WorldWideScience

Sample records for conventionally-fractionated image-guided intensity

  1. Comparison of long-term survival and toxicity of simultaneous integrated boost vs conventional fractionation with intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Tao HM

    2016-03-01

    Full Text Available Hengmin Tao,1,2 Yumei Wei,1 Wei Huang,1 Xiujuan Gai,1,2 Baosheng Li11Department of 6th Radiation Oncology, Shandong Cancer Hospital and Institute, 2School of Medicine and Life Sciences, Jinan University-Shandong Academy of Medical Sciences, Jinan, People’s Republic of ChinaAim: In recent years, the intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB and intensity-modulated radiotherapy with conventional fractionation (IMRT-CF have been involved in the treatment of nasopharyngeal carcinoma (NPC. However, the potential clinical effects and toxicities are still controversial.Methods: Here, 107 patients with biopsy-proven locally advanced NPC between March 2004 and January 2011 were enrolled in the retrospective study. Among them, 54 patients received IMRT-SIB, and 53 patients received IMRT-CF. Subsequently, overall survival (OS, 5-year progression-free survival (PFS, 5-year locoregional recurrence-free survival (LRFS, and relevant toxicities were analyzed.Results: In the present study, all patients completed the treatment, and the overall median follow-up time was 80 months (range: 8–126 months. The 5-year OS analysis revealed no significant difference between the IMRT-SIB and IMRT-CF groups (80.9% vs 80.5%, P=0.568. In addition, there were also no significant between-group differences in 5-year PFS (73.3% vs 74.4%, P=0.773 and 5-year LRFS (88.1% vs 90.8%, P=0.903. Notably, the dose to critical organs (spinal cord, brainstem, and parotid gland in patients treated by IMRT-CF was significantly lower than that in patients treated by IMRT-SIB (all P<0.05.Conclusion: Both IMRT-SIB and IMRT-CF techniques are effective in treating locally advanced NPC, with similar OS, PFS, and LRFS. However, IMRT-CF has more advantages than IMRT-SIB in protecting spinal cord, brainstem, and parotid gland from acute and late toxicities, such as xerostomia. Further prospective study is warranted to confirm our findings.Keywords: intensity

  2. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: A preliminary report

    International Nuclear Information System (INIS)

    Yamada, Yoshiya; Lovelock, D. Michael; Yenice, Kamil M.; Bilsky, Mark H.; Hunt, Margaret A.; Zatcky, Joan; Leibel, Steven A.

    2005-01-01

    Purpose: The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. Methods and Materials: The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Results: Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never

  3. Feasibility of intensity-modulated and image-guided radiotherapy for locally advanced esophageal cancer

    International Nuclear Information System (INIS)

    Nguyen, Nam P; Desai, Anand; Smith-Raymond, Lexie; Jang, Siyoung; Vock, Jacqueline; Vinh-Hung, Vincent; Chi, Alexander; Vos, Paul; Pugh, Judith; Vo, Richard A; Ceizyk, Misty

    2014-01-01

    In this study the feasibility of intensity-modulated radiotherapy (IMRT) and tomotherapy-based image-guided radiotherapy (IGRT) for locally advanced esophageal cancer was assessed. A retrospective study of ten patients with locally advanced esophageal cancer who underwent concurrent chemotherapy with IMRT (1) and IGRT (9) was conducted. The gross tumor volume was treated to a median dose of 70 Gy (62.4-75 Gy). At a median follow-up of 14 months (1-39 months), three patients developed local failures, six patients developed distant metastases, and complications occurred in two patients (1 tracheoesophageal fistula, 1 esophageal stricture requiring repeated dilatations). No patients developed grade 3-4 pneumonitis or cardiac complications. IMRT and IGRT may be effective for the treatment of locally advanced esophageal cancer with acceptable complications

  4. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    International Nuclear Information System (INIS)

    Holmes, Timothy W.; Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-01-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management

  5. Rationale and development of image-guided intensity-modulated radiotherapy post-prostatectomy: the present standard of care?

    Directory of Open Access Journals (Sweden)

    Murray JR

    2015-11-01

    Full Text Available Julia R Murray,1,2 Helen A McNair,2 David P Dearnaley1,2 1Academic Urology Unit, Institute of Cancer Research, London, 2Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, Sutton, UK Abstract: The indications for post-prostatectomy radiotherapy have evolved over the last decade, although the optimal timing, dose, and target volume remain to be well defined. The target volume is susceptible to anatomical variations with its borders interfacing with the rectum and bladder. Image-guided intensity-modulated radiotherapy has become the gold standard for radical prostate radiotherapy. Here we review the current evidence for image-guided techniques with intensity-modulated radiotherapy to the prostate bed and describe current strategies to reduce or account for interfraction and intrafraction motion. Keywords: radiotherapy, prostate cancer, post-prostatectomy, image-guided radiation therapy

  6. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-01-01

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within ±1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient ≥1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  7. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy.

