Weak Convergence and Fluid Limits in Optimal Time-to-Empty Queueing Control Problems
Energy Technology Data Exchange (ETDEWEB)
Day, Martin V., E-mail: day@math.vt.edu [Virginia Tech, Department of Mathematics (United States)
2011-12-15
We consider a class of controlled queue length processes, in which the control allocates each server's effort among the several classes of customers requiring its service. Served customers are routed through the network according to (prescribed) routing probabilities. In the fluid rescaling, X{sup n}(t) = 1/nX(nt) , we consider the optimal control problem of minimizing the integral of an undiscounted positive running cost until the first time that X{sup n}=0. Our main result uses weak convergence ideas to show that the optimal value functions V{sup n} of the stochastic control problems for X{sup n}(t) converge (as n{yields}{infinity}) to the optimal value V of a control problem for the limiting fluid process. This requires certain equicontinuity and boundedness hypotheses on (V{sup n}). We observe that these are essentially the same hypotheses that would be needed for the Barles-Perthame approach in terms of semicontinuous viscosity solutions. Sufficient conditions for these equicontinuity and boundedness properties are briefly discussed.
Optimizer convergence and local minima errors and their clinical importance
International Nuclear Information System (INIS)
Jeraj, Robert; Wu, Chuan; Mackie, Thomas R
2003-01-01
Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization
Improving Convergence of Iterative Feedback Tuning using Optimal External Perturbations
DEFF Research Database (Denmark)
Huusom, Jakob Kjøbsted; Hjalmarsson, Håkon; Poulsen, Niels Kjølstad
2008-01-01
Iterative feedback tuning constitutes an attractive control loop tuning method for processes in the absence of sufficient process insight. It is a purely data driven approach to optimization of the loop performance. The standard formulation ensures an unbiased estimate of the loop performance cost...... function gradient, which is used in a search algorithm. A slow rate of convergence of the tuning method is often experienced when tuning for disturbance rejection. This is due to a poor signal to noise ratio in the process data. A method is proposed for increasing the information content in data...
Optimization and Optimal Control
Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider
2010-01-01
During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou
On the premature convergence of particle swarm optimization
DEFF Research Database (Denmark)
Larsen, Rie B.; Jouffroy, Jerome; Lassen, Benny
2016-01-01
This paper discusses convergence issues of the basic particle swarm optimization algorithm for different pa- rameters. For the one-dimensional case, it is shown that, for a specific range of parameters, the particles will converge prematurely, i.e. away from the actual minimum of the objective...
On projection methods, convergence and robust formulations in topology optimization
DEFF Research Database (Denmark)
Wang, Fengwen; Lazarov, Boyan Stefanov; Sigmund, Ole
2011-01-01
alleviated using various projection methods. In this paper we show that simple projection methods do not ensure local mesh-convergence and propose a modified robust topology optimization formulation based on erosion, intermediate and dilation projections that ensures both global and local mesh-convergence.......Mesh convergence and manufacturability of topology optimized designs have previously mainly been assured using density or sensitivity based filtering techniques. The drawback of these techniques has been gray transition regions between solid and void parts, but this problem has recently been...
Analysis of convergence for control problems governed by evolution ...
African Journals Online (AJOL)
The convergence of a scheme to minimize a class of a system of continuous optimal control problems characterized by a system of evolution equations and a system of linear inequality and equality constraints with multiplier imbedding is considered. The result is applied to some problems and the scheme is found to exhibit ...
Aschepkov, Leonid T; Kim, Taekyun; Agarwal, Ravi P
2016-01-01
This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level. The main themes of the theory of linear and nonlinear systems are considered, including the basic problem of establishing the necessary and sufficient conditions of optimal processes. In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for prob...
The convergent LEP and SPS control systems
International Nuclear Information System (INIS)
Altaber, J.
1987-01-01
The major design contraint of the control system for LEP is the compatibility with the existing SPS control system. The first reason for this compatibility is to allow a long term convergence of the SPS control system towards the LEP one. The second reason is to operate both LEP and SPS machines from a unique main control room. The distributed architecture of LEP and the existing SPS control systems are described. The design of the equipment interface for both machines is explained. Finally, the infrastructure of the common main control room for LEP and SPS is described
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-09-01
data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques To submit to this special issue, follow the normal procedure for submission to JON, indicating "Convergence feature" in the "Comments" field of the online submission form. For all other questions relating to this
DEFF Research Database (Denmark)
Madsen, Ole Brun; Nielsen, Jens Frederik Dalsgaard; Schiøler, Henrik
2002-01-01
Convergence trends between the WAN Internet area, characterized by best effort service provision, and the real time LAN domain, with requirements for guaranteed services, are identified and discussed. A bilateral evolution is identified, where typical bulk service applications from WAN, such as m......Convergence trends between the WAN Internet area, characterized by best effort service provision, and the real time LAN domain, with requirements for guaranteed services, are identified and discussed. A bilateral evolution is identified, where typical bulk service applications from WAN...... with the emergence of remote service provision, such as supervision and control of decentralized heating facilities and wind based electrical power production. The reliability issue is addressed from a structural viewpoint, where the concept of Structural QoS (SQoS) is defined to support reliability modelling...
A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization
Directory of Open Access Journals (Sweden)
Zhijun Luo
2014-01-01
Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-01-01
synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques
Optimization of convergent collimators for pixelated SPECT systems
International Nuclear Information System (INIS)
Capote, Ricardo M.; Matela, Nuno; Conceição, Raquel C.; Almeida, Pedro
2013-01-01
Purpose: The optimization of the collimator design is essential to obtain the best possible sensitivity in single photon emission computed tomography imaging. The aim of this work is to present a methodology for maximizing the sensitivity of convergent collimators, specifically designed to match the pitch of pixelated detectors, for a fixed spatial resolution value and to present some initial results using this approach. Methods: Given the matched constraint, the optimal collimator design cannot be simply found by allowing the highest level of septal penetration and spatial resolution consistent with the imposed restrictions, as it is done for the optimization of conventional collimators. Therefore, an algorithm that interactively calculates the collimator dimensions, with the maximum sensitivity, which respect the imposed restrictions was developed and used to optimize cone and fan beam collimators with tapered square-shaped holes for low (60–300 keV) and high energy radiation (300–511 keV). The optimal collimator dimensions were locally calculated based on the premise that each hole and septa of the convergent collimator should locally resemble an appropriate optimal matched parallel collimator. Results: The optimal collimator dimensions, calculated for subcentimeter resolutions (3 and 7.5 mm), common pixel sizes (1.6, 2.1, and 2.5 mm), and acceptable septal penetration at 140 keV, were approximately constant throughout the collimator, despite their different hole incidence angles. By using these input parameters and a less strict septal penetration value of 5%, the optimal collimator dimensions and the corresponding mass per detector area were calculated for 511 keV. It is shown that a low value of focal distance leads to improvements in the average sensitivity at a fixed source-collimator distance and resolution. The optimal cone beam performance outperformed that of other optimal collimation geometries (fan and parallel beam) in imaging objects close to
Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.
2009-01-01
We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by
Convergent evolution of vascular optimization in kelp (Laminariales).
Drobnitch, Sarah Tepler; Jensen, Kaare H; Prentice, Paige; Pittermann, Jarmila
2015-10-07
Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla. © 2015 The Author(s).
Convergent evolution of vascular optimization in kelp (Laminariales)
DEFF Research Database (Denmark)
Drobnitch, Sarah Tepler; Jensen, Kaare Hartvig; Prentice, Paige
2015-01-01
Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric...... (Phaeophyceae) are one such group—as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy...... and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong...
Directory of Open Access Journals (Sweden)
Narinder Singh
2017-01-01
Full Text Available A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO and Grey Wolf Optimizer (GWO. The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to find the global optimum.
DEFF Research Database (Denmark)
Prasad, Ramjee
2009-01-01
This paper presents the main conclusions which can be drawn from the discussions on Future Communication Systems and lessons on Unpredictable Future of Wireless Communication Systems. Future systems beyond the third generation are already under discussions in international bodies, such as ITU, WW...... and R&D programmes worldwide. The incoming era is characterized by the convergence of networks and access technology and the divergence of applications. Future mobile communication systems should bring something more than only faster data or wireless internet access....
Directory of Open Access Journals (Sweden)
Zhongbo Hu
2014-01-01
Full Text Available Many improved differential Evolution (DE algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.
Handayani, D.; Nuraini, N.; Tse, O.; Saragih, R.; Naiborhu, J.
2016-04-01
PSO is a computational optimization method motivated by the social behavior of organisms like bird flocking, fish schooling and human social relations. PSO is one of the most important swarm intelligence algorithms. In this study, we analyze the convergence of PSO when it is applied to with-in host dengue infection treatment model simulation in our early research. We used PSO method to construct the initial adjoin equation and to solve a control problem. Its properties of control input on the continuity of objective function and ability of adapting to the dynamic environment made us have to analyze the convergence of PSO. With the convergence analysis of PSO we will have some parameters that ensure the convergence result of numerical simulations on this model using PSO.
Optimally growing boundary layer disturbances in a convergent nozzle preceded by a circular pipe
Uzun, Ali; Davis, Timothy B.; Alvi, Farrukh S.; Hussaini, M. Yousuff
2017-06-01
We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.
Converged Wireless Networking and Optimization for Next Generation Services
Directory of Open Access Journals (Sweden)
J. Rodriguez
2010-01-01
Full Text Available The Next Generation Network (NGN vision is tending towards the convergence of internet and mobile services providing the impetus for new market opportunities in combining the appealing services of internet with the roaming capability of mobile networks. However, this convergence does not go far enough, and with the emergence of new coexistence scenarios, there is a clear need to evolve the current architecture to provide cost-effective end-to-end communication. The LOOP project, a EUREKA-CELTIC driven initiative, is one piece in the jigsaw by helping European industry to sustain a leading role in telecommunications and manufacturing of high-value products and machinery by delivering pioneering converged wireless networking solutions that can be successfully demonstrated. This paper provides an overview of the LOOP project and the key achievements that have been tunneled into first prototypes for showcasing next generation services for operators and process manufacturers.
Asymptotic convergence for iterative optimization in electronic structure
International Nuclear Information System (INIS)
Lippert, Ross A.; Sears, Mark P.
2000-01-01
There have recently been a number of proposals for solving large electronic structure problems (local-density approximation, Hartree-Fock, and tight-binding methods) iteratively with a computational effort proportional to the size of the system. The effort needed to perform a single iteration in these schemes is well understood but the convergence rate has been an empirical matter. This paper will show that many of the proposed methods have a single underlying geometrical structure, which has a specific asymptotic convergence behavior, and that behavior can be understood in terms of some simple condition numbers based on the spectrum of the Hamiltonian. (c) 2000 The American Physical Society
Kim, Seongho; Li, Lang
2014-02-01
The statistical identifiability of nonlinear pharmacokinetic (PK) models with the Michaelis-Menten (MM) kinetic equation is considered using a global optimization approach, which is particle swarm optimization (PSO). If a model is statistically non-identifiable, the conventional derivative-based estimation approach is often terminated earlier without converging, due to the singularity. To circumvent this difficulty, we develop a derivative-free global optimization algorithm by combining PSO with a derivative-free local optimization algorithm to improve the rate of convergence of PSO. We further propose an efficient approach to not only checking the convergence of estimation but also detecting the identifiability of nonlinear PK models. PK simulation studies demonstrate that the convergence and identifiability of the PK model can be detected efficiently through the proposed approach. The proposed approach is then applied to clinical PK data along with a two-compartmental model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
CONVERGENCE OF POWERS OF CONTROLLABLE INTUITIONISTIC FUZZY MATRICES
Riyaz Ahmad Padder; P. Murugadas
2016-01-01
Convergences of powers of controllable intuitionistic fuzzy matrices have been stud¬ied. It is shown that they oscillate with period equal to 2, in general. Some equalities and sequences of inequalities about powers of controllable intuitionistic fuzzy matrices have been obtained.
Accelerator controls at CERN: Some converging trends
International Nuclear Information System (INIS)
Kuiper, B.
1990-01-01
CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of 'Technical Boards', mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way. (orig.)
Accelerator controls at CERN: Some converging trends
Kuiper, B.
1990-08-01
CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of "Technical Boards", mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way.
Efficient evolutionary algorithms for optimal control
López Cruz, I.L.
2002-01-01
If optimal control problems are solved by means of gradient based local search methods, convergence to local solutions is likely. Recently, there has been an increasing interest in the use
Optimal decoupling controllers revisited
Czech Academy of Sciences Publication Activity Database
Kučera, Vladimír
2013-01-01
Roč. 42, č. 1 (2013), s. 1-16 ISSN 0324-8569 R&D Projects: GA TA ČR(CZ) TE01020197 Institutional support: RVO:67985556 Keywords : linear systems * fractional representations * decoupling control lers * stabilizing control lers * optimal control lers Subject RIV: BC - Control Systems Theory
Evidence that convergence rather than accommodation controls intermittent distance exotropia.
Horwood, Anna M; Riddell, Patricia M
2012-03-01
This study considered whether vergence drives accommodation or accommodation drives vergence during the control of distance exotropia for near fixation. High accommodative convergence to accommodation (AC/A) ratios are often used to explain this control, but the role of convergence to drive accommodation (the CA/C relationship) is rarely considered. Atypical CA/C characteristics could equally, or better, explain common clinical findings. Nineteen distance exotropes, aged 4-11 years, were compared while controlling their deviation with 27 non-exotropic controls aged 5-9 years. Simultaneous vergence and accommodation responses were measured to a range of targets incorporating different combinations of blur, disparity and looming cues at four fixation distances between 2 m and 33 cm. Stimulus and response AC/A and CA/C ratios were calculated. Accommodation responses for near targets (p = 0.017) and response gains (p = 0.026) were greater in the exotropes than in the controls. Despite higher clinical stimulus AC/A ratios, the distance exotropes showed lower laboratory response AC/A ratios (p = 0.02), but significantly higher CA/C ratios (p = 0.02). All the exotropes, whether the angle changed most with lenses ('controlled by accommodation') or on occlusion ('controlled by fusion'), used binocular disparity not blur as their main cue to target distance. Increased vergence demand to control intermittent distance exotropia for near also drives significantly more accommodation. Minus lens therapy is more likely to act by correcting overaccommodation driven by controlling convergence, rather than by inducing blur-driven vergence. The use of convergence as a major drive to accommodation explains many clinical characteristics of distance exotropia, including apparently high near stimulus AC/A ratios. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
On the Convergence of Biogeography-Based Optimization for Binary Problems
Directory of Open Access Journals (Sweden)
Haiping Ma
2014-01-01
Full Text Available Biogeography-based optimization (BBO is an evolutionary algorithm inspired by biogeography, which is the study of the migration of species between habitats. A finite Markov chain model of BBO for binary problems was derived in earlier work, and some significant theoretical results were obtained. This paper analyzes the convergence properties of BBO on binary problems based on the previously derived BBO Markov chain model. Analysis reveals that BBO with only migration and mutation never converges to the global optimum. However, BBO with elitism, which maintains the best candidate in the population from one generation to the next, converges to the global optimum. In spite of previously published differences between genetic algorithms (GAs and BBO, this paper shows that the convergence properties of BBO are similar to those of the canonical GA. In addition, the convergence rate estimate of BBO with elitism is obtained in this paper and is confirmed by simulations for some simple representative problems.
Nonlinear optimal control theory
Berkovitz, Leonard David
2012-01-01
Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also dis
DEFF Research Database (Denmark)
Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter
2011-01-01
We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal......, whereas the convergence of the coefficients happens only with respect to the "volumetric" Lebesgue measure. Additionally, depending on whether the stationarity conditions are stated for the discretized or the original continuous problem, two distinct concepts of stationarity at a discrete level arise. We...... provide characterizations of limit points, with respect to FV mesh size, of globally optimal solutions and two types of stationary points to the discretized problems. We illustrate the practical behaviour of our cell-based FV discretization algorithm on a numerical example....
Directory of Open Access Journals (Sweden)
Weitian Lin
2014-01-01
Full Text Available Particle swarm optimization algorithm (PSOA is an advantage optimization tool. However, it has a tendency to get stuck in a near optimal solution especially for middle and large size problems and it is difficult to improve solution accuracy by fine-tuning parameters. According to the insufficiency, this paper researches the local and global search combine particle swarm algorithm (LGSCPSOA, and its convergence and obtains its convergence qualification. At the same time, it is tested with a set of 8 benchmark continuous functions and compared their optimization results with original particle swarm algorithm (OPSOA. Experimental results indicate that the LGSCPSOA improves the search performance especially on the middle and large size benchmark functions significantly.
Optimization of accelerator control
International Nuclear Information System (INIS)
Vasiljev, N.D.; Mozin, I.V.; Shelekhov, V.A.; Efremov, D.V.
1992-01-01
Expensive exploitation of charged particle accelerators is inevitably concerned with requirements of effectively obtaining of the best characteristics of accelerated beams for physical experiments. One of these characteristics is intensity. Increase of intensity is hindered by a number of effects, concerned with the influence of the volume charge field on a particle motion dynamics in accelerator's chamber. However, ultimate intensity, determined by a volume charge, is almost not achieved for the most of the operating accelerators. This fact is caused by losses of particles during injection, at the initial stage of acceleration and during extraction. These losses are caused by deviations the optimal from real characteristics of the accelerating and magnetic system. This is due to a number of circumstances, including technological tolerances on structural elements of systems, influence of measuring and auxiliary equipment and beam consumers' installations, placed in the closed proximity to magnets, and instability in operation of technological systems of accelerator. Control task consists in compensation of deviations of characteristics of magnetic and electric fields by optimal selection of control actions. As for technical means, automatization of modern accelerators allows to solve optimal control problems in real time. Therefore, the report is devoted to optimal control methods and experimental results. (J.P.N.)
Convergent synthesis of proteins by kinetically controlled ligation
Kent, Stephen; Pentelute, Brad; Bang, Duhee; Johnson, Erik; Durek, Thomas
2010-03-09
The present invention concerns methods and compositions for synthesizing a polypeptide using kinetically controlled reactions involving fragments of the polypeptide for a fully convergent process. In more specific embodiments, a ligation involves reacting a first peptide having a protected cysteyl group at its N-terminal and a phenylthioester at its C-terminal with a second peptide having a cysteine residue at its N-termini and a thioester at its C-termini to form a ligation product. Subsequent reactions may involve deprotecting the cysteyl group of the resulting ligation product and/or converting the thioester into a thiophenylester.
Oil Reservoir Production Optimization using Optimal Control
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan
2011-01-01
Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...
International Nuclear Information System (INIS)
Jian Jinbao; Li Jianling; Mo Xingde
2006-01-01
This paper discusses a kind of optimization problem with linear complementarity constraints, and presents a sequential quadratic programming (SQP) algorithm for solving a stationary point of the problem. The algorithm is a modification of the SQP algorithm proposed by Fukushima et al. [Computational Optimization and Applications, 10 (1998),5-34], and is based on a reformulation of complementarity condition as a system of linear equations. At each iteration, one quadratic programming and one system of equations needs to be solved, and a curve search is used to yield the step size. Under some appropriate assumptions, including the lower-level strict complementarity, but without the upper-level strict complementarity for the inequality constraints, the algorithm is proved to possess strong convergence and superlinear convergence. Some preliminary numerical results are reported
Optimal convergence in naming game with geography-based negotiation on small-world networks
Energy Technology Data Exchange (ETDEWEB)
Liu Runran, E-mail: runran@mail.ustc.edu.c [Department of Modern Physics and Nonlinear Science Center, University of Science and Technology of China, Hefei Anhui 230026 (China); Wang Wenxu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Lai Yingcheng [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Chen Guanrong [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (Hong Kong); Wang Binghong [Department of Modern Physics and Nonlinear Science Center, University of Science and Technology of China, Hefei Anhui 230026 (China); Research Center for Complex System Science, University of Shanghai for Science and Technology and Shanghai Academy of System Science, Shanghai 200093 (China)
2011-01-17
We propose a negotiation strategy to address the effect of geography on the dynamics of naming games over small-world networks. Communication and negotiation frequencies between two agents are determined by their geographical distance in terms of a parameter characterizing the correlation between interaction strength and the distance. A finding is that there exists an optimal parameter value leading to fastest convergence to global consensus on naming. Numerical computations and a theoretical analysis are provided to substantiate our findings.
Optimal convergence in naming game with geography-based negotiation on small-world networks
International Nuclear Information System (INIS)
Liu Runran; Wang Wenxu; Lai Yingcheng; Chen Guanrong; Wang Binghong
2011-01-01
We propose a negotiation strategy to address the effect of geography on the dynamics of naming games over small-world networks. Communication and negotiation frequencies between two agents are determined by their geographical distance in terms of a parameter characterizing the correlation between interaction strength and the distance. A finding is that there exists an optimal parameter value leading to fastest convergence to global consensus on naming. Numerical computations and a theoretical analysis are provided to substantiate our findings.
Integrated control platform for converged optical and wireless networks
DEFF Research Database (Denmark)
Yan, Ying
The next generation of broadband access networks is expected to be heterogeneous. Multiple wired and wireless systems can be integrated, in order to simultaneously provide seamless access with an appropriate Quality of Service (QoS). Wireless networks support ubiquitous connectivity yet low data...... rates, whereas optical networks can offer much higher data rates but only provide fixed connection structures. Their complementary characteristics make the integration of the two networks a promising trend for next generation networks. With combined strengths, the converged network will provide both...... the complementary characteristics of the optical networks and the wireless networks, addresses motivations for their interworking, discusses the current progress in hybrid network architectures as well as the functionalities of a control system, and identifies the achieved research contributions in the integrated...
Optimal, real-time control--colliders
International Nuclear Information System (INIS)
Spencer, J.E.
1991-05-01
With reasonable definitions, optimal control is possible for both classical and quantal systems with new approaches called PISC(Parallel) and NISC(Neural) from analogy with RISC (Reduced Instruction Set Computing). If control equals interaction, observation and comparison to some figure of merit with interaction via external fields, then optimization comes from varying these fields to give design or operating goals. Structural stability can then give us tolerance and design constraints. But simulations use simplified models, are not in real-time and assume fixed or stationary conditions, so optimal control goes far beyond convergence rates of algorithms. It is inseparable from design and this has many implications for colliders. 12 refs., 3 figs
Optimal control for chemical engineers
Upreti, Simant Ranjan
2013-01-01
Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de
Power, control and optimization
Vasant, Pandian; Barsoum, Nader
2013-01-01
The book consists of chapters based on selected papers of international conference „Power, Control and Optimization 2012”, held in Las Vegas, USA. Readers can find interesting chapters discussing various topics from the field of power control, its distribution and related fields. Book discusses topics like energy consumption impacted by climate, mathematical modeling of the influence of thermal power plant on the aquatic environment, investigation of cost reduction in residential electricity bill using electric vehicle at peak times or allocation and size evaluation of distributed generation using ANN model and others. Chapter authors are to the best of our knowledge the originators or closely related to the originators of presented ideas and its applications. Hence, this book certainly is one of the few books discussing the benefit from intersection of those modern and fruitful scientific fields of research with very tight and deep impact on real life and industry. This book is devoted to the studies o...
Introduction to optimal control theory
International Nuclear Information System (INIS)
Agrachev, A.A.
2002-01-01
These are lecture notes of the introductory course in Optimal Control theory treated from the geometric point of view. Optimal Control Problem is reduced to the study of controls (and corresponding trajectories) leading to the boundary of attainable sets. We discuss Pontryagin Maximum Principle, basic existence results, and apply these tools to concrete simple optimal control problems. Special sections are devoted to the general theory of linear time-optimal problems and linear-quadratic problems. (author)
Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft
Directory of Open Access Journals (Sweden)
Chutiphon Pukdeboon
2011-01-01
Full Text Available The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.
Optimal Control of Mechanical Systems
Directory of Open Access Journals (Sweden)
Vadim Azhmyakov
2007-01-01
Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.
International Nuclear Information System (INIS)
Niu, Tianye; Fruhauf, Quentin; Petrongolo, Michael; Zhu, Lei; Ye, Xiaojing
2014-01-01
Recently, we proposed a new algorithm of accelerated barrier optimization compressed sensing (ABOCS) for iterative CT reconstruction. The previous implementation of ABOCS uses gradient projection (GP) with a Barzilai–Borwein (BB) step-size selection scheme (GP-BB) to search for the optimal solution. The algorithm does not converge stably due to its non-monotonic behavior. In this paper, we further improve the convergence of ABOCS using the unknown-parameter Nesterov (UPN) method and investigate the ABOCS reconstruction performance on clinical patient data. Comparison studies are carried out on reconstructions of computer simulation, a physical phantom and a head-and-neck patient. In all of these studies, the ABOCS results using UPN show more stable and faster convergence than those of the GP-BB method and a state-of-the-art Bregman-type method. As shown in the simulation study of the Shepp–Logan phantom, UPN achieves the same image quality as those of GP-BB and the Bregman-type methods, but reduces the iteration numbers by up to 50% and 90%, respectively. In the Catphan©600 phantom study, a high-quality image with relative reconstruction error (RRE) less than 3% compared to the full-view result is obtained using UPN with 17% projections (60 views). In the conventional filtered-backprojection reconstruction, the corresponding RRE is more than 15% on the same projection data. The superior performance of ABOCS with the UPN implementation is further demonstrated on the head-and-neck patient. Using 25% projections (91 views), the proposed method reduces the RRE from 21% as in the filtered backprojection (FBP) results to 7.3%. In conclusion, we propose UPN for ABOCS implementation. As compared to GP-BB and the Bregman-type methods, the new method significantly improves the convergence with higher stability and fewer iterations. (paper)
Euler's fluid equations: Optimal control vs optimization
International Nuclear Information System (INIS)
Holm, Darryl D.
2009-01-01
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization
Directory of Open Access Journals (Sweden)
Jinkui Liu
2012-01-01
Full Text Available A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995 in contrast to the famous CD method, FR method, and PRP method.
Convergence Guaranteed Nonlinear Constraint Model Predictive Control via I/O Linearization
Directory of Open Access Journals (Sweden)
Xiaobing Kong
2013-01-01
Full Text Available Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an iterative quadratic program (IQP routine on the continuous-time system. To guarantee its convergence, another iterative approach is incorporated. The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both a numerical example and the continuous stirred tank reactors (CSTR demonstrate the effectiveness of the proposed method.
PID control for chaotic synchronization using particle swarm optimization
Energy Technology Data Exchange (ETDEWEB)
Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)], E-mail: wdchang@mail.stu.edu.tw
2009-01-30
In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.
PID control for chaotic synchronization using particle swarm optimization
International Nuclear Information System (INIS)
Chang, W.-D.
2009-01-01
In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.
Beck, Joakim; Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raul
2014-01-01
In this work we consider quasi-optimal versions of the Stochastic Galerkin method for solving linear elliptic PDEs with stochastic coefficients. In particular, we consider the case of a finite number N of random inputs and an analytic dependence of the solution of the PDE with respect to the parameters in a polydisc of the complex plane CN. We show that a quasi-optimal approximation is given by a Galerkin projection on a weighted (anisotropic) total degree space and prove a (sub)exponential convergence rate. As a specific application we consider a thermal conduction problem with non-overlapping inclusions of random conductivity. Numerical results show the sharpness of our estimates. © 2013 Elsevier Ltd. All rights reserved.
Beck, Joakim
2014-03-01
In this work we consider quasi-optimal versions of the Stochastic Galerkin method for solving linear elliptic PDEs with stochastic coefficients. In particular, we consider the case of a finite number N of random inputs and an analytic dependence of the solution of the PDE with respect to the parameters in a polydisc of the complex plane CN. We show that a quasi-optimal approximation is given by a Galerkin projection on a weighted (anisotropic) total degree space and prove a (sub)exponential convergence rate. As a specific application we consider a thermal conduction problem with non-overlapping inclusions of random conductivity. Numerical results show the sharpness of our estimates. © 2013 Elsevier Ltd. All rights reserved.
Iterative learning control an optimization paradigm
Owens, David H
2016-01-01
This book develops a coherent theoretical approach to algorithm design for iterative learning control based on the use of optimization concepts. Concentrating initially on linear, discrete-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately because their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates that there are new algorithms that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference signals and also to support new algorithms for local convergence of nonlinear iterative control. Simulation and application studies are used to illustrate algorithm properties and performance in systems like gantry robots and other elect...
Acceleration and increased control of convergence in criticality calculations
International Nuclear Information System (INIS)
Jinaphanh, Alexis
2014-01-01
IRSN is developing a numerical simulation code called Moret to assess the nuclear criticality risk. This tool is designed to perform 3D simulations of neutron transport in a given system. It achieves this by adopting a probabilistic approach known as Monte Carlo, in which the transport of several successive generations of neutrons is calculated from an initial neutron distribution in the system under study. These generations are simulated until it is considered that convergence of the effective neutron multiplication coefficient (or K eff ) - which characterizes the gap before reaching the critical state - has been reached. Insufficient convergence can lead to underestimation of both K eff and the criticality risk. During this thesis work, A. Jinaphanh sought to improve the reliability of values by developing a new method for initializing calculations, together with a criterion used to reliably determine whether or not convergence has been reached. (author)
Directory of Open Access Journals (Sweden)
Zhongbo Sun
2014-01-01
Full Text Available Two modified three-term type conjugate gradient algorithms which satisfy both the descent condition and the Dai-Liao type conjugacy condition are presented for unconstrained optimization. The first algorithm is a modification of the Hager and Zhang type algorithm in such a way that the search direction is descent and satisfies Dai-Liao’s type conjugacy condition. The second simple three-term type conjugate gradient method can generate sufficient decent directions at every iteration; moreover, this property is independent of the steplength line search. Also, the algorithms could be considered as a modification of the MBFGS method, but with different zk. Under some mild conditions, the given methods are global convergence, which is independent of the Wolfe line search for general functions. The numerical experiments show that the proposed methods are very robust and efficient.
Optimal magnetic attitude control
DEFF Research Database (Denmark)
Wisniewski, Rafal; Markley, F.L.
1999-01-01
because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic...
Optimal control in thermal engineering
Badescu, Viorel
2017-01-01
This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.
Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.
2013-01-01
The Integrated Vehicle Safety Department of TNO (Dutch Organization for Applied Scientific Research) investigates the application of modern control methods in the Integrated Vehicle Dynamics Control (IVDC) field, as a strategic research topic of the Beyond Safe framework. The aim of IVDC is to
Symposium on Optimal Control Theory
1987-01-01
Control theory can be roughly classified as deterministic or stochastic. Each of these can further be subdivided into game theory and optimal control theory. The central problem of control theory is the so called constrained maximization (which- with slight modifications--is equivalent to minimization). One can then say, heuristically, that the major problem of control theory is to find the maximum of some performance criterion (or criteria), given a set of constraints. The starting point is, of course, a mathematical representation of the performance criterion (or criteria)- sometimes called the objective functional--along with the constraints. When the objective functional is single valued (Le. , when there is only one objective to be maximized), then one is dealing with optimal control theory. When more than one objective is involved, and the objectives are generally incompatible, then one is dealing with game theory. The first paper deals with stochastic optimal control, using the dynamic programming ...
Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing
2015-07-01
In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.
