assessed in order to improve beta-gamma coincidence measurement sensitivity of xenon radioisotopes. This newly designed phoswich well detector consists of a plastic beta counting cell (BC404 embedded in a CsI(Tl crystal coupled to a photomultiplier tube. The BC404 is configured in a cylindrical pipe shape to minimise light collection deterioration. The CsI(Tl crystal consists of a rectangular part and a semicylindrical scintillation part as a light reflector to increase light gathering. Compared with a PhosWatch detector, the final optimized detector geometry showed 15% improvement in the energy resolution of a 131mXe 129.4 keV conversion electron peak. The predicted beta-gamma coincidence efficiencies of xenon radioisotopes have also been improved accordingly.

  12. Development of a coincidence system for radio-nuclide standardization using surface barrier detectors

    International Nuclear Information System (INIS)

    Koskinas, M.F.

    1988-01-01

    A system for the standardization of alpha-gamma or electron-X radionuclide emitters has been developed in the present work. The system consists of one or two surface barrier detectors for alpha or electron detection which are coupled to thin-window NaI (T1) crystals suitable for low energy X or gamma ray detection. The performance of the system has been verified by means of the standardization of 241 Am, 137 Cs and 109 Cd solutions. The activity has been obtained using the extrapolation method applied to the 4Πα-γ and 2Πe c -X coincidence technique. The surface barrier detection efficiency was varied by placing absorbers over the radioactive sources or by changing the source to detector distance. The results were compared to those obtained using conventional absolute systems based on gas-flow and pressurized 4Π proportional counters, or using radioactive solutions standardized in international comparisons spondored by the Bureau International des Poids et Mesures. The expect and measured activities agree within the experimental uncertainties which were: 0.2 % for 241 Am, 0.7% for 137 Cs and 0.6% for 109 Cd. The ratio between the probabilities of (electron capture + internal conversion) and internal conversion for the K-shell of 109 Cd has been determined. The result is: 2.8883 ± 0.016. (author) [pt

  13. Resonant spin-flavor conversion of supernova neutrinos: Dependence on electron mole fraction

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Takamura, Akira; Kimura, Keiichi; Yokomakura, Hidekazu; Kawagoe, Shio; Kajino, Toshitaka

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Y e is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Y e . At an adiabatic high RSF resonance the flavor conversion of ν e ↔ν μ,τ occurs in Y e e >0.5 and inverted mass hierarchy. In other cases of Y e values and mass hierarchies, the conversion of ν e ↔ν μ,τ occurs. The final ν e spectrum is evaluated in the cases of Y e e >0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low ν e energy to high ν e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.

  14. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  15. Description and performance of an electron-ion coincidence TOF spectrometer used at the Brazilian synchrotron facility LNLS

    International Nuclear Information System (INIS)

    Burmeister, F.; Coutinho, L.H.; Marinho, R.R.T.; Homem, M.G.P.; Morais, M.A.A. de; Mocellin, A.; Bjoerneholm, O.; Sorensen, S.L.; Fonseca, P.T.; Lindgren, A.; Naves de Brito, A.

    2010-01-01

    This paper reports the characteristics and performance of a Time-of-Flight Mass Spectrometer (TOF-MS) for coincidence measurements between electrons and ions that has been developed jointly in Sweden and Brazil. The spectrometer, used for studies of inner-shell photoexcitation of molecules in the gas-phase, has been optimized by implementing ion and electron lenses to allow the use of relatively small diameter detectors. Simulations were performed to understand the lens performance and they show that ions (electrons) could be collected without angular discrimination with a maximum kinetic energy up to ten (two) times higher than without the lens actions. A rotary vacuum chamber allows the spectrometer axis to be positioned at different angles relative to the polarization vector of the excitation beam. An important characteristic of the apparatus is that the acquisition setup allows a multi-hit capability with 1 ns resolution. Hereby, Photoelectron-Photoion-Photoion Coincidence (PEPIPICO) measurements can be performed on molecules containing two or more atoms of equal mass. A method to obtain experimental detection efficiencies of a single ion and one of one, two or three electrons has been developed. A systematic study of the interaction region has been performed to determine the shape of the photon and gas beams. Measurements on molecular nitrogen demonstrate the spectrometer's ability to resolve fragments with the same charge to mass ratio arriving within only a few ns. Simulations and experimental results of fragmentation of two singly charged cation nitrogen atoms agree, confirming that the spectrometer performance is well understood.

  16. Description and performance of an electron-ion coincidence TOF spectrometer used at the Brazilian synchrotron facility LNLS

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, F. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Coutinho, L.H. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Instituto de Fisica, Universidade Estadual de Campinas, 13083-970 Campinas, SP (Brazil); Marinho, R.R.T. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Homem, M.G.P. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Morais, M.A.A. de; Mocellin, A. [Instituto de Fisica, Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil); Bjoerneholm, O. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Sorensen, S.L. [SLF, Institute of Physics, University of Lund, Box 118, S-221 00 Lund (Sweden); Fonseca, P.T. [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Lindgren, A. [SLF, Institute of Physics, University of Lund, Box 118, S-221 00 Lund (Sweden); Naves de Brito, A., E-mail: arnaldo.naves@gmail.co [Laboratorio Nacional de Luz Sincrotron, 13084-971, Campinas, SP (Brazil); Instituto de Fisica, Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil)

    2010-06-15

    This paper reports the characteristics and performance of a Time-of-Flight Mass Spectrometer (TOF-MS) for coincidence measurements between electrons and ions that has been developed jointly in Sweden and Brazil. The spectrometer, used for studies of inner-shell photoexcitation of molecules in the gas-phase, has been optimized by implementing ion and electron lenses to allow the use of relatively small diameter detectors. Simulations were performed to understand the lens performance and they show that ions (electrons) could be collected without angular discrimination with a maximum kinetic energy up to ten (two) times higher than without the lens actions. A rotary vacuum chamber allows the spectrometer axis to be positioned at different angles relative to the polarization vector of the excitation beam. An important characteristic of the apparatus is that the acquisition setup allows a multi-hit capability with 1 ns resolution. Hereby, Photoelectron-Photoion-Photoion Coincidence (PEPIPICO) measurements can be performed on molecules containing two or more atoms of equal mass. A method to obtain experimental detection efficiencies of a single ion and one of one, two or three electrons has been developed. A systematic study of the interaction region has been performed to determine the shape of the photon and gas beams. Measurements on molecular nitrogen demonstrate the spectrometer's ability to resolve fragments with the same charge to mass ratio arriving within only a few ns. Simulations and experimental results of fragmentation of two singly charged cation nitrogen atoms agree, confirming that the spectrometer performance is well understood.

  17. Direct measurement of electron beam quality conversion factors using water calorimetry.

    Science.gov (United States)

    Renaud, James; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl; Seuntjens, Jan

    2015-11-01

    In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9-20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%-0.40%) and its influence on the perturbation correction (Type B, 0.10%-0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM's TG-51 protocol. General agreement between the relative

  18. Application of coincidence Doppler-broadening spectroscopy to different carbon phases

    International Nuclear Information System (INIS)

    Ito, Y.; Djourelov, N.; Suzuki, T.; Kondo, K.; Ito, Y.; Shantarovich, V.; Onoe, J.

    2004-01-01

    Coincidence Doppler-broadening spectroscopy was applied to C60 and C70 fullerenes and other carbon phases, such as nanotubes and graphites. Remarkable differences were observed in the Doppler-broadening of the positron annihilation γ-rays in these materials, which reflect the different densities distribution of the momentum for electrons annihilated with positrons. This would be caused by the different composition of the π and σ electrons in annihilation with positrons. This result shows the sensitivity of the coincidence Doppler-broadening method to determine the density distribution of electrons sampled by positrons. (orig.)

  19. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  20. A new approach to beta-gamma coincidence counting. Advance report on the Samar electronic system

    International Nuclear Information System (INIS)

    Carlos, J. E. de; Granados, C. E.

    1972-01-01

    In 4π β-γ coincidence measurements, precision on the evaluation of coincidence counting losses is made difficult because of complex overlapping effects between theβ--and γ-side dead times due to pre cursive counted events. In this context the SAMAR electronic system is aimed to give a precise way of automatic counting and reduce the need for calculated corrections. This report describes its configuration and basic features. The SAMAR has been conceived in such a manner that both beta and gamma chains are sharing a common and non extending dead-time which is simultaneously applied to both channels. The shared dead time is made to be the only one inserted throughout the chains. Overlapping effects vanish and the three counting channels have identical transmission ratios. A new dead-time circuit based on fast linear gates as blocking elements has been developed. Application of the two-oscillator Muller's method evidences a fully non-extending character. Automatism is implemented by using a live timer corrective channel controlling the counting scalers. (Author) 21 refs

  1. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  2. Coincident detection of electrons ejected at large angles and target recoil ions produced in multiply ionizing collisions for the 1-MeV/u Oq++Ar collision system

    International Nuclear Information System (INIS)

    Gaither III, C.C.; Breinig, M.; Berryman, J.W.; Hasson, B.F.; Richards, J.D.; Price, K.

    1993-01-01

    The angular distributions of energetic electrons ejected at angles between 45 degree and 135 degree with respect to the incident-beam direction have been measured in coincidence with the charge states of the target recoil ions produced in multiply ionizing collisions for the 1-MeV/u O q+ (q=4,7)+Ar collision systems. These measurements have been made for ∼179-, ∼345-, and ∼505-eV electrons. Additionally, the energy distributions of electrons ejected into specific angular regions have been measured. Ar LMM satellite Auger electrons appear as a peak in the energy spectrum of electrons ejected at all large angles. The center of this peak is found at an electron energy of ∼179 eV. Electrons with ∼179 eV energy, ejected at large angles, are preferentially produced in coincidence with recoil ions of charge state 4+. Electrons with ∼345 eV energy and ∼505 eV energy ejected at large angles are preferentially produced in coincidence with recoil ions of charge state 3+. The angular distributions for these electrons are strongly peaked in the forward direction; essentially no electrons are observed at angles larger than 90 degree. These results are consistent with the dominant production mechanism for energetic electrons ejected at large angles being a binary-encounter process. Differential cross sections have been calculated from these angular distributions. They are on the order of 10 -21 cm 2 /(eV sr)

  3. Low-temperature system for simultaneous counting of conversion electrons and backscattered [gamma]-rays in Moessbauer effect experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruskov, Todor (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Passage, Guener (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Rastanawi, Abdallah (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Radev, Rumen (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria))

    1994-12-01

    A system for simultaneous detection of conversion electrons, emitted after resonant exciting of [sup 57]Fe, and resonant backscattered [gamma]-rays and X-rays, accompanying the conversion electrons, is described. The system includes a helium proportional counter, for detection of conversion electrons, and a toroidal ''Keisch-type'' proportional counter, connected to the vacuum part of a helium cryostat. ((orig.))

  4. Direct measurement of electron beam quality conversion factors using water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada); Sarfehnia, Arman [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Marchant, Kristin [Allan Blair Cancer Centre, Saskatchewan Cancer Agency, Regina, Saskatchewan S4T 7T1, Canada and Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A1 (Canada); McEwen, Malcolm; Ross, Carl [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2015-11-15

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol

  5. Triple-coincidence with automatic chance coincidence correction

    International Nuclear Information System (INIS)

    Chase, R.L.

    1975-05-01

    The chance coincidences in a triple-coincidence circuit are of two types--partially correlated and entirely uncorrelated. Their relative importance depends on source strength and source and detector geometry so that the total chance correction cannot, in general, be calculated. The system described makes use of several delays and straightforward integrated circuit logic to provide independent evaluation of the two components of the chance coincidence rate. (auth)

  6. Design of an electronic system with simultaneous registering of pulse amplitude and event time applied to the 4πβ-γ coincidence method

    International Nuclear Information System (INIS)

    Toledo, Fabio de

    2009-01-01

    The 4πβ-γ coincidence method for absolute radionuclide activity measurement has been considered for many years as a primary standard in Nuclear Metrology, because of dependence on few observable quantities and high accuracy. The Laboratorio de Metrologia Nuclear (LMN) - Nuclear Metrology Laboratory -, at Instituto de Pesquisas Energeticas e Nucleares (IPEN) - Nuclear and Energy Research Institute -, among its measurement techniques, uses the 4πβ-γ coincidence method. Recently a new technique known as 'software coincidence' has been used, with many advantages over the conventional coincidence methodology. In order to update the methodologies for radionuclide standardizations, the LMN developed a new system based on the software coincidence technique, described in the present work. This system uses the same nuclear set up for beta and gamma detection. The new software coincidence electronics uses a National Instruments (NI) acquisition card connected to a microcomputer and, through a connection panel, to the nuclear detection set up. The card configuration and controlling is accomplished by software using the LabVIEW, a NI proprietary product. This system records into disk files all the amplitudes and occurrence times for beta and gamma detected pulses. A suitable software was developed (the coincidence analysis program) to process the recorded data in order to obtain beta, gamma and coincidence counts and perform calculation of the radioactive source activity. The work also presents and discusses the results obtained with the first version of the coincidence analysis program, as well as perspectives for future works. (author)

  7. The principles of electronic and electromechanic power conversion a systems approach

    CERN Document Server

    Ferreira, Braham

    2013-01-01

    Teaching the principles of power electronics and electromechanical power conversion through a unique top down systems approach, The Principles of Electromechanical Power Conversion takes the role and system context of power conversion functions as the starting point. Following this approach, the text defines the building blocks of the system and describes the theory of how they exchange power with each other. The authors introduce a modern, simple approach to machines, which makes the principles of field oriented control and space vector theory approachable to undergraduate students as well as

  8. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  9. Imaging the electron transfer reaction of Ne2+ with Ar using position-sensitive coincidence spectroscopy

    International Nuclear Information System (INIS)

    Harper, Sarah M; Hu Wanping; Price, Stephen D

    2002-01-01

    A new experiment, employing position-sensitive detection coupled with time-of-flight mass spectrometry, has been used to investigate the single-electron transfer reaction between Ne 2+ and Ar by detecting the resulting pairs of singly charged ions in coincidence. The experimental technique allows the determination of the individual velocity vectors of the ionic products, in the centre-of-mass frame, for each reactive event detected. The experiments show that forward scattering dominates the reactivity, although a bimodal angular distribution is apparent. In addition, the spectra show that at laboratory frame collision energies from 4-14 eV the reactivity is dominated by Ne 2+ (2p 4 , 3 P) accepting an electron from an argon atom to form the ground state of Ne + together with an Ar + ion in an excited electronic level, predominantly arising from the Ar + (3s 2 3p 4 3d) configuration. The form of this reactivity, and the differences between the reactivity observed in these experiments and those performed at higher collision energies, are well reproduced by Landau-Zener theory

  10. Coincidence measurements of FFTF breeder fuel subassemblies

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Foley, J.E.; Krick, M.; Menlove, H.O.; Goris, P.; Ramalho, A.

    1984-04-01

    A prototype coincidence counter developed to assay fast breeder reactor fuel was used to measure four fast-flux test facility subassemblies at the Hanford Engineering Development Laboratory in Richland, Washington. Plutonium contents in the four subassemblies ranged between 7.4 and 9.7 kg with corresponding 240 Pu-effective contents between 0.9 and 1.2 kg. Large count rates were observed from the measurements, and plots of the data showed significant multiplication in the fuel. The measured data were corrected for deadtime and multiplication effects using established formulas. These corrections require accurate knowledge of the plutonium isotopics and 241 Am content in the fuel. Multiplication-corrected coincidence count rates agreed with the expected count rates based on spontaneous fission-neutron emission rates. These measurements indicate that breeder fuel subassemblies with 240 Pu-effective contents up to 1.2 kg can be nondestructively assayed using the shift-register electronics with the prototype counters. Measurements using the standard Los Alamos National Laboratory shift-register coincidence electronics unit can produce an assay value accurate to +-1% in 1000 s. The uncertainty results from counting statistics and deadtime-correction errors. 3 references, 8 figures, 8 tables

  11. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  12. Calculation of dose-rate conversion factors for external exposure to photons and electrons

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1978-01-01

    Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air

  13. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    Science.gov (United States)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  14. CDL, a Precise, Low-Cost Coincidence Detector Latch

    Directory of Open Access Journals (Sweden)

    Ralf Joost

    2015-12-01

    Full Text Available The electronic detection of the coincidence of two events is still a key ingredient for high-performance applications, such as Positron Emission Tomography and Quantum Optics. Such applications are demanding, since the precision of their calculations and thus their conclusions directly depend on the duration of the interval in which two events are considered coincidental. This paper proposes a new circuitry, called coincidence detector latch (CDL, which is derived from standard RS latches. The CDL has the following advantages: low complexity, fully synthesizable, and high scalability. Even in its simple implementation, it achieves a coincidence window width as short as 115 ps, which is more than 10 times better than that reported by recent research.

  15. Measurement of conversion electrons with the $^{208}Pb(p,n)^{208}Bi$ reaction and derivation of the shell model proton neutron hole interaction from the properties of $^{208}Bi$

    CERN Document Server

    Maier, K H; Dracoulis, G D; Boutachkov, P; Aprahamian, A; Byrne, A P; Davidson, P M; Lane, G L; Marie-Jeanne, Mélanie; Nieminen, P; Watanabe, H

    2007-01-01

    Conversion electrons from 208Bi have been measured using singles and coincidence techniques with the 208Pb(p,n)208Bi reaction at 9 MeV. The new information on multipolarities and spins complements that available from recent gamma-gamma-coincidence studies with the same reaction [Boutachkov et al., Nucl. Phys. A768, 22 (2006)]. The results on electromagnetic decays taken together with information on spectroscopic factors from earlier single-particle transfer reaction measurements represent an extensive data set on the properties of the one-proton one-neutron-hole states below 3 MeV, a spectrum which is virtually complete. Comparison of the experimental observables, namely, energies, spectroscopic factors, and gamma-branching ratios, with those calculated within the shell model allows extraction of the matrix elements of the shell model residual interaction. More than 100 diagonal and nondiagonal elements can be determined in this way, through a least squares fit to the experimental data. This adjustment of the...

  16. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M., E-mail: m.h.m.janssen@vu.nl [LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Powis, Ivan [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  17. The Future of Electronic Power Processing and Conversion: Highlights from FEPPCON IX

    DEFF Research Database (Denmark)

    Enslin, Johan H.; Blaabjerg, Frede; Tan, Don F.D.

    2017-01-01

    Since 1991, every second year the IEEE Power Electronics Society (PELS) has organized the technical long-range planning meeting "Future of Electronic Power Processing and Conversion" (FEPPCON). FEPPCON IX was held 12-16 June 2017 in beautiful Kruger Park in South Africa (Figure 1). The overall go...

  18. Feasibility of conversion electron spectrometry using a Peltier-cooled silicon drift detector

    International Nuclear Information System (INIS)

    Perajarvi, K.; Turunen, J.; Ihantola, S.; Pollanen, R.; Siiskonen, T.; Toivonen, H.; Kamarainen, V.; Pomme, S.

    2014-01-01

    A Peltier-cooled silicon drift detector was successfully applied for conversion electron spectrometry. The energy resolution of the detector for 45 keV electrons was 0.50 keV (FWHM). The approximate thickness of the dead layer was determined to be 140 ± 20 nm Si equivalent. The relative efficiency of the detector was verified to be approximately constant in the energy range of 17-75 keV. This is concordant with the high transparency of the thin dead layer and the sufficient thickness of the detector (450 μm) to stop the electrons. The detector is suitable for use in plutonium analysis of chemically prepared samples. Moreover, it was demonstrated that conversion electron spectrometry is better than alpha spectrometry in preserving its capability to determine the 240 Pu/ 239 Pu isotopic ratio as a function of sample thickness. The investigated measurement technique can be considered a promising new tool in safeguards, complementary to existing methods. (author)

  19. Conversion electron spectrometry of Pu isotopes with a silicon drift detector

    OpenAIRE

    Pommé, S.; Paepen, J.; Peräjärvi, K.; Turunen, J.; Pöllänen, R.

    2016-01-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5 keV for electrons of 30 keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. 238Pu, 239Pu, 240P...

  20. Conversion-electron experiment to characterize the decay of the 237Np shape isomer

    International Nuclear Information System (INIS)

    Henry, E.A.; Becker, J.A.; Bauer, R.W.; Gardner, D.G.; Decman, D.J.; Meyer, R.A.; Roy, N.; Sale, K.E.

    1987-01-01

    Conversion electrons from the decay of low-lying levels of 237 Np have been measured to detect the population of these levels by gamma-ray decay of the 237 Np shape isomer. Analysis of the 208-keV transition L conversion-electron peak gives an upper limit of about 17 μb for the population of the 3/2 - 267-keV level in 237 Np from the shape isomer decay. Model calculations are compared with the measured limit. Improvements are suggested for this experiment. 9 refs., 4 figs

  1. Implementation of the Electron conversion Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Hernandez, Torres, D.; Noriega Scull, C.

    1996-01-01

    In the present work has been exposed the principles of the Conversion Moessbauer Electron Spectroscopy and its possibilities of application. Is also described the operation of the parallel plate avalanche detector made at the CEADEN starting from modifications done to the Gancedo's model and is exposed examples of the use of this detector in the characterization of corroded surfaces, with chemical cleaning and in samples of welded joints. The experiences obtained of this work were extended to the National Polytechnic Institute of Mexico where a similar detector, made in our center, was installed there

  2. Personal dose equivalent conversion coefficients for electrons to 1 Ge V.

    Science.gov (United States)

    Veinot, K G; Hertel, N E

    2012-04-01

    In a previous paper, conversion coefficients for the personal dose equivalent, H(p)(d), for photons were reported. This note reports values for electrons calculated using similar techniques. The personal dose equivalent is the quantity used to approximate the protection quantity effective dose when performing personal dosemeter calibrations and in practice the personal dose equivalent is determined using a 30×30×15 cm slab-type phantom. Conversion coefficients to 1 GeV have been calculated for H(p)(10), H(p)(3) and H(p)(0.07) in the recommended slab phantom. Although the conversion coefficients were determined for discrete incident energies, analytical fits of the conversion coefficients over the energy range are provided using a similar formulation as in the photon results previously reported. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection guidance. Effects of eyewear on H(p)(3) are also discussed.

  3. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Buzzi, J.M.; Doucet, H.J.; Etlicher, B.

    1977-01-01

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  4. Study of electron beam energy conversion at gyrocon-linear accelerator facility

    International Nuclear Information System (INIS)

    Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.

    2004-01-01

    A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%

  5. Computed neutron coincidence counting applied to passive waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R. [Nuclear Research Centre, Mol (Belgium)

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  6. Computed neutron coincidence counting applied to passive waste assay

    International Nuclear Information System (INIS)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1997-01-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs

  7. Instrument limitation of accuracy of absolute measurement by method of 4π beta-gamma coincidence

    International Nuclear Information System (INIS)

    Plkh, J.

    1979-01-01

    Accuracy is discussed of determination of coincidence channels dead-time in 4π β-γ installation and determination of coincidence resolution time as well as conditions for determination and accuracy of these parameters. Conditions are considered under which these parameters have not been determined and there is wrong performance of the installation. Special attention was paid to the electronic circuit of the γ-channel. It has been shown that as a result of wrong performance of electronic circuit a new type of wrong coincidence appeared [ru

  8. Dose conversion coefficients for electron exposure of the human eye lens

    International Nuclear Information System (INIS)

    Behrens, R; Dietze, G; Zankl, M

    2009-01-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity H p (0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity H p (3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0 deg. and 45 deg. are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.

  9. Application of Monte Carlo method in study of the padronization for radionuclides with complex disintegration scheme in 4πβ-γ coincidence System

    International Nuclear Information System (INIS)

    Takeda, Mauro Noriaki

    2006-01-01

    The present work described a new methodology for modelling the behaviour of the activity in a 4πβ-γ coincidence system. The detection efficiency for electrons in the proportional counter and gamma radiation in the NaI(Tl) detector was calculated using the Monte Carlo program MCNP4C. Another Monte Carlo code was developed which follows the path in the disintegration scheme from the initial state of the precursor radionuclide, until the ground state of the daughter nucleus. Every step of the disintegration scheme is sorted by random numbers taking into account the probabilities of all β - branches, electronic capture branches, transitions probabilities and internal conversion coefficients. Once the final state was reached beta, electronic capture events and gamma transitions are accounted for the three spectra: beta, gamma and coincidence variation in the beta efficiency was performed simulating energy cut off or use of absorbers (Collodion). The selected radionuclides for simulation were: 134 Cs, 72 Ga which disintegrate by β - transition, 133 Ba which disintegrates by electronic capture and 35 S which is a beta pure emitter. For the latter, the Efficiency Tracing technique was simulated. The extrapolation curves obtained by Monte Carlo were filled by the Least Square Method with the experimental points and the results were compared to the Linear Extrapolation method. (author)

  10. COMET/PRISM Muon to Electron Conversion at J-PARC

    International Nuclear Information System (INIS)

    Hungerford, Ed V.

    2009-01-01

    A new experimental search for coherent, neutrinoless, muon-to-electron conversion from a muonic atom has been proposed for the Japanese Proton Accelerator, J-PARC, now under commissioning. The experiment is completing a conceptual design which proposes a single event sensitivity in the branching ratio of lepton number violating to lepton conserving decays of ≅0.26x10 -16 . This note briefly describes the experiment and its objectives.

  11. Comparison of the target-thickness dependence of the convoy electron yield and the Rydberg electron yield measured in coincidence with exit charge states in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Gaither, C.C. III; Breinig, M.; Freyou, J.; Underwood, T.A.

    1988-01-01

    We have simultaneously measured the yield of convoy electrons and the yield of electrons in high Rydberg states of the projectile (n /approx gt/ 70), produced by 2MeV/u C projectiles passing through C foils, whose thicknesses range from 4--10 ug/cm 2 , for incident charge states q/sub i/ = 4--6 and exit charge states q/sub e/ = 4--6. We have found that these yields exhibit similar trends as a function of foil thickness, but that, nevertheless, the ratio of the number of convoy electrons detected in coincidence with ions of exit charge state q/sub e/ to the number of electrons detected in high Rydberg states of ions with the same exit charge state is a function of foil thickness. This may be due to a broadening of the convoy electron energy spectrum with increasing foil thickness. 6 refs., 3 figs

  12. Photoelectron photoion coincidence imaging of ultrafast control in multichannel molecular dynamics.

    Science.gov (United States)

    Lehmann, C Stefan; Ram, N Bhargava; Irimia, Daniel; Janssen, Maurice H M

    2011-01-01

    The control of multichannel ionic fragmentation dynamics in CF3I is studied by femtosecond pulse shaping and velocity map photoelectron photoion coincidence imaging. When CF3I is photoexcited with femtosecond laser pulses around 540 nm there are two major ions observed in the time-of-flight mass spectrum, the parent CF3I+ ion and the CF3+ fragment ion. In this first study we focussed on the influence of LCD-shaped laser pulses on the molecular dynamics. The three-dimensional recoil distribution of electrons and ions were imaged in coincidence using a single time-of-flight delay line detector. By fast switching of the voltages on the various velocity map ion lenses after detection of the electron, both the electron and the coincident ion are measured with the same imaging detector. These results demonstrate that a significant simplification of a photoelectron-photoion coincidence imaging apparatus is in principle possible using switched lens voltages. It is observed that shaped laser fields like chirped pulses, double pulses, and multiple pulses can enhance the CF3+CF3I+ ratio by up to 100%. The total energetics of the dynamics is revealed by analysis of the coincident photoelectron spectra and the kinetic energy of the CF3+ and I fragments. Both the parent CF3I+ and the CF3+ fragment result from a five-photon excitation process. The fragments are formed with very low kinetic energy. The photoelectron spectra and CF3+/CF3I+ ratio vary with the center wavelength of the shaped laser pulses. An optimal enhancement of the CF3+/CF3I+ ratio by about 60% is observed for the double pulse excitation when the pulses are spaced 60 fs apart. We propose that the control mechanism is determined by dynamics on neutral excited states and we discuss the results in relation to the location of electronically excited (Rydberg) states of CF3I.

  13. Conversion electron spectroscopy at the FMA focal plane: Decay studies of proton-rich N {approximately} 82 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nisius, D.; Janssens, R.V.F.; Ahmad, I. [and others

    1995-08-01

    The FMA has proven to be an ideal instrument for the detailed study of the decay of microsecond isomers behind the focal plane following mass selection. In reactions leading to the population of nuclei with isomeric lifetimes longer than their flight time through the device, decay gamma rays and conversion electrons can be detected in an environment free from the backgrounds of prompt radiation and delta electrons. This was a very successful technique to study proton (h{sub 11/2}){sup n} seniority isomers in nuclei with Z > 64 and N {approximately} 82. Since isomeric decay gamma rays are emitted isotropically, conversion electrons are essential for the assignment of multipolarities in these nuclei. Furthermore, the low-energy transitions that depopulate isomeric states are typically highly converted and can escape gamma-ray detection, but they can be identified by their conversion electrons.

  14. Preparation of 114mIn low energy conversion electron sources

    International Nuclear Information System (INIS)

    Wrede, C.; Filippone, B.W.; Garcia, A.; Harper, G.C.; Lassell, S.; Liu, J.; Mendenhall, M.P.; Palmer, A.S.C.; Pattie, R.W.; Will, D.I.; Young, A.R.

    2011-01-01

    Highlights: → Controlled ion implantation of In-113 into thin Al substrate. → Production of In-114m (half life = 50 days) by neutron irradiation. → Use of In-114m as a source of electron lines and continuum for calibrations. → Source reactivation by short neutron irradiation. -- Abstract: The preparation of 114m In sources of conversion electrons in the energy range 162-190 keV and β continuum with a 1989 keV endpoint via ion implantation of 113 In into Al substrates and subsequent irradiation by thermal and epi-thermal neutrons in a nuclear reactor is described.

  15. Opto-electronic conversion logic behaviour through dynamic modulation of electron/energy transfer states at the TiO2-carbon quantum dot interface.

    Science.gov (United States)

    Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui

    2013-03-07

    Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.

  16. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.

    Science.gov (United States)

    Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae

    2018-01-01

    Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Kathryn M. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States); Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)]. E-mail: ghoffmann@holycross.edu

    2007-03-01

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, {beta}-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv{sup +} revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state.

  18. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Freeman, Kathryn M.; Hoffmann, George R.

    2007-01-01

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, β-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv + revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state

  19. Single-photon double and triple ionization of acetaldehyde (ethanal) studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zagorodskikh, S. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Zhaunerchyk, V. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Mucke, M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Eland, J.H.D. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Squibb, R.J. [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Karlsson, L. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Linusson, P. [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Feifel, R., E-mail: raimund.feifel@gu.se [Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2015-12-16

    Highlights: • The first ever valence double ionization spectrum of acetaldehyde is reported. • The first ever site-selectively extracted Auger spectra of acetaldehyde are reported. • The first ever Auger spectra of acetaldehyde involving shake-up states are reported. • The first ever triple ionization spectra of acetaldehyde are reported. • The first ever energy sharing of electron pairs emitted by acetaldehyde is presented. - Abstract: Single-photon multiple ionization processes of acetaldehyde (ethanal) have been experimentally investigated by utilizing a multi-particle coincidence technique based on the time-of-flight magnetic bottle principle, in combination with either a synchrotron radiation source or a pulsed helium discharge lamp. The processes investigated include double and triple ionization in the valence region as well as single and double Auger decay of core-ionized acetaldehyde. The latter are studied site-selectively for chemically different carbon core vacancies, scrutinizing early theoretical predictions specifically made for the case of acetaldehyde. Moreover, Auger processes in shake-up and core-valence ionized states are investigated. In the cases where the processes involve simultaneous emission of two electrons, the distributions of the energy sharing are presented, emphasizing either the knock-out or shake-off mechanism.

  20. Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry

    Science.gov (United States)

    Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.

    2017-11-01

    We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.

  1. A study of core electron binding energies in technetium-99m complexes by internal conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Burke, J.F.; Archer, C.M.; Wei Chiu, K.; Latham, I.A.; Egdell, R.G.

    1991-01-01

    Core electron binding energies in a series of 99m Tc complexes have been studied by internal conversion electron spectroscopy (ICES) in a conventional x-ray photoelectron spectrometer. In both 3d and 3p regions, a chemical shift of about 1 eV is observed per unit increase in oxidation state. The role of ICES in characterizing radiopharmaceutical agents is illustrated with studies of some novel 99m Tc-phosphine complexes that have been developed for myocardial perfusion imaging. (author)

  2. Parametric down conversion of X-rays, recent experiments

    CERN Document Server

    Adams, B; Novikov, D V; Materlik, G; Mills, D M

    2001-01-01

    Parametric down conversion of X-ray photons in diamond crystals was detected in six experiments, all using the phase matching scheme first employed in the X-ray regime by Eisenberger and McCall (Eisenberger and McCall, Phys. Rev. Lett. 26 (1971) 684). The conversion events were detected by a combination of time correlation spectroscopy and energy discrimination. The time correlation spectra gave a direct comparison of the conversion rate over the accidental coincidence rate.

  3. Analysis of 125Xe electron-photon coincidence decay

    International Nuclear Information System (INIS)

    Klingberg, F.J.; Biegalski, S.R.

    2016-01-01

    As part of the verification component of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), environmental gas samples originating from nuclear fission are analyzed for the presence of 131m Xe, 133m Xe, 133 Xe, and 135 Xe. In this work, the non-traditional radioxenon isotope 125 Xe was investigated. The isotope was produced as an isotopically pure sample via neutron activation of 124 Xe at the University of Texas at Austin Nuclear Engineering Teaching Lab's TRIGA MARK II Reactor. The sample was then measured using a HPGe detector as well as an ARSA-style b-c coincidence detector. Potential sources and sensitivities for production of 125 Xe are also considered for relevance to the CTBT verification mission. (author)

  4. The radiation-induced topotactic conversion of di-para anthracene to anthracene: an electron microscopic study

    International Nuclear Information System (INIS)

    Parkinson, G.M.; Goringe, M.J.; Thomas, J.M.

    1977-01-01

    A study was made of single crystals of di-para anthracene, the product of photodimerisation of anthracene. This undergoes an electron-induced topotactic conversion to anthracene, and the study of this reaction using low temperature TEM enabled the identification of separate stages in the conversion and the elucidation of probable mechanistic routes. (author)

  5. Standardization of portable assay instrumentation: the neutron-coincidence tree

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1983-01-01

    Standardization of portable neutron assay instrumentation has been achieved by using the neutron coincidence technique as a common basis for a wide range of instruments and applications. The electronics originally developed for the High-Level Neutron Coincidence Counter has been adapted to both passive- and active-assay instrumentation for field verification of bulk plutonium, inventory samples, pellets, powders, nitrates, high-enriched uranium, and materials-testing-reactor, light-water-reactor, and mixed-oxide fuel assemblies. The family of detectors developed at Los Alamos National Laboratory and their performance under in-field conditions are described. 16 figures, 3 tables

  6. Calibration of nuclides by gamma-gamma sum peak coincidence counting

    International Nuclear Information System (INIS)

    Guevara, E.A.

    1986-01-01

    The feasibility of extending sum peak coincidence counting to the direct calibration of gamma-ray emitters having particular decay schemes was investigated, also checkings of the measurement accuracy, by comparing with more precise beta-gamma coincidence counting have been performed. New theoretical studies and experiments were developed, demonstrating the reliability of the procedure. Uncertainties of less than one percent were obtained when certain radioactive sources were measured. The application of the procedure to 60 Co, 22 Na, 47 Ca and 148 Pm was studied. Theoretical bases of sum peak coincidence counting were set in order to extend it as an alternative method for absolute activity determination. In this respect, theoretical studies were performed for positive and negative beta decay, and electron capture, either accompanied or unaccompanied by coincident gamma rays. They include decay schemes containing up to three daughter nuclide excited levels, for different geometrical configurations. Equations are proposed for a possible generalization of the procedure. (M.E.L.) [es

  7. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8–24 eV photon energy range

    International Nuclear Information System (INIS)

    Schwell, Martin; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Es-Sebbar, Et.; Garcia, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney

    2012-01-01

    Highlights: ► We study the VUV photoionization of acetamide in the 8–24 eV photon energy range. ► Electron/ion coincidence measurements are performed using synchrotron radiation. ► The adiabatic ionization energy of acetamide is determined by TPEPICO measurements. ► VUV induced fragmentation pathways of acetamide are assigned and discussed. - Abstract: A VUV photoionization study of acetamide was carried out over the 8–24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2 A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2 A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3 , NH 2 , NH 3 , CO, HCCO and NH 2 CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.

  8. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I

    Science.gov (United States)

    Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.

    2018-03-01

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  9. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I.

    Science.gov (United States)

    Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M

    2018-03-21

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  10. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  11. Gamma-X-ray coincidence Moessbauer spectroscopic study of the aftereffects in sulfate hydrates

    International Nuclear Information System (INIS)

    Kobayashi, T.; Makita, T.; Fukumura, K.

    1990-01-01

    The anomalous charge states formed after the electron capture decay of 57 Co in FeSO 4 .H 2 O and FeSO 4 .7H 2 O are investigated using the conventional Moessbauer emission spectroscopy and a gamma-X ray coincidence method. This method is based on the idea that a Moessbauer spectrum observed with the coincidence technique only when K-X rays are emitted is reflected by isolated events with a reduced influence of the Auger-electron self-irradiation. The formation of the anomalous electronic and structural configuration is attributed to the self-radiolysis of the H 2 O and SO 4 2- ligands in the nearest and the second nearest coordination shells around the decaying atom. (orig.)

  12. Preparation of {sup 114m}In low energy conversion electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, C., E-mail: wrede@uw.ed [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Filippone, B.W. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Garcia, A.; Harper, G.C. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Lassell, S. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Liu, J. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Mendenhall, M.P. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Palmer, A.S.C. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Pattie, R.W. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Will, D.I. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195 (United States); Young, A.R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2011-05-15

    Highlights: {yields} Controlled ion implantation of In-113 into thin Al substrate. {yields} Production of In-114m (half life = 50 days) by neutron irradiation. {yields} Use of In-114m as a source of electron lines and continuum for calibrations. {yields} Source reactivation by short neutron irradiation. -- Abstract: The preparation of {sup 114m}In sources of conversion electrons in the energy range 162-190 keV and {beta} continuum with a 1989 keV endpoint via ion implantation of {sup 113}In into Al substrates and subsequent irradiation by thermal and epi-thermal neutrons in a nuclear reactor is described.

  13. High-Intensity Laser-to-Hot-Electron Conversion Efficiency from 1 to 2100 J Using the OMEGA EP Laser System

    Science.gov (United States)

    Nilson, P. M.

    2010-11-01

    Intense laser--matter interactions generate high-current electron beams. The laser-electron conversion efficiency is an important parameter for fast ignition and for developing intense x-ray sources for flash-radiography and x-ray-scattering experiments. These applications may require kilojoules of laser energy focused to greater than 10^18 W/cm^2 with pulse durations of tens of picoseconds. Previous experiments have measured the conversion efficiency with picosecond and subpicosecond laser pulses with energies up to ˜500 J. The research extends conversion-efficiency measurements to 1- to 10-ps laser pulses with energies up to 2100 J using the OMEGA EP Laser System and shows that the conversion efficiency is constant (20±10%) over the entire range The conversion efficiency is measured for interactions with finite-mass, thin-foil targets. A collimated electron jet exits the target rear surface and initiates rapid target charging, causing the majority of laser-accelerated electrons to recirculate (reflux) within the target. The total fast-electron energy is inferred from K-photon spectroscopy. Time-resolved x-ray emission data suggest that electrons are accelerated into the target over the entire laser-pulse duration with approximately constant conversion. This work provides significant insight into high-intensity laser--target interactions. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement Nos. DE-FC52-08NA28302 and DE-FC02-04ER54789. [4pt] In collaboration with R. Betti, A. A. Solodov (LLE/FSC), R. S. Craxton, J. A. Delettrez, C. Dorrer, L. Gao, P. A. Jaanimagi, J. H. Kelly, B. E. Kruschwitz, D. D. Meyerhofer, J. F. Myatt, T. C. Sangster, C. Stoeckl, W. Theobald, B. Yaakobi, J. D. Zuegel (LLE), A. J. MacKinnon, P. K. Patel (LLNL), K. U. Akli (General Atomics), L. Willingale, K. M. Krushelnick (U. of Michigan).

  14. A New Cost-Effective Multi-Drive Solution based on a Two-Stage Direct Power Electronic Conversion Topology

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2002-01-01

    of a protection circuit involving twelve diodes with full voltage/current ratings used only during faulty situations, makes this topology not so attractive. Lately, two stage Direct Power Electronic Conversion (DPEC) topologies have been proposed, providing similar functionality as a matrix converter but allowing...... shared by many loads, making this topology more cost effective. The functionality of the proposed two-stage multi-drive direct power electronic conversion topology is validated by experiments on a realistic laboratory prototype....

  15. Localized bulk electron heating with ICRF mode conversion in the JET tokamak

    DEFF Research Database (Denmark)

    Mantsinen, M.J.; Mayoral, M.-L.; Eester, D. Van

    2004-01-01

    of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius......) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating...

  16. Ions and electrons thermal effects on the fast-slow mode conversion process in a three components plasma

    International Nuclear Information System (INIS)

    Fidone, I.; Gomberoff, L.

    1977-07-01

    Fast-slow mode conversion in a deuterium plasma with a small amount of hydrogen impurity, for frequencies close to the two-ion hybrid frequency, is investigated. It is shown that while electron thermal effects tend to inhibit the wave conversion process, ion thermal effects tend to restore, qualitatively, the cold plasma properties, favouring therefore, the energy exchange between the two modes. The aforementioned effects are competitive for zetasub(o)sup(e)=1/nsub(parall).vsub(e)>=1. For zetasub(o)sup(e)<=1, electron thermal effects, in particular Landau damping, dominate over ion Larmor radius effects, drastically diminishing the wave conversion efficacy. For zetasub(o)sup(e)<<1, the coupling between the modes disappears altogether

  17. Fast counting electronics for neutron coincidence counting

    International Nuclear Information System (INIS)

    Swansen, J.E.

    1987-01-01

    This patent describes a high speed circuit for accurate neutron coincidence counting comprising: neutron detecting means for providing an above-threshold signal upon neutron detection; amplifying means inputted by the neutron detecting means for providing a pulse output having a pulse width of about 0.5 microseconds upon the input of each above threshold signal; digital processing means inputted by the pulse output of the amplifying means for generating a pulse responsive to each input pulse from the amplifying means and having a pulse width of about 50 nanoseconds effective for processing an expected neutron event rate of about 1 Mpps: pulse stretching means inputted by the digital processing means for producing a pulse having a pulse width of several milliseconds for each pulse received form the digital processing means; visual indicating means inputted by the pulse stretching means for producing a visual output for each pulse received from the digital processing means; and derandomizing means effective to receive the 50 ns neutron event pulses from the digital processing means for storage at a rate up to the neutron event rate of 1 Mpps and having first counter means for storing the input neutron event pulses

  18. Thermal deformation analysis and test of electron gun for high power klystron

    International Nuclear Information System (INIS)

    Zhou Zusheng; Chinese Academy of Sciences, Beijing; Dong Dong

    2006-01-01

    A 120 MW pulsed electron gun has been developed for 50 MW China-made klystron. It has a Pierce type dispenser cathode and it scans with a diameter of 85 mm. This paper describes the temperature field distribution in the gun and the gun deformation caused by this distribution by using ANSYS. According to the real complex structure and the energy conversion inside the electron gun, the authors took the thermal conduction as the main energy conversion form and got the temperature field. The coincidence between the temperature field and the structural deformation is also described. The beam optics simulated by EGUN with and without considering deformation is discussed, and the valuable results have been obtained. The high power test results and simulation results are analyzed and compared. (authors)

  19. Method and apparstus for determining random coincidence count rate in a scintillation counter utilizing the coincidence technique

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1980-01-01

    A method and apparatus for the reliable determination of a random coincidence count attributable to chance coincidences of single-photon events which are each detected in only a single detector of a scintillation counter utilizing two detectors in a coincidence counting technique are described. A firstdelay device is employed to delay output pulses from one detector, and then the delayed signal is compared with the undelayed signal from the other detector in a coincidence circuit, to obtain an approximate random coincidence count. The output of the coincidence circuit is applied to an anti-coincidence circuit, where it is corrected by elimination of pulses coincident with, and attributable to, conventionally detected real coincidences, and by elimination of pulses coincident with, and attributable to, real coincidences that have been delayed by a second delay device having the same time parameter as the first. 8 claims

  20. Coincidence counting corrections for dead time losses and accidental coincidences

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1987-04-01

    An equation is derived for the calculation of the radioactivity of a source from the results of coincidence counting taking into account the dead-time losses and accidental coincidences. The derivation is an extension of the method of J. Bryant [Int. J. Appl. Radiat. Isot., 14:143, 1963]. The improvement on Bryant's formula has been verified by experiment

  1. IMPECC, new 4 π β γ coincidence system

    International Nuclear Information System (INIS)

    Bouchard, J.; Chauvenet, B.; Vatin, R.