    Science.gov (United States)

    Létourneau, Daniel; Keller, Harald; Sharpe, Michael B; Jaffray, David A

    2007-05-01

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 degrees of gantry (usually within +/-1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient > or = 1% /mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance

  8. Feasibility and efficacy of helical intensity-modulated radiotherapy for stage III non-small cell lung cancer in comparison with conventionally fractionated 3D-CRT.

    Science.gov (United States)

    He, Jian; Huang, Yan; Chen, Yixing; Shi, Shiming; Ye, Luxi; Hu, Yong; Zhang, Jianying; Zeng, Zhaochong

    2016-05-01

    The standard treatment for stage III non-small-cell lung cancer (NSCLC) is still 60 Gy in conventional fractions combined with concurrent chemotherapy; however, the resulting local controls are disappointing. The aim of this study was to compare and assess the feasibility and efficacy of hypofractionated chemoradiotherapy using helical tomotherapy (HT) with conventional fractionation as opposed to using three-dimensional conformal radiotherapy (3D-CRT) for stage III NSCLC. Sixty-nine patients with stage III (AJCC 7th edition) NSCLC who underwent definitive radiation treatment at our institution between July 2011 and November 2013 were reviewed and analyzed retrospectively. A dose of 60 Gy in 20 fractions was delivered in the HT group (n=34), whereas 60 Gy in 30 fractions in the 3D-CRT group (n=35). Primary endpoints were toxicity, overall response rate, overall survival (OS) and progression-free survival (PFS). The median follow-up period was 26.4 months. V20 (P=0.005), V30 (P=0.001), V40 (P=0.004), mean lung dose (P=0.000) and max dose of spinal cord (P=0.005) were significantly lower in the HT group than in the 3D-CRT group. There was no significant difference in the incidences of acute radiation pneumonitis (RP) ≥ grade 2 between the two groups, whereas the incidences of acute radiation esophagitis ≥ grade 2 were significantly lower in the HT group than in the 3D-CRT group (P=0.027). Two-year overall response rate was significantly higher in the HT group than in the 3D-CRT group (P=0.015). One- and 2-year OS rates were significantly higher in the HT group (95.0% and 68.7%, respectively) than in the 3D-CRT group (85.5% and 47.6%, respectively; P=0.0236). One- and 2-year PFS rates were significantly higher in the HT group (57.8% and 26.3%, respectively) than in the 3D-CRT group (32.7% and 11.4%, respectively; P=0.0351). Univariate analysis indicated that performance status (PS), T stage and radiotherapy technique were significant prognostic factors for both OS

  9. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Flentje, Michael; Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-01-01

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade ≥ 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade ≥ 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade ≥ 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  10. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Flentje, Michael [Dept. of Radiotherapy, Univ. Hospital Wuerzburg (Germany); Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-10-15

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade {>=} 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade {>=} 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade {>=} 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  11. Toxicity after post-prostatectomy image-guided intensity-modulated radiotherapy using Australian guidelines.

    Science.gov (United States)

    Chin, Stephen; Aherne, Noel J; Last, Andrew; Assareh, Hassan; Shakespeare, Thomas P

    2017-12-01

    We evaluated single institution toxicity outcomes after post-prostatectomy radiotherapy (PPRT) via image-guided intensity-modulated radiation therapy (IG-IMRT) with implanted fiducial markers following national eviQ guidelines, for which late toxicity outcomes have not been published. Prospectively collected toxicity data were retrospectively reviewed for 293 men who underwent 64-66 Gy IG-IMRT to the prostate bed between 2007 and 2015. Median follow-up after PPRT was 39 months. Baseline grade ≥2 genitourinary (GU), gastrointestinal (GI) and sexual toxicities were 20.5%, 2.7% and 43.7%, respectively, reflecting ongoing toxicity after radical prostatectomy. Incidence of new (compared to baseline) acute grade ≥2 GU and GI toxicity was 5.8% and 10.6%, respectively. New late grade ≥2 GU, GI and sexual toxicity occurred in 19.1%, 4.7% and 20.2%, respectively. However, many patients also experienced improvements in toxicities. For this reason, prevalence of grade ≥2 GU, GI and sexual toxicities 4 years after PPRT was similar to or lower than baseline (21.7%, 2.6% and 17.4%, respectively). There were no grade ≥4 toxicities. Post-prostatectomy IG-IMRT using Australian contouring guidelines appears to have tolerable acute and late toxicity. The 4-year prevalence of grade ≥2 GU and GI toxicity was virtually unchanged compared to baseline, and sexual toxicity improved over baseline. This should reassure radiation oncologists following these guidelines. Late toxicity rates of surgery and PPRT are higher than following definitive IG-IMRT, and this should be taken into account if patients are considering surgery and likely to require PPRT. © 2017 The Royal Australian and New Zealand College of Radiologists.