Optimal control theory an introduction
Kirk, Donald E
2004-01-01
Optimal control theory is the science of maximizing the returns from and minimizing the costs of the operation of physical, social, and economic processes. Geared toward upper-level undergraduates, this text introduces three aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization.Chapters 1 and 2 focus on describing systems and evaluating their performances. Chapter 3 deals with dynamic programming. The calculus of variations and Pontryagin's minimum principle are the subjects of chapters 4 and 5, and chapter
General Form of Model-Free Control Law and Convergence Analyzing
Directory of Open Access Journals (Sweden)
Xiuying Li
2012-01-01
Full Text Available The general form of model-free control law is introduced, and its convergence is analyzed. Firstly, the necessity to improve the basic form of model free control law is explained, and the functional combination method as the approach of improvement is presented. Then, a series of sufficient conditions of convergence are given. The analysis denotes that these conditions can be satisfied easily in the engineering practice.
Optimal control of quantum measurement
Energy Technology Data Exchange (ETDEWEB)
Egger, Daniel; Wilhelm, Frank [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany)
2015-07-01
Pulses to steer the time evolution of quantum systems can be designed with optimal control theory. In most cases it is the coherent processes that can be controlled and one optimizes the time evolution towards a target unitary process, sometimes also in the presence of non-controllable incoherent processes. Here we show how to extend the GRAPE algorithm in the case where the incoherent processes are controllable and the target time evolution is a non-unitary quantum channel. We perform a gradient search on a fidelity measure based on Choi matrices. We illustrate our algorithm by optimizing a measurement pulse for superconducting phase qubits. We show how this technique can lead to large measurement contrast close to 99%. We also show, within the validity of our model, that this algorithm can produce short 1.4 ns pulses with 98.2% contrast.
Genetic Algorithm Optimizes Q-LAW Control Parameters
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Directory of Open Access Journals (Sweden)
Ruisheng Sun
2016-01-01
Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.
Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.
Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L
2017-10-01
The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.
Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes
Energy Technology Data Exchange (ETDEWEB)
Mohseni, M. [Google Research, Venice, California 90291 (United States); Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shabani, A. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Department of Chemistry, University of California at Berkeley, Berkeley, California 94720 (United States); Lloyd, S. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Rabitz, H. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)
2014-01-21
Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k{sub B}λT/ℏγg as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.
Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes
International Nuclear Information System (INIS)
Mohseni, M.; Shabani, A.; Lloyd, S.; Rabitz, H.
2014-01-01
Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k B λT/ℏγg as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap
Kinematically Optimal Robust Control of Redundant Manipulators
Galicki, M.
2017-12-01
This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Optimal control of motorsport differentials
Tremlett, A. J.; Massaro, M.; Purdy, D. J.; Velenis, E.; Assadian, F.; Moore, A. P.; Halley, M.
2015-12-01
Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm.
Optimal control of native predators
Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.
2010-01-01
We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.
Control of error and convergence in ODE solvers
International Nuclear Information System (INIS)
Gustafsson, K.
1992-03-01
Feedback is a general principle that can be used in many different contexts. In this thesis it is applied to numerical integration of ordinary differential equations. An advanced integration method includes parameters and variables that should be adjusted during the execution. In addition, the integration method should be able to automatically handle situations such as: initialization, restart after failures, etc. In this thesis we regard the algorithms for parameter adjustment and supervision as a controller. The controlled measures different variable that tell the current status of the integration, and based on this information it decides how to continue. The design of the controller is vital in order to accurately and efficiently solve a large class of ordinary differential equations. The application of feedback control may appear farfetched, but numerical integration methods are in fact dynamical systems. This is often overlooked in traditional numerical analysis. We derive dynamic models that describe the behavior of the integration method as well as the standard control algorithms in use today. Using these models it is possible to analyze properties of current algorithms, and also explain some generally observed misbehaviors. Further, we use the acquired insight to derive new and improved control algorithms, both for explicit and implicit Runge-Kutta methods. In the explicit case, the new controller gives good overall performance. In particular it overcomes the problem with oscillating stepsize sequence that is often experienced when the stepsize is restricted by numerical stability. The controller for implicit methods is designed so that it tracks changes in the differential equation better than current algorithms. In addition, it includes a new strategy for the equation solver, which allows the stepsize to vary more freely. This leads to smoother error control without excessive operations on the iteration matrix. (87 refs.) (au)
A homotopy algorithm for digital optimal projection control GASD-HADOC
Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.
1993-01-01
The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.
Nobile, F.
2015-10-30
In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw–Curtis) or non-nested (Gauss–Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature.
Nobile, F.; Tamellini, L.; Tempone, Raul
2015-01-01
In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw–Curtis) or non-nested (Gauss–Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature.
Optimal control with aerospace applications
Longuski, James M; Prussing, John E
2014-01-01
Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a...
Optimization and optimal control in automotive systems
Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi
2014-01-01
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier approaches, based on some degree of heuristics, to the use of more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...
Control and optimal control theories with applications
Burghes, D N
2004-01-01
This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer fun
Distributed control design for nonlinear output agreement in convergent systems
Weitenberg, Erik; De Persis, Claudio
2015-01-01
This work studies the problem of output agreement in homogeneous networks of nonlinear dynamical systems under time-varying disturbances using controllers placed at the nodes of the networks. For the class of contractive systems, necessary and sufficient conditions for output agreement are derived,
Optimal control of hybrid vehicles
Jager, Bram; Kessels, John
2013-01-01
Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on Pontryagin’s maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Two case studies are included in the book: · a control strategy for a micro-hybrid power train; and · experimental results obtained with a real-time strategy implemented in...
Bartosz, Krzysztof; Denkowski, Zdzisław; Kalita, Piotr
In this paper the sensitivity of optimal solutions to control problems described by second order evolution subdifferential inclusions under perturbations of state relations and of cost functionals is investigated. First we establish a new existence result for a class of such inclusions. Then, based on the theory of sequential [Formula: see text]-convergence we recall the abstract scheme concerning convergence of minimal values and minimizers. The abstract scheme works provided we can establish two properties: the Kuratowski convergence of solution sets for the state relations and some complementary [Formula: see text]-convergence of the cost functionals. Then these two properties are implemented in the considered case.
Optimal control of hydroelectric facilities
Zhao, Guangzhi
This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the
Converging Redundant Sensor Network Information for Improved Building Control
Energy Technology Data Exchange (ETDEWEB)
Dale Tiller; D. Phil; Gregor Henze; Xin Guo
2007-09-30
This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.
CONVERGING REDUNDANT SENSOR NETWORK INFORMATION FOR IMPROVED BUILDING CONTROL
Energy Technology Data Exchange (ETDEWEB)
Dale K. Tiller; Gregor P. Henze
2004-11-01
Knowing how many people occupy a building, and where they are located, is a key component of building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, however, current sensor technology and control algorithms limit the effectiveness of both energy management and security systems. This topical report describes results from the first phase of a project to design, implement, validate, and prototype new technologies to monitor occupancy, control indoor environment services, and promote security in buildings. Phase I of the project focused on instrumentation and data collection. In this project phase a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Analysis tools based on Bayesian probability theory were applied to the occupancy data generated by the sensor network. The inference of primary importance is a probability distribution over the number of occupants and their locations in a building, given past and present sensor measurements. Inferences were computed for occupancy and its temporal persistence in individual offices as well as the persistence of sensor status. The raw sensor data were also used to calibrate the sensor belief network, including the occupancy transition matrix used in the Markov model, sensor sensitivity, and sensor failure models. This study shows that the belief network framework can be applied to the analysis of data streams from sensor networks, offering significant benefits to building operation compared to current practice.
Optimization and Optimal Control in Automotive Systems
Waschl, H.; Kolmanovsky, I.V.; Steinbuch, M.; Re, del L.
2014-01-01
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier approaches, based on some degree of heuristics, to the use of more and
Adaptive dynamic programming with applications in optimal control
Liu, Derong; Wang, Ding; Yang, Xiong; Li, Hongliang
2017-01-01
This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP app...
Directory of Open Access Journals (Sweden)
Jian Ding
2014-01-01
Full Text Available This paper addresses the problem of P-type iterative learning control for a class of multiple-input multiple-output linear discrete-time systems, whose aim is to develop robust monotonically convergent control law design over a finite frequency range. It is shown that the 2 D iterative learning control processes can be taken as 1 D state space model regardless of relative degree. With the generalized Kalman-Yakubovich-Popov lemma applied, it is feasible to describe the monotonically convergent conditions with the help of linear matrix inequality technique and to develop formulas for the control gain matrices design. An extension to robust control law design against systems with structured and polytopic-type uncertainties is also considered. Two numerical examples are provided to validate the feasibility and effectiveness of the proposed method.
A tâtonnement process with fading memory, stabilization and optimal speed of convergence
International Nuclear Information System (INIS)
Cavalli, Fausto; Naimzada, Ahmad
2015-01-01
The purpose of this work is to provide a way to improve stability and convergence rate of a price adjustment mechanism that converges to a Walrasian equilibrium. We focus on a discrete tâtonnement based on a two-agent, two-good exchange economy, and we introduce memory, assuming that the auctioneer adjusts prices not only using the current excess demand, but also making use of the past excess demand functions. In particular, we study the effect of computing a weighted average of the current and the previous excess demands (finite two level memory) and of all the previous excess demands (infinite memory). We show that suitable weights’ distributions have a stabilizing effect, so that the resulting price adjustment process converge toward the competitive equilibrium in a wider range of situations than the process without memory. Finally, we investigate the convergence speed toward the equilibrium of the proposed mechanisms. In particular, we show that using infinite memory with fading weights approaches the competitive equilibrium faster than with a distribution of quasi-uniform weights.
A Meta-Analysis of the Convergent Validity of Self-Control Measures
Duckworth, Angela Lee; Kern, Margaret L.
2011-01-01
There is extraordinary diversity in how the construct of self-control is operationalized in research studies. We meta-analytically examined evidence of convergent validity among executive function, delay of gratification, and self- and informant-report questionnaire measures of self-control. Overall, measures demonstrated moderate convergence (rrandom = .27 [95% CI = .24, .30]; rfixed = .34 [.33, .35], k = 282 samples, N = 33,564 participants), although there was substantial heterogeneity in the observed correlations. Correlations within and across types of self-control measures were strongest for informant-report questionnaires and weakest for executive function tasks. Questionnaires assessing sensation seeking impulses could be distinguished from questionnaires assessing processes of impulse regulation. We conclude that self-control is a coherent but multidimensional construct best assessed using multiple methods. PMID:21643479
Decentralized Optimization for a Novel Control Structure of HVAC System
Directory of Open Access Journals (Sweden)
Shiqiang Wang
2016-01-01
Full Text Available A decentralized control structure is introduced into the heating, ventilation, and air conditioning (HVAC system to solve the high maintenance and labor cost problem in actual engineering. Based on this new control system, a decentralized optimization method is presented for sensor fault repair and optimal group control of HVAC equipment. Convergence property of the novel method is theoretically analyzed considering both convex and nonconvex systems with constraints. In this decentralized control system, traditional device is fitted with a control chip such that it becomes a smart device. The smart device can communicate and operate collaboratively with the other devices to accomplish some designated tasks. The effectiveness of the presented method is verified by simulations and hardware tests.
HCCI Engine Optimization and Control
Energy Technology Data Exchange (ETDEWEB)
Rolf D. Reitz
2005-09-30
The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.
Near optimal decentralized H_inf control
DEFF Research Database (Denmark)
Stoustrup, J.; Niemann, Hans Henrik
It is shown that foir a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinity dimentional optimal controller. Using the insight of the line of proof of these results, a heuri......It is shown that foir a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinity dimentional optimal controller. Using the insight of the line of proof of these results...
An approach for second order control with finite time convergence for electro-hydraulic drives
DEFF Research Database (Denmark)
Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.
2013-01-01
algorithm parameters. However a discontinuous term internally in the control structure may excite pressures of transmission lines in hydraulic drives as the control structure strives to maintain the control error and its derivative equal to zero. In this paper a modified version of a controller based......Being a second order sliding algorithm, the super twisting algorithm is highly attractive for application in control of hydraulic drives and mechanical systems in general, as it utilizes only the control error while driving the control error as well as its derivative to zero for properly chosen...... on the super twisting algorithm is proposed, with the focus of eliminating the discontinuous term in order to achieve a more smooth control operation. The convergence properties of the proposed controller are analyzed via a conservative phase plane analysis. Furthermore, homogeneity considerations imply finite...
An hp symplectic pseudospectral method for nonlinear optimal control
Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong
2017-01-01
An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.
Boski, Marcin; Paszke, Wojciech
2015-11-01
This paper deals with the problem of designing an iterative learning control algorithm for discrete linear systems using repetitive process stability theory. The resulting design produces a stabilizing output feedback controller in the time domain and a feedforward controller that guarantees monotonic convergence in the trial-to-trial domain. The results are also extended to limited frequency range design specification. New design procedure is introduced in terms of linear matrix inequality (LMI) representations, which guarantee the prescribed performances of ILC scheme. A simulation example is given to illustrate the theoretical developments.
Constrained Optimization and Optimal Control for Partial Differential Equations
Leugering, Günter; Griewank, Andreas
2012-01-01
This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The cont
de Klerk, Etienne; Laurent, Monique; Sun, Zhao
We consider the problem of minimizing a continuous function f over a compact set K. We analyze a hierarchy of upper bounds proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), obtained by searching for an optimal probability density function h on K which is a sum of squares of polynomials, so
de Klerk, E.; Laurent, M.; Sun, Z.
2014-01-01
We consider the problem of minimizing a continuous function f over a compact set K. We analyze a hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864--885], obtained by searching for an optimal probability density function h on K which is a sum of squares of
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Lateral Preoptic Control of the Lateral Habenula through Convergent Glutamate and GABA Transmission
Directory of Open Access Journals (Sweden)
David J. Barker
2017-11-01
Full Text Available Summary: The lateral habenula (LHb is a brain structure that participates in cognitive and emotional processing and has been implicated in several mental disorders. Although one of the largest inputs to the LHb originates in the lateral preoptic area (LPO, little is known about how the LPO participates in the regulation of LHb function. Here, we provide evidence that the LPO exerts bivalent control over the LHb through the convergent transmission of LPO glutamate and γ-aminobutyric acid (GABA onto single LHb neurons. In vivo, both LPO-glutamatergic and LPO-GABAergic inputs to the LHb are activated by aversive stimuli, and their predictive cues yet produce opposing behaviors when stimulated independently. These results support a model wherein the balanced response of converging LPO-glutamate and LPO-GABA are necessary for a normal response to noxious stimuli, and an imbalance in LPO→LHb glutamate or GABA results in the type of aberrant processing that may underlie mental disorders. : Barker et al. show that distinct populations of lateral preoptic area glutamate and GABA neurons synapse together on single lateral habenula neurons and find that this “convergent neurotransmission” allows preoptic area neurons to exert bivalent control over single lateral habenula neurons and drive opposing motivational states. Keywords: preoptic, habenula, reward, aversion, synapse, glutamate, GABA, stress, calcium imaging, optogenetics, electron microscopy
Using impulses to control the convergence toward invariant surfaces of continuous dynamical systems
International Nuclear Information System (INIS)
Marão, José; Liu Xinzhi; Figueiredo, Annibal
2012-01-01
Let us consider a smooth invariant surface S of a given ordinary differential equations system. In this work we develop an impulsive control method in order to assure that the trajectories of the controlled system converge toward the surface S. The method approach is based on a property of a certain class of invariant surfaces whose the dynamics associated to their transverse directions can be described by a non-autonomous linear system. This fact allows to define an impulsive system which drives the trajectories toward the surface S. Also, we set up a definition of local stability exponents which can be associated to such kind of invariant surface.
Optimal control of load-following operations in a pressurized water reactor
International Nuclear Information System (INIS)
Zhao Fuyu; Zhou Dawei
2000-01-01
According to the optimal control theory, the problem of load-following operation in a pressurized water reactor is formulated as a nonlinear-quadratic optimal control problem. One-dimensional core model is adopted. A successful optimization algorithm DDPSR is proposed to solving the obtained problem. The research results show that the DDPSR can converge with a long time interval and needs very small iteration number and computing time, and the practical reactor can be fairly operated in an optimal load-following manner and axial offset satisfies the required value from beginning to end. Control characters of boron concentration are discussed specially
Flyback CCM inverter for AC module applications: iterative learning control and convergence analysis
Lee, Sung-Ho; Kim, Minsung
2017-12-01
This paper presents an iterative learning controller (ILC) for an interleaved flyback inverter operating in continuous conduction mode (CCM). The flyback CCM inverter features small output ripple current, high efficiency, and low cost, and hence it is well suited for photovoltaic power applications. However, it exhibits the non-minimum phase behaviour, because its transfer function from control duty to output current has the right-half-plane (RHP) zero. Moreover, the flyback CCM inverter suffers from the time-varying grid voltage disturbance. Thus, conventional control scheme results in inaccurate output tracking. To overcome these problems, the ILC is first developed and applied to the flyback inverter operating in CCM. The ILC makes use of both predictive and current learning terms which help the system output to converge to the reference trajectory. We take into account the nonlinear averaged model and use it to construct the proposed controller. It is proven that the system output globally converges to the reference trajectory in the absence of state disturbances, output noises, or initial state errors. Numerical simulations are performed to validate the proposed control scheme, and experiments using 400-W AC module prototype are carried out to demonstrate its practical feasibility.
Directory of Open Access Journals (Sweden)
João Carlos Damasceno Reis
2014-08-01
Full Text Available This study verifies the impact caused by the processes of globalization and convergence to international accounting standards on the managerial control systems of the largest multiple banks that operate in Brazil. The study was exploratory in nature, with the use of the case study method and the application of questionnaires containing mostly open questions to upper tier executives of four major Brazilian banks. The analysis showed that globalization has resulted in improved control systems and widespread use of information technology. It was also found that the convergence to international accounting standards occurred properly, thanks to the steps taken by the Central Bank that aimed at an agile updating of the Brazilian accounting standards laid down for banks operating in Brazil, in line with international standards. In general, the researched banks did not report a significant impact of convergence to the IFRS on their management control systems; adherence to the international accounting standards has had more significant impacts on information systems, especially regarding the new reporting and transparency standards, rather than on management controls. This result signals that the management control systems of the four banks in the sample are in line with Anthony (1965’s vision, that is, that flexibility to adapt to every change in the external environment might actually increase risks of failure.
Optimal management strategies in variable environments: Stochastic optimal control methods
Williams, B.K.
1985-01-01
Dynamic optimization was used to investigate the optimal defoliation of salt desert shrubs in north-western Utah. Management was formulated in the context of optimal stochastic control theory, with objective functions composed of discounted or time-averaged biomass yields. Climatic variability and community patterns of salt desert shrublands make the application of stochastic optimal control both feasible and necessary. A primary production model was used to simulate shrub responses and harvest yields under a variety of climatic regimes and defoliation patterns. The simulation results then were used in an optimization model to determine optimal defoliation strategies. The latter model encodes an algorithm for finite state, finite action, infinite discrete time horizon Markov decision processes. Three questions were addressed: (i) What effect do changes in weather patterns have on optimal management strategies? (ii) What effect does the discounting of future returns have? (iii) How do the optimal strategies perform relative to certain fixed defoliation strategies? An analysis was performed for the three shrub species, winterfat (Ceratoides lanata), shadscale (Atriplex confertifolia) and big sagebrush (Artemisia tridentata). In general, the results indicate substantial differences among species in optimal control strategies, which are associated with differences in physiological and morphological characteristics. Optimal policies for big sagebrush varied less with variation in climate, reserve levels and discount rates than did either shadscale or winterfat. This was attributed primarily to the overwintering of photosynthetically active tissue and to metabolic activity early in the growing season. Optimal defoliation of shadscale and winterfat generally was more responsive to differences in plant vigor and climate, reflecting the sensitivity of these species to utilization and replenishment of carbohydrate reserves. Similarities could be seen in the influence of both
Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.
Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David
2017-01-01
Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO.
Optimal control of raw timber production processes
Ivan Kolenka
1978-01-01
This paper demonstrates the possibility of optimal planning and control of timber harvesting activ-ities with mathematical optimization models. The separate phases of timber harvesting are represented by coordinated models which can be used to select the optimal decision for the execution of any given phase. The models form a system whose components are connected and...
DEFF Research Database (Denmark)
Li, Chendan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.
2016-01-01
In this paper we present a distributed control method for minimizing the operation cost in DC microgrid based on multiagent system. Each agent is autonomous and controls the local converter in a hierarchical way through droop control, voltage scheduling and collective decision making....... The collective decision for the whole system is made by proposed incremental cost consensus, and only nearest-neighbor communication is needed. The convergence characteristics of the consensus algorithm are analyzed considering different communication topologies and control parameters. Case studies verified...... the proposed method by comparing it without traditional methods. The robustness of system is tested under different communication latency and plug and play operation....
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Optimal Control and Optimization of Stochastic Supply Chain Systems
Song, Dong-Ping
2013-01-01
Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject in the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies. In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of ...
Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System
Directory of Open Access Journals (Sweden)
Qiang Gao
2013-01-01
Full Text Available Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.
Zhang, Shuhua; Sun, Shuyu; Yang, Hongtao
2014-01-01
A discontinuous Galerkin method is considered to simulate materials flow in a supply chain network problem which is governed by a system of conservation laws. By means of a novel interpolation and superclose analysis technique, the optimal and superconvergence error estimates are established under two physically meaningful assumptions on the connectivity matrix. Numerical examples are presented to validate the theoretical results. © 2014 Elsevier Ltd. All rights reserved.
Zhang, Shuhua
2014-09-01
A discontinuous Galerkin method is considered to simulate materials flow in a supply chain network problem which is governed by a system of conservation laws. By means of a novel interpolation and superclose analysis technique, the optimal and superconvergence error estimates are established under two physically meaningful assumptions on the connectivity matrix. Numerical examples are presented to validate the theoretical results. © 2014 Elsevier Ltd. All rights reserved.
Optimization analysis of propulsion motor control efficiency
Directory of Open Access Journals (Sweden)
CAI Qingnan
2017-12-01
Full Text Available [Objectives] This paper aims to strengthen the control effect of propulsion motors and decrease the energy used during actual control procedures.[Methods] Based on the traditional propulsion motor equivalence circuit, we increase the iron loss current component, introduce the definition of power matching ratio, calculate the highest efficiency of a motor at a given speed and discuss the flux corresponding to the power matching ratio with the highest efficiency. In the original motor vector efficiency optimization control module, an efficiency optimization control module is added so as to achieve motor efficiency optimization and energy conservation.[Results] MATLAB/Simulink simulation data shows that the efficiency optimization control method is suitable for most conditions. The operation efficiency of the improved motor model is significantly higher than that of the original motor model, and its dynamic performance is good.[Conclusions] Our motor efficiency optimization control method can be applied in engineering to achieve energy conservation.
Time-optimal control with finite bandwidth
Hirose, M.; Cappellaro, P.
2018-04-01
Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.
Optimization of boundary controls of string vibrations
Energy Technology Data Exchange (ETDEWEB)
Il' in, V A; Moiseev, E I [Department of Computing Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2005-12-31
For a large time interval T boundary controls of string vibrations are optimized in the following seven boundary-control problems: displacement control at one end (with the other end fixed or free); displacement control at both ends; elastic force control at one end (with the other end fixed or free); elastic force control at both ends; combined control (displacement control at one end and elastic force control at the other). Optimal boundary controls in each of these seven problems are sought as functions minimizing the corresponding boundary-energy integral under the constraints following from the initial and terminal conditions for the string at t=0 and t=T, respectively. For all seven problems, the optimal boundary controls are written out in closed analytic form.
Optimal control of a wave energy converter
Hendrikx, R.W.M.; Leth, J.; Andersen, P; Heemels, W.P.M.H.
2017-01-01
The optimal control strategy for a wave energy converter (WEC) with constraints on the control torque is investigated. The goal is to optimize the total energy delivered to the electricity grid. Using Pontryagin's maximum principle, the solution is found to be singular-bang. Using higher order
Liu, Qingshan; Wang, Jun
2011-04-01
This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Nguyen, Dorothy; Vedamurthy, Indu; Schor, Clifton
2008-01-01
Accommodation and convergence systems are cross-coupled so that stimulation of one system produces responses by both systems. Ideally, the cross-coupled responses of accommodation and convergence match their respective stimuli. When expressed in diopters and meter angles respectively, stimuli for accommodation and convergence are equal in the mid-sagittal plane when viewed with symmetrical convergence, where historically, the gains of the cross coupling (AC/A and CA/C ratios) have been quanti...
Optimal switching using coherent control
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper
2013-01-01
that the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy required for switching is a more relevant figure of merit than the switching speed, and for a particular two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input energy....
Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.
Wei, Qinglai; Li, Benkai; Song, Ruizhuo
2018-04-01
In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.
International Nuclear Information System (INIS)
Hery, J.F.
1985-06-01
For operating continuous process, the conceptors of control room are confronted with two major problems: what is the optimal distribution of works between operators and machinery and what interface between them. The development of expert systems can made easier the solutions of these problems. In this work, we proposed to present the walk to make a model of expert system based on control of nuclear reactor. The major problems described here, are those of convergence and commutativity of knowledge's bases. We have formulated some necessary conditions to assure these two major properties for the bases [fr
Existence theory in optimal control
International Nuclear Information System (INIS)
Olech, C.
1976-01-01
This paper treats the existence problem in two main cases. One case is that of linear systems when existence is based on closedness or compactness of the reachable set and the other, non-linear case refers to a situation where for the existence of optimal solutions closedness of the set of admissible solutions is needed. Some results from convex analysis are included in the paper. (author)
Optimal Control Development System for Electrical Drives
Directory of Open Access Journals (Sweden)
Marian GAICEANU
2008-08-01
Full Text Available In this paper the optimal electrical drive development system is presented. It consists of both electrical drive types: DC and AC. In order to implement the optimal control for AC drive system an Altivar 71 inverter, a Frato magnetic particle brake (as load, three-phase induction machine, and dSpace 1104 controller have been used. The on-line solution of the matrix Riccati differential equation (MRDE is computed by dSpace 1104 controller, based on the corresponding feedback signals, generating the optimal speed reference for the AC drive system. The optimal speed reference is tracked by Altivar 71 inverter, conducting to energy reduction in AC drive. The classical control (consisting of rotor field oriented control with PI controllers and the optimal one have been implemented by designing an adequate ControlDesk interface. The three-phase induction machine (IM is controlled at constant flux. Therefore, the linear dynamic mathematical model of the IM has been obtained. The optimal control law provides transient regimes with minimal energy consumption. The obtained solution by integration of the MRDE is orientated towards the numerical implementation-by using a zero order hold. The development system is very useful for researchers, doctoral students or experts training in electrical drive. The experimental results are shown.
Tropical High Cloud Fraction Controlled by Cloud Lifetime Rather Than Clear-sky Convergence
Seeley, J.; Jeevanjee, N.; Romps, D. M.
2016-12-01
Observations and simulations show a peak in cloud fraction below the tropopause. This peak is usually attributed to a roughly co-located peak in radiatively-driven clear-sky convergence, which is presumed to force convective detrainment and thus promote large cloud fraction. Using simulations of radiative-convective equilibrium forced by various radiative cooling profiles, we refute this mechanism by showing that an upper-tropospheric peak in cloud fraction persists even in simulations with no peak in clear-sky convergence. Instead, cloud fraction profiles seem to be controlled by cloud lifetimes — i.e., how long it takes for clouds to dissipate after they have detrained. A simple model of cloud evaporation shows that the small saturation deficit in the upper troposphere greatly extends cloud lifetimes there, while the large saturation deficit in the lower troposphere causes condensate to evaporate quickly. Since cloud mass flux must go to zero at the tropopause, a peak in cloud fraction emerges at a "sweet spot" below the tropopause where cloud lifetimes are long and there is still sufficient mass flux to be detrained.
Dynamic optimization and adaptive controller design
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Distributed Optimal Consensus Control for Multiagent Systems With Input Delay.
Zhang, Huaipin; Yue, Dong; Zhao, Wei; Hu, Songlin; Dou, Chunxia; Huaipin Zhang; Dong Yue; Wei Zhao; Songlin Hu; Chunxia Dou; Hu, Songlin; Zhang, Huaipin; Dou, Chunxia; Yue, Dong; Zhao, Wei
2018-06-01
This paper addresses the problem of distributed optimal consensus control for a continuous-time heterogeneous linear multiagent system subject to time varying input delays. First, by discretization and model transformation, the continuous-time input-delayed system is converted into a discrete-time delay-free system. Two delicate performance index functions are defined for these two systems. It is shown that the performance index functions are equivalent and the optimal consensus control problem of the input-delayed system can be cast into that of the delay-free system. Second, by virtue of the Hamilton-Jacobi-Bellman (HJB) equations, an optimal control policy for each agent is designed based on the delay-free system and a novel value iteration algorithm is proposed to learn the solutions to the HJB equations online. The proposed adaptive dynamic programming algorithm is implemented on the basis of a critic-action neural network (NN) structure. Third, it is proved that local consensus errors of the two systems and weight estimation errors of the critic-action NNs are uniformly ultimately bounded while the approximated control policies converge to their target values. Finally, two simulation examples are presented to illustrate the effectiveness of the developed method.
Optimal Control of Evolution Mixed Variational Inclusions
Energy Technology Data Exchange (ETDEWEB)
Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx [Universidad Nacional Autónoma de México, Departamento de Recursos Naturales, Instituto de Geofísica (Mexico)
2013-12-15
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.
Optimal Control of Evolution Mixed Variational Inclusions
International Nuclear Information System (INIS)
Alduncin, Gonzalo
2013-01-01
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory
Role of controllability in optimizing quantum dynamics
International Nuclear Information System (INIS)
Wu Rebing; Hsieh, Michael A.; Rabitz, Herschel
2011-01-01
This paper reveals an important role that controllability plays in the complexity of optimizing quantum control dynamics. We show that the loss of controllability generally leads to multiple locally suboptimal controls when gate fidelity in a quantum control system is maximized, which does not happen if the system is controllable. Such local suboptimal controls may attract an optimization algorithm into a local trap when a global optimal solution is sought, even if the target gate can be perfectly realized. This conclusion results from an analysis of the critical topology of the corresponding quantum control landscape, which refers to the gate fidelity objective as a functional of the control fields. For uncontrollable systems, due to SU(2) and SU(3) dynamical symmetries, the control landscape corresponding to an implementable target gate is proven to possess multiple locally optimal critical points, and its ruggedness can be further increased if the target gate is not realizable. These results imply that the optimization of quantum dynamics can be seriously impeded when operating with local search algorithms under these conditions, and thus full controllability is demanded.
Optimal Speed Control for Cruising
DEFF Research Database (Denmark)
Blanke, M.
1994-01-01
With small profit margins in merchant shipping and more than eighty percent of sailing time being cross ocean voyages, speed control is crucial for vessel profitability......With small profit margins in merchant shipping and more than eighty percent of sailing time being cross ocean voyages, speed control is crucial for vessel profitability...
Parameters control in GAs for dynamic optimization
Directory of Open Access Journals (Sweden)
Khalid Jebari
2013-02-01
Full Text Available The Control of Genetic Algorithms parameters allows to optimize the search process and improves the performance of the algorithm. Moreover it releases the user to dive into a game process of trial and failure to find the optimal parameters.
Optimal Control Design for a Solar Greenhouse
Ooteghem, van R.J.C.