    1988-05-01

    The new 4 π β γ coincidence system IMPECC which uses an extensible dead time circuit common to both channels is described. Correction formulae which take into account the particularities of the electronics are also presented. The use of two ADC's and the symmetry in the two channels gives us a very powerful instrument when measuring complex decay scheme radionuclides [fr

  2. Coincidence logic modules for criticality alarming

    International Nuclear Information System (INIS)

    Schaief, C.C. III.

    1977-04-01

    A coincidence Logic Module and a companion contact closure Relay Module utilizing the NIM Standard have been developed for criticality alarming. The units provide an ALARM whenever two or more out of N detectors become activated. In addition, an ALERT is generated whenever one or more detectors is activated or when certain electronic component failures occur. The number of detector inputs (N) can be expanded in groups of six by adding modules. Serial and parallel redundancy were used to reduce the probability of system failure

  3. Neutron coincidence counter for MOX fuel pins in storage trays: users' manual

    International Nuclear Information System (INIS)

    Cowder, L.; Menlove, H.

    1982-08-01

    The neutron coincidence counter for measurement of mixed-oxide fuel pins in storage trays is described. The special detector head has been designed so that the detectors, high-voltage junction boxes, and electronics are interchangeable with those of the high-level neutron coincidence counter system. This manual describes the system components and the operation and maintenance of the counter. The counter was developed at Los Alamos National Laboratory for in-plant inspection applications by the International Atomic Energy Agency

  4. The {nu}MSM and muon to electron conversion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Canetti, Laurent, E-mail: laurent.canetti@epfl.ch; Shaposhnikov, Mikhail, E-mail: mikhail.shaposhnikov@epfl.ch [EPFL, ITP (Switzerland)

    2013-03-15

    We review briefly the different constraints on the three right-handed neutrinos of the {nu}MSM, an extension of the Standard Model that can explain baryon asymmetry, dark matter and neutrino masses. We include in the discussion the proposed experiments on muon to electron conversion Mu2e (Carey et al., Mu2e Collaboration, 2012), COMET and PRISM (Hungerford, COMET Collaboration, AIP Conf Proc 1182:694, 2009; Cui et al., COMET Collaboration, 2012). We find that the expected sensitivity of these experiments is weaker by about two orders of magnitude than the constraints coming from successful baryogenesis.

  5. Contribution of back-scattered electromagnetic rays to the Moessbauer conversion electron spectrum

    International Nuclear Information System (INIS)

    Ruskov, T.; Ruskov, R.; Paneva, D.; Lefterov, D.

    1999-01-01

    The contribution of back-scattered electromagnetic rays in a 57 Fe conversion electron Moessbauer spectrum is considered using proportional counter as a detector. A simplified method for measuring this contribution is described. The experimental results show that this contribution strongly depends on the construction of the counter and the selected fraction in the pulse-height spectrum

  6. The SAGE spectrometer: A tool for combined in-beam γ-ray and conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Papadakis, P; Herzberg, R-D; Pakarinen, J; Butler, P A; Cox, D; Cresswell, J R; Parr, E; Sampson, J; Greenlees, P T; Sorri, J; Hauschild, K; Jones, P; Julin, R; Peura, P; Rahkila, P; Sandzelius, M; Coleman-Smith, P J; Lazarus, I H; Letts, S C; Pucknell, V F E

    2011-01-01

    The SAGE spectrometer allows simultaneous in-beam γ-ray and internal conversion electron measurements, by combining a germanium detector array with a highly segmented silicon detector and an electron transport system. SAGE is coupled with the ritu gas-filled recoil separator and the great focal-plane spectrometer for recoil-decay tagging studies. Digital electronics are used both for the γ ray and the electron parts of the spectrometer. SAGE was commissioned in the Accelerator Laboratory of the University of Jyvaeskylae in the beginning of 2010.

  7. Studies of highly ionized atoms using internal conversion: 197Au, 57Fe; electric monopole transitions in 40Ca, 42Ca, and 44Ca

    International Nuclear Information System (INIS)

    Ulrickson, M.A.

    1975-01-01

    By using heavy-ion reactions, highly ionized electronic states of atoms may be produced. The interaction between excited nuclear levels and the surrounding atomic electrons via internal conversion allows the nucleus to be used as a probe of the electronic structure of the highly ionized atoms. Studies of such atoms were undertaken for strongly internally converted nuclear levels in 197 Au and 57 Fe. The nuclear levels were Coulomb excited by using 16 O and 32 S beams. Simultaneous measurement of the lifetime of the 77-keV state of 197 Au in both neutral gold atoms and gold atoms with mean charge +10 resulted in a measured change in the internal conversion coefficient of Δalpha/alpha equals - 1.7 +- 3.0)10 -3 . This result is consistent with calculations using a Hartree-Fock--Slater program. Measurements of the electric monopole strengths for 0 + → 0 + transitions were undertaken to determine the amount of core-deformation in calcium nuclei. The E0 strengths for the decays of the 0 + states at 5.21 MeV in 40 C, 1.84 MeV in 42 Ca, and 1.88 MeV in 44 Ca were observed. The branching ratios for the subsequent E0 pair decays were measured by observing the coincident annihilation radiation from the e + member of the pair in coincidence with protons feeding the state in the cases of 42 Ca and 44 Ca, and by observing the actual coincident e + --e - pair together with protons feeding the state in the case of 40 Ca. The resulting E0 strengths (rho less than or equal to 0.06, rho = 0.34 +- 0.03, rho = 0.30 +- 0.10 for 40 Ca, 42 Ca, and 44 Ca respectively) agree with theoretical descriptions

  8. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    Science.gov (United States)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  9. Determining chance coincidence, survival factor and decay factor in 220Rn delayed coincidence measurement

    International Nuclear Information System (INIS)

    Huang Derong; Yan Yongjun; Zhou Jianliang; Qiu Shoukang

    2013-01-01

    The method and calculation formulas to determine the chance coincidence in the 220 Rn coincidence measurement are introduced in this paper. The poisson distribution is introduced to correct the chance coincidence. The relative deviation of the true coincidence between the method and the Giffin's is within 5% after the correction of the cohance coincidence. The measurement of 220 Rn is done by comparative measurement with RAD7. The results shows that 220 Rn can be measured by the method with a relative deviation of 14%. Mean while, for the 220 Rn flow regime is difficult to meet the condition of calculation formulas, a solution to solve the survival factor and decay factor is proposed and the error come from the useage of theoretical calculation formula is avoided. (authors)

  10. Realisation of a {beta} spectrometer solenoidal and a double {beta} spectrometer at coincidence; Realisation d'un spectrometre {beta} solenoidal et d'un double spectrometre {beta} a coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-06-15

    The two spectrometers have been achieved to tackle numerous problems of nuclear spectrometry. They possess different fields of application that complete themselves. The solenoidal spectrometer permits the determination of the energy limits of {beta} spectra and of their shape; it also permits the determination of the coefficients of internal conversion and reports {alpha}{sub K} / {alpha}{sub L} and it is especially efficient for the accurate energy levels of the {gamma} rays by photoelectric effect. The double coincidence spectrometer has been conceived to get a good efficiency in coincidence: indeed, the sum of the solid angles used for the {beta} and {gamma} emission is rather little lower to 4{pi} steradians. To get this efficiency, one should have sacrificed a little the resolution that is lower to the one obtained with the solenoidal spectrometer for a same brightness. Each of the elements of the double spectrometer can also be adapted to the study of angular correlations {beta}{gamma} and e{sup -}{gamma}. In this use, it is superior to the thin magnetic lens used up to here. The double spectrometer also permits the survey of the coincidences e{sup -}e{sup -}, e{sup -}{beta} of a equivalent way to a double lens; it can also be consider some adaptation for the survey of the angular correlations e{sup -}e{sup -}, e{sup -}{beta}. Finally, we applied the methods by simple spectrometry and by coincidence spectrometry, to the study of the radiances of the following radioelements: {sup 76}As (26 h), {sup 122}Sb (2,8 j), {sup 124}Sb (60 j), {sup 125}Sb (2,7 years). (M.B.) [French] Les deux spectrometres qui ont ete realises permettent d'aborder un grand nombre de problemes de spectrometrie nucleaire. Ils possedent des champs d'application tres differents qui se completent. Le spectrometre solenoidal permet la determination des energies limites des spectres {beta} et de leur forme; il permet aussi la determination des coefficients de conversion interne et des rapports

  11. Conversion of sulfur and nitrogen oxides in air under exposure to microsecond electron beams

    International Nuclear Information System (INIS)

    Denisov, G.V.; Kuznetsov, D.L.; Novoselov, Yu.N.; Tkachenko, R.M.

    2002-01-01

    Flue gases of power plants realizing sulfur and nitrogen oxides into the atmosphere represent one of the environmental pollution sources. Paper presents the results of experimental investigations of conversion of sulfur and nitrogen oxides in the ionized gas mixture simulating composition of off-gases of thermal power stations. Pulse beam of microsecond duration electrons was used as a source of ionization. Mutual influence of both types of oxides on process of their conversion is shown. One studied possible kinetic mechanisms to remove sulfur and nitrogen oxides from gaseous mixture [ru

  12. Minority n out of m coincidence circuits for time-differential experiments with multi-detector arrays

    International Nuclear Information System (INIS)

    Braunsfurth, J.; Geske, K.

    1976-01-01

    Two n out of m minority coincidence circuits (n<=8, 15<=m<=31), employed for time-differential experiments are presented. Specifications like obtainable prompt coincidence resolution time, expandability to higher detector numbers m, implementation variants and their consequences, and some application modes are discussed. Hardware expenses on electronics for m-detector arrays usually rise nearly proportional to m factorial. In the coincidence system proposed here, the rise in hardware expenses can be reduced to slightly more than proportional to m, without sacrifice in experimental quality and flexibility. (Auth.)

  13. High-level neutron coincidence counter maintenance manual

    International Nuclear Information System (INIS)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included

  14. High-level neutron coincidence counter maintenance manual

    Energy Technology Data Exchange (ETDEWEB)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  15. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  16. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Tsukihara, Masayoshi [Division of Radiological Technology, Graduate School of Health Sciences, Niigata University, Niigata 951-8518 (Japan); Noto, Yoshiyuki [Department of Radiology, Niigata University Medical and Dental Hospital, Niigata 951-8520 (Japan); Sasamoto, Ryuta; Hayakawa, Takahide; Saito, Masatoshi, E-mail: masaito@clg.niigata-u.ac.jp [Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518 (Japan)

    2015-03-15

    Purpose: To achieve accurate tissue inhomogeneity corrections in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide range of ρ{sub e}. The purpose of this study is to present an initial implementation of the ΔHU–ρ{sub e} conversion method for a treatment planning system (TPS). In this paper, two example radiotherapy plans are used to evaluate the reliability of dose calculations in the ΔHU–ρ{sub e} conversion method. Methods: CT images were acquired using a clinical dual-source CT (DSCT) scanner operated in the dual-energy mode with two tube potential pairs and an additional tin (Sn) filter for the high-kV tube (80–140 kV/Sn and 100–140 kV/Sn). Single-energy CT using the same DSCT scanner was also performed at 120 kV to compare the ΔHU–ρ{sub e} conversion method with a conventional conversion from a CT number to ρ{sub e} (Hounsfield units, HU–ρ{sub e} conversion). Lookup tables for ρ{sub e} calibration were obtained from the CT image acquisitions for tissue substitutes in an electron density phantom (EDP). To investigate the beam-hardening effect on dosimetric uncertainties, two EDPs with different sizes (a body EDP and a head EDP) were used for the ρ{sub e} calibration. Each acquired lookup table was applied to two radiotherapy plans designed using the XiO TPS with the superposition algorithm for an anthropomorphic phantom. The first radiotherapy plan was for an oral cavity tumor and the second was for a lung tumor. Results: In both treatment plans, the performance of the ΔHU–ρ{sub e} conversion was superior to that of the conventional HU–ρ{sub e} conversion in terms of the reliability of dose calculations. Especially, for the oral tumor plan, which dealt with dentition and bony structures, treatment

  17. Electronic neutron sensor based on coincidence detection

    International Nuclear Information System (INIS)

    Barelaud, B.; Decossas, J.L.; Mokhtari, F.; Vareille, J.C.

    1996-01-01

    The last symposium on neutron dosimetry which took place in Paris in November 1995 have shown again that it doesn't exist any individual active neutron dosemeter. The state of art on electronic device, the needs of the nuclear power industry in individual neutron monitoring and the new trends of The last symposium on neutron dosimetry which took place in Paris in November 1995 have shown again that it doesn't exist any individual active neutron dosemeter. The state of art on electronic device, the needs of the nuclear power industry in individual neutron monitoring and the new trends of researches were presented. They confirm the relevance of our studies in progress in the C2M team of the University of Limoges. The aim of this work is to realize an individual electronic neutron dosemeter. The device in the progress of being development will operate either as a dosemeter or as ratemeter giving H p (10) and H p (10) either as a spectrometer permitting to characterize the primary neutron beam. (author)

  18. Coincidence measurements in α/β/γ spectrometry with phoswich detectors using digital pulse shape discrimination analysis

    International Nuclear Information System (INIS)

    Celis, B. de; Fuente, R. de la; Williart, A.; Celis Alonso, B. de

    2007-01-01

    A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for α/β/γ ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed α/β/γ field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of β particles in a plastic scintillator and γ rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF 2 (Eu) for β ray detection and NaI(Tl) for γ ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis

  19. Measurements of radionuclide activity by the (e-α, β, γ, Lx) coincidence method using electrons with energies of a few eV emitted from radionuclides

    International Nuclear Information System (INIS)

    Frolov, E.A.

    1994-01-01

    A study was made of the possibility of measuring radionuclide activities by the method of coincidence of electrons with energies of a few eV emitted from the valence shells of radioactive atoms with nuclear radiations. The low energy electrons were detected with a detector equipped with microchannel plates with trochoidal focusing of an original design. Photons were detected with NaI(TI) detectors. A 100 μm thick plastic scintillator was used to detect beta- and alpha-particles. The investigation shows that it is possible to use this method for accurate measurements of radionuclide activity. (orig.)

  20. Enhanced coupling of the fast wave to electrons through mode conversion to the ion hybrid wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Ram, A.K.; Bers, A.

    1996-07-01

    The mode conversion of the fast compressional Alfven wave to the ion hybrid wave is analyzed with particular reference to a plasma with two ion species present in approximately equal proportions. Two configurations are considered, the first referring to the usual resonance-cut-off case and the second to a cut-off-resonance-cut-off situation. The optimum conditions for maximising the mode converted energy are given. The second order fast wave equation is generalised to include the effect of the parallel electric field. Hence, all ion and electron loss mechanisms for the fast wave are incorporated, including mode conversion at the two-ion hybrid resonance. The significance of the approximate equality of the two ion species concentrations is that the mode converted ion hybrid wave is damped only by the electrons. The damping of the ion hybrid wave is described with the aid of the local dispersion relation and by means of a toroidal ray tracing code. In particular, the ray tracing calculation shows that the mode converted energy is totally absorbed by the electrons close to the two-ion hybrid resonance. The generalised fast wave equation is solved to determine how much energy is lost from the fast wave, incident from the low field side, before it encounters the two-ion hybrid resonance. For comparable concentrations of the two ion species, the mode converted power can be separated from the power directly absorbed by the ions and electrons from the fast wave. This allows the conditions to be ascertained under which strong electron heating through mode conversion dominates the direct dissipation of the fast wave. (UK)

  1. The origin of narrowing of the Si 2p coincidence photoelectron spectroscopy main line of Si(1 0 0) surface

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2011-01-01

    Highlights: → The Si 2p coincidence photoelectron spectroscopy (PES) main line of Si(1 0 0) is calculated. → The PES main line shows an asymmetric line shape change compared to the singles one. → The narrowing of the coincidence Si 2p PES main line is well reproduced. → The inherent mechanism of APECS is explained by a many-body theory. - Abstract: The Si 2p photoelectron spectroscopy (PES) main line of Si(1 0 0) surface measured in coincidence with the singles (noncoincidence) Si L 2,3 -VV Auger-electron spectroscopy (AES) elastic peak is calculated. The agreement with the experiment is good. The present work is the first many-body calculation of the experimental coincidence PES spectrum of solid surface. The narrowing of the coincidence Si 2p PES main line compared to the singles one is due to the mechanism inherent in the coincidence PES. The inherent mechanism is explained by a many-body theory by which photoemission and Auger-electron emission are treated on the same footing.

  2. Achievement of extreme resolution for the selective by depth Moessbauer method on conversion electrons

    International Nuclear Information System (INIS)

    Babenkov, M.I.; Zhdanov, V.S.; Ryzhikh, V.Yu.; Chubisov, M.A.

    2001-01-01

    At the Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan the depth selective conversion electrons Moessbauer spectroscopy (DSCEMS) method was realized on the facility designed on the magnet sector beta-spectrometer base with the dual focusing equipped with non-equipotential electron source in the multi-ribbon variant and the position-sensitive detector. In the work the model statistical calculations of energy and angular distributions experienced not so many times of inelastic scattering acts were carried out

  3. Mode-conversion process and overdense-plasma heating in the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Nakajima, S.; Abe, H.

    1988-01-01

    Through a particle-simulation investigation, a new mode-conversion process, through which an incident fast extraordinary mode (fast X mode) is converted into an electron Bernstein mode (B mode) via a (slow extraordinary mode slow X mode), is discovered in plasmas whose maximum density exceeds the cutoff density of the slow X mode. The converted B mode is found to heat the electrons efficiently in an overdense plasma region, when the plasma has the optimum density gradient at the plasma surface

  4. X-ray line coincidence photopumping in a solar flare

    Science.gov (United States)

    Keenan, F. P.; Poppenhaeger, K.; Mathioudakis, M.; Rose, S. J.; Flowerdew, J.; Hynes, D.; Christian, D. J.; Nilsen, J.; Johnson, W. R.

    2018-03-01

    Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significant intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.

  5. Calculation of coincidence summing corrections for a specific small soil sample geometry

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, R.G.; Gehrke, R.J.

    1996-10-01

    Previously, a system was developed at the INEL for measuring the {gamma}-ray emitting nuclides in small soil samples for the purpose of environmental monitoring. These samples were counted close to a {approx}20% Ge detector and, therefore, it was necessary to take into account the coincidence summing that occurs for some nuclides. In order to improve the technical basis for the coincidence summing corrections, the authors have carried out a study of the variation in the coincidence summing probability with position within the sample volume. A Monte Carlo electron and photon transport code (CYLTRAN) was used to compute peak and total efficiencies for various photon energies from 30 to 2,000 keV at 30 points throughout the sample volume. The geometry for these calculations included the various components of the detector and source along with the shielding. The associated coincidence summing corrections were computed at these 30 positions in the sample volume and then averaged for the whole source. The influence of the soil and the detector shielding on the efficiencies was investigated.

  6. Effect of relaxation and decay of a charge transfer shakeup satellite on Auger-electron spectroscopy spectra and Auger-photoelectron coincidence spectroscopy spectra of adsorbates

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    An electron excited to an unoccupied part of adsorbate-substrate hybrid states in a chemisorbed molecule by a resonant core electron excitation or charge transfer (CT) shakeup may delocalize on time scale of core-hole decay so that the excited core-hole state relaxes partly or completely to a fully relaxed one. The Auger decay of the fully relaxed core-hole state via the relaxation of the excited one introduces an additional feature in the resonant Auger-electron spectroscopy (RAES) spectrum and the AES spectrum. However, the additional feature in the RAES spectrum is a normal AES spectrum by decay of the fully relaxed core-hole state, whereas the one in the AES spectrum is the AES spectrum by decay of the fully relaxed core-hole state broadened by the photoelectron spectroscopy (PES) CT shakeup satellite weighted by the branching ratio of the relaxation width. The discrepancies between the AES spectrum measured at high above the ionization threshold and the additional feature in the RAES spectrum consist of the symmetric-like part by the decay of the fully relaxed core-hole state via the relaxation of the CT shakeup state and the asymmetric part by the direct decay of the shakeup states. The asymmetric part increases with a decrease in the hybridization strength. This explains the variation with the hybridization strength in the discrepancies between the RAES spectra and the AES spectra of chemisorbed molecules such as CO/Ni, CO/Cu and CO/Ag. A comparison of the singles PES spectrum with the one measured in coincidence with the AES main line of a selected kinetic energy (KE) provides the delocalization rate of the excited electron in the CT shakeup state as a function of photoelectron KE. The coincidence measurement to obtain the partial singles PES spectrum is discussed

  7. Observation of relaxation on time scale of core hole decay by coincidence photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that when the relaxation time of a metastable core hole state(s) to the most stable one is comparable to or shorter than core hole decay time of the former state(s), a comparison between the singles (noncoincidence) photoelectron spectroscopy (PES) spectrum and the coincidence one provides a direct evidence of the relaxation. In principle the variation with photoelectron kinetic energy of relaxation (or charge transfer (CT)) time can be determined. By singles measurement the correlation of a photoelectron generated by creation of the metastable states not only with an Auger electron generated by annihilation of the same core hole state but also with an Auger electron generated by annihilation of the stable state via relaxation of the metastable state, is completely lost, unless only the metastable state is observed by PES, whereas the correlation often manifests directly in the coincidence spectra. Thus, compared to the coincidence spectroscopy the singles one is often much less capable of elucidating the competition between relaxation and core hole decay of a metastable state. Such examples are discussed

  8. Integrated coincidence circuits

    International Nuclear Information System (INIS)

    Borejko, V.F.; Grebenyuk, V.M.; Zinov, V.G.

    1976-01-01

    The description is given of two coincidence units employing integral circuits in the VISHNYA standard. The units are distinguished for the coincidence selection element which is essentially a combination of a tunnel diode and microcircuits. The output fast response of the units is at least 90 MHz in the mode of the output signal unshaped in duration and 50 MHz minimum in the mode of the output signal shaping. The resolution time of the units is dependent upon the duration of input signals

  9. A new search for conversion of muonium to antimuonium

    International Nuclear Information System (INIS)

    Matthias, B.E.

    1991-10-01

    To search for conversion of muonium (M ≡ μ + e - ) to antimuonium (anti M ≡ μ - e + ) with very low background, a new signature was implemented that required the time-coincident detection of the decay e - (≤ 53 MeV) with the atomic e + (∼ 13 eV) from decay of an anti M atom. A 20 MeV/c μ + beam was stopped in a 9 mg/cm 2 SiO 2 powder target. Muonium, formed in the powder, diffused into a vacuum region at thermal velocities and was observed for a coincidence of anti M decay products. Any decay e - was charge and momentum analyzed in a dipole magnet and tracked by an array of MWPCs; any atomic e + was electrostatically collected, accelerated to 5.7 keV, and magnetically transported to a microchannel plate detector. To calibrate the signature, M was observed for the first time by coincidence of its decay e + and its atomic e - . A maximum likelihood analysis of the position distribution of decay origins finds no anti M events and less than 2 at 90% confidence. This places an upper limit on the conversion probability per atom of S anti M -7 (90% C.L.), which corresponds to an upper limit of G M anti M F (90% C.L.) on the effective coupling constant for a (V - A) conversion coupling. In a class of left-right symmetric models, the value of G M anti M may be in this range. 116 refs., 45 figs., 10 tabs

  10. Observation of electron beam moiré fringes in an image conversion tube

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yunfei; Liao, Yubo [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China); Long, Jing-hua [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Cai, Houzhi; Bai, Yanli [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China); Liu, Jinyuan, E-mail: ljy@szu.edu.cn [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060 (China)

    2016-11-15

    An image conversion tube with a magnetic lens was designed to observe electron beam moiré fringes. Electron beam moiré fringes result from the interference between the photocathode and the anode meshes. The photocathode had a strip line structure with a spatial frequency of 10 L/mm. The anode mesh had a fixed spatial frequency of 10 L/mm, and could be rotated around the axis of the image tube. The changes to the fringe direction and the spacing as a function of the rotation angle between the photocathode and the anode mesh were examined. The experimental results agreed with the theoretical analysis. Moiré fringes with a modulation of ~20% were obtained using a 3 keV electron beam. - Highlights: • Observe the electron beam moiré fringes in large angle of view. • The changes to the fringe direction and the spacing as a function of the rotation angle between the two gratings were examined. • Modulations of the moiré fringes in different rotation angle are recorded.

  11. Observation of electron beam moiré fringes in an image conversion tube

    International Nuclear Information System (INIS)

    Lei, Yunfei; Liao, Yubo; Long, Jing-hua; Cai, Houzhi; Bai, Yanli; Liu, Jinyuan

    2016-01-01

    An image conversion tube with a magnetic lens was designed to observe electron beam moiré fringes. Electron beam moiré fringes result from the interference between the photocathode and the anode meshes. The photocathode had a strip line structure with a spatial frequency of 10 L/mm. The anode mesh had a fixed spatial frequency of 10 L/mm, and could be rotated around the axis of the image tube. The changes to the fringe direction and the spacing as a function of the rotation angle between the photocathode and the anode mesh were examined. The experimental results agreed with the theoretical analysis. Moiré fringes with a modulation of ~20% were obtained using a 3 keV electron beam. - Highlights: • Observe the electron beam moiré fringes in large angle of view. • The changes to the fringe direction and the spacing as a function of the rotation angle between the two gratings were examined. • Modulations of the moiré fringes in different rotation angle are recorded.

  12. Delta-electron spectroscopy: An aid for the determination of reaction times in heavy ion reactions

    International Nuclear Information System (INIS)

    Skapa, H.

    1983-01-01

    For the systems I->Au and I->Bi at an incident energy of 6.2 MeV/u (I->Au) and 6.6 MeV/u (I->Bi) the emission probability of delta electrons was determined. In an energy range from 150 KeV to 1000 KeV electrons were spectroscoped in coincidence to elastically, quasielastically, and deep inelastically scattered ions. In deep inelastic reaction between reaction products with high and without a mean mass drift was discriminated. The contribution of the conversion electrons, determined from gamma spectra, extends in the range of deep inelastic reactions of about 60%. While the ratio of conversion electrons for deep inelastic events with large to such without mass drift shows a flat, monotoneous growth for the ratio of the measured emission probabilities a oscillation-like structure with about 400 KeV width results. An interpretation of this structure as interference effect by nuclear time delay yields for the case of large mass drift a nuclear retention time of 7.5 x 10 -21 s. (orig./HSI) [de

  13. Electron coincidence spectroscopy of sodium and potassium

    International Nuclear Information System (INIS)

    Frost, L.; Weigold, E.

    1982-03-01

    The Na 3s and K 4s electron momentum distributions have been obtained using the noncoplanar symmetric (e,2e) reaction at total energies of 800 eV and 1200 eV. They show excellent agreement with the results of plane wave impulse approximation calculations using Roothaan-Hartree-Fock functions, after small corrections are made for the finite angular resolution of the apparatus. The potassium valence s momentum profile is a little narrower than that for sodium, implying a correspondingly slightly larger spatial distribution of the outer valence electrons. The ratio between the (n-1)p and ns cross-sections at their respective maxima in q-space were measured to be 0.009 +- 0.003 and 0.019 +- 0.003 for Na and K respectively. These cross-section ratios are in agreement with the PWIA calculations

  14. Coincidence-counting corrections for accidental coincidences, set dead time and intrinsic dead time

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1998-01-01

    An equation is derived for calculating the radioactivity of a source from the results of coincidence counting, taking into account dead-time losses and accidental coincidences. The corrections allow for the extension of the set dead time in the p channel by the intrinsic dead time. Experimental verification shows improvement over a previous equation. (author)

  15. Coincidence corrections for a multi-detector gamma spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Britton, R., E-mail: r.britton@surrey.ac.uk [University of Surrey, Guildford GU2 7XH (United Kingdom); AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Burnett, J.L.; Davies, A.V. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Regan, P.H. [University of Surrey, Guildford GU2 7XH (United Kingdom)

    2015-01-01

    List-mode data acquisition has been utilised in conjunction with a high-efficiency γ–γ coincidence system, allowing both the energetic and temporal information to be retained for each recorded event. Collected data is re-processed multiple times to extract any coincidence information from the γ-spectroscopy system, correct for the time-walk of low-energy events, and remove accidental coincidences from the projected coincidence spectra. The time-walk correction has resulted in a reduction in the width of the coincidence delay gate of 18.4±0.4%, and thus an equivalent removal of ‘background’ coincidences. The correction factors applied to ∼5.6% of events up to ∼500 keV for a combined {sup 137}Cs and {sup 60}Co source, and are crucial for accurate coincidence measurements of low-energy events that may otherwise be missed by a standard delay gate. By extracting both the delay gate and a representative ‘background’ region for the coincidences, a coincidence background subtracted spectrum is projected from the coincidence matrix, which effectively removes ∼100% of the accidental coincidences (up to 16.6±0.7% of the total coincidence events seen during this work). This accidental-coincidence removal is crucial for accurate characterisation of the events seen in coincidence systems, as without this correction false coincidence signatures may be incorrectly interpreted.

  16. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These

  17. Dose-rate conversion factors for external exposure to photon and electron radiation from radionuclides occurring in routine releases from nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1980-01-01

    Dose-rate conversion factors for external exposure to photon and electron radiation are calculated for 240 radionuclides of potential importance in routine releases from nuclear fuel cycle facilities. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each exposure mode, dose-rate conversion factors for photons and electrons are calculated for tissue-equivalent material at the body surface of an exposed individual. Dose-rate conversion factors for photons only are calculated for 22 body organs. (author)

  18. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis.

    Science.gov (United States)

    de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L

    2008-10-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.

  19. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis

    International Nuclear Information System (INIS)

    Fuente, R. de la; Celis, B. de; Canto, V. del; Lumbreras, J.M.; Celis, Alonso B. de; Martin-Martin, A.; Gutierrez-Villanueva, J.L.

    2008-01-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for α/β/γ-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of α/β particles and X-rays/γ particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by α/γ coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg -1 for 0.1 kg of soil and 1000 min counting

  20. Measurement of the activity of electron capturing isotopes

    International Nuclear Information System (INIS)

    Szoerenyi, A.

    1980-01-01

    In order to measure precisely the activity of electron capturing isotopes, an equipment was constructed for the detection the X-photons, the Auger- and the conversing electrons by a high-pressure, gas-flow 4π proportional counter. The proportional counter and the NaI(Tl) scintillation counter are placed in a common lead-shielding, thus, the equipment is suited for the measurement of radioisotopes decaying in coincidence. The structure of the proportional counter and of the pressure-control system are detailed. As an example, the energy spectra of a 109 Cd solution, taken at different pressures, are published. At a pressure of 1.1 MPa the 3 peaks are well separated. The results of an international test, in which the radioactivity of a 57 Co sample was determined, are published, too. (L.E.)

  1. Modeling of LMM-MVV Auger-Auger Coincidence Spectra From Solids

    Science.gov (United States)

    Sundaramoorthy, R.; Weiss, A. H.; Hulbert, S. L.; Bartynski, R. A.

    2006-03-01

    Atoms that are highly excited due to the presence of a hole in an inner shell often relax via an Auger transition. This auto-ionizing process results in a final state with two or more holes from an Auger cascade. We present results of the direct measurements of the second and third Auger decays in this sequence. We have measured the Mn MVV Auger spectra from a single-crystal sample of MnO in time coincidence with Auger electrons emitted from prior Mn LMM Auger decays and find these to be much wider than the MVV spectrum measured in time coincidence with M core photoelectron emission. We present a model which attributes the increased energy width of the MVV transitions that follow LMM decays to the rearrangement of ``not so innocent'' bystander hole(s) in the valence band. The energetics of the Auger cascade process are modeled mathematically in terms of correlation integral(s) and convolution integral(s) over the valence band density of states. Comparisons with recent Auger-Auger coincidence studies of Ag and Pd will be made. Acknowledgements: Welch Foundation, NSF DMR98-12628, NSF DMR98-01681, and DOE DE-AC02-98CH10886.

  2. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  3. Study of a 4πβ-γ coincidence system for absolute radionuclide activity measurement using plastic scintillators

    International Nuclear Information System (INIS)

    Piuvezam Filho, Helio

    2007-01-01

    The present work was intended to study a coincidence system 4π(PS)β-γ for absolute activity measurement using plastic scintillators in 4π geometry. Along with experiments on the coincidence system, simulations were also performed applying the Monte Carlo Method, by means of codes PENELOPE and ESQUEMA. These simulations were performed in order to calculate the extrapolation curve of the coincidence system 4π(PS)β-γ and compare it to experimental data. A new geometry was proposed to the coincidence system adding up a second photomultiplier tube to the previous system for improving light collection from the plastic scintillator, as this system presented limitations in the minimum detected energy due to the presence of electronic noise and low gain. The results show that an improvement in the signal-to-noise ratio was obtained, as well as in the minimum detected energy. Moreover, there was an increase in the detection efficiency. With these modifications, it is now possible to calibrate radionuclides which emit low energy electrons or X-rays, increasing the number of radionuclides that can be standardized with this type of system.(author)

  4. A merged-beam setup at SOLEIL dedicated to photoelectron–photoion coincidence studies on ionic species

    Energy Technology Data Exchange (ETDEWEB)

    Bizau, J.M., E-mail: jean-marc.bizau@u-psud.fr [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Cubaynes, D. [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Guilbaud, S.; El Eassan, N.; Al Shorman, M.M.; Bouisset, E.; Guigand, J.; Moustier, O.; Marié, A.; Nadal, E. [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Robert, E.; Nicolas, C. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Miron, C. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Extreme Light Infrastructure—Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov (Romania)

    2016-07-15

    Highlights: • Description of a merged-beam setup at SOLEIL synchrotron radiation facility. • Unique setup of this kind allowing photoelectron spectroscopy on ionic species. • Use of electron-ion coincidence to reduce the background. • Examples on the photoionization of Xe{sup 5+} multiply-charged ion. - Abstract: We describe the merged-beam setup permanently installed on a dedicated optical branch of the PLEIADES beamline at SOLEIL, the French synchrotron radiation facility in St-Aubin, delivering photons in the 10–1000 eV photon energy range. The setup is designed both for photoion and photoelectron spectroscopy experiments on atomic and molecular ions. Ion spectrometry is dedicated to the determination of absolute single and multiple photoionization cross sections. Electron spectroscopy brings additional information on the non-radiative decay of inner-vacancies produced in the photoionization processes and allows for the determination of partial cross sections. Efficient reduction of the background in the electron spectra is achieved by the use of the electron-ion coincidence technique. Examples of photoion and photoelectron spectra are given for the Xe{sup 5+} ion.

  5. Investigation of internal conversion electron lines by track counting technique

    CERN Document Server

    Islamov, T A; Kambarova, N T; Muminov, T M; Lebedev, N A; Solnyshkin, A A; Aleshin, Yu D; Kolesnikov, V V; Silaev, V I; Niipf-Tashgu, T

    2001-01-01

    The methodology of counting the tracks of the internal conversion electron (ICE) in the nuclear photoemulsion is described. The results on counting the ICE tracks on the photoplates for sup 1 sup 6 sup 1 Ho, sup 1 sup 6 sup 3 Tm, sup 1 sup 6 sup 6 Tm, sup 1 sup 3 sup 5 Ce is described. The above results are obtained through the MBI-9 microscope and the MAS-1 automated facility. The ICE track counting on the photoplates provides for essentially higher sensitivity as compared to the photometry method. This makes it possible to carry out measurements with the sources by 1000 times weaker as by the study into the density of blackening

  6. A new magnetic spectrometer for the investigation of the internal conversion electron in capture reaction

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1978-01-01

    Planning, development and manufacture of a new beta spectrometer for the investigation of the internal conversion electrons, from 0,02 to 10 MeV, emitted during the radioative capture process of the thermal neutrons. The resolution on the base of resolution curve is about 1,5 X 10 sup(-3) [pt

  7. Sensitivity to coincidences and paranormal belief.

    Science.gov (United States)

    Hadlaczky, Gergö; Westerlund, Joakim

    2011-12-01

    Often it is difficult to find a natural explanation as to why a surprising coincidence occurs. In attempting to find one, people may be inclined to accept paranormal explanations. The objective of this study was to investigate whether people with a lower threshold for being surprised by coincidences have a greater propensity to become believers compared to those with a higher threshold. Participants were exposed to artificial coincidences, which were formally defined as less or more probable, and were asked to provide remarkability ratings. Paranormal belief was measured by the Australian Sheep-Goat Scale. An analysis of the remarkability ratings revealed a significant interaction effect between Sheep-Goat score and type of coincidence, suggesting that people with lower thresholds of surprise, when experiencing coincidences, harbor higher paranormal belief than those with a higher threshold. The theoretical aspects of these findings were discussed.

  8. The conversion to electronic hospital notes at Mayo Clinic. Overcoming barriers and challenges.

    Science.gov (United States)

    Andreen, Debra L; Dobie, Linda J; Jasperson, Jan C; Lucas, Thomas A; Wubbenhorst, Cathryn L

    2010-01-01

    This article describes the conversion to electronic hospital notes at a large, multi-specialty group practice: Mayo Clinic in Rochester, Minnesota. Because of the size of the institution and the barriers to the adoption of electronic notes, the process was a gradual one that took several years. Making a convincing case for change to institutional leaders and maintaining their support was crucial to success. Equally vital was the careful investigation of user requirements and the development of software features that allowed providers to complete their notes quickly in the fast-paced hospital environment. Care providers discovered the value of having immediate access to legible hospital notes throughout the campus and from remote locations.

  9. Spectrally shaped broadband study of up-conversion in Y2O3:Er3+

    International Nuclear Information System (INIS)

    Lytle, A.L.; Gagnon, E.; Tulchinsky, L.; Krebs, J.K.

    2014-01-01

    We present a novel scheme for studying up-conversion through excited state absorption (ESA) by using a broadband excitation source with spectral shaping capabilities. Up-conversion processes have typically been investigated using a single, narrowband excitation source, when the two steps of the process are coincident in frequency, which is often made possible by broadening mechanisms of the intermediate excited state manifolds. Thus, narrowband sources are limited in the systems they can excite and what material information they can provide. With broadband light, we are able to drive up-conversion with non-coincident frequencies as well. Finally, by windowing the spectrum, we determine the optimal excitation bandwidth for low-concentration (1%) Y 2 O 3 :Er 3+ nanocrystals. - Highlights: • Broadband excitation light is used to drive up-conversion in Y 2 O 3 :Er 3+ . • Broadband light excites all available transitions in the two-photon process. • A spectral shaping technique is used to alter the excitation frequencies present. • The optimal excitation bandwidth is measured by windowing the spectrum. • Broadband excitation reveals information inaccessible by narrowband sources

  10. High Sensitivity Detection of Xe Isotopes Via Beta-Gamma Coincidence Counting

    International Nuclear Information System (INIS)

    Bowyer, Ted W.; McIntyre, Justin I.; Reeder, Paul L.

    1999-01-01

    Measurement of xenon fission product isotopes is a key element in the global network being established to monitor the Comprehensive Nuclear-Test-Ban Treaty. Pacific Northwest National Laboratory has developed an automated system for separating Xe from air which includes a beta-gamma counting system for 131mXe, 133mXe, 133Xe, and 135Xe. Betas and conversion electrons are detected in a plastic scintillation cell containing the Xe sample. The counting geometry is nearly 100% for beta and conversion electrons. The resolution in the pulse height spectrum from the plastic scintillator is sufficient to observe distinct peaks for specific conversion electrons. Gamma and X-rays are detected in a NaI(Tl) scintillation detector which surrounds the plastic scintillator sample cell. Two-dimensional pulse height spectra of gamma energy versus beta energy are obtained. Each of the four xenon isotopes has a distinctive signature in the two-dimensional energy array. The details of the counting system, examples of two-dimensional beta-gamma data, and operational experience with this counting system will be described

  11. Many-body calculation of the coincidence L3 photoelectron spectroscopy main line of Ni metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    The partial singles L 3 photoelectron spectroscopy (PES) main line of Ni metal correlated with Auger electrons emitted by the localized L 3 -VV Auger decay is calculated by a many-body theory. The partial singles L 3 PES main line of Ni metal almost coincides in both line shape and peak kinetic energy (KE) with the singles one. The former main line peak shows a KE shift of only 0.01 eV toward the lower KE and a very small asymmetric line shape change compared to the singles one. The asymmetric line shape change and the peak KE shift of the partial singles L 3 main line are very small. However, they are due to the variation with photoelectron KE in the branching ratio of the partial Auger decay width in the partial singles L 3 PES main line by the photoelectron KE dependent imaginary part of the shakeup self-energy. The L 3 PES main line of Ni metal measured in coincidence with the L 3 -VV ( 1 G) Auger electron spectroscopy (AES) main line peak is the partial singles one modulated by a spectral function R a of a fixed energy Auger electron analyzer so that it should show only a symmetric line narrowing by R a compared to the singles one. The L 3 PES main line peak of Ni metal measured in coincidence with the delocalized band-like L 3 -VV AES peak or not completely split-off (or not completely localized) L 3 -VV ( 3 F) AES peak, will show an asymmetric line narrowing and a KE shift compared to the singles one. Thus, the L 3 PES main line of Ni metal in coincidence with various parts of the L 3 -VV AES spectrum depends on which part of the L 3 -VV AES spectrum a fixed energy Auger electron analyzer is set. The experimental verification is in need

  12. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    Science.gov (United States)

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  13. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    International Nuclear Information System (INIS)

    Nogueira, P; Vaz, P; Zankl, M; Schlattl, H

    2011-01-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  14. Very low-energy conversion electron detection (VLECED) system at the isocele on-line isotope separator, Orsay

    International Nuclear Information System (INIS)

    Kilcher, P.; Sauvage, J.; Munsch, J.; Obert, J.; Caruette, A.; Ferro, A.; Boissier, G.; Fournet-Fayas, J.; Ducourtieux, M.; Landois, G.