  12. Promising results with image guided intensity modulated radiotherapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Whalley, D.; Caine, H.; McCloud, P.; Guo, L.; Kneebone, A.; Eade, T.

    2015-01-01

    To describe the feasibility of image guided intensity modulated radiotherapy (IG-IMRT) using daily soft tissue matching in the treatment of bladder cancer. Twenty-eight patients with muscle-invasive carcinoma of the bladder were recruited to a protocol of definitive radiation using IMRT with accelerated hypofractionation with simultaneous integrated boost (SIB). Isotropic margins of .5 and 1 cm were used to generate the high risk and intermediate risk planning target volumes respectively. Cone beam CT (CBCT) was acquired daily and a soft tissue match was performed. Cystoscopy was scheduled 6 weeks post treatment. The median age was 83 years (range 58-92). Twenty patients had stage II or III disease, and eight were stage IV. Gross disease received 66 Gy in 30 fractions in 11 patients (ten with concurrent chemotherapy) or 55 Gy in 20 fractions for those of poorer performance status or with palliative intent. All patients completed radiation treatment as planned. Three patients ceased chemotherapy early due to toxicity. Six patients (21 %) had acute Grade ≥ 2 genitourinary (GU) toxicity and six (21 %) had acute Grade ≥ 2 gastrointestinal (GI) toxicity. Five patients (18 %) developed Grade ≥2 late GU toxicity and no ≥2 late GI toxicity was observed. Nineteen patients underwent cystoscopy following radiation, with complete response (CR) in 16 cases (86 %), including all patients treated with chemoradiotherapy. Eight patients relapsed, four of which were local relapses. Of the patients with local recurrence, one underwent salvage cystectomy. For patients treated with definitive intent, freedom from locoregional recurrence (FFLR) and overall survival (OS) was 90 %/100 % for chemoradiotherapy versus 86 %/69 % for radiotherapy alone. IG- IMRT using daily soft tissue matching is a feasible in the treatment of bladder cancer, enabling the delivery of accelerated synchronous integrated boost with good early local control outcomes and low toxicity

  13. Temporary organ displacement coupled with image-guided, intensity-modulated radiotherapy for paraspinal tumors

    International Nuclear Information System (INIS)

    Katsoulakis, Evangelia; Thornton, Raymond H; Yamada, Yoshiya; Solomon, Stephen B; Maybody, Majid; Housman, Douglas; Niyazov, Greg; Riaz, Nadeem; Lovelock, Michael; Spratt, Daniel E; Erinjeri, Joseph P

    2013-01-01

    To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV D min and PTV D min pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel D max (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and D max by 25% (0.022). TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors abutting critical structures while

  14. Long-term decision regret after post-prostatectomy image-guided intensity-modulated radiotherapy.

    Science.gov (United States)

    Shakespeare, Thomas P; Chin, Stephen; Manuel, Lucy; Wen, Shelly; Hoffman, Matthew; Wilcox, Shea W; Aherne, Noel J

    2017-02-01

    Decision regret (DR) may occur when a patient believes their outcome would have been better if they had decided differently about their management. Although some studies investigate DR after treatment for localised prostate cancer, none report DR in patients undergoing surgery and post-prostatectomy radiotherapy. We evaluated DR in this group of patients overall, and for specific components of therapy. We surveyed 83 patients, with minimum 5 years follow-up, treated with radical prostatectomy (RP) and post-prostatectomy image-guided intensity-modulated radiotherapy (IG-IMRT) to 64-66 Gy following www.EviQ.org.au protocols. A validated questionnaire identified DR if men either indicated that they would have been better off had they chosen another treatment, or they wished they could change their mind about treatment. There was an 85.5% response rate, with median follow-up post-IMRT 78 months. Adjuvant IG-IMRT was used in 28% of patients, salvage in 72% and ADT in 48%. A total of 70% of patients remained disease-free. Overall, 16.9% of patients expressed DR for treatment, with fourfold more regret for the RP component of treatment compared to radiotherapy (16.9% vs 4.2%, P = 0.01). DR for androgen deprivation was 14.3%. Patients were regretful of surgery due to toxicity, not being adequately informed about radiotherapy as an alternative, positive margins and surgery costs (83%, 33%, 25% and 8% of regretful patients respectively). Toxicity caused DR in the three radiotherapy-regretful and four ADT-regretful patients. Patients were twice as regretful overall, and of surgery, for salvage vs adjuvant approaches (both 19.6% vs 10.0%). Decision regret after RP and post-prostatectomy IG-IMRT is uncommon, although patients regret RP more than post-operative IG-IMRT. This should reassure urologists referring patients for post-prostatectomy IG-IMRT, particularly in the immediate adjuvant setting. Other implications include appropriate patient selection for RP (and