2010-01-01
Abstract: An optimal climate control has been designed for a solar greenhouse to achieve optimal crop production with sustainable instead of fossil energy. The solar greenhouse extends a conventional greenhouse with an improved roof cover, ventilation with heat recovery, a heat pump, a heat
Optimization and control of metal forming processes
Havinga, Gosse Tjipke
2016-01-01
Inevitable variations in process and material properties limit the accuracy of metal forming processes. Robust optimization methods or control systems can be used to improve the production accuracy. Robust optimization methods are used to design production processes with low sensitivity to the
Optimal control and the calculus of variations
Pinch, Enid R
1993-01-01
This introduction to optimal control theory is intended for undergraduate mathematicians and for engineers and scientists with some knowledge of classical analysis. It includes sections on classical optimization and the calculus of variations. All the important theorems are carefully proved. There are many worked examples and exercises for the reader to attempt.
Direct Optimal Control of Duffing Dynamics
Oz, Hayrani; Ramsey, John K.
2002-01-01
The "direct control method" is a novel concept that is an attractive alternative and competitor to the differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear, time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form control laws based on minimization of a quadratic control performance measure. We present an application of the direct method to the dynamics and optimal control of the Duffing system where the control performance measure is not restricted to a quadratic form and hence may include a quartic energy term. The results we present in this report also constitute further generalizations of our earlier work in "direct optimal control methodology." The approach is demonstrated for the optimal control of the Duffing equation with a softening nonlinear stiffness.
A Feedback Optimal Control Algorithm with Optimal Measurement Time Points
Directory of Open Access Journals (Sweden)
Felix Jost
2017-02-01
Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.
HCCI engine control and optimization
Killingsworth, Nicholas J.
2007-01-01
Homogeneous charge compression ignition (HCCI) engines have the benefit of high efficiency with low emissions of nitrogen oxides and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. However, because there is no direct ignition trigger, control of ignition is inherently more difficult than in standard internal combustion engines. This difficulty necessitates that a feedback controller be used to keep the engine at a desi...
Optimal control for Malaria disease through vaccination
Munzir, Said; Nasir, Muhammad; Ramli, Marwan
2018-01-01
Malaria is a disease caused by an amoeba (single-celled animal) type of plasmodium where anopheles mosquito serves as the carrier. This study examines the optimal control problem of malaria disease spread based on Aron and May (1982) SIR type models and seeks the optimal solution by minimizing the prevention of the spreading of malaria by vaccine. The aim is to investigate optimal control strategies on preventing the spread of malaria by vaccination. The problem in this research is solved using analytical approach. The analytical method uses the Pontryagin Minimum Principle with the symbolic help of MATLAB software to obtain optimal control result and to analyse the spread of malaria with vaccination control.
Numerical optimization of circulation control airfoils
Tai, T. C.; Kidwell, G. H., Jr.; Vanderplaats, G. N.
1981-01-01
A numerical procedure for optimizing circulation control airfoils, which consists of the coupling of an optimization scheme with a viscous potential flow analysis for blowing jet, is presented. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse, and cambered ellipse with drooped and spiralled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the optimal airfoils are found to lie between those of cambered ellipse and the drooped trailing edge, towards the latter as the angle of attack increases. Results agree qualitatively with available experimental data.
Development and Optimization of controlled drug release ...
African Journals Online (AJOL)
The aim of this study is to develop and optimize an osmotically controlled drug delivery system of diclofenac sodium. Osmotically controlled oral drug delivery systems utilize osmotic pressure for controlled delivery of active drugs. Drug delivery from these systems, to a large extent, is independent of the physiological factors ...
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-06-08
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
Chemical optimization algorithm for fuzzy controller design
Astudillo, Leslie; Castillo, Oscar
2014-01-01
In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application
Optimal Control Inventory Stochastic With Production Deteriorating
Affandi, Pardi
2018-01-01
In this paper, we are using optimal control approach to determine the optimal rate in production. Most of the inventory production models deal with a single item. First build the mathematical models inventory stochastic, in this model we also assume that the items are in the same store. The mathematical model of the problem inventory can be deterministic and stochastic models. In this research will be discussed how to model the stochastic as well as how to solve the inventory model using optimal control techniques. The main tool in the study problems for the necessary optimality conditions in the form of the Pontryagin maximum principle involves the Hamilton function. So we can have the optimal production rate in a production inventory system where items are subject deterioration.
Automated beam steering using optimal control
Energy Technology Data Exchange (ETDEWEB)
Allen, C. K. (Christopher K.)
2004-01-01
We present a steering algorithm which, with the aid of a model, allows the user to specify beam behavior throughout a beamline, rather than just at specified beam position monitor (BPM) locations. The model is used primarily to compute the values of the beam phase vectors from BPM measurements, and to define cost functions that describe the steering objectives. The steering problem is formulated as constrained optimization problem; however, by applying optimal control theory we can reduce it to an unconstrained optimization whose dimension is the number of control signals.
Optimal control systems in hydro power plants
International Nuclear Information System (INIS)
Babunski, Darko L.
2012-01-01
The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)
Euler's fluid equations: Optimal control vs optimization
Energy Technology Data Exchange (ETDEWEB)
Holm, Darryl D., E-mail: d.holm@ic.ac.u [Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)
2009-11-23
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Optimal Wentzell Boundary Control of Parabolic Equations
International Nuclear Information System (INIS)
Luo, Yousong
2017-01-01
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Optimal Wentzell Boundary Control of Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)
2017-04-15
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Converging evidence for control of color-word Stroop interference at the item level.
Bugg, Julie M; Hutchison, Keith A
2013-04-01
Prior studies have shown that cognitive control is implemented at the list and context levels in the color-word Stroop task. At first blush, the finding that Stroop interference is reduced for mostly incongruent items as compared with mostly congruent items (i.e., the item-specific proportion congruence [ISPC] effect) appears to provide evidence for yet a third level of control, which modulates word reading at the item level. However, evidence to date favors the view that ISPC effects reflect the rapid prediction of high-contingency responses and not item-specific control. In Experiment 1, we first show that an ISPC effect is obtained when the relevant dimension (i.e., color) signals proportion congruency, a problematic pattern for theories based on differential response contingencies. In Experiment 2, we replicate and extend this pattern by showing that item-specific control settings transfer to new stimuli, ruling out alternative frequency-based accounts. In Experiment 3, we revert to the traditional design in which the irrelevant dimension (i.e., word) signals proportion congruency. Evidence for item-specific control, including transfer of the ISPC effect to new stimuli, is apparent when 4-item sets are employed but not when 2-item sets are employed. We attribute this pattern to the absence of high-contingency responses on incongruent trials in the 4-item set. These novel findings provide converging evidence for reactive control of color-word Stroop interference at the item level, reveal theoretically important factors that modulate reliance on item-specific control versus contingency learning, and suggest an update to the item-specific control account (Bugg, Jacoby, & Chanani, 2011).
Optimal control problem for the extended Fisher–Kolmogorov equation
Indian Academy of Sciences (India)
In this paper, the optimal control problem for the extended Fisher–Kolmogorov equation is studied. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.
A nonlinear optimal control approach for chaotic finance dynamics
Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.
2017-11-01
A new nonlinear optimal control approach is proposed for stabilization of the dynamics of a chaotic finance model. The dynamic model of the financial system, which expresses interaction between the interest rate, the investment demand, the price exponent and the profit margin, undergoes approximate linearization round local operating points. These local equilibria are defined at each iteration of the control algorithm and consist of the present value of the systems state vector and the last value of the control inputs vector that was exerted on it. The approximate linearization makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. The truncation of higher order terms in the Taylor series expansion is considered to be a modelling error that is compensated by the robustness of the control loop. As the control algorithm runs, the temporary equilibrium is shifted towards the reference trajectory and finally converges to it. The control method needs to compute an H-infinity feedback control law at each iteration, and requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov stability analysis it is shown that an H-infinity tracking performance criterion holds for the control loop. This implies elevated robustness against model approximations and external perturbations. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven.
OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION
Directory of Open Access Journals (Sweden)
MARIAN GAICEANU
2016-01-01
Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.
Energy Optimal Control of Induction Motor Drives
DEFF Research Database (Denmark)
Abrahamsen, Flemming
This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...
Optimal control novel directions and applications
Aronna, Maria; Kalise, Dante
2017-01-01
Focusing on applications to science and engineering, this book presents the results of the ITN-FP7 SADCO network’s innovative research in optimization and control in the following interconnected topics: optimality conditions in optimal control, dynamic programming approaches to optimal feedback synthesis and reachability analysis, and computational developments in model predictive control. The novelty of the book resides in the fact that it has been developed by early career researchers, providing a good balance between clarity and scientific rigor. Each chapter features an introduction addressed to PhD students and some original contributions aimed at specialist researchers. Requiring only a graduate mathematical background, the book is self-contained. It will be of particular interest to graduate and advanced undergraduate students, industrial practitioners and to senior scientists wishing to update their knowledge.
Optimizing pipeline transportation using a fuzzy controller
Energy Technology Data Exchange (ETDEWEB)
Aramaki, Thiago L.; Correa, Joao L. L.; Montalvoa, Antonio F. F. [National Control and Operation Center Tranpetro, Rio de Janeiro, (Brazil)
2010-07-01
The optimization of pipeline transportation is a big concern for the transporter companies. This paper is the third of a series of three articles which investigated the application of a system to simulate the human ability to operate a pipeline in an optimized way. The present paper presents the development of a proportional integral (PI) fuzzy controller, in order to optimize pipeline transportation capacity. The fuzzy adaptive PI controller system was developed and tested with a hydraulic simulator. On-field data were used from the OSBRA pipeline. The preliminary tests showed that the performance of the software simulation was satisfactory. It varied the set-point of the conventional controller within the limits of flow meters. The transport capacity of the pipe was maximize without compromising the integrity of the commodities transported. The system developed proved that it can be easily deployed as a specialist optimizing system to be added to SCADA systems.
Turnpike phenomenon and infinite horizon optimal control
Zaslavski, Alexander J
2014-01-01
This book is devoted to the study of the turnpike phenomenon and describes the existence of solutions for a large variety of infinite horizon optimal control classes of problems. Chapter 1 provides introductory material on turnpike properties. Chapter 2 studies the turnpike phenomenon for discrete-time optimal control problems. The turnpike properties of autonomous problems with extended-value intergrands are studied in Chapter 3. Chapter 4 focuses on large classes of infinite horizon optimal control problems without convexity (concavity) assumptions. In Chapter 5, the turnpike results for a class of dynamic discrete-time two-player zero-sum game are proven. This thorough exposition will be very useful for mathematicians working in the fields of optimal control, the calculus of variations, applied functional analysis, and infinite horizon optimization. It may also be used as a primary text in a graduate course in optimal control or as supplementary text for a variety of courses in other disciplines. Resea...
Optimal control of a CSTR process
Directory of Open Access Journals (Sweden)
A. Soukkou
2008-12-01
Full Text Available Designing an effective criterion and learning algorithm for find the best structure is a major problem in the control design process. In this paper, the fuzzy optimal control methodology is applied to the design of the feedback loops of an Exothermic Continuous Stirred Tank Reactor system. The objective of design process is to find an optimal structure/gains of the Robust and Optimal Takagi Sugeno Fuzzy Controller (ROFLC. The control signal thus obtained will minimize a performance index, which is a function of the tracking/regulating errors, the quantity of the energy of the control signal applied to the system, and the number of fuzzy rules. The genetic learning is proposed for constructing the ROFLC. The chromosome genes are arranged into two parts, the binary-coded part contains the control genes and the real-coded part contains the genes parameters representing the fuzzy knowledge base. The effectiveness of this chromosome formulation enables the fuzzy sets and rules to be optimally reduced. The performances of the ROFLC are compared to these found by the traditional PD controller with Genetic Optimization (PD_GO. Simulations demonstrate that the proposed ROFLC and PD_GO has successfully met the design specifications.
Nguyen, Dorothy; Vedamurthy, Indu; Schor, Clifton
2008-03-01
Accommodation and convergence systems are cross-coupled so that stimulation of one system produces responses by both systems. Ideally, the cross-coupled responses of accommodation and convergence match their respective stimuli. When expressed in diopters and meter angles, respectively, stimuli for accommodation and convergence are equal in the mid-sagittal plane when viewed with symmetrical convergence, where historically, the gains of the cross coupling (AC/A and CA/C ratios) have been quantified. However, targets at non-zero azimuth angles, when viewed with asymmetric convergence, present unequal stimuli for accommodation and convergence. Are the cross-links between the two systems calibrated to compensate for stimulus mismatches that increase with gaze-azimuth? We measured the response AC/A and stimulus CA/C ratios at zero azimuth, 17.5 and 30 deg of rightward gaze eccentricities with a Badal Optometer and Wheatstone-mirror haploscope. AC/A ratios were measured under open-loop convergence conditions along the iso-accommodation circle (locus of points that stimulate approximately equal amounts of accommodation to the two eyes at all azimuth angles). CA/C ratios were measured under open-loop accommodation conditions along the iso-vergence circle (locus of points that stimulate constant convergence at all azimuth angles). Our results show that the gain of accommodative-convergence (AC/A ratio) decreased and the bias of convergence-accommodation increased at the 30 deg gaze eccentricity. These changes are in directions that compensate for stimulus mismatches caused by spatial-viewing geometry during asymmetric convergence.
The Optimization of power reactor control system
International Nuclear Information System (INIS)
Danupoyo, S.D.
1997-01-01
A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system
Empirically characteristic analysis of chaotic PID controlling particle swarm optimization
Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David
2017-01-01
Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles’ search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles’ premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO. PMID:28472050
Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.
Directory of Open Access Journals (Sweden)
Danping Yan
Full Text Available Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO, we herein propose a chaotic proportional integral derivative (PID controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA and PSO.
Off-Policy Actor-Critic Structure for Optimal Control of Unknown Systems With Disturbances.
Song, Ruizhuo; Lewis, Frank L; Wei, Qinglai; Zhang, Huaguang
2016-05-01
An optimal control method is developed for unknown continuous-time systems with unknown disturbances in this paper. The integral reinforcement learning (IRL) algorithm is presented to obtain the iterative control. Off-policy learning is used to allow the dynamics to be completely unknown. Neural networks are used to construct critic and action networks. It is shown that if there are unknown disturbances, off-policy IRL may not converge or may be biased. For reducing the influence of unknown disturbances, a disturbances compensation controller is added. It is proven that the weight errors are uniformly ultimately bounded based on Lyapunov techniques. Convergence of the Hamiltonian function is also proven. The simulation study demonstrates the effectiveness of the proposed optimal control method for unknown systems with disturbances.
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai
2016-01-01
This paper presents the Distributed Model Predictive Control (D-MPC) of a wind farm equipped with fast and short-term Energy Storage System (ESS) for optimal active power control using the fast gradient method via dual decomposition. The primary objective of the D-MPC control of the wind farm...... is power reference tracking from system operators. Besides, by optimal distribution of the power references to individual wind turbines and the ESS unit, the wind turbine mechanical loads are alleviated. With the fast gradient method, the convergence rate of the DMPC is significantly improved which leads...
A model of optimal voluntary muscular control.
FitzHugh, R
1977-07-19
In the absence of detailed knowledge of how the CNS controls a muscle through its motor fibers, a reasonable hypothesis is that of optimal control. This hypothesis is studied using a simplified mathematical model of a single muscle, based on A.V. Hill's equations, with series elastic element omitted, and with the motor signal represented by a single input variable. Two cost functions were used. The first was total energy expended by the muscle (work plus heat). If the load is a constant force, with no inertia, Hill's optimal velocity of shortening results. If the load includes a mass, analysis by optimal control theory shows that the motor signal to the muscle consists of three phases: (1) maximal stimulation to accelerate the mass to the optimal velocity as quickly as possible, (2) an intermediate level of stimulation to hold the velocity at its optimal value, once reached, and (3) zero stimulation, to permit the mass to slow down, as quickly as possible, to zero velocity at the specified distance shortened. If the latter distance is too small, or the mass too large, the optimal velocity is not reached, and phase (2) is absent. For lengthening, there is no optimal velocity; there are only two phases, zero stimulation followed by maximal stimulation. The second cost function was total time. The optimal control for shortening consists of only phases (1) and (3) above, and is identical to the minimal energy control whenever phase (2) is absent from the latter. Generalization of this model to include viscous loads and a series elastic element are discussed.
Directory of Open Access Journals (Sweden)
Xiangrong Li
Full Text Available It is generally acknowledged that the conjugate gradient (CG method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.
Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang
2015-01-01
It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.
Centralized Stochastic Optimal Control of Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Malikopoulos, Andreas [ORNL
2015-01-01
In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain using the long-run expected average cost per unit time criterion, and we show that the control policy yielding the Pareto optimal solution minimizes the average cost criterion online. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.
An example in linear quadratic optimal control
Weiss, George; Zwart, Heiko J.
1998-01-01
We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme
Design of LPV-Based Sliding Mode Controller with Finite Time Convergence for a Morphing Aircraft
Directory of Open Access Journals (Sweden)
Nuan Wen
2017-01-01
Full Text Available This paper proposes a finite time convergence sliding mode control (FSMC strategy based on linear parameter-varying (LPV methodology for the stability control of a morphing aircraft subject to parameter uncertainties and external disturbances. Based on the Kane method, a longitudinal dynamic model of the morphing aircraft is built. Furthermore, the linearized LPV model of the aircraft in the wing transition process is obtained, whose scheduling parameters are wing sweep angle and wingspan. The FSMC scheme is developed into LPV systems by applying the previous results for linear time-invariant (LTI systems. The sufficient condition in form of linear matrix inequality (LMI constraints is derived for the existence of a reduced-order sliding mode, in which the dynamics can be ensured to keep robust stability and L2 gain performance. The tensor-product (TP model transformation approach can be directly applied to solve infinite LMIs belonging to the polynomial parameter-dependent LPV system. Then, by the parameter-dependent Lyapunov function stability analysis, the synthesized FSMC is proved to drive the LPV system trajectories toward the predefined switching surface with a finite time arrival. Comparative simulation results in the nonlinear model demonstrate the robustness and effectiveness of this approach.
On an Optimal -Control Problem in Coefficients for Linear Elliptic Variational Inequality
Directory of Open Access Journals (Sweden)
Olha P. Kupenko
2013-01-01
Full Text Available We consider optimal control problems for linear degenerate elliptic variational inequalities with homogeneous Dirichlet boundary conditions. We take the matrix-valued coefficients in the main part of the elliptic operator as controls in . Since the eigenvalues of such matrices may vanish and be unbounded in , it leads to the “noncoercivity trouble.” Using the concept of convergence in variable spaces and following the direct method in the calculus of variations, we establish the solvability of the optimal control problem in the class of the so-called -admissible solutions.
Nonlinear convergence active vibration absorber for single and multiple frequency vibration control
Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang
2017-12-01
This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.
Stefler, D; Bhopal, R
2010-03-01
European public health systems are converging, particularly in relation to communicable disease control. This process requires mutual learning through comparison; this was undertaken for Scotland (population 5.1 million) and Hungary (population 10.5 million). Using the official web- and paper-based publications, the practice of communicable disease control was compared between the two countries in three specific fields: seasonal influenza surveillance; human immunodeficiency virus (HIV) surveillance; and the childhood vaccination system. The organization structure for communicable disease control was very similar, comprising of government, national, regional and sub-regional tiers in Hungary, and government, national and local (sub-regional) tiers in Scotland. The influenza surveillance system in both countries was mainly based on the 'fluspotter system'. In the 2005/6, 2006/7 and 2007/8 seasons, there was no exceptional influenza activity in either country. Although the data collection and surveillance system of HIV is similar, there was a massive difference in the number of reported cases. In 2007, the cumulative incidence of reported HIV cases was 14.74/100,000 in Hungary and 105.21/100,000 in Scotland. The routine childhood vaccination schedule is similar in the two countries. However, while the vaccine uptake rates were nearly 100% in Hungary, these rates were lower in Scotland. The numbers of reported pertussis (98 vs 48), mumps (2741 vs 16), rubella (146 vs 0) and measles (168 vs zero) cases were significantly higher in Scotland than in Hungary. There were no differences for polio and chickenpox. The economic difference between the two countries not reflected in the efficiency of communicable disease control and in communicable disease patterns. The historical, political and cultural differences seem more determinative in this comparison. Copyright (c) 2010 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Optimal control applications in electric power systems
Christensen, G S; Soliman, S A
1987-01-01
Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...
2016 Network Games, Control, and Optimization Conference
Jimenez, Tania; Solan, Eilon
2017-01-01
This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other relate...
Energy Technology Data Exchange (ETDEWEB)
Gozde, Haluk; Taplamacioglu, M. Cengiz [Gazi University, Faculty of Engineering, Department of Electrical and Electronics Engineering, 06750 Maltepe, Ankara (Turkey)
2011-01-15
In this study, a novel gain scheduling Proportional-plus-Integral (PI) control strategy is suggested for automatic generation control (AGC) of the two area thermal power system with governor dead-band nonlinearity. In this strategy, the control is evaluated as an optimization problem, and two different cost functions with tuned weight coefficients are derived in order to increase the performance of convergence to the global optima. One of the cost functions is derived through the frequency deviations of the control areas and tie-line power changes. On the other hand, the other one includes the rate of changes which can be variable depends on the time in these deviations. These weight coefficients of the cost functions are also optimized as the controller gains have been done. The craziness based particle swarm optimization (CRAZYPSO) algorithm is preferred to optimize the parameters, because of convergence superiority. At the end of the study, the performance of the control system is compared with the performance which is obtained with classical integral of the squared error (ISE) and the integral of time weighted squared error (ITSE) cost functions through transient response analysis method. The results show that the obtained optimal PI-controller improves the dynamic performance of the power system as expected as mentioned in literature. (author)
Time-optimal control of reactor power
International Nuclear Information System (INIS)
Bernard, J.A.
1987-01-01
Control laws that permit adjustments in reactor power to be made in minimum time and without overshoot have been formulated and demonstrated. These control laws which are derived from the standard and alternate dynamic period equations, are closed-form expressions of general applicability. These laws were deduced by noting that if a system is subject to one or more operating constraints, then the time-optimal response is to move the system along these constraints. Given that nuclear reactors are subject to limitations on the allowed reactor period, a time-optimal control law would step the period from infinity to the minimum allowed value, hold the period at that value for the duration of the transient, and then step the period back to infinity. The change in reactor would therefore be accomplished in minimum time. The resulting control laws are superior to other forms of time-optimal control because they are general-purpose, closed-form expressions that are both mathematically tractable and readily implanted. Moreover, these laws include provisions for the use of feedback. The results of simulation studies and actual experiments on the 5 MWt MIT Research Reactor in which these time-optimal control laws were used successfully to adjust the reactor power are presented
Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob
2010-01-01
Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.
Optimal Control for Stochastic Delay Evolution Equations
Energy Technology Data Exchange (ETDEWEB)
Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.
Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control
Maghami, Peiman G.; Sparks, Dean W., Jr.
1997-01-01
A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.
Morrison, Deb
2018-03-01
In this dialogue with Monica Ridgeway and Randy Yerrick's Whose banner are we waving?: exploring STEM partnerships for marginalized urban youth, I engage the critical race theory (CRT) tenet of interest convergence. I first expand Derrick Bell's (1980) initial statement of interest convergence with subsequent scholarly work in this area. I then explore ways CRT in general and interest convergence specifically have been applied in the field of education. Using this framing, I examine how interest convergence may be shed new insights into Monica Ridgeway and Randy Yerrick's study. For example, the tenet of interest convergence is used to frame why it was beneficial for the White artist, Jacob, and the Achievement Scholars to collaborate in the service-learning mural. Then the idea of interest divergence is brought into explore the ways in which Jacob benefitted from his participation in the service learning project while the Achievement Scholars were left with an unfinished project which they had to problem solve. To conclude, I provide future directions for the application of interest convergence and divergence to issues facing science education.
Optimal control of anthracnose using mixed strategies.
Fotsa Mbogne, David Jaures; Thron, Christopher
2015-11-01
In this paper we propose and study a spatial diffusion model for the control of anthracnose disease in a bounded domain. The model is a generalization of the one previously developed in [15]. We use the model to simulate two different types of control strategies against anthracnose disease. Strategies that employ chemical fungicides are modeled using a continuous control function; while strategies that rely on cultivational practices (such as pruning and removal of mummified fruits) are modeled with a control function which is discrete in time (though not in space). For comparative purposes, we perform our analyses for a spatially-averaged model as well as the space-dependent diffusion model. Under weak smoothness conditions on parameters we demonstrate the well-posedness of both models by verifying existence and uniqueness of the solution for the growth inhibition rate for given initial conditions. We also show that the set [0, 1] is positively invariant. We first study control by impulsive strategies, then analyze the simultaneous use of mixed continuous and pulse strategies. In each case we specify a cost functional to be minimized, and we demonstrate the existence of optimal control strategies. In the case of pulse-only strategies, we provide explicit algorithms for finding the optimal control strategies for both the spatially-averaged model and the space-dependent model. We verify the algorithms for both models via simulation, and discuss properties of the optimal solutions. Copyright © 2015 Elsevier Inc. All rights reserved.
Optimal Investment Control of Macroeconomic Systems
Institute of Scientific and Technical Information of China (English)
ZHAO Ke-jie; LIU Chuan-zhe
2006-01-01
Economic growth is always accompanied by economic fluctuation. The target of macroeconomic control is to keep a basic balance of economic growth, accelerate the optimization of economic structures and to lead a rapid, sustainable and healthy development of national economies, in order to propel society forward. In order to realize the above goal, investment control must be regarded as the most important policy for economic stability. Readjustment and control of investment includes not only control of aggregate investment, but also structural control which depends on economic-technology relationships between various industries of a national economy. On the basis of the theory of a generalized system, an optimal investment control model for government has been developed. In order to provide a scientific basis for government to formulate a macroeconomic control policy, the model investigates the balance of total supply and aggregate demand through an adjustment in investment decisions realizes a sustainable and stable growth of the national economy. The optimal investment decision function proposed by this study has a unique and specific expression, high regulating precision and computable characteristics.
Optimal Control of Wind Power Generation
Directory of Open Access Journals (Sweden)
Pawel Pijarski
2018-03-01
Full Text Available Power system control is a complex task, which is strongly related to the number and kind of generating units as well as to the applied technologies, such as conventional coal fired power plants or wind and photovoltaic farms. Fast development of wind generation that is considered as unstable generation sets new strong requirements concerning remote control and data hubs cooperating with SCADA systems. Considering specific nature of the wind power generation, the authors analyze the problem of optimal control for wind power generation in farms located over a selected remote-controlled part of the Operator grid under advantageous wind conditions. This article presents an original stepwise method for tracing power flows that makes possible to eliminate current (power overloading of power grid branches. Its core idea is to consider the discussed problem as an optimization task.
Augmented Lagrangian Method For Discretized Optimal Control ...
African Journals Online (AJOL)
In this paper, we are concerned with one-dimensional time invariant optimal control problem, whose objective function is quadratic and the dynamical system is a differential equation with initial condition .Since most real life problems are nonlinear and their analytical solutions are not readily available, we resolve to ...
Optimally Controlled Flexible Fuel Powertrain System
Energy Technology Data Exchange (ETDEWEB)
Hakan Yilmaz; Mark Christie; Anna Stefanopoulou
2010-12-31
The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.
Hybrid vehicle energy management: singular optimal control
Delprat, S.; Hofman, T.; Paganelli, S.
2017-01-01
Hybrid vehicle energymanagement is often studied in simulation as an optimal control problem. Under strict convexity assumptions, a solution can be developed using Pontryagin’s minimum principle. In practice, however, many engineers do not formally check these assumptions resulting in the possible
Optimal control design for a solar greenhouse
Ooteghem, van R.J.C.
2007-01-01
The research of this thesis was part of a larger project aiming at the design of a greenhouse and an associated climate control that achieves optimal crop production with sustainable instead of fossil energy. This so called solar greenhouse design extends a conventional greenhouse with an improved
Optimization and Development of Swellable Controlled Porosity ...
African Journals Online (AJOL)
Purpose: To develop swellable controlled porosity osmotic pump tablet of theophylline and to define the formulation and process variables responsible for drug release by applying statistical optimization technique. Methods: Formulations were prepared based on Taguchi Orthogonal Array design and Fraction Factorial ...
Selecting Optimal Subset of Security Controls
Yevseyeva, I.; Basto-Fernandes, V.; Michael, Emmerich, T. M.; Moorsel, van, A.
2015-01-01
Open Access journal Choosing an optimal investment in information security is an issue most companies face these days. Which security controls to buy to protect the IT system of a company in the best way? Selecting a subset of security controls among many available ones can be seen as a resource allocation problem that should take into account conflicting objectives and constraints of the problem. In particular, the security of the system should be improved without hindering productivity, ...
Stochastic Linear Quadratic Optimal Control Problems
International Nuclear Information System (INIS)
Chen, S.; Yong, J.
2001-01-01
This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well
Reinforcement learning solution for HJB equation arising in constrained optimal control problem.
Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong
2015-11-01
The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Braun, Jan; Hoffmann, Frank; Krettek, Johannes; Bertram, Torsten [Technische Univ. Dortmund (Germany). Lehrstuhl RST
2009-07-01
Evolutionary algorithms require a large number of fitness evaluations in order to find an optimal solution. This property limits their application to hardware in the loop optimization or optimization of time-consuming simulations and calculations. This contribution proposes a preselection with data based models in order to reduce the number of true fitness evaluations. It extends previous approaches for model assisted scalar optimization to multiobjective problems by a proper redefinition of model quality and ?-control. The application to multiobjective benchmark optimization problems underlies the improved convergence of the model assisted evolution strategy compared to a multiobjective evolution strategy as well as the advantages of a {lambda}-controlled variant compared to a static preselection. (orig.)
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Network Convergence. User is interested in application and content - not technical means of distribution. Boundaries between distribution channels fade out. Network convergence leads to seamless application and content solutions.
Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu
2016-01-01
An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.
Directory of Open Access Journals (Sweden)
Owen M. Doherty
2014-07-01
Full Text Available During summer, large amounts of mineral dust are emitted and transported from North Africa over the tropical North Atlantic towards the Caribbean with the exact quantity varying greatly from year to year. Much effort has been made to explain the variability of summer season mineral dust load, for example, by relating dust variability to teleconnection indices such as ENSO and the NAO. However, only weak relationships between such climate indices and the abundance of mineral dust have been found. In this work, we demonstrate the role of the near-surface convergence zone over West Africa in controlling dust load and transport of mineral dust. We apply the ‘Center of Action’ approach to obtain indices that quantify the movement and strength of the convergence zone using NCEP/NCAR Reanalysis data. The latitudinal position of the convergence zone is significantly correlated with the quantity of mineral dust at Barbados over the period 1965–2003 (r=−0.47. A southward displacement of the convergence zone is associated with both increased near-surface flow and decreased precipitation over the dust source regions of the southern Saharan desert, Sahel and Lake Chad. This in turn reduces soil moisture and vegetation, furthering the potential for dust emission. In contrast, the intensity of the convergence zone is not correlated with dust concentration at Barbados. We conclude that the coupling of changes in near-surface winds with changes in precipitation in source regions driven by a southward movement of the convergence zone most directly influence dust load at Barbados and over the tropical North Atlantic during summer.
Helicopter trajectory planning using optimal control theory
Menon, P. K. A.; Cheng, V. H. L.; Kim, E.
1988-01-01
A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.