    1988-01-01

    A system designed and installed at the on-line isotope separator ISOCELE II allows the high resolution detection of low-energy conversion electrons (down to 1 keV) emitted by mass separated radioactive sources: the use of a special tape transport permits both the slowing down of the incoming beam of radioactive ions up to a collection point and the acceleration of the electrons emitted by the collected sources brought to a flat magnetic spectrograph. Typical spectra so obtained are presented

  15. Control of photon correlations in type II parametric down-conversion

    International Nuclear Information System (INIS)

    Andrews, R; Joseph, A T; Pike, E R; Sarkar, Sarben

    2005-01-01

    In this paper we describe theoretically quantum control of temporal correlations of entangled photons produced by collinear type II spontaneous parametric down-conversion. We examine the effect of spectral phase modulation of the signal or idler photons arriving at a 50/50 beam splitter on the temporal shape of the entangled-photon wavepacket. The coincidence count rate is calculated analytically for photon pairs in terms of the modulation depth applied to either the signal or idler beam with a spectral phase filter. It is found that the two-photon coincidence rate can be controlled by varying the modulation depth of the spectral filter

  16. Prospects in coincidence experiments

    International Nuclear Information System (INIS)

    Laget, J.M.

    1984-01-01

    The sensitivity of virtual photons to the local variations of the charge and magnetization densities is exploited to study the short-range part of the nucleon-nucleon interaction inside the nucleus. The possibility of varying energy, squared mass and longitudinal polarization of the photons independently enables us to disentangle the mechanisms related to the internal structure of the nucleon (e.g. quark interchange) and the contribution due to meson exchange. Coincidence experiments of the type (e,e'N) and (e,e'NN) are performed to suppress the meson contribution to the longitudinal part of the quasi-elastic peak. Four typical examples of coincidence experiments induced by virtual photons are discussed: experiments (1) on the spectroscopic structure of the quasi-elastic peak and the problem of deep lying hole states; (2) on the structure of the continuum; (3) on the low energy side of the quasi-elastic peak; and finally a three-arm coincidence experiment. (Auth.)

  17. Numerical coincidences and 'tuning' in cosmology

    OpenAIRE

    Rees, Martin J.

    2004-01-01

    Fred Hoyle famously drew attention to the significance of apparent coincidences in the energy levels of the carbon and oxygen nucleus. This paper addresses the possible implications of other coincidences in cosmology.

  18. Simulation of triple coincidences in PET

    International Nuclear Information System (INIS)

    Cal-González, J; Herranz, E; Vicente, E; Udias, J M; Lage, E; Dave, S R; Parot, V; Herraiz, J L; Moore, S C; Park, M-A

    2015-01-01

    Although current PET scanners are designed and optimized to detect double coincidence events, there is a significant amount of triple coincidences in any PET acquisition. Triple coincidences may arise from causes such as: inter-detector scatter (IDS), random triple interactions (R T ), or the detection of prompt gamma rays in coincidence with annihilation photons when non-pure positron-emitting radionuclides are used (β + γ events). Depending on the data acquisition settings of the PET scanner, these triple events are discarded or processed as a set of double coincidences if the energy of the three detected events is within the scanner’s energy window. This latter option introduces noise in the data, as at most, only one of the possible lines-of-response defined by triple interactions corresponds to the line along which the decay occurred. Several novel works have pointed out the possibility of using triple events to increase the sensitivity of PET scanners or to expand PET imaging capabilities by allowing differentiation between radiotracers labeled with non-pure and pure positron-emitting radionuclides. In this work, we extended the Monte Carlo simulator PeneloPET to assess the proportion of triple coincidences in PET acquisitions and to evaluate their possible applications. We validated the results of the simulator against experimental data acquired with a modified version of a commercial preclinical PET/CT scanner, which was enabled to acquire and process triple-coincidence events. We used as figures of merit the energy spectra for double and triple coincidences and the triples-to-doubles ratio for different energy windows and radionuclides. After validation, the simulator was used to predict the relative quantity of triple-coincidence events in two clinical scanners assuming different acquisition settings. Good agreement between simulations and preclinical experiments was found, with differences below 10% for most of the observables considered. For

  19. Study of the continuum in heavy ion inelastic spectra by light particle coincidence measurements

    International Nuclear Information System (INIS)

    Scarpaci, J.A.; Blumenfeld, Y.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Roynette, J.C.; Suomijarvi, T.; Van der Woude, A.; Alamanos, N.; Fernandez, B.; Gillibert, A.; Van der Woude, A.; Lepine, A.

    1990-01-01

    The continuum in heavy ion inelastic spectra contains, in addition to the excitation of target nucleus states, contributions from pick-up break-up and knock out reactions. In the case of the 40 Ca + 40 Ca collision at 50 MeV/N these contributions are separated and their relative importance assessed by the measurement of light charged particles in coincidence with the inelastically scattered fragments. The pick-up break-up contribution is found to make up less than half of the cross section at high excitation energies, conversely, the knock out process is important

  20. Deconvolution of 238,239,240Pu conversion electron spectra measured with a silicon drift detector

    DEFF Research Database (Denmark)

    Pommé, S.; Marouli, M.; Paepen, J.

    2018-01-01

    Internal conversion electron (ICE) spectra of thin 238,239,240Pu sources, measured with a windowless Peltier-cooled silicon drift detector (SDD), were deconvoluted and relative ICE intensities were derived from the fitted peak areas. Corrections were made for energy dependence of the full...

  1. Standardization of 18F by coincidence and LSC methods

    International Nuclear Information System (INIS)

    Roteta, Miguel; Garcia-Torano, Eduardo; Rodriguez Barquero, Leonor

    2006-01-01

    The nuclide 18 F disintegrates to 18 O by β + emission (96.86%) and electron capture (3.14%) with a half-life of 1.8288 h. It is widely used in nuclear medicine for positron emission tomography (PET). A radioactive solution of this nuclide has been standardized by two techniques: coincidence measurements with a pressurized proportional counter and liquid scintillation counting using the CIEMAT/NIST method. One ampoule containing a solution calibrated in activity was sent for measurement at the International Reference System maintained by the BIPM. Results are in excellent agreement with SIR values

  2. Photoion spectroscopy of atoms using coincidence techniques

    International Nuclear Information System (INIS)

    Hayaishi, Tatsuji

    1990-01-01

    Interaction of atoms or molecules with photons causes many effects which are often obscured because of many decay paths from the event. To pick up an effect in the mixed-up ones, it is necessary to observe the decay path arising the effect alone. There is a coincidence technique in one of experimental means for the purpose of observing the decay path. In this article, two coincidence measurements are presented; a photoelectron-photoion coincidence technique and a threshold photoelectron-photoion coincidence technique. Furthermore, experimental facts of rare gases atoms obtained by the techniques are reviewed. (author)

  3. Prosopagnosia as a Type of Conversion Disorder.

    Science.gov (United States)

    Power, Clodagh; Hannigan, Oisin; Coen, Robert; Bruce, Irene; Gibb, Matthew; McCarthy, Marie; Robinson, David; Lawlor, Brian A

    2018-01-01

    Conversion disorder is a common and debilitating condition that remains poorly understood. We present a previously undescribed form of conversion disorder to highlight the complexity of the condition and consider the interplay of factors that produce conversion symptoms. A 50-year-old male presented with acquired prosopagnosia and language impairment. Neuropsychological testing indicated right temporal lobe dysfunction. Extensive work-up outruled an organic aetiology. Reactivation of childhood trauma coincided with the onset of his symptoms. Childhood trauma is known to have adverse effects on the developing brain which may affect an individual's emotional behaviour and coping style. Functional neuroimaging techniques suggest that conversion symptoms may be linked to the disruption of higher order neural circuitry involved in the integration of emotional processing and cortical functioning. We propose that our patient's adverse childhood experiences led to the development of a particular personality and coping style that "primed" him for a later abnormal emotional and behavioural response when confronted with reminders of his traumatic background. Further interdisciplinary studies are required to further elucidate the neurobiological basis for this condition.

  4. Soudan 2 muons in coincidence with BATSE bursts

    International Nuclear Information System (INIS)

    DeMuth, D.M.; Marshak, M.L.; Wagner, G.L.

    1994-01-01

    We explore the possibilities of statistically significant temporal and spatial coincidences between underground muons at Soudan 2 and Gamma Ray Bursts at the GRO-BATSE detector. Our search uses data from the April 91 to March 92 BATSE burst catalog to seek correlations within a 100 second window of coincidence. Sixteen of 180 BATSE triggers have temporally and spatially coincident muons in the Soudan 2 detector. We estimate the chance probability of each coincidence assuming the null hypothesis on the basis of a study of the multiplicities of spatially coincident muons observed over a two day period centered on the time of burst

  5. NaI(Tl) electron energy resolution

    CERN Document Server

    Mengesha, W

    2002-01-01

    NaI(Tl) electron energy resolution eta sub e was measured using the Modified Compton Coincidence Technique (MCCT). The MCCT allowed detection of nearly monoenergetic internal electrons resulting from the scattering of incident 662 keV gamma rays within a primary NaI(Tl) detector. Scattered gamma rays were detected using a secondary HPGe detector in a coincidence mode. Measurements were carried out for electron energies ranging from 16 to 438 keV, by varying the scattering angle. Measured HPGe coincidence spectra were deconvolved to determine the scattered energy spectra from the NaI(Tl) detector. Subsequently, the NaI(Tl) electron energy spectra were determined by subtracting the energy of scattered spectra from the incident source energy (662 keV). Using chi-squared minimization, iterative deconvolution of the internal electron energy spectra from the measured NaI(Tl) spectra was then used to determine eta sub e at the electron energy of interest. eta sub e values determined using this technique represent va...

  6. Multiverse understanding of cosmological coincidences

    International Nuclear Information System (INIS)

    Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori

    2009-01-01

    There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant, the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.

  7. Digital coincidence counting

    Science.gov (United States)

    Buckman, S. M.; Ius, D.

    1996-02-01

    This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method.

  8. Digital coincidence counting

    International Nuclear Information System (INIS)

    Buckman, S.M.; Ius, D.

    1996-01-01

    This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method. (orig.)

  9. Recovery and normalization of triple coincidences in PET.

    Science.gov (United States)

    Lage, Eduardo; Parot, Vicente; Moore, Stephen C; Sitek, Arkadiusz; Udías, Jose M; Dave, Shivang R; Park, Mi-Ae; Vaquero, Juan J; Herraiz, Joaquin L

    2015-03-01

    Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. To recover triple coincidences, the authors' method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. The addition of triple-coincidence events with the authors' method increased peak

  10. Recovery and normalization of triple coincidences in PET

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Eduardo, E-mail: elage@mit.edu; Parot, Vicente; Dave, Shivang R.; Herraiz, Joaquin L. [Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Moore, Stephen C.; Sitek, Arkadiusz; Park, Mi-Ae [Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Udías, Jose M. [Grupo de Física Nuclear, Departamento de Física Atómica Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid 28040 (Spain); Vaquero, Juan J. [Departamento de Ingeniería Biomédica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés 28911 (Spain)

    2015-03-15

    Purpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. Methods: To recover triple coincidences, the authors’ method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. Results: The addition of triple-coincidence events with the

  11. Coincident effect characteristic in a thermoacoustic regenerator

    International Nuclear Information System (INIS)

    Liu Yicai; Xin Tianlong; Huang Qian; Shi Xiangnan; Chen Siming; Chen Lixin

    2011-01-01

    Many previous studies on characteristics of thermoacoustic regenerator are based on fluid micro-groups and their compression-expansion cycle. In this paper, coincident frequency is introduced to evaluate its acoustic characteristics by combining structural acoustic with structural vibration theories. The relationship among structure wave radiation and regenerator position, slab thickness, and properties of material are analyzed by numerical calculation. The results show that in the low-frequency thermoacoustic system, the coincident effect generated by higher frequency wave weakens the fundamental sound wave. While in the high-frequency thermoacoustic system, where the oscillating fundamental frequency is higher than the coincident frequency, the sound field strength is enhanced by stronger structure wave radiation because of the coincident effect.

  12. Coincident photoelectron spectroscopy on superconductors

    International Nuclear Information System (INIS)

    Voss, Stefan

    2011-01-01

    Aim of the performed experiments of this thesis was to attempt to detect Cooper pairs as carriers of the superconducting current directly by means of the photoelectric effect. The method of the coincident photoelectron spectroscopy aims thereby at the detection of two coherently emitted electrons by the interaction with a photon. Because electrostatic analyzers typically cover only a very small spatial angle, which goes along with very low coincidence rates, in connection with this thesis a time-of-flight projection system has been developed, which maps nearly the whole spatial angle on a position-resolving detector. The pulsed light source in form of special synchrotron radiation necessary for the measurement has been adjusted so weak, that only single photons could arrive at the sample. Spectroscoped were beside test measurements on silver layers both a lead monocrystal as representative of the classical BCS superconductors and monocrystalline Bi 2 Sr 2 CaCu 2 O 8 from the family of the high-temperature superconductors. With excitation energies up to 40 eV could be shown that sufficiently smooth and clean surfaces in the superconducting phase exhibit within the resolving power of about 0.5 eV no recognizable differences in comparison to the normally conducting phase. Beside these studies furthermore the simple photoemission at the different samples and especially in the case of the lead crystal is treated, because here no comparable results are known. Thereby the whole momentum space is discussed and the Fermi surface established as three-dimensional model, by means of which the measurement results are discussed. in the theoretical descriptions different models for the Cooper-pair production are presented, whereby to the momentum exchange with the crystal a special role is attributed, because this can only occur in direct excitations via discrete lattice vectors.

  13. The local skin dose conversion coefficients of electrons, protons and alpha particles calculated using the Geant4 code.

    Science.gov (United States)

    Zhang, Bintuan; Dang, Bingrong; Wang, Zhuanzi; Wei, Wei; Li, Wenjian

    2013-10-01

    The skin tissue-equivalent slab reported in the International Commission on Radiological Protection (ICRP) Publication 116 to calculate the localised skin dose conversion coefficients (LSDCCs) was adopted into the Monte Carlo transport code Geant4. The Geant4 code was then utilised for computation of LSDCCs due to a circular parallel beam of monoenergetic electrons, protons and alpha particles electrons and alpha particles are found to be in good agreement with the results using the MCNPX code of ICRP 116 data. The present work thus validates the LSDCC values for both electrons and alpha particles using the Geant4 code.

  14. Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction.

    Science.gov (United States)

    Chen, Zhihao; Song, Xiaojie; Zhang, Shujuan; Wu, Bingdang; Zhang, Guoyang; Pan, Bingcai

    2017-11-01

    The redox conversion of arsenite and nitrate has direct effects on their potential environment risks. Due to the similar reduction potentials, there are few technologies that can simultaneously oxidize arsenite and reduce nitrate in one process. Here, we demonstrate that a diketone-mediated photochemical process could efficiently do this. A combined experimental and theoretical investigation was conducted to elucidate the mechanisms behind the redox conversion in the UV/acetylacetone (AA) process. Our key finding is that UV irradiation significantly changed the redox potential of AA. The excited AA, 3 (AA)*, acted as a semiquinone radical-like electron shuttle. For arsenite oxidation, the efficiency of 3 (AA)* was 1-2 orders of magnitude higher than those of quinone-type electron shuttles, whereas the consumption of AA was 2-4 orders of magnitude less than those of benzonquinones. The oxidation of arsenite and reduction of nitrate could be both accelerated when they existed together in UV/AA process. The results indicate that small diketones are some neglected but potent electron shuttles of great application potential in regulating aquatic redox reactions with the combination of UV irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  16. Decay of Pm151

    DEFF Research Database (Denmark)

    Nielsen, H. Loft; Bertelsen, U.; Ewan, G. T.

    1964-01-01

    The disintegration scheme of Pm151 has been studied by conversion electron-gamma and beta-gamma coincidence techniques using a six-gap β-ray spectrometer. The internal conversion electron spectrum has also been studied at 0.05% resolution in a 180° magnetic spectrograph. Fifty-seven transitions...

  17. Standardization of 241Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting

    International Nuclear Information System (INIS)

    Balpardo, C.; Capoulat, M.E.; Rodrigues, D.; Arenillas, P.

    2010-01-01

    The nuclide 241 Am decays by alpha emission to 237 Np. Most of the decays (84.6%) populate the excited level of 237 Np with energy of 59.54 keV. Digital coincidence counting was applied to standardize a solution of 241 Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid scintillation counting using the logical sum of double coincidences in a TDCR array and defined solid angle counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

  18. Experimental techniques of conversion coefficient measurements

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  19. Method of electroplating a conversion electron emitting source on implant

    Science.gov (United States)

    Srivastava, Suresh C [Setauket, NY; Gonzales, Gilbert R [New York, NY; Adzic, Radoslav [East Setauket, NY; Meinken, George E [Middle Island, NY

    2012-02-14

    Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H.sub.2 evolution in H.sub.2SO.sub.4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H.sub.2SO.sub.4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.

  20. Disintegration rate of Tc -99m and In -111 radioactive solutions in coincidence systems

    International Nuclear Information System (INIS)

    Brito, Andreia Barreto de

    2011-01-01

    The 111 In and 99 mTc standardization in a 4πβ-γ coincidence system is described. The 111 In was produced by the reaction of 111 Cd (p, n) 111 In in the cyclotron. The 111 In decays with a half life of 2.8 days by electron capture process, populating the excited levels of 111 Cd, emitting two main gamma rays with energies of 171 keV and 245 keV. The 99m Tc decay with a half life of 6.007 h for isomeric transition, from the radioactive decay of 99 Mo. 111 In standardization was carried out in a 4πβ-γ system, consisted of a gas flow proportional counter with 4π geometry coupled to a pair of NaI(Tl) scintillation counter with conventional electronics. The gamma window was set comprising the (171 keV + 245 keV) total absorption energy peaks. The choice of the window was based on the analysis of the extrapolation curves prediction, obtained by Monte Carlo simulation. The 99 mTc standardization has been accomplished by the 4πβ-γ coincidence method using a thin window proportional counter in a 4π geometry coupled to a single NaI(Tl) scintillation counter. The beta efficiency was varied by electronic discrimination using a software coincidence counting system (SCS). Two windows were selected for the gamma channel: one at 140 keV gamma ray and the other at 20 keV X ray total absorption peaks. The result of the experimental activity of 111 In two solutions agree with the results obtained by Monte Carlo simulation. The experimental activities of 99m Tc for the two gamma windows are in agreement within the experimental uncertainty, indicating that the adopted methodology is adequate. (author)

  1. Gas flow counter conversion electron Moessbauer spectroscopy (GFC-CEMS)

    International Nuclear Information System (INIS)

    Williamson, A.; Vijay, Y.K.; Jain, I.P.

    1999-01-01

    Conversion Electron Moessbauer Spectroscopy (CEMS) is well established technique to study surface properties of materials. However non availability of commercial experimental set up and complexity of operational parameters have been restricting the working experimental groups with in the country and abroad. In this paper we have presented the development work for the design of Gas Flow Counter (GFC), e.g. convenient sample mount, grounding, steady flow rate adjustment and minimum He-losses so that the detector operation and installation becomes convenient and dependable. The basic design is modified e.g. large volume to maintain steady gas flow, sample mount close to central wire and O-ring fitted flange. The CEMS spectra are recorded using conventional Moessbauer drive and 57 Co source. The calibrated spectrum shows a detection efficiency of about 20% for natural iron and steel foil. The CEMS spectrum for FeTi bulk and transmission Moessbauer Spectroscopy (TMS) spectrum of FeTi thin film deposited by vacuum evaporation on thin glass substrate were recorded to test the performance of GFC-CEMS. (author)

  2. Conversion electron Moessbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    International Nuclear Information System (INIS)

    Terwagne, G.; Hutchings, R.

    1994-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI 3 ) at 350 C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ε-Fe 2 N through ε-Fe 3 N to γ'-Fe 4 N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone. (orig.)

  3. Electron beam induced cationic polymerization of epoxy resins. Dependence of Tg on conversion

    International Nuclear Information System (INIS)

    Degrand, H.; Cazaux, F.; Coqueret, X.

    2002-01-01

    Complete text of publication follows. The high-energy radiation curing of monomer blends polymerizing by a free radical or by a cationic mechanism receives increasing attention in the perspective of high performance composite materials. In the present work, we have focused our attention on epoxy formulations as models of the matrices polymerizing by a cationic mechanism that could be used in fiber-reinforced composites for aerospace applications. We have examined the progress of the electron beam (EB) induced polymerization of diglycidylether of bisphenol A (DGEBA) in the presence of a diaryliodonium salt (DAIS) by FTIR spectroscopy and by dynamic mechanical thermal analysis (DMA). The obtained results allow to draw the gradual increase of the temperature for the network thermomechanical transition (T a , associated with the glass transition temperature T g ) over a broad range of conversion (p) and reveal a peculiar behavior at high conversion. In this domain (p > 0.90), the material's T g is shown to decrease when conversion approaches unity. Moreover, the post-irradiation thermal treatment of the materials, that generally yields effective 'dark curing', appears to induce a decrease of T g , with an amplitude correlated with the amount of DAIS in the formulation. Owing to the particular nature of the propagating centers in cationic polymerisation, the thermal relaxation of ionic clusters trapped in the glassy matrix can be reasonably invoked as a possible cause for this behavior

  4. A new approach to beta-gamma coincidence counting. Advance report on the Samar electronic system; Informe preliminar del sistema Samar sistema automatico de medidas absolutas de Radionucleidos

    Energy Technology Data Exchange (ETDEWEB)

    Carlos, J E. de; Granados, C E

    1972-07-01

    In 4{pi} {beta}-{gamma} coincidence measurements, precision on the evaluation of coincidence counting losses is made difficult because of complex overlapping effects between the{beta}--and {gamma}-side dead times due to pre cursive counted events. In this context the SAMAR electronic system is aimed to give a precise way of automatic counting and reduce the need for calculated corrections. This report describes its configuration and basic features. The SAMAR has been conceived in such a manner that both beta and gamma chains are sharing a common and non extending dead-time which is simultaneously applied to both channels. The shared dead time is made to be the only one inserted throughout the chains. Overlapping effects vanish and the three counting channels have identical transmission ratios. A new dead-time circuit based on fast linear gates as blocking elements has been developed. Application of the two-oscillator Muller's method evidences a fully non-extending character. Automatism is implemented by using a live timer corrective channel controlling the counting scalers. (Author) 21 refs.

  5. A new approach to beta-gamma coincidence counting. Advance report on the Samar electronic system; Informe preliminar del sistema Samar sistema automatico de medidas absolutas de Radionucleidos

    Energy Technology Data Exchange (ETDEWEB)

    Carlos, J. E. de; Granados, C. E.

    1972-07-01

    In 4{pi} {beta}-{gamma} coincidence measurements, precision on the evaluation of coincidence counting losses is made difficult because of complex overlapping effects between the{beta}--and {gamma}-side dead times due to pre cursive counted events. In this context the SAMAR electronic system is aimed to give a precise way of automatic counting and reduce the need for calculated corrections. This report describes its configuration and basic features. The SAMAR has been conceived in such a manner that both beta and gamma chains are sharing a common and non extending dead-time which is simultaneously applied to both channels. The shared dead time is made to be the only one inserted throughout the chains. Overlapping effects vanish and the three counting channels have identical transmission ratios. A new dead-time circuit based on fast linear gates as blocking elements has been developed. Application of the two-oscillator Muller's method evidences a fully non-extending character. Automatism is implemented by using a live timer corrective channel controlling the counting scalers. (Author) 21 refs.

  6. Prosopagnosia as a Type of Conversion Disorder

    Directory of Open Access Journals (Sweden)

    Clodagh Power

    2018-01-01

    Full Text Available Background. Conversion disorder is a common and debilitating condition that remains poorly understood. We present a previously undescribed form of conversion disorder to highlight the complexity of the condition and consider the interplay of factors that produce conversion symptoms. Case. A 50-year-old male presented with acquired prosopagnosia and language impairment. Neuropsychological testing indicated right temporal lobe dysfunction. Extensive work-up outruled an organic aetiology. Reactivation of childhood trauma coincided with the onset of his symptoms. Childhood trauma is known to have adverse effects on the developing brain which may affect an individual’s emotional behaviour and coping style. Functional neuroimaging techniques suggest that conversion symptoms may be linked to the disruption of higher order neural circuitry involved in the integration of emotional processing and cortical functioning. Conclusions. We propose that our patient’s adverse childhood experiences led to the development of a particular personality and coping style that “primed” him for a later abnormal emotional and behavioural response when confronted with reminders of his traumatic background. Further interdisciplinary studies are required to further elucidate the neurobiological basis for this condition.

  7. Comparative study of chance coincidence correction in measuring 223Ra and 224Ra by delay coincidence method

    International Nuclear Information System (INIS)

    Yan Yongjun; Huang Derong; Zhou Jianliang; Qiu Shoukang

    2013-01-01

    The delay coincidence measurement of 220 Rn and 219 Rn has been proved to be a valid indirect method for measuring 224 Ra and 223 Ra extracted from natural water, which can provide valuable information on estuarine/ocean mixing, submarine groundwater discharge, and water/soil interactions. In practical operation chance coincidence correction must be considered, mostly Moore's correction method, but Moore's and Giffin's methods were incomplete in some ways. In this paper the modification (method 1) and a new chance coincidence correction formula (method 2) were provided. Experiments results are presented to demonstrate the conclusions. The results show that precision is improved while counting rate is less than 70 min- 1 . (authors)

  8. Minicomputer system for radiochemical analysis by coincidence spectrometry

    International Nuclear Information System (INIS)

    Brauer, F.P.; Fager, J.E.

    1979-01-01

    Minicomputer-based coincidence analysis methods have been developed for use in performing radiochemical analysis by high-resolution x- and gamma-ray coincidence spectrometry. This paper describes the data-acquisition and analysis methods develolped for qualitative and quantitative analyses of coincidence spectrometric data. Data-acquisition capabilities include both direct multiparameter pulse-height analysis and buffered list-mode acquisition

  9. Electron cyclotron heating and current drive approach for low-temperature startup plasmas using O-X-EBW mode conversion

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Bigelow, T.S.

    1997-01-01

    A mechanism for heating and driving currents in very overdense plasmas is considered based on a double-mode conversion: Ordinary mode to Extraordinary mode to electron Bernstein wave. The possibility of using this mechanism for plasma buildup and current ramp in the National Spherical Torus Experiment is investigated

  10. Fe-contacts on InAs(100) and InP(100) characterised by conversion electron Mössbauer spectroscopy

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Gunnlaugsson, H.P; Weyer, G.

    2005-01-01

    We have grown 4 nm thin films of Fe-57 on InAs(100) and InP(100) surfaces by use of MBE and studied the samples by Fe-57 conversion electron Mossbauer spectroscopy. In the case of InAs, the Mossbauer spectrum showed a sextet due to alpha-Fe and a further magnetically split component with slightly...

  11. Anisotropy in electron-atom collisions

    International Nuclear Information System (INIS)

    Linden van den Heuvel, H.B. van.

    1982-01-01

    Most of the work described in this thesis deals with studies using coincidence experiments, particularly for investigating the electron impact excitation of the 2 1 P and 3 1 D states in helium. A peculiarity is that in the 3 1 D studies the directly emitted 3 1 D → 2 1 P photons are not observed but the 2 1 P → 1 1 S photons resulting from the 3 1 D → 2 1 P → 1 1 S cascade instead. Another interesting point is the choice of the quantisation axis. The author demonstrates that it is of great advantage to take the quantisation axis perpendicular to the scattering plane rather than in the direction of the incident beam, as was done (on historical grounds) in previously reported electron-photon coincidence experiments. Contrary to the incident beam direction the axis perpendicular to the scattering plane really represents an axis of symmetry in the coincidence experiment. In Chapter II the so-called 'parity unfavoured' excitation of the (2p 2 ) 3 P state of helium by electrons is studied. In chapter III the anisotropy parameters for the electron impact excitation of the 2 1 P state of helium in the energy range from 26.6 to 40 eV and in the angular range from 30 0 to 110 0 are determined. Chapter IV contains a description of a scattered electron cascaded-photon coincidence experiment on the electron impact excitation of helium's 3 1 D state. The measurement of complex scattering amplitudes for electron impact excitation of the 3 1 D and 3 1 P states of helium is discussed in Chapter V. (Auth./C.F.)

  12. Statistical data filtration in neutron coincidence counting

    International Nuclear Information System (INIS)

    Beddingfield, D.H.; Menlove, H.O.

    1992-11-01

    We assessed the effectiveness of statistical data filtration to minimize the contribution of matrix materials in 200-ell drums to the nondestructive assay of plutonium. Those matrices were examined: polyethylene, concrete, aluminum, iron, cadmium, and lead. Statistical filtration of neutron coincidence data improved the low-end sensitivity of coincidence counters. Spurious data arising from electrical noise, matrix spallation, and geometric effects were smoothed in a predictable fashion by the statistical filter. The filter effectively lowers the minimum detectable mass limit that can be achieved for plutonium assay using passive neutron coincidence counting

  13. A deadtime reduction circuit for thermal neutron coincidence counters with Amptek preamplifiers

    International Nuclear Information System (INIS)

    Bourret, S.C.; Krick, M.S.

    1994-01-01

    We have developed a deadtime reduction circuit for thermal neutron coincidence counters using Amptek preamplifier/amplifier/discriminator circuits. The principle is to remove the overlap between the output pulses from the Amptek circuits by adding a derandomizer between the Amptek circuits and the shift-register coincidence electronics. We implemented the derandomizer as an Actel programmable logic array; the derandomizer board is small and can be mounted in the high-voltage junction box with the Amptek circuits, if desired. Up to 32 Amptek circuits can be used with one derandomizer. The derandomizer has seven outputs: four groups of eight inputs, two groups of 16 inputs, and one group of 32 inputs. We selected these groupings to facilitate detector ring-ratio measurements. The circuit was tested with the five-ring research multiplicity counter, which has five output signals-one for each ring. The counter's deadtime was reduced from 70 to 30 ns

  14. Orientation, alignment and polarisation in electron-helium collisions

    International Nuclear Information System (INIS)

    Beijers, J.P.M.

    1987-01-01

    In this thesis electron-photon coincidence experiments to study the excitation of helium by electron impact are updated. This is achieved by cross firing a well collimated and mono-energetic electron beam with a thermal helium beam and measuring the angular and/or polarisation distribution of the decay photons in coincidence with the inelastically scattered electrons. In this way target parameters are determined for the 2 1 P, 3 1 P, 3 1 D and 3 3 P states of helium. (Auth.)

  15. Coincidence Imaging and interference with coherent Gaussian beams

    Institute of Scientific and Technical Information of China (English)

    CAI Yang-jian; ZHU Shi-yao

    2006-01-01

    we present a theoretical study of coincidence imaging and interference with coherent Gaussian beams The equations for the coincidence image formation and interference fringes are derived,from which it is clear that the imaging is due to the corresponding focusing in the two paths .The quality and visibility of the images and fringes can be high simultaneously.The nature of the coincidence imaging and interference between quantum entangled photon pairs and coherent Gaussian beams are different .The coincidence image with coherent Gaussian beams is due to intensity-intensity correspondence,a classical nature,while that with entangled photon pairs is due to the amplitude correlation a quantum nature.

  16. Application of Monte Carlo method in study of the padronization for radionuclides with complex disintegration scheme in 4{pi}{beta}-{gamma} coincidence System; Aplicacao do metodo de Monte Carlo no estudo da padronizacao de radionuclideos com esquema de desintegracao complexos em sistema de coincidencias 4{pi}{beta}-{gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Mauro Noriaki

    2006-07-01

    The present work described a new methodology for modelling the behaviour of the activity in a 4{pi}{beta}-{gamma} coincidence system. The detection efficiency for electrons in the proportional counter and gamma radiation in the NaI(Tl) detector was calculated using the Monte Carlo program MCNP4C. Another Monte Carlo code was developed which follows the path in the disintegration scheme from the initial state of the precursor radionuclide, until the ground state of the daughter nucleus. Every step of the disintegration scheme is sorted by random numbers taking into account the probabilities of all {beta}{sup -} branches, electronic capture branches, transitions probabilities and internal conversion coefficients. Once the final state was reached beta, electronic capture events and gamma transitions are accounted for the three spectra: beta, gamma and coincidence variation in the beta efficiency was performed simulating energy cut off or use of absorbers (Collodion). The selected radionuclides for simulation were: {sup 134}Cs, {sup 72}Ga which disintegrate by {beta}{sup -} transition, {sup 133}Ba which disintegrates by electronic capture and {sup 35}S which is a beta pure emitter. For the latter, the Efficiency Tracing technique was simulated. The extrapolation curves obtained by Monte Carlo were filled by the Least Square Method with the experimental points and the results were compared to the Linear Extrapolation method. (author)

  17. Water-soluble phosphine-protected Au9 clusters: Electronic structures and nuclearity conversion via phase transfer

    Science.gov (United States)

    Yao, Hiroshi; Tsubota, Shuhei

    2017-08-01

    In this article, isolation, exploration of electronic structures, and nuclearity conversion of water-soluble triphenylphosphine monosulfonate (TPPS)-protected nonagold (Au9) clusters are outlined. The Au9 clusters are obtained by the reduction of solutions containing TPPS and HAuCl4 and subsequent electrophoretic fractionation. Mass spectrometry and elemental analysis reveal the formation of [Au9(TPPS)8]5- nonagold cluster. UV-vis absorption and magnetic circular dichroism (MCD) spectra of aqueous [Au9(TPPS)8]5- are quite similar to those of [Au9(PPh3)8]3+ in organic solvent, so the solution-phase structures are likely similar for both systems. Simultaneous deconvolution analysis of absorption and MCD spectra demonstrates the presence of some weak electronic transitions that are essentially unresolved in the UV-vis absorption. Quantum chemical calculations for a model compound [Au9(pH3)8]3+ show that the possible (solution-phase) skeletal structure of the nonagold cluster has D2h core symmetry rather than C4-symmetrical centered crown conformation, which is known as the crystal form of the Au9 compound. Moreover, we find a new nuclearity conversion route from Au9 to Au8; that is, phase transfer of aqueous [Au9(TPPS)8]5- into chloroform using tetraoctylammonium bromide yields [Au8(TPPS)8]6- clusters in the absence of excess phosphine.

  18. Physical basis of power conversion of energy fluctuations of hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Yater, J C

    1983-12-01

    The design of an experimental reversible-energy-fluctuation (REF) solar converter using hot nonequilibrated (HNE) electrons is presented. The physical principles are introduced, and an idealized model is described and analyzed in terms of radiation and electron-thermalization losses and first-to-third-layer transfer times. It is shown that the 93-percent limiting conversion efficiency can be approached in both a two-level and an N-level model, even in larger-scale circuits. On the other hand, as circuit size is decreased below 100 nm, the maximum power output can exceed 10 MW/sq m. The materials and thicknesses to be used in an experimental thin-film version of the REF device are outlined, including a 10-60-nm-thick Cd3As2 or alpha-Sn absorbing layer, a 4-10-nm-thick doped-semiconductor or semimetal quantum-well layer, and a Schottky-barrier diode layer comprising a 4-10-nm-thick Pb sheet on a 5-20-nm-thick p-GaAs film. Experiments at lattice temperatures of from 300 to 1 K with input radiation at wavelengths from 1 micron to the solar spectrum and intensities from zero to 1 mW are planned to determine whether the predicted practical efficiency of 80 percent can be obtained. 19 references.

  19. Standardization and determination of the total internal conversion coefficient of In-111.

    Science.gov (United States)

    Matos, Izabela T; Koskinas, Marina F; Nascimento, Tatiane S; Yamazaki, Ione M; Dias, Mauro S

    2014-05-01

    The standardization of (111)In by means of a 4πβ-γ coincidence system, composed of a proportional counter in 4π geometry, coupled to a 20% relative efficiency HPGe crystal, for measuring gamma-rays is presented. The data acquisition was performed by means of the software coincidence system (SCS) and the activity was determined by the extrapolation technique. Two gamma-ray windows were selected: at 171 keV and 245 keV total absorption peaks, allowing the determination of the total internal conversion coefficient for these two gamma transitions. The results were compared with those available in the literature. © 2013 Published by Elsevier Ltd.

  20. Feasibility study of internal conversion electron spectroscopy of {sup 229m}Th

    Energy Technology Data Exchange (ETDEWEB)

    Seiferle, Benedict; Wense, Lars von der; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2017-05-15

    With an expected energy of 7.8(5) eV, the isomeric first excited state in {sup 229}Th exhibits the lowest excitation energy of all known nuclei. Until today, a value for the excitation energy has been inferred only by indirect measurements. In this paper we propose an experimental method that is potentially capable of measuring the ground-state transition energy via the detection of the internal conversion electrons. MatLab-based Monte Carlo simulations have been performed to obtain an estimate of the expected statistics and to test the feasibility and the expected precision of the experiment. From the simulations we conclude that with the presented methods an energy determination with a precision of better than 0.1 eV is within reach. (orig.)

  1. Electron spectroscopy in the fundamental process of electron-nucleus bremsstrahlung

    International Nuclear Information System (INIS)

    Hillenbrand, Pierre-Michel

    2013-07-01

    Within the scope of this thesis the fundamental process of electron-nucleus bremsstrahlung was studied in inverse kinematics at the Experimental Storage Ring ESR at GSI. For the system U 88+ + N 2 at 90 MeV/u it was shown, that by using inverse kinematics coincidence measurements between the scattered electron and the emitted photon can be performed for the case, in which the incoming electron transfers almost all of its kinetic energy onto the emitted photon. The sensitivity to the fundamental process could be achieved by measuring triple differential cross sections as a function of the emission angle of the photon and the scattered electron as well as the energy of the scattered electron. The optics of the magnetic electron spectrometer used were thoroughly revised and optimized to the experimental requirements. Analyzing different coincidences in this collision system, it was possible to determine the contributions to the electron distribution arising from radiative electron capture to the projectile continuum, nonradiative electron capture to the projectile continuum, and electron loss to the projectile continuum. The experimental results of each of these processes were compared to theoretical calculations. The electron spectra for the radiative and the nonradiative electron capture to continuum clearly reproduce the opposite asymmetry predicted by theory. Furthermore electron spectra for collisions of U 28+ with different gases were measured.

  2. Theoretical study, and construction, of a spherical electrostatic beta spectrometer; Etude theorique et realisation d'un spectrometre beta electrostatique spherique

    Energy Technology Data Exchange (ETDEWEB)

    Moret, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-03-15

    After a literature survey showing the importance of an electrostatic spectrometer with spherical electrodes for studying disintegration processes, the theoretical characteristics of such an apparatus are derived (determination of the trajectory equations calculation of the transmission and of the resolving power the case of a point source and of an extended source). The apparatus built as a result of these calculations is described. The electrostatic field distribution outside the electrodes is derived. As well as giving electron spectra ({beta} disintegration and conversion electrons) the apparatus make s it possible to study e-{gamma}, e-{beta}, e-e-{gamma} and e-e-{beta} coincidences. In the last part are given experimental characteristics and the results of the first measurements made on conversion electron spectra ({sup 161}Tb, {sup 151}Pm, {sup 155}Eu) and on coincidences ({sup 170}Tm) using this spectrometer. (author) [French] Apres une etude bibliographique montrant l'interet que presente un spectrometre electrostatique a electrodes spheriques pour l'etude des schemas de desintegration, l'auteur etablit les caracteristiques theoriques d'un tel appareil (determination de l'equation des trajectoires calcul de la transmission et du pouvoir de resolution cas d'une source ponctuelle et d'une source etendue). On decrit l'appareil realise d'apres ces calculs. On etablit la repartition du champ electrostatique a l'exterieur des electrodes. Outre le trace des spectres d'electrons (desintegration {beta} et electrons de conversion), l'appareil permet l'etude de coincidences e-{gamma}, e-{beta}, e-e-{gamma} and e-e-{beta}. Dans la derniere partie, sont donnees les caracteristiques experimentales et les premieres etudes de spectres d'electrons de conversion ({sup 161}Tb, {sup 151}Pm, {sup 155}Eu) et de coincidences ({sup 170}Tm) faites a l'aide de ce spectrometre. (auteur)

  3. Coincidence method for determination of radionuclides activities

    International Nuclear Information System (INIS)

    Andrukhovich, S.K.; Berestov, A.V.; Rudak, E.A.

    2004-01-01

    The radon and radium activity measurements using six-crystal gamma-gamma coincidence, 4 -spectrometer PRIPJAT and radioactivity measurements in different samples of meat and vegetation by 32-crystal spectrometer ARGUS, are described. Radiation detector with 4 -geometry provides higher efficiency, and therefore shorter counting time than a detector without such geometry. However, its application is limited by the fact that obtained spectrum contains summing peaks of all γ-quanta registered in coincidence. Multiparameter information on coincident photon emission can be obtained only by a detection system where the 4 -geometry is made by many detectors, such are both the PRIPJAT and the ARGUS - γ-coincidence spectrometer of the Crystal Ball type in the Institute of Physics, Minsk [1,2]. There are other characteristics, as background conditions, energy and time resolution, makes it ve suitable for investigation of rare decays and interactions, cascade transitions, k intensity radiations etc. We are developing a method of 2 26R a and 2 26 Rn measurement by a multidetector 4 -spectrometer. The method is based on coincidence counting of γ-rays from two step cascade transitions that follow - decay of 2 14 Bi. Its application to the PRIPL spectrometer, which has 6 Nal(Tl) detectors, is presented here, as well as the method of the determination of radionuclide activities based on the registration of the cascades intensity of γ-rays of different multiplicity using ARGUS

  4. Standardization of {sup 241}Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting

    Energy Technology Data Exchange (ETDEWEB)

    Balpardo, C., E-mail: balpardo@cae.cnea.gov.a [Laboratorio de Metrologia de Radioisotopos, CNEA, Buenos Aires (Argentina); Capoulat, M.E.; Rodrigues, D.; Arenillas, P. [Laboratorio de Metrologia de Radioisotopos, CNEA, Buenos Aires (Argentina)

    2010-07-15

    The nuclide {sup 241}Am decays by alpha emission to {sup 237}Np. Most of the decays (84.6%) populate the excited level of {sup 237}Np with energy of 59.54 keV. Digital coincidence counting was applied to standardize a solution of {sup 241}Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid scintillation counting using the logical sum of double coincidences in a TDCR array and defined solid angle counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

  5. Standardization of Ga-68 by coincidence measurements, liquid scintillation counting and 4πγ counting

    International Nuclear Information System (INIS)

    Roteta, Miguel; Peyres, Virginia; Rodríguez Barquero, Leonor; García-Toraño, Eduardo; Arenillas, Pablo; Balpardo, Christian; Rodrígues, Darío; Llovera, Roberto

    2012-01-01

    The radionuclide 68 Ga is one of the few positron emitters that can be prepared in-house without the use of a cyclotron. It disintegrates to the ground state of 68 Zn partially by positron emission (89.1%) with a maximum energy of 1899.1 keV, and partially by electron capture (10.9%). This nuclide has been standardized in the frame of a cooperation project between the Radionuclide Metrology laboratories from CIEMAT (Spain) and CNEA (Argentina). Measurements involved several techniques: 4πβ−γ coincidences, integral gamma counting and Liquid Scintillation Counting using the triple to double coincidence ratio and the CIEMAT/NIST methods. Given the short half-life of the radionuclide assayed, a direct comparison between results from both laboratories was excluded and a comparison of experimental efficiencies of similar NaI detectors was used instead. - Highlights: ► We standardized the positron emitter Ga-68 in a bilateral cooperation. ► We used several techniques, as coincidence, integral gamma and liquid scintillation. ► An efficiency comparison replaced a direct comparison of reference materials.

  6. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    Science.gov (United States)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  7. Measurement of the initial conversion ratio in AQUILON and EDF 2 reactors

    International Nuclear Information System (INIS)

    Bergeron, J.; Le Baud, P.; Sautiez, B.