  15. Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy.

    Science.gov (United States)

    Zhang, M; Westerly, D C; Mackie, T R

    2011-08-07

    With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D(98%), D(50%) and D(2%) values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom

  16. CT image-guided intensity-modulated therapy for paraspinal tumors using stereotactic immobilization

    International Nuclear Information System (INIS)

    Yenice, Kamil M.; Lovelock, D. Michael; Hunt, Margie A.; Lutz, Wendell R.; Fournier-Bidoz, Nathalie; Hua, C.-H.; Yamada, Josh; Bilsky, Mark; Lee, Henry; Pfaff, Karl; Spirou, Spiridon V.; Amols, Howard I.

    2003-01-01

    Purpose: To design and implement a noninvasive stereotactic immobilization technique with daily CT image-guided positioning to treat patients with paraspinal lesions accurately and to quantify the systematic and random patient setup errors occurring with this method. Methods and Materials: A stereotactic body frame (SBF) was developed for 'rigid' immobilization of paraspinal patients. The inherent accuracy of this system for stereotactic CT-guided treatment was evaluated with phantom studies. Seven patients with thoracic and lumbar spine lesions were immobilized with the SBF and positioned for 33 treatment fractions using daily CT scans. For all 7 patients, the daily setup errors, as assessed from the daily CT scans, were corrected at each treatment fraction. A retrospective analysis was also performed to assess what the impact on patient treatment would have been without the CT-based corrections (i.e., if patient setup had been performed only with the SBF). Results: The average magnitude of systematic and random errors from uncorrected patient setups using the SBF was approximately 2 mm and 1.5 mm (1 SD), respectively. For fixed phantom targets, the system accuracy for the SBF localization and treatment was shown to be within 1 mm (1 SD) in any direction. Dose-volume histograms incorporating these uncertainties for an intensity-modulated radiotherapy plan for lumbar spine lesions were generated, and the effects on the dose-volume histograms were studied. Conclusion: We demonstrated a very accurate and precise method of patient immobilization and treatment delivery based on a noninvasive SBF and daily image guidance for paraspinal lesions. The SBF provides excellent immobilization for paraspinal targets, with setup accuracy better than 2 mm (1 SD). However, for highly conformal paraspinal treatments, uncorrected systematic and random errors of 2 mm in magnitude can result in a significantly greater (>100%) dose to the spinal cord than planned, even though the

  17. Image Guided Hypofractionated Postprostatectomy Intensity Modulated Radiation Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Stephen L.; Patel, Pretesh; Song, Haijun [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Freedland, Stephen J. [Surgery Section, Durham Veterans Administration, and Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California (United States); Bynum, Sigrun; Oh, Daniel; Palta, Manisha; Yoo, David; Oleson, James [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Salama, Joseph K., E-mail: joseph.salama@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2016-03-01

    Purpose: Hypofractionated radiation therapy (RT) has promising long-term biochemical relapse-free survival (bRFS) with comparable toxicity for definitive treatment of prostate cancer. However, data reporting outcomes after adjuvant and salvage postprostatectomy hypofractionated RT are sparse. Therefore, we report the toxicity and clinical outcomes after postprostatectomy hypofractionated RT. Methods and Materials: From a prospectively maintained database, men receiving image guided hypofractionated intensity modulated RT (HIMRT) with 2.5-Gy fractions constituted our study population. Androgen deprivation therapy was used at the discretion of the radiation oncologist. Acute toxicities were graded according to the Common Terminology Criteria for Adverse Events version 4.0. Late toxicities were scored using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scale. Biochemical recurrence was defined as an increase of 0.1 in prostate-specific antigen (PSA) from posttreatment nadir or an increase in PSA despite treatment. The Kaplan-Meier method was used for the time-to-event outcomes. Results: Between April 2008 and April 2012, 56 men received postoperative HIMRT. The median follow-up time was 48 months (range, 21-67 months). Thirty percent had pre-RT PSA <0.1; the median pre-RT detectable PSA was 0.32 ng/mL. The median RT dose was 65 Gy (range, 57.5-65 Gy). Ten patients received neoadjuvant and concurrent hormone therapy. Posttreatment acute urinary toxicity was limited. There was no acute grade 3 toxicity. Late genitourinary (GU) toxicity of any grade was noted in 52% of patients, 40% of whom had pre-RT urinary incontinence. The 4-year actuarial rate of late grade 3 GU toxicity (exclusively gross hematuria) was 28% (95% confidence interval [CI], 16%-41%). Most grade 3 GU toxicity resolved; only 7% had persistent grade ≥3 toxicity at the last follow-up visit. Fourteen patients experienced biochemical recurrence at a