Recent developments in cooperative control and optimization
Murphey, Robert; Pardalos, Panos
2004-01-01
Over the past several years, cooperative control and optimization has un questionably been established as one of the most important areas of research in the military sciences. Even so, cooperative control and optimization tran scends the military in its scope -having become quite relevant to a broad class of systems with many exciting, commercial, applications. One reason for all the excitement is that research has been so incredibly diverse -spanning many scientific and engineering disciplines. This latest volume in the Cooperative Systems book series clearly illustrates this trend towards diversity and creative thought. And no wonder, cooperative systems are among the hardest systems control science has endeavored to study, hence creative approaches to model ing, analysis, and synthesis are a must! The definition of cooperation itself is a slippery issue. As you will see in this and previous volumes, cooperation has been cast into many different roles and therefore has assumed many diverse meanings. P...
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.
Lian, Chuanqiang; Xu, Xin; Chen, Hong; He, Haibo
2016-11-01
Trajectory tracking control of wheeled mobile robots (WMRs) has been an important research topic in control theory and robotics. Although various tracking control methods with stability have been developed for WMRs, it is still difficult to design optimal or near-optimal tracking controller under uncertainties and disturbances. In this paper, a near-optimal tracking control method is presented for WMRs based on receding-horizon dual heuristic programming (RHDHP). In the proposed method, a backstepping kinematic controller is designed to generate desired velocity profiles and the receding horizon strategy is used to decompose the infinite-horizon optimal control problem into a series of finite-horizon optimal control problems. In each horizon, a closed-loop tracking control policy is successively updated using a class of approximate dynamic programming algorithms called finite-horizon dual heuristic programming (DHP). The convergence property of the proposed method is analyzed and it is shown that the tracking control system based on RHDHP is asymptotically stable by using the Lyapunov approach. Simulation results on three tracking control problems demonstrate that the proposed method has improved control performance when compared with conventional model predictive control (MPC) and DHP. It is also illustrated that the proposed method has lower computational burden than conventional MPC, which is very beneficial for real-time tracking control.
Luo, Biao; Liu, Derong; Wu, Huai-Ning
2018-06-01
Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.
Time Optimal Control Laws for Bilinear Systems
Directory of Open Access Journals (Sweden)
Salim Bichiou
2018-01-01
Full Text Available The aim of this paper is to determine the feedforward and state feedback suboptimal time control for a subset of bilinear systems, namely, the control sequence and reaching time. This paper proposes a method that uses Block pulse functions as an orthogonal base. The bilinear system is projected along that base. The mathematical integration is transformed into a product of matrices. An algebraic system of equations is obtained. This system together with specified constraints is treated as an optimization problem. The parameters to determine are the final time, the control sequence, and the states trajectories. The obtained results via the newly proposed method are compared to known analytical solutions.
Robust Structured Control Design via LMI Optimization
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Stoustrup, Jakob
2011-01-01
This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, ﬁxed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...
International Nuclear Information System (INIS)
Kwon, Kee Choon; Kim, Chang Hwoi; Lee, Dong Young; Lee, Cheol Kwon; Lee, Hyun Chul
2011-12-01
As digitalized the instrumentation and control systems in nuclear power plants, in the past that were implemented in an analog system or circuit for monitoring, control and protection, most of the them is implemented in embedded software based on hardware platform. Digital instrumentation and control system hardware platforms and a digital safety systems have developed in Korea. The fundamental technology of the software part of MMIS (Man-Machine Interface System) has achieved the localization. But in order to secure our global competitiveness, in the -based software, the source of the content areas / It is needed to develop core technologies of the software and contents areas based on the nuclear-IT convergence technology. In this report, the IT technology centered for the characteristics of embedded software applied to nuclear power is described. Also state-of-the-art IT technologies that will converge to nuclear power plants are mentioned
Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher
2013-10-01
This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example.
Bulgakov, V. K.; Strigunov, V. V.
2009-05-01
The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.
Linear systems optimal and robust control
Sinha, Alok
2007-01-01
Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...
Optimal Control of Switching Linear Systems
Directory of Open Access Journals (Sweden)
Ali Benmerzouga
2004-06-01
Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k , i = 1,..., M ; k = 0, 1, ..., N -1} which transfer the system from a given initial state X0 to a specific target state XT (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.
Wind turbine optimal control during storms
International Nuclear Information System (INIS)
Petrović, V; Bottasso, C L
2014-01-01
This paper proposes a control algorithm that enables wind turbine operation in high winds. With this objective, an online optimization procedure is formulated that, based on the wind turbine state, estimates those extremal wind speed variations that would produce maximal allowable wind turbine loads. Optimization results are compared to the actual wind speed and, if there is a danger of excessive loading, the wind turbine power reference is adjusted to ensure that loads stay within allowed limits. This way, the machine can operate safely even above the cut-out wind speed, thereby realizing a soft envelope-protecting cut-out. The proposed control strategy is tested and verified using a high-fidelity aeroservoelastic simulation model
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Pouchol, Camille; Clairambault, Jean; Lorz, Alexander; Tré lat, Emmanuel
2017-01-01
to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering
Automatic Synthesis of Robust and Optimal Controllers
DEFF Research Database (Denmark)
Cassez, Franck; Jessen, Jan Jacob; Larsen, Kim Guldstrand
2009-01-01
In this paper, we show how to apply recent tools for the automatic synthesis of robust and near-optimal controllers for a real industrial case study. We show how to use three different classes of models and their supporting existing tools, Uppaal-TiGA for synthesis, phaver for verification......, and Simulink for simulation, in a complementary way. We believe that this case study shows that our tools have reached a level of maturity that allows us to tackle interesting and relevant industrial control problems....
Efficiency Optimization Control of IPM Synchronous Motor Drives with Online Parameter Estimation
Directory of Open Access Journals (Sweden)
Sadegh Vaez-Zadeh
2011-04-01
Full Text Available This paper describes an efficiency optimization control method for high performance interior permanent magnet synchronous motor drives with online estimation of motor parameters. The control system is based on an input-output feedback linearization method which provides high performance control and simultaneously ensures the minimization of the motor losses. The controllable electrical loss can be minimized by the optimal control of the armature current vector. It is shown that parameter variations except at near the nominal conditions have undesirable effect on the controller performance. Therefore, a parameter estimation method based on the second method of Lyapunov is presented which guarantees the stability and convergence of the estimation. The extensive simulation results show the feasibility of the proposed controller and observer and their desirable performances.
A hybrid iterative scheme for optimal control problems governed by ...
African Journals Online (AJOL)
MRT
KEY WORDS: Optimal control problem; Fredholm integral equation; ... control problems governed by Fredholm integral and integro-differential equations is given in (Brunner and Yan, ..... The exact optimal trajectory and control functions are. 2.
Bozkaya, Uǧur; Turney, Justin M.; Yamaguchi, Yukio; Schaefer, Henry F.; Sherrill, C. David
2011-09-01
Using a Lagrangian-based approach, we present a more elegant derivation of the equations necessary for the variational optimization of the molecular orbitals (MOs) for the coupled-cluster doubles (CCD) method and second-order Møller-Plesset perturbation theory (MP2). These orbital-optimized theories are referred to as OO-CCD and OO-MP2 (or simply "OD" and "OMP2" for short), respectively. We also present an improved algorithm for orbital optimization in these methods. Explicit equations for response density matrices, the MO gradient, and the MO Hessian are reported both in spin-orbital and closed-shell spin-adapted forms. The Newton-Raphson algorithm is used for the optimization procedure using the MO gradient and Hessian. Further, orbital stability analyses are also carried out at correlated levels. The OD and OMP2 approaches are compared with the standard MP2, CCD, CCSD, and CCSD(T) methods. All these methods are applied to H2O, three diatomics, and the O_4^+ molecule. Results demonstrate that the CCSD and OD methods give nearly identical results for H2O and diatomics; however, in symmetry-breaking problems as exemplified by O_4^+, the OD method provides better results for vibrational frequencies. The OD method has further advantages over CCSD: its analytic gradients are easier to compute since there is no need to solve the coupled-perturbed equations for the orbital response, the computation of one-electron properties are easier because there is no response contribution to the particle density matrices, the variational optimized orbitals can be readily extended to allow inactive orbitals, it avoids spurious second-order poles in its response function, and its transition dipole moments are gauge invariant. The OMP2 has these same advantages over canonical MP2, making it promising for excited state properties via linear response theory. The quadratically convergent orbital-optimization procedure converges quickly for OMP2, and provides molecular properties that
DEFF Research Database (Denmark)
Seeber, Isabella; Waizenegger, Lena; Demetz, Lukas
2016-01-01
interactions on the team outcome, i.e. the ideas in a converged list. However, it is unclear if formal control can facilitate perceptual congruence and what effect it has on idea quality, e.g., an idea’s elaborateness. Perceptual congruence is operationalized by examining the agreement between leaders and team...... of perceptual congruence. Perceptual incongruence was found to be detrimental for extent of idea development....
Optimal resonant control of flexible structures
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
2009-01-01
When introducing a resonant controller for a particular vibration mode in a structure this mode splits into two. A design principle is developed for resonant control based oil equal damping of these two modes. First the design principle is developed for control of a system with a single degree...... of freedom, and then it is extended to multi-mode structures. A root locus analysis of the controlled single-mode structure identifies the equal modal damping property as a condition oil the linear and Cubic terms of the characteristic equation. Particular solutions for filtered displacement feedback...... and filtered acceleration feedback are developed by combining the root locus analysis with optimal properties of the displacement amplification frequency curve. The results are then extended to multi-mode structures by including a quasi-static representation of the background modes in the equations...
Applied optimal control theory of distributed systems
Lurie, K A
1993-01-01
This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. ...
Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.
Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping
2018-06-01
This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.
Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.
Wei, Qinglai; Liu, Derong; Lin, Hanquan
2016-03-01
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
Multiresolution strategies for the numerical solution of optimal control problems
Jain, Sachin
nonlinear programming (NLP) problem that is solved using standard NLP codes. The novelty of the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid over which the NLP problem is solved, which tends to increase numerical efficiency and robustness. Control and/or state constraints are handled with ease, and without any additional computational complexity. The proposed algorithm is based on a simple and intuitive method to balance several conflicting objectives, such as accuracy of the solution, convergence, and speed of the computations. The benefits of the proposed algorithm over uniform grid implementations are demonstrated with the help of several nontrivial examples. Furthermore, two sequential multiresolution trajectory optimization algorithms for solving problems with moving targets and/or dynamically changing environments have been developed. For such problems, high accuracy is desirable only in the immediate future, yet the ultimate mission objectives should be accommodated as well. An intelligent trajectory generation for such situations is thus enabled by introducing the idea of multigrid temporal resolution to solve the associated trajectory optimization problem on a non-uniform grid across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in the state and control variables.
Hybrid vehicle optimal control : Linear interpolation and singular control
Delprat, S.; Hofman, T.
2015-01-01
Hybrid vehicle energy management can be formulated as an optimal control problem. Considering that the fuel consumption is often computed using linear interpolation over lookup table data, a rigorous analysis of the necessary conditions provided by the Pontryagin Minimum Principle is conducted. For
Optimization of Aero Engine Acceleration Control in Combat State Based on Genetic Algorithms
Li, Jie; Fan, Ding; Sreeram, Victor
2012-03-01
In order to drastically exploit the potential of the aero engine and improve acceleration performance in the combat state, an on-line optimized controller based on genetic algorithms is designed for an aero engine. For testing the validity of the presented control method, detailed joint simulation tests of the designed controller and the aero engine model are performed in the whole flight envelope. Simulation test results show that the presented control algorithm has characteristics of rapid convergence speed, high efficiency and can fully exploit the acceleration performance potential of the aero engine. Compared with the former controller, the designed on-line optimized controller (DOOC) can improve the security of the acceleration process and greatly enhance the aero engine thrust in the whole range of the flight envelope, the thrust increases an average of 8.1% in the randomly selected working states. The plane which adopts DOOC can acquire better fighting advantage in the combat state.
Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.
Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J
2017-09-01
A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.
Optimization-Based Approaches to Control of Probabilistic Boolean Networks
Directory of Open Access Journals (Sweden)
Koichi Kobayashi
2017-02-01
Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.
Horwood, A M; Turner, J E; Houston, S M; Riddell, P M
2001-11-01
A remote haploscopic photorefractor, designed for assessment of accommodation and convergence in infants and clinical groups, was used to determine heterophoria accommodative convergence/accommodation (AC/A) ratios in normal naïve adults. These were compared with conventional clinical measures. Twenty-one naïve subjects were used to compare occluded and unoccluded prism cover test responses with the remote haploscopic photorefractor using a text and picture target. Although luminance was generally low for both targets, binocular vergences were appropriate for target demand in both studies. Binocular accommodation showed greater lag for the highest target accommodative demand and the less demanding target. Occlusion not only reduced vergence response, but also frequently caused a marked reduction in accommodation, especially to the picture target. Normal mean AC/A values were found, but with wide variations between individual subjects. Although mean accommodation, vergence, and AC/A values were comparable with published data, we suggest that in these conditions using naïve subjects, accommodation is frequently inaccurate, especially on occlusion, without concomitant loss of vergence, at least at low light levels. Accommodative convergence may play a less important part in, and other cues contribute more to, the near reflex than has been previously suggested.
Optimization control of LNG regasification plant using Model Predictive Control
Wahid, A.; Adicandra, F. F.
2018-03-01
Optimization of liquified natural gas (LNG) regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to choose optimum LNG regasification plant design and maintaining the optimum operating conditions through the implementation of model predictive control (MPC). Optimal tuning parameter for MPC such as P (prediction horizon), M (control of the horizon) and T (sampling time) are achieved by using fine-tuning method. The optimal criterion for design is the minimum amount of energy used and for control is integral of square error (ISE). As a result, the optimum design is scheme 2 which is developed by Devold with an energy savings of 40%. To maintain the optimum conditions, required MPC with P, M and T as follows: tank storage pressure: 90, 2, 1; product pressure: 95, 2, 1; temperature vaporizer: 65, 2, 2; and temperature heater: 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6%, 63.5%, 3.1% and 58.2% compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in temperature rise 1°C of sea water is 0.02 MW.
On the formulation and numerical simulation of distributed-order fractional optimal control problems
Zaky, M. A.; Machado, J. A. Tenreiro
2017-11-01
In a fractional optimal control problem, the integer order derivative is replaced by a fractional order derivative. The fractional derivative embeds implicitly the time delays in an optimal control process. The order of the fractional derivative can be distributed over the unit interval, to capture delays of distinct sources. The purpose of this paper is twofold. Firstly, we derive the generalized necessary conditions for optimal control problems with dynamics described by ordinary distributed-order fractional differential equations (DFDEs). Secondly, we propose an efficient numerical scheme for solving an unconstrained convex distributed optimal control problem governed by the DFDE. We convert the problem under consideration into an optimal control problem governed by a system of DFDEs, using the pseudo-spectral method and the Jacobi-Gauss-Lobatto (J-G-L) integration formula. Next, we present the numerical solutions for a class of optimal control problems of systems governed by DFDEs. The convergence of the proposed method is graphically analyzed showing that the proposed scheme is a good tool for the simulation of distributed control problems governed by DFDEs.
Impact of DC link control strategies on the power-flow convergence of integrated AC–DC systems
Directory of Open Access Journals (Sweden)
Shagufta Khan
2016-03-01
Full Text Available For the power-flow solution of integrated AC–DC systems, five quantities are required to be solved per converter, against three independent equations available. These three equations consist of two basic converter equations and one DC network equation, corresponding to each converter. Thus, for solution, two additional equations are required. These two equations are derived from the control specifications adopted for the DC link. Depending on the application, several combinations of valid control specifications are possible. A set of valid control specifications constitutes a control strategy. It is observed that the control strategy adopted for the DC link strongly affects the power-flow convergence of integrated AC–DC systems. This paper investigates how different control strategies affect the power flow convergence of integrated AC–DC systems. Sequential method is used to solve the DC variables in the Newton Raphson (NR power flow model. Seven typical control strategies have been taken into consideration. This is validated by numerous case studies carried out with multiple DC links incorporated in the IEEE 118-bus and 300-bus test systems.
Optimal control of HIV/AIDS dynamic: Education and treatment
Sule, Amiru; Abdullah, Farah Aini
2014-07-01
A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.
International Nuclear Information System (INIS)
Sugny, D.; Bomble, L.; Ribeyre, T.; Dulieu, O.; Desouter-Lecomte, M.
2009-01-01
Implementation of quantum controlled-NOT (CNOT) gates in realistic molecular systems is studied using stimulated Raman adiabatic passage (STIRAP) techniques optimized in the time domain by genetic algorithms or coupled with optimal control theory. In the first case, with an adiabatic solution (a series of STIRAP processes) as starting point, we optimize in the time domain different parameters of the pulses to obtain a high fidelity in two realistic cases under consideration. A two-qubit CNOT gate constructed from different assignments in rovibrational states is considered in diatomic (NaCs) or polyatomic (SCCl 2 ) molecules. The difficulty of encoding logical states in pure rotational states with STIRAP processes is illustrated. In such circumstances, the gate can be implemented by optimal control theory and the STIRAP sequence can then be used as an interesting trial field. We discuss the relative merits of the two methods for rovibrational computing (structure of the control field, duration of the control, and efficiency of the optimization).
Quantum optimal control of ozone isomerization
International Nuclear Information System (INIS)
Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel
2004-01-01
We present a feasibility study of ozone isomerization based on a recent ab initio potential energy surface and a model Hamiltonian constructed by holding the bond lengths constant and using the valence angle as the isomerization coordinate. Optimal control theory is used to find an electric field that drives isomerization with a yield of 95% to the symmetric metastable triangular form of ozone. A frequency filter is applied as an additional spectral constraint limiting the field bandwidth. A post-facto analysis is performed showing a degree of inherent robustness of the isomerization yield to field noise
Optimal control of Rydberg lattice gases
Cui, Jian; van Bijnen, Rick; Pohl, Thomas; Montangero, Simone; Calarco, Tommaso
2017-09-01
We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimising detrimental decoherence effects. For the GHZ states, we propose a two-step detection protocol to experimentally verify the optimised preparation of the target state based only on standard measurement techniques. Realistic experimental constraints and imperfections are taken into account by our optimisation procedure making it applicable to ongoing experiments.
Optimal control of Rydberg lattice gases
DEFF Research Database (Denmark)
Cui, Jian; Bijnen, Rick van; Pohl, Thomas
2017-01-01
the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimising detrimental decoherence effects. For the GHZ states, we propose a two-step detection protocol to experimentally verify the optimised preparation of the target state based only on standard measurement techniques....... Realistic experimental constraints and imperfections are taken into account by our optimisation procedure making it applicable to ongoing experiments.......We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit...
Robust state feedback controller design of STATCOM using chaotic optimization algorithm
Directory of Open Access Journals (Sweden)
Safari Amin
2010-01-01
Full Text Available In this paper, a new design technique for the design of robust state feedback controller for static synchronous compensator (STATCOM using Chaotic Optimization Algorithm (COA is presented. The design is formulated as an optimization problem which is solved by the COA. Since chaotic planning enjoys reliability, ergodicity and stochastic feature, the proposed technique presents chaos mapping using Lozi map chaotic sequences which increases its convergence rate. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results reveal that the proposed controller has an excellent capability in damping power system low frequency oscillations and enhances greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions shows that the phase based controller is superior compare to the magnitude based controller.
International Nuclear Information System (INIS)
Mihaylov, I. B.; Siebers, J. V.
2008-01-01
The purpose of this study is to evaluate dose prediction errors (DPEs) and optimization convergence errors (OCEs) resulting from use of a superposition/convolution dose calculation algorithm in deliverable intensity-modulated radiation therapy (IMRT) optimization for head-and-neck (HN) patients. Thirteen HN IMRT patient plans were retrospectively reoptimized. The IMRT optimization was performed in three sequential steps: (1) fast optimization in which an initial nondeliverable IMRT solution was achieved and then converted to multileaf collimator (MLC) leaf sequences; (2) mixed deliverable optimization that used a Monte Carlo (MC) algorithm to account for the incident photon fluence modulation by the MLC, whereas a superposition/convolution (SC) dose calculation algorithm was utilized for the patient dose calculations; and (3) MC deliverable-based optimization in which both fluence and patient dose calculations were performed with a MC algorithm. DPEs of the mixed method were quantified by evaluating the differences between the mixed optimization SC dose result and a MC dose recalculation of the mixed optimization solution. OCEs of the mixed method were quantified by evaluating the differences between the MC recalculation of the mixed optimization solution and the final MC optimization solution. The results were analyzed through dose volume indices derived from the cumulative dose-volume histograms for selected anatomic structures. Statistical equivalence tests were used to determine the significance of the DPEs and the OCEs. Furthermore, a correlation analysis between DPEs and OCEs was performed. The evaluated DPEs were within ±2.8% while the OCEs were within 5.5%, indicating that OCEs can be clinically significant even when DPEs are clinically insignificant. The full MC-dose-based optimization reduced normal tissue dose by as much as 8.5% compared with the mixed-method optimization results. The DPEs and the OCEs in the targets had correlation coefficients greater
Optimal control problem for the extended Fisher–Kolmogorov equation
Indian Academy of Sciences (India)
by methods of optimal control, such as chemical engineering and vehicle ... ern optimal control theories and applied models are not only represented by .... Obviously, equation (2.5) is an ordinary differential equation and according to ODE.
Relaxed error control in shape optimization that utilizes remeshing
CSIR Research Space (South Africa)
Wilke, DN
2013-02-01
Full Text Available Shape optimization strategies based on error indicators usually require strict error control for every computed design during the optimization run. The strict error control serves two purposes. Firstly, it allows for the accurate computation...
Reproducibility, controllability, and optimization of LENR experiments
Energy Technology Data Exchange (ETDEWEB)
Nagel, David J. [The George Washington University, Washington DC 20052 (United States)
2006-07-01
Low-energy nuclear reaction (LENR) measurements are significantly, and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments. The paper concludes by underlying that it is now clearly that demands for reproducible experiments in the early years of LENR experiments were premature. In fact, one can argue that irreproducibility should be expected for early experiments in a complex new field. As emphasized in the paper and as often happened in the history of science, experimental and theoretical progress can take even decades. It is likely to be many years before investments in LENR experiments will yield significant returns, even for successful research programs. However, it is clearly that a fundamental understanding of the anomalous effects observed in numerous experiments will significantly increase reproducibility, improve controllability, enable optimization of processes, and accelerate the economic viability of LENR.
Reproducibility, controllability, and optimization of LENR experiments
International Nuclear Information System (INIS)
Nagel, David J.
2006-01-01
Low-energy nuclear reaction (LENR) measurements are significantly, and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments. The paper concludes by underlying that it is now clearly that demands for reproducible experiments in the early years of LENR experiments were premature. In fact, one can argue that irreproducibility should be expected for early experiments in a complex new field. As emphasized in the paper and as often happened in the history of science, experimental and theoretical progress can take even decades. It is likely to be many years before investments in LENR experiments will yield significant returns, even for successful research programs. However, it is clearly that a fundamental understanding of the anomalous effects observed in numerous experiments will significantly increase reproducibility, improve controllability, enable optimization of processes, and accelerate the economic viability of LENR
Optimal Control of Solar Heating System
Huang, Bin-Juine
2017-02-21
Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.
International Nuclear Information System (INIS)
Santos Coelho, Leandro dos
2009-01-01
Despite the popularity, the tuning aspect of proportional-integral-derivative (PID) controllers is a challenge for researchers and plant operators. Various controllers tuning methodologies have been proposed in the literature such as auto-tuning, self-tuning, pattern recognition, artificial intelligence, and optimization methods. Chaotic optimization algorithms as an emergent method of global optimization have attracted much attention in engineering applications. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool for engineering applications. In this paper, a tuning method for determining the parameters of PID control for an automatic regulator voltage (AVR) system using a chaotic optimization approach based on Lozi map is proposed. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Simulation results are promising and show the effectiveness of the proposed approach. Numerical simulations based on proposed PID control of an AVR system for nominal system parameters and step reference voltage input demonstrate the good performance of chaotic optimization.
Optimal sensorimotor control in eye movement sequences.
Munuera, Jérôme; Morel, Pierre; Duhamel, Jean-René; Deneve, Sophie
2009-03-11
Fast and accurate motor behavior requires combining noisy and delayed sensory information with knowledge of self-generated body motion; much evidence indicates that humans do this in a near-optimal manner during arm movements. However, it is unclear whether this principle applies to eye movements. We measured the relative contributions of visual sensory feedback and the motor efference copy (and/or proprioceptive feedback) when humans perform two saccades in rapid succession, the first saccade to a visual target and the second to a memorized target. Unbeknownst to the subject, we introduced an artificial motor error by randomly "jumping" the visual target during the first saccade. The correction of the memory-guided saccade allowed us to measure the relative contributions of visual feedback and efferent copy (and/or proprioceptive feedback) to motor-plan updating. In a control experiment, we extinguished the target during the saccade rather than changing its location to measure the relative contribution of motor noise and target localization error to saccade variability without any visual feedback. The motor noise contribution increased with saccade amplitude, but remained <30% of the total variability. Subjects adjusted the gain of their visual feedback for different saccade amplitudes as a function of its reliability. Even during trials where subjects performed a corrective saccade to compensate for the target-jump, the correction by the visual feedback, while stronger, remained far below 100%. In all conditions, an optimal controller predicted the visual feedback gain well, suggesting that humans combine optimally their efferent copy and sensory feedback when performing eye movements.
Simplified ejector model for control and optimization
International Nuclear Information System (INIS)
Zhu Yinhai; Cai Wenjian; Wen Changyun; Li Yanzhong
2008-01-01
In this paper, a simple yet effective ejector model for a real time control and optimization of an ejector system is proposed. Firstly, a fundamental model for calculation of ejector entrainment ratio at critical working conditions is derived by one-dimensional analysis and the shock circle model. Then, based on thermodynamic principles and the lumped parameter method, the fundamental ejector model is simplified to result in a hybrid ejector model. The model is very simple, which only requires two or three parameters and measurement of two variables to determine the ejector performance. Furthermore, the procedures for on line identification of the model parameters using linear and non-linear least squares methods are also presented. Compared with existing ejector models, the solution of the proposed model is much easier without coupled equations and iterative computations. Finally, the effectiveness of the proposed model is validated by published experimental data. Results show that the model is accurate and robust and gives a better match to the real performances of ejectors over the entire operating range than the existing models. This model is expected to have wide applications in real time control and optimization of ejector systems
Optimal control of evaporator and washer plants
International Nuclear Information System (INIS)
Niemi, A.J.
1989-01-01
Tests with radioactive tracers were used for experimental analysis of a multiple-effect evaporator plant. The residence time distribution of the liquor in each evaporator was described by one or two perfect mixers with time delay and by-pass flow terms. The theoretical model of a single evaporator unit was set up on the basis of its instantaneous heat and mass balances and such models were fitted to the test data. The results were interpreted in terms of physical structures of the evaporators. Further model parameters were evaluated by conventional step tests and by measurements of process variables at one or more steady states. Computer simulation and comparison with the experimental results showed that the model produces a satisfactory response to solids concentration input and could be extended to cover the steam feed and liquor flow inputs. An optimal feedforward control algorithm was developed for a two unit, co-current evaporator plant. The control criterion comprised the deviations of the final solids content of liquor and the consumption of fresh steam, from their optimal steady-state values. In order to apply the algorithm, the model of the solids in liquor was reduced to two nonlinear differential equations. (author)
Simplex sliding mode control for nonlinear uncertain systems via chaos optimization
International Nuclear Information System (INIS)
Lu, Zhao; Shieh, Leang-San; Chen, Guanrong; Coleman, Norman P.
2005-01-01
As an emerging effective approach to nonlinear robust control, simplex sliding mode control demonstrates some attractive features not possessed by the conventional sliding mode control method, from both theoretical and practical points of view. However, no systematic approach is currently available for computing the simplex control vectors in nonlinear sliding mode control. In this paper, chaos-based optimization is exploited so as to develop a systematic approach to seeking the simplex control vectors; particularly, the flexibility of simplex control is enhanced by making the simplex control vectors dependent on the Euclidean norm of the sliding vector rather than being constant, which result in both reduction of the chattering and speedup of the convergence. Computer simulation on a nonlinear uncertain system is given to illustrate the effectiveness of the proposed control method
Optimal Control Problems for Nonlinear Variational Evolution Inequalities
Directory of Open Access Journals (Sweden)
Eun-Young Ju
2013-01-01
Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.
Distributed computer control system for reactor optimization
International Nuclear Information System (INIS)
Williams, A.H.
1983-01-01
At the Oldbury power station a prototype distributed computer control system has been installed. This system is designed to support research and development into improved reactor temperature control methods. This work will lead to the development and demonstration of new optimal control systems for improvement of plant efficiency and increase of generated output. The system can collect plant data from special test instrumentation connected to dedicated scanners and from the station's existing data processing system. The system can also, via distributed microprocessor-based interface units, make adjustments to the desired reactor channel gas exit temperatures. The existing control equipment will then adjust the height of control rods to maintain operation at these temperatures. The design of the distributed system is based on extensive experience with distributed systems for direct digital control, operator display and plant monitoring. The paper describes various aspects of this system, with particular emphasis on: (1) the hierarchal system structure; (2) the modular construction of the system to facilitate installation, commissioning and testing, and to reduce maintenance to module replacement; (3) the integration of the system into the station's existing data processing system; (4) distributed microprocessor-based interfaces to the reactor controls, with extensive security facilities implemented by hardware and software; (5) data transfer using point-to-point and bussed data links; (6) man-machine communication based on VDUs with computer input push-buttons and touch-sensitive screens; and (7) the use of a software system supporting a high-level engineer-orientated programming language, at all levels in the system, together with comprehensive data link management
Factors influencing the profitability of optimizing control systems
International Nuclear Information System (INIS)
Broussaud, A.; Guyot, O.
1999-01-01
Optimizing control systems supplement conventional Distributed Control Systems and Programmable Logic Controllers. They continuously implement set points, which aim at maximizing the profitability of plant operation. They are becoming an integral part of modern mineral processing plants. This trend is justified by economic considerations, optimizing control being among the most cost-effective methods of improving metallurgical plant performance. The paper successively analyzes three sets of factors, which influence the profitability of optimizing control systems, and provides guidelines for analyzing the potential value of an optimizing control system at a given operation: external factors, such as economic factors and factors related to plant feed; features of the optimizing control system; and subsequent maintenance of the optimizing control system. It is shown that pay back times for optimization control projects are typically measured in days. The OCS software used by the authors for their applications is described briefly. (author)
Modified Newton-Raphson GRAPE methods for optimal control of spin systems
International Nuclear Information System (INIS)
Goodwin, D. L.; Kuprov, Ilya
2016-01-01
Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.
Modified Newton-Raphson GRAPE methods for optimal control of spin systems
Energy Technology Data Exchange (ETDEWEB)
Goodwin, D. L.; Kuprov, Ilya, E-mail: i.kuprov@soton.ac.uk [School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ (United Kingdom)
2016-05-28
Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.
Optimal Control of Complex Systems Based on Improved Dual Heuristic Dynamic Programming Algorithm
Directory of Open Access Journals (Sweden)
Hui Li
2017-01-01
Full Text Available When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic programming (DHP technique, which is based on the BP neural network algorithm (BP-DHP, has difficulty in prediction accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning Machine (ELM algorithm (ELM-DHP was proposed. Through constructing three kinds of network structures, the paper gives the detailed realization process of the DHP technique in the ELM. The controller designed upon the ELM-DHP algorithm controlled a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.