    1968-01-01

    In natural uranium fuelled reactors, it is important to know the initial conversion ratio, i.e. the ratio of uranium 238 absorption to uranium 235 destruction. The separation of absorption products from fission products is a difficult feature in the measurement of the conversion ratio. A physical method was chosen, the γγ coincidence technique which uses the properties of the decay scheme of neptunium 239 and allows the neptunium activity to be separated from the fission product activity, with some corrections. Detectors of natural uranium are used. The accuracy obtained in the measurements is of the order of 2%. (authors) [fr

  8. High rate 4π β-γ coincidence counting system

    International Nuclear Information System (INIS)

    Johnson, L.O.; Gehrke, R.J.

    1978-01-01

    A high count rate 4π β-γ coincidence counting system for the determination of absolute disintegration rates of short half-life radionuclides is described. With this system the dead time per pulse is minimized by not stretching any pulses beyond the width necessary to satisfy overlap coincidence requirements. The equations used to correct for the β, γ, and coincidence channel dead times and for accidental coincidences are presented but not rigorously developed. Experimental results are presented for a decaying source of 56 Mn initially at 2 x 10 6 d/s and a set of 60 Co sources of accurately known source strengths varying from 10 3 to 2 x 10 6 d/s. A check of the accidental coincidence equation for the case of two independent sources with varying source strengths is presented

  9. Absorption and emission from mode conversion theory

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-02-01

    The effects of mode conversion theory on emission have led to some surprising results. The classical expressions were originally derived from models which did not include mode conversion or its attendant reflection. When mode conversion was included, the first surprise was that the transmission coefficient is totally independent of absorption and due exclusively to tunneling. The other surprise is that the observed emission arises from two distinct sources, one direct, and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for laboratory plasmas, leading to the validation of the classical formula, but via an entirely new paradigm in its interpretation. This paper includes a summary of the absorption process for electron cyclotron harmonics, and reviews the emission physics, including both potential error estimates and a discussion of the spatial emission source distribution

  10. Coincidence measurements in α/β/γ spectrometry with phoswich detectors using digital pulse shape discrimination analysis

    Science.gov (United States)

    de Celis, B.; de la Fuente, R.; Williart, A.; de Celis Alonso, B.

    2007-09-01

    A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for α/β/γ ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed α/β/γ field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of β particles in a plastic scintillator and γ rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF 2(Eu) for β ray detection and NaI(Tl) for γ ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis.

  11. Slow coincidences for CAMAC multiparameter analysis

    International Nuclear Information System (INIS)

    Akimov, Yu.K.; Kalinin, A.I.; Tissol'd, E.; Fromm, V.D.; Ekstein, P.

    1978-01-01

    A coincidence circuit with controlled parameters is described. The circuit has six coincidence inputs and one input for anticoincidences. A pulse duration in channels is changed from 0.25 to 5 μs and delay time, within 8 μs. The circuit is developed for multiparameter spectrometric analysis with the use of amplitude-digital and time-digital convertors. Its introduction permits one to diminish considerably the ''dead'' time of apparatus and to select rapidly and reliably strictly correlated digital information from convertors

  12. Fast digital 4πβ-4πγ coincidence counting with offline analysis at IRA.

    Science.gov (United States)

    Teresa Durán, M; Nedjadi, Youcef; Juget, Frédéric; Bochud, François; Bailat, Claude

    2018-04-01

    IRA recently launched a project to digitize all the data acquisition systems it uses for primary radionuclide standardizations. It is well-known that the digital approach presents numerous advantages over the traditional analog electronics such as information losslessness, scalability, online and/or offline data processing, and it is also a solution to the growing difficulties to repair or renew ageing modules. As a first step in this wider program, our institute set-up a 4πβ-4πγ digital coincidence counting system, with FPGA (Field Programmable Gate Array)-based commercial boards from National Instruments (NI), to perform data acquisition and offline data analysis. Choosing all components and software from the same supplier provides a full compact and consistent electronic system. To demonstrate and validate the capacity of this system to standardize the activity of radioisotopes, we compare its predictions for the activity concentration of 133 Ba, 166m Ho and 18 F solutions with the results from a coincidence counting system with analog electronics, as well as with the results from other primary methods and a secondary measurement performed with an IG11 ionization chamber (CIR, chambre d'ionization de référence) with an equivalent activity traceable to the Système International de Référence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Decay of the 16.3 min Decay of the 16.3 min {sup 182}Ta Isomer

    Energy Technology Data Exchange (ETDEWEB)

    Hoejeberg, M [Inst. of Physics, Univ. of Stockholm, Stockholm (Sweden); Malmskog, S G [AB Atomenergi, Nykoeping (Sweden)

    1967-01-15

    Some transitions in the decay of the 16.3 min {sup 182}Ta isomer have been studied with a Ge(Li) detector and a double lens electron coincidence spectrometer. Gamma ray and conversion electron intensities were measured. From a delayed coincidence experiment it was concluded that both of the two lowest excited states in {sup 182}Ta had a half life less than 30 psec.

  14. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1987-01-01

    Dose-rate conversion factors have been calculated for external exposure of the skin from electrons emitted by sources that are deposited uniformly on the body surface. The dose-rate factors are obtained from electron scaled point kernels developed by Berger. The dose-rate factors are calculated at depths of 4, 8, and 40 mg cm-2 below the body surface as recommended by Whitton, and at a depth of 7 mg cm-2 as recommended in ICRP Publication 26 (ICRP77). The dependence of the dose-rate factors at selected depths on the energy of the emitted electrons is displayed. The dose-rate factors for selected radionuclides of potential importance in radiological assessments are tabulated

  15. Principle of coincidence method and application in activity measurement

    International Nuclear Information System (INIS)

    Li Mou; Dai Yihua; Ni Jianzhong

    2008-01-01

    The basic principle of coincidence method was discussed. The basic principle was generalized by analysing the actual example, and the condition in theory of coincidence method was brought forward. The cause of variation of efficiency curve and the effect of dead-time in activity measurement were explained using the above principle and condition. This principle of coincidence method provides the foundation in theory for activity measurement. (authors)

  16. Operations manual for the megachannel gamma-ray coincidence system

    International Nuclear Information System (INIS)

    Ruhter, W.

    1977-01-01

    To aid in the study of nuclear structures, a megachannel pulse-height coincidence analysis system on a PDP-8 computer was constructed. The system digitizes the energies of coincident gamma-rays and stores the resultant information on a moving-head disk. The system uses a minicomputer to sort and store gamma-gamma coincident information on line. The megachannel system and how to use it are described

  17. Monte Carlo simulation of {beta}-{gamma} coincidence system using plastic scintillators in 4{pi} geometry

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M.S. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)], E-mail: msdias@ipen.br; Piuvezam-Filho, H. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Baccarelli, A.M. [Departamento de Fisica-PUC/SP-Rua Marques de Paranagua 111, 01303-050 Sao Paulo, SP (Brazil); Takeda, M.N. [Universidade Santo Amaro, UNISA-Rua Prof. Eneas da Siqueira Neto 340, 04829-300 Sao Paulo, SP (Brazil); Koskinas, M.F. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2007-09-21

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, Sao Paulo, Brazil, has been applied for simulating a 4{pi}{beta}(PS)-{gamma} coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4{pi} geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to {sup 60}Co and {sup 133}Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4{pi}{beta}(PC)-{gamma} coincidence system.

  18. Monte Carlo simulation of β-γ coincidence system using plastic scintillators in 4π geometry

    International Nuclear Information System (INIS)

    Dias, M.S.; Piuvezam-Filho, H.; Baccarelli, A.M.; Takeda, M.N.; Koskinas, M.F.

    2007-01-01

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, Sao Paulo, Brazil, has been applied for simulating a 4πβ(PS)-γ coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4π geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to 60 Co and 133 Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4πβ(PC)-γ coincidence system

  19. Coincidence studies with antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2010-02-01

    We present a short overview of a new method for calculating fully differential cross sections that is able to describe any aspect of coincidence measurements involving heavy projectiles. The method is based upon impact parameter close coupling with pseudostates. Examples from antiproton impact ionization are shown.

  20. A β - γ coincidence

    International Nuclear Information System (INIS)

    Agullo, F.

    1960-01-01

    A β - γ coincidence method for absolute counting is given. The fundamental principles are revised and the experimental part is detailed. The results from 1 98 Au irradiated in the JEN 1 Swimming pool reactor are given. The maximal accuracy is 1 per cent. (Author) 11 refs

  1. LETTER TO THE EDITOR: Observation of photo-double ionization of carbon monoxide below the adiabatic double-ionization potential by threshold-photoelectron - photoelectron coincidence spectroscopy

    Science.gov (United States)

    Thompson, David B.; Dawber, Grant; Gulley, Nicola; MacDonald, Michael A.; King, George C.

    1997-03-01

    The production of 0953-4075/30/5/004/img8 and 0953-4075/30/5/004/img9 ion pairs in carbon monoxide at photon energies below the adiabatic double-ionization threshold of 41.25 eV has been probed in a threshold-photoelectron - photoelectron coincidence (TPEPECO) experiment using tunable VUV radiation and a sensitive electron spectrometer. The TPEPECO spectra provide evidence of 0953-4075/30/5/004/img10 production that does not involve creation and dissociation of a molecular dication, but instead results from complete dissociation of a molecular cation followed by autoionization of the atomic oxygen fragment. Furthermore, an electron - electron coincidence signal has been detected at photon energies as low as 36.5 eV, well below the previously measured onset for 0953-4075/30/5/004/img10 production.

  2. Calculation of the n-th coincidences frequency

    International Nuclear Information System (INIS)

    Mercier, C.

    1959-01-01

    Events can occur randomly with a given frequency. Each event lasts a Θ-time. During this Θ-time other events can occur. A coincidence beginning of order n at a t-time is when an event occurs while n other events already occurred between t-Θ and t. In this work the frequency of coincidence beginnings with an order greater than or equal to n is established

  3. Quintessence, Cosmic Coincidence, and the Cosmological Constant

    International Nuclear Information System (INIS)

    Zlatev, I.; Wang, L.; Steinhardt, P.J.; Steinhardt, P.J.

    1999-01-01

    Recent observations suggest that a large fraction of the energy density of the Universe has negative pressure. One explanation is vacuum energy density; another is quintessence in the form of a scalar field slowly evolving down a potential. In either case, a key problem is to explain why the energy density nearly coincides with the matter density today. The densities decrease at different rates as the Universe expands, so coincidence today appears to require that their ratio be set to a specific, infinitesimal value in the early Universe. In this paper, we introduce the notion of a open-quotes tracker field,close quotes a form of quintessence, and show how it may explain the coincidence, adding new motivation for the quintessence scenario. copyright 1999 The American Physical Society

  4. The design study of an ultra-high power EB/X-ray conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    He, Zi-Feng, E-mail: hezifeng@sinap.ac.cn; Li, Deming; Huang, Jian-Ming; Yang, Yong-Jin; Zhu, Xi-Kai; Zhang, Yu-Tian

    2014-10-15

    Highlights: • We describe a 100 kW electron beam to X-rays conversion system. • We give an idea to improve the conversion efficiency and lifetime of the target. • We describe the design and thermal characteristics of the X-ray converter. - Abstract: X-ray conversion is a frequent need for irradiating the products that cannot be processed by electron beams, duo to their limited penetration capacity in materials, in radiation sterilization of disposable healthcare products and food irradiation. In this paper, we report the design of a conversion facility with a 5-MeV/120-kW electron accelerator, regarding the considerations on selection of the target materials and target structure, design of the electron beam transport line and approaches to improve the conversion efficiency and lifetime.

  5. Electron Bernstein wave heating and emission measurement through the very narrow O-X-B mode conversion window in the LHD

    Energy Technology Data Exchange (ETDEWEB)

    Igami, H.; Shimozuma, T.; Yoshimura, Y.; Takahashi, H.; Nishiura, M.; Seki, T.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki (Japan); Kubo, S. [National Institute for Fusion Science, Toki, Japan and Department of Energy Engineering and Science, Nagoya Univ., Nagoya (Japan); Ogasawara, S.; Makino, R. [Department of Energy Engineering and Science, Nagoya Univ., Nagoya (Japan); Idei, H. [Research Institute for Applied Mechanics, Kyusyu Univ., Kasuga (Japan); Nagasaki, K. [Institute of Advanced Energy, Kyoto Univ., Uji (Japan)

    2014-02-12

    In the large helical device (LHD), the theoretically predicted width of the ordinary-extraordinary-electron Bernstein wave (O-X-B) mode conversion (MC) window is comparable to the beam width and the power deposition is located in the off-axis region if the 77GHz fundamental electron cyclotron (EC) wave of is launched from an existing horizontal port antenna. In the experiment, the actual MC window location was looked for with changing the aiming. The effective aiming with that the increase of the stored energy was observed was two degrees apart from the location of the theoretical MC window at a maximum. Measurement of the waves originated from the thermally emitted EBW and radiated via the B-X-O mode conversion process is effective to improve the accuracy of the theoretical prediction with comparison between the theoretical and the experimental results. The theoretical prediction suggests that the width of the MC window of the fundamental 77GHz EC wave can be expanded if the lower port antenna is used. On the other hand, the MC window of the second harmonic 154GHz EC wave is blocked by horizontal port wall if another horizontal port antenna is used. It is required to move the final mirror of the quasi-optical antenna toward the plasma surface. Focusing of the beam at the plasma cutoff is (PC) also necessary for the effective mode conversion.

  6. Standardisation of 64Cu using a software coincidence counting system

    International Nuclear Information System (INIS)

    Havelka, Miroslav; Sochorová, Jana

    2014-01-01

    The activity of the radionuclide 64 Cu was determined by the efficiency extrapolation method applied to 4π(PC)−γ coincidence counting. The standardisation was performed by software coincidence counting—a digital method for primary activity measurement that simplifies the setting of optimal coincidence parameters. The γ-ray-energy window, characterised by identical gamma detection efficiency related to the sum of EC and to the sum of beta decay branches, was found. This setting ensured a linear and zero slope extrapolation curve. - Highlights: • Standardisation realised by extrapolation method applied to 4π(PC)−γ coincidence. • Digital method for optimal setting of coincidence parameters was used. • Result with total standard uncertainty of 0.74% was obtained

  7. Unattended mode monitoring of passive neutron coincidence detector systems using a commercial data logger

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Outram, J.D.; Storey, M.

    1991-01-01

    A commercial Data Logger for unattended passive neutron coincidence data acquisition is described. This consists of an inexpensive commercial Data Logging equipment attached to a neutron coincidence electronics and a software package for data review. The Data Logger permits both the flexible configuration of a passive neutron coincidence measurement system for unattended mode monitoring and the storage of the measured Totals and Reals count rates. An additional feature of the Data Logger is a custom software package providing for the complete analysis of the stored data and yielding an assay of each item passing through the measurement cavity. The analysis includes an input for different isotopic compositions, the calculation of the multiplication corrected Reals rates, the inclusion of a calibration functions, and the determination of 240 Pu masses. The software package for data review displays the Totals and Reals count rates logged by the Data Logger as a function of time. In addition the custom software provides input files to the data review package to display the multiplication corrected Reals count rates and the measured 240 Pu masses as a function of time. Information on the Data Logger is presented along with the monitoring mode specifications. The analysis functions implemented are described as is the data review software. Results are presented for a specific application

  8. Standardisation of {sup 18}F by a coincidence method using full solid angle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nedjadi, Youcef, E-mail: youcef.nedjadi@chuv.c [Institut de Radiophysique Appliquee, Grand Pre 1, 1007 Lausanne (Switzerland); Bailat, Claude; Caffari, Yvan; Bochud, Francois [Institut de Radiophysique Appliquee, Grand Pre 1, 1007 Lausanne (Switzerland)

    2010-07-15

    A solution of {sup 18}F was standardised with a 4{pi}{beta}-4{pi}{gamma} coincidence counting system in which the beta detector is a one-inch diameter cylindrical UPS89 plastic scintillator, positioned at the bottom of a well-type 5''x5'' NaI(Tl) gamma-ray detector. Almost full detection efficiency-which was varied downwards electronically-was achieved in the beta-channel. Aliquots of this {sup 18}F solution were also measured using 4{pi}{gamma} NaI(Tl) integral counting and Monte Carlo calculated efficiencies as well as the CIEMAT-NIST method. Secondary measurements of the same solution were also performed with an IG11 ionisation chamber whose equivalent activity is traceable to the Systeme International de Reference through the contribution IRA-METAS made to it in 2001; IRA's degree of equivalence was found to be close to the key comparison reference value (KCRV). The {sup 18}F activity predicted by this coincidence system agrees closely with the ionisation chamber measurement and is compatible within one standard deviation of the other primary measurements. This work demonstrates that our new coincidence system can standardise short-lived radionuclides used in nuclear medicine.

  9. Particle Discrimination Experiment for Direct Energy Conversion

    International Nuclear Information System (INIS)

    Yasaka, Y.; Kiriyama, Y.; Yamamoto, S.; Takeno, H.; Ishikawa, M.

    2005-01-01

    A direct energy conversion system designed for D- 3 He fusion reactor based on a field reversed configuration employs a venetian-blind type converter for thermal ions to produce DC power and a traveling wave type converter for fusion protons to produce RF power. It is therefore necessary to separate, discriminate, and guide the particle species. For this purpose, a cusp magnetic field is proposed, in which the electrons are deflected and guided along the field line to the line cusp, while the ions pass through the point cusp. A small-scale experimental device was used to study the basic characteristics of discrimination of electrons and ions in the cusp magnetic field. Ions separated from electrons are guided to an ion collector, which is operated as a one-stage direct energy converter. The conversion efficiency was measured for cases with different values of mean and spread of ion energy. These experiments successfully demonstrate direct energy conversion from plasma beams using particle discrimination by a cusp magnetic field

  10. Observation of the two-electron cusp in atomic collisions. Evidence for strong electron-electron correlation

    International Nuclear Information System (INIS)

    Sarkadi, L.; Orban, A.

    2007-01-01

    Complete text of publication follows. In this report we present experimental data for a process when two electrons with velocity vectors equal to that of the projectile are emitted from collisions. By observing the two electron cusp the study of the threshold phenomenon for two-electron break-up is possible. It is a particularly interesting question whether the outgoing charged projectile can attract the two repulsing electrons so strongly that the two-electron cusp is formed. If it is so, a further question arises: Are the two electrons correlated in the final state as it is predicted by the Wannier theory? The experiments have been done at the 1 MeV VdG accelerator of ATOMKI using our TOF spectrometer. The first measurements clearly showed the formation of the two-electron cusp and signature of the electron correlation in 200 keV He 0 +He collisions. These promising results motivated us to carry out the experiment at 100 keV beam energy where the coincidence count rate is still reasonable but the energy resolution is better. For an acceptable data acquisition time we improved our data acquisition and data processing system for triple coincidence measurements. In Fig. 1a we present our measured relative fourfold differential cross section (FDCS) that shows strong electron correlation. For a comparison, in Fig. 1b we displayed the contour plot for uncorrelated electron pair emission. These latter data were synthesized artificially, generating the energies of the electron pairs from two independent double coincidence experiments. In both figures the distributions are characterized by two ridges. In Fig. 1b the ridges are perpendicular straight lines (E 1 = E 2 .13.6 eV). As a result of the correlation, the ridges in Fig. 1a are distorted in such a way that they have a joint straight-line section following the line E 1 + E 2 = 27.2 eV. This means that the electron pairs in the vicinity of the cusp maximum are emitted with a center of- mass velocity equal to that of

  11. Electron Transfer and Geometric Conversion of Co-NO Moiety in Saddled Porphyrins: Implications for Trigger Role of Tetrapyrrole Distortion.

    Science.gov (United States)

    Tang, Min; Yang, Yan; Zhang, Shaowei; Chen, Jiafu; Zhang, Jian; Zhou, Zaichun; Liu, Qiuhua

    2018-01-02

    The electrons of NO and Co are strongly delocalized in normal {Co-NO} 8 species. In this work, {Co-NO} 8 complexes are induced to convert from (Co II ) +• -NO • to Co III -NO - by a core contraction of 0.06 Å in saddled cobalt(II) porphyrins. This intramolecular electron transfer mechanism indicates that nonplanarity of porphyrin is involved in driving conversion of the NO units from electrophilic NO • as a bent geometry to nucleophilic NO - as a linear geometry. This implies that distortion acts as a trigger in enzymes containing tetrapyrrole. The electronic behaviors of the Co II ions and Co-NO moieties were confirmed by X-ray crystallography, EPR spectroscopy, theoretical calculation, UV-vis and IR spectroscopy, and electrochemistry.

  12. Using Compton scattering for random coincidence rejection

    International Nuclear Information System (INIS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.

  13. Gamma-gamma directional correlations and coincidence studies in 154Gd

    International Nuclear Information System (INIS)

    Gupta, J.B.; Gupta, S.L.; Hamilton, J.H.; Ramayya, A.V.; Delhi Univ.

    1977-01-01

    The intensities, placements and E2/M1 mixing ratios of transitions in the decay of 154 Eu have been carefully studied to provide accurate data for microscopic calculations. Coincidence relationships in thhe decay of 154 Eu have been studied extensively with a multiparameter γ-γ coincidence system with two large volume Ge(Li) detectors. Spectra in coincidence with twenty energy gates were analyzed. Twenty-nine new coincidence relationships were established and confirmed most, but not all, of several levels previously assigned by energy fits only. From an analysis of coincidence spectra and singles spectra with a 18% efficiency Ge(Li) detector new information on the gamma-ray intensities were obtained. Precise values of the E2/M1 mixing ratios of transitions from the gamma- and beta-vibrational bands to the g.s. band have been determined from γ-γ directional correlation measurements with a NaI(Tl)-Ge(Li) detector coincidence system. Mixing ratios were obtained for a number of other transitions including those from KPI = 0 - and 2+ bands from direct and skipped cascade correlations. (orig.) [de

  14. Electron spectroscopy of collisional excited atoms

    International Nuclear Information System (INIS)

    Straten, P. van der.

    1987-01-01

    In this thesis measurements are described in which coincidences are detected between scattered projectiles and emitted electrons. This yields information on two-electron excitation processes. In order to show what can be learnt from coincidence experiments a detailed theoretical analysis is given. The transition amplitudes, which contain all the information, are introduced (ch.2). In ch.3 the experimental set-up is shown. The results for the Li + -He system are shown in ch. 7 and are compared with predictions based on the Molecular-Orbitalmodel which however does not account for two-excitation mechanisms. With the transition amplitudes also the wave function of the excited atom has been completely determined. In ch.8 the shape of the electron cloud, induced by the collision, is derived from the amplitudes. The relation between the oscillatory motion of this cloud after the collision and the correlation between the two electrons of the excited atom is discussed. In ch. 6 it is shown that the broad structures in the non-coincident energy spectra of the Li + -He system are erroneously interpretated as a result of electron emission from the (Li-He) + -quasimolecule. A model is presented which explains, based on the results obtained from the coincidence measurements, these broad structures. In ch. 4 the Post-Collision Interaction process is treated. It is shown that for high-energy collisions, in contrast with general assumptions, PCI is important. In ch. 5 the importance of PCI-processes in photoionization of atoms, followed by Auger decay, are studied. From the formulas derived in ch. 4 simple analytical results are obtained. These are applied to recent experiments and good agreement is achieved. 140 refs.; 55 figs.; 9 tabs

  15. Atomic effects in tritium beta-decay. II. Muon to electron conversion in atoms

    International Nuclear Information System (INIS)

    Wampler, K.D.

    1989-01-01

    I. The final-state, atomic effects in the low energy end of the tritium beta decay spectrum are studied in detail. The author treats the instantaneous, two-electron repulsion in the final state, effectively to all orders in perturbation theory, by solving the eigenvalue problem with a discretized and truncated form of the Hamiltonian. He finds that these effects fail to explain the distortion in the spectrum observed by Simpson (Phys. Rev. Lett. 54, 649 (1985)). Simpson attributed this distortion to the admixture of a heavy mass antineutrino in the outgoing electron antineutrino state. In fact, the final-state Coulomb effects enhance the distortion. This calculation clears up some of the ambiguities of other theoretical analyses based on considerations of screening functions and perturbation theory. II. He presents a phenomenological study of separate lepton number violating muon to electron conversion in atoms. Previous work on this process has concentrated on elastic transitions where the nucleus characteristics have the gate on the substrate and the source-drain contacts on the top of the sample. The first use as an FET dielectric is reported of hydrogenated amorphous silicon-carbon (prepared from silane and propane mixture), photo-oxidised by UV lamp or laser. These FETs have similar characteristics to those with silicon nitride gate insulator but without the difficulties of preparing good insulator/semiconductor interfaces. Using the same materials attempts have been made to produce charge coupled devices

  16. A portable neutron coincidence counter

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, A.J.; Bowyer, S.M.; Craig, R.A.; Dudder, G.B.; Knopf, M.A.; Panisko, M.E.; Reeder, P.L.; Stromswold, D.C.; Sunberg, D.S.

    1996-11-01

    Pacific Northwest National Laboratory has designed and constructed a prototype portable neutron coincidence counter intended for use in a variety of applications, such as the verification and inspection of weapons components, safety measurements for novel and challenging situations, portable portal deployment to prevent the transportation of fissile materials, uranium enrichment measurements in hard-to-reach locations, waste assays for objects that cannot be measured by existing measurement systems, and decontamination and decommissioning. The counting system weighs less than 40 kg and is composed of parts each weighing no more than 5 kg. In addition, the counter`s design is sufficiently flexible to allow rapid, reliable assembly around containers of nearly arbitrary size and shape. The counter is able to discern the presence of 1 kg of weapons-grade plutonium within an ALR-8 (30-gal drum) in roughly 100 seconds and 10 g in roughly 1000 seconds. The counter`s electronics are also designed for maximum adaptability, allowing operation under a wide variety of circumstances, including exposure to gamma-ray fields of 1 R/h. This report provides a detailed review of the design and construction process. Finally, preliminary experimental measurements that confirm the performance capabilities of this counter are discussed. 6 refs., 18 figs., 3 tabs.

  17. SU-F-T-486: A Simple Approach to Performing Light Versus Radiation Field Coincidence Quality Assurance Using An Electronic Portal Imaging Device (EPID)

    Energy Technology Data Exchange (ETDEWEB)

    Herchko, S; Ding, G [Vanderbilt University, Nashville, TN (United States)

    2016-06-15

    Purpose: To develop an accurate, straightforward, and user-independent method for performing light versus radiation field coincidence quality assurance utilizing EPID images, a simple phantom made of readily-accessible materials, and a free software program. Methods: A simple phantom consisting of a blocking tray, graph paper, and high-density wire was constructed. The phantom was used to accurately set the size of a desired light field and imaged on the electronic portal imaging device (EPID). A macro written for use in ImageJ, a free image processing software, was then use to determine the radiation field size utilizing the high density wires on the phantom for a pixel to distance calibration. The macro also performs an analysis on the measured radiation field utilizing the tolerances recommended in the AAPM Task Group #142. To verify the accuracy of this method, radiochromic film was used to qualitatively demonstrate agreement between the film and EPID results, and an additional ImageJ macro was used to quantitatively compare the radiation field sizes measured both with the EPID and film images. Results: The results of this technique were benchmarked against film measurements, which have been the gold standard for testing light versus radiation field coincidence. The agreement between this method and film measurements were within 0.5 mm. Conclusion: Due to the operator dependency associated with tracing light fields and measuring radiation fields by hand when using film, this method allows for a more accurate comparison between the light and radiation fields with minimal operator dependency. Removing the need for radiographic or radiochromic film also eliminates a reoccurring cost and increases procedural efficiency.

  18. SU-F-T-486: A Simple Approach to Performing Light Versus Radiation Field Coincidence Quality Assurance Using An Electronic Portal Imaging Device (EPID)

    International Nuclear Information System (INIS)

    Herchko, S; Ding, G

    2016-01-01

    Purpose: To develop an accurate, straightforward, and user-independent method for performing light versus radiation field coincidence quality assurance utilizing EPID images, a simple phantom made of readily-accessible materials, and a free software program. Methods: A simple phantom consisting of a blocking tray, graph paper, and high-density wire was constructed. The phantom was used to accurately set the size of a desired light field and imaged on the electronic portal imaging device (EPID). A macro written for use in ImageJ, a free image processing software, was then use to determine the radiation field size utilizing the high density wires on the phantom for a pixel to distance calibration. The macro also performs an analysis on the measured radiation field utilizing the tolerances recommended in the AAPM Task Group #142. To verify the accuracy of this method, radiochromic film was used to qualitatively demonstrate agreement between the film and EPID results, and an additional ImageJ macro was used to quantitatively compare the radiation field sizes measured both with the EPID and film images. Results: The results of this technique were benchmarked against film measurements, which have been the gold standard for testing light versus radiation field coincidence. The agreement between this method and film measurements were within 0.5 mm. Conclusion: Due to the operator dependency associated with tracing light fields and measuring radiation fields by hand when using film, this method allows for a more accurate comparison between the light and radiation fields with minimal operator dependency. Removing the need for radiographic or radiochromic film also eliminates a reoccurring cost and increases procedural efficiency.

  19. Conversion electron Moessbauer and XPS study on the effect of polishing of a stainless steel sample

    International Nuclear Information System (INIS)

    Vertes, Cs.; Kuzmann, E.; Lakatos-Varsanyi, M.; Vertes, A.; Vass, G.; Romhanyi, K.

    1994-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) and XPS has been used for the surface analysis of an 'X10CrNiTi 18/9 (DIN 1.7440)'-type stainless steel in order to determine the supposed structural and/or chemical changes in the surface layer caused by polishing. Both, CEMS and XPS results can be associated with the appearance of Fe nitride in the outer layer of steel samples after polishing, while no sing of nitrogen was detected in the bulk material. (author) 9 refs.; 3 figs.; 1 tab

  20. A versatile fast coincidence system with memory

    International Nuclear Information System (INIS)

    Pouthas, J.

    1976-01-01

    A versatile fast coincidence system has been studied for experiments using several detectors. In this system, all the coincidence events are produced with an associated code, and thus, different kinds of events can be processed with the same experimental set-up. Also, the classification of the logical pulses gives the possibility of using a large number of ways (30 in this system). The setting of the system is very simple: there are only two time windows to adjust. (Auth.)

  1. Software correction of scatter coincidence in positron CT

    International Nuclear Information System (INIS)

    Endo, M.; Iinuma, T.A.

    1984-01-01

    This paper describes a software correction of scatter coincidence in positron CT which is based on an estimation of scatter projections from true projections by an integral transform. Kernels for the integral transform are projected distributions of scatter coincidences for a line source at different positions in a water phantom and are calculated by Klein-Nishina's formula. True projections of any composite object can be determined from measured projections by iterative applications of the integral transform. The correction method was tested in computer simulations and phantom experiments with Positologica. The results showed that effects of scatter coincidence are not negligible in the quantitation of images, but the correction reduces them significantly. (orig.)

  2. Experiments using coincidence methods

    International Nuclear Information System (INIS)

    Anwar Dhani.

    1978-01-01

    Experiments on γ spectroscopy using the simple coincidence techniques, including investigation of angular distribution of γ radiation from annihilation process in decay of Na 22 , γ - γ angular correlation technique in decay of Co 60 , decay scheme study of Bi 207 and life time measurement of nuclear Pb 207 excited state have been carried out. (author)

  3. Analysis method for beta-gamma coincidence spectra from radio-xenon isotopes

    International Nuclear Information System (INIS)

    Yang Wenjing; Yin Jingpeng; Huang Xiongliang; Cheng Zhiwei; Shen Maoquan; Zhang Yang

    2012-01-01

    Radio-xenon isotopes monitoring is one important method for the verification of CTBT, what includes the measurement methods of HPGe γ spectrometer and β-γ coincidence. The article describes the analytic flowchart and method of three-dimensional beta-gamma coincidence spectra from β-γ systems, and analyses in detail the principles and methods of the regions of interest of coincidence spectra and subtracting the interference, finally gives the formula of radioactivity of Xenon isotopes and minimum detectable concentrations. Studying on the principles of three-dimensional beta-gamma coincidence spectra, which can supply the foundation for designing the software of β-γ coincidence systems. (authors)

  4. Low-resource synchronous coincidence processor for positron emission tomography

    International Nuclear Information System (INIS)

    Sportelli, Giancarlo; Belcari, Nicola; Guerra, Pedro; Santos, Andres

    2011-01-01

    We developed a new FPGA-based method for coincidence detection in positron emission tomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.

  5. Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation

    Directory of Open Access Journals (Sweden)

    Daniel Guyomar

    2011-06-01

    Full Text Available This paper aims at providing an up-to-date review of nonlinear electronic interfaces for energy harvesting from mechanical vibrations using piezoelectric coupling. The basic principles and the direct application to energy harvesting of nonlinear treatment of the output voltage of the transducers for conversion enhancement will be recalled, and extensions of this approach presented. Latest advances in this field will be exposed, such as the use of intermediate energy tanks for decoupling or initial energy injection for conversion magnification. A comparative analysis of each of these techniques will be performed, highlighting the advantages and drawbacks of the methods, in terms of efficiency, performance under several excitation conditions, complexity of implementation and so on. Finally, a special focus of their implementation in the case of low voltage output transducers (as in the case of microsystems will be presented.

  6. Obtaining the conversion curve of CT numbers to electron density from the effective energy of the CT using the dummy SEFM

    International Nuclear Information System (INIS)

    Martin-Viera Cueto, J. A.; Garcia Pareja, S.; Benitez Villegas, E. M.; Moreno Saiz, E. M.; Bodineau Gil, C.; Caudepon Moreno, F.

    2011-01-01

    The objective of this work is to obtain the conversion curve of Hounsfield units (A) versus electron densities using a mannequin with different tissue equivalent materials. This provides for the effective energy beam CT and is used to characterize the linear coefficients of absorption of different materials that comprise the dummy.

  7. Study of electron transmission through thin metallic films by the electron moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Babikova, Yu.F.; Vakar, O.M.; Gruzin, O.M.; Petrikin, Yu.V.

    1983-01-01

    Results of the experimental study of the transmission of conversion electrons through aluminium, iron, tin and gold films are presented. Absorption of resonance electrons of the Moessbauer nuclide 57 Fe, formed during target irradiation with γ-quanta of 57 Co source in chromium matrix has been studied. It is asserted that absorption of conversion electrons in films of different elements is similar; at that, like in the case of β-particles, the law of absorption of resonance electrons, emitted from the flat layer, is exponential For conversion electrons of the Moessbauer nuclide 57 Fe the absorption coefficient is (0.025+-0.002) cm 2 /μg, which in the case of iron absorbing film corresponds to (20.0+-1.0)x10 4 cm -1

  8. Influence of electron-phonon interaction on soliton mediated spin-charge conversion effects in two-component polymer model

    International Nuclear Information System (INIS)

    Sergeenkov, S.; Moraes, F.; Furtado, C.; Araujo-Moreira, F.M.

    2010-01-01

    By mapping a Hubbard-like model describing a two-component polymer in the presence of strong enough electron-phonon interactions (κ) onto the system of two coupled nonlinear Schroedinger equations with U(2) symmetry group, some nontrivial correlations between topological solitons mediated charge Q and spin S degrees of freedom are obtained. Namely, in addition to a charge fractionalization and reentrant like behavior of both Q(κ) and S(κ), the model also predicts a decrease of soliton velocity with κ as well as spin-charge conversion effects which manifest themselves through an explicit S(Q,Ω) dependence (with Ω being a mixing angle between spin-up and spin-down electron amplitudes). A possibility to observe the predicted effects in low-dimensional systems with charge and spin soliton carriers is discussed.

  9. Organic electronics on fibers for energy conversion applications

    Science.gov (United States)

    O'Connor, Brendan T.

    Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.

  10. Studies on the decay of 160Tb to levels in 160Dy by Ge (Li)-Ge(Li)-coincidence system

    International Nuclear Information System (INIS)

    Hassan, A.M.; Abou-Zeid, M.A.; Mekamer, M.

    1981-01-01

    This work concerned with the study of the energy levels and the properties of gamma-ray transitions in 160 Dy resulting from the B-decay of the parent radioactive isotope 160 Tb (72 d.). These studies have been done by means of, single and gamma-gamma coincidence measurements. Log(ft). Internal Conversion Coefficient (ICC) values and the branching ratios have been calculated. The construction and testes of the Ge(Li)-Ge(Li) gamma-gamma coincidence spectrometer are presented. In addition to the previously reported transitions in three new transitions of energies 203, 420 and 1048 keV have been observed for the first time. The energy level at 1288.60 keV is confirmed, due to the presence of the 246 keV and 1005 keV gamma-ray transitions in the singles and gamma-gamma coincidence spectra. Furthermore the B-intensity feeding this level was calculated for the first time to be 0.08%. The log(ft) values of the energy level at 1288.6 keV was calculated for the first time to be 10.79. The energy level diagram of 160 Dy as summerised in the present work consists of 12 excited states, the levels at 581(6 + ) and 1391 keV reported by some authors were not encluded, since no transitions populated or depopulated these levels could be observed

  11. Standardization of Ga-68 by coincidence measurements, liquid scintillation counting and 4πγ counting.

    Science.gov (United States)

    Roteta, Miguel; Peyres, Virginia; Rodríguez Barquero, Leonor; García-Toraño, Eduardo; Arenillas, Pablo; Balpardo, Christian; Rodrígues, Darío; Llovera, Roberto

    2012-09-01

    The radionuclide (68)Ga is one of the few positron emitters that can be prepared in-house without the use of a cyclotron. It disintegrates to the ground state of (68)Zn partially by positron emission (89.1%) with a maximum energy of 1899.1 keV, and partially by electron capture (10.9%). This nuclide has been standardized in the frame of a cooperation project between the Radionuclide Metrology laboratories from CIEMAT (Spain) and CNEA (Argentina). Measurements involved several techniques: 4πβ-γ coincidences, integral gamma counting and Liquid Scintillation Counting using the triple to double coincidence ratio and the CIEMAT/NIST methods. Given the short half-life of the radionuclide assayed, a direct comparison between results from both laboratories was excluded and a comparison of experimental efficiencies of similar NaI detectors was used instead. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Electrochemical and conversion electron Moessbauer study of corrosion induced by acid rain

    International Nuclear Information System (INIS)

    Vertes, C.; Lakatos-Varsanyi, M.; Vertes, A.; Meisel, W.; Guetlich, P.

    1993-01-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5M Na 2 SO 4 +0.001M NaHSO 3 (pH 3.5, 6.5 and 8.5) which can be considered as a model of acid rain. The used conversion electron Moessbauer spectroscopy (CEMS) with the complementary electrochemical investigations proved that the sulfite ions induce pitting corrosion at pH 3.5 and 6.5, while the measurements showed much weaker pitting at pH 8.5. The compositions and thicknesses of the passive films formed during the electrochemical treatments are determined from the CEM spectra. Only γ-FeOOH was found on the surface of the samples at pH 6.5 and 8.5. Nevertheless, at pH 3.5 the sextet belonging to Fe 3 C appears in the spectra, and also FeSO 4 .H 2 O could be detected in low concentration. (orig.)

  13. An Inexpensive Coincidence Circuit for the Pasco Geiger Sensors

    CERN Document Server

    Fichera, F; Librizzi, F; Riggi, F

    2005-01-01

    A simple coincidence circuit was devised to carry out educational coincidence experiments involving the use of Geiger counters. The system was tested by commercially available Geiger sensors from PASCO, and is intended to be used in collaboration with high school students and teachers

  14. Differential coincidence circuit in the 10{sup -10} second region (1960); Circuit de coincidence differentiel dans le domaine de 10{sup -10} seconde (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Van Zurk, R [Commissariat a l' Energie Atomique, Lab. de Physique Nucleaire, Grenoble (France).Centre d' Etudes Nucleaires; [Grenoble-1 Univ., 38 (France); [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-07-01

    A coincidence circuit of low resolution time using the differential coincidence Bay principle is described. It uses three 6BN6 tubes ordered to chronotron structure. Results with Radiotechnique 56 AVP photomultipliers and for {sup 60}Co {gamma}-{gamma} coincidences are 4,6.10{sup -10} s (full width at half maximum) if the efficiency is {epsilon} = 40 per cent and also 7,2.10{sup -10} s if {epsilon} = 85 per cent. (author) [French] Un circuit de coincidence differentiel du type de Bay, utilise en selecteur en temps a canal mobile, a ete construit pour la mesure des periodes {gamma} et des periodes d'annihilation du positon dans differents materiaux. Il comporte trois tubes 6BN6 disposes en structure chronotron. On a utilise les nouveaux photomultiplicateurs 56 AVP avec scintillateur plastique. Avec les coincidences {gamma}-{gamma} du {sup 60}Co, on obtient 2T 4,6.10{sup -10} s avec une efficacite de 40 pour cent et 2T = 7,2.10{sup -10} s avec une efficacite de 85 pour cent. (auteur)

  15. Video Histories, Memories, and Coincidences

    DEFF Research Database (Denmark)

    Kacunko, Slavko

    2012-01-01

    Looping images allows us to notice things that we have never noticed before. Looping a small but exquisite selection of the video tapes of Marcel Odenbach, Dieter Kiessling and Matthias Neuenhofer may allow the discovering of Histories, Coincidences, and Infinitesimal Aesthetics inscribed...

  16. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  17. Statistical thermodynamics foundation for photovoltaic and photothermal conversion. II. Application to photovoltaic conversion

    Science.gov (United States)

    Badescu, Viorel; Landsberg, Peter T.

    1995-08-01

    The general theory developed in part I was applied to build up two models of photovoltaic conversion. To this end two different systems were analyzed. The first system consists of the whole absorber (converter), for which the balance equations for energy and entropy are written and then used to derive an upper bound for solar energy conversion. The second system covers a part of the absorber (converter), namely the valence and conduction electronic bands. The balance of energy is used in this case to derive, under additional assumptions, another upper limit for the conversion efficiency. This second system deals with the real location where the power is generated. Both models take into consideration the radiation polarization and reflection, and the effects of concentration. The second model yields a more accurate upper bound for the conversion efficiency. A generalized solar cell equation is derived. It is proved that other previous theories are particular cases of the present more general formalism.

  18. Differential coincidence circuit in the 10-10 second region (1960)

    International Nuclear Information System (INIS)

    Van Zurk, R.; Grenoble-1 Univ., 38; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    A coincidence circuit of low resolution time using the differential coincidence Bay principle is described. It uses three 6BN6 tubes ordered to chronotron structure. Results with Radiotechnique 56 AVP photomultipliers and for 60 Co γ-γ coincidences are 4,6.10 -10 s (full width at half maximum) if the efficiency is ε = 40 per cent and also 7,2.10 -10 s if ε = 85 per cent. (author) [fr

  19. Automatic classification of gammas-gamma coincidence matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J. M.; Gonzalez, J. A.

    1978-01-01

    The information obtained during a coincidence experiment, recorded on magnetic tape by a MULTI-8 minicomputer, is transferred to a new tape in 36 bit words, using the program LEC0M8. The classification in two dimensional matrix form is carried out off-line, on a magnetic disk file, by the program CLAFI. On finishing classification one obtains a copy of the coincidence matrix on the second magnetic tape. Both programs are written to be processed in that order with the UNIVAC 1106 computer of J.E.N. (Author) 4 refs

  20. Automatic classification of gamma-gamma coincidence matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.; Gonzalez Gonzalez, J.A.

    1978-01-01

    The information obtained during a coincidence experiment, recorded on magnetic tape by a Multi-8 minicomputer, is transferred to a new tape in 36 bit words, using the program Lecom8. The classification in two dimensional matrix form is carried out off-line, on a magnetic disk file, by the program Clafi. On finishing classification one obtains a copy of the coincidence matrix on the second magnetic tape. Both programs are written to be processed in that order with the Univac 1106 computer of J.E.N. (author)

  1. Linear mode conversion in a toroidal plasma

    International Nuclear Information System (INIS)

    Hellsten, T.