  18. Definitive Upfront Stereotactic Ablative Radiotherapy Combined with Image-Guided, Intensity Modulated Radiotherapy (IG-IMRT or IG-IMRT Alone for Locally Advanced Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Alexander Chi

    Full Text Available Image-guided (IG intensity-modulated radiotherapy (IMRT enables maximal tumor margin reduction for the sparing of organs at risk (OARs when used to treat locally advanced non-small cell lung cancer (NSCLC with definitive chemo-radiation. It also allows for the incorporation of stereotactic ablative radiotherapy (SABR into the treatment regimen. Here, we describe our initial experience in combining definitive upfront SABR to the primary lesion with chemo-radiation delivered with conventionally fractionated IG-IMRT to the remaining regional disease; along with clinical outcome following chemo-radiation with conventionally fractionated IG-IMRT alone in the treatment of locally advanced NSCLC.The clinical outcome of 29 patients with locally advanced NSCLC who underwent conventionally fractionated IG-IMRT, or definitive upfront SABR followed by IG-IMRT combined with chemotherapy (induction, concurrent, or both was retrospectively reviewed.After a median follow up of 23.7 months, the median overall survival (OS and progression-free survival (PFS were 19.8 and 11.3 months, respectively. The 2 year local, regional, and distant control was 60%, 62%, and 38%, respectively. No local failure was observed in 3 patients following SABR + IG-IMRT while 6/26 patients failed locally following IG-IMRT alone. SABR + IG-IMRT was well tolerated. No ≥ grade 3 radiation-related toxicity was observed.Definitive upfront SABR followed by IG-IMRT in selected patients with locally advanced NSCLC warrants further investigation in future clinical trials, while chemo-radiation with IG-IMRT alone was well tolerated.

  19. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    International Nuclear Information System (INIS)

    Leonard, Charles E.; Tallhamer, Michael M.S.; Johnson, Tim; Hunter, Kari C.M.D.; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L.

    2010-01-01

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  20. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    NARCIS (Netherlands)

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; van der Heide, Uulke A.; van Herk, Marcel; Heemsbergen, Wilma D.

    2015-01-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions

  1. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer

    International Nuclear Information System (INIS)

    Polat, Buelent; Guenther, Iris; Wilbert, Juergen; Goebel, Joachim; Sweeney, Reinhart A.; Flentje, Michael; Guckenberger, Matthias

    2008-01-01

    To evaluate intra-fractional uncertainties during intensity-modulated radiotherapy (IMRT) of prostate cancer. During IMRT of 21 consecutive patients, kilovolt (kV) cone-beam computed tomography (CBCT) images were acquired prior to and immediately after treatment: a total of 252 treatment fractions with 504 CBCT studies were basis of this analysis. The prostate position in anterior-posterior (AP) direction was determined using contour matching; patient set-up based on the pelvic bony anatomy was evaluated using automatic image registration. Internal variability of the prostate position was the difference between absolute prostate and patient position errors. Intra-fractional changes of prostate position, patient position, rectal distension in AP direction and bladder volume were analyzed. With a median treatment time of 16 min, intra-fractional drifts of the prostate were > 5 mm in 12% of all fractions and a margin of 6 mm was calculated for compensation of this uncertainty. Mobility of the prostate was independent from the bony anatomy with poor correlation between absolute prostate motion and motion of the bony anatomy (R 2 = 0.24). A systematic increase of bladder filling by 41 ccm on average was observed; however, these changes did not influence the prostate position. Small variations of the prostate position occurred independently from intra-fractional changes of the rectal distension; a weak correlation between large internal prostate motion and changes of the rectal volume was observed (R 2 = 0.55). Clinically significant intra-fractional changes of the prostate position were observed and margins of 6 mm were calculated for this intra-fractional uncertainty. Repeated or continuous verification of the prostate position may allow further margin reduction. (orig.)