Two optimal control methods for PWR core control
International Nuclear Information System (INIS)
Karppinen, J.; Blomsnes, B.; Versluis, R.M.
1976-01-01
The Multistage Mathematical Programming (MMP) and State Variable Feedback (SVF) methods for PWR core control are presented in this paper. The MMP method is primarily intended for optimization of the core behaviour with respect to xenon induced power distribution effects in load cycle operation. The SVF method is most suited for xenon oscillation damping in situations where the core load is unpredictable or expected to stay constant. Results from simulation studies in which the two methods have been applied for control of simple PWR core models are presented. (orig./RW) [de
Optimal Control Strategy Search Using a Simplest 3-D PWR Xenon Oscillation Simulator
International Nuclear Information System (INIS)
Yoichiro, Shimazu
2004-01-01
Power spatial oscillations due to the transient xenon spatial distribution are well known as xenon oscillation in large PWRs. When the reactor size becomes larger than the current design, then even radial oscillations can be also divergent. Even if the radial oscillation is convergent, when some control rods malfunction occurs, it is necessary to suppress the oscillation in as short time as possible. In such cases, optimal control strategy is required. Generally speaking the optimality search based on the modern control theory requires a lot of calculation for the evaluation of state variables. In the case of control rod malfunctions the xenon oscillation could be three dimensional. In such case, direct core calculations would be inevitable. From this point of view a very simple model, only four point reactor model, has been developed and verified. In this paper, an example of a procedure and the results for optimal control strategy search are presented. It is shown that we have only one optimal strategy within a half cycle of the oscillation with fixed control strength. It is also shown that a 3-D xenon oscillation introduced by a control rod malfunction can not be controlled by only one control step as can be done for axial oscillations. They might be quite strong limitations to the operators. Thus it is recommended that a strategy generator, which is quick in analyzing and easy to use, might be installed in a monitoring system or operator guiding system. (author)
Defending against the Advanced Persistent Threat: An Optimal Control Approach
Directory of Open Access Journals (Sweden)
Pengdeng Li
2018-01-01
Full Text Available The new cyberattack pattern of advanced persistent threat (APT has posed a serious threat to modern society. This paper addresses the APT defense problem, that is, the problem of how to effectively defend against an APT campaign. Based on a novel APT attack-defense model, the effectiveness of an APT defense strategy is quantified. Thereby, the APT defense problem is modeled as an optimal control problem, in which an optimal control stands for a most effective APT defense strategy. The existence of an optimal control is proved, and an optimality system is derived. Consequently, an optimal control can be figured out by solving the optimality system. Some examples of the optimal control are given. Finally, the influence of some factors on the effectiveness of an optimal control is examined through computer experiments. These findings help organizations to work out policies of defending against APTs.
The neural optimal control hierarchy for motor control
DeWolf, T.; Eliasmith, C.
2011-10-01
Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.
Optimal Control for the Degenerate Elliptic Logistic Equation
International Nuclear Information System (INIS)
Delgado, M.; Montero, J.A.; Suarez, A.
2002-01-01
We consider the optimal control of harvesting the diffusive degenerate elliptic logistic equation. Under certain assumptions, we prove the existence and uniqueness of an optimal control. Moreover, the optimality system and a characterization of the optimal control are also derived. The sub-supersolution method, the singular eigenvalue problem and differentiability with respect to the positive cone are the techniques used to obtain our results
Control parameter optimization for AP1000 reactor using Particle Swarm Optimization
International Nuclear Information System (INIS)
Wang, Pengfei; Wan, Jiashuang; Luo, Run; Zhao, Fuyu; Wei, Xinyu
2016-01-01
Highlights: • The PSO algorithm is applied for control parameter optimization of AP1000 reactor. • Key parameters of the MSHIM control system are optimized. • Optimization results are evaluated though simulations and quantitative analysis. - Abstract: The advanced mechanical shim (MSHIM) core control strategy is implemented in the AP1000 reactor for core reactivity and axial power distribution control simultaneously. The MSHIM core control system can provide superior reactor control capabilities via automatic rod control only. This enables the AP1000 to perform power change operations automatically without the soluble boron concentration adjustments. In this paper, the Particle Swarm Optimization (PSO) algorithm has been applied for the parameter optimization of the MSHIM control system to acquire better reactor control performance for AP1000. System requirements such as power control performance, control bank movement and AO control constraints are reflected in the objective function. Dynamic simulations are performed based on an AP1000 reactor simulation platform in each iteration of the optimization process to calculate the fitness values of particles in the swarm. The simulation platform is developed in Matlab/Simulink environment with implementation of a nodal core model and the MSHIM control strategy. Based on the simulation platform, the typical 10% step load decrease transient from 100% to 90% full power is simulated and the objective function used for control parameter tuning is directly incorporated in the simulation results. With successful implementation of the PSO algorithm in the control parameter optimization of AP1000 reactor, four key parameters of the MSHIM control system are optimized. It has been demonstrated by the calculation results that the optimized MSHIM control system parameters can improve the reactor power control capability and reduce the control rod movement without compromising AO control. Therefore, the PSO based optimization
Directory of Open Access Journals (Sweden)
Li Junyi
2015-01-01
Full Text Available A fractional order PID (FOPID controller, which is suitable for control system designing for being insensitive to the variation in system parameter, is proposed for hydroturbine governing system in the paper. The simultaneous optimization for several parameters of controller, that is, Ki, Kd, Kp, λ, and μ, is done by a recently developed metaheuristic nature-inspired algorithm, namely, the firefly algorithm (FA, for the first time, where the selecting, moving, attractiveness behavior between fireflies and updating of brightness, and decision range are studied in detail to simulate the optimization process. Investigation clearly reveals the advantages of the FOPID controller over the integer controllers in terms of reduced oscillations and settling time. The present work also explores the superiority of FA based optimization technique in finding optimal parameters of the controller. Further, convergence characteristics of the FA are compared with optimum integer order PID (IOPID controller to justify its efficiency. What is more, analysis confirms the robustness of FOPID controller under isolated load operation conditions.
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Energy Technology Data Exchange (ETDEWEB)
Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
Information spread in networks: Games, optimal control, and stabilization
Khanafer, Ali
This thesis focuses on designing efficient mechanisms for controlling information spread in networks. We consider two models for information spread. The first one is the well-known distributed averaging dynamics. The second model is a nonlinear one that describes virus spread in computer and biological networks. We seek to design optimal, robust, and stabilizing controllers under practical constraints. For distributed averaging networks, we study the interaction between a network designer and an adversary. We consider two types of attacks on the network. In Attack-I, the adversary strategically disconnects a set of links to prevent the nodes from reaching consensus. Meanwhile, the network designer assists the nodes in reaching consensus by changing the weights of a limited number of links in the network. We formulate two problems to describe this competition where the order in which the players act is reversed in the two problems. Although the canonical equations provided by the Pontryagin's Maximum Principle (MP) seem to be intractable, we provide an alternative characterization for the optimal strategies that makes connection to potential theory. Further, we provide a sufficient condition for the existence of a saddle-point equilibrium (SPE) for the underlying zero-sum game. In Attack-II, the designer and the adversary are both capable of altering the measurements of all nodes in the network by injecting global signals. We impose two constraints on both players: a power constraint and an energy constraint. We assume that the available energy to each player is not sufficient to operate at maximum power throughout the horizon of the game. We show the existence of an SPE and derive the optimal strategies in closed form for this attack scenario. As an alternative to the "network designer vs. adversary" framework, we investigate the possibility of stabilizing unknown network diffusion processes using a distributed mechanism, where the uncertainty is due to an attack
Optimal control theory applied to fusion plasma thermal stabilization
International Nuclear Information System (INIS)
Sager, G.; Miley, G.; Maya, I.
1985-01-01
Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research
Neural Network for Optimization of Existing Control Systems
DEFF Research Database (Denmark)
Madsen, Per Printz
1995-01-01
The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....
Dynamic optimization the calculus of variations and optimal control in economics and management
Kamien, Morton I
2012-01-01
Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.
International Nuclear Information System (INIS)
Nkemzi, B.
2005-10-01
Three-dimensional time-harmonic Maxwell's problems in axisymmetric domains Ω-circumflex with edges and conical points on the boundary are treated by means of the Fourier-finite-element method. The Fourier-fem combines the approximating Fourier series expansion of the solution with respect to the rotational angle using trigonometric polynomials of degree N (N → ∞), with the finite element approximation of the Fourier coefficients on the plane meridian domain Ω a is a subset of R + 2 of Ω-circumflex with mesh size h (h → 0). The singular behaviors of the Fourier coefficients near angular points of the domain Ω a are fully described by suitable singular functions and treated numerically by means of the singular function method with the finite element method on graded meshes. It is proved that the rate of convergence of the mixed approximations in H 1 (Ω-circumflex) 3 is of the order O (h+N -1 ) as known for the classical Fourier-finite-element approximation of problems with regular solutions. (author)
Optimal Power Flow Control by Rotary Power Flow Controller
Directory of Open Access Journals (Sweden)
KAZEMI, A.
2011-05-01
Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Practical synchronization on complex dynamical networks via optimal pinning control
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
Neutron density optimal control of A-1 reactor analoque model
International Nuclear Information System (INIS)
Grof, V.
1975-01-01
Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)
Gradient Optimization for Analytic conTrols - GOAT
Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank
Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.
Fixed mobile convergence handbook
Ahson, Syed A
2010-01-01
From basic concepts to future directions, this handbook provides technical information on all aspects of fixed-mobile convergence (FMC). The book examines such topics as integrated management architecture, business trends and strategic implications for service providers, personal area networks, mobile controlled handover methods, SIP-based session mobility, and supervisory and notification aggregator service. Case studies are used to illustrate technical and systematic implementation of unified and rationalized internet access by fixed-mobile network convergence. The text examines the technolo
Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, L.S; Thybo, C.; Stoustrup, Jakob
2003-01-01
The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives th...... the condenser pressure towards an optimal state. The objective of this is to present a feasible method that can be used for energy optimizing control. A simulation model of a simple refrigeration system will be used as basis for testing the control method....
Reference-shaping adaptive control by using gradient descent optimizers.
Directory of Open Access Journals (Sweden)
Baris Baykant Alagoz
Full Text Available This study presents a model reference adaptive control scheme based on reference-shaping approach. The proposed adaptive control structure includes two optimizer processes that perform gradient descent optimization. The first process is the control optimizer that generates appropriate control signal for tracking of the controlled system output to a reference model output. The second process is the adaptation optimizer that performs for estimation of a time-varying adaptation gain, and it contributes to improvement of control signal generation. Numerical update equations derived for adaptation gain and control signal perform gradient descent optimization in order to decrease the model mismatch errors. To reduce noise sensitivity of the system, a dead zone rule is applied to the adaptation process. Simulation examples show the performance of the proposed Reference-Shaping Adaptive Control (RSAC method for several test scenarios. An experimental study demonstrates application of method for rotor control.
Xia, Yaping; Yin, Minghui; Zou, Yun
2018-01-01
In this paper, the relationship between the degree of controllability (DOC) of controlled plants and the corresponding quadratic optimal performance index in LQR control is investigated for the electro-hydraulic synchronising servo control systems and wind turbine systems, respectively. It is shown that for these two types of systems, the higher the DOC of a controlled plant is, the better the quadratic optimal performance index is. It implies that in some LQR controller designs, the measure of the DOC of a controlled plant can be used as an index for the optimisation of adjustable plant parameters, by which the plant can be controlled more effectively.
Czech Academy of Sciences Publication Activity Database
Branda, Martin; Bucher, M.; Červinka, Michal; Schwartz, A.
2018-01-01
Roč. 70, č. 2 (2018), s. 503-530 ISSN 0926-6003 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : Cardinality constraints * Regularization method * Scholtes regularization * Strong stationarity * Sparse portfolio optimization * Robust portfolio optimization Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 1.520, year: 2016 http://library.utia.cas.cz/separaty/2018/MTR/branda-0489264.pdf
Energy Technology Data Exchange (ETDEWEB)
Zhai, X.; Qian, M.; Jing, G.; Li, Y. [China University of Mining and Technology, Beijing (China). College of Resource and Safety Engineering
2004-06-01
The trapezoidal cross-section roadway, driven along with its medium and fine grain sandstone roof in special thick stratum, was situated in shale strata of the Wu{sub 2} coal seam of the Shihhotze Perno-carboniferous group. Rock-lining wall was employed in roadway, which its roof is in the free situation. Under the action of virgin stress, the surrounding rock of roadway was stable. While under the action of fixed abutment pressure arisen from protection pillar of roadway, which if two sides seams were extracted the free strong roof of roadway was stable. But its two sides rock-lining walls was fractured, partially broken into pieces, and its floor heave was obvious. The velocity of floor heave is 0.4 - 0.8 mm/d. The size of the broken zone of surrounding rock of roadway doubled. An effective load coefficient of surrounding rock was quoted to illustrate these phenomena. The main reasons of roadway convergence are that rock property of surrounding rock is inferior, protection pillars affects its stability, and the supporting pattern employed is improper. Effective measures to control roadway convergence should be bolting and grouting lining, which mainly consolidate surrounding rock of roadway. 4 refs., 1 fig.
Decentralized Control Using Global Optimization (DCGO) (Preprint)
National Research Council Canada - National Science Library
Flint, Matthew; Khovanova, Tanya; Curry, Michael
2007-01-01
The coordination of a team of distributed air vehicles requires a complex optimization, balancing limited communication bandwidths, non-instantaneous planning times and network delays, while at the...
Directory of Open Access Journals (Sweden)
Jing Lei
2013-01-01
Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.
Directory of Open Access Journals (Sweden)
Weifeng Wang
2014-01-01
Full Text Available We study an optimal control problem governed by a semilinear parabolic equation, whose control variable is contained only in the boundary condition. An existence theorem for the optimal control is obtained.
Presentation of Malaria Epidemics Using Multiple Optimal Controls
Directory of Open Access Journals (Sweden)
Abid Ali Lashari
2012-01-01
Full Text Available An existing model is extended to assess the impact of some antimalaria control measures, by re-formulating the model as an optimal control problem. This paper investigates the fundamental role of three type of controls, personal protection, treatment, and mosquito reduction strategies in controlling the malaria. We work in the nonlinear optimal control framework. The existence and the uniqueness results of the solution are discussed. A characterization of the optimal control via adjoint variables is established. The optimality system is solved numerically by a competitive Gauss-Seidel-like implicit difference method. Finally, numerical simulations of the optimal control problem, using a set of reasonable parameter values, are carried out to investigate the effectiveness of the proposed control measures.
Optimization of microgrids based on controller designing for ...
African Journals Online (AJOL)
The power quality of microgrid during islanded operation is strongly related with the controller performance of DGs. Therefore a new optimal control strategy for distributed generation based inverter to connect to the generalized microgrid is proposed. This work shows developing optimal control algorithms for the DG ...
Optimization and control methods in industrial engineering and construction
Wang, Xiangyu
2014-01-01
This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering, and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P, and target contracts optimization. The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and c...
Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle
Directory of Open Access Journals (Sweden)
Huei Peng
2012-11-01
Full Text Available The optimal sizing and control of a hybrid tracked vehicle is presented and solved in this paper. A driving schedule obtained from field tests is used to represent typical tracked vehicle operations. Dynamics of the diesel engine-permanent magnetic AC synchronous generator set, the lithium-ion battery pack, and the power split between them are modeled and validated through experiments. Two coupled optimizations, one for the plant parameters, forming the outer optimization loop and one for the control strategy, forming the inner optimization loop, are used to achieve minimum fuel consumption under the selected driving schedule. The dynamic programming technique is applied to find the optimal controller in the inner loop while the component parameters are optimized iteratively in the outer loop. The results are analyzed, and the relationship between the key parameters is observed to keep the optimal sizing and control simultaneously.
Proportional–Integral–Derivative (PID Controller Tuning using Particle Swarm Optimization Algorithm
Directory of Open Access Journals (Sweden)
J. S. Bassi
2012-08-01
Full Text Available The proportional-integral-derivative (PID controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI method of particle swarm optimization (PSO algorithm for tuning the optimal proportional-integral derivative (PID controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.
... is also found to be weak. If both accommodation and convergence are weak, reading glasses, sometimes with prism added, may be a great option for these patients. It is very difficult to improve accommodation with exercises. Updated 7/2017 Eye Terms & Conditions ...
Quantum dynamics manipulation using optimal control theory in the presence of laser field noise
Kumar, Praveen; Malinovskaya, Svetlana A.
2010-08-01
We discuss recent advances in optimal control theory (OCT) related to the investigation of the impact of control field noise on controllability of quantum dynamics. Two numerical methods, the gradient method and the iteration method, are paid particular attention. We analyze the problem of designing noisy control fields to maximize the vibrational transition probability in diatomic quantum systems, e.g. the HF and OH molecules. White noise is used as an additive random variable in the amplitude of the control field. It is demonstrated that the convergence is faster in the presence of noise and population transfer is increased by 0.04% for small values of noise compared to the field amplitude.
International Nuclear Information System (INIS)
Wei Qing-Lai; Song Rui-Zhuo; Xiao Wen-Dong; Sun Qiu-Ye
2015-01-01
This paper estimates an off-policy integral reinforcement learning (IRL) algorithm to obtain the optimal tracking control of unknown chaotic systems. Off-policy IRL can learn the solution of the HJB equation from the system data generated by an arbitrary control. Moreover, off-policy IRL can be regarded as a direct learning method, which avoids the identification of system dynamics. In this paper, the performance index function is first given based on the system tracking error and control error. For solving the Hamilton–Jacobi–Bellman (HJB) equation, an off-policy IRL algorithm is proposed. It is proven that the iterative control makes the tracking error system asymptotically stable, and the iterative performance index function is convergent. Simulation study demonstrates the effectiveness of the developed tracking control method. (paper)
Optimal estimation and control in nuclear power plants
International Nuclear Information System (INIS)
Purviance, J.E.; Tylee, J.L.
1982-08-01
Optimal estimation and control theories offer the potential for more precise control and diagnosis of nuclear power plants. The important element of these theories is that a mathematical plant model is used in conjunction with the actual plant data to optimize some performance criteria. These criteria involve important plant variables and incorporate a sense of the desired plant performance. Several applications of optimal estimation and control to nuclear systems are discussed
An A Posteriori Error Estimate for Symplectic Euler Approximation of Optimal Control Problems
Karlsson, Peer Jesper
2015-01-07
This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading order term consisting of an error density that is computable from Symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations.
An Error Estimate for Symplectic Euler Approximation of Optimal Control Problems
Karlsson, Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul
2015-01-01
This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading-order term consisting of an error density that is computable from symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading-error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations. The performance is illustrated by numerical tests.
Improved Bayesian optimization algorithm with fast convergence%一种快速收敛的改进贝叶斯优化算法
Institute of Scientific and Technical Information of China (English)
王翔; 郑建国; 张超群; 刘荣辉
2011-01-01
针对贝叶斯优化算法(BOA)中学习贝叶斯网络结构时间复杂度较高的问题,提出了一种可以快速收敛的基于K2的贝叶斯优化算法(K2-BOA).为了提升收敛速度,在学习贝叶斯网络结构的步骤中进行了2处改进:首先,随机生成n个变量的拓扑排序,加大了算法的随机性;其次,在排序的基础上利用K2算法学习贝叶斯网络结构,减少了整个算法的时问复杂度.针对3个标准Benchmark函数的仿真实验表明:采用K2-BOA算法和BOA算法解决简单分解函数问题时,寻找到最优值的适应度函数评价次数几乎相同,但是每次迭代K2-BOA算法运行速度提升明显;当解决比较复杂的6阶双极欺骗函数问题时,K2-BOA算法无论是运行时间还是适应度函数评价次数,都远小于BOA算法.%K2-Bayesian optimization algorithm (BOA) with fast convergence was proposed to enhance the convergence rate figuring out the problem that the time complexity of learning Bayesian networks was high in the Bayesian optimization algorithm. There were two improvements in learning Bayesian network of the new algorithm: the topological sort of n variables was randomly generated for increasing the randomness of the algorithm, and on the basis of the sort K2 algorithm was used to learn Bayesian network structure to reduce the time complexity of the new algorithm. The simulation results for three benchmark functions show two conclusions. Firstly, when 3-deceptive function and trap-5 function are solved, the number of fitness function evaluation of K2-Bayesian optimization algorithm is almost the same as that of Bayesian optimization algorithm; however the running time of K2-Bayesian optimization algorithm is less than that of Bayesian optimization algorithm. Secondly, when 6-bipolar function is solved, the number of fitness function evaluation and the running time of K2-Bayesian optimization algorithm are much better than those of Bayesian optimization algorithm.
Optimal control of compressible Navier-Stokes equations
International Nuclear Information System (INIS)
Ito, K.; Ravindran, S.S.
1994-01-01
Optimal control for the viscous incompressible flows, which are governed by incompressible Navier-Stokes equations, has been the subject of extensive study in recent years, see, e.g., [AT], [GHS], [IR], and [S]. In this paper we consider the optimal control of compressible isentropic Navier-Stokes equations. We develop the weak variational formulation and discuss the existence and necessary optimality condition characterizing the optimal control. A numerical method based on the mixed-finite element method is also discussed to compute the control and numerical results are presented
Lien, Mei-Ching; Ruthruff, Eric; Goodin, Zachary; Remington, Roger W.
2008-01-01
Theories of attentional control are divided over whether the capture of spatial attention depends primarily on stimulus salience or is contingent on attentional control settings induced by task demands. The authors addressed this issue using the N2-posterior-contralateral (N2pc) effect, a component of the event-related brain potential thought to…
A Gradient Optimization Approach to Adaptive Multi-Robot Control
2009-09-01
t) - v, (t) = 0 Vi from the first term in the sum, so the network converges to a near-optimal coverage configuration. Furthermore, from Ci(7) Td (t...they are not a function of 7) to get ry&(t)TW[j (TF)ICjIC[ d-l &di(t) = nYdcti( td Since 1V - 0, if limt,, Ai (t) is positive definite (we know the limit...property clearly, examine the magnitude of force exerted by one neighbor (m - 1 = 1) given by IIl f = 0ij - 02i/ llj - P I, and shown in the left of
Optimal coordination and control of posture and movements.
Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns
2009-01-01
This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided.
Sullivan, G C
1993-11-01
The multidisciplinary field of stress and stress-related health outcomes has generated theoretical and practical knowledge which is of interest to nurses. Theoretical developments which have assumed a prominent role in the study of stress, health and coping include the identification of various 'stress buffers' several of which bear a strong conceptual resemblance to one another. Antonovsky has developed a Salutogenic Model of stress and resistance, which is presented in this paper. The model's central concept, the sense of coherence, is described and analysed. The sense of coherence, with its three components (meaningfulness, comprehensibility and manageability), is then compared and contrasted with similar concepts. The convergent theoretical notions which are distinguished from Antonovsky's coherence are: will to meaning, locus of control, learned helplessness and hardiness. It is hoped that this analysis will provide greater conceptual clarity for nurses who study and use these concepts in education, practice or research.
Optimal treatment interruptions control of TB transmission model
Nainggolan, Jonner; Suparwati, Titik; Kawuwung, Westy B.
2018-03-01
A tuberculosis model which incorporates treatment interruptions of infectives is established. Optimal control of individuals infected with active TB is given in the model. It is obtained that the control reproduction numbers is smaller than the reproduction number, this means treatment controls could optimize the decrease in the spread of active TB. For this model, controls on treatment of infection individuals to reduce the actively infected individual populations, by application the Pontryagins Maximum Principle for optimal control. The result further emphasized the importance of controlling disease relapse in reducing the number of actively infected and treatment interruptions individuals with tuberculosis.
Optimal dynamic control of resources in a distributed system
Shin, Kang G.; Krishna, C. M.; Lee, Yann-Hang
1989-01-01
The authors quantitatively formulate the problem of controlling resources in a distributed system so as to optimize a reward function and derive optimal control strategies using Markov decision theory. The control variables treated are quite general; they could be control decisions related to system configuration, repair, diagnostics, files, or data. Two algorithms for resource control in distributed systems are derived for time-invariant and periodic environments, respectively. A detailed example to demonstrate the power and usefulness of the approach is provided.
Peak-Seeking Control for Trim Optimization
National Aeronautics and Space Administration — Innovators have developed a peak-seeking algorithm that can reduce drag and improve performance and fuel efficiency by optimizing aircraft trim in real time. The...
Minimum energy control and optimal-satisfactory control of Boolean control network
International Nuclear Information System (INIS)
Li, Fangfei; Lu, Xiwen
2013-01-01
In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.
Numerical convergence for a sewage disposal problem
Alvarez-Vázquez, L.J.; Martínez, A.; Rodríguez, C.; Vázquez-Méndez, M.E.
2001-01-01
The management of sewage disposal and the design of wastewater treatment systems can be formulated as a constrained pointwise optimal control problem. In this paper we study the convergence of the numerical resolution for the corresponding state system by means of a characteristics Galerkin method. The main difficulty of the problem is due to the existence of Radon measures in the right-hand side of the state system. Finally, we present numerical results for a realistic problem posed in a ria...
Zhu, Yuanheng; Zhao, Dongbin; Yang, Xiong; Zhang, Qichao
2018-02-01
Sum of squares (SOS) polynomials have provided a computationally tractable way to deal with inequality constraints appearing in many control problems. It can also act as an approximator in the framework of adaptive dynamic programming. In this paper, an approximate solution to the optimal control of polynomial nonlinear systems is proposed. Under a given attenuation coefficient, the Hamilton-Jacobi-Isaacs equation is relaxed to an optimization problem with a set of inequalities. After applying the policy iteration technique and constraining inequalities to SOS, the optimization problem is divided into a sequence of feasible semidefinite programming problems. With the converged solution, the attenuation coefficient is further minimized to a lower value. After iterations, approximate solutions to the smallest -gain and the associated optimal controller are obtained. Four examples are employed to verify the effectiveness of the proposed algorithm.
Frankowska, Hélène; Hoehener, Daniel
2017-06-01
This paper is devoted to pointwise second-order necessary optimality conditions for the Mayer problem arising in optimal control theory. We first show that with every optimal trajectory it is possible to associate a solution p (ṡ) of the adjoint system (as in the Pontryagin maximum principle) and a matrix solution W (ṡ) of an adjoint matrix differential equation that satisfy a second-order transversality condition and a second-order maximality condition. These conditions seem to be a natural second-order extension of the maximum principle. We then prove a Jacobson like necessary optimality condition for general control systems and measurable optimal controls that may be only ;partially singular; and may take values on the boundary of control constraints. Finally we investigate the second-order sensitivity relations along optimal trajectories involving both p (ṡ) and W (ṡ).
Jäger, Georg; Reich, Daniel M.; Goerz, Michael H.; Koch, Christiane P.; Hohenester, Ulrich
2014-09-01
We study optimal quantum control of the dynamics of trapped Bose-Einstein condensates: The targets are to split a condensate, residing initially in a single well, into a double well, without inducing excitation, and to excite a condensate from the ground state to the first-excited state of a single well. The condensate is described in the mean-field approximation of the Gross-Pitaevskii equation. We compare two optimization approaches in terms of their performance and ease of use; namely, gradient-ascent pulse engineering (GRAPE) and Krotov's method. Both approaches are derived from the variational principle but differ in the way the control is updated, additional costs are accounted for, and second-order-derivative information can be included. We find that GRAPE produces smoother control fields and works in a black-box manner, whereas Krotov with a suitably chosen step-size parameter converges faster but can produce sharp features in the control fields.
Ming-Tak Chung, Dennis; Jerram, Matthew W; Lee, Jonathan K; Katz, Harvey; Gansler, David A
2013-12-30
The associations between brain matter volume in the cerebral cortex and set shifting and attentional control as operationalized by the Wisconsin Card Sort Test (WCST) and Condition Three of the Delis-Kaplan version of the Color Word Interference Test (CWIT) were investigated in 15 healthy controls and 16 heterogeneously diagnosed psychiatric patients with self-control problems using voxel based morphometry. Both groups underwent standardized magnetic resonance imaging and neuropsychological assessment. WCST and CWIT variables, and a composite, were regressed across the whole brain. Although CWIT performance levels were the same in both groups, neuroanatomic correlates for the psychiatric participants invoked the left hemisphere language system, but the bilateral dorsal attention system in the healthy controls. On its own, no neuroanatomic correlates were observed for the WCST. But when part of a composite with CWIT, neuroanatomic correlates in the dorsal attention system emerged for the psychiatric participants. Psychometric combinations of manifest executive task variables may best represent higher level latent neuro-cognitive control systems. Factor analytic studies of neuropsychological test performances suggest the constructs being measured are the same across psychiatric and non-diagnosed participants, however, imaging modalities indicate the relevant neural architecture can vary by group. © 2013 Elsevier Ireland Ltd. All rights reserved.
Robust output LQ optimal control via integral sliding modes
Fridman, Leonid; Bejarano, Francisco Javier
2014-01-01
Featuring original research from well-known experts in the field of sliding mode control, this monograph presents new design schemes for implementing LQ control solutions in situations where the output system is the only information provided about the state of the plant. This new design works under the restrictions of matched disturbances without losing its desirable features. On the cutting-edge of optimal control research, Robust Output LQ Optimal Control via Integral Sliding Modes is an excellent resource for both graduate students and professionals involved in linear systems, optimal control, observation of systems with unknown inputs, and automatization. In the theory of optimal control, the linear quadratic (LQ) optimal problem plays an important role due to its physical meaning, and its solution is easily given by an algebraic Riccati equation. This solution turns out to be restrictive, however, because of two assumptions: the system must be free from disturbances and the entire state vector must be kn...
Esfandiari, Kasra; Abdollahi, Farzaneh; Talebi, Heidar Ali
2017-09-01
In this paper, an identifier-critic structure is introduced to find an online near-optimal controller for continuous-time nonaffine nonlinear systems having saturated control signal. By employing two Neural Networks (NNs), the solution of Hamilton-Jacobi-Bellman (HJB) equation associated with the cost function is derived without requiring a priori knowledge about system dynamics. Weights of the identifier and critic NNs are tuned online and simultaneously such that unknown terms are approximated accurately and the control signal is kept between the saturation bounds. The convergence of NNs' weights, identification error, and system states is guaranteed using Lyapunov's direct method. Finally, simulation results are performed on two nonlinear systems to confirm the effectiveness of the proposed control strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.
A policy iteration approach to online optimal control of continuous-time constrained-input systems.
Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L
2013-09-01
This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.
Optimal control of stochastic difference Volterra equations an introduction
Shaikhet, Leonid
2015-01-01
This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools. The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations. Optimal Control of Stochastic Difference Volterra Equation...
Optimal Control for a Class of Chaotic Systems
Directory of Open Access Journals (Sweden)
Jianxiong Zhang
2012-01-01
Full Text Available This paper proposes the optimal control methods for a class of chaotic systems via state feedback. By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal control method of piecewise linear systems, which is cast as an optimization problem under constraints of bilinear matrix inequalities (BMIs. In addition, the lower bound on cost function can be achieved by solving a semidefinite programming (SDP. Finally, numerical examples are given to illustrate the results.