    1980-05-01

    Linear mode conversion at the perpendicular ion cyclotron resonance has been treated for an axially symmetric toroidal plasma. The mode conversion appears between a fast electromagnetic wave and a slow-quasi electrostatic wave, due to finite electron inertia. The problem reduces to the Orr-Sommerfeld equation where the coefficients determining the reflectron, transmission and conversion are functions of the arc length along a poloidal intersection of the resonance surface. These coefficients can be determined from eigenfunctions of an ordinary differential equation. (author)

  2. Permutational symmetries for coincidence rates in multimode multiphotonic interferometry

    Science.gov (United States)

    Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert

    2018-06-01

    We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.

  3. The influence of radiation and light on Ps formation in PMMA and PE studied by coincidence Doppler-broadening spectroscopy

    CERN Document Server

    Suzuki, T; Shantarovich, V; Kondo, K; Hamada, E; Matso, M; Ma Li; Ito, Y

    2003-01-01

    Using two Ge detectors, the high-resolution Doppler-broadening energy spectra of positron annihilation gamma rays has been obtained by measuring the coincidences of the two photons. Light bleaching and oxygen effects on positron annihilation were investigated in this way. A large enhancement of the high-momentum part of the coincidence Doppler spectra was observed in poly(methylmethacrylate) (PMMA), which contains oxygen atoms in the polymer structure. Bleaching experiments in PMMA and in copolymer ethylene-methylmethacrylate EMMA (LDPE+MMA 3 mol%) have demonstrated that the enhancement effect may be due to the trapping of positrons by the polar -C sup + 6-O sup - groups, followed by positron annihilation with the electrons belonging to oxygen.

  4. Identification of peaks in multidimensional coincidence {gamma}-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Morhac, Miroslav E-mail: fyzimiro@savba.sk; Kliman, Jan; Matousek, Vladislav; Veselsky, Martin; Turzo, Ivan

    2000-03-21

    In the paper a new algorithm to find peaks in two, three and multidimensional spectra, measured in large multidetector {gamma}-ray arrays, is derived. Given the dimension m, the algorithm is selective to m-fold coincidence peaks. It is insensitive to intersections of lower-fold coincidences, hereinafter called ridges.

  5. Identification of peaks in multidimensional coincidence γ-ray spectra

    International Nuclear Information System (INIS)

    Morhac, Miroslav; Kliman, Jan; Matousek, Vladislav; Veselsky, Martin; Turzo, Ivan

    2000-01-01

    In the paper a new algorithm to find peaks in two, three and multidimensional spectra, measured in large multidetector γ-ray arrays, is derived. Given the dimension m, the algorithm is selective to m-fold coincidence peaks. It is insensitive to intersections of lower-fold coincidences, hereinafter called ridges

  6. 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection

    Science.gov (United States)

    Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.

    2018-02-01

    Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).

  7. Gamma--gamma directional correlations and coincidence studies in /sup 154/Gd

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, J B; Gupta, S L; Hamilton, J H; Ramayya, A V [Vanderbilt Univ., Nashville, Tenn. (USA). Dept. of Physics; Delhi Univ. (India). Ramjas Coll.)

    1977-06-01

    The intensities, placements and E2/M1 mixing ratios of transitions in the decay of /sup 154/Eu have been carefully studied to provide accurate data for microscopic calculations. Coincidence relationships in thhe decay of /sup 154/Eu have been studied extensively with a multiparameter ..gamma..-..gamma.. coincidence system with two large volume Ge(Li) detectors. Spectra in coincidence with twenty energy gates were analyzed. Twenty-nine new coincidence relationships were established and confirmed most, but not all, of several levels previously assigned by energy fits only. From an analysis of coincidence spectra and singles spectra with a 18% efficiency Ge(Li) detector new information on the gamma-ray intensities were obtained. Precise values of the E2/M1 mixing ratios of transitions from the gamma- and beta-vibrational bands to the g.s. band have been determined from ..gamma..-..gamma.. directional correlation measurements with a NaI(Tl)-Ge(Li) detector coincidence system. Mixing ratios were obtained for a number of other transitions including those from KPI = 0/sup -/ and 2+ bands from direct and skipped cascade correlations.

  8. Some target assay uncertainties for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Ensslin, N.; Langner, D.G.; Menlove, H.O.; Miller, M.C.; Russo, P.A.

    1990-01-01

    This paper provides some target assay uncertainties for passive neutron coincidence counting of plutonium metal, oxide, mixed oxide, and scrap and waste. The target values are based in part on past user experience and in part on the estimated results from new coincidence counting techniques that are under development. The paper summarizes assay error sources and the new coincidence techniques, and recommends the technique that is likely to yield the lowest assay uncertainty for a given material type. These target assay uncertainties are intended to be useful for NDA instrument selection and assay variance propagation studies for both new and existing facilities. 14 refs., 3 tabs

  9. Recent progress with digital coincidence counting

    International Nuclear Information System (INIS)

    Butcher, K.S.A.; Watt, G.C.; Alexiev, D.

    1999-01-01

    Digital Coincidence Counting (DCC) is a new technique, based on the older method of analogue coincidence counting. It has been developed by ANSTO as a faster more reliable means of determining the activity of ionising radiation samples. The technique employs a dual channel analogue to digital converter acquisition system for collecting pulse information from a 4Π beta detector and a NaI(Tl) gamma detector. The digitised pulse information is stored on a high speed hard disk and timing information for both channels is also stored. The data may subsequently be recalled and analysed using software based algorithms. The system is operational and results are now being routinely collected and analysed. Some of the early work is presented for Co-60, Na-22 and Sm-153

  10. Introduction to Neutron Coincidence Counter Design Based on Boron-10

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-01-22

    The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

  11. Coincidence set-up with a high duty-cycle, high energy electron accelerator

    International Nuclear Information System (INIS)

    Leconte, P.

    1981-01-01

    Important studies are now undertaken to develop continuous wave electron accelerators with energy ranging from 1 to 4 Gev. So very important effort must be now put on the development of the experimental set-up matching the performances expected from the electron beam. Major steps in the understanding of the nuclear systems will come from more and more exclusive experiments where well defined mechanisms will be selected

  12. A training and educational tool for neutron coincidence measurements

    International Nuclear Information System (INIS)

    Huszti, J.; Bagi, J.; Langner, D.

    2009-01-01

    Neutron coincidence counting techniques are widely used for nuclear safeguards inspection. They are based on the detection of time correlated neutrons created from spontaneous or induced fission of plutonium and some other actinides. IAEA inspectors are trained to know and to use this technique, but it is not easy to illustrate and explain the basics of the neutron coincidence counting. The traditional shift registers or multiplicity counters give only multiplicity distributions and the singles, doubles and triples count rates. Using the list mode method for the recording and evaluation of neutron coincidence data makes it easier to teach this technique. List mode acquisition is a relatively new way to collect data in neutron coincidence counting. It is based on the recording of the follow-up times of neutron pulses originating from a neutron detector into a file. The recorded pulse train can be evaluated with special software after the measurement. Hardware and software for list mode neutron coincidence acquisition have been developed in the Institute of Isotopes and is called a Pulse Train Reader. A system called Virtual Source for replaying pulse trains registered with the list mode device has also been developed. The list mode device and the pulse train 're-player' together build a good educational tool for teaching the basics of neutron coincidence counting. Some features of the follow-up time, multiplicity and Rossi-alpha distributions can be well demonstrated by replaying artificially generated or pre-recorded pulse trains. The choice of real sources is stored on DVD. There is no need to transport and maintain real sources for the training. Virtual sources also give the possibility of investigating rare sources that trainees would not have access to otherwise. (authors)

  13. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    KAUST Repository

    Schwell, Martin; Bé nilan, Yves; Fray, Nicolas; Gazeau, Marie Claire; Es-sebbar, Et-touhami; Garcí a, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney Sydney

    2012-01-01

    A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3, NH 2, NH 3, CO, HCCO and NH 2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed. © 2011 Elsevier B.V. All rights reserved.

  14. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    International Nuclear Information System (INIS)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro; Nakai, Katsuhiko

    1998-01-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  15. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Nakai, Katsuhiko

    1998-08-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  16. Energy distribution of the 'shake off' electrons at the 152Eu decay

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.

    2008-01-01

    On the special vacuum installation of coincidences of g-quanta and beta-particles with low energy electrons, including e 0 -electrons of the secondary electron emission (gamma beta e 0 -coincidences) for the first time the energy spectrum of 'shake off' electrons at 152 Eu decay is investigated in the range of 200 - 1700 eV. Registration of electrons of 'shake off' is carried out on e 0 -electrons of the secondary electron emission, created by them. By realization of threshold measurements the integral spectrum was obtained and on this basis the differential spectrum is computed. It is established, that the continuum of 'shake off' electrons is low energy and practically finishes at 400 eV. In the region of 300 eV the maximum energetic distribution is observed

  17. Measurement of plutonium oxalate in thermal neutron coincidence counters

    International Nuclear Information System (INIS)

    Marshall, R.S.; Erkkila, B.H.

    1979-01-01

    A coincidence neutron counting method has been developed for assaying batches of plutonium oxalate. Using counting data from two concentric rings of 3 He detectors, corrections are made for the effects that water has on the coincidence neutron count rate. Batches of plutonium oxalate varying from 750 to 1000 g of plutonium and from 34 to 54% water are assayed with an average accuracy of +-3%

  18. Electron beam water calorimetry measurements to obtain beam quality conversion factors.

    Science.gov (United States)

    Muir, Bryan R; Cojocaru, Claudiu D; McEwen, Malcolm R; Ross, Carl K

    2017-10-01

    To provide results of water calorimetry and ion chamber measurements in high-energy electron beams carried out at the National Research Council Canada (NRC). There are three main aspects to this work: (a) investigation of the behavior of ionization chambers in electron beams of different energies with focus on long-term stability, (b) water calorimetry measurements to determine absorbed dose to water in high-energy beams for direct calibration of ion chambers, and (c) using measurements of chamber response relative to reference ion chambers, determination of beam quality conversion factors, k Q , for several ion chamber types. Measurements are made in electron beams with energies between 8 MeV and 22 MeV from the NRC Elekta Precise clinical linear accelerator. Ion chamber measurements are made as a function of depth for cylindrical and plane-parallel ion chambers over a period of five years to investigate the stability of ion chamber response and for indirect calibration. Water calorimetry measurements are made in 18 MeV and 22 MeV beams. An insulated enclosure with fine temperature control is used to maintain a constant temperature (drifts less than 0.1 mK/min) of the calorimeter phantom at 4°C to minimize effects from convection. Two vessels of different designs are used with calibrated thermistor probes to measure radiation induced temperature rise. The vessels are filled with high-purity water and saturated with H 2 or N 2 gas to minimize the effect of radiochemical reactions on the measured temperature rise. A set of secondary standard ion chambers are calibrated directly against the calorimeter. Finally, several other ion chambers are calibrated in the NRC 60 Co reference field and then cross-calibrated against the secondary standard chambers in electron beams to realize k Q factors. The long-term stability of the cylindrical ion chambers in electron beams is better (always <0.15%) than plane-parallel chambers (0.2% to 0.4%). Calorimetry measurements

  19. Statistical investigation of the efficiency of EMIC waves in precipitating relativistic electrons

    Science.gov (United States)

    Hudson, M. K.; Qin, M.; Millan, R. M.; Woodger, L. A.; Shekhar, S.

    2017-12-01

    Electromagnetic ion cyclotron (EMIC) waves have been proposed as an effective way to scatter relativistic electrons into the atmospheric loss cone. In our study, however, among the total 399 coincidence events when NOAA satellites goes through the region of EMIC wave activity, only 103 are associated with Relativistic Electron Precipitation (REP) events, which indicates that the link between EMIC waves and relativistic electrons is much weaker than expected. Most of the studies so far have been focused on the He+ band EMIC waves, and H+ band EMIC waves have been regarded as less important to the precipitation of electrons. In our study, we demonstrate that among the 103 EMIC wave events detected by Van Allen Probes that are in close conjunction with relativistic electron precipitation observed by POES satellites, the occurrence rate of H+ and He+ band EMIC waves coincident with REP is comparable, suggesting closer examination of the range of ΔL and ΔMLT used to determine coincidence between Van Allen Probes EMIC waves and POES precipitation observation.

  20. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. I. Time-resolved photoelectron-photoion coincidence spectroscopy

    Science.gov (United States)

    Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas; Glover, William J.; Mori, Toshifumi; Schultz, Thomas; Schuurman, Michael S.; Martínez, Todd J.; Stolow, Albert

    2018-04-01

    The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1Bu (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans' correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us to report the direct observation of the famously elusive S1(21Ag) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 11Bu and 21Ag states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S2(11Bu) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1Bu surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. In Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.

  1. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  2. The decay of 93Rb

    International Nuclear Information System (INIS)

    Mitamura, Tohru; Hiromura, Kazuyuki; Aoki, Kazuhiko; Sekioka, Tsuguhisa; Matsui, Hiroshi; Okano, Kotoyuki; Kawase, Yoichi.

    1987-01-01

    The isotope mass separator installed at the Research Reactor Institute of Kyoto University (KUR-ISOL) is used to separate 93 Rb (half-life 5.85 sec.) resulting from fission of 235 U and the levels in its daughter nuclide, 93 Sr, resulting from its decay is examined by means of nuclear spectrometric measurements including Eγ, Iγ, γ-γ coincidence and conversion electron observation. Analysis of gamma-ray spectra obtained identifies a total of 241 gamma-ray peaks including those found only in coincidence spectra. The γ-γ measurements are analyzed in relation to 21 gamma-ray gates selected. For each coincident gamma-ray peak in coincidence of the gate gamma-rays, the ratio of its area in the γ-γ coincidence spectrum to that in the singles spectrum is determined. By examining the ratio, it is possible in most cases to determine whether coincident gamma-rays are directly related with those selected as the gates or indirectly related with them. A decay diagram is constructed based on the relations in energy, intensity and coincidence among these gamma-rays. Results obtained demonstrate a high reliability of the method employed in this study. Conversion electron spectrometry is carried out using an Si(Li) and a Ge(Li) detector in combination with a plastic scintillator for beta-ray detection. Analysis of the results has not yet been completed. Some findings are briefly outlined. (Nogami, K.)

  3. Fast coincidence counting with active inspection systems

    Science.gov (United States)

    Mullens, J. A.; Neal, J. S.; Hausladen, P. A.; Pozzi, S. A.; Mihalczo, J. T.

    2005-12-01

    This paper describes 2nd and 3rd order time coincidence distributions measurements with a GHz processor that synchronously samples 5 or 10 channels of data from radiation detectors near fissile material. On-line, time coincidence distributions are measured between detectors or between detectors and an external stimulating source. Detector-to-detector correlations are useful for passive measurements also. The processor also measures the number of times n pulses occur in a selectable time window and compares this multiplet distribution to a Poisson distribution as a method of determining the occurrence of fission. The detectors respond to radiation emitted in the fission process induced internally by inherent sources or by external sources such as LINACS, DT generators either pulsed or steady state with alpha detectors, etc. Data can be acquired from prompt emission during the source pulse, prompt emissions immediately after the source pulse, or delayed emissions between source pulses. These types of time coincidence measurements (occurring on the time scale of the fission chain multiplication processes for nuclear weapons grade U and Pu) are useful for determining the presence of these fissile materials and quantifying the amount, and are useful for counter terrorism and nuclear material control and accountability. This paper presents the results for a variety of measurements.

  4. Fast coincidence counting with active inspection systems

    International Nuclear Information System (INIS)

    Mullens, J.A.; Neal, J.S.; Hausladen, P.A.; Pozzi, S.A.; Mihalczo, J.T.

    2005-01-01

    This paper describes 2nd and 3rd order time coincidence distributions measurements with a GHz processor that synchronously samples 5 or 10 channels of data from radiation detectors near fissile material. On-line, time coincidence distributions are measured between detectors or between detectors and an external stimulating source. Detector-to-detector correlations are useful for passive measurements also. The processor also measures the number of times n pulses occur in a selectable time window and compares this multiplet distribution to a Poisson distribution as a method of determining the occurrence of fission. The detectors respond to radiation emitted in the fission process induced internally by inherent sources or by external sources such as LINACS, DT generators either pulsed or steady state with alpha detectors, etc. Data can be acquired from prompt emission during the source pulse, prompt emissions immediately after the source pulse, or delayed emissions between source pulses. These types of time coincidence measurements (occurring on the time scale of the fission chain multiplication processes for nuclear weapons grade U and Pu) are useful for determining the presence of these fissile materials and quantifying the amount, and are useful for counter terrorism and nuclear material control and accountability. This paper presents the results for a variety of measurements

  5. Dissociative photoionization of the NO molecule studied by photoelectron-photon coincidence technique

    International Nuclear Information System (INIS)

    Kivimaeki, A.; Alvarez-Ruiz, J.; Coreno, M.; Simone, M. de; Moise, A.; Partanen, L.; Richter, R.; Stankiewicz, M.

    2010-01-01

    Low-energy photoelectron-vacuum ultraviolet (VUV) photon coincidences have been measured using synchrotron radiation excitation in the inner-valence region of the nitric oxide molecule. The capabilities of the coincidence set-up were demonstrated by detecting the 2s -1 → 2p -1 radiative transitions in coincidence with the 2s photoelectron emission in Ne. In NO, the observed coincidence events are attributed to dissociative photoionization with excitation, whereby photoelectron emission is followed by fragmentation of excited NO + ions into O + + N* or N + + O* and VUV emission from an excited neutral fragment. The highest coincidence rate occurs with the opening of ionization channels which are due to correlation satellites of the 3σ photoionization. The decay time of VUV photon emission was also measured, implying that specific excited states of N atoms contribute significantly to observed VUV emission.

  6. On the conversion of dose to bone to dose to water in radiotherapy treatment planning systems

    Directory of Open Access Journals (Sweden)

    Nick Reynaert

    2018-01-01

    Full Text Available Background and purpose: Conversion factors between dose to medium (Dm,m and dose to water (Dw,w provided by treatment planning systems that model the patient as water with variable electron density are currently based on stopping power ratios. In the current paper it will be illustrated that this conversion method is not correct. Materials and methods: Monte Carlo calculations were performed in a phantom consisting of a 2 cm bone layer surrounded by water. Dw,w was obtained by modelling the bone layer as water with the electron density of bone. Conversion factors between Dw,w and Dm,m were obtained and compared to stopping power ratios and ratios of mass-energy absorption coefficients in regions of electronic equilibrium and interfaces. Calculations were performed for 6 MV and 20 MV photon beams. Results: In the region of electronic equilibrium the stopping power ratio of water to bone (1.11 largely overestimates the conversion obtained using the Monte Carlo calculations (1.06. In that region the MC dose conversion corresponds to the ratio of mass energy absorption coefficients. Near the water to bone interface, the MC ratio cannot be determined from stopping powers or mass energy absorption coefficients. Conclusion: Stopping power ratios cannot be used for conversion from Dm,m to Dw,w provided by treatment planning systems that model the patient as water with variable electron density, either in regions of electronic equilibrium or near interfaces. In regions of electronic equilibrium mass energy absorption coefficient ratios should be used. Conversions at interfaces require detailed MC calculations. Keywords: Dose to water, Monte Carlo, Dosimetry, TPS comparison

  7. Coincidence imaging of polyatomic molecules via laser-induced Coulomb explosion

    International Nuclear Information System (INIS)

    Gagnon, J; Corkum, P B; Bhardwaj, V R; Lee, Kevin F; Rayner, D M

    2008-01-01

    We extend laser-induced Coulomb explosion imaging to retrieve the structure of the five-atom dichloromethane (CH 2 Cl 2 ) molecule by developing coincidence imaging and geometry optimization techniques. By detecting all five atoms in coincidence, we show that, from the measured velocity vectors, the geometry of the molecules can be reconstructed.

  8. Standard-Cell, Open-Architecture Power Conversion Systems

    National Research Council Canada - National Science Library

    Boroyevich, D; Wang, F; Lee, F. C; Odendaal, W. G; Edwards, S

    2005-01-01

    ...). This project was purposefully aimed to develop a standardized hierarchical design and analysis methodology for modular power electronics conversion systems using as basis the ISO/OSI seven-layer reference model...

  9. Sub-nanosecond lifetime measurements using the Double Orange Spectrometer at the cologne 10 MV Tandem accelerator

    International Nuclear Information System (INIS)

    Regis, J.-M.; Materna, Th.; Christen, S.; Bernards, C.; Braun, N.; Breuer, G.; Fransen, Ch.; Heinze, S.; Jolie, J.; Meersschaut, T.; Pascovici, G.; Rudigier, M.; Steinert, L.; Thiel, S.; Warr, N.; Zell, K.O.

    2009-01-01

    Conversion electron spectroscopy constitutes an important tool in nuclear structure physics. A high efficiency iron-free Orange type electron spectrometer with an energy resolution of 1-2% has been installed at a beam line of the Cologne 10 MV FN Tandem Van-de-Graaff accelerator for in-beam studies of conversion electrons. In combination with a γ-ray detector array, high efficiency e - -γ-coincidences can be performed. The newly developed very fast LaBr 3 (Ce) scintillator detector with an energy resolution of about 4% makes it also possible to use e - -γ-coincidences for lifetime measurements of nuclear excited states. A second iron-free Orange spectrometer can be connected to perform e - -e - -coincidences. Because of the higher efficiency and the better energy resolution, the use of the Double Orange Spectrometer for lifetime measurements is more powerful. Lifetimes down to 100 ps and even less can be determined with an accuracy of about 10 ps. The working principle of the Orange spectrometer and the setup of the Double Orange Spectrometer are described. The performances are illustrated by examples of in-beam experiments with a main focus on high precision lifetime measurements.

  10. Measuring international relations in social media conversations

    OpenAIRE

    Barnett, GA; Xu, WW; Chu, J; Jiang, K; Huh, C; Park, JY; Park, HW

    2017-01-01

    © 2016 Elsevier Inc. This paper examines international relations as perceived by the public in their social media conversations. It examines over 1.8 billion Facebook postings in English and 51 million Chinese posts on Weibo, to reveal the relations among nations as expressed in social media conversations. It argues that social media represent a transnational electronic public sphere, in which public discussions reveal characteristics of international relations as perceived by a foreign publi...

  11. Determination of true coincidence correction factors using Monte-Carlo simulation techniques

    Directory of Open Access Journals (Sweden)

    Chionis Dionysios A.

    2014-01-01

    Full Text Available Aim of this work is the numerical calculation of the true coincidence correction factors by means of Monte-Carlo simulation techniques. For this purpose, the Monte Carlo computer code PENELOPE was used and the main program PENMAIN was properly modified in order to include the effect of the true coincidence phenomenon. The modified main program that takes into consideration the true coincidence phenomenon was used for the full energy peak efficiency determination of an XtRa Ge detector with relative efficiency 104% and the results obtained for the 1173 keV and 1332 keV photons of 60Co were found consistent with respective experimental ones. The true coincidence correction factors were calculated as the ratio of the full energy peak efficiencies was determined from the original main program PENMAIN and the modified main program PENMAIN. The developed technique was applied for 57Co, 88Y, and 134Cs and for two source-to-detector geometries. The results obtained were compared with true coincidence correction factors calculated from the "TrueCoinc" program and the relative bias was found to be less than 2%, 4%, and 8% for 57Co, 88Y, and 134Cs, respectively.

  12. Study on the eγ coincidences in the 169Lu decay

    International Nuclear Information System (INIS)

    Batsev, S.; Bonch-Osmolovskaya, N.A.; Budzyak, A.; Kuznetsov, V.V.; Usmanov, R.R.

    1979-01-01

    The 169 Lu→ 169 Yb decay scheme was analyzed on the basis of measurements of eγ coincidence. The 169 Lu sources were obtained by irradiating a tantalum target by 660 MeV protons. The eγ-coincidence spectra were measured by an ironless β-spectrometer with a toroidal magnetic field and a detector. The γ-ray and eγ-coincidence spectra were processed by a computer. The results of processing the 169 Lu coincidence spectra are tabulated. No excited states of 169 Yb not confirmed by γγ and eγ coincidences (except for the head level of the 3/2 + (651) 720 keV band) remain in the 169 Lu decay scheme proposed. Weak transitions with the total intensity of no more than 3.3% per a 169 Lu decay have remained unarranged, they should discharge weakly excited levels of 169 Yb. Probabilities of the 169 Yb level population per a 169 Lu decay and the corresponding values of probabilities of transitions in them are presented. As a whole, the 169 Lu decay scheme involves 60 levels, 31 states of them are new

  13. Electric giant resonances in sup 4 sup 0 Ca and sup 4 sup 8 Ca probed with electron and proton scattering coincidence experiments

    CERN Document Server

    Strauch, S

    1999-01-01

    Excitation and particle decay of electric giant resonances in sup 4 sup 0 Ca and sup 4 sup 8 Ca are studied with electron and proton beams. Recent results of a sup 4 sup 8 Ca(e,e'n) measurement performed at the S-DALINAC in Darmstadt with kinematics that selectively populate electric monopole, dipole and quadrupole excitations are presented. The extracted B(E1) strength distribution is in good agreement with photo nuclear data and the predictions of microscopic calculations. The summed B(E2+E0) strength distribution, however disagrees with the result of these calculations. The neutron emission of the giant dipole resonance in sup 4 sup 8 Ca shows a large fraction of direct decay to sup 4 sup 7 Ca hole states. In addition, isoscalar giant monopole resonance strength in sup 4 sup 0 Ca was extracted from (e,e'alpha sub 0) and (e,e'alpha sub 1) angular correlations. A study of the quadrupole strength in the alpha sub 0 decay channel of sup 4 sup 0 Ca with a (p,p'alpha) coincidence measurement reiterates the unsol...

  14. Data acquisition and processing system for coincidence measurements

    International Nuclear Information System (INIS)

    Li Xu

    1990-07-01

    An instrument has been designed for the absolute measurement of radioactivity with 4πβ(PC)-γ coincidence. The instrument can be used as a standard device for the radioactivity measurement in metrology laboratories. Also it can be used in the nuclear science and engineering research for absolute measurement of nuclear decay rate. The control of the system dead time and coincidence resolving time is digitized. The precision can reach ±2 ns. For data acquisition and communication the normalizing GPIB interface system technique is adopted. The measuring error caused by this instrument itself can be better than ±0.02%

  15. Testing the Cosmic Coincidence Problem and the Nature of Dark Energy

    International Nuclear Information System (INIS)

    Dalal, Neal; Abazajian, Kevork; Jenkins, Elizabeth; Manohar, Aneesh V.

    2001-01-01

    Dark energy models which alter the relative scaling behavior of dark energy and matter could provide a natural solution to the cosmic coincidence problem -- why the densities of dark energy and dark matter are comparable today. A generalized class of dark energy models is introduced which allows noncanonical scaling of the ratio of dark matter and dark energy with the Robertson-Walker scale factor a(t) . We show that determining whether there is a coincidence problem, and the extent of cosmic coincidence, can be addressed by several forthcoming experiments

  16. Coincident photoelectron spectroscopy on superconductors; Koinzidente Photoelektronenspektroskopie an Supraleitern

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Stefan

    2011-07-01

    Aim of the performed experiments of this thesis was to attempt to detect Cooper pairs as carriers of the superconducting current directly by means of the photoelectric effect. The method of the coincident photoelectron spectroscopy aims thereby at the detection of two coherently emitted electrons by the interaction with a photon. Because electrostatic analyzers typically cover only a very small spatial angle, which goes along with very low coincidence rates, in connection with this thesis a time-of-flight projection system has been developed, which maps nearly the whole spatial angle on a position-resolving detector. The pulsed light source in form of special synchrotron radiation necessary for the measurement has been adjusted so weak, that only single photons could arrive at the sample. Spectroscoped were beside test measurements on silver layers both a lead monocrystal as representative of the classical BCS superconductors and monocrystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} from the family of the high-temperature superconductors. With excitation energies up to 40 eV could be shown that sufficiently smooth and clean surfaces in the superconducting phase exhibit within the resolving power of about 0.5 eV no recognizable differences in comparison to the normally conducting phase. Beside these studies furthermore the simple photoemission at the different samples and especially in the case of the lead crystal is treated, because here no comparable results are known. Thereby the whole momentum space is discussed and the Fermi surface established as three-dimensional model, by means of which the measurement results are discussed. in the theoretical descriptions different models for the Cooper-pair production are presented, whereby to the momentum exchange with the crystal a special role is attributed, because this can only occur in direct excitations via discrete lattice vectors.

  17. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1987-10-01

    Multiple electron capture is reported for Ca 17+ in Ar. Close collisions are defined by the observation of a coincident Ca K or Ar K x-ray. A large number of electrons is transferred to the projectile in a single close collision when the Ca ion projectile is of the order of the Ar L-shell electron velocity. The cross section for electron capture is reported

  18. Theoretical expression of the internal conversion coefficient of a M1 transition between two atomic states

    International Nuclear Information System (INIS)

    Attallah, F.; Chemin, J.F.; Scheurer, J.N.; Karpeshin, F.; Harston, M.

    1997-01-01

    We have established a general relation for the expression of the internal conversion of an M 1 transition a 1s electronic state to an empty ns electronic bound state. Under the hypothesis that the density of the electron level ρ n satisfies the condition ρ n Γ >> 1 (where Γ is the total width of the excited atomic state) a calculation in the first order gives a relation for the internal conversion coefficient.This relation shows that the internal conversion coefficient takes a resonant character when the nuclear energy transition is smaller than the binding energy of the 1s electron. An application of this relation to an M 1 transition in the case of the ion 125 T e with a charge state Q = 45 and an 1s electron binding energy E B 45 = 35.581 KeV gives the value for the internal conversion coefficient R = 5.7

  19. Digital data recording system for the 4 πβ-γ coincidence apparatus

    International Nuclear Information System (INIS)

    Shaha, V.V.; Srivastava, P.K.

    1975-01-01

    The data recording system for the 4πβ-γ coincidence apparatus consists of three scalers, a timer, a day-clock, a print control unit and a Hewlett-Packard printer. The print control unit serves as an interface unit as well as generates necessary electronic commands for starting, scanning, recycling and actuating the printer. It also generates the run number and identification number. It has made the data recording and recycling completely automatic. The report describes the data recording system which has been in continuous use since March 1973. Brief description of the scalers, the timer, the day-clock and the printer is given. The print control unit is described and the working of the data handling, scanning and cycle counting sections is explained. (author)

  20. Laser-accelerated proton conversion efficiency thickness scaling

    International Nuclear Information System (INIS)

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-01-01

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10 19 W/cm 2 Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 μm, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 μm, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH 3 on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  1. Electron-positron pair production in Coulomb collisions at ultrarelativistic energies

    International Nuclear Information System (INIS)

    Vane, C.R.; Datz, S.; Dittner, P.F.; Krause, H.F.; Bottcher, C.; Strayer, M.; Schuch, R.; Gao, H.; Hutton, R.

    1993-01-01

    We have measured angular and momentum distributions for electrons and positrons created as pairs in peripheral collisions of 6.4 TeV bare sulfur ions with fixed targets of Al, Pd, and Au. Singly- and doubly-differential cross sections have been determined for 1--17 MeV/c electrons and positrons detected independently and in coincidence as pairs. Integrated yields for pair production are found to vary as the square of the target nuclear charge. Relative angular and momentum differential cross sections are effectively target independent. Probability distributions for the pair total momentum, the positron fraction of the pair momentum, and the pair traverse momentum have been derived from the coincident electron-positron data

  2. It takes two-coincidence coding within the dual olfactory pathway of the honeybee.

    Science.gov (United States)

    Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).

  3. SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K; Kadoya, N; Chiba, M; Matsushita, H; Jingu, K [Tohoku University Graduate School of Medicine, Sendai, Miyagi (Japan); Sato, K; Nagasaka, T; Yamanaka, K [Tohoku University Hospital, Sendai, Miyagi (Japan); Dobashi, S; Takeda, K [Tohoku University, Sendai, Miyagi (Japan)

    2016-06-15

    Purpose: The aim of this study is to develop radiation treatment planning using magnetic susceptibility obtained from quantitative susceptibility mapping (QSM) via MR imaging. This study demonstrates the feasibility of a method for generating a substitute for a CT image from an MRI. Methods: The head of a healthy volunteer was scanned using a CT scanner and a 3.0 T MRI scanner. The CT imaging was performed with a slice thickness of 2.5 mm at 80 and 120 kV (dual-energy scan). These CT images were converted to relative electron density (rED) using the CT-rED conversion table generated by a previous dual-energy CT scan. The CT-rED conversion table was generated using the conversion of the energy-subtracted CT number to rED via a single linear relationship. One T2 star-weighted 3D gradient echo-based sequence with four different echo times images was acquired using the MRI scanner. These T2 star-weighted images were used to estimate the phase data. To estimate the local field map, a Laplacian unwrapping of the phase and background field removal algorithm were implemented to process phase data. To generate a magnetic susceptibility map from the local field map, we used morphology enabled dipole inversion method. The rED map was resampled to the same resolution as magnetic susceptibility, and the magnetic susceptibility-rED conversion table was obtained via voxel-by-voxel mapping between the magnetic susceptibility and rED maps. Results: A correlation between magnetic susceptibility and rED is not observed through our method. Conclusion: Our results show that the correlation between magnetic susceptibility and rED is not observed. As the next step, we assume that the voxel of the magnetic susceptibility map comprises two materials, such as water (0 ppm) and bone (-2.2 ppm) or water and marrow (0.81ppm). The elements of each voxel were estimated from the ratio of the two materials.

  4. Conversion from tooth enamel dose to organ doses for electron spin resonance dosimetry

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Yamaguchi, Yasuhiro; Saito, Kimiaki; Hamada, Tatsuji

    2002-01-01

    Conversion from tooth enamel dose to organ doses was analyzed to establish a method of retrospective individual dose assessment against external photon exposure by electron spin resonance (ESR) dosimetry. Dose to tooth enamel was obtained by Monte Carlo calculations using a modified MIRD-type phantom with a teeth part. The calculated tooth enamel doses were verified by measurements with thermo-luminescence dosimeters inserted in a physical head phantom. Energy and angular dependences of tooth enamel dose were compared with those of other organ doses. Additional Monte Carlo calculations were performed to study the effect of human model on the tooth enamel dose with a voxel-type phantom, which was based on computed tomography images of the physical phantom. The data derived with the modified MIRD-type phantom were applied to convert from tooth enamel dose to organ doses against external photon exposure in a hypothesized field, where scattered radiation was taken into account. The results indicated that energy distribution of photons incident to a human body is required to evaluate precisely an individual dose based on ESR dosimetry for teeth. (author)

  5. TFTR power conversion and plasma feedback systems

    International Nuclear Information System (INIS)

    Neumeyer, C.

    1985-01-01

    Major components of the Tokamak Fusion Test Reactor (TFTR) power conversion system include 39 thyristor rectifier power supplies, 12 energy storage capacitor banks, and 6 ohmic heating interrupters. These components are connected in various series/parallel configurations to provide controlled pulses of current to the Toroidal Field (TF), Ohmic Heating (OH), Equilibrium (vertical) Field (EF), and Horizontal Field (HF) magnet coil systems. Real-time control of the power conversion system is accomplished by a centralized dedicated computer; local control is minimal. Power supply firing angles, capacitor bank charge and discharge commands, interrupter commands, etc., are all determined and issued by the central computer. Plasma Position and Current Control (PPCC) reference signals to power conversion (OH, EF, HF) are determined by separate analog electronics but invoked through the power conversion computer. Real-time fault sensing of plasma parameters, gas injection, neutral beams, etc., are monitored by a separate Discharge Fault System (DFS) but routed through the power conversion computer for pre-programmed shutdown response

  6. Synchrotron radiation-based Mössbauer spectra of {sup 174}Yb measured with internal conversion electrons

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Ryo, E-mail: masudar@rri.kyoto-u.ac.jp; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Saito, Makina [Beamline Spectroscopy/Scattering Group, Elettra-Sincrotrone Trieste, S. S. 14 Km 163.5, I-34149 Trieste (Italy); Yoda, Yoshitaka [Research and Utilization Division, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Mitsui, Takaya [Condensed Matter Science Division, Japan Atomic Energy Agency, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Iga, Fumitoshi [College of Science, Ibaraki University, Mito, Ibaraki, 310-8512 (Japan); Seto, Makoto [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Condensed Matter Science Division, Japan Atomic Energy Agency, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2014-02-24

    A detection system for synchrotron-radiation (SR)-based Mössbauer spectroscopy was developed to enhance the nuclear resonant scattering counting rate and thus increase the available nuclides. In the system, a windowless avalanche photodiode (APD) detector was combined with a vacuum cryostat to detect the internal conversion (IC) electrons and fluorescent X-rays accompanied by nuclear de-excitation. As a feasibility study, the SR-based Mössbauer spectrum using the 76.5 keV level of {sup 174}Yb was observed without {sup 174}Yb enrichment of the samples. The counting rate was five times higher than that of our previous system, and the spectrum was obtained within 10 h. This result shows that nuclear resonance events can be more efficiently detected by counting IC electrons for nuclides with high IC coefficients. Furthermore, the windowless detection system enables us to place the sample closer to the APD elements and is advantageous for nuclear resonant inelastic scattering measurements. Therefore, this detection system can not only increase the number of nuclides accessible in SR-based Mössbauer spectroscopy but also allows the nuclear resonant inelastic scattering measurements of small single crystals or enzymes with dilute probe nuclides that are difficult to measure with the previous detection system.

  7. Coincident-inclusive electrofission angular correlations

    International Nuclear Information System (INIS)

    Arruda Neto, J.D.T.

    1983-08-01

    A method for the joint analysis of coincident and inclusive electrofission data, in order to minimize effects of the model dependence of data interpretation, is developed. Explicit calculations of the (e,e'f) angular correlations are presented. The potentialities of the method to the study of sub- and near-barrier properties of the fission process, and to the study of the giant resonances fission mode, are discussed. (Author) [pt

  8. Electron Bernstein wave heating of over-dense H-mode plasmas in the TCV tokamak via O-X-B double mode conversion

    International Nuclear Information System (INIS)

    Pochelon, A.; Mueck, A.; Curchod, L.; Camenen, Y.; Coda, S.; Duval, B.P.; Goodman, T.P.; Klimanov, I.; Laqua, H.P.; Martin, Y.; Moret, J.-M.; Porte, L.; Sushkov, A.; Udintsev, V.S.; Volpe, F.

    2007-01-01

    This paper reports on the first demonstration of electron Bernstein wave heating (EBWH) by double mode conversion from ordinary (O-) to Bernstein (B-) via the extraordinary (X-) mode in an over-dense tokamak plasma, using low field side launch, achieved in the TCV tokamak H-mode, making use of its naturally generated steep density gradient. This technique offers the possibility of overcoming the upper density limit of conventional EC microwave heating. The sensitive dependence of the O-X mode conversion on the microwave launching direction has been verified experimentally. Localized power deposition, consistent with theoretical predictions, has been observed at densities well above the conventional cut-off. Central heating has been achieved, at powers up to two megawatts. This demonstrates the potential of EBW in tokamak H-modes, the intended mode of operation for a reactor such as ITER

  9. Development of coincidence processing module for PEM

    International Nuclear Information System (INIS)

    Feng Baotong; Shuai Lei; Li Ke

    2011-01-01

    For the breast cancer diagnosis and therapy, a prototype of positron emission mammography (PEM) was developed in Institute of High Energy Physics, Chinese Academy of Sciences. In this paper, the design of coincidence processing module (CPM) for this PEM was presented. Both the hardware architecture and the software logic were introduced. In this design, the CPM used the Rocket IO fast interface in FPGA and fiber technology to acquire the preprocessed data from the continuous sampling module (CSM) and then selected the valid event with the coincidence timing window method, which was performed in the FPGA on the daughter board. The CPM transmits the processed data to host computer via gigabit Ethernet. The whole system was controlled by CAN bus. The primary tests indicate that the performance of this design is good. (authors)

  10. On the structure of the set of coincidence points

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, A V [Peoples Friendship University of Russia, Moscow (Russian Federation); Gel' man, B D [Voronezh State University (Russian Federation)

    2015-03-31

    We consider the set of coincidence points for two maps between metric spaces. Cardinality, metric and topological properties of the coincidence set are studied. We obtain conditions which guarantee that this set (a) consists of at least two points; (b) consists of at least n points; (c) contains a countable subset; (d) is uncountable. The results are applied to study the structure of the double point set and the fixed point set for multivalued contractions. Bibliography: 12 titles.

  11. Corrosion study of heat exchanger tubes in pressurized water cooled nuclear reactors by conversion electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Homonnay, Z.; Kuzmann, E.; Varga, K.; Nemeth, Z.; Szabo, A.; Rado, K.; Schunk, J.; Tilky, P.; Patek, G.

    2005-01-01

    Nuclear energy production tends to return into the focus of interest because of the constantly increasing energy need of the world and the green house effect problems of the strongest competitor oil or gas based power plants. In addition to the construction of new nuclear power plants, lifetime extension of the existing ones is the most cost effective investment in the energy business. However, feasibility and safety issues become very important at this point, and corrosion of the construction materials should be carefully investigated before decision on a potential lifetime extension of a reactor. 57 Fe-Conversion Electron Moessbauer Spectroscopy (CEMS) is a sensitive tool to analyze the phase composition of corrosion products on the surface of stainless steel. The upper ∼300 nm can be investigated due to the penetration range of conversion electrons. The corrosion state of heat exchanger tubes from the four reactor units of the Paks Nuclear Power Plant, Hungary, were analyzed by several methods including CEMS. The primary circuit side of the tubes was studied on selected samples cut out from the heat exchangers during regular maintenance. Cr- and Ni-substituted magnetite, sometimes hematite, amorphous Fe-oxides/oxyhydroxides as well as the signal of bulk austenitic steel of the tubes were detected. The level of Cr- and Ni-substitution in the magnetite phase could be estimated from the Moessbauer spectra. Correlation between earlier decontamination cycles and the corrosion state of the heat exchangers was sought. In combination with other methods, a hybrid structure of the surface oxide layer of several microns was established. It is suggested that previous AP-CITROX decontamination cycles can be responsible for this structure which makes the oxide layer mobile. This mobility may be responsible for unwanted corrosion product transport into the reactor vessel by the primary coolant.

  12. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  13. Importance of interpolation and coincidence errors in data fusion

    Directory of Open Access Journals (Sweden)

    S. Ceccherini

    2018-02-01

    Full Text Available The complete data fusion (CDF method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.

  14. Importance of interpolation and coincidence errors in data fusion

    Science.gov (United States)

    Ceccherini, Simone; Carli, Bruno; Tirelli, Cecilia; Zoppetti, Nicola; Del Bianco, Samuele; Cortesi, Ugo; Kujanpää, Jukka; Dragani, Rossana

    2018-02-01

    The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.

  15. High sensitivity neutron activation analysis using coincidence counting method

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Okada, Yukiko; Hirai, Shoji

    1999-01-01

    Four kinds of standard samples such as river sediment (NIES CRM No.16), Typical Japanese Diet, otoliths and river water were irradiated by TRIGA-II (100 kW, 3.7x10 12 n cm -2 s -1 ) for 6 h. After irradiation and cooling, they were analyzed by the coincidence counting method and a conventional γ-ray spectrometry. Se, Ba and Hf were determined by 75 Se 265 keV, 131 Ba 496 keV and 181 Hf 482 keV. On the river sediment sample, Ba and Hf showed the same values by two methods, but Se value contained Ta by the conventional method, although the coincidence counting method could analyze Se. On Typical Japanese Diet and otoliths, Se could be determined by two methods and Ba and Hf determined by the coincidence counting method but not determined by the conventional method. Se value in the river water agreed with the authorization value. (S.Y.)