  2. Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Buelent; Guenther, Iris; Wilbert, Juergen; Goebel, Joachim; Sweeney, Reinhart A.; Flentje, Michael; Guckenberger, Matthias [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology

    2008-12-15

    To evaluate intra-fractional uncertainties during intensity-modulated radiotherapy (IMRT) of prostate cancer. During IMRT of 21 consecutive patients, kilovolt (kV) cone-beam computed tomography (CBCT) images were acquired prior to and immediately after treatment: a total of 252 treatment fractions with 504 CBCT studies were basis of this analysis. The prostate position in anterior-posterior (AP) direction was determined using contour matching; patient set-up based on the pelvic bony anatomy was evaluated using automatic image registration. Internal variability of the prostate position was the difference between absolute prostate and patient position errors. Intra-fractional changes of prostate position, patient position, rectal distension in AP direction and bladder volume were analyzed. With a median treatment time of 16 min, intra-fractional drifts of the prostate were > 5 mm in 12% of all fractions and a margin of 6 mm was calculated for compensation of this uncertainty. Mobility of the prostate was independent from the bony anatomy with poor correlation between absolute prostate motion and motion of the bony anatomy (R{sup 2} = 0.24). A systematic increase of bladder filling by 41 ccm on average was observed; however, these changes did not influence the prostate position. Small variations of the prostate position occurred independently from intra-fractional changes of the rectal distension; a weak correlation between large internal prostate motion and changes of the rectal volume was observed (R{sup 2} = 0.55). Clinically significant intra-fractional changes of the prostate position were observed and margins of 6 mm were calculated for this intra-fractional uncertainty. Repeated or continuous verification of the prostate position may allow further margin reduction. (orig.)

  3. Image-guided radiotherapy in near real time with intensity-modulated radiotherapy megavoltage treatment beam imaging.

    Science.gov (United States)

    Mao, Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing, Lei; Solberg, Timothy

    2009-10-01

    To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  4. Image-guided, intensity-modulated radiation therapy (IG-IMRT) for skull base chordoma and chondrosarcoma: preliminary outcomes.

    Science.gov (United States)

    Sahgal, Arjun; Chan, Michael W; Atenafu, Eshetu G; Masson-Cote, Laurence; Bahl, Gaurav; Yu, Eugene; Millar, Barbara-Ann; Chung, Caroline; Catton, Charles; O'Sullivan, Brian; Irish, Jonathan C; Gilbert, Ralph; Zadeh, Gelareh; Cusimano, Michael; Gentili, Fred; Laperriere, Normand J

    2015-06-01

    We report our preliminary outcomes following high-dose image-guided intensity modulated radiotherapy (IG-IMRT) for skull base chordoma and chondrosarcoma. Forty-two consecutive IG-IMRT patients, with either skull base chordoma (n = 24) or chondrosarcoma (n = 18) treated between August 2001 and December 2012 were reviewed. The median follow-up was 36 months (range, 3-90 mo) in the chordoma cohort, and 67 months (range, 15-125) in the chondrosarcoma cohort. Initial surgery included biopsy (7% of patients), subtotal resection (57% of patients), and gross total resection (36% of patients). The median IG-IMRT total doses in the chondrosarcoma and chordoma cohorts were 70 Gy and 76 Gy, respectively, delivered with 2 Gy/fraction. For the chordoma and chondrosarcoma cohorts, the 5-year overall survival and local control rates were 85.6% and 65.3%, and 87.8% and 88.1%, respectively. In total, 10 patients progressed locally: 8 were chordoma patients and 2 chondrosarcoma patients. Both chondrosarcoma failures were in higher-grade tumors (grades 2 and 3). None of the 8 patients with grade 1 chondrosarcoma failed, with a median follow-up of 77 months (range, 34-125). There were 8 radiation-induced late effects-the most significant was a radiation-induced secondary malignancy occurring 6.7 years following IG-IMRT. Gross total resection and age were predictors of local control in the chordoma and chondrosarcoma patients, respectively. We report favorable survival, local control and adverse event rates following high dose IG-IMRT. Further follow-up is needed to confirm long-term efficacy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Image-Guided Radiotherapy in Near Real Time With Intensity-Modulated Radiotherapy Megavoltage Treatment Beam Imaging

    International Nuclear Information System (INIS)

    Mao Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing Lei; Solberg, Timothy

    2009-01-01

    Purpose: To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Methods and Materials: Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Results: Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. Conclusions: This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  6. Multi-centre experience of implementing image-guided intensity-modulated radiotherapy using the TomoTherapy platform

    International Nuclear Information System (INIS)

    Dean, J.C.; Tudor, G.S.J.; Mott, J.H.; Dunlop, P.R.; Morris, S.L.; Harron, E.C.; Christian, J.A.; Sanghera, P.; Elsworthy, M.; Burnet, N.G.