A hybrid medium access control for convergence of broadband wireless and wireline ATM networks
DEFF Research Database (Denmark)
Liu, Hong; Gliese, Ulrik Bo; Dittmann, Lars
2000-01-01
In this paper, we propose a hybrid medium access control protocol for supporting broadband integrated services in the wireless ATM networks. The integrated services include CBR, VBR and ABR traffic varying from low bit-rate to very high bit-rate. The proposed protocol is an excellent compromise...
Converging Evidence for Control of Color-Word Stroop Interference at the Item Level
Bugg, Julie M.; Hutchison, Keith A.
2013-01-01
Prior studies have shown that cognitive control is implemented at the list and context levels in the color-word Stroop task. At first blush, the finding that Stroop interference is reduced for mostly incongruent items as compared with mostly congruent items (i.e., the item-specific proportion congruence [ISPC] effect) appears to provide evidence…
Attitude Control Optimization for ROCSAT-2 Operation
Chern, Jeng-Shing; Wu, A.-M.
one revolution. The purpose of this paper is to present the attitude control design optimization such that the maximum solar energy is ingested while minimum maneuvering energy is dissipated. The strategy includes the maneuvering sequence design, the minimization of angular path, the sizing of three magnetic torquers, and the trade-off of the size, number and orientations arrangement of momentum wheels.
Thompson, Hannah E; Almaghyuli, Azizah; Noonan, Krist A; Barak, Ohr; Lambon Ralph, Matthew A; Jefferies, Elizabeth
2018-01-03
Semantic cognition, as described by the controlled semantic cognition (CSC) framework (Rogers et al., , Neuropsychologia, 76, 220), involves two key components: activation of coherent, generalizable concepts within a heteromodal 'hub' in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task-appropriate behaviour. Executive-semantic goal representations, largely supported by executive regions such as frontal and parietal cortex, are thought to allow the generation of non-dominant aspects of knowledge when these are appropriate for the task or context. Semantic aphasia (SA) patients have executive-semantic deficits, and these are correlated with general executive impairment. If the CSC proposal is correct, patients with executive impairment should not only exhibit impaired semantic cognition, but should also show characteristics that align with those observed in SA. This possibility remains largely untested, as patients selected on the basis that they show executive impairment (i.e., with 'dysexecutive syndrome') have not been extensively tested on tasks tapping semantic control and have not been previously compared with SA cases. We explored conceptual processing in 12 patients showing symptoms consistent with dysexecutive syndrome (DYS) and 24 SA patients, using a range of multimodal semantic assessments which manipulated control demands. Patients with executive impairments, despite not being selected to show semantic impairments, nevertheless showed parallel patterns to SA cases. They showed strong effects of distractor strength, cues and miscues, and probe-target distance, plus minimal effects of word frequency on comprehension (unlike semantic dementia patients with degradation of conceptual knowledge). This supports a component process account of semantic cognition in which retrieval is shaped by control processes, and confirms that deficits in SA patients reflect
Application of particle swarm optimization in gas turbine engine fuel controller gain tuning
Montazeri-Gh, M.; Jafari, S.; Ilkhani, M. R.
2012-02-01
This article presents the application of particle swarm optimization (PSO) for gain tuning of the gas turbine engine (GTE) fuel controller. For this purpose, the structure of a fuel controller is firstly designed based on the GTE control requirements and constraints. The controller gains are then tuned by PSO where the tuning process is formulated as an engineering optimization problem. In this study, the response time during engine acceleration and deceleration as well as the engine fuel consumption are considered as the objective functions. A computer simulation is also developed to evaluate the objective values for a single spool GTE. The GTE model employed for the simulation is a Wiener model, the parameters of which are extracted from experimental tests. In addition, the effect of neighbour acceleration on PSO results is studied. The results show that the neighbour acceleration factor has a considerable effect on the convergence rate of the PSO process. The PSO results are also compared with the results obtained through a genetic algorithm (GA) to show the relative merits of PSO. Moreover, the PSO results are compared with the results obtained from the dynamic programming (DP) method in order to illustrate the ability of proposed method in finding the global optimal solution. Furthermore, the objective function is also defined in multi-objective manner and the multi-objective particle swarm optimization (MOPSO) is applied to find the Pareto-front for the problem. Finally, the results obtained from the simulation of the optimized controller confirm the effectiveness of the proposed approach to design an optimal fuel controller resulting in an improved GTE performance as well as protection against the physical limitations.
Disturbance Error Reduction in Multivariable Optimal Control Systems
Directory of Open Access Journals (Sweden)
Ole A. Solheim
1983-01-01
Full Text Available The paper deals with the design of optimal multivariable controllers, using a modified LQR approach. All controllers discussed contain proportional feedback and, in addition, there may be feedforward, integral action or state estimation.
Advanced Process Control Application and Optimization in Industrial Facilities
Directory of Open Access Journals (Sweden)
Howes S.
2015-01-01
Full Text Available This paper describes application of the new method and tool for system identification and PID tuning/advanced process control (APC optimization using the new 3G (geometric, gradient, gravity optimization method. It helps to design and implement control schemes directly inside the distributed control system (DCS or programmable logic controller (PLC. Also, the algorithm helps to identify process dynamics in closed-loop mode, optimizes controller parameters, and helps to develop adaptive control and model-based control (MBC. Application of the new 3G algorithm for designing and implementing APC schemes is presented. Optimization of primary and advanced control schemes stabilizes the process and allows the plant to run closer to process, equipment and economic constraints. This increases production rates, minimizes operating costs and improves product quality.
Optimal Vibration Control for Tracked Vehicle Suspension Systems
Directory of Open Access Journals (Sweden)
Yan-Jun Liang
2013-01-01
Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.
On the application of Discrete Time Optimal Control Concepts to ...
African Journals Online (AJOL)
On the application of Discrete Time Optimal Control Concepts to Economic Problems. ... Journal of the Nigerian Association of Mathematical Physics ... Abstract. An extension of the use of the maximum principle to solve Discrete-time Optimal Control Problems (DTOCP), in which the state equations are in the form of general ...
Optimization of feed water control for auxiliary boiler
International Nuclear Information System (INIS)
Li Lingmao
2004-01-01
This paper described the feed water control system of the auxiliary boiler steam drum in Qinshan Phase III Nuclear Power Plant, analyzed the deficiency of the original configuration, and proposed the optimized configuration. The optimized feed water control system can ensure the stable and safe operation of the auxiliary boiler, and the normal operation of the users. (author)
Optimization and Control of Electric Power Systems
Energy Technology Data Exchange (ETDEWEB)
Lesieutre, Bernard C. [Univ. of Wisconsin, Madison, WI (United States); Molzahn, Daniel K. [Univ. of Wisconsin, Madison, WI (United States)
2014-10-17
The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.
Thompson, Hannah E; Almaghyuli, Azizah; Noonan, Krist A.; Barak, Ohr; Lambon Ralph, Matthew; Jefferies, Elizabeth
2018-01-01
Semantic cognition, as described by the Controlled Semantic Cognition (CSC) framework (Rogers, Patterson, Jefferies, & Lambon Ralph, 2015), involves two key components: activation of coherent, generalizable concepts within a heteromodal ‘hub’ in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task- appropriate behaviour. Executive-semantic goal representations, largely supported by executive...
Thompson, Hannah; Almaghyuli, Azizah; Noonan, Krist A.; barak, Ohr; Lambon Ralph, Matthew A.; Jefferies, Elizabeth
2018-01-01
Semantic cognition, as described by the controlled semantic cognition (CSC) framework (Rogers et al., 2015, Neuropsychologia, 76, 220), involves two key components: activation of coherent, generalizable concepts within a heteromodal ‘hub’ in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task-appropriate behaviour. Executive–semantic goal representations, largely supported by executive regions ...
In-flight performance optimization for rotorcraft with redundant controls
Ozdemir, Gurbuz Taha
A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to
Discrete-time optimal control and games on large intervals
Zaslavski, Alexander J
2017-01-01
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...
Optimal control of wind power plants
Steinbuch, M.; Boer, de W.W.; Bosgra, O.H.; Peeters, S.A.W.M.; Ploeg, J.
1988-01-01
The control system design for a wind power plant is investigated. Both theoverall wind farm control and the individual wind turbine control effect thewind farm dynamic performance.For a wind turbine with a synchronous generator and rectifier/invertersystem a multivariable controller is designed.
Optimal control of operation efficiency of belt conveyor systems
International Nuclear Information System (INIS)
Zhang, Shirong; Xia, Xiaohua
2010-01-01
The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study.
Optimal control of operation efficiency of belt conveyor systems
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shirong [Department of Automation, Wuhan University, Wuhan 430072 (China); Xia, Xiaohua [Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002 (South Africa)
2010-06-15
The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study. (author)
Optimal control of a qubit in an optical cavity
International Nuclear Information System (INIS)
Deffner, Sebastian
2014-01-01
We study quantum information processing by means of optimal control theory. To this end, we analyze the damped Jaynes–Cummings model, and derive optimal control protocols that minimize the heating or energy dispersion rates, and controls that drive the system at the quantum speed limit. Special emphasis is put on analyzing the subtleties of optimal control theory for our system. In particular, it is shown how two fundamentally different approaches to the quantum speed limit can be reconciled by carefully formulating the problem. (paper)
Free-time and fixed end-point multi-target optimal control theory: Application to quantum computing
International Nuclear Information System (INIS)
Mishima, K.; Yamashita, K.
2011-01-01
Graphical abstract: The two-state Deutsch-Jozsa algortihm used to demonstrate the utility of free-time and fixed-end point multi-target optimal control theory. Research highlights: → Free-time and fixed-end point multi-target optimal control theory (FRFP-MTOCT) was constructed. → The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. → The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361 (2009) 106]. → The qubit system of our interest consists of two polar NaCl molecules coupled by dipole-dipole interaction. → The calculation examples show that our theory is useful for minor adjustment of the external fields. - Abstract: An extension of free-time and fixed end-point optimal control theory (FRFP-OCT) to monotonically convergent free-time and fixed end-point multi-target optimal control theory (FRFP-MTOCT) is presented. The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361, (2009), 106]. The qubit system of our interest consists of two polar NaCl molecules coupled by dipole-dipole interaction. The calculation examples show that our theory is useful for minor
Keulen, van T.A.C.; Gillot, J.; Jager, de A.G.; Steinbuch, M.
2014-01-01
This paper presents a numerical solution for scalar state constrained optimal control problems. The algorithm rewrites the constrained optimal control problem as a sequence of unconstrained optimal control problems which can be solved recursively as a two point boundary value problem. The solution
Optimization of nonlinear controller with an enhanced biogeography approach
Directory of Open Access Journals (Sweden)
Mohammed Salem
2014-07-01
Full Text Available This paper is dedicated to the optimization of nonlinear controllers basing of an enhanced Biogeography Based Optimization (BBO approach. Indeed, The BBO is combined to a predator and prey model where several predators are used with introduction of a modified migration operator to increase the diversification along the optimization process so as to avoid local optima and reach the optimal solution quickly. The proposed approach is used in tuning the gains of PID controller for nonlinear systems. Simulations are carried out over a Mass spring damper and an inverted pendulum and has given remarkable results when compared to genetic algorithm and BBO.
Optimal Control and Forecasting of Complex Dynamical Systems
Grigorenko, Ilya
2006-01-01
This important book reviews applications of optimization and optimal control theory to modern problems in physics, nano-science and finance. The theory presented here can be efficiently applied to various problems, such as the determination of the optimal shape of a laser pulse to induce certain excitations in quantum systems, the optimal design of nanostructured materials and devices, or the control of chaotic systems and minimization of the forecast error for a given forecasting model (for example, artificial neural networks). Starting from a brief review of the history of variational calcul
Optimal control of switched systems arising in fermentation processes
Liu, Chongyang
2014-01-01
The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.
5th International Conference on Optimization and Control with Applications
Teo, Kok; Zhang, Yi
2014-01-01
This book presents advances in state-of-the-art solution methods and their applications to real life practical problems in optimization, control and operations research. Contributions from world-class experts in the field are collated here in two parts, dealing first with optimization and control theory and then with techniques and applications. Topics covered in the first part include control theory on infinite dimensional Banach spaces, history-dependent inclusion and linear programming complexity theory. Chapters also explore the use of approximations of Hamilton-Jacobi-Bellman inequality for solving periodic optimization problems and look at multi-objective semi-infinite optimization problems, and production planning problems. In the second part, the authors address techniques and applications of optimization and control in a variety of disciplines, such as chaos synchronization, facial expression recognition and dynamic input-output economic models. Other applications considered here include image retr...
Directory of Open Access Journals (Sweden)
Ji-Hoon Kim
2014-06-01
Full Text Available In order to seek more eco-friend, economic and safer quarantine method than current methyl bromide fumigation, the convergent treatment with 200 Gy of gamma irradiation and several chemicals such as nano-siver particles (NSS, sodium dichloroisocyanurate (NaDCC was tried on the cuttings of lily in the packing of catonnage box for export. With 6 independent experiments of gamma irradiation on the three lily cultivars, cvs. Siberia, Le reve and Sorbonne, incidence and severity of lily leaf blight was investigated on leaves and petals at 8-d after infection. 200 Gy of gamma irradiation decreased at 13-25% of severity on the leaf of Sorbonne, but it increased at 2-5% of severity on the leaf of Siberia and Le reve. Chemical substitutes such as NSS and NaDCC were not effective to control of lily blight on cuttings. By 200 Gy of gamma irradiation treatment, chlorophyll contents were statistically significantly decreased at 12-d after irradiation and the longevities vaselife of fully open flower of Siberia and Sorbonne were increased at 0.4 to 1.2 days. In addition, the relative fresh weights of the gamma irradiated cuttings were severely dried compared to the non-irradiated control. On the other hands, the symptoms of phyto-toxicity of high dose gamma irradiation at 1 or 2 kGy on cv. Siberia were to be blight at the tip of bloom, bent necks of flower, and delayed the process of flowering.
Control strategy optimization of HVAC plants
Energy Technology Data Exchange (ETDEWEB)
Facci, Andrea Luigi; Zanfardino, Antonella [Department of Engineering, University of Napoli “Parthenope” (Italy); Martini, Fabrizio [Green Energy Plus srl (Italy); Pirozzi, Salvatore [SIAT Installazioni spa (Italy); Ubertini, Stefano [School of Engineering (DEIM) University of Tuscia (Italy)
2015-03-10
In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting.
Control strategy optimization of HVAC plants
International Nuclear Information System (INIS)
Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio; Pirozzi, Salvatore; Ubertini, Stefano
2015-01-01
In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting
Desiccant wheel thermal performance modeling for indoor humidity optimal control
International Nuclear Information System (INIS)
Wang, Nan; Zhang, Jiangfeng; Xia, Xiaohua
2013-01-01
Highlights: • An optimal humidity control model is formulated to control the indoor humidity. • MPC strategy is used to implement the optimal operation solution. • Practical applications of the MPC strategy is illustrated by the case study. - Abstract: Thermal comfort is an important concern in the energy efficiency improvement of commercial buildings. Thermal comfort research focuses mostly on temperature control, but humidity control is an important aspect to maintain indoor comfort too. In this paper, an optimal humidity control model (OHCM) is presented. Model predictive control (MPC) strategy is applied to implement the optimal operation of the desiccant wheel during working hours of a commercial building. The OHCM is revised to apply the MPC strategy. A case is studied to illustrate the practical applications of the MPC strategy
Directory of Open Access Journals (Sweden)
Yuan Wang
2015-01-01
Full Text Available Our work is devoted to a class of optimal control problems of parabolic partial differential equations. Because of the partial differential equations constraints, it is rather difficult to solve the optimization problem. The gradient of the cost function can be found by the adjoint problem approach. Based on the adjoint problem approach, the gradient of cost function is proved to be Lipschitz continuous. An improved conjugate method is applied to solve this optimization problem and this algorithm is proved to be convergent. This method is applied to set-point values in continuous cast secondary cooling zone. Based on the real data in a plant, the simulation experiments show that the method can ensure the steel billet quality. From these experiment results, it is concluded that the improved conjugate gradient algorithm is convergent and the method is effective in optimal control problem of partial differential equations.
Symbolic approximate time-optimal control
Mazo, Manuel; Tabuada, Paulo
There is an increasing demand for controller design techniques capable of addressing the complex requirements of today's embedded applications. This demand has sparked the interest in symbolic control where lower complexity models of control systems are used to cater for complex specifications given
Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali
2018-05-11
The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Optimization and Control of Communication Networks
Chiang, Mung; Low, Steven
2005-01-01
Recently, there has been a surge in research activities that utilize the power of recent developments in nonlinear optimization to tackle a wide scope of work in the analysis and design of communication systems, touching every layer of the layered network architecture, and resulting in both intellectual and practical impacts significantly beyond the earlier frameworks. These research activities are driven by both new demands in the areas of communications and networking, and n...
Near Optimal Decentralized H-infinity Control: Bounded vs. Unbounded Controller Order
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, H.H.
1997-01-01
It is shown that for a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinite dimensional optimal controller. Using the insight of the line of proof of these results, a heuris......It is shown that for a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinite dimensional optimal controller. Using the insight of the line of proof of these results...
Optimal Control of Interdependent Epidemics in Complex Networks
Chen, Juntao; Zhang, Rui; Zhu, Quanyan
2017-01-01
Optimal control of interdependent epidemics spreading over complex networks is a critical issue. We first establish a framework to capture the coupling between two epidemics, and then analyze the system's equilibrium states by categorizing them into three classes, and deriving their stability conditions. The designed control strategy globally optimizes the trade-off between the control cost and the severity of epidemics in the network. A gradient descent algorithm based on a fixed point itera...
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Scalable algorithms for optimal control of stochastic PDEs
Ghattas, Omar
2016-01-07
We present methods for the optimal control of systems governed by partial differential equations with infinite-dimensional uncertain parameters. We consider an objective function that involves the mean and variance of the control objective, leading to a risk-averse optimal control formulation. To make the optimal control problem computationally tractable, we employ a local quadratic approximation of the objective with respect to the uncertain parameter. This enables computation of the mean and variance of the control objective analytically. The resulting risk-averse optimization problem is formulated as a PDE-constrained optimization problem with constraints given by the forward and adjoint PDEs for the first and second-order derivatives of the quantity of interest with respect to the uncertain parameter, and with an objective that involves the trace of a covariance-preconditioned Hessian (of the objective with respect to the uncertain parameters) operator. A randomized trace estimator is used to make tractable the trace computation. Adjoint-based techniques are used to derive an expression for the infinite-dimensional gradient of the risk-averse objective function via the Lagrangian, leading to a quasi-Newton method for solution of the optimal control problem. A specific problem of optimal control of a linear elliptic PDE that describes flow of a fluid in a porous medium with uncertain permeability field is considered. We present numerical results to study the consequences of the local quadratic approximation and the efficiency of the method.
Scalable algorithms for optimal control of stochastic PDEs
Ghattas, Omar; Alexanderian, Alen; Petra, Noemi; Stadler, Georg
2016-01-01
We present methods for the optimal control of systems governed by partial differential equations with infinite-dimensional uncertain parameters. We consider an objective function that involves the mean and variance of the control objective, leading to a risk-averse optimal control formulation. To make the optimal control problem computationally tractable, we employ a local quadratic approximation of the objective with respect to the uncertain parameter. This enables computation of the mean and variance of the control objective analytically. The resulting risk-averse optimization problem is formulated as a PDE-constrained optimization problem with constraints given by the forward and adjoint PDEs for the first and second-order derivatives of the quantity of interest with respect to the uncertain parameter, and with an objective that involves the trace of a covariance-preconditioned Hessian (of the objective with respect to the uncertain parameters) operator. A randomized trace estimator is used to make tractable the trace computation. Adjoint-based techniques are used to derive an expression for the infinite-dimensional gradient of the risk-averse objective function via the Lagrangian, leading to a quasi-Newton method for solution of the optimal control problem. A specific problem of optimal control of a linear elliptic PDE that describes flow of a fluid in a porous medium with uncertain permeability field is considered. We present numerical results to study the consequences of the local quadratic approximation and the efficiency of the method.
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO
Directory of Open Access Journals (Sweden)
Adel Taieb
2017-01-01
Full Text Available This paper introduces a new development for designing a Multi-Input Multi-Output (MIMO Fuzzy Optimal Model Predictive Control (FOMPC using the Adaptive Particle Swarm Optimization (APSO algorithm. The aim of this proposed control, called FOMPC-APSO, is to develop an efficient algorithm that is able to have good performance by guaranteeing a minimal control. This is done by determining the optimal weights of the objective function. Our method is considered an optimization problem based on the APSO algorithm. The MIMO system to be controlled is modeled by a Takagi-Sugeno (TS fuzzy system whose parameters are identified using weighted recursive least squares method. The utility of the proposed controller is demonstrated by applying it to two nonlinear processes, Continuous Stirred Tank Reactor (CSTR and Tank system, where the proposed approach provides better performances compared with other methods.
Hierarchical Control for Optimal and Distributed Operation of Microgrid Systems
DEFF Research Database (Denmark)
Meng, Lexuan
manages the power flow with external grids, while the economic and optimal operation of MGs is not guaranteed by applying the existing schemes. Accordingly, this project dedicates to the study of real-time optimization methods for MGs, including the review of optimization algorithms, system level...... mathematical modeling, and the implementation of real-time optimization into existing hierarchical control schemes. Efficiency enhancement in DC MGs and optimal unbalance compensation in AC MGs are taken as the optimization objectives in this project. Necessary system dynamic modeling and stability analysis......, a discrete-time domain modeling method is proposed to establish an accurate system level model. Taking into account the different sampling times of real world plant, digital controller and communication devices, the system is modeled with these three parts separately, and with full consideration...
Research on Optimized Torque-Distribution Control Method for Front/Rear Axle Electric Wheel Loader
Directory of Open Access Journals (Sweden)
Zhiyu Yang
2017-01-01
Full Text Available Optimized torque-distribution control method (OTCM is a critical technology for front/rear axle electric wheel loader (FREWL to improve the operation performance and energy efficiency. In the paper, a longitudinal dynamics model of FREWL is created. Based on the model, the objective functions are that the weighted sum of variance and mean of tire workload is minimal and the total motor efficiency is maximal. Four nonlinear constraint optimization algorithms, quasi-newton Lagrangian multiplier method, sequential quadratic programming, adaptive genetic algorithms, and particle swarm optimization with random weighting and natural selection, which have fast convergent rate and quick calculating speed, are used as solving solutions for objective function. The simulation results show that compared to no-control FREWL, controlled FREWL utilizes the adhesion ability better and slips less. It is obvious that controlled FREWL gains better operation performance and higher energy efficiency. The energy efficiency of FREWL in equipment transferring condition is increased by 13–29%. In addition, this paper discussed the applicability of OTCM and analyzed the reason for different simulation results of four algorithms.
Stochastic optimal control in a danger zone
Lefebvre, Mario
2011-04-01
Let X(t) be a one-dimensional controlled Wiener process, and let τ(x) be the first time X(t) takes on the value A, given that X(0) = x. The problem of finding the control that minimises the expected value of a cost function with quadratic control costs on the way and an instantaneous reward (or penalty) given for survival in the continuation region is solved explicitly in the case when A is a random variable.
Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models
Rothenberger, Michael J.
-output measurements, and is the approach used in this dissertation. Research in the literature studies optimal current input shaping for high-order electrochemical battery models and focuses on offline laboratory cycling. While this body of research highlights improvements in identifiability through optimal input shaping, each optimal input is a function of nominal parameters, which creates a tautology. The parameter values must be known a priori to determine the optimal input for maximizing estimation speed and accuracy. The system identification literature presents multiple studies containing methods that avoid the challenges of this tautology, but these methods are absent from the battery parameter estimation domain. The gaps in the above literature are addressed in this dissertation through the following five novel and unique contributions. First, this dissertation optimizes the parameter identifiability of a thermal battery model, which Sergio Mendoza experimentally validates through a close collaboration with this dissertation's author. Second, this dissertation extends input-shaping optimization to a linear and nonlinear equivalent-circuit battery model and illustrates the substantial improvements in Fisher identifiability for a periodic optimal signal when compared against automotive benchmark cycles. Third, this dissertation presents an experimental validation study of the simulation work in the previous contribution. The estimation study shows that the automotive benchmark cycles either converge slower than the optimized cycle, or not at all for certain parameters. Fourth, this dissertation examines how automotive battery packs with additional power electronic components that dynamically route current to individual cells/modules can be used for parameter identifiability optimization. While the user and vehicle supervisory controller dictate the current demand for these packs, the optimized internal allocation of current still improves identifiability. Finally, this
Optimization of Inventories for Multiple Companies by Fuzzy Control Method
Kawase, Koichi; Konishi, Masami; Imai, Jun
2008-01-01
In this research, Fuzzy control theory is applied to the inventory control of the supply chain between multiple companies. The proposed control method deals with the amountof inventories expressing supply chain between multiple companies. Referring past demand and tardiness, inventory amounts of raw materials are determined by Fuzzy inference. The method that an appropriate inventory control becomes possible optimizing fuzzy control gain by using SA method for Fuzzy control. The variation of ...
An optimal control problem for controlling the cell volume in dehydration and rehydration process
Energy Technology Data Exchange (ETDEWEB)
Chenghung Huang; Tetsung Chen [National Cheng Kung Univ., Dept. of Systems and Naval Mechatronic Engineering, Tainan (Taiwan)
2004-08-01
An optimal control algorithm utilizing the conjugate gradient method (CGM) of minimization is applied successfully in the present study in determining the optimal boundary control function for a diffusion-limited cell model based on the desired cell volume. The validity of the present optimal control analysis is examined by means of numerical experiments. Different desired cell volume for dehydration, rehydration and their combination are given in three test cases with different weighting coefficients and the corresponding optimal control functions are determined. The results show that the optimal boundary control functions can be obtained with an arbitrary initial guess within one second CPU time on a Pentium III-600 MHz PC. (Author)
IMPORTANCE OF KINETIC MEASURES IN TRAJECTORY PREDICTION WITH OPTIMAL CONTROL
Directory of Open Access Journals (Sweden)
Ömer GÜNDOĞDU
2001-02-01
Full Text Available A two-dimensional sagittally symmetric human-body model was established to simulate an optimal trajectory for manual material handling tasks. Nonlinear control techniques and genetic algorithms were utilized in the optimizations to explore optimal lifting patterns. The simulation results were then compared with the experimental data. Since the kinetic measures such as joint reactions and moments are vital parameters in injury determination, the importance of comparing kinetic measures rather than kinematical ones was emphasized.
Calculus of variations and optimal control theory a concise introduction
Liberzon, Daniel
2011-01-01
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the h...
ON THE OPTIMAL CONTROL OF A PROBLEM OF ENVIRONMENTAL POLLUTION
Directory of Open Access Journals (Sweden)
José Dávalos Chuquipoma
2016-06-01
Full Text Available This article is studied the optimal control of distributed parameter systems applied to an environmental pollution problem. The model consists of a differential equation partial parabolic modeling of a pollutant transport in a fluid. The model is considered the speed with which the pollutant spreads in the environment and degradation that suffers the contaminant by the presence of a factor biological inhibitor, which breaks the contaminant at a rate that is not dependent on space and time. Using the method of Lagrange multipliers is possible to prove the existence solving the problem of control and obtaining optimality conditions for optimal control.
Optimal control of a harmonic oscillator: Economic interpretations
Janová, Jitka; Hampel, David
2013-10-01
Optimal control is a popular technique for modelling and solving the dynamic decision problems in economics. A standard interpretation of the criteria function and Lagrange multipliers in the profit maximization problem is well known. On a particular example, we aim to a deeper understanding of the possible economic interpretations of further mathematical and solution features of the optimal control problem: we focus on the solution of the optimal control problem for harmonic oscillator serving as a model for Phillips business cycle. We discuss the economic interpretations of arising mathematical objects with respect to well known reasoning for these in other problems.
Optimal and Autonomous Control Using Reinforcement Learning: A Survey.
Kiumarsi, Bahare; Vamvoudakis, Kyriakos G; Modares, Hamidreza; Lewis, Frank L
2018-06-01
This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal and control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.
Time dependent optimal switching controls in online selling models
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Cohen, Albert [MICHIGAN STATE UNIV
2010-01-01
We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.
Engineering applications of discrete-time optimal control
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui; Ravn, Hans V.
1990-01-01
Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...... of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems...
Wei, Qinglai; Song, Ruizhuo; Yan, Pengfei
2016-02-01
This paper is concerned with a new data-driven zero-sum neuro-optimal control problem for continuous-time unknown nonlinear systems with disturbance. According to the input-output data of the nonlinear system, an effective recurrent neural network is introduced to reconstruct the dynamics of the nonlinear system. Considering the system disturbance as a control input, a two-player zero-sum optimal control problem is established. Adaptive dynamic programming (ADP) is developed to obtain the optimal control under the worst case of the disturbance. Three single-layer neural networks, including one critic and two action networks, are employed to approximate the performance index function, the optimal control law, and the disturbance, respectively, for facilitating the implementation of the ADP method. Convergence properties of the ADP method are developed to show that the system state will converge to a finite neighborhood of the equilibrium. The weight matrices of the critic and the two action networks are also convergent to finite neighborhoods of their optimal ones. Finally, the simulation results will show the effectiveness of the developed data-driven ADP methods.
Optimal power and distribution control for weakly-coupled-core reactor
International Nuclear Information System (INIS)
Oohori, Takahumi; Kaji, Ikuo
1977-01-01
A numerical procedure has been devised for obtaining the optimal power and distribution control for a weakly-coupled-core reactor. Several difficulties were encountered in solving this optimization problem: (1) nonlinearity of the reactor kinetics equations; (2) neutron-leakage interaction between the cores; (3) localized power changes occurring in addition to the total power changes; (4) constraints imposed on the states - e.g. reactivity, reactor period. To obviate these difficulties, use is made of the generalized Newton method to convert the problem into an iterative sequence of linear programming problems, after approximating the differential equations and the integral performance criterion by a set of discrete algebraic equations. In this procedure, a heuristic but effective method is used for deriving an initial approximation, which is then made to converge toward the optimal solution. Delayed-neutron one-group point reactor models embodying transient temperature feed-back to the reactivity are used in obtaining the kinetics equations for the weakly-coupled-core reactor. The criterion adopted for determining the optimality is a norm relevant to the deviations of neutron density from the desired trajectories or else to the time derivatives of the neutron density; uniform control intervals are prescribed. Examples are given of two coupled-core reactors with typical parameters to illustrate the results obtained with this procedure. A comparison is also made between the coupled-core reactor and the one-point reactor. (auth.)
Assuring robustness to noise in optimal quantum control experiments
International Nuclear Information System (INIS)
Bartelt, A.F.; Roth, M.; Mehendale, M.; Rabitz, H.