  16. Recovering the triple coincidence of non-pure positron emitters in preclinical PET

    Science.gov (United States)

    Lin, Hsin-Hon; Chuang, Keh-Shih; Chen, Szu-Yu; Jan, Meei-Ling

    2016-03-01

    Non-pure positron emitters, with their long half-lives, allow for the tracing of slow biochemical processes which cannot be adequately examined by the commonly used short-lived positron emitters. Most of these isotopes emit high-energy cascade gamma rays in addition to positron decay that can be detected and create a triple coincidence with annihilation photons. Triple coincidence is discarded in most scanners, however, the majority of the triple coincidence contains true photon pairs that can be recovered. In this study, we propose a strategy for recovering triple coincidence events to raise the sensitivity of PET imaging for non-pure positron emitters. To identify the true line of response (LOR) from a triple coincidence, a framework utilizing geometrical, energy and temporal information is proposed. The geometrical criterion is based on the assumption that the LOR with the largest radial offset among the three sub pairs of triple coincidences is least likely to be a true LOR. Then, a confidence time window is used to test the valid LOR among those within triple coincidence. Finally, a likelihood ratio discriminant rule based on the energy probability density distribution of cascade and annihilation gammas is established to identify the true LOR. An Inveon preclinical PET scanner was modeled with GATE (GEANT4 application for tomographic emission) Monte Carlo software. We evaluated the performance of the proposed method in terms of identification fraction, noise equivalent count rates (NECR), and image quality on various phantoms. With the inclusion of triple coincidence events using the proposed method, the NECR was found to increase from 11% to 26% and 19% to 29% for I-124 and Br-76, respectively, when 7.4-185 MBq of activity was used. Compared to the reconstructed images using double coincidence, this technique increased the SNR by 5.1-7.3% for I-124 and 9.3-10.3% for Br-76 within the activity range of 9.25-74 MBq, without compromising the spatial resolution or

  17. Practical electronics handbook

    CERN Document Server

    Sinclair, Ian R

    2013-01-01

    Practical Electronics Handbook, Third Edition provides the frequently used and highly applicable principles of electronics and electronic circuits.The book contains relevant information in electronics. The topics discussed in the text include passive and active discrete components; linear and digital I.C.s; microprocessors and microprocessor systems; digital-analogue conversions; computer aids in electronics design; and electronic hardware components.Electronic circuit constructors, service engineers, electronic design engineers, and anyone with an interest in electronics will find the book ve

  18. Research Update: Utilizing magnetization dynamics in solid-state thermal energy conversion

    Directory of Open Access Journals (Sweden)

    Stephen R. Boona

    2016-10-01

    Full Text Available We review the spin-Seebeck and magnon-electron drag effects in the context of solid-state energy conversion. These phenomena are driven by advective magnon-electron interactions. Heat flow through magnetic materials generates magnetization dynamics, which can strongly affect free electrons within or adjacent to the magnetic material, thereby producing magnetization-dependent (e.g., remnant electric fields. The relative strength of spin-dependent interactions means that magnon-driven effects can generate significantly larger thermoelectric power factors as compared to classical thermoelectric phenomena. This is a surprising situation in which spin-based effects are larger than purely charge-based effects, potentially enabling new approaches to thermal energy conversion.

  19. The Non-Ergodic Nature of Internal Conversion

    DEFF Research Database (Denmark)

    Sølling, Theis I.; Kuhlman, Thomas Scheby; Stephansen, Anne B.

    2014-01-01

    The absorption of light by molecules can induce ultrafast dynamics and coupling of electronic and nuclear vibrational motion. The ultrafast nature in many cases rests on the importance of several potential energy surfaces in guiding the nuclear motion—a concept of central importance in many aspects...... of chemical reaction dynamics. This Minireview focuses on the non-ergodic nature of internal conversion, that is, on the concept that the nuclear dynamics only sample a reduced phase space, potentially resulting in localization of the dynamics in real space. A series of results that highlight...... it takes to reach it. 2) Localization of energy into a single reactive mode, which is dictated by the internal conversion process. 3) Initiation of the internal conversion by activation of a single complex motion, which then specifically couples to a reactive mode. 4) Nonstatistical internal conversion...

  20. Constructing coincident indices of economic activity for the Latin American economy

    Directory of Open Access Journals (Sweden)

    João Victor Issler

    2013-03-01

    Full Text Available This paper has three main contributions. The first is to propose an individual coincident indicator for the following Latin American countries: Argentina, Brazil, Chile, Colombia and Mexico. In order to obtain similar series to those traditionally used in business-cycle research in constructing coincident indices (output, sales, income and employment we were forced to back-cast several individual country series which were not available in a long time-series span. The second contribution is to establish a chronology of recessions for these countries, covering the period from 1980 to 2012 on a monthly basis. Based on this chronology, the countries are compared in several respects. The final contribution is to propose an aggregate coincident indicator for the Latin American economy, which weights individual-country composite indices. Finally, this indicator is compared with the coincident indicator (The Conference Board - TCB of the U.S. economy. We find that the U.S. indicator Granger-causes the Latin American indicator in statistical tests

  1. Effective electron-electron and electron-phonon interactions in the Hubbard-Holstein model

    International Nuclear Information System (INIS)

    Aprea, G.; Di Castro, C.; Grilli, M. . E-mail marco.grilli@roma1.infn.it; Lorenzana, J.

    2006-01-01

    We investigate the interplay between the electron-electron and the electron-phonon interaction in the Hubbard-Holstein model. We implement the flow-equation method to investigate within this model the effect of correlation on the electron-phonon effective coupling and, conversely, the effect of phonons in the effective electron-electron interaction. Using this technique we obtain analytical momentum-dependent expressions for the effective couplings and we study their behavior for different physical regimes. In agreement with other works on this subject, we find that the electron-electron attraction mediated by phonons in the presence of Hubbard repulsion is peaked at low transferred momenta. The role of the characteristic energies involved is also analyzed

  2. The future of electronic power processing and conversion

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Consoli, A.; Ferreira, J.A.

    2005-01-01

    . - A large penetration of power electronics into power systems will happen within the next 25-30 years. The main transmission grid will not be affected. The power electronics development will be in distributed generation and in the loads. - The success of the integrated starter/generator, hybrid or electric...... cars depends on political decisions more than on technological advances. However, the success of a recent Japanese hybrid car and the cost of oil could trigger the critical momentum for large-scale use of power electronics in automotive applications. - We are moving toward standardized power supply...

  3. Levels in Gd156 excited in the decay of 5.6 d Tb156

    DEFF Research Database (Denmark)

    Hansen, P.Gregers; Nielsen, O.B.; Sheline, R.K.

    1959-01-01

    The decay of 5.6 day Tb156 has been studied by means of a six gap β-ray spectrometer, scintillation spectrometers, and coincidence techniques. Conversion electron and γ-ray coincidence measurements have been used extensively for obtaining quantitative estimates of γ-ray intensities. A description...... for transitions to a rotational band are observed. These features are discussed in terms of a probable mixing of the rotational bands....

  4. Moisture corrections in neutron coincidence counting of PuO2

    International Nuclear Information System (INIS)

    Stewart, J.E.; Menlove, H.O.

    1987-01-01

    Passive neutron coincidence counting is capable of 1% assay accuracy for pure, well-characterized PuO 2 samples that contain plutonium masses from a few tens of grams to several kilograms. Moisture in the sample can significantly bias the assay high by changing the (α,n) neutron production, the sample multiplication, and the detection efficiency. Monte Carlo calculations and an analytical model of coincidence counting have been used to quantify the individual and cumulative effects of moisture biases for two PuO 2 sample sizes and a range of moisture levels from 0 to 9 wt %. Results of the calculations suggest a simple correction procedure for moisture bias that is effective from 0 to 3 wt % H 2 O. The procedure requires that the moisture level in the sample be known before the coincidence measurement

  5. Reflection-time-of-flight spectrometer for two-electron (e,2e) coincidence spectroscopy on surfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Kerherve, G.; Winkler, C.

    2008-01-01

    In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2e/γ,2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of E kin ≅25 eV is around 100 ns. The corresponding time- and energy resolution are typically ≅1 ns and ≅0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented

  6. Pulse-amplitude multipliers using logarithmic amplitude-to-time conversion; Amplificateurs d'impulsions utilisant une conversion logarithmique temps-amplitude; Ob umnozhitelyakh amplitudy impul'sov s ispol'zovaniem logarifmicheskogo preobrazovaniya amplitudy vo vremya; Multiplicadores de amplitud de impulso usando una conversion logaritmica de amplitud en tiempo

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, M [Institut Rudjer Boskovic, Zagreb, Yugoslavia (Croatia)

    1962-04-15

    The accuracy and limitations of multipliers based on logarithmic amplitude-to-time conversion using RC pulse stretchers are discussed with respect to their application for determining whether the amplitude product of two coincident pulses has a given value. Some possible circuits are given. (author) [French] L'auteur etudie la precision et les limitations des amplificateurs fondes sur la conversion logarithmique temps-amplitude et utilisant des allongeurs d'impulsions RC, afin d'etablir si ces appareils peuvent servir a determiner la valeur du produit des amplitudes de deux impulsions coincidentes. Il decrit en outre plusieurs circuits possibles. (author) [Spanish] La memoria discute la precision y limitaciones de los multiplicadores basados en la conversion logaritmica de amplitud en tiempo empleando circuitos alargadores de resistencia-capacidad en relacion con su aplicacion para determinar si el producto de las amplitudes de dos impulsos coincidentes tiene un valor determinado. Indica algunos circuitos posibles. (author) [Russian] Obsuzhdayutsya predel pogreshnosti i ogranicheniya umnozhitelej, osnovannykh na logarifmicheskom preobrazovanii amplitudy vo vremya, s ispol'zovaniem rasshiritelej impul'sov RC; ehto delaetsya v svyazi s ikh primeneniem dlya vyyasneniya voprosa o tom, imeet li opredelennuyu velichinu proizvedenie amplitud dvukh sovpadayushchikh impul'sov. Privodyatsya nekotorye vozmozhnye blok-skhemy. (author)

  7. Simulations of Lithium-Based Neutron Coincidence Counter for Gd-Loaded Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Christian C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siciliano, Edward R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Lithium-Based Alternative Neutron Detection Technology Coincidence Counting for Gd-loaded Fuels at Pacific Northwest National Laboratory for the development of a lithium-based neutron coincidence counter for nondestructively assaying Gd loaded nuclear fuel. This report provides results from MCNP simulations of a lithium-based coincidence counter for the possible measurement of Gd-loaded nuclear fuel. A comparison of lithium-based simulations and UNCL-II simulations with and without Gd loaded fuel is provided. A lithium-based model, referred to as PLNS3A-R1, showed strong promise for assaying Gd loaded fuel.

  8. Studies on Chromium-free Conversion coatings on Aluminum | Oki ...

    African Journals Online (AJOL)

    The development of a chromium-free conversion coating on aluminum has been studied using transmission electron microscopy (TEM), Auger Electron (AES) and Secondary ion mass spectroscopy (SIMS) techniques. Within the limits of the resolution of the TEM, the coating is uniformly clear and featureless. It is composed ...

  9. Conversion coefficients and yrast state spins in 180Os

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Kibedi, T.; Byrne, A.P.; Fabricius, B.; Stuchbery, A.E.

    1989-11-01

    Internal conversion coefficients of transitions in 180 Os have been measured using a superconducting, solenoidal electron spectrometer, operated in the lens mode. The high energy resolution and efficiency allow a precise measurement of the conversion coefficients of the 528 keV yrast transition. The values obtained, α K = 0.015 (2), α L = 0.004(1) define pure E2 multipolarity. Taken with the measured γ-ray angular distribution, the conversion coefficient leads to an unambiguous assignment of 16 + →14 + for the 528 keV transition. 14 refs., 5 figs., 1 tab

  10. Correlation researches of the outgoing directions 'shake-off' electron and positron at β+ - decay

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.; Kupryashkin, V.T.; Sidorenko, L.P.

    2012-01-01

    The correlation properties electron 'shake-off' at β + -decay is studied. The measurements were fulfilled in compare with such properties 'shake-off' electron at β - -decay for explanation mechanism, accountable for correlation motion 'shake-off' electron and main particle (electron at β'--decay and positron at β + -decay). 152 Eu decay was used for it. The measurements were performed on the installation of coincidences of γ-quanta with electrons and low energy electrons, including of e 0 -electrons of the secondary electron emission (γγee 0 -coincidences). The registration of electrons 'shake-off' implemented on e 0 -electrons, created by them. On obtained data, the space correlation of electron 'shake-off' with positron at β + -decay in direction forward is much less that those correlating s hake-off - electron at β - -decay. 'Shake-off'-electrons at β + -decay are predominantly moving in large solid angles relate positron. The mechanism, accountable for it, is proposed

  11. Studies on the true coincidence correction in measuring filter samples by gamma spectrometry

    CERN Document Server

    Lian Qi; Chang Yong Fu; Xia Bing

    2002-01-01

    The true coincidence correction in measuring filter samples has been studied by high efficiency HPGe gamma detectors. The true coincidence correction for a specific three excited levels de-excitation case has been analyzed, and the typical analytical expressions of true coincidence correction factors have been given. According to the measured relative efficiency on the detector surface with 8 'single' energy gamma emitters and efficiency of filter samples, the peak and total efficiency surfaces are fitted. The true coincidence correction factors of sup 6 sup 0 Co and sup 1 sup 5 sup 2 Eu calculated by the efficiency surfaces agree well with experimental results

  12. Cryo-immunogold electron microscopy for prions: toward identification of a conversion site.

    Science.gov (United States)

    Godsave, Susan F; Wille, Holger; Kujala, Pekka; Latawiec, Diane; DeArmond, Stephen J; Serban, Ana; Prusiner, Stanley B; Peters, Peter J

    2008-11-19

    Prion diseases are caused by accumulation of an abnormally folded isoform (PrP(Sc)) of the cellular prion protein (PrP(C)). The subcellular distribution of PrP(Sc) and the site of its formation in brain are still unclear. We performed quantitative cryo-immunogold electron microscopy on hippocampal sections from mice infected with the Rocky Mountain Laboratory strain of prions. Two antibodies were used: R2, which recognizes both PrP(C) and PrP(Sc); and F4-31, which only detects PrP(C) in undenatured sections. At a late subclinical stage of prion infection, both PrP(C) and PrP(Sc) were detected principally on neuronal plasma membranes and on vesicles resembling early endocytic or recycling vesicles in the neuropil. The R2 labeling was approximately six times higher in the infected than the uninfected hippocampus and gold clusters were only evident in infected tissue. The biggest increase in labeling density (24-fold) was found on the early/recycling endosome-like vesicles of small-diameter neurites, suggesting these as possible sites of conversion. Trypsin digestion of infected hippocampal sections resulted in a reduction in R2 labeling of >85%, which suggests that a high proportion of PrP(Sc) may be oligomeric, protease-sensitive PrP(Sc).

  13. It takes two—coincidence coding within the dual olfactory pathway of the honeybee

    OpenAIRE

    Brill, Martin F.; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and...

  14. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. II. Analysis and applications

    Science.gov (United States)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We use an analytical theory of noisy Poisson processes, developed in the preceding companion publication, to compare coincidence and covariance measurement approaches in photoelectron and -ion spectroscopy. For non-unit detection efficiencies, coincidence data acquisition (DAQ) suffers from false coincidences. The rate of false coincidences grows quadratically with the rate of elementary ionization events. To minimize false coincidences for rare event outcomes, very low event rates may hence be required. Coincidence measurements exhibit high tolerance to noise introduced by unstable experimental conditions. Covariance DAQ on the other hand is free of systematic errors as long as stable experimental conditions are maintained. In the presence of noise, all channels in a covariance measurement become correlated. Under favourable conditions, covariance DAQ may allow orders of magnitude reduction in measurement times. Finally, we use experimental data for strong-field ionization of 1,3-butadiene to illustrate how fluctuations in experimental conditions can contaminate a covariance measurement, and how such contamination can be detected.

  15. Mu2e, a coherent μ → e conversion experiment at Fermilab

    International Nuclear Information System (INIS)

    Brown, D. N.

    2012-01-01

    We describe a proposed experiment to search for Charged Lepton Flavor Violation (CLFV) using stopped muons at Fermilab. A primary Proton beam will strike a gold target, producing pions which decay to muons. Low-momentum negative muons will be collected, selected, and transported by a custom arrangement of solenoidal magnets and collimators. Muons will stop in thin foil targets, creating muonic atoms with significant nuclear overlap. Mu2e will search for the coherent conversion of nuclear bound muons to electrons, with an experimental signature of a single mono-energetic electron. Conversion electrons will be detected and measured in a low-mass straw tracker and a crystal calorimeter. Mu2e will have a sensitivity four orders of magnitude better than the most sensitive published result for μ → e conversion, and will have complementary physics reach to LHC experiments and μ → eγ decay experiments such as MEG.

  16. System for ν-ν-coincidence spectra processing with data compression

    International Nuclear Information System (INIS)

    Byalko, A.A.; Volkov, N.G.; Tsupko-Sitnikov, V.M.; Churakov, A.K.

    1982-01-01

    Calculational algorithm and program for analyzing gamma-gamma coincidence spectra based on using the method of expansion in singular values for data compression (the SVD method) are described. Results of the testing of the program during the processing of coincidence spectrum for the low-energy region of transitions corresponding to decay 164 Lu → 164 Yb are given. The program is written in the FORTRAN language and is realized by the ES-1040 computer. The counting time constitutes about 20 min. It is concluded that the use of the SVD method permits to correct the data at the expense of distortion filtration caused with statistical deviations and random interferences, at that not distorting the initial data. The data compressed correspond more to theoretical suggestions of forms of semiconductor detector lines and two-dimensional line in the coincidence spectrum

  17. Recent Advances in Digital Coincidence Counting for Radionuclide Metrology

    International Nuclear Information System (INIS)

    Keightley, John; Bobin, Christophe; Bouchard, Jacques; Capogni, Marco; Loreti, Stefano; Roteta, Miguel

    2013-06-01

    The radioactivity measurement techniques developed within the EURAMET EMRP 'MetroFission' Joint Research Project, were aimed at performing on-site activity measurements at the primary standard level (4πβ-γ coincidence counting) for a wide range of radionuclides utilizing recent advances in high-speed digital sampling and digital signal processing. The state-of-the-art technology employed within this project provides up to 14-bit digitizer systems operating with sampling rates in the order of 10 8 to 10 9 samples-per-second, incorporating on-board FPGA devices, which greatly enhances the application of digital signal processing for the implementation of digital coincidence counting. These devices when coupled to suitable analysis software, demonstrate a significant improvement in the provision of primary standards of radioactivity. This manuscript provides a description of the systems employed, along with recommendations regarding optimization of the digital sampling of signals from photo-multiplier tubes and pre-amplifiers and compare the benefits of 'off-line' versus 'on-line' 4πβ-γ digital coincidence counting systems. (authors)

  18. Analysis of femtosecond pump-probe photoelectron-photoion coincidence measurements applying Bayesian probability theory

    Science.gov (United States)

    Rumetshofer, M.; Heim, P.; Thaler, B.; Ernst, W. E.; Koch, M.; von der Linden, W.

    2018-06-01

    Ultrafast dynamical processes in photoexcited molecules can be observed with pump-probe measurements, in which information about the dynamics is obtained from the transient signal associated with the excited state. Background signals provoked by pump and/or probe pulses alone often obscure these excited-state signals. Simple subtraction of pump-only and/or probe-only measurements from the pump-probe measurement, as commonly applied, results in a degradation of the signal-to-noise ratio and, in the case of coincidence detection, the danger of overrated background subtraction. Coincidence measurements additionally suffer from false coincidences, requiring long data-acquisition times to keep erroneous signals at an acceptable level. Here we present a probabilistic approach based on Bayesian probability theory that overcomes these problems. For a pump-probe experiment with photoelectron-photoion coincidence detection, we reconstruct the interesting excited-state spectrum from pump-probe and pump-only measurements. This approach allows us to treat background and false coincidences consistently and on the same footing. We demonstrate that the Bayesian formalism has the following advantages over simple signal subtraction: (i) the signal-to-noise ratio is significantly increased, (ii) the pump-only contribution is not overestimated, (iii) false coincidences are excluded, (iv) prior knowledge, such as positivity, is consistently incorporated, (v) confidence intervals are provided for the reconstructed spectrum, and (vi) it is applicable to any experimental situation and noise statistics. Most importantly, by accounting for false coincidences, the Bayesian approach allows us to run experiments at higher ionization rates, resulting in a significant reduction of data acquisition times. The probabilistic approach is thoroughly scrutinized by challenging mock data. The application to pump-probe coincidence measurements on acetone molecules enables quantitative interpretations

  19. TARGET EXCITATION IN BARE ION XE/AR COLLISIONS STUDIED BY ELECTRON TARGET ION COINCIDENCES

    NARCIS (Netherlands)

    DENIJS, G; HOEKSTRA, R; MORGENSTERN, R

    We present electron spectra resulting from collisions of bare ions N-15(7+) and C-13(6+) on Ar and the charge state distribution of target ions resulting from C-13(6+)-Xe collisions. From both type of experiments we find evidence that electron capture accompanied by target excitation is an important

  20. It Takes Two – Coincidence coding within the dual olfactory pathway of the honeybee

    Directory of Open Access Journals (Sweden)

    Martin F. Brill

    2015-07-01

    Full Text Available To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g. in the visual system, increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrateinformation from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g. in auditory delay lines. Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs that transfer information from the primary olfactory centers, the antennal lobe (AL, to a multimodal integration center, the mushroom body (MB. PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code.

  1. A Conversation about Professionalism and Community.

    Science.gov (United States)

    Bauch, Patricia A.; Crowson, Robert L.; Goldring, Ellen B.; Mawhinney, Hanne B.; Ogawa, Rodney T.; Driscoll, Mary Erina

    1998-01-01

    Presents an interactive electronic conversation among a group of scholars. Participants examined the nature of relationships between professionals and school communities and debated the degree to which conflict was either inevitable or useful in sustaining this connection. They tried to imagine the organizational structures and policies needed to…

  2. The direct conversion of heat into electricity in reactors

    International Nuclear Information System (INIS)

    Devin, B.; Bliaux, J.; Lesueur, R.

    1964-01-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [fr

  3. Decay studies of neutron-deficient lawrencium isotopes

    International Nuclear Information System (INIS)

    Antalic, S.; Saro, S.; Streicher, B.; Venhart, M.; Hessberger, F.P.; Ackermann, D.; Heinz, S.; Kindler, B.; Kojouharov, I.; Lommel, B.; Mann, R.; Hofmann, S.; Kuusiniemi, P.; Leino, M.; Nishio, K.; Sulignano, B.

    2008-01-01

    The radioactive decay of the isotopes 254-256 Lr and their daughter products was investigated by means of α, prompt α-γ and delayed conversion electroncoincidence spectroscopy. The isotopes were produced using the reaction 48 Ca+ 209 Bi. (orig.)

  4. Levels in 159Ho as populated from decay of 159Er

    International Nuclear Information System (INIS)

    Boutet, J.

    1977-06-01

    The level scheme of the odd proton nucleus 159 Ho has been investigated using Ge(Li) and Si(Li) detectors. Results of γ-ray singles, conversion electron spectra and coincidence experiments are reported. Assignments are made for several energy levels

  5. Electron-ion-x-ray spectrometer system

    International Nuclear Information System (INIS)

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.

    1993-01-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays

  6. Internal conversion theory of gamma radiation in unfilled atomic shells

    International Nuclear Information System (INIS)

    Anderson, Eh.M.; Trusov, V.F.; Ehglajs, M.O.

    1980-01-01

    The internal conversion theory of gamma radiation in unfilled shells, when the atom is in a state with certain energy and momentum, is considered. A formula for the conversion coefficient between the atom and ion levels is obtained. This coefficient turns to be dependent on genealogic characteristics of the atom. It is discussed when the conversion coefficients are proportional to the numbers of filling subshells in the atom. Exact calculations have been carried out in the multiconfigurational approximation taking into account intermediate coupling for the d-shell of the Fe atom Single-electron radial wave functions have been calculated on the basis of the relativistic method of the Hartree-Fock-Dirak self-consistent field. Conversion coefficients on certain subshells as well as submatrix elements of the production operator are calculated. The electric coefficient of internal conversion (CIC) in the calculation for one electron does not depend on spin orientation. That is why the electric CIC from the level will not depend on filling number distribution by subshells. For magnetic CIC the dependence on the atom state is significant. Using multiconfiguration basis for calculating energy matrix and its succeeding diagonalization means the account of the intermediate coupling type, which takes place for the unfilled shells

  7. Tight bounds for the Pearle-Braunstein-Caves chained inequality without the fair-coincidence assumption

    Science.gov (United States)

    Jogenfors, Jonathan; Larsson, Jan-Åke

    2017-08-01

    In any Bell test, loopholes can cause issues in the interpretation of the results, since an apparent violation of the inequality may not correspond to a violation of local realism. An important example is the coincidence-time loophole that arises when detector settings might influence the time when detection will occur. This effect can be observed in many experiments where measurement outcomes are to be compared between remote stations because the interpretation of an ostensible Bell violation strongly depends on the method used to decide coincidence. The coincidence-time loophole has previously been studied for the Clauser-Horne-Shimony-Holt and Clauser-Horne inequalities, but recent experiments have shown the need for a generalization. Here, we study the generalized "chained" inequality by Pearle, Braunstein, and Caves (PBC) with N ≥2 settings per observer. This inequality has applications in, for instance, quantum key distribution where it has been used to reestablish security. In this paper we give the minimum coincidence probability for the PBC inequality for all N ≥2 and show that this bound is tight for a violation free of the fair-coincidence assumption. Thus, if an experiment has a coincidence probability exceeding the critical value derived here, the coincidence-time loophole is eliminated.

  8. Conversion of electromagnetic waves at the ionisation front

    International Nuclear Information System (INIS)

    Chegotov, M V

    2001-01-01

    It is shown that a weak electromagnetic pulse interacting with a copropagating ionisation front is converted in the general case into three electromagnetic pulses with higher and lower frequencies, which propagate in different directions. The coefficients of conversion to these pulses (for intensities) were found as functions of the frequency. The electromagnetic energy is shown to decrease during this conversion because of the losses for the residual electron energy. (interaction of laser radiation with matter. laser plasma)

  9. Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter

    CERN Document Server

    Whelan, Colm T

    2005-01-01

    Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.

  10. An experimental study of electron transfer and emission during particle-surface interactions

    International Nuclear Information System (INIS)

    McGrath, C.T.

    2000-09-01

    A new coincidence technique has been developed and used to study the secondary electron emission that arises during the interaction of ions with surfaces. This coincidence technique allows the secondary electron emission statistics due to the impact of singly, doubly and multiply charged ions on surfaces to be measured in coincidence with reflected particles, in specific charge states and with specific post-collision trajectories. This system has been used to study the impact of 8 keV H + ions on polycrystalline copper and aluminium targets. Under these conditions the potential emission contribution is negligible and the electron emission is almost entirely due to kinetic emission processes. The sub-surface contribution to the observed electron emission has been isolated using two newly developed models. These models provide valuable information about the depth and amount of surface penetration and on the probability for subsequent electron transport to the surface. The impact of 2 - 100 keV Xe q+ (q = 1 - 10) ions on polycrystalline copper has also been studied using this system. From the subsequent data the potential and kinetic contributions to secondary electron emission have been separated using a previously established model for potential emission. The resulting kinetic emission yield increases with increasing ion impact energy, consistent with current concepts on quasimolecular ionisation. For ions impacting at large incident angles evidence for sub-surface emission has also been observed. The degree of penetration increases with ion impact energy, consistent with current concepts on this effect. The formation of H - ions from incident H + ions has also been studied by measuring the secondary electron emission statistics in coincidence with reflected particles in specific final charge states. This preliminary data is consistent with a two-step process of Auger neutralisation followed by resonant electron capture to the affinity level. However this mechanism

  11. Measurement of conversion coefficients in 208Tl

    International Nuclear Information System (INIS)

    Wendling, F.

    1976-06-01

    A electron spectrometer composed by a Li drifted Si detector and a uniform magnetic field was constructed. The magnetic field is used to focus the electrons on the detector and to filter the other radiations. After the construction the instrument was calibrated in absolute eficience and was used together with a Ge(Li) spectrometer also calibrated, in the measurement of internal conversion coeficients of the 433 and 453 keV transitions in 208 Tl [pt

  12. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons

    International Nuclear Information System (INIS)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internal contamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy 109 Cd conversion electrons, working with a 4 π proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin 109 Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  13. Reduced Effectiveness of Interruptive Drug-Drug Interaction Alerts after Conversion to a Commercial Electronic Health Record.

    Science.gov (United States)

    Wright, Adam; Aaron, Skye; Seger, Diane L; Samal, Lipika; Schiff, Gordon D; Bates, David W

    2018-05-15

    Drug-drug interaction (DDI) alerts in electronic health records (EHRs) can help prevent adverse drug events, but such alerts are frequently overridden, raising concerns about their clinical usefulness and contribution to alert fatigue. To study the effect of conversion to a commercial EHR on DDI alert and acceptance rates. Two before-and-after studies. 3277 clinicians who received a DDI alert in the outpatient setting. Introduction of a new, commercial EHR and subsequent adjustment of DDI alerting criteria. Alert burden and proportion of alerts accepted. Overall interruptive DDI alert burden increased by a factor of 6 from the legacy EHR to the commercial EHR. The acceptance rate for the most severe alerts fell from 100 to 8.4%, and from 29.3 to 7.5% for medium severity alerts (P fell by 50.5%, and acceptance of Tier 1 alerts rose from 9.1 to 12.7% (P < 0.01). Changing from a highly tailored DDI alerting system to a more general one as part of an EHR conversion decreased acceptance of DDI alerts and increased alert burden on users. The decrease in acceptance rates cannot be fully explained by differences in the clinical knowledge base, nor can it be fully explained by alert fatigue associated with increased alert burden. Instead, workflow factors probably predominate, including timing of alerts in the prescribing process, lack of differentiation of more and less severe alerts, and features of how users interact with alerts.

  14. Active method of neutron time correlation coincidence measurement to authenticate mass and enrichment of uranium metal

    International Nuclear Information System (INIS)

    Zhang Songbai; Wu Jun; Zhu Jianyu; Tian Dongfeng; Xie Dong

    2011-01-01

    The active methodology of time correlation coincidence measurement of neutron is an effective verification means to authenticate uranium metal. A collimated 252 Cf neutron source was used to investigate mass and enrichment of uranium metal through the neutron transport simulation for different enrichments and different masses of uranium metal, then time correlation coincidence counts of them were obtained. By analyzing the characteristic of time correlation coincidence counts, the monotone relationships were founded between FWTH of time correlation coincidence and multiplication factor, between the total coincidence counts in FWTH for time correlation coincidence and mass of 235 U multiplied by multiplication factor, and between the ratio of neutron source penetration and mass of uranium metal. Thus the methodology to authenticate mass and enrichment of uranium metal was established with time correlation coincidence by active neutron investigation. (authors)

  15. Future directions in electron momentum spectroscopy of matter

    International Nuclear Information System (INIS)

    Weigold, E.

    1998-01-01

    The development of coincidence spectrometers with multivariable detection techniques, higher energy kinematics, monochromated and spin-polarised electron sources, will usher in a new generation of electron momentum spectroscopy revealing new electronic phenomena in atoms, molecules and solids. This will be enhanced by developments in target preparation, such as spin polarised, oriented and aligned atoms and molecules, radicals, surfaces and strongly correlated systems in condensed matter. Copyright (1998) CSIRO Australia

  16. Experimental facility for explosive energy conversion into coherent microwave radiation

    International Nuclear Information System (INIS)

    Vdovin, V.A.; Korzhenevskij, A.V.; Cherepenin, V.A.

    2003-01-01

    The explosive energy conversion into the microwave radiation energy is considered with application of the explosion magnetic generator, heavy-current electron accelerator and Cherenkov microwave range generator. The electron accelerator formed the beam of 33 cm in diameter and current of ∼ 25 kA. The electrodynamic system of the SHF-generator has the diameter of ∼ 35 cm and it is accomplished in the form of the periodical nonuniform dielectric. The proposed explosive energy conversion scheme makes it possible to obtain the radiation capacity of approximately 100 MW in the 3-cm wave range by the pulse duration of ∼ 800 ns [ru

  17. Detector characterization and first coincidence tests of a Compton telescope based on LaBr3 crystals and SiPMs

    International Nuclear Information System (INIS)

    Llosá, G.; Barrio, J.; Cabello, J.; Crespo, A.; Lacasta, C.; Rafecas, M.; Callier, S.; La Taille, C. de; Raux, L.

    2012-01-01

    A Compton telescope for dose monitoring in hadron therapy consisting of several layers of continuous LaBr 3 crystals coupled to silicon photomultiplier (SiPM) arrays is under development within the ENVISION project. In order to test the possibility of employing such detectors for the telescope, a detector head consisting of a continuous 16 mm×18 mm×5 mm LaBr 3 crystal coupled to a SiPM array has been assembled and characterized, employing the SPIROC1 ASIC as readout electronics. The best energy resolution obtained at 511 keV is 6.5% FWHM and the timing resolution is 3.1 ns FWHM. A position determination method for continuous crystals is being tested, with promising results. In addition, the detector has been operated in time coincidence with a second detector layer, to determine the coincidence capabilities of the system. The first tests are satisfactory, and encourage the development of larger detectors that will compose the telescope prototype.

  18. Study and construction of a {beta}-spectrometer of uniform axial magnetic field fitted with a {beta}-{gamma} coincidence selector. Study of the {beta} spectra of {sup 32}P, {sup 203}Hg, {sup 198}Au. Measurement of the conversion coefficients of {sup 203}Ti and of {sup 198}Hg; Etude et realisation d'un spectrometre-{beta} a champ magnetique axial uniforme, muni d'un selecteur de coincidence {beta}-{gamma}. Etude des spectres {beta} du {sup 32}p, {sup 203}Hg, {sup 198}Au. Mesure des coefficients de conversion du {sup 203}Ti et du {sup 198}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Parsignault, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    In the first part is given the principle of the beta spectrometer with uniform axial field using systematically the idea of caustics. The apparatus is described and its properties compared to those deduced from trajectory calculations. The {beta}-ray and {gamma}-ray detectors and the device for selecting coincidences with a 2 {tau} resolution of 5 nanoseconds are also presented. In the second part, the spectrometer is used for studying reference elements and the most accurate results are confirmed. The {beta} spectrum of {sup 60}Co has a statistical form with an accuracy of 1 per cent; the maximum energy E{sub 0} is 316.5 {+-} 1.5 keV. That of the 7/2 + {yields} 11/2 transition for {sup 137}Cs has a unique form, once forbidden. E{sub 0}= 522 {+-} 3 keV. Conversion coefficients {alpha}{sub k} = 96 {+-} 1 X 10{sup -3} {alpha}L + M + N = 20.9 {+-} 0.5 X 10{sup -3}. The two {beta} spectra of {sup 59}Fe, separated by coincidence with the gamma, have the statistical form E{sub 0} = 462 {+-} 2 keV (55.1 + 0,3 per cent) and E{sub 1} = 275 {+-} 4 keV (44.9 {+-} 0.3 per cent). It is then verified whether the l selection rule is apparent in the shape of the phosphorus 32 beta spectrum. It is found in fact that it is not of statistical shape and its shape coefficient is determined. For a theoretical interpretation it is necessary to have better approximations than those generally used and this interpretation will not be unique. This work has also made it possible to show that the source contains a small proportion of {sup 33}P. The study of the {sup 203}Hg {beta} spectrum followed by the 279 keV gamma spectrum is designed to determine the conversion coefficients. The interior spectrum of gold 198 is not of statistical shape either. The form coefficient is determined together with the conversion coefficients which are in slight disagreement with those calculated by Rose or Sliv. An interpretation of the spectrum is put forward which proposes an imperfect compensation for the

  19. Study and construction of a {beta}-spectrometer of uniform axial magnetic field fitted with a {beta}-{gamma} coincidence selector. Study of the {beta} spectra of {sup 32}P, {sup 203}Hg, {sup 198}Au. Measurement of the conversion coefficients of {sup 203}Ti and of {sup 198}Hg; Etude et realisation d'un spectrometre-{beta} a champ magnetique axial uniforme, muni d'un selecteur de coincidence {beta}-{gamma}. Etude des spectres {beta} du {sup 32}p, {sup 203}Hg, {sup 198}Au. Mesure des coefficients de conversion du {sup 203}Ti et du {sup 198}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Parsignault, D. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    In the first part is given the principle of the beta spectrometer with uniform axial field using systematically the idea of caustics. The apparatus is described and its properties compared to those deduced from trajectory calculations. The {beta}-ray and {gamma}-ray detectors and the device for selecting coincidences with a 2 {tau} resolution of 5 nanoseconds are also presented. In the second part, the spectrometer is used for studying reference elements and the most accurate results are confirmed. The {beta} spectrum of {sup 60}Co has a statistical form with an accuracy of 1 per cent; the maximum energy E{sub 0} is 316.5 {+-} 1.5 keV. That of the 7/2 + {yields} 11/2 transition for {sup 137}Cs has a unique form, once forbidden. E{sub 0}= 522 {+-} 3 keV. Conversion coefficients {alpha}{sub k} = 96 {+-} 1 X 10{sup -3} {alpha}L + M + N = 20.9 {+-} 0.5 X 10{sup -3}. The two {beta} spectra of {sup 59}Fe, separated by coincidence with the gamma, have the statistical form E{sub 0} = 462 {+-} 2 keV (55.1 + 0,3 per cent) and E{sub 1} = 275 {+-} 4 keV (44.9 {+-} 0.3 per cent). It is then verified whether the l selection rule is apparent in the shape of the phosphorus 32 beta spectrum. It is found in fact that it is not of statistical shape and its shape coefficient is determined. For a theoretical interpretation it is necessary to have better approximations than those generally used and this interpretation will not be unique. This work has also made it possible to show that the source contains a small proportion of {sup 33}P. The study of the {sup 203}Hg {beta} spectrum followed by the 279 keV gamma spectrum is designed to determine the conversion coefficients. The interior spectrum of gold 198 is not of statistical shape either. The form coefficient is determined together with the conversion coefficients which are in slight disagreement with those calculated by Rose or Sliv. An interpretation of the spectrum is put forward which proposes an imperfect compensation for the

  20. Molecular design of unsymmetrical squaraine dyes for high efficiency conversion of low energy photons into electrons using TiO{sub 2} nanocrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Thomas; Kuster, Simon; Nueesch, Frank [Empa, Swiss Federal Laboratories for Materials Testing and Research Laboratory for Functional Polymers, Duebendorf (Switzerland); Yum, Jun-Ho; Moon, Soo-Jin; Nazeeruddin, Mohammad K.; Graetzel, Michael [Laboratory for Photonics and Interfaces Institute of Chemical Sciences and Engineering School of Basic Sciences, Swiss Federal Institute of Technology, Lausanne (Switzerland)

    2009-09-09

    An optimized unsymmetrical squaraine dye 5-carboxy-2-[[3-[(2,3-dihydro-1, 1-dimethyl-3-ethyl-1H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene]methyl]-3,3-dimethyl-1-octyl-3H-indolium (SQ02) with carboxylic acid as anchoring group is synthesized for dye-sensitized solar cells (DSCs). Although the {pi}-framework of SQ02 is insignificantly extended compared to its antecessor squaraine dye SQ01, photophysical measurements show that the new sensitizer has a much higher overall conversion efficiency {eta} of 5.40% which is improved by 20% when compared to SQ01. UV-vis spectroscopy, cyclic voltammetry and time dependent density functional theory calculations are accomplished to rationalize the higher conversion efficiency of SQ02. A smaller optical band gap including a higher molar absorption coefficient leads to improved light harvesting of the solar cell and a broadened photocurrent spectrum. Furthermore, all excited state orbitals relevant for the {pi}-{pi}* transition in SQ02 are delocalized over the carboxylic acid anchoring group, ensuring a strong electronic coupling to the conduction band of TiO{sub 2} and hence a fast electron transfer. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  1. Tachyon driven solution to Cosmic Coincidence Problrm

    OpenAIRE

    Srivastaca, S. K.

    2004-01-01

    Here, non-minimally coupled tachyon to gravity is considered as a source of "dark energy". It is demonstrated that with expansion of the universe, tachyon dark energy decays to "dark matter" providing a solution to "cosmic coincidence problem".Moreover, it is found that universe undergoes accelerated expansion simultaneously.

  2. Electron-gamma directional correlations; Correlations directionnelles electron-gamma

    Energy Technology Data Exchange (ETDEWEB)

    Gerholm, T R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-10-01

    The theory of the angular correlation between conversion electrons and gamma rays is briefly outlined. The experimental methods used for the study of the electron-gamma correlation are described. The effects of the formation of a hole and the hyperfine structure magnetic coupling dependent on time are then considered. The experimental results showed that the attenuations found for different metallic media plainly conform to a simple quadrupolar interaction mechanism. For a source surrounded by an insulator, however, the results show that a rapidly disappearing coupling occurs as a supplement to the quadrupolar interaction mechanism. This coupling attenuates the angular correlation by about 75% of the non-perturbed value. It was concluded that for an intermediate half life of the level of the order of the nanosecond, the attenuations produced by the secondary effects of the hole formation can not be completely neglected. The metallic media considered were Ag, Au, Al, and Ga. In the study of E2 conversion processes, the radical matrix elements governing the E2 conversion process in the 412-KeV transition of {sup 198}Hg were determined. The results exclude the presence of dynamic contributions within the limits of experimental error. The values b{sub 2} (E2) and {alpha}-k (E2) obtained indirectly from the experimentally determined b{sub 4} particle parameter are in complete agreement with the theoretical values obtained by applying the corrections due to the shielding effect and to the finite dimension of the nucleus and excluding the dynamic contributions. The value for the internal conversion coefficient was also in good agreement. Experimental results from the intensity ratios between the peak and the continuum, however, seem to show significant deviations with respect to other experimental and theoretical values. There is good agreement between experimental and theoretical results on the internal conversion of {sup 203}Tl, {sup 201}Tl, and {sup 181}Ta. The theory

  3. Simulation approach to coincidence summing in {gamma}-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dziri, S., E-mail: samir.dziri@iphc.cnrs.fr [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2 (France); Nourreddine, A.; Sellam, A.; Pape, A.; Baussan, E. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2 (France)

    2012-07-15

    Some of the radionuclides used for efficiency calibration of a HPGe spectrometer are subject to coincidence-summing (CS) and account must be taken of the phenomenon to obtain quantitative results when counting samples to determine their activity. We have used MCNPX simulations, which do not take CS into account, to obtain {gamma}-ray peak intensities that were compared to those observed experimentally. The loss or gain of a measured peak intensity relative to the simulated peak is attributed to CS. CS correction factors are compared with those of ETNA and GESPECOR. Application to a test sample prepared with known radionuclides gave values close to the published activities. - Highlights: Black-Right-Pointing-Pointer Coincidence summing occurs when the solid angle is increased. Black-Right-Pointing-Pointer The loss of counts gives rise to an approximative efficiency curves, this means a wrong quantitative data. Black-Right-Pointing-Pointer To overcome this problem we need mono-energetic source, otherwise, the MCNPX simulation allows by comparison with the experiment data to get the coincidence summing correction factors. Black-Right-Pointing-Pointer By multiplying these factors by the approximative efficiency, we obtain the accurate efficiency.