    2013-01-01

    Use of image guided (IG) intensity modulated radiotherapy (IMRT) is increasing, and helical tomotherapy provides an effective, integrated solution. Practical experience of implementation, shared at a recent UK TomoTherapy Users' meeting, may help centres introducing these techniques using TomoTherapy or other platforms. Seven centres participated, with data shared from 6, varying from 2500 - 4800 new patients per year. Case selection of patients “most likely” to benefit from IG-IMRT was managed in all centres by multi-professional groups comprising clinical oncologists, physicists, treatment planners and radiographers. Radical treatments ranged from 94% to 100%. The proportions of tumour types varied substantially: head and neck: range 0%–100% (mean of centres 50%), prostate: 3%–96% (mean of centres 28%). Head and neck cases were considered most likely to benefit from IMRT, prostate cases from IGRT, or IG-IMRT if pelvic nodes were being treated. IMRT was also selected for complex target volumes, to avoid field junctions, for technical treatment difficulties, and retreatments. Across the centres, every patient was imaged every day, with positional correction before treatment. In one centre, for prostate patients including pelvic treatment, the pelvis was also imaged weekly. All centres had designed a ‘ramp up’ of patient numbers, which was similar in 5. One centre, treating 96% prostate patients, started with 3 and increased to 36 patients per day within 3 months. The variation in case mix implies wide applicability of IG-IMRT. Daily on-line IGRT with IMRT can be routinely implemented into busy departments

  7. Implementation of an image guided intensity-modulated protocol for post-prostatectomy radiotherapy: planning data and acute toxicity outcomes

    International Nuclear Information System (INIS)

    Chua, Benjamin; Min, Myo; Wood, Maree; Edwards, Sarah; Hoffmann, Matthew; Greenham, Stuart; Kovendy, Andrew; McKay, Michael J.; Shakespeare, Thomas P.

    2013-01-01

    There is substantial interest in implementation of image-guided intensity-modulated radiotherapy (IG-IMRT) in the post-prostatectomy setting. We describe our implementation of IG-IMRT, and examine how often published organ-at-risk (OAR) constraints were met. Furthermore, we evaluate the incidence of acute genitourinary and gastrointestinal toxicities when patients were treated according to our protocol. Patients were eligible if they received post-prostatectomy radiotherapy (PPRT). Planning data were collected prospectively, and toxicity assessments were collected before, during and after treatment. Seventy-five eligible patients received either 64Gy (19%) or 66Gy (81%) in a single phase to the prostate bed. Suggested rectal dose-constraints of V40Gy<60% and V60Gy<40% were met in 64 (85%) and 75 (100%) patients, respectively. IMRT-specific rectal dose-constraints of V40Gy<35% and V65Gy<17% were achieved in 5 (7%) and 57 (76%) of patients. Bladder dose-constraint (V50Gy<50%) was met in 58 (77%) patients. Two patients (3%) experienced new grade 3 genitourinary toxicity and one patient (1%) experienced new grade 3 gastrointestinal toxicity. All grade 3 toxicities had improved by 3-month review. Overall deterioration in urinary and gastrointestinal symptoms occurred in 33 (44%) and 35 (47%) of patients respectively. We report on our implementation of PPRT which takes into account nationally adopted guidelines, with a margin reduction supported by use of daily image guidance. Non-IMRT OAR constraints were met in most cases. IMRT-specific constraints were less often achieved despite margin reductions, suggesting the need for review of guidelines. Severe toxicity was rare, and most patients did not experience deterioration in urinary or bowel function attributable to radiotherapy.

  8. Implementation of an image guided intensity-modulated protocol for post-prostatectomy radiotherapy: planning data and acute toxicity outcomes.