2005-01-01
Closed-loop optimal quantum control experiments operate in the inherent presence of laser noise. In many applications, attaining high quality results [i.e., a high signal-to-noise (S/N) ratio for the optimized objective] is as important as producing a high control yield. Enhancement of the S/N ratio will typically be in competition with the mean signal, however, the latter competition can be balanced by biasing the optimization experiments towards higher mean yields while retaining a good S/N ratio. Other strategies can also direct the optimization to reduce the standard deviation of the statistical signal distribution. The ability to enhance the S/N ratio through an optimized choice of the control is demonstrated for two condensed phase model systems: second harmonic generation in a nonlinear optical crystal and stimulated emission pumping in a dye solution
Conflicting Multi-Objective Compatible Optimization Control
Xu, Lihong; Hu, Qingsong; Hu, Haigen; Goodman, Erik
2010-01-01
Based on ideas developed in addressing practical greenhouse environmental control, we propose a new multi-objective compatible control method. Several detailed algorithms are proposed to meet the requirements of different kinds of problem: 1) A two-layer MOCC framework is presented for problems with a precise model; 2) To deal with situations
Optimization of control bank overlap for SMART
International Nuclear Information System (INIS)
Song, Jae Seung; Cho, Byung Oh; Zee, Sung Quun
1998-07-01
In the pressurized water reactor, control banks are operated by 40% effective core height overlap to avoid decrease of differential rod worth. This overlap does not effect on the core depletion history because the pressurized water reactor core operated at all rod out condition for the most of the operation time. For the boron free reactor SMART, however, one or more control banks are always inserted in the core to maintain critical condition, and the control bank overlap effects on the core depletion history. Since the cycle length of SMART is limited by three-dimensional core peaking factor at EOC, at which the control bank located at the core center is withdrawn, the cycle length of SMART is affected by the control bank overlap. In this report, the effect of control bank overlap on the core depletion history was evaluated. It is concluded that 60 cm control bank overlap corresponding to 30% effective core height was selected not to increase maximum peaking factor at EOC so that the control bank overlap does not affect the cycle length of the core. (author). 8 refs., 2 tabs., 19 figs
Deterministic methods for multi-control fuel loading optimization
Rahman, Fariz B. Abdul
We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.
Leonard, Michael W.
2013-01-01
Integration of the Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) System into the control system of a Short Takeoff and Landing Mobility Concept Vehicle simulation presents a challenge because the CAPIO formulation requires that constrained optimization problems be solved at the controller operating frequency. We present a solution that utilizes a modified version of the well-known L-BFGS-B solver. Despite the iterative nature of the solver, the method is seen to converge in real time with sufficient reliability to support three weeks of piloted runs at the NASA Ames Vertical Motion Simulator (VMS) facility. The results of the optimization are seen to be excellent in the vast majority of real-time frames. Deficiencies in the quality of the results in some frames are shown to be improvable with simple termination criteria adjustments, though more real-time optimization iterations would be required.
Ito, Kazufumi
1987-01-01
The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
Evolutionary Computing for Intelligent Power System Optimization and Control
DEFF Research Database (Denmark)
This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....
Optimal Selective Harmonic Control for Power Harmonics Mitigation
DEFF Research Database (Denmark)
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...
Self-optimizing robust nonlinear model predictive control
Lazar, M.; Heemels, W.P.M.H.; Jokic, A.; Thoma, M.; Allgöwer, F.; Morari, M.
2009-01-01
This paper presents a novel method for designing robust MPC schemes that are self-optimizing in terms of disturbance attenuation. The method employs convex control Lyapunov functions and disturbance bounds to optimize robustness of the closed-loop system on-line, at each sampling instant - a unique
Stochastic optimal control of single neuron spike trains
DEFF Research Database (Denmark)
Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë
2014-01-01
stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic...... origin. In particular, we allow for the noise to be of arbitrary intensity. The optimal control problem is solved using dynamic programming when the controller has access to the voltage (closed-loop control), and using a maximum principle for the transition density when the controller only has access...... to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy...
Control and Optimization Methods for Electric Smart Grids
Ilić, Marija
2012-01-01
Control and Optimization Methods for Electric Smart Grids brings together leading experts in power, control and communication systems,and consolidates some of the most promising recent research in smart grid modeling,control and optimization in hopes of laying the foundation for future advances in this critical field of study. The contents comprise eighteen essays addressing wide varieties of control-theoretic problems for tomorrow’s power grid. Topics covered include: Control architectures for power system networks with large-scale penetration of renewable energy and plug-in vehicles Optimal demand response New modeling methods for electricity markets Control strategies for data centers Cyber-security Wide-area monitoring and control using synchronized phasor measurements. The authors present theoretical results supported by illustrative examples and practical case studies, making the material comprehensible to a wide audience. The results reflect the exponential transformation that today’s grid is going...
Zhou, Xiaoying
The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences
Directory of Open Access Journals (Sweden)
Carlos Villaseñor
2017-12-01
Full Text Available Nowadays, there are several meta-heuristics algorithms which offer solutions for multi-variate optimization problems. These algorithms use a population of candidate solutions which explore the search space, where the leadership plays a big role in the exploration-exploitation equilibrium. In this work, we propose to use a Germinal Center Optimization algorithm (GCO which implements temporal leadership through modeling a non-uniform competitive-based distribution for particle selection. GCO is used to find an optimal set of parameters for a neural inverse optimal control applied to all-terrain tracked robot. In the Neural Inverse Optimal Control (NIOC scheme, a neural identifier, based on Recurrent High Orden Neural Network (RHONN trained with an extended kalman filter algorithm, is used to obtain a model of the system, then, a control law is design using such model with the inverse optimal control approach. The RHONN identifier is developed without knowledge of the plant model or its parameters, on the other hand, the inverse optimal control is designed for tracking velocity references. Applicability of the proposed scheme is illustrated using simulations results as well as real-time experimental results with an all-terrain tracked robot.
Modeling, Optimization & Control of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat
2014-01-01
. The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...
Optimal design of distributed control and embedded systems
Çela, Arben; Li, Xu-Guang; Niculescu, Silviu-Iulian
2014-01-01
Optimal Design of Distributed Control and Embedded Systems focuses on the design of special control and scheduling algorithms based on system structural properties as well as on analysis of the influence of induced time-delay on systems performances. It treats the optimal design of distributed and embedded control systems (DCESs) with respect to communication and calculation-resource constraints, quantization aspects, and potential time-delays induced by the associated communication and calculation model. Particular emphasis is put on optimal control signal scheduling based on the system state. In order to render this complex optimization problem feasible in real time, a time decomposition is based on periodicity induced by the static scheduling is operated. The authors present a co-design approach which subsumes the synthesis of the optimal control laws and the generation of an optimal schedule of control signals on real-time networks as well as the execution of control tasks on a single processor. The a...
Time-optimal feedback control for linear systems
International Nuclear Information System (INIS)
Mirica, S.
1976-01-01
The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)
Optimal Inventory Control with Advance Supply Information
Directory of Open Access Journals (Sweden)
Marko Jaksic
2016-09-01
Full Text Available It has been shown in numerous situations that sharing information between the companies leads to improved performance of the supply chain. We study a positive lead time periodic-review inventory system of a retailer facing stochastic demand from his customer and stochastic limited supply capacity of the manufacturer supplying the products to him. The consequence of stochastic supply capacity is that the orders might not be delivered in full, and the exact size of the replenishment might not be known to the retailer. The manufacturer is willing to share the so-called advance supply information (ASI about the actual replenishment of the retailer's pipeline order with the retailer. ASI is provided at a certain time after the orders have been placed and the retailer can now use this information to decrease the uncertainty of the supply, and thus improve its inventory policy. For this model, we develop a dynamic programming formulation, and characterize the optimal ordering policy as a state-dependent base-stock policy. In addition, we show some properties of the base-stock level. While the optimal policy is highly complex, we obtain some additional insights by comparing it to the state-dependent myopic inventory policy. We conduct the numerical analysis to estimate the in uence of the system parameters on the value of ASI. While we show that the interaction between the parameters is relatively complex, the general insight is that due to increasing marginal returns, the majority of the benets are gained only in the case of full, or close to full, ASI visibility.
Optimal Control Surface Layout for an Aeroservoelastic Wingbox
Stanford, Bret K.
2017-01-01
This paper demonstrates a technique for locating the optimal control surface layout of an aeroservoelastic Common Research Model wingbox, in the context of maneuver load alleviation and active utter suppression. The combinatorial actuator layout design is solved using ideas borrowed from topology optimization, where the effectiveness of a given control surface is tied to a layout design variable, which varies from zero (the actuator is removed) to one (the actuator is retained). These layout design variables are optimized concurrently with a large number of structural wingbox sizing variables and control surface actuation variables, in order to minimize the sum of structural weight and actuator weight. Results are presented that demonstrate interdependencies between structural sizing patterns and optimal control surface layouts, for both static and dynamic aeroelastic physics.
The Air Force Center for Optimal Design and Control
National Research Council Canada - National Science Library
Burns, John
1997-01-01
This report contains a summary and highlights of the research funded by the Air Force under AFOSR URI Grant F49620-93-1-0280, titled 'Center for Optimal Design and Control of Distributed Parameter Systems' (CODAC...
A Nonlinear Fuel Optimal Reaction Jet Control Law
National Research Council Canada - National Science Library
Breitfeller, Eric
2002-01-01
We derive a nonlinear fuel optimal attitude control system (ACS) that drives the final state to the desired state according to a cost function that weights the final state angular error relative to the angular rate error...
An introduction to optimal control of FBSDE with incomplete information
Wang, Guangchen; Xiong, Jie
2018-01-01
This book focuses on maximum principle and verification theorem for incomplete information forward-backward stochastic differential equations (FBSDEs) and their applications in linear-quadratic optimal controls and mathematical finance. Lots of interesting phenomena arising from the area of mathematical finance can be described by FBSDEs. Optimal control problems of FBSDEs are theoretically important and practically relevant. A standard assumption in the literature is that the stochastic noises in the model are completely observed. However, this is rarely the case in real world situations. The optimal control problems under complete information are studied extensively. Nevertheless, very little is known about these problems when the information is not complete. The aim of this book is to fill this gap. This book is written in a style suitable for graduate students and researchers in mathematics and engineering with basic knowledge of stochastic process, optimal control and mathematical finance.
Optimizing data access in the LAMPF control system
International Nuclear Information System (INIS)
Schaller, S.C.; Corley, J.K.; Rose, P.A.
1985-01-01
The LAMPF control system data access software offers considerable power and flexibility to application programs through symbolic device naming and an emphasis on hardware independence. This paper discusses optimizations aimed at improving the performance of the data access software while retaining these capabilities. The only aspects of the optimizations visible to the application programs are ''vector devices'' and ''aggregate devices.'' A vector device accesses a set of hardware related data items through a single device name. Aggregate devices allow run-time optimization of references to groups of unrelated devices. Optimizations not visible on the application level include careful handling of: network message traffic; the sharing of global resources; and storage allocation
Using Chemicals to Optimize Conformance Control in Fractured Reservoirs; TOPICAL
International Nuclear Information System (INIS)
Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn
2001-01-01
This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs
Optimal Control Of Nonlinear Wave Energy Point Converters
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten
2013-01-01
idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states...
Optimization and Control of Bilinear Systems Theory, Algorithms, and Applications
Pardalos, Panos M
2008-01-01
Covers developments in bilinear systems theory Focuses on the control of open physical processes functioning in a non-equilibrium mode Emphasis is on three primary disciplines: modern differential geometry, control of dynamical systems, and optimization theory Includes applications to the fields of quantum and molecular computing, control of physical processes, biophysics, superconducting magnetism, and physical information science
Economics-based optimal control of greenhouse tomato crop production
Tap, F.
2000-01-01
The design and testing of an optimal control algorithm, based on scientific models of greenhouse and tomato crop and an economic criterion (goal function), to control greenhouse climate, is described. An important characteristic of this control is that it aims at maximising an economic
Optimal Excitation Controller Design for Wind Turbine Generator
Directory of Open Access Journals (Sweden)
A. K. Boglou
2011-01-01
Full Text Available An optimal excitation controller design based on multirate-output controllers (MROCs having a multirate sampling mechanismwith different sampling period in each measured output of the system is presented. The proposed H∞ -control techniqueis applied to the discrete linear open-loop system model which represents a wind turbine generator supplying an infinite busthrough a transmission line.
A novel technique for active vibration control, based on optimal
Indian Academy of Sciences (India)
In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...
Optimal trajectory control of a CLCC resonant power converter
Huisman, H.; Visser, de I.; Duarte, J.L.
2015-01-01
A CLCC resonant converter to be used in an isolated power supply is operated using optimal trajectory control (OTC). As a consequence, the converter's inner loop behavior is changed to that of a controlled current source. The controller is implemented in an FPGA. Simulation results and recorded
Low-order feedforward controllers: Optimal performance and practical considerations
Hast, Martin; Hägglund, Tore
2014-01-01
Feedforward control from measurable disturbances can significantly improve the performance in control loops. However, tuning rules for such controllers are scarce. In this paper design rules for how to choose optimal low-order feedforward controller parameter are presented. The parameters are chosen so that the integrated squared error, when the system is subject to a step disturbance, is minimized. The approach utilizes a controller structure that decouples the feedforward and the feedback c...
Attitude Optimal Backstepping Controller Based Quaternion for a UAV
Djamel, Kaddouri; Abdellah, Mokhtari; Benallegue, Abdelaziz
2016-01-01
A hierarchical controller design based on nonlinear H∞ theory and backstepping technique is developed for a nonlinear and coupled dynamic attitude system using conventional quaternion based method. The derived controller combines the attractive features of H∞ optimal controller and the advantages of the backstepping technique leading to a control law which avoids winding phenomena. Performance issues of the controller are illustrated in a simulation study made for a four-rotor vertical take-o...
Numerical aspects of optimal control of penicillin production
Czech Academy of Sciences Publication Activity Database
Pčolka, M.; Čelikovský, Sergej
2014-01-01
Roč. 37, č. 1 (2014), s. 71-81 ISSN 1615-7591 R&D Projects: GA ČR(CZ) GA13-20433S Institutional support: RVO:67985556 Keywords : Optimal control * Nonlinear systems * Fermentation process * Gradient method optimization * Antibiotics production Subject RIV: BC - Control Systems Theory Impact factor: 1.997, year: 2014 http://library.utia.cas.cz/separaty/2014/TR/celikovsky-0424718.pdf
An optimal control model of crop thinning in viticulture
Schamel Guenter H.; Schubert Stefan F.
2016-01-01
We develop an economic model of cluster thinning in viticulture to control for grape quantity harvested and grape quality, applying a simple optimal control model with the aim to raise grape quality and related economic profits. The model maximizes vineyard owner profits and allows to discuss two relevant scenarios using a phase diagram analysis: (1) when the initial grape quantity is sufficiently small, thinning grapes will not be optimal and (2) when the initial grape quantity is high enoug...
Closed-Loop Optimal Control Implementations for Space Applications
2016-12-01
with standard linear algebra techniques if is converted to a diagonal square matrix by multiplying by the identity matrix, I , as was done in (1.134...OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS by Colin S. Monk December 2016 Thesis Advisor: Mark Karpenko Second Reader: I. M...COVERED Master’s thesis, Jan-Dec 2016 4. TITLE AND SUBTITLE CLOSED-LOOP OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS 5. FUNDING NUMBERS
Do convergent developmental mechanisms underlie convergent phenotypes?
Wray, Gregory A.
2002-01-01
Convergence is a pervasive evolutionary process, affecting many aspects of phenotype and even genotype. Relatively little is known about convergence in developmental processes, however, nor about the degree to which convergence in development underlies convergence in anatomy. A switch in the ecology of sea urchins from feeding to nonfeeding larvae illustrates how convergence in development can be associated with convergence in anatomy. Comparisons to more distantly related taxa, however, suggest that this association may be limited to relatively close phylogenetic comparisons. Similarities in gene expression during development provide another window into the association between convergence in developmental processes and convergence in anatomy. Several well-studied transcription factors exhibit likely cases of convergent gene expression in distantly related animal phyla. Convergence in regulatory gene expression domains is probably more common than generally acknowledged, and can arise for several different reasons. Copyright 2002 S. Karger AG, Basel.
Robust Optimal Adaptive Trajectory Tracking Control of Quadrotor Helicopter
Directory of Open Access Journals (Sweden)
M. Navabi
Full Text Available Abstract This paper focuses on robust optimal adaptive control strategy to deal with tracking problem of a quadrotor unmanned aerial vehicle (UAV in presence of parametric uncertainties, actuator amplitude constraints, and unknown time-varying external disturbances. First, Lyapunov-based indirect adaptive controller optimized by particle swarm optimization (PSO is developed for multi-input multi-output (MIMO nonlinear quadrotor to prevent input constraints violation, and then disturbance observer-based control (DOBC technique is aggregated with the control system to attenuate the effects of disturbance generated by an exogenous system. The performance of synthesis control method is evaluated by a new performance index function in time-domain, and the stability analysis is carried out using Lyapunov theory. Finally, illustrative numerical simulations are conducted to demonstrate the effectiveness of the presented approach in altitude and attitude tracking under several conditions, including large time-varying uncertainty, exogenous disturbance, and control input constraints.
Optimal Model-Based Control in HVAC Systems
DEFF Research Database (Denmark)
Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik
2008-01-01
is developed. Then the optimal control structure is designed and implemented. The HVAC system is splitted into two subsystems. By selecting the right set-points and appropriate cost functions for each subsystem controller the optimal control strategy is respected to gaurantee the minimum thermal and electrical......This paper presents optimal model-based control of a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger (a rotary wheel heat recovery) and a water-to- air heat exchanger. First dynamic model of the HVAC system...... energy consumption. Finally, the controller is applied to control the mentioned HVAC system and the results show that the expected goals are fulfilled....
Optimal boundary control and boundary stabilization of hyperbolic systems
Gugat, Martin
2015-01-01
This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary. The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization. Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples. To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled. Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.
Optimized controllers for enhancing dynamic performance of PV interface system
Directory of Open Access Journals (Sweden)
Mahmoud A. Attia
2018-05-01
Full Text Available The dynamic performance of PV interface system can be improved by optimizing the gains of the Proportional–Integral (PI controller. In this work, gravitational search algorithm and harmony search algorithm are utilized to optimal tuning of PI controller gains. Performance comparison between the PV system with optimized PI gains utilizing different techniques are carried out. Finally, the dynamic behavior of the system is studied under hypothetical sudden variations in irradiance. The examination of the proposed techniques for optimal tuning of PI gains is conducted using MATLAB/SIMULINK software package. The main contribution of this work is investigating the dynamic performance of PV interfacing system with application of gravitational search algorithm and harmony search algorithm for optimal PI parameters tuning. Keywords: Photovoltaic power systems, Gravitational search algorithm, Harmony search algorithm, Genetic algorithm, Artificial intelligence
Multidimensional optimal droop control for wind resources in DC microgrids
Bunker, Kaitlyn J.
Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.
Forest road erosion control using multiobjective optimization
Matthew Thompson; John Sessions; Kevin Boston; Arne Skaugset; David Tomberlin
2010-01-01
Forest roads are associated with accelerated erosion and can be a major source of sediment delivery to streams, which can degrade aquatic habitat. Controlling road-related erosion therefore remains an important issue for forest stewardship. Managers are faced with the task to develop efficient road management strategies to achieve conflicting environmental and economic...
Robust balance shift control with posture optimization
Kavafoglu, Z.; Kavafoglu, Ersan; Egges, J.
2015-01-01
In this paper we present a control framework which creates robust and natural balance shifting behaviours during standing. Given high-level features such as the position of the center of mass projection and the foot configurations, a kinematic posture satisfying these features is synthesized using
Reproducibility, Controllability, and Optimization of Lenr Experiments
Nagel, David J.
2006-02-01
Low-energy nuclear reaction (LENR) measurements are significantly and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments.
Optimal control of vibrational transitions of HCl
Indian Academy of Sciences (India)
Control of fundamental and overtone transitions of a vibration are studied for the diatomic molecule, HCl. Specifically, the results of the effect of variation of the penalty factor on the physical attributes of the system (i.e., probabilities) and pulse (i.e., amplitudes) considering three different pulse durations for each value of the ...
Optimal control of vibrational transitions of HCl
Indian Academy of Sciences (India)
2016-09-07
Sep 7, 2016 ... and making, occur in ultrafast time-scale. The control of energy flow in a relatively short time-scale (∼10 fs), in a nuclear ... general motivation to study HCl. ...... ics in science and engineering (Academic Press, New York,.
Optimal control of a waste water cleaning plant
Directory of Open Access Journals (Sweden)
Ellina V. Grigorieva
2010-09-01
Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.
Convergent engineering techniques for management of nuclear processes
International Nuclear Information System (INIS)
Carabulea, A.; Popa, I.
1995-01-01
The paper briefly presents the concept of convergent arhemo-systematical engineering, its advantages in comparison with classical methods of research, design, manufacture. The convergent engineering application supposes the usage of the advanced methods, techniques and equipment corresponding to the domain and specific for the corresponding branch of computer science. Starting from the convergent engineering principles and concept, the paper proposes two models applicable for new products and also for improving and optimizing the existing ones. The models are based on two levels of feedback corresponding to two levels of control and they assume the utilization of expert and robot-expert systems. The economical efficiency of the application of the convergent engineering method is evaluated for the case of a nuclear power plant by calculation the main technical and economical indicators. (Author) 2 Figs., 5 Refs
Multiobjective optimization of low impact development stormwater controls
Eckart, Kyle; McPhee, Zach; Bolisetti, Tirupati
2018-07-01
Green infrastructure such as Low Impact Development (LID) controls are being employed to manage the urban stormwater and restore the predevelopment hydrological conditions besides improving the stormwater runoff water quality. Since runoff generation and infiltration processes are nonlinear, there is a need for identifying optimal combination of LID controls. A coupled optimization-simulation model was developed by linking the U.S. EPA Stormwater Management Model (SWMM) to the Borg Multiobjective Evolutionary Algorithm (Borg MOEA). The coupled model is capable of performing multiobjective optimization which uses SWMM simulations as a tool to evaluate potential solutions to the optimization problem. The optimization-simulation tool was used to evaluate low impact development (LID) stormwater controls. A SWMM model was developed, calibrated, and validated for a sewershed in Windsor, Ontario and LID stormwater controls were tested for three different return periods. LID implementation strategies were optimized using the optimization-simulation model for five different implementation scenarios for each of the three storm events with the objectives of minimizing peak flow in the stormsewers, reducing total runoff, and minimizing cost. For the sewershed in Windsor, Ontario, the peak run off and total volume of the runoff were found to reduce by 13% and 29%, respectively.
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
PSO Algorithm for an Optimal Power Controller in a Microgrid
Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.
2017-07-01
This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.
Mechanisms of Molecular Response in the Optimal Control of Photoisomerization
International Nuclear Information System (INIS)
Dietzek, Benjamin; Brueggemann, Ben; Pascher, Torbjoern; Yartsev, Arkady
2006-01-01
We report on adaptive feedback control of photoinduced barrierless isomerization of 1,1'-diethyl-2,2'-cyanine in solution. We compare the effect of different fitness parameters and show that optimal control of the absolute yield of isomerization (photoisomer concentration versus excitation photons) can be achieved, while the relative isomerization yield (photoisomer concentration versus number of relaxed excited-state molecules) is unaffected by adaptive feedback control. The temporal structure of the optimized excitation pulses allows one to draw clear mechanistic conclusions showing the critical importance of coherent nuclear motion for the control of isomerization
Leischow, Scott J; Ayo-Yusuf, Olalekan; Backinger, Cathy L
2013-04-01
Much of the research used to support the ratification of the WHO Framework Convention on Tobacco Control (FCTC) was conducted in high-income countries or in highly controlled environments. Therefore, for the global tobacco control community to make informed decisions that will continue to effectively inform policy implementation, it is critical that the tobacco control community, policy makers, and funders have updated information on the state of the science as it pertains to provisions of the FCTC. Following the National Cancer Institute's process model used in identifying the research needs of the U.S. Food and Drug Administration's relatively new tobacco law, a core team of scientists from the Society for Research on Nicotine and Tobacco identified and commissioned internationally recognized scientific experts on the topics covered within the FCTC. These experts analyzed the relevant sections of the FCTC and identified critical gaps in research that is needed to inform policy and practice requirements of the FCTC. This paper summarizes the process and the common themes from the experts' recommendations about the research and related infrastructural needs. Research priorities in common across Articles include improving surveillance, fostering research communication/collaboration across organizations and across countries, and tracking tobacco industry activities. In addition, expanding research relevant to low- and middle-income countries (LMIC), was also identified as a priority, including identification of what existing research findings are transferable, what new country-specific data are needed, and the infrastructure needed to implement and disseminate research so as to inform policy in LMIC.
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
Optimal centralized and decentralized velocity feedback control on a beam
International Nuclear Information System (INIS)
Engels, W P; Elliott, S J
2008-01-01
This paper considers the optimization of a velocity feedback controller with a collocated force actuator, to minimize the kinetic energy of a simply supported beam. If the beam is excited at a single location, the optimum feedback gain varies with the position of the control system. It is shown that this variation depends partly on the location of the control force relative to the exciting force. If a distributed excitation is assumed, that is random in both time and space, a unique optimum value of the feedback gain can be found for a given control location. The effect of the control location on performance and the optimal feedback gain can then be examined and is found to be limited provided the control locations are not close to the ends of the beam. The optimization can also be performed for a multichannel velocity feedback system. Both a centralized and a decentralized controller are considered. It is shown that the difference in performance between a centralized and a decentralized controller is small, unless the control locations are closely spaced. In this case the centralized controller effectively feeds back a moment proportional to angular velocity as well as a force proportional to a velocity. It is also shown that the optimal feedback gain can be approximated on the basis of a limited model and that similar results can be achieved
Developments in model-based optimization and control distributed control and industrial applications
Grancharova, Alexandra; Pereira, Fernando
2015-01-01
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and desi...
Hierarchical optimal control of large-scale nonlinear chemical processes.
Ramezani, Mohammad Hossein; Sadati, Nasser
2009-01-01
In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.
Process control and optimization with simple interval calculation method
DEFF Research Database (Denmark)
Pomerantsev, A.; Rodionova, O.; Høskuldsson, Agnar
2006-01-01
for the quality improvement in the course of production. The latter is an active quality optimization, which takes into account the actual history of the process. The advocate approach is allied to the conventional method of multivariate statistical process control (MSPC) as it also employs the historical process......Methods of process control and optimization are presented and illustrated with a real world example. The optimization methods are based on the PLS block modeling as well as on the simple interval calculation methods of interval prediction and object status classification. It is proposed to employ...... the series of expanding PLS/SIC models in order to support the on-line process improvements. This method helps to predict the effect of planned actions on the product quality and thus enables passive quality control. We have also considered an optimization approach that proposes the correcting actions...
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Robust and optimal control a two-port framework approach
Tsai, Mi-Ching
2014-01-01
A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal and H∞ sub-optimal controllers. Simple yet illustrative examples explain each step. A Two-port Framework for Robust and Optimal Control features: · a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs; · an abundance of examples illustrating the most important steps in robust and optimal design; and · �...
Optimal Energy Control Strategy Design for a Hybrid Electric Vehicle
Directory of Open Access Journals (Sweden)
Yuan Zou
2013-01-01
Full Text Available A heavy-duty parallel hybrid electric truck is modeled, and its optimal energy control is studied in this paper. The fundamental architecture of the parallel hybrid electric truck is modeled feed-forwardly, together with necessary dynamic features of subsystem or components. Dynamic programming (DP technique is adopted to find the optimal control strategy including the gear-shifting sequence and the power split between the engine and the motor subject to a battery SOC-sustaining constraint. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement on the fuel economy can be achieved in the heavy-duty vehicle cycle from the natural driving statistics.
Optimal Bilinear Control of Gross--Pitaevskii Equations
Hintermü ller, Michael; Marahrens, Daniel; Markowich, Peter A.; Sparber, Christof
2013-01-01
A mathematical framework for optimal bilinear control of nonlinear Schrödinger equations of Gross--Pitaevskii type arising in the description of Bose--Einstein condensates is presented. The obtained results generalize earlier efforts found in the literature in several aspects. In particular, the cost induced by the physical workload over the control process is taken into account rather than the often used L^2- or H^1-norms for the cost of the control action. Well-posedness of the problem and existence of an optimal control are proved. In addition, the first order optimality system is rigorously derived. Also a numerical solution method is proposed, which is based on a Newton-type iteration, and used to solve several coherent quantum control problems.
Optimal Control of Heterogeneous Systems with Endogenous Domain of Heterogeneity
International Nuclear Information System (INIS)
Belyakov, Anton O.; Tsachev, Tsvetomir; Veliov, Vladimir M.
2011-01-01
The paper deals with optimal control of heterogeneous systems, that is, families of controlled ODEs parameterized by a parameter running over a domain called domain of heterogeneity. The main novelty in the paper is that the domain of heterogeneity is endogenous: it may depend on the control and on the state of the system. This extension is crucial for several economic applications and turns out to rise interesting mathematical problems. A necessary optimality condition is derived, where one of the adjoint variables satisfies a differential inclusion (instead of equation) and the maximization of the Hamiltonian takes the form of “min-max”. As a consequence, a Pontryagin-type maximum principle is obtained under certain regularity conditions for the optimal control. A formula for the derivative of the objective function with respect to the control from L ∞ is presented together with a sufficient condition for its existence. A stylized economic example is investigated analytically and numerically.
Applications of functional analysis to optimal control problems
International Nuclear Information System (INIS)
Mizukami, K.
1976-01-01
Some basic concepts in functional analysis, a general norm, the Hoelder inequality, functionals and the Hahn-Banach theorem are described; a mathematical formulation of two optimal control problems is introduced by the method of functional analysis. The problem of time-optimal control systems with both norm constraints on control inputs and on state variables at discrete intermediate times is formulated as an L-problem in the theory of moments. The simplex method is used for solving a non-linear minimizing problem inherent in the functional analysis solution to this problem. Numerical results are presented for a train operation. The second problem is that of optimal control of discrete linear systems with quadratic cost functionals. The problem is concerned with the case of unconstrained control and fixed endpoints. This problem is formulated in terms of norms of functionals on suitable Banach spaces. (author)
Optimal traffic control in highway transportation networks using linear programming
Li, Yanning
2014-06-01
This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.
Control optimization of the cryoplant warm compressor station for EAST
International Nuclear Information System (INIS)
Zhuang, M.; Hu, L. B.; Zhou, Z. W.; Xia, G. H.
2014-01-01
The cryogenic control system for EAST (Experimental Advanced Superconducting Tokamak) was designed based on DeltaV DCS of Emerson Corporation. The automatic control of the cryoplant warm compressors has been implemented. However, with ever-degrading performance of critical equipment, the cryoplant operation in the partial design conditions makes the control system fluctuate and unstable. In this paper, the warm compressor control system was optimized to eliminate the pressure oscillation based on the expert PID theory
Robust Optimal Adaptive Control Method with Large Adaptive Gain
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
On the diversity of multiple optimal controls for quantum systems
International Nuclear Information System (INIS)
Shir, O M; Baeck, Th; Beltrani, V; Rabitz, H; Vrakking, M J J
2008-01-01
This study presents simulations of optimal field-free molecular alignment and rotational population transfer (starting from the J = 0 rotational ground state of a diatomic molecule), optimized by means of laser pulse shaping guided by evolutionary algorithms. Qualitatively different solutions are obtained that optimize the alignment and population transfer efficiency to the maximum extent that is possible given the existing constraints on the optimization due to the finite bandwidth and energy of the laser pulse, the finite degrees of freedom in the laser pulse shaping and the evolutionary algorithm employed. The effect of these constraints on the optimization process is discussed at several levels, subject to theoretical as well as experimental considerations. We show that optimized alignment yields can reach extremely high values, even with severe constraints being present. The breadth of optimal controls is assessed, and a correlation is found between the diversity of solutions and the difficulty of the problem. In the pulse shapes that optimize dynamic alignment we observe a transition between pulse sequences that maximize the initial population transfer from J = 0 to J = 2 and pulse sequences that optimize the transfer to higher rotational levels
Optimizing MFT dewatering by controlling polymer mixing
Energy Technology Data Exchange (ETDEWEB)
Demoz, A.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre
2010-07-01
A method of controlling polymer mixing for the dewatering of mature fine tailings (MFT) was presented. The method was developed to accelerate water release from MFT and to recover more water for re-use. Dewatering rates are dependent upon hydrodynamic conditions as well as various physical mixing variables. The effect of mixing energy on the rate and amount of released water flocculated MFT was investigated using different impellers in order to determine the release water amount and capillary suction time. The mixing energy effect on the structure of the flocculated MFT was analyzed using rheology and stereo microscopy techniques. Batch mixing tests were conducted to determine dewatering characteristics. Flow was described using the Herschel-Bulkley model. Results of the study demonstrated a clear peak in the amount of water released with the mixing time. The effect was applicable to rim-ditch thin-lift, and dewatering by centrifugation. tabs., figs.