  4. Determination of trace elements in scallop and fish otolith by instrumental neutron activation analysis using anti-coincidence and coincidence counting methods

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Okada, Yukiko; Hirai, Shoji

    2005-01-01

    Trace element concentrations in scallop reference material and fish otolith certified reference materials prepared at the National Institute for Environmental Studies (NIES) of Japan were determined by instrumental neutron activation analysis (INAA). Nine aliquots of scallop sample (ca. 252∼507 mg) and five aliquots of fish otolith sample (ca. 502 ∼ 988 mg) and comparative standards were irradiated for a short time (10 s) at a thermal neutron flux of 1.5 x 10 12 n cm -2 s -1 (pneumatic transfer) and for a long time (6 h) at a thermal neutron flux of 3.7 x 10 12 n cm -2 s -1 (central thimble) in the Rikkyo University Research Reactor (100 kW). The irradiated samples were measured by conventional γ-ray spectrometry using a coaxial Ge detector, and by anti-coincidence and coincidence γ-ray spectrometry with a coaxial Ge detector and a well-type NaI (Tl) detector to determine as many trace elements as possible with high sensitivity. The concentrations of 34 elements of the NIES No.15 scallop reference material and 16 elements of the NIES No.22 fish otolith CRM were determined. Using the coincidence counting method to determine Se, Ba and Hf, the lower limit of the determination was improved by 2 times compared with the conventional counting method. (author)

  5. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    natural gas from the subsurface. The participants discussed--key microbial conversion paths; overarching research issues; current funding models and microbial energy research; education, training, interdisciplinary cooperation and communication. Their recommendations are--Cellulose and lignocellulose are the preferred substrates for producing liquid transportation fuels, of which ethanol is the most commonly considered example. Generating fuels from these materials is still difficult and costly. A number of challenges need to be met in order to make the conversion of cellulose and lignocellulose to transportation fuels more cost-competitive. The design of hydrogen-producing bioreactors must be improved in order to more effectively manage hydrogen removal, oxygen exclusion, and, in the case of photobioreactors, to capture light energy more efficiently. Methane production may be optimized by fine-tuning methanogenic microbial communities. The ability to transfer electrons to an anode in a microbial fuel cell is probably very broadly distributed in the bacterial world. The scientific community needs a larger inventory of cultivated microorganisms from which to draw for energy conversion development. New and unusual organisms for manufacturing fuels and for use in fuel cells can be discovered using bioprospecting techniques. Particular emphasis should be placed on finding microbes, microbial communities, and enzymes that can enhance the conversion of lignocellulosic biomass to usable sugars. Many of the microbial processes critical to energy conversion are carried out by complex communities of organisms, and there is a need to better understand the community interactions that make these transformations possible. Better understanding of microbial community structure, robustness, networks, homeostasis, and cell-to-cell signaling is also needed. A better understanding of the basic enzymology of microorganisms is needed in order to move forward more quickly with microbial energy

  6. Alpha-Photon Coincidence Spectroscopy Along Element 115 Decay Chains

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, D. [Lund Univ., Lund (Sweden); Forsberg, U. [Lund Univ., Lund (Sweden); Golubev, P. [Lund Univ., Lund (Sweden); Sarmiento, L. G. [Lund Univ., Lund (Sweden); Yakushev, A. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Andersson, L. -L. [Helmholtz Institute Mainz, Mainz (Germany); Di Nitto, A. [Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Dullmann, Ch. E. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz Institute Mainz, Mainz (Germany); Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Gates, J. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gregorich, K. E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gross, C. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Herzberg, R. -D. [Univ. of Liverpool, Liverpool (United Kingdom); Hessberger, F. P. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz Institute Mainz, Mainz (Germany); Khuyagbaatar, J. [Helmholtz Institute Mainz, Mainz (Germany); Kratz, J. V. [Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Rykaczewski, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schadel, M. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Japan Atomic Energy Agency, Tokai (Japan); Aberg, S. [Lund Univ., Lund (Sweden); Ackermann, D. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Block, M. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Brand, H. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Carlsson, B. G. [Lund Univ., Lund (Sweden); Cox, D. [Univ. of Liverpool, Liverpool (United Kingdom); Derkx, X. [Helmholtz Institute Mainz, Mainz (Germany); Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Eberhardt, K. [Helmholtz Institute Mainz, Mainz (Germany); Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Even, J. [Helmholtz Institute Mainz, Mainz (Germany); Fahlander, C. [Lund Univ., Lund (Sweden); Gerl, J. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Jager, E. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Kindler, B. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Krier, J. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Kojouharov, I. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Kurz, N. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Lommel, B. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Mistry, A. [Univ. of Liverpool, Liverpool (United Kingdom); Mokry, C. [Helmholtz Institute Mainz, Mainz (Germany); Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Nitsche, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Omtvedt, J. P. [Univ. of Oslo, Oslo (Norway); Papadakis, P. [Univ. of Liverpool, Liverpool (United Kingdom); Ragnarsson, I. [Lund Univ., Lund (Sweden); Runke, J. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Schaffner, H. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Schausten, B. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Thorle-Pospiech, P. [Helmholtz Institute Mainz, Mainz (Germany); Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Torres, T. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Traut, T. [Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Trautmann, N. [Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Turler, A. [Paul Scherrer Institute and Univ. of Bern, Villigen (Switzerland); Ward, A. [Univ. of Liverpool, Liverpool (United Kingdom); Ward, D. E. [Lund Univ., Lund (Sweden); Wiehl, N. [Helmholtz Institute Mainz, Mainz (Germany); Johannes Gutenberg-Univ. Mainz, Mainz (Germany)

    2014-01-01

    Produced in the reaction 48Ca+ 243Am, thirty correlated α-decay chains were observed in an experiment conducted at the GSI Helmholzzentrum für Schwerionenforschung, Darmstadt, Germany. The decay chains are basically consistent with previous findings and are considered to originate from isotopes of element 115 with mass numbers 287, 288, and 289. A set-up aiming specifically for high-resolution charged particle and photon coincidence spectroscopy was placed behind the gas-filled separator TASCA. For the first time, γ rays as well as X-ray candidates were observed in prompt coincidence with the α-decay chains of element 115.

  7. On neutron activation analysis with γγ coincidence spectrometry

    International Nuclear Information System (INIS)

    Zeisler, Rolf; Danyal Turkoglu; Ibere Souza Ribeiro Junior; Shetty, M.G.

    2017-01-01

    A new γγ coincidence system has been set up at NIST. It is operated with a digital data finder supported by new software developed at NIST. The system is used to explore possible enhancements in instrumental neutron activation analysis (INAA) and study applicability to neutron capture prompt gamma activation analysis (PGAA). The performance of the system is tested with certified reference materials for efficiency calibration and quantitative performance. Comparisons of INAA results based on conventional gamma-ray spectrometry data with INAA results based on coincidence data obtained from the same samples show improvements in the counting uncertainties and demonstrates the quantitative accuracy of the new system. (author)

  8. Simplified slow anti-coincidence circuit for Compton suppression systems

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish

    2008-01-01

    Slow coincidence circuits for the anti-coincidence measurements have been considered for use in Compton suppression technique. The simplified version of the slow circuit has been found to be fast enough, satisfactory and allows an easy system setup, particularly with the advantage of the automatic threshold setting of the low-level discrimination. A well-type NaI detector as the main detector surrounded by plastic guard detector has been arranged to investigate the performance of the Compton suppression spectrometer using the simplified slow circuit. The system has been tested to observe the improvement in the energy spectra for medium to high-energy gamma-ray photons from terrestrial and environmental samples

  9. Intermediate energy electron scattering from sodium and potassium

    International Nuclear Information System (INIS)

    Buckman, S.J.

    1979-06-01

    This thesis describes an experimental investigation of the interaction of fast electrons with alkali metal atoms. Several of the theoretical models which have been applied to atomic collision processes including the first Born approximation, the Glauber approximation, the optical model and the distorted wave polarized orbital approximation are discussed. The theory of electron-photon coincidence experiments is outlined and the effects of fine and hyperfine structure on the polarization state of photons emitted from an excited atom are calculated for Sodium. The results of elastic scattering measurements on Sodium and Potassium are presented and used to test several theoretical models in their description of the differential cross section at incident energies between 50 and 200eV. Absolute differential and integrated total cross sections for the Potassium resonance lines and Sodium D-lines are presented. Results of the first electron-polarized photon coincidence experiment on the Sodium D-lines are presented and compared with available theoretical calculations

  10. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  11. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    International Nuclear Information System (INIS)

    Hu, Jianwei; Croft, Stephen; McElroy, Robert Dennis

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non- 3 He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235 U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  12. Multiple channel programmable coincidence counter

    Science.gov (United States)

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  13. Analysis of (HI, xnγ) coincidence spectra

    International Nuclear Information System (INIS)

    Pattabiraman, N.S.; Ghugre, S.S.; Chintalapudi, S.N.

    2000-01-01

    The increase in the sensitivity and the detection limits of the modern third generation gamma detector arrays, has made it necessary to properly understand and estimate the observed background in such experiments. The present paper extends the two algorithms to improve the genuine photo-peak-photo-peak coincident events of interest

  14. Cyclotron absorption and emission in mode conversion layers emdash a new paradigm

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-01-01

    When the analysis of absorption with mode conversion effects included began to mature in recent years, the study of the corresponding effects on emission began and has led to some surprising results. The classical expressions for cyclotron or synchrotron emission from a harmonic resonance were originally derived from models that did not include mode conversion or its attendant reflection, and classical expressions for the optical depth and opacity were obtained. When mode conversion was included, the principal surprise was that the transmission coefficient, which was understood as being due to absorption, is totally independent of absorption and due exclusively to tunneling. The other surprise from the mode conversion analysis is that the observed emission arises from two distinct sources, one direct and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case, but not for ions. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for many laboratory plasmas, leading to the validation of the classical formula for these cases, but via an entirely new paradigm in its interpretation. This review includes a summary of the absorption process for both electron and ion cyclotron harmonics, and reviews carefully the emission physics, including both potential error estimates and a discussion of the emission source distribution in space

  15. Software for the on-off-line A-A-T coincidence experiment with use of semiconductor detector of nuclear radiation

    International Nuclear Information System (INIS)

    Samatov, Zh.K.; Fominyh, V.I.; Gromov, K.Ya; Samatov, Zh.K.; Safarov, A.N.

    2006-01-01

    Full text: In γ-spectra measurements with 200 cm 3 HPGe-detector with energy resolution (FWHM) of 3.5 keV for α-rays 1.33 MeV 60 Co, 60 cm 3 Ge(Li)-detector with energy resolution of 1.9 keV for γ -rays 1.33 MeV 60 Co, 2 cm 3 HPGe-detector with energy resolution of 1.0 keV for α-rays 122 keV 57 Co and planar 250 mm 3 HPGe-detector with energy resolution of 0.5 keV for γ -rays 53 keV 133 Ba. For accumulation and analysis of the experimental information the analog electronics produced companies ORTEC, CANBERRA, Dzhelepov Laboratory of Nuclear Problem of JINR, units of the digital electronics of standard KAMAK, personal computers were used. The accumulation of information on the coincidence spectra was provided by record of each event (E 1 , E 2 , t)-coincidence (in list mode) and single spectra E 1 and E 2 that gave the broad possibilities for analysis result after completion experiment by means of the multiple sorting of information on spectra of the coincidences with installation the energy and time windows. In the report, a description of programs of the management and control of the on-off-line experiment designed at the begin 90-s being performed in Dubna by the YASNAPP-2 program [1-3] on the experimental complex for study nuclei far from the drip-line β-stability is given. The publication of the description of controlling programs is retard from publication of descriptions of the measuring equipment and result of the physical studies [4-6] due to in particular with creation in Institute of Nuclear Physics in Tashkent of the experimental complex γ-γ -coincidences, which can be used to accumulate the unpublished material by authors. The programs are formed in the Turbo-Pascal language with reference to the KAMAK-standard digital equipment and spectrometric equipment in standard NIM. It is properly to classify beforehand the programs in amount of 50 items: Program of the accumulation coincidence spectra of the type A-A-T with using the digital windows and

  16. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Design and test of 4πβ-γ coincidence measurement device based on DSP technology

    International Nuclear Information System (INIS)

    Zeng Herong; Feng Qijie; Leng Jun; Qian Dazhi; Bai Lixin; Zhang Yiyun

    2012-01-01

    The paper illustrates the hardware and software of the 4πβ-γ coincidence measurement device based on DSP technology in detail. In such device, the single-channel analyzer, gate generator, coincidence circuit and scalar in the traditional coincidence measurement device are replaced by the digital coincidence acquirer which is researched and manufactured by ourselves. Doing so, the measurement efficiency will be respectively improved, and the hardware cost will be lowered. The comparison experiment shows that the design of such device is a success. (authors)

  18. Electron spectroscopy studies of argon K-shell excitation and vacancy cascades

    International Nuclear Information System (INIS)

    Southworth, S.H.; MacDonald, M.A.; LeBrun, T.; Azuma, Y.; Cooper, J.W.

    1995-01-01

    Electron spectroscopy combined with tunable synchrotron radiation has been used for studies of Ar K-shell excitation and vacancy decay processes. In addition, electrons and fluorescent X-rays have been recorded in coincidence to select subsets of the ejected electron spectra. Examples are presented for Ar 1s photoelectrons and KLL and LMM Auger spectra

  19. Measurement of Auger electron energies and intensities from muonic transitions in silver

    International Nuclear Information System (INIS)

    Callies, R.; Daniel, H.; Egidy, T. von; Hagn, H.; Hartmann, F.J.; Neumann, W.

    1983-01-01

    There is now general agreement that Coulomb capture of mesonic particles and deexcitation of the formed exotic atom must be accompanied by Auger electron emission. Auger electrons from a thin silver foil were counted by Si-pn-junction detectors with an extraordinarily thin dead layer. Lines could be resolved and intensity ratios determined. Two types of experiments were performed simultaneously, (I) with the slow-muon telescope in coincidence with any e - detector of the array and (II) as above but with an additional Ag X-ray coincidence from a Ge(Li) detector placed close to the target. (Auth.)

  20. Recombination luminescence from H centers and conversion of H centers into I centers in alkali iodides

    International Nuclear Information System (INIS)

    Berzina, B.J.

    1981-01-01

    The study is aimed at the search for H-plus-electron centers of luminescence and the investigation of the conversion of H- into I centers by the luminescence of H-plus-electron centers in alkali iodide crystals. KI, RbI and NaI crystals were studied at 12 K. H and F centers were created by irradiation with ultraviolet light corresponding to the absorption band of anion excitons. Then the excitation of electron centers by red light irradiation was followed. The spectra of stimulated recombination luminescence were studied. The luminescence of H-plus- electron centers had been observed and the conclusion was made that this center was formed on immobile H centers. In case of stable H centers the optically stimulated conversion of H centers into I centers occurs. The assumption is advanced on the spontaneous annihilation of near placed unstable F, H centers which leads to the creation of H-plus-electron luminescence centers and to the spontaneous H-I-centers conversion [ru

  1. Subtraction of random coincidences in γ-ray spectroscopy: A new approach

    International Nuclear Information System (INIS)

    Pattabiraman, N.S.; Ghugre, S.S.; Basu, S.K.; Garg, U.; Ray, S.; Sinha, A.K.; Zhu, S.

    2006-01-01

    A new analytical method for estimation and subsequent subtraction of random coincidences has been developed. It utilizes the knowledge of the counts in the main diagonal of a background-subtracted symmetric data set for the estimation of the events originating from random coincidences. This procedure has been successfully applied to several data sets. It could be a valuable tool for low-fold data sets, especially for low-cross-section events

  2. Development of an analysis methodology applied to 4πβ-γ software coincidence data acquisition system

    International Nuclear Information System (INIS)

    Brancaccio, Franco; Dias, Mauro da Silva; Toledo, Fabio de

    2009-01-01

    The present work describes the new software methodology under development at the IPEN Nuclear Metrology Laboratory for radionuclide standardizations with 4πβ-γ coincidence technique. The software includes the Coincidence Graphic User Interface (GUI) and the Coincidence Analysis Program. The first results for a 60 Co sample measurement are discussed and compared to the results obtained with two different conventional coincidence systems. (author)

  3. Conversion of thermall energy to mechanical work in the oscillations with steam condensation in pool water

    International Nuclear Information System (INIS)

    Aya, Izuo; Nariai, Hideki.

    1988-01-01

    Pressure and fluid oscillations with steam injection into pool water were discussed from the view point of the conversion of thermal energy into mechanical work. When the change of fluid state moves clockwise in the p-V diagram, the oscillation sustains since the thermal energy changes into positive work. The equations difining the mechanical work at the condensation oscillations were presented. The oscillation threshold determined by the condition that mechanical work became zero, coincided with the values derived by the linear oscillation theory. The changes of pressure and specific volume during chugging were also shown with one dimensional simulation analysis. The p-V diagrams at various chugging modes were presented with the movement of steam water interface, and the conversion efficiency of thermal energy to mechanical work was also discussed. (author)

  4. Boron-Coated Straw Collar for Uranium Neutron Coincidence Collar Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The objective of this project was to design and optimize, in simulation space, an active neutron coincidence counter (or collar) using boron-coated straws (BCSs) as a non-3He replacement to the Uranium Neutron Coincidence Collar (UNCL). UNCL has been used by the International Atomic Energy Agency (IAEA) and European Atomic Energy Community (Euratom) since the 1980s to verify the 235U content in fresh light water reactor fuel assemblies for safeguards purposes. This report documents the design and optimization of the BCS collar.

  5. Optical simulations for the S3 project - Super separator spectrometer - gamma-electron coincidence spectroscopy of a transfermium nucleus: the 251Md101

    International Nuclear Information System (INIS)

    Dechery, Fabien

    2012-01-01

    In analogy with the atomic closed shells giving rise to the stability and high ionisation energies of noble gases, nuclear physics also has its magic numbers of protons and neutrons which enhance nuclear structure stability. Knowledge of the structure of doubly-magic nuclei, both proton and neutron numbers, is crucial to parameterize theoretical models. The discovery of the next and ultimate magic numbers will provide a strong constraint on the many predictions. These two numbers are like the centre coordinates of an area of enhanced stability of the nuclear chart, well known as 'island of stability'. These superheavy nuclei only exist due to pure quantum shell effects. My thesis work deals with two distinct, but complementary, aspects of fundamental physics with the common goal of studying these extreme mass nuclei structure. The first part corresponds to the development of a next generation instrument for nuclear physics to allow synthesis and spectroscopy studies of superheavy nuclei: the Super Separator Spectrometer S 3 . This project will be installed at SPIRAL2 (GANIL) and has been approved by the French Research National Agency (ANR) within the EQUIPEX framework. It has been designed to take advantage of the high intensity heavy ion beam from the LINAC, giving access to a wide range of physical programs. The second part corresponds to the preparation, realisation and analysis of an experiment on 251-Mendelevium in which the very first prompt gamma-electron coincidence spectroscopy was performed for a transfermium nuclei. (author) [fr

  6. Calibration and adjustment of the EGRET coincidence/time-of-flight system

    International Nuclear Information System (INIS)

    Hunter, S.D.

    1991-01-01

    The coincidence/time-of-flight system of the energetic gamma ray experiment telescope (EGRET) on NASA's Gamma Ray Observatory (GRO) consists of two layers of sixteen scintillator tiles. These tiles are paired into 96 coincidence telescopes. Valid coincidence and time-of-flight values (indicating downward moving particles) from one of these telescopes are two of the requirements for an EGRET event trigger. To maximize up-down discrimination, variations in the mean timing value of the telescopes must be minimized. The timing values of the 96 telescopes are not independent, hence they cannot be individually adjusted to calibrate the system. An iterative approach was devised to determine adjustments to the length of the photomultiplier signal cables. These adjustments were made directly in units of time using a time domain reflectometry technique, by timing the reflection of a fast pulse from the unterminated end of eable, and observing the charge in signal propagation time as the length of the cable was shortened. Two constant fraction discriminators, a time-to-amplitude converter and a pulse height analyzer were used for these measurements. Using this direct time measuring approach, the timing values for the 96 EGRET coincidence/time-of-flight telescopes were adjusted with an FWHM variation of less than 450 ps (± 1 TOF timing channel). (orig.)

  7. Newnes electronics engineers pocket book

    CERN Document Server

    Brindley, Keith

    2013-01-01

    This book is packed with information and material which everyone involved in electronics will find indispensable. Now when you need to know a transistor's characteristics, or an integrated circuit's pinout details, simply look it up! The book is full of tables, symbols, formulae, conversions and illustrations.Promotion via the new Newnes Pocket Book catalogue to the electronics trade will drive sales into the book trade Covers component data; encapsulations; pin-outs; symbols & codings Extensive material on conversion factors, formulae; units and relationships

  8. Many-body effect in the resonant Ti L23-M23V Auger-electron spectroscopy spectra and Auger-photoelectron coincidence spectroscopy spectra of Ti oxides

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    Recently Danger et al. [J. Danger, H. Magnan, D. Chandesris, P. Le Fevre, S. Bourgeois, J. Jupille, A. Verdini, R. Gotter, A. Morgante, Phys. Rev. B 64 (2001) 045110] and Le Fevre et al. [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B 69 (2004) 155421] showed the absence of resonant Raman scattering feature in the Ti L 23 -M 23 V resonant Auger-electron spectroscopy (RAES) spectra of Ti oxides measured across the Ti 2p edges. They attributed the absence to the covalent character of the Ti-O bond which allows an effective delocalization of 3d electrons. It is shown by a many-body theory that when the time scale of relaxation of the resonantly excited core-hole state to the fully relaxed core-hole state is much shorter than that of core-hole decay, any sizeable Raman scattering is absent in the RAES spectra measured across the Ti 2p edges. The relaxation width depends on the hybridization strength and the charge transfer (CT) energy between the two states. The L 2 -L 3 V Coster-Kronig (CK) decay widths of TiO 2 and TiO 2-x are determined from the L 23 -M 23 V Auger-photoelectron coincidence spectroscopy (APECS) spectra reported in the aforementioned papers. They are about 0.18 and 0.35 eV, respectively. The CK-decay width in the reduced Ti oxide increases compared to that of TiO 2 in rutile because of filling of the 3d states just below the Fermi level in the former

  9. Coincidence and noncoincidence counting (81Rb and 43K): a comparative study

    International Nuclear Information System (INIS)

    Ikeda, S.; Duken, H.; Tillmanns, H.; Bing, R.J.

    1975-01-01

    The accuracy of imaging and resolution obtained with 81 Rb and 43 K using coincidence and noncoincidence counting was compared. Phantoms and isolated infarcted dog hearts were used. The results clearly show the superiority of coincidence counting with a resolution of 0.5 cm. Noncoincidence counting failed to reveal even sizable defects in the radioactive source. (U.S.)

  10. Study of heavy element structure with in-beam α-, β- and γ-ray spectroscopy

    International Nuclear Information System (INIS)

    Meyer, R.A.; Decman, D.J.; Henry, E.A.; Hoff, R.W.; Mann, L.G.; Struble, G.L.; Ussery, L.E.

    1984-01-01

    We describe our in-beam superconducting conversion electron spectrometer and its use in a (t,p) proton-conversion electron coincidence mode. Several examples of completed and on-going investigations are presented. These include: E0 strength from the 238 U fission isomer; electromagnetic properties of the J/sup π/ = 6 + and 8 + states of 210 Pb; single particle and cluster states of 213 Fr; the J/sup π/ = 21/2 + isomer in 197 Au and 199 Au; and the cluster states of 199 Au. Results of the study of odd-odd deformed 244 Am are presented. The latter results performed using neutron-capture gamma-ray and conversion electron techniques are compared to recent developments in the modeling of deformed odd-odd nuclei. 23 refs., 10 figs., 1 tab

  11. Design and development of VHDL based IP core for coincidence analyzer for FPGA based TDCR system

    International Nuclear Information System (INIS)

    Agarwal, Shivam; Gupta, Ashutosh; Chaudhury, Probal; Sharma, M.K.; Kulkarni, M.S.

    2018-01-01

    The coincidence counting technique is used in activity measurement methods to determine the activity of radionuclide e.g. 4πβ-γ method and Triple to Double Coincidence Ratio (TDCR) method etc. The 4πβ-γ method requires two inputs Coincidence Analyzer (CA) whereas; TDCR method requires three inputs CA. A VHDL (Very High Speed Integrated Circuit Hardware Description Language) based IP (Intellectual Property) core for coincidence analyzer has been designed and implemented in FPGA (Field Programmable Gate Array) for TDCR system. The developed IP not only facilitates the coincidence counting of three channels simultaneously but also provides an extendable dead time feature

  12. Study of a 4{pi}{beta}-{gamma} coincidence system for absolute radionuclide activity measurement using plastic scintillators; Estudo de um sistema de coincidencias 4{pi}{beta}-{gamma} para a medida absoluta de atividade de radionuclideos empregando cintiladores plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Piuvezam Filho, Helio

    2007-07-01

    The present work was intended to study a coincidence system 4{pi}(PS){beta}-{gamma} for absolute activity measurement using plastic scintillators in 4{pi} geometry. Along with experiments on the coincidence system, simulations were also performed applying the Monte Carlo Method, by means of codes PENELOPE and ESQUEMA. These simulations were performed in order to calculate the extrapolation curve of the coincidence system 4{pi}(PS){beta}-{gamma} and compare it to experimental data. A new geometry was proposed to the coincidence system adding up a second photomultiplier tube to the previous system for improving light collection from the plastic scintillator, as this system presented limitations in the minimum detected energy due to the presence of electronic noise and low gain. The results show that an improvement in the signal-to-noise ratio was obtained, as well as in the minimum detected energy. Moreover, there was an increase in the detection efficiency. With these modifications, it is now possible to calibrate radionuclides which emit low energy electrons or X-rays, increasing the number of radionuclides that can be standardized with this type of system.(author)

  13. True coincidence-summing corrections for the coincident γ-rays measured with coplanar grid CdZnTe detectors

    International Nuclear Information System (INIS)

    Yuecel, H.; Solmaz, A.N.; Koese, E.; Bor, D.

    2010-01-01

    In this study, true coincidence-summing (TCS) correction factors have been measured for the sources 22 Na, 60 Co, 133 Ba and 152 Eu by use of three large volume coplanar grid CdZnTe (acronym: CZT) detectors. In case of a close-in detection geometry, two different TCS calculation algorithms were used to compute the required TCS correction factors. Both of the algorithms are based on the measured total-to-peak (TTP) ratio and full-energy peak (FEP) efficiency values that were obtained using almost 'single' energy and coincidence-free nuclides. The results for TCS correction factors obtained by two different algorithms were agreeable to each other. The obtained TCS factors were ranged from about 7% to 30.5% in a 2250 mm 3 CZT detector when a close counting geometry was used. For other two detectors with a volume of 1000 and 1687.5 mm 3 , the resulted TCS correction factors were relatively smaller and varied between about 0.1% and 20% at the close counting geometry condition. Therefore, the results indicate that there is a need for the estimation of TCS corrections in CZT detectors, especially when their crystal volumes are greater than 1 cm 3 and these detectors are used in the case of a close-in detection geometry.

  14. Uranium mass and neutron multiplication factor estimates from time-correlation coincidence counts

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wenxiong [China Academy of Engineering Physics, Center for Strategic Studies, Beijing 100088 (China); Li, Jiansheng [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang 621900 (China); Zhu, Jianyu [China Academy of Engineering Physics, Center for Strategic Studies, Beijing 100088 (China)

    2015-10-11

    Time-correlation coincidence counts of neutrons are an important means to measure attributes of nuclear material. The main deficiency in the analysis is that an attribute of an unknown component can only be assessed by comparing it with similar known components. There is a lack of a universal method of measurement suitable for the different attributes of the components. This paper presents a new method that uses universal relations to estimate the mass and neutron multiplication factor of any uranium component with known enrichment. Based on numerical simulations and analyses of 64 highly enriched uranium components with different thicknesses and average radii, the relations between mass, multiplication and coincidence spectral features have been obtained by linear regression analysis. To examine the validity of the method in estimating the mass of uranium components with different sizes, shapes, enrichment, and shielding, the features of time-correlation coincidence-count spectra for other objects with similar attributes are simulated. Most of the masses and multiplications for these objects could also be derived by the formulation. Experimental measurements of highly enriched uranium castings have also been used to verify the formulation. The results show that for a well-designed time-dependent coincidence-count measuring system of a uranium attribute, there are a set of relations dependent on the uranium enrichment by which the mass and multiplication of the measured uranium components of any shape and size can be estimated from the features of the source-detector coincidence-count spectrum.

  15. Photoactive Molecular Dyads [Ru(bpy)3-M(ttpy)2] n+ on Gold (M = Co(III), Zn(II)): Characterization, Intrawire Electron Transfer, and Photoelectric Conversion.

    Science.gov (United States)

    Le-Quang, Long; Farran, Rajaa; Lattach, Youssef; Bonnet, Hugues; Jamet, Hélène; Guérente, Liliane; Maisonhaute, Emmanuel; Chauvin, Jérôme

    2018-04-23

    We propose in this work a stepwise approach to construct photoelectrodes. This takes advantage of the self-assembly interactions between thiol with a gold surface and terpyridine ligands with first-row transition metals. Here, a [Ru(bpy) 3 ] 2+ photosensitive center bearing a free terpyridine group has been used to construct two linear dyads on gold (Au/[Zn II -Ru II ] 4+ and Au/[Co III -Ru II ] 5+ ). The stepwise construction was characterized by electrochemistry, quartz crystal microbalance, and atomic force microscopy imaging. The results show that the dyads behave as rigid layers and are inhomogeneously distributed on the surface. The surface coverages are estimated to be in the order of 10 -11 mol cm -2 . The kinetics of the heterogeneous electron transfer is determined on modified gold ball microelectrodes using Laviron's formula. The oxidation rates of the terminal Ru(II) subunits are estimated to be 700 and 2300 s -1 for Au/[Zn II -Ru II ] 4+ and Au/[Co III -Ru II ] 5+ , respectively. In the latter case, the rate is limited by the kinetics of electron transfer between an intermediate Co(II) center and the gold surface. For Au/[Zn II -Ru II ] 4+ , the Zn-bis-terpyridine center is not involved in the electron-transfer process and the oxidation of the Ru(II) subunit occurs through a superexchange process. In the presence of a tertiary amine in solution, the electrodes at a bias of 0.12 V behave as photoanodes when subjected to visible light irradiation. The magnitude of the photocurrent is around 10 μA cm -2 for Au/[Co III -Ru II ] 5+ and 5 μA cm -2 for Au/[Zn II -Ru II ] 4+ , proving the importance of an electron relay on the photon-to-current conversion. The results suggest an efficient conversion for Au/[Co III -Ru II ] 5+ , since each bound dyad, once excited, injects an electron around 10 times per second.

  16. Trapped electron decay by the thermally-assisted tunnelling to electron acceptors in glassy matrices. A computer simulation study

    International Nuclear Information System (INIS)

    Feret, B.; Bartczak, W.M.; Kroh, J.

    1991-01-01

    The Redi-Hopefield quantum mechanical model of the thermally-assisted electron transfer has been applied to simulate the decay of trapped electrons by tunnelling to electron acceptor molecules added to the glassy matrix. It was assumed that the electron energy levels in donors and acceptors are statistically distributed and the electron excess energy after transfer is dissipated in the medium by the electron-phonon coupling. The electron decay curves were obtained by the method of computer simulation. It was found that for a given medium there exists a certain preferred value of the electronic excess energy which can be effectively converted into the matrix vibrations. If the mismatch of the electron states on the donor and acceptor coincides with the ''resonance'' energy the overall kinetics of electron transfer is accelerated. (author)

  17. Electron-positron pair production in ultrarelativistic atomic collisions: 6.4 TeV S16+ with Au, Pd and Al

    International Nuclear Information System (INIS)

    Datz, S.; Vane, C.R.; Dittner, P.F.; Krause, H.F.; Schuch, R.; Gao, H.; Hutton, R.

    1994-01-01

    Angular and momentum distributions have been measured for electron-positron pairs created in peripheral collisions of 6.4 TeV bare sulfur ions with thin targets of Al, Pd, and Au. Singly- and doubly-differential cross sections are presented for 1--17 MeV/c electrons and positrons detected independently and in coincidence as pairs. Various physical parameters are deduced from the coincident electron and positron data, including probability distributions for the pair transverse momentum, the pair total energy, and the positron fraction of the pair energy

  18. A survey of mode-conversion transparency windows between external electromagnetic waves and electron Bernstein waves for various plasma slab boundaries

    International Nuclear Information System (INIS)

    Igami, H; Tanaka, H; Maekawa, T

    2006-01-01

    For the plasma slab boundary with monotonically increasing density profile along the x axis and the magnetic field along the z axis, both N z and N y components of the refractive index are parallel to the plasma slab and are conserved in the mode-conversion process between the vacuum transverse electromagnetic (TEM) waves and the electron Bernstein (B) waves. Information of N z and N y is sufficient to identify the waves uniquely both for TEM waves and B waves coupled by mode conversion. Furthermore, the wave differential equation which governs the mode-conversion process can be written in the normalized form with a few numbers of the normalized parameters and variables for the linear density profile. Thus, the mode-conversion transparency window, which is presented as a contour plot of the mode-conversion rate versus the N z -N y plane, can be categorized for the pair of parameters of the density scale length normalized to the wavelength in vacuum L n /λ 0 and the frequency to the cyclotron frequency ω/Ω. A survey of the transparency windows for various parameter ranges of L n /λ 0 and ω/Ω is presented. The windows are categorized into four types. The frosted type at the steepest density gradient region has a broad transparency profile but even the peak is not completely transparent. The perpendicular-X type at the next steep density gradient region also has a broad transparency profile with a completely transparent peak by the perpendicularly propagating extraordinary waves. The OXB type at the gentle density gradient region has a pair of completely transparent sharp peaks by the obliquely propagating ordinary waves at the optimal propagation angles with N z = ±N parallelopt and N y 0. The fourth is the g 1 type in the intermediate density gradient region between the above two cases, which has two completely transparent peaks in the window. Finally, a simulation to examine the applicability of the survey to experiments is made using a test density profile

  19. Contributions to a systematic examination of deformed transition nuclei by the study of the decay of 188Tl and 190Tl

    International Nuclear Information System (INIS)

    Waetzig, W.

    1980-01-01

    Using the reaction 197 Au( 3 He,xn) Tl the decay of the nuclides 188 Tl and 190 Tl to 188 Hg (Tsub(1/2) = 70s) respectively to 190 Hg(Tsub(1/2) = 3.0 min) was studied at the mass separator ISOCELE of the Orsay-synchrocyclotron by gamma, conversion electron, gamma-gamma coincidence, and electron-gamma coincidence spectroscopy. The level schemes of 188 Hg and 190 Hg could be remarkably extended in comparison with earlier works. By a statistical analysis of the nuclear level density the nuclear temperature was calculated as a measure for the number of excitation modes of these nuclei. (orig./HSI) [de

  20. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    Science.gov (United States)

    Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.

    1997-06-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.

  1. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    International Nuclear Information System (INIS)

    Lewellen, T.K.; Miyaoka, R.S.; Kaplan, M.S.

    1996-01-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz

  2. Passive neutron coincidence counting with plastic scintillators for the characterization of radioactive waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Deyglun, C.; Simony, B.; Perot, B.; Carasco, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Saurel, N.; Colas, S. [CEA, DAM, Valduc, F-21120 Is-sur-Tille (France); Collot, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble Alpes, CNRS/IN2P3, Grenoble (France)

    2015-07-01

    The quantification of radioactive material is essential in the fields of safeguards, criticality control of nuclear processes, dismantling of nuclear facilities and components, or radioactive waste characterization. The Nuclear Measurement Laboratory (LMN) of CEA is involved in the development of time-correlated neutron detection techniques using plastic scintillators. Usually, 3He proportional counters are used for passive neutron coincidence counting owing to their high thermal neutron capture efficiency and gamma insensitivity. However, the global {sup 3}He shortage in the past few years has made these detectors extremely expensive. In addition, contrary to {sup 3}He counters for which a few tens of microseconds are needed to thermalize fast neutrons, in view to maximize the {sup 3}He(n,p){sup 3}H capture cross section, plastic scintillators are based on elastic scattering and therefore the light signal is formed within a few nanoseconds, correlated pulses being detected within a few dozen- or hundred nanoseconds. This time span reflects fission particles time of flight, which allows reducing accordingly the duration of the coincidence gate and thus the rate of random coincidences, which may totally blind fission coincidences when using {sup 3}He counters in case of a high (α,n) reaction rate. However, plastic scintillators are very sensitive to gamma rays, requiring the use of a thick metallic shield to reduce the corresponding background. Cross talk between detectors is also a major issue, which consists on the detection of one particle by several detectors due to elastic or inelastic scattering, leading to true but undesired coincidences. Data analysis algorithms are tested to minimize cross-talk in simultaneously activated detectors. The distinction between useful fission coincidences and the correlated background due to cross-talk, (α,n) and induced (n,2n) or (n,n'γ) reactions, is achieved by measuring 3-fold coincidences. The performances of a

  3. Sub aqueous electronics of neutrino detector; Podvodnaya ehlektronika nejtrinnogo detektora

    Energy Technology Data Exchange (ETDEWEB)

    Borisovets, B A; Donskikh, L A; Klabukov, A M [and others

    1996-12-31

    Paper describes the systems of measuring electronics of NT-200 neutrino detector designed to carry out investigations in the field of neutrino astrophysics. Correlation measuring electronics unit are presented by two two-level discriminators and coincidence circuit is studied. 6-channel unit of electronic chain covering time-code number recording is designed for data communication into the computer. detector calibration mode is described. 3 refs.

  4. iDEEAA: A novel, versatile apparatus for electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lupulescu, C., E-mail: cosmin.lupulescu@helmholtz-berlin.de [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Arion, T. [Centre for Free-Electron Laser Science (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Hergenhahn, U. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Ovsyannikov, R. [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Förstel, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Gavrila, G. [Technische Universität Chemnitz, Fakultät Elektrotechnik und Informationstechnik, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Eberhardt, W. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Centre for Free-Electron Laser Science (DESY), Notkestrasse 85, 22607 Hamburg (Germany)

    2013-12-15

    Highlights: •We developed an experimental end station for time- and angle-resolved X-ray electron spectroscopy. •The instrument can operate in combination with synchrotron radiation, VUV Helium discharge source or table-top high-harmonic laser sources. •Band mapping in solids is possible with unprecedented rapidity. •Electron–electron coincidence spectroscopy is performed at higher data collection rate (due to improved transmission) and with improved energy resolution. -- Abstract: We report the development and present status of the iDEEAA (Instrument for Direct Electron Energy and Angular Analysis) experimental end station for time- and angle-resolved X-ray photoelectron spectroscopy. The setup is based on multidimensional detection of photoelectrons by means of both time-of-flight (TOF) and/or electrostatic analyzers. The instrument offers the possibility to record simultaneously and independently photoelectron and Auger electron spectra. Samples can be either gases or solids. The system can operate with multiple photon sources, such as laboratory-based table-top laser extreme ultraviolet (EUV) sources, monochromatic Helium discharge lamp and soft X-ray synchrotron pulses. We demonstrate the performance of the setup by carrying out electron–electron coincidence experiments on CH{sub 4} and by mapping the band structure of Bi{sub 2}Se{sub 3} using photons of the BESSY II electron storage ring.

  5. Device for multi-dimensional γ-γ-coincidence study

    International Nuclear Information System (INIS)

    Gruzinova, T.M.; Erokhina, K.I.; Kutuzov, V.I.; Lemberg, I.Kh.; Petrov, S.A.; Revenko, V.S.; Senin, A.T.; Chugunov, I.N.; Shishlinov, V.M.

    1977-01-01

    A device for studying multi-dimensional γ-γ coincidences is described which operates on-line with the BESM-4 computer. The device comprises Ge(Li) detectors, analog-to-digital converters, shaper discriminators and fast amplifiers. To control the device operation as a whole and to elaborate necessary commands, an information distributor has been developed. The following specific features of the device operation are noted: the device may operate both in the regime of recording spectra of direct γ radiation in the block memory of multi-channel analyzer, and in the regime of data transfer to the computer memory; the device performs registration of coincidences; it transfers information to the computer which has a channel of direct access to the memory. The procedure of data processing is considered, the data being recorded on a magnetic tape. Partial spectra obtained are in a good agreement with data obtained elsewhere

  6. Microturbine Power Conversion Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  7. The synthesis method for design of electron flow sources

    Science.gov (United States)

    Alexahin, Yu I.; Molodozhenzev, A. Yu

    1997-01-01

    The synthesis method to design a relativistic magnetically - focused beam source is described in this paper. It allows to find a shape of electrodes necessary to produce laminar space charge flows. Electron guns with shielded cathodes designed with this method were analyzed using the EGUN code. The obtained results have shown the coincidence of the synthesis and analysis calculations [1]. This method of electron gun calculation may be applied for immersed electron flows - of interest for the EBIS electron gun design.

  8. Timing coincidence studies with fast photomultipliers

    International Nuclear Information System (INIS)

    Raoof, M.A.; Raoof, S.A.

    1981-01-01

    The time response of RCA C70045D photomultipliers was studied using a subnanosecond light flasher. The tubes, which have an output rise time of approximately 0.5 ns, were used in coincidence to study the variations in the fwhm of the time spectrum over a certain dynamic range of pulse amplitudes for both leading edge and constant fraction discrimination. A comparison has also been made for the measured time resolutions with some of the other fast photomultipliers. (orig.)

  9. Digital electronics

    CERN Document Server

    Morris, John

    2013-01-01

    An essential companion to John C Morris's 'Analogue Electronics', this clear and accessible text is designed for electronics students, teachers and enthusiasts who already have a basic understanding of electronics, and who wish to develop their knowledge of digital techniques and applications. Employing a discovery-based approach, the author covers fundamental theory before going on to develop an appreciation of logic networks, integrated circuit applications and analogue-digital conversion. A section on digital fault finding and useful ic data sheets completes th

  10. Electron identification at CDF

    International Nuclear Information System (INIS)

    Kim, Shinhong

    1990-01-01

    Electron identification at CDF is performed using the information of lateral and longitudinal shower spread, the track-cluster position match and the energy-momentum match. The tracking chamber with a solenoidal magnetic field at CDF is powerful for rejecting the backgrounds such as the π ± - π 0 overlaps, the π 0 /γ conversions and interactive π ± in electromagnetic calorimeter: The energy- momentum match cut can decrease the background due to the π ± - π 0 overlaps for non-isolated electrons with Et above 10 GeV by a factor of 20. The conversion electrons are identified using track information with an efficiency of 80 ± 3%. The charge of electrons from W decay can be determined in the pseudorapidity range of |η| < 1.7 at CDF. The charge determination is useful for background estimation of Drell-Yan physics and heavy flavor physics. 5 refs., 5 figs

  11. A method for measuring the energy spectrum of coincidence events in positron emission tomography.

    Science.gov (United States)

    Goertzen, Andrew L; Stout, David B; Thompson, Christopher J

    2010-01-21

    Positron emission tomography (PET) system energy response is typically characterized in singles detection mode, yet there are situations in which the energy spectrum of coincidence events might be different than the spectrum measured in singles mode. Examples include imaging with isotopes that emit a prompt gamma in coincidence with a positron emission, imaging with low activity in a LSO/LYSO-based cameras, in which the intrinsic activity is significant, and in high scatter situations where the two 511 keV photons have different scattering probabilities (i.e. off-center line source). The ability to accurately measure the energy spectrum of coincidence events could be used for validating simulation models, optimizing energy discriminator levels and examining scatter models and corrections. For many PET systems operating in coincidence mode, the only method available for estimating the energy spectrum is to step the lower and upper level discriminators (LLD and ULD). Simple measurement techniques such as using a narrow sliding energy window or stepping only the LLD will not yield a spectrum of coincidence events that is accurate for cases where there are different energy components contributing to the spectrum. In this work we propose a new method of measuring the energy spectrum of coincidence events in PET based on a linear combination of two sets of coincident count measurements: one made by stepping the LLD and one made by stepping the ULD. The method was tested using both Monte Carlo simulations of a Siemens microPET R4 camera and measured data acquired on a Siemens Inveon PET camera. The results show that our energy spectrum calculation method accurately measures the coincident energy spectra for cases including the beta/gamma spectrum of the (176)Lu intrinsic activity present in the LSO scintillator crystals, a (68)Ge source and an (124)I source (in which there are prompt gamma-rays emitted together with the positron).