    Science.gov (United States)

    Chua, Benjamin; Min, Myo; Wood, Maree; Edwards, Sarah; Hoffmann, Matthew; Greenham, Stuart; Kovendy, Andrew; McKay, Michael J; Shakespeare, Thomas P

    2013-08-01

    There is substantial interest in implementation of image-guided intensity-modulated radiotherapy (IG-IMRT) in the post-prostatectomy setting. We describe our implementation of IG-IMRT, and examine how often published organ-at-risk (OAR) constraints were met. Furthermore, we evaluate the incidence of acute genitourinary and gastrointestinal toxicities when patients were treated according to our protocol. Patients were eligible if they received post-prostatectomy radiotherapy (PPRT). Planning data were collected prospectively, and toxicity assessments were collected before, during and after treatment. Seventy-five eligible patients received either 64 Gy (19%) or 66 Gy (81%) in a single phase to the prostate bed. Suggested rectal dose-constraints of V40Gy < 60% and V60Gy < 40% were met in 64 (85%) and 75 (100%) patients, respectively. IMRT-specific rectal dose-constraints of V40Gy < 35% and V65Gy < 17% were achieved in 5 (7%) and 57 (76%) of patients. Bladder dose-constraint (V50Gy < 50%) was met in 58 (77%) patients. Two patients (3%) experienced new grade 3 genitourinary toxicity and one patient (1%) experienced new grade 3 gastroinestinal toxicity. All grade 3 toxicities had improved by 3-month review. Overall deterioration in urinary and gastrointestinal symptoms occurred in 33 (44%) and 35 (47%) of patients respectively. We report on our implementation of PPRT which takes into account nationally adopted guidelines, with a margin reduction supported by use of daily image guidance. Non-IMRT OAR constraints were met in most cases. IMRT-specific constraints were less often achieved despite margin reductions, suggesting the need for review of guidelines. Severe toxicity was rare, and most patients did not experience deterioration in urinary or bowel function attributable to radiotherapy. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  9. Image-guided intensity-modulated radiotherapy of prostate cancer. Analysis of interfractional errors and acute toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Rudat, Volker; Nour, A.; Hammoud, M.; Alaradi, A.; Mohammed, A. [Saad Specialist Hospital, Department of Radiation Oncology, Al Khobar (Saudi Arabia)

    2016-02-15

    The aim of the study was to estimate interfractional deviations in patient and prostate position, the impact of the frequency of online verification on the treatment margins, and to assess acute radiation reactions of high-dose external beam image-guided intensity-modulated radiotherapy (IG-IMRT) of localized prostate cancer. IG-IMRT was performed by daily online verification of implanted fiducial prostate markers using a megavoltage electronic portal imaging device (EPID). A total of 1011 image-guided treatment fractions from 23 consecutive unselected prostate cancer patients were analyzed. The median total dose was 79.2 Gy (range 77.4-81.0 Gy). Acute radiation reactions were assessed weekly during radiotherapy using the Common Terminology Criteria for Adverse Events (CTCAE) v.4.03. A relevant combined patient set-up and prostate motion population random error of 4-5 mm was observed. Compared to daily IGRT, image guidance every other day required an expansion of the CTV-PTV (clinical target volume-planning target volume) margin of 8.1, 6.6, and 4.1 mm in the longitudinal, vertical, and lateral directions, thereby, increasing the PTV by approximately 30-40 %. No grade 3 or 4 acute radiation reactions were observed with daily IG-IMRT. A high dose with surprisingly low acute toxicity can be applied with daily IG-IMRT using implanted fiducial prostate markers. Daily image guidance is clearly superior to image guidance every other fraction concerning adequate target coverage with minimal margins. (orig.) [German] Ziel der Studie war es, die interfraktionelle Variabilitaet der Patientenlagerung und Prostataposition, den Einfluss der Bildgebungsfrequenz und die akuten Strahlenreaktionen bei einer hochdosierten bildgesteuerten intensitaetsmodulierten Strahlentherapie (IG-IMRT) des Prostatakarzinoms zu untersuchen. IG-IMRT wurde durch taegliche Verifikation von implantierten roentgendichten Prostatamarkern mittels Megavolt-Bildgebung (''electronic portal imaging

  10. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it [Department of Oncology, University of Torino, Torino (Italy); Ciammella, Patrizia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Piva, Cristina; Ragona, Riccardo [Department of Oncology, University of Torino, Torino (Italy); Botto, Barbara [Hematology, Città della Salute e della Scienza, Torino (Italy); Gavarotti, Paolo [Hematology, University of Torino and Città della Salute e della Scienza, Torino (Italy); Merli, Francesco [Hematology Unit, ASMN Hospital IRCCS, Reggio Emilia (Italy); Vitolo, Umberto [Hematology, Città della Salute e della Scienza, Torino (Italy); Iotti, Cinzia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Ricardi, Umberto [Department of Oncology, University of Torino, Torino (Italy)

    2014-06-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  11. Dose escalation by image-guided intensity-modulated radiotherapy leads to an increase in pain relief for spinal metastases: a comparison study with a regimen of 30 Gy in 10 fractions.