Optimal control of two queues in series
International Nuclear Information System (INIS)
Moustafa, M.S.; Mohammed, R.M.
1994-08-01
In this paper we give a fairly complete survey of the available results on the control of arrival and service rates for both single queue and networks of queues. We also study two M/M/1 queues in series. At the first queue, the arrival and the service rates are chosen in pair from a finite set whenever the queue lengths at both queues change. Each choice has a switching cost depending on the chosen rates and the queue lengths. At the second queue, the arrival and the service rates are fixed. Our objective is to find a policy for dynamically choosing rates, based on the current rates and queues lengths that minimizes the expected total discounted cost over a finite horizon, numerical results are given. (author). 8 refs, 1 fig
Optimal control of inverted pendulum system using PID controller, LQR and MPC
Varghese, Elisa Sara; Vincent, Anju K.; Bagyaveereswaran, V.
2017-11-01
Inverted pendulum is a highly nonlinear system. Here we propose an optimal control technique for the control of an inverted Pendulum - cart system. The system is modeled, linearized and controlled. Here, the control objective is to control the system such that when the cart reaches a desired position the inverted pendulum stabilizes in the upright position. Initially PID controller is used to control the system. Later, Linear Quadratic Regulator (LQR) a well-known optimal control technique which makes use of the states of the dynamical system and control input to frame the optimal control decision is used. Various combinations of both PID and LQR controllers are implemented. To validate the robustness of the controller, the system is simulated with and without disturbance. Finally the system is also controlled using Model Predictive controller (MPC). MPC has well predictive ability to calculate future events and implement necessary control actions. The performance of the system is compared and analyzed.
Full-order optimal compensators for flow control: the multiple inputs case
Semeraro, Onofrio; Pralits, Jan O.
2018-03-01
Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.
Reynoso Meza, Gilberto; Sanchis Saez, Javier; Herrero Durá, Juan Manuel
2017-01-01
This book is devoted to Multiobjective Optimization Design (MOOD) procedures for controller tuning applications, by means of Evolutionary Multiobjective Optimization (EMO). It presents developments in tools, procedures and guidelines to facilitate this process, covering the three fundamental steps in the procedure: problem definition, optimization and decision-making. The book is divided into four parts. The first part, Fundamentals, focuses on the necessary theoretical background and provides specific tools for practitioners. The second part, Basics, examines a range of basic examples regarding the MOOD procedure for controller tuning, while the third part, Benchmarking, demonstrates how the MOOD procedure can be employed in several control engineering problems. The fourth part, Applications, is dedicated to implementing the MOOD procedure for controller tuning in real processes.
Exploring quantum control landscapes: Topology, features, and optimization scaling
International Nuclear Information System (INIS)
Moore, Katharine W.; Rabitz, Herschel
2011-01-01
Quantum optimal control experiments and simulations have successfully manipulated the dynamics of systems ranging from atoms to biomolecules. Surprisingly, these collective works indicate that the effort (i.e., the number of algorithmic iterations) required to find an optimal control field appears to be essentially invariant to the complexity of the system. The present work explores this matter in a series of systematic optimizations of the state-to-state transition probability on model quantum systems with the number of states N ranging from 5 through 100. The optimizations occur over a landscape defined by the transition probability as a function of the control field. Previous theoretical studies on the topology of quantum control landscapes established that they should be free of suboptimal traps under reasonable physical conditions. The simulations in this work include nearly 5000 individual optimization test cases, all of which confirm this prediction by fully achieving optimal population transfer of at least 99.9% on careful attention to numerical procedures to ensure that the controls are free of constraints. Collectively, the simulation results additionally show invariance of required search effort to system dimension N. This behavior is rationalized in terms of the structural features of the underlying control landscape. The very attractive observed scaling with system complexity may be understood by considering the distance traveled on the control landscape during a search and the magnitude of the control landscape slope. Exceptions to this favorable scaling behavior can arise when the initial control field fluence is too large or when the target final state recedes from the initial state as N increases.
Combined Optimal Control System for excavator electric drive
Kurochkin, N. S.; Kochetkov, V. P.; Platonova, E. V.; Glushkin, E. Y.; Dulesov, A. S.
2018-03-01
The article presents a synthesis of the combined optimal control algorithms of the AC drive rotation mechanism of the excavator. Synthesis of algorithms consists in the regulation of external coordinates - based on the theory of optimal systems and correction of the internal coordinates electric drive using the method "technical optimum". The research shows the advantage of optimal combined control systems for the electric rotary drive over classical systems of subordinate regulation. The paper presents a method for selecting the optimality criterion of coefficients to find the intersection of the range of permissible values of the coordinates of the control object. There is possibility of system settings by choosing the optimality criterion coefficients, which allows one to select the required characteristics of the drive: the dynamic moment (M) and the time of the transient process (tpp). Due to the use of combined optimal control systems, it was possible to significantly reduce the maximum value of the dynamic moment (M) and at the same time - reduce the transient time (tpp).
Optimal control theory applications to management science and economics
Sethi, Suresh P
2006-01-01
Optimal control methods are used to determine the best ways to control a dynamic system. This book applies theoretical work to business management problems developed from the authors' research and classroom instruction. The thoroughly revised new edition has been refined with careful attention to the text and graphic material presentation. Chapters cover a range of topics including finance, production and inventory problems, marketing problems, machine maintenance and replacement, problems of optimal consumption of natural resources, and applications of control theory to economics. The book in
Implementation of optimal trajectory control of series resonant converter
Oruganti, Ramesh; Yang, James J.; Lee, Fred C.
1987-01-01
Due to the presence of a high-frequency LC tank circuit, the dynamics of a resonant converter are unpredictable. There is often a large surge of tank energy during transients. Using state-plane analysis technique, an optimal trajectory control utilizing the desired solution trajectory as the control law was previously proposed for the series resonant converters. The method predicts the fastest response possible with minimum energy surge in the resonant tank. The principle of the control and its experimental implementation are described here. The dynamics of the converter are shown to be close to time-optimal.
Optimal traffic control in highway transportation networks using linear programming
Li, Yanning; Canepa, Edward S.; Claudel, Christian G.
2014-01-01
of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can
Semilinear Kolmogorov Equations and Applications to Stochastic Optimal Control
International Nuclear Information System (INIS)
Masiero, Federica
2005-01-01
Semilinear parabolic differential equations are solved in a mild sense in an infinite-dimensional Hilbert space. Applications to stochastic optimal control problems are studied by solving the associated Hamilton-Jacobi-Bellman equation. These results are applied to some controlled stochastic partial differential equations
Optimal detection and control strategies for invasive species management
Shefali V. Mehta; Robert G. Haight; Frances R. Homans; Stephen Polasky; Robert C. Venette
2007-01-01
The increasing economic and environmental losses caused by non-native invasive species amplify the value of identifying and implementing optimal management options to prevent, detect, and control invasive species. Previous literature has focused largely on preventing introductions of invasive species and post-detection control activities; few have addressed the role of...
Verification and Optimization of a PLC Control Schedule
Brinksma, Hendrik; Mader, Angelika H.; Havelund, K.; Penix, J.; Visser, W.
We report on the use of the SPIN model checker for both the verification of a process control program and the derivation of optimal control schedules. This work was carried out as part of a case study for the EC VHS project (Verification of Hybrid Systems), in which the program for a Programmable
An Optimal Control Scheme to Minimize Loads in Wind Farms
DEFF Research Database (Denmark)
Soleimanzadeh, Maryam; Wisniewski, Rafal
2012-01-01
This work presents a control algorithm for wind farms that optimizes the power production of the farm and helps to increase the lifetime of wind turbines components. The control algorithm is a centralized approach, and it determines the power reference signals for individual wind turbines...
Controller Design Automation for Aeroservoelastic Design Optimization of Wind Turbines
Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.
2010-01-01
The purpose of this paper is to integrate the controller design of wind turbines with structure and aerodynamic analysis and use the final product in the design optimization process (DOP) of wind turbines. To do that, the controller design is automated and integrated with an aeroelastic simulation
Optimal control methods for rapidly time-varying Hamiltonians
International Nuclear Information System (INIS)
Motzoi, F.; Merkel, S. T.; Wilhelm, F. K.; Gambetta, J. M.
2011-01-01
In this article, we develop a numerical method to find optimal control pulses that accounts for the separation of timescales between the variation of the input control fields and the applied Hamiltonian. In traditional numerical optimization methods, these timescales are treated as being the same. While this approximation has had much success, in applications where the input controls are filtered substantially or mixed with a fast carrier, the resulting optimized pulses have little relation to the applied physical fields. Our technique remains numerically efficient in that the dimension of our search space is only dependent on the variation of the input control fields, while our simulation of the quantum evolution is accurate on the timescale of the fast variation in the applied Hamiltonian.
Hybrid Quantum-Classical Approach to Quantum Optimal Control.
Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu
2017-04-14
A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.
Optimal Acquisition and Inventory Control for a Remanufacturing System
Directory of Open Access Journals (Sweden)
Zhigang Jiang
2013-01-01
Full Text Available Optimal acquisition and inventory control can often make the difference between successful and unsuccessful remanufacturing. However, there is a greater degree of uncertainty and complexity in a remanufacturing system, which leads to a critical need for planning and control models designed to deal with this added uncertainty and complexity. In this paper, a method for optimal acquisition and inventory control of a remanufacturing system is presented. The method considers three inventories, one for returned item and the other for serviceable and recoverable items. Taking the holding cost for returns, recoverable and remanufactured products, remanufacturing cost, disposal cost, and the loss caused by backlog into account, the optimal inventory control model is established to minimize the total costs. Finally, a numerical example is provided to illustrate the proposed methods.
Numerical optimization of circulation control airfoil at high subsonic speed
Tai, T. C.; Kidwell, G. H., Jr.
1984-01-01
A numerical procedure for optimizing the design of the circulation control airfoil for use at high subsonic speeds is presented. The procedure consists of an optimization scheme coupled with a viscous potential flow analysis for the blowing jet. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse and cambered ellipse with drooped and spiraled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the airfoil, optimized at free-stream Mach 0.54 and alpha = -2 degrees can be characterized as a cambered ellipse with a drooped trailing edge. Experimental tests support the performance improvement predicted by numerical optimization.
Optimal control of transitions between nonequilibrium steady states.
Directory of Open Access Journals (Sweden)
Patrick R Zulkowski
Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.
Optimal control of information epidemics modeled as Maki Thompson rumors
Kandhway, Kundan; Kuri, Joy
2014-12-01
We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontryagin's Minimum Principle and a modified version of forward backward sweep technique for numerical computation to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be applied to similar optimal control problems in other areas. We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model practical situations when the interest level of the population in the subject of the campaign changes with time. The shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also studied the variation of the optimal campaigning costs with respect to various model parameters. Results indicate that, for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant value throughout the campaign horizon. This work finds application in election and social awareness campaigns, product advertising, movie promotion and crowdfunding campaigns.
Infinite-horizon optimal control problems in economics
Energy Technology Data Exchange (ETDEWEB)
Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V
2012-04-30
This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.
Optimal Control of Polymer Flooding Based on Maximum Principle
Directory of Open Access Journals (Sweden)
Yang Lei
2012-01-01
Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and the inequality constraint as the polymer concentration limitation. To cope with the optimal control problem (OCP of this DPS, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s weak maximum principle. A gradient method is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.
Thermodynamic framework for discrete optimal control in multiphase flow systems
Sieniutycz, Stanislaw
1999-08-01
Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.
Infinite-horizon optimal control problems in economics
International Nuclear Information System (INIS)
Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V
2012-01-01
This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.
Control strategies for wind farm power optimization: LES study
Ciri, Umberto; Rotea, Mario; Leonardi, Stefano
2017-11-01
Turbines in wind farms operate in off-design conditions as wake interactions occur for particular wind directions. Advanced wind farm control strategies aim at coordinating and adjusting turbine operations to mitigate power losses in such conditions. Coordination is achieved by controlling on upstream turbines either the wake intensity, through the blade pitch angle or the generator torque, or the wake direction, through yaw misalignment. Downstream turbines can be adapted to work in waked conditions and limit power losses, using the blade pitch angle or the generator torque. As wind conditions in wind farm operations may change significantly, it is difficult to determine and parameterize the variations of the coordinated optimal settings. An alternative is model-free control and optimization of wind farms, which does not require any parameterization and can track the optimal settings as conditions vary. In this work, we employ a model-free optimization algorithm, extremum-seeking control, to find the optimal set-points of generator torque, blade pitch and yaw angle for a three-turbine configuration. Large-Eddy Simulations are used to provide a virtual environment to evaluate the performance of the control strategies under realistic, unsteady incoming wind. This work was supported by the National Science Foundation, Grants No. 1243482 (the WINDINSPIRE project) and IIP 1362033 (I/UCRC WindSTAR). TACC is acknowledged for providing computational time.
Strong stabilization servo controller with optimization of performance criteria.
Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor
2011-07-01
Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Efficient solution method for optimal control of nuclear systems
International Nuclear Information System (INIS)
Naser, J.A.; Chambre, P.L.
1981-01-01
To improve the utilization of existing fuel sources, the use of optimization techniques is becoming more important. A technique for solving systems of coupled ordinary differential equations with initial, boundary, and/or intermediate conditions is given. This method has a number of inherent advantages over existing techniques as well as being efficient in terms of computer time and space requirements. An example of computing the optimal control for a spatially dependent reactor model with and without temperature feedback is given. 10 refs
Exploring the complexity of quantum control optimization trajectories.
Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2015-01-07
The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.
Convergence in Multispecies Interactions
Bittleston, Leonora Sophia; Pierce, Naomi E.; Ellison, Aaron M.; Pringle, Anne
2016-01-01
The concepts of convergent evolution and community convergence highlight how selective pressures can shape unrelated organisms or communities in similar ways. We propose a related concept, convergent interactions, to describe the independent evolution of multispecies interactions with similar physiological or ecological functions. A focus on convergent interactions clarifies how natural selection repeatedly favors particular kinds of associations among species. Characterizing convergent inter...
Optimal control and quantum simulations in superconducting quantum devices
Energy Technology Data Exchange (ETDEWEB)
Egger, Daniel J.
2014-10-31
Quantum optimal control theory is the science of steering quantum systems. In this thesis we show how to overcome the obstacles in implementing optimal control for superconducting quantum bits, a promising candidate for the creation of a quantum computer. Building such a device will require the tools of optimal control. We develop pulse shapes to solve a frequency crowding problem and create controlled-Z gates. A methodology is developed for the optimisation towards a target non-unitary process. We show how to tune-up control pulses for a generic quantum system in an automated way using a combination of open- and closed-loop optimal control. This will help scaling of quantum technologies since algorithms can calibrate control pulses far more efficiently than humans. Additionally we show how circuit QED can be brought to the novel regime of multi-mode ultrastrong coupling using a left-handed transmission line coupled to a right-handed one. We then propose to use this system as an analogue quantum simulator for the Spin-Boson model to show how dissipation arises in quantum systems.
International Nuclear Information System (INIS)
Culver, T.B.
1991-01-01
Several modifications of the linear-quadratic regulator (LQR) optimization algorithm are developed, and the computational efficiency of each algorithm with respect to groundwater remediation is evaluated. In each case, the optimization model is combined with a finite element groundwater flow and transport simulation model to determine the optimal time-varying pump-and-treat policy. The first modification of the LQR algorithm incorporated management periods, which are groups of simulation time steps during which the pumping policy remains constant. Management periods reduced the total computational demand, as measured by the CPU time, by as much as 85% compared to the time needed for the LQR solution without management periods. Complexity analysis revealed that computational savings of equal or greater magnitude can be expected in general for groundwater remediation applications and for many other applications of dynamic control. The LQR algorithm with management periods was further modified by assuming steady-state hydraulics within a management period (SSLQR), which simplifies the derivatives of the transition equation. A quasi-Newton differential dynamic programming (QNDDP) was formulated by approximating the complicated second derivatives of the transition equation using a Broyden rank-one approximation. QNDDP converged to the optimal policy for the test problem significantly faster than the LQR algorithm, requiring approximately half the computational time. With the test problem expanded to include the capacity of the treatment facility as a state variable, QNDDP with management periods can determine the optimal treatment facility capacity. With many management periods, the addition of the capital costs of the treatment facility changed the optimal policy so that the required treatment facility capacity was reduced
A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour
Leyland, Jane Anne
1996-01-01
Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.
Greenhouse Environmental Control Using Optimized MIMO PID Technique
Directory of Open Access Journals (Sweden)
Fateh BOUNAAMA
2011-10-01
Full Text Available Climate control for protected crops brings the added dimension of a biological system into a physical system control situation. The thermally dynamic nature of a greenhouse suggests that disturbance attenuation (load control of external temperature, humidity, and sunlight is far more important than is the case for controlling other types of buildings. This paper investigates the application of multi-inputs multi-outputs (MIMO PID controller to a MIMO greenhouse environmental model with actuation constraints. This method is based on decoupling the system at low frequency point. The optimal tuning values are determined using genetic algorithms optimization (GA. The inside outsides climate model of the environmental greenhouse, and the automatically collected data sets of Avignon, France are used to simulate and test this technique. The control objective is to maintain a highly coupled inside air temperature and relative humidity of strongly perturbed greenhouse, at specified set-points, by the ventilation/cooling and moisturizing operations.
Rapid Optimal Generation Algorithm for Terrain Following Trajectory Based on Optimal Control
Institute of Scientific and Technical Information of China (English)
杨剑影; 张海; 谢邦荣; 尹健
2004-01-01
Based on the optimal control theory, a 3-dimensionnal direct generation algorithm is proposed for anti-ground low altitude penetration tasks under complex terrain. By optimizing the terrain following(TF) objective function,terrain coordinate system, missile dynamic model and control vector, the TF issue is turning into the improved optimal control problem whose mathmatical model is simple and need not solve the second order terrain derivative. Simulation results prove that this method is reasonable and feasible. The TF precision is in the scope from 0.3 m to 3.0 m,and the planning time is less than 30 min. This method have the strongpionts such as rapidness, precision and has great application value.
Directory of Open Access Journals (Sweden)
Rashad O. Mastaliev
2016-12-01
Full Text Available The optimal control problem of nonlinear stochastic systems which mathematical model is given by Ito stochastic differential equation with delay argument is considered. Assuming that the concerned region is open for the control by the first and the second variation (classical sense of the quality functional we obtain the necessary optimality condition of the first and the second order. In the particular case we receive the stochastic analog of the Legendre—Clebsch condition and some constructively verified conclusions from the second order necessary condition. We investigate the Legendre–Clebsch conditions for the degeneration case and obtain the necessary conditions of optimality for a special control, in the classical sense.
Accelerator optimization using a network control and acquisition system
International Nuclear Information System (INIS)
Geddes, Cameron G.R.; Catravas, P.E.; Faure, Jerome; Toth, Csaba; Tilborg, J. van; Leemans, Wim P.
2002-01-01
Accelerator optimization requires detailed study of many parameters, indicating the need for remote control and automated data acquisition systems. A control and data acquisition system based on a network of commodity PCs and applications with standards based inter-application communication is being built for the l'OASIS accelerator facility. This system allows synchronous acquisition of data at high (> 1 Hz) rates and remote control of the accelerator at low cost, allowing detailed study of the acceleration process
Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty
Nguyen, Nhan T.
2012-01-01
This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.
Real Time Optimal Control of Supercapacitor Operation for Frequency Response
Energy Technology Data Exchange (ETDEWEB)
Luo, Yusheng; Panwar, Mayank; Mohanpurkar, Manish; Hovsapian, Rob
2016-07-01
Supercapacitors are gaining wider applications in power systems due to fast dynamic response. Utilizing supercapacitors by means of power electronics interfaces for power compensation is a proven effective technique. For applications such as requency restoration if the cost of supercapacitors maintenance as well as the energy loss on the power electronics interfaces are addressed. It is infeasible to use traditional optimization control methods to mitigate the impacts of frequent cycling. This paper proposes a Front End Controller (FEC) using Generalized Predictive Control featuring real time receding optimization. The optimization constraints are based on cost and thermal management to enhance to the utilization efficiency of supercapacitors. A rigorous mathematical derivation is conducted and test results acquired from Digital Real Time Simulator are provided to demonstrate effectiveness.
Optimal control for parabolic-hyperbolic system with time delay
International Nuclear Information System (INIS)
Kowalewski, A.
1985-07-01
In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)
Optimal control of large space structures via generalized inverse matrix
Nguyen, Charles C.; Fang, Xiaowen
1987-01-01
Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.
Optimized PID control of depth of hypnosis in anesthesia.
Padula, Fabrizio; Ionescu, Clara; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio; Vivacqua, Giulio
2017-06-01
This paper addresses the use of proportional-integral-derivative controllers for regulating the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. In fact, introducing an automatic control system might provide significant benefits for the patient in reducing the risk for under- and over-dosing. In this study, the controller parameters are obtained through genetic algorithms by solving a min-max optimization problem. A set of 12 patient models representative of a large population variance is used to test controller robustness. The worst-case performance in the considered population is minimized considering two different scenarios: the induction case and the maintenance case. Our results indicate that including a gain scheduling strategy enables optimal performance for induction and maintenance phases, separately. Using a single tuning to address both tasks may results in a loss of performance up to 102% in the induction phase and up to 31% in the maintenance phase. Further on, it is shown that a suitably designed low-pass filter on the controller output can handle the trade-off between the performance and the noise effect in the control variable. Optimally tuned PID controllers provide a fast induction time with an acceptable overshoot and a satisfactory disturbance rejection performance during maintenance. These features make them a very good tool for comparison when other control algorithms are developed. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimization and control of a continuous polymerization reactor
Directory of Open Access Journals (Sweden)
L. A. Alvarez
2012-12-01
Full Text Available This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO, the Model Predictive Control (MPC and a Target Calculation (TC that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.
A stochastic optimal feedforward and feedback control methodology for superagility
Halyo, Nesim; Direskeneli, Haldun; Taylor, Deborah B.
1992-01-01
A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET.
Quaternion error-based optimal control applied to pinpoint landing
Ghiglino, Pablo
Accurate control techniques for pinpoint planetary landing - i.e., the goal of achieving landing errors in the order of 100m for unmanned missions - is a complex problem that have been tackled in different ways in the available literature. Among other challenges, this kind of control is also affected by the well known trade-off in UAV control that for complex underlying models the control is sub-optimal, while optimal control is applied to simplifed models. The goal of this research has been the development new control algorithms that would be able to tackle these challenges and the result are two novel optimal control algorithms namely: OQTAL and HEX2OQTAL. These controllers share three key properties that are thoroughly proven and shown in this thesis; stability, accuracy and adaptability. Stability is rigorously demonstrated for both controllers. Accuracy is shown in results of comparing these novel controllers with other industry standard algorithms in several different scenarios: there is a gain in accuracy of at least 15% for each controller, and in many cases much more than that. A new tuning algorithm based on swarm heuristics optimisation was developed as well as part of this research in order to tune in an online manner the standard Proportional-Integral-Derivative (PID) controllers used for benchmarking. Finally, adaptability of these controllers can be seen as a combination of four elements: mathematical model extensibility, cost matrices tuning, reduced computation time required and finally no prior knowledge of the navigation or guidance strategies needed. Further simulations in real planetary landing trajectories has shown that these controllers have the capacity of achieving landing errors in the order of pinpoint landing requirements, making them not only very precise UAV controllers, but also potential candidates for pinpoint landing unmanned missions.
Directory of Open Access Journals (Sweden)
Sang-Hoon Yeo
2016-12-01
Full Text Available Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.
Yeo, Sang-Hoon; Franklin, David W; Wolpert, Daniel M
2016-12-01
Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.
Attitude Optimal Backstepping Controller Based Quaternion for a UAV
Directory of Open Access Journals (Sweden)
Kaddouri Djamel
2016-01-01
Full Text Available A hierarchical controller design based on nonlinear H∞ theory and backstepping technique is developed for a nonlinear and coupled dynamic attitude system using conventional quaternion based method. The derived controller combines the attractive features of H∞ optimal controller and the advantages of the backstepping technique leading to a control law which avoids winding phenomena. Performance issues of the controller are illustrated in a simulation study made for a four-rotor vertical take-off and landing (VTOL aerial robot prototype known as the quadrotor aircraft.
Optimal Control Problems for Partial Differential Equations on Reticulated Domains
Kogut, Peter I
2011-01-01
In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for gradu
The Pealization of the Most Economical and optimized Control System
Institute of Scientific and Technical Information of China (English)
WUBin
2002-01-01
In order to plow an access to low cost automation,the method to set up the most economical and optimized control system is studied.Such a system is achieved by adopting the field bus technologies based on net connection to form the hierarchical architecture and employing genetic algorithm to intelliently optimize the parameters of the topology structure at the field execution level and the parameters of a local controller,Praxios has proved that this realization can shorten the system development cycle,improve the systtem's reliability,and achieve conspicuous social economic benefits.
Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control
International Nuclear Information System (INIS)
Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel
2014-01-01
Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers. (paper)
Pouchol, Camille
2017-10-27
We consider a system of two coupled integro-differential equations modelling populations of healthy and cancer cells under chemotherapy. Both populations are structured by a phenotypic variable, representing their level of resistance to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering all possible infusion protocols and minimising the number of cancer cells over a prescribed time frame. We provide a quasi-optimal strategy and prove that it solves this problem for large final times. For this modelling framework, we illustrate our results with numerical simulations, and compare our optimal strategy with periodic treatment schedules.
Aeroassisted orbital maneuvering using Lyapunov optimal feedback control
Grantham, Walter J.; Lee, Byoung-Soo
1987-01-01
A Liapunov optimal feedback controller incorporating a preferred direction of motion at each state of the system which is opposite to the gradient of a specified descent function is developed for aeroassisted orbital transfer from high-earth orbit to LEO. The performances of the Liapunov controller and a calculus-of-variations open-loop minimum-fuel controller, both of which are based on the 1962 U.S. Standard Atmosphere, are simulated using both the 1962 U.S. Standard Atmosphere and an atmosphere corresponding to the STS-6 Space Shuttle flight. In the STS-6 atmosphere, the calculus-of-variations open-loop controller fails to exit the atmosphere, while the Liapunov controller achieves the optimal minimum-fuel conditions, despite the + or - 40 percent fluctuations in the STS-6 atmosphere.
Optimal control of epidemic information dissemination over networks.
Chen, Pin-Yu; Cheng, Shin-Ming; Chen, Kwang-Cheng
2014-12-01
Information dissemination control is of crucial importance to facilitate reliable and efficient data delivery, especially in networks consisting of time-varying links or heterogeneous links. Since the abstraction of information dissemination much resembles the spread of epidemics, epidemic models are utilized to characterize the collective dynamics of information dissemination over networks. From a systematic point of view, we aim to explore the optimal control policy for information dissemination given that the control capability is a function of its distribution time, which is a more realistic model in many applications. The main contributions of this paper are to provide an analytically tractable model for information dissemination over networks, to solve the optimal control signal distribution time for minimizing the accumulated network cost via dynamic programming, and to establish a parametric plug-in model for information dissemination control. In particular, we evaluate its performance in mobile and generalized social networks as typical examples.
International Nuclear Information System (INIS)
Gonzalez, A.J.
1989-01-01
The paper described the application of the principles of optimization recommended by the International Commission on Radiological Protection (ICRP) to the restrain of radiation risks due to exposures that may or may not be incurred and to which a probability of occurrence can be assigned. After describing the concept of probabilistic exposures, it proposes a basis for a converging policy of control for both certain and probabilistic exposures, namely the dose-risk relationship adopted for radiation protection purposes. On that basis some coherent approaches for dealing with probabilistic exposures, such as the limitation of individual risks, are discussed. The optimization of safety for reducing all risks from probabilistic exposures to as-low-as-reasonably-achievable (ALARA) levels is reviewed in full. The principles of optimization of protection are used as a basic framework and the relevant factors to be taken into account when moving to probabilistic exposures are presented. The paper also reviews the decision-aiding techniques suitable for performing optimization with particular emphasis to the multi-attribute utility-analysis technique. Finally, there is a discussion on some practical application of decision-aiding multi-attribute utility analysis to probabilistic exposures including the use of probabilistic utilities. In its final outlook, the paper emphasizes the need for standardization and solutions to generic problems, if optimization of safety is to be successful
Distributed Optimal Consensus Control for Nonlinear Multiagent System With Unknown Dynamic.
Zhang, Jilie; Zhang, Huaguang; Feng, Tao
2017-08-01
This paper focuses on the distributed optimal cooperative control for continuous-time nonlinear multiagent systems (MASs) with completely unknown dynamics via adaptive dynamic programming (ADP) technology. By introducing predesigned extra compensators, the augmented neighborhood error systems are derived, which successfully circumvents the system knowledge requirement for ADP. It is revealed that the optimal consensus protocols actually work as the solutions of the MAS differential game. Policy iteration algorithm is adopted, and it is theoretically proved that the iterative value function sequence strictly converges to the solution of the coupled Hamilton-Jacobi-Bellman equation. Based on this point, a novel online iterative scheme is proposed, which runs based on the data sampled from the augmented system and the gradient of the value function. Neural networks are employed to implement the algorithm and the weights are updated, in the least-square sense, to the ideal value, which yields approximated optimal consensus protocols. Finally, a numerical example is given to illustrate the effectiveness of the proposed scheme.
ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining
Chandrasekaran, Muthumari; Tamang, Santosh
2017-08-01
Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.
Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery
International Nuclear Information System (INIS)
Wiens, A J; Nahon, M
2012-01-01
Hyper-redundant mechanisms (HRMs), also known as snake-like robots, are highly adaptable during locomotion on land. Researchers are currently working to extend their capabilities to aquatic environments through biomimetic undulatory propulsion. In addition to increasing the versatility of the system, truly biomimetic swimming could also provide excellent locomotion efficiency. Unfortunately, the complexity of the system precludes the development of a functional solution to achieve this. To explore this problem, a rapid optimization process is used to generate efficient HRM swimming gaits. The low computational cost of the approach allows for multiple optimizations over a broad range of system conditions. By observing how these conditions affect optimal kinematics, a number of new insights are developed regarding undulatory swimming in robotic systems. Two key conditions are varied within the study, swimming speed and energy recovery. It is found that the swimmer mimics the speed control behaviour of natural fish and that energy recovery drastically increases the system's efficiency. Remarkably, this efficiency increase is accompanied by a distinct change in swimming kinematics. With energy recovery, the swimmer converges to a clearly anguilliform gait, without, it tends towards the carangiform mode. (paper)