  12. THE LIMITED EFFECT OF COINCIDENT ORIENTATION ON THE CHOICE OF INTRINSIC AXIS (.).

    Science.gov (United States)

    Li, Jing; Su, Wei

    2015-06-01

    The allocentric system computes and represents general object-to-object spatial relationships to provide a spatial frame of reference other than the egocentric system. The intrinsic frame-of-reference system theory, which suggests people learn the locations of objects based upon an intrinsic axis, is important in research about the allocentric system. The purpose of the current study was to determine whether the effect of coincident orientation on the choice of intrinsic axis was limited. Two groups of participants (24 men, 24 women; M age = 24 yr., SD = 2) encoded different spatial layouts in which the objects shared the coincident orientation of 315° and 225° separately at learning perspective (0°). The response pattern of partial-scene-recognition task following learning reflected different strategies for choosing the intrinsic axis under different conditions. Under the 315° object-orientation condition, the objects' coincident orientation was as important as the symmetric axis in the choice of the intrinsic axis. However, participants were more likely to choose the symmetric axis as the intrinsic axis under the 225° object-orientation condition. The results suggest the effect of coincident orientation on the choice of intrinsic axis is limited.

  13. Molybdate and molybdate/permanganate conversion coatings on Mg-8.5Li alloy

    International Nuclear Information System (INIS)

    Wang Guixiang; Zhang Milin; Wu Ruizhi

    2012-01-01

    A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.

  14. Molybdate and molybdate/permanganate conversion coatings on Mg-8.5Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guixiang, E-mail: wgx0357@126.com [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang Milin; Wu Ruizhi [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2012-01-15

    A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.

  15. MIL-HDBK-338-Environmental Conversion Table Correction

    Science.gov (United States)

    Hark, Frank; Novack, Steve

    2017-01-01

    In reliability analysis for space launch vehicles, limited data is frequently a challenge due to the pure number of launches. A common solution is to use surrogate historical data of similar components from other industries (military data). The operating environment of the common data may be different from that of the necessary target analysis. The military electronic design handbook (MIL-HDBK-338) has a table for converting Mean Time Between Failure (MTBF) data from one environment to another. However, the table has some discrepancies and rounding of complementary conversions; namely going from environment A to B does not given the same result as going from B to A. This presentation will show the discrepancies in the original conversation table, the greater than expected magnitude, the problem with the updated published table and a suggested corrected table to reference when doing MTBF data environment conversion.

  16. Monte Carlo simulation of β γ coincidence system using plastic scintillators in 4π geometry

    Science.gov (United States)

    Dias, M. S.; Piuvezam-Filho, H.; Baccarelli, A. M.; Takeda, M. N.; Koskinas, M. F.

    2007-09-01

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, São Paulo, Brazil, has been applied for simulating a 4 πβ(PS)-γ coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4 π geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to 60Co and 133Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4 πβ(PC)-γ coincidence system.

  17. The IAEA neutron coincidence counting (INCC) and the DEMING least-squares fitting programs

    International Nuclear Information System (INIS)

    Krick, M.S.; Harker, W.C.; Rinard, P.M.; Wenz, T.R.; Lewis, W.; Pham, P.; Ridder, P. de

    1998-01-01

    Two computer programs are described: (1) the INCC (IAEA or International Neutron Coincidence Counting) program and (2) the DEMING curve-fitting program. The INCC program is an IAEA version of the Los Alamos NCC (Neutron Coincidence Counting) code. The DEMING program is an upgrade of earlier Windows reg-sign and DOS codes with the same name. The versions described are INCC 3.00 and DEMING 1.11. The INCC and DEMING codes provide inspectors with the software support needed to perform calibration and verification measurements with all of the neutron coincidence counting systems used in IAEA inspections for the nondestructive assay of plutonium and uranium

  18. Automatic analysis algorithm for radionuclide pulse-height data from beta-gamma coincidence systems

    International Nuclear Information System (INIS)

    Foltz Biegalski, K.M.

    2001-01-01

    There are two acceptable noble gas monitoring measurement modes for Comprehensive Nuclear-Test-Ban-Treaty (CTBT) verification purposes defined in CTBT/PC/II/WG.B/1. These include beta-gamma coincidence and high-resolution gamma-spectrometry. There are at present no commercial, off-the-shelf (COTS) applications for the analysis of β-γ coincidence data. Development of such software is in progress at the Prototype International Data Centre (PIDC) for eventual deployment at the International Data Centre (IDC). Flowcharts detailing the automatic analysis algorithm for β-γ coincidence data to be coded at the PIDC is included. The program is being written in C with Oracle databasing capabilities. (author)

  19. Kinematical coincidence method in transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, L.; Amorini, F. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Auditore, L. [INFN Gruppo Collegato di Messina and Dipartimento di Fisica, Università di Messina (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cardella, G., E-mail: cardella@ct.infn.it [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Chatterjiee, M.B. [Saha Institute for Nuclear Physics, Kolkata (India); De Filippo, E. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Francalanza, L.; Gianì, R. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Grassi, L. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Rudjer Boskovic Institute, Zagreb (Croatia); Grzeszczuk, A. [Institut of Physics, University of Silesia, Katowice (Poland); La Guidara, E. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Lanzalone, G. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Facoltà di Ingegneria e Architettura, Università Kore, Enna (Italy); Lombardo, I. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Loria, D.; Minniti, T. [INFN Gruppo Collegato di Messina and Dipartimento di Fisica, Università di Messina (Italy); Pagano, E.V. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); and others

    2013-07-01

    A new method to extract high resolution angular distributions from kinematical coincidence measurements in binary reactions is presented. Kinematics is used to extract the center of mass angular distribution from the measured energy spectrum of light particles. Results obtained in the case of {sup 10}Be+p→{sup 9}Be+d reaction measured with the CHIMERA detector are shown. An angular resolution of few degrees in the center of mass is obtained. The range of applicability of the method is discussed.

  20. A beta ray spectrometer based on a two-, or three-element silicon detector coincidence telescope

    International Nuclear Information System (INIS)

    Horowitz, Y.S.; Weizman, Y.; Hirning, C.R.

    1995-01-01

    The operation of a beta ray energy spectrometer based on a two-or three-element silicon detector telescope is described. The front detector (A) is a thin, totally depleted, silicon surface barrier detector either 40 μm, 72 μm or 98 μm thick. The back detector (C) is a Li compensated silicon detector, 5000 μm thick. An additional thin detector can be inserted between these two detectors when additional photon rejection capability is required in intense photon fields. The capability of the spectrometer to reject photons is based on the fact that incident photons will have a small probability of simultaneously losing detectable energy in two detectors and an even smaller probability of losing detectable energy in all three detectors. Electrons, however, above a low energy threshold, will always record simultaneous, events in all three detectors. The spectrometer is capable of measuring electron energies from a lower energy coincidence threshold of 70 keV with 60% efficiency increasing to 100% efficiency in the energy region between 150 keV and 2.5 MeV. (Author)

  1. Low level GAMMA0 spectrometry by beta-gamma coincidence

    International Nuclear Information System (INIS)

    Grigorescu, E.L.; Luca, A.; Razdolescu, A.C.; Ivan, C.

    1999-01-01

    Low level gamma spectrometry has a wide application, especially in environmental monitoring. Two variants, based on a beta-gamma coincidence technique, were studied. The equipment was composed of a beta detector and a Ge(Li) gamma detector (6% - relative efficiency), with the associated electronics. The gamma rays are recorded by the multichannel analyzer (4096 channels) only if the associated beta particles, which precede the gamma transitions, are registered in coincidence. Two types of beta detectors were used: plastic and liquid scintillators. In both cases, an external lead shield of 5 cm thick was used. The integral gamma background (50-1700 KeV) was reduced about 85 and 50 times, respectively. The corresponding MDA (Minimum Detectable Activity) values decreased about 1.5 and (3-7) times, respectively. The 2π sr plastic beta detector was placed on top the Ge(Li). The sample was inserted between the two detectors. The measurement time was 10 4 s. A 4π sr detector, built of the same material, was also studied, but it proved to be less advantageous because the background was reduced only 16 times; for a MDA reduction similar with that of the 2π sr variant, a longer measurement was needed (3.10 4 s). The other type of beta detector used, was a liquid scintillator. The dissolving of the samples in scintillator ensures a 4π sr measurement geometry. The vials with scintillator (10 ml volume) were placed on top the Ge(Li) and visualised by the photocathode of a phototube. This setup was surrounded by an enclosure which prevent the light penetration. The measurement time was 10 4 s. The only difficulty encountered in this low level measurement method is the accurate determination of the beta efficiency. A limitation is the possibility to measure only small mass samples. These variants are more simple and cheaper than others, previously studied. The advantage of the method is obvious when, instead of low MDA values, shorter measurement times are preferred. The

  2. Electron Bernstein Wave Research on CDX-U and NSTX

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Hosea, J.C.; Kaita, R.; LeBlanc, B.P.; Majeski, R.; Munsat, T.; Phillips, C.K.; Spaleta, J.; Wilson, J.R.; Rasmussen, D.; Bell, G.; Bigelow, T.S.; Carter, M.D.; Swain, D.W.; Wilgen, J.B.; Ram, A.K.; Bers, A.; Harvey, R.W.; Forest, C.B.

    2001-01-01

    Mode-converted electron Bernstein waves (EBWs) potentially allow the measurement of local electron temperature (Te) and the implementation of local heating and current drive in spherical torus (ST) devices, which are not directly accessible to low harmonic electron cyclotron waves. This paper reports on the measurement of X-mode radiation mode-converted from EBWs observed normal to the magnetic field on the midplane of the Current Drive Experiment-Upgrade (CDX-U) and the National Spherical Torus Experiment (NSTX) spherical torus plasmas. The radiation temperature of the EBW emission was compared to Te measured by Thomson scattering and Langmuir probes. EBW mode-conversion efficiencies of over 20% were measured on both CDX-U and NSTX. Sudden increases of mode-conversion efficiency, of over a factor of three, were observed at high-confinement-mode transitions on NSTX, when the measured edge density profile steepened. The EBW mode-conversion efficiency was found to depend on the density gradient at the mode-conversion layer in the plasma scrape-off, consistent with theoretical predictions. The EBW emission source was determined by a perturbation technique to be localized at the electron cyclotron resonance layer and was successfully used for radial transport studies. Recently, a new in-vessel antenna and Langmuir probe array were installed on CDX-U to better characterize and enhance the EBW mode-conversion process. The probe incorporates a local adjustable limiter to control and maximize the mode-conversion efficiency in front of the antenna by modifying the density profile in the plasma scrape-off where fundamental EBW mode conversion occurs. Initial results show that the mode-conversion efficiency can be increased to ∼100% when the local limiter is inserted near the mode-conversion layer. Plans for future EBW research, including EBW heating and current-drive studies, are discussed

  3. The direct conversion of heat into electricity in reactors; Conversion directe de la chaleur en electricite dans les piles

    Energy Technology Data Exchange (ETDEWEB)

    Devin, B; Bliaux, J; Lesueur, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [French] La conversion directe de chaleur en electricite par emission thermionique dans une

  4. Effect of Short-Circuit Faults in the Back-to-Back Power Electronic Converter and Rotor Terminals on the Operational Behavior of the Doubly-Fed Induction Generator Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Dimitrios G. Giaourakis

    2015-02-01

    Full Text Available This paper deals with the operational behavior of the Doubly-Fed Induction Generator Wind Energy Conversion System under power electronic converter and rotor terminals faulty conditions. More specifically, the effect of the short-circuit fault both in one IGBT of the back-to-back power electronic converter and in rotor phases on the overall system behavior has been investigated via simulation using a system of 2 MW. Finally, the consequences of these faults have been evaluated.

  5. Obtaining the conversion curve of CT numbers to electron density from the effective energy of the CT using the dummy SEFM; Obtencion de la curva de conversion de numeros TC a densidad electronica a partir de la energia efectiva del TC usando el maniqui de la SEFM

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Viera Cueto, J. A.; Garcia Pareja, S.; Benitez Villegas, E. M.; Moreno Saiz, E. M.; Bodineau Gil, C.; Caudepon Moreno, F.

    2011-07-01

    The objective of this work is to obtain the conversion curve of Hounsfield units (A) versus electron densities using a mannequin with different tissue equivalent materials. This provides for the effective energy beam CT and is used to characterize the linear coefficients of absorption of different materials that comprise the dummy.

  6. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    Science.gov (United States)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  7. Double photoionization of propylene oxide: A coincidence study of the ejection of a pair of valence-shell electrons

    Science.gov (United States)

    Falcinelli, Stefano; Vecchiocattivi, Franco; Alagia, Michele; Schio, Luca; Richter, Robert; Stranges, Stefano; Catone, Daniele; Arruda, Manuela S.; Mendes, Luiz A. V.; Palazzetti, Federico; Aquilanti, Vincenzo; Pirani, Fernando

    2018-03-01

    Propylene oxide, a favorite target of experimental and theoretical studies of circular dichroism, was recently discovered in interstellar space, further amplifying the attention to its role in the current debate on protobiological homochirality. In the present work, a photoelectron-photoion-photoion coincidence technique, using an ion-imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV energy range, permits us (i) to observe six double ionization fragmentation channels, their relative yields being accounted for about two-thirds by the couple (C2H4+, CH2O+) and one-fifth by (C2H3+, CH3O+); (ii) to measure thresholds for their openings as a function of photon energy; and (iii) to unravel a pronounced bimodality for a kinetic-energy-released distribution, fingerprint of competitive non-adiabatic mechanisms.

  8. Instrumentation and data handling. I. Positron coincidence imaging with the TOKIM system

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    In addition to the conventional singles mode of operation, the TOKIM system's two Anger-type gamma cameras may be used in the (stationary, 180 0 opposition) coincidence mode, making it possible to achieve tomographic imaging with three-dimensional spatial resolution and high detection sensitivity, utilizing β + emitting radioisotopes. This method, however, suffers from certain inherent limitations. Our efforts during this past year to improve upon the TOKIM imaging capability in the β + mode have been directed towards the reduction of the limitations by the following means: the removal of out of focal plane image contributions through a computerized iterative correction procedure, coupled with coincidence aperture limitation to achieve uniform sensitivity across a reasonable portion of the detector pair diameter, and the application of Muehllehner's graded filter approach to the TOKIM to increase the ratio of usable coincidence events versus singles count rate

  9. Reproduction of the coincidence effect in gamma ray spectrometry by using Monte Carlo method

    International Nuclear Information System (INIS)

    Park, S. H.; Kim, J. K.; Lee, S. H.

    2001-01-01

    Scintillation detector such as NaI(TI), or semiconductor detector, such as HPGe, are used for Measurement/Assessment of the radiation type and radiation activity. The measured energy spectrum are used for measuring the radiation type and activity. Corrections for true coincidence due to emit more than 2 photons at the same time and random coincidence due to measuring system when increasing of the radiation intensity. For accurate assessment, measurement with adequate measure system is performed, and corrections for coincidence are performed in the hardware aspect and software aspect. In general, there are limitations or difficulties in measurement of radiation assessment, computational simulation is instead used. In simulation, it has much advantages than measurement in technically, timely, and financially, it is widely used instead of measurement. In this study, the method to reproduce of the coincidence effect was proposed by using monte carlo method

  10. Neutron coincidence counting with digital signal processing

    International Nuclear Information System (INIS)

    Bagi, Janos; Dechamp, Luc; Dransart, Pascal; Dzbikowicz, Zdzislaw; Dufour, Jean-Luc; Holzleitner, Ludwig; Huszti, Joseph; Looman, Marc; Marin Ferrer, Montserrat; Lambert, Thierry; Peerani, Paolo; Rackham, Jamie; Swinhoe, Martyn; Tobin, Steve; Weber, Anne-Laure; Wilson, Mark

    2009-01-01

    Neutron coincidence counting is a widely adopted nondestructive assay (NDA) technique used in nuclear safeguards to measure the mass of nuclear material in samples. Nowadays, most neutron-counting systems are based on the original-shift-register technology, like the (ordinary or multiplicity) Shift-Register Analyser. The analogue signal from the He-3 tubes is processed by an amplifier/single channel analyser (SCA) producing a train of TTL pulses that are fed into an electronic unit that performs the time- correlation analysis. Following the suggestion of the main inspection authorities (IAEA, Euratom and the French Ministry of Industry), several research laboratories have started to study and develop prototypes of neutron-counting systems with PC-based processing. Collaboration in this field among JRC, IRSN and LANL has been established within the framework of the ESARDA-NDA working group. Joint testing campaigns have been performed in the JRC PERLA laboratory, using different equipment provided by the three partners. One area of development is the use of high-speed PCs and pulse acquisition electronics that provide a time stamp (LIST-Mode Acquisition) for every digital pulse. The time stamp data can be processed directly during acquisition or saved on a hard disk. The latter method has the advantage that measurement data can be analysed with different values for parameters like predelay and gate width, without repeating the acquisition. Other useful diagnostic information, such as die-away time and dead time, can also be extracted from this stored data. A second area is the development of 'virtual instruments.' These devices, in which the pulse-processing system can be embedded in the neutron counter itself and sends counting data to a PC, can give increased data-acquisition speeds. Either or both of these developments could give rise to the next generation of instrumentation for improved practical neutron-correlation measurements. The paper will describe the

  11. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus.

    Science.gov (United States)

    McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R

    1998-08-01

    Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.

  12. VizieR Online Data Catalog: Flux conversion factors for the Swift/UVOT filters (Brown+, 2016)

    Science.gov (United States)

    Brown, P. J.; Breeveld, A.; Roming, P. W. A.; Siegel, M.

    2016-10-01

    The conversion of observed magnitudes (or the actual observed photon or electron count rates) to a flux density is one of the most fundamental calculations. The flux conversions factors for the six Swift/UVOT filters are tabulated in Table1. (1 data file).

  13. Rare earth conversion coating on Mg-8.5Li alloys

    International Nuclear Information System (INIS)

    Yang Xiaowei; Wang Guixiang; Dong Guojun; Gong Fan; Zhang Milin

    2009-01-01

    The conversion coating formed by immersion in a solution containing rare earth salt on Mg-8.5Li alloy was studied and the corrosion resistance was evaluated as well. The surface morphology was observed by scanning electron microscopy (SEM), and the chemical composition was characterized by X-ray photoelectron spectroscopy (XPS). The corrosion behaviors of Mg-8.5Li alloy and conversion coating were assessed by means of potentiodynamic polarization curves, electrochemical impedance spectra (EIS) and immersion tests. The experimental results indicated that the coating with cracked morphology was homogeneous. It was mainly composed of La 2 O 3 , CeO 2 , Mn 2 O 3 and MnO 2 as detected by XPS. The results of electrochemical measurements and immersion tests revealed that the rare earth conversion coating possessed better corrosion resistance than bare alloy and chromate conversion coating.

  14. New way on designing majorant coincidence circuits

    International Nuclear Information System (INIS)

    Gajdamaka, R.I.; Kalinnikov, V.A.; Nikityuk, N.M.; Shirikov, V.P.

    1982-01-01

    A new way of designing fast devices of combinatorial selection by the number of particles passing through a multichannel charged particle detector is decribed. The algorithm of their operation is based on modern algebraic coding theory. By application of analytical computational methods Boolean expressions can be obtianed for designing basic circuits for a large number of inputs. An example of computation of 15 inputs majorant coincidence circuit is considered

  15. A Review of Power Electronics for Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems. Main wind turbine systems with different generators and power electronic converters are described. The electrical topologies of wind farms with power electronic conversion are discussed. Power electronic applications...

  16. Coincidence: Fortran code for calculation of (e, e'x) differential cross-sections, nuclear structure functions and polarization asymmetry in self-consistent random phase approximation with Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, M.; Marangoni, M.; Saruis, A.M.

    1990-10-01

    This report describes the COINCIDENCE code written for the IBM 3090/300E computer in Fortran 77 language. The output data of this code are the (e, e'x) threefold differential cross-sections, the nuclear structure functions, the polarization asymmetry and the angular correlation coefficients. In the real photon limit, the output data are the angular distributions for plane polarized incident photons. The code reads from tape the transition matrix elements previously calculated, by in continuum self-consistent RPA (random phase approximation) theory with Skyrme interactions. This code has been used to perform a numerical analysis of coincidence (e, e'x) reactions with polarized electrons on the /sup 16/O nucleous.

  17. Using CHIMERA detector at LNS for gamma-particle coincidences

    Directory of Open Access Journals (Sweden)

    Cardella G.

    2016-01-01

    Full Text Available We have recently evaluated the quality of γ-ray angular distributions that can be extracted in particle-gamma coincidence measurements using the CHIMERA detector at LNS. γ-rays have been detected using the CsI(Tl detectors of the spherical part of the CHIMERA array. Very clean γ-rays angular distributions were extracted in reactions induced by different stable beams impinging on 12C thin targets. The results evidenced an effect of projectile spin flip on the γ-rays angular distributions. γ-particle coincidence measurements were also performed in reactions induced by neutron rich exotic beams produced through in-flight fragmentation at LNS. In recent experiments also the Farcos array was used to improve energy and angular resolution measurements of the detected charged particles. Results obtained with both stable and radioactive beams are reported.

  18. Method for internal conversion coefficients determination by means of a magnetic spectrometer. Application to 129Xe and 77Se

    International Nuclear Information System (INIS)

    Arqueros, F.; Campos, J.

    1986-01-01

    The method used for efficiency calibration of a magnetic electron spectrometer and its applications to conversion electron spectrometry is described. The present results point out that apparatus combining magnetic deflection and semiconductor detection have a nondecreasing interest in nuclear spectrometry for applications where good resolution and large background rejection are both necessary. The present apparatus can be employed with source of relatively low activity, (0.lμCi). The nuclides studied were 129 Xe and 77 Se resulting from 129 Cs and 77 Br decay. The parent nulcides were produced in ISOLDE on line isotope separator at CERN. The efficiency calibration method used for energies higher than 200 keV made use of the well known beta spectrum of 36 Cl. The calibration for low energies was made with Auger electron intensities and suitable conversion lines of 129 Xenon. Results for relative intensities of conversion electron lines and intense gamma lines of 129 Xe and 77 Se are given. From these measurements internal conversion coefficients for transitions of both nuclides were obtained. The results were in agreement with theoretical calculations. (author)

  19. Einstein-Podolsky-Rosen-Bohm experiment and Bell inequality violation using Type 2 parametric down conversion

    Science.gov (United States)

    Kiess, Thomas E.; Shih, Yan-Hua; Sergienko, A. V.; Alley, Carroll O.

    1994-01-01

    We report a new two-photon polarization correlation experiment for realizing the Einstein-Podolsky-Rosen-Bohm (EPRB) state and for testing Bell-type inequalities. We use the pair of orthogonally-polarized light quanta generated in Type 2 parametric down conversion. Using 1 nm interference filters in front of our detectors, we observe from the output of a 0.5mm beta - BaB2O4 (BBO) crystal the EPRB correlations in coincidence counts, and measure an associated Bell inequality violation of 22 standard deviations. The quantum state of the photon pair is a polarization analog of the spin-1/2 singlet state.

  20. Electronics. Module 2: Fundamentals of Electronics. Instructor's Guide.

    Science.gov (United States)

    Everett, Jim

    This guide contains instructor's materials for a nine-unit secondary school course on fundamentals of electronics. The units are conductors, insulators, semiconductors, and atomic structure; basic concepts and sources of electrical quantities; Ohm's Law; units and conversions; use of multimeters; circuits; electromagnetics and electrostatics;…

  1. Post training REMs coincident auditory stimulation enhances memory in humans.

    Science.gov (United States)

    Smith, C; Weeden, K

    1990-06-01

    Sleep activity was monitored in 20 freshman college students for two consecutive nights. Subjects were assigned to 4 equal groups and all were asked to learn a complex logic task before bed on the second night. Two groups of subjects learned the task with a constant clicking noise in the background (cued groups), while two groups simply learned the task (non cued). During the night, one cued and one non cued group were presented with auditory clicks during REM sleep such as to coincide with all REMs of at least 100 microvolts. The second cued group was given auditory clicks during REM sleep, but only during the REMs "quiet" times. The second non-cued control group was never given any nighttime auditory stimulations. The cued REMs coincident group showed a significant 23% improvement in task performance when tested one week later. The non cued REMs coincident group showed only an 8.8% improvement which was not significant. The cued REMs quiet and non-stimulated control groups showed no change in task performance when retested. The results were interpreted as support for the idea that the cued auditory stimulation induced a "recall" of the learned material during the REM sleep state in order for further memory processing to take place.

  2. Research on spacecraft electrical power conversion

    Science.gov (United States)

    Wilson, T. G.

    1983-01-01

    The history of spacecraft electrical power conversion in literature, research and practice is reviewed. It is noted that the design techniques, analyses and understanding which were developed make today's contribution to power computers and communication installations. New applications which require more power, improved dynamic response, greater reliability, and lower cost are outlined. The switching mode approach in electronic power conditioning is discussed. Technical aspects of the research are summarized.

  3. Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks

    Energy Technology Data Exchange (ETDEWEB)

    Rymzhanov, R.A. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Medvedev, N.A., E-mail: nikita.medvedev@fzu.cz [Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Laser Plasma Department, Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague 8 (Czech Republic); Volkov, A.E. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); National Research Centre ‘Kurchatov Institute’, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr., 53,119991 Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskij pr., 4, 119049 Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoye sh., 31, 115409 Moscow (Russian Federation)

    2016-12-01

    The event-by-event Monte Carlo code, TREKIS, was recently developed to describe excitation of the electron subsystems of solids in the nanometric vicinity of a trajectory of a nonrelativistic swift heavy ion (SHI) decelerated in the electronic stopping regime. The complex dielectric function (CDF) formalism was applied in the used cross sections to account for collective response of a matter to excitation. Using this model we investigate effects of the basic assumptions on the modeled kinetics of the electronic subsystem which ultimately determine parameters of an excited material in an SHI track. In particular, (a) effects of different momentum dependencies of the CDF on scattering of projectiles on the electron subsystem are investigated. The ‘effective one-band’ approximation for target electrons produces good coincidence of the calculated electron mean free paths with those obtained in experiments in metals. (b) Effects of collective response of a lattice appeared to dominate in randomization of electron motion. We study how sensitive these effects are to the target temperature. We also compare results of applications of different model forms of (quasi-) elastic cross sections in simulations of the ion track kinetics, e.g. those calculated taking into account optical phonons in the CDF form vs. Mott’s atomic cross sections. (c) It is demonstrated that the kinetics of valence holes significantly affects redistribution of the excess electronic energy in the vicinity of an SHI trajectory as well as its conversion into lattice excitation in dielectrics and semiconductors. (d) It is also shown that induced transport of photons originated from radiative decay of core holes brings the excess energy faster and farther away from the track core, however, the amount of this energy is relatively small.

  4. Polarisation-based coincidence event discrimination: an in silico study towards a feasible scheme for Compton-PET

    Science.gov (United States)

    Toghyani, M.; Gillam, J. E.; McNamara, A. L.; Kuncic, Z.

    2016-08-01

    Current positron emission tomography (PET) systems use temporally localised coincidence events discriminated by energy and time-of-flight information. The two annihilation photons are in an entangled polarisation state and, in principle, additional information from the polarisation correlation of photon pairs could be used to improve the accuracy of coincidence classification. In a previous study, we demonstrated that in principle, the polarisation correlation information could be transferred to an angular correlation in the distribution of scattered photon pairs in a planar Compton camera system. In the present study, we model a source-phantom-detector system using Geant4 and we develop a coincidence classification scheme that exploits the angular correlation of scattered annihilation quanta to improve the accuracy of coincidence detection. We find a 22% image quality improvement in terms of the peak signal-to-noise ratio when scattered coincidence events are discriminated solely by their angular correlation, thus demonstrating the feasibility of this novel classification scheme. By integrating scatter events (both single-single and single-only) with unscattered coincidence events discriminated using conventional methods, our results suggest that Compton-PET may be a promising candidate for optimal emission tomographic imaging.

  5. New technique for determination of long-lived radioisotopes, Iodine-129, using multiparameter coincidence spectrometry

    International Nuclear Information System (INIS)

    Hatsukawa, Yuichi; Oshima, Masumi; Toh, Yosuke; Shinohara, Nobuo; Kushita, Kosuke; Ueno, Takashi

    2003-01-01

    Multiparameter coincidence γ-ray spectrometry based on g-g coincidence is widely used in the field of nuclear structure studies, and has produced many successful results. In this study, feasibility of the method for neutron activation analysis of long lived iodine isotope, 129 I, was investigated. (author)

  6. Transition-metal chlorides as conversion cathode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Li Ting; Chen, Zhong X.; Cao, Yu L.; Ai, Xin P.; Yang, Han X.

    2012-01-01

    Insoluble AgCl and soluble CuCl 2 were selected and investigated as model compounds of transition-metal chlorides for electrochemical conversion cathode materials. The experimental results demonstrated that the AgCl nanocrystals can convert reversibly to metallic Ag with nearly full utilization of its one-electron redox capacity (187 mAh g −1 ). Similarly, the CuCl 2 -filled mesoporous carbon can realize a reversible two-electron transfer reaction, giving a very high reversible capacity of 466 mAh g −1 after 20 cycles. These data imply that the metal chlorides can undergo complete electrochemical conversion utilizing their full oxidation states for electrical energy storage as previously reported metal fluorides, possibly being used as high capacity cathode materials for Li-ion batteries.

  7. Coincident brane nucleation and the neutralization of Λ

    International Nuclear Information System (INIS)

    Garriga, Jaume; Megevand, Ariel

    2004-01-01

    Nucleation of branes by a four-form field has recently been considered in string motivated scenarios for the neutralization of the cosmological constant. An interesting question in this context is whether the nucleation of stacks of coincident branes is possible, and if so, at what rate does it proceed. Feng et al. have suggested that, at high ambient de Sitter temperature, the rate may be strongly enhanced, due to large degeneracy factors associated with the number of light species living on the worldsheet. This might facilitate the quick relaxation from a large effective cosmological constant down to the observed value. Here, we analyze this possibility in some detail. In four dimensions, and after the moduli are stabilized, branes interact via repulsive long range forces. Because of that, the Coleman-de Luccia (CdL) instanton for coincident brane nucleation may not exist, unless there is some short range interaction that keeps the branes together. If the CdL instanton exists, we find that the degeneracy factor depends only mildly on the ambient de Sitter temperature, and does not switch off even in the case of tunneling from flat space. This would result in catastrophic decay of the present vacuum. If, on the contrary, the CdL instanton does not exist, coincident brane nucleation may still proceed through a 'static' instanton, representing pair creation of critical bubbles--a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such a static instanton may be well suited for the 'saltatory' relaxation scenario proposed by Feng et al

  8. Positron two-photon annihilation coincidence technique: difference mode

    Energy Technology Data Exchange (ETDEWEB)

    Karol, P J; Klobuchar, R L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1978-05-01

    A difference (or comparative) mode in the measurement of two-photon coincidences from positron or positronium annihilation has been developed. The method can be used to advantage, particularly in gases, in determining annihilation parameters such as quenching cross sections for low concentration strongly quenching chemical species in a reference medium which is relatively non-quenching.

  9. Performance of a coincidence based blood activity monitor

    International Nuclear Information System (INIS)

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per μCi/ml, and has a paralyzing dead time of 1.2 μs, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for 18 F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs

  10. Evidence of conversion from Z-mode waves to the electromagnetic L-O mode waves at the plasmapause detected by JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Oya, Hiroshi; Morioka, Akira

    1982-01-01

    JIKIKEN satellite that has the initial perigee and apogee of 250 km and 30,050 km, respectively, and has an inclination of -31 0 has passed through critical regions where the AKR spectra were carved out by the plasma surounding the satellite, at least five times during a period from January 31, 1979, to June 21, 1980. On all these occasions the usual type of AKR spectra are disclosed to show cutoff phenomena at the local Z-cutoff frequency indicating a continuation crossing over the local X-cutoff frequency from the high frequency side down to the Z mode wave frequency range rather than to be cut at the local X-cutoff frequency; i.e., the AKR waves consist of the spectra that continuously cover the frequency range corresponding to Z-mode and L-O mode waves when the observation is made near the source region. The most posible mechanism that can give cinsistent interpretations to this spectra characteristics is the mode conversion theory; i.e., the plasma waves generated in the form of the hybrid mode waves in the source regions is converted into the Z-mode wave which propagates towards dense plasma regions where the wave frequency coincides with the local plasma frequency and a part of the energy of Z-mode waves is transported to the L-O mode waves that can escape towards outer space. This conversion mechanism gives also a self-consistent interpretation of previously presented evidences reported as the cutoff phenomena of AKR near the local electron cyclotron frequency, using the mechanism of the propagation of the Z-mode waves. There is no confliction between the conversion mechanism of the AKR generation and the previous polarization observation carried out by the Voyager spacecrafts because there remains wide variety of the selection of the source region that are pertinent to give the possiblity of the LH polarization waves as the results of the conversion of the radiation waves from the Z-mode to the L-O mode in the northern polar regions. (author)

  11. Dry gel conversion synthesis of SAPO-34 nanocrystals

    International Nuclear Information System (INIS)

    Hirota, Yuichiro; Murata, Kenji; Tanaka, Shunsuke; Nishiyama, Norikazu; Egashira, Yasuyuki; Ueyama, Korekazu

    2010-01-01

    SAPO-34 nanocrystals were synthesized by a dry gel conversion method using tetraethylammonium hydroxide as a structure-directing agent. The crystal growth of SAPO-34 was studied by X-ray diffraction and field-emission scanning electron microscopy. After 3 h, 45-nm SAPO-34 crystals with an amorphous phase were observed. The crystal size increased to 70 nm after 6 h, but did not increase greatly thereafter. The average crystal size of the final product was 75 nm. The nucleation density for SAPO-34 crystals in dry gel conversion appeared to be much higher than that under hydrothermal conditions, resulting in the formation of small crystals.

  12. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  13. Standardization of 201Tl and 55Fe radionuclides in a 4 (PC)-NaI(Tl) coincidence system

    International Nuclear Information System (INIS)

    Pires, Carlos Augusto

    2008-01-01

    In the present work the procedure for the standardization of radionuclides using the 4π(PC)-NaI(Tl) coincidence system was developed. The radionuclides selected were 201 Tl, used in nuclear medicine, and 55 Fe primary standard source, used for x-ray spectrometers calibration. The 4π(PC)-NaI(Tl) is composed of a 4 proportional counter operated at 0.1MPa coupled to two NaI(Tl) crystals. The 201 Tl decays by electron capture process followed by a prompt gamma-ray. The disintegration rate was determined by extrapolation technique using two methods: electronic discrimination and external absorbers. The radioactive sources were prepared in a 20 μg cm -2 thick Collodion film. The conventional electronic system was used. The observed events were registered by the TAC method. The 55 Fe decays by electron capture process to the ground state of 55 Mn, emitting x rays with around 6 keV. The standardization was obtained by the tracing method. This technique was applied using two radionuclides, which decay by electron capture process followed by a prompt gamma-ray, namely 51 Cr and 54 Mn, as tracers. Measurements with 1 and 2 aluminum foils, each 150 g cm-2 thick were carried out. The activity was obtained by extrapolation for zero thickness Al foil. The uncertainties were treated by means of matrix covariance methodology and takes into account all correlations involved. (author)

  14. Monte Carlo simulation of activity measurements by means of 4πβ-γ coincidence system

    International Nuclear Information System (INIS)

    Takeda, Mauro N.; Dias, Mauro S.; Koskinas, Marina F.

    2004-01-01

    The methodology for simulating all detection processes in a 4πβ-γ coincidence system by means of the Monte Carlo technique is described. The goal is to predict the behavior of the observed activity as a function of the 4πβ detector efficiency. In this approach, the information contained in the decay scheme is used for determining the contribution of all radiations emitted by the selected radionuclide, to the measured spectra by each detector. This simulation yields the shape of the coincidence spectrum, allowing the choice of suitable gamma-ray windows for which the activity can be obtained with maximum accuracy. The simulation can predict a detailed description of the extrapolation curve, mainly in the region where the 4πβ detector efficiency approaches 100%, which is experimentally unreachable due to self absorption of low energy electrons in the radioactive source substrate. The theoretical work is being developed with MCNP Monte Carlo code, applied to a gas-flow proportional counter of 4π geometry, coupled to a pair of NaI(Tl) crystals. The calculated efficiencies are compared to experimental results. The extrapolation curve can be obtained by means of another Monte Carlo algorithm, being developed in the present work, to take into account fundamental characteristics of a complex decay scheme, including different types of radiation and transitions. The present paper shows preliminary calculated values obtained by the simulation and compared to predicted analytical values for a simple decay scheme. (author)

  15. Analysis of radionuclide mixtures by {alpha}-{gamma} and {beta}-{gamma} coincidences using a simple device; Analyse de melanges de radionucleides par un dispositif simple de coincidences {alpha}-{gamma} et {beta}-{gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Pottier, R; Berger, R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)

    1966-06-01

    A procedure is described for the qualitative and quantitative spectrographic analysis of radioactive sources containing two alpha-gamma emitters having the same alpha energy or two beta-gamma emitters having the same gamma energy. The main apparatus is a multichannel pulse-height analyzer including a coincidence circuit. The principle of the method, the synoptic scheme, the electronic device, the type of sources, and the precautions to be taken or the corrections to take into account are reported. The results obtained in solving the three following problems are discussed as examples of applications of the method: analysis of {sup 241}Am in alpha-gamma sources containing {sup 238}Pu; analysis of {sup 237}Np in beta-gamma sources containing {sup 239}Pu; and analysis of {sup 106}Ru-{sup 106}Rh in beta-gamma sources containing {sup 95}Zr-{sup 95}Nb. (authors) [French] Dans ce. rapport, on presente une methode d'analyse spectrographique qualitative et quantitative de sources radioactives contenant deux emetteurs alpha-gamma de meme energie alpha et deux emetteurs beta-gamma de meme energie gamma. L'organe principal est un analyseur d'amplitude a 400 canaux comprenant un circuit de coincidence. On decrit le principe de la methode, le schema synoptique, l'appareillage, le type des sources, les precautions a prendre ou les corrections a faire. On discute les resultats obtenus dans la solution des trois problemes suivants traites a titre d'application de la methode: 1. analyse d'americium 241 en presence de plutonium 238; 2. analyse de neptunium 237 en presence de plutonium 239; 3. analyse de ruthenium 106-rhodium 106 en presence de zirconium 95-niobium 95. (auteurs)

  16. Simulated performance of the in-beam conversion-electron spectrometer, SPICE

    Energy Technology Data Exchange (ETDEWEB)

    Ketelhut, S., E-mail: ketelhut@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Evitts, L.J.; Garnsworthy, A.B.; Bolton, C.; Ball, G.C.; Churchman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Dunlop, R. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Hackman, G.; Henderson, R.; Moukaddam, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Rand, E.T.; Svensson, C.E. [Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Witmer, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada)

    2014-07-01

    The SPICE spectrometer is a new in-beam electron spectrometer designed to operate in conjunction with the TIGRESS HPGe Clover array at TRIUMF-ISAC. The spectrometer consists of a large area, annular, segmented lithium-drifted silicon electron detector shielded from the target by a photon shield. A permanent magnetic lens directs electrons around the photon shield to the detector. Experiments will be performed utilising Coulomb excitation, inelastic-scattering, transfer and fusion–evaporation reactions using stable and radioactive ion beams with suitable heavy-ion detection. Good detection efficiency can be achieved in a large energy range up to 3500 keV electron energy using several magnetic lens designs which are quickly interchangeable. COMSOL and Geant4 simulations have been used to maximise the detection efficiency. In addition, the simulations have guided the design of components to minimise the contributions from various sources of backgrounds.

  17. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of 235 U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the 235 U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described

  18. Nuclei at high angular momentum, investigated with a Mini-Orange Spectrometer

    International Nuclear Information System (INIS)

    Feenstra, S.J.

    1979-01-01

    The multipolarity of continuum transitions following the reactions 160 Gd( 4 He,4n) 160 Dy and 146 Nd( 20 Ne,4n or 5n) 162 161 Yb has been deduced from experimental conversion coefficients. Conversion-electron spectra were measured with a Mini-Orange Spectrometer, while γ-ray spectra were recorded simultaneously with a NaI(Tl) detector or, at low energies (0.5 MeV), with a Ge(Li) detector. Both the electron and γ-ray spectra were measured in coincidence with discrete transitions in the product nuclei. The author derived the average conversion coefficient αsub(T) in three different energy regions. In the statistical region, above 1.5 MeV, the αsub(T) values are consistent with the multipolarity E1. In the Yrast region, between 0.7 and 1.5 MeV, αsub(T) approaches to the value expected for E2 radiation. Special attention has been given to the low-energy part of the continuum around 0.5 MeV. Recently, it has been proposed that low-energy continuum radiation has M1 multipolarity. The results of the author's conversion coefficient measurement do not support this suggestion. Especially in this low-energy region the coincidence requirement between continuum transitions and discrete lines appeared to be important. Without this requirement too high, misleading αsub(T) values, were obtained. (Auth.)

  19. Valence electron momentum distributions in cadmium

    International Nuclear Information System (INIS)

    Frost, L.; Weigold, E.; Mitroy, J.

    1982-08-01

    The valence 5s and 4d electron momentum distributions in cadmium have been measured using noncoplanar symmetric (e, 2e) electron coincidence spectroscopy at a total energy of 1200eV. They are in close agreement with Hartree-Fock momentum distributions both in shape and relative magnitudes. Some satellite lines of very low intensity have been detected. A CI calculation of the Cd ground state and several Cd + ion states has been carried out to predict cross reactions for the ground state and various satellite transitions. The predictions are in agreement with the data

  20. Development of Coincidence Method for Determination Thermal Neutron Flux on RSG-GAS

    International Nuclear Information System (INIS)

    Bakhri, Syaiful; Hamzah, Amir

    2004-01-01

    The research to develop detection radiation system using coincidence method has been done to determine thermal neutron flux in RS1 and RS2 irradiation facilities RSG-GAS. At this research has arranged beta-gamma coincidence equipment system and parameter of measurement according to Au-198 beta-gamma spectrum. Gold foils that have irradiated for period of time, counted, and the activities of radiation is analyzed to get neutron flux. Result of research indicate that systems measurement of absolute activity with gamma beta coincidence method functioning well and can be applied at activity measurement of gold foil for irradiation facility characterization. The results show that thermal neutron flux in RS1 and RS2, respectively is 2.007E+12 n/cm 2 s and 2.147E+12 n/cm 2 s. To examine the system performance, the result was compared to measure activity using high resolution of Hp Ge detector and achieved discrepancy is about 1.26% and 6.70%. (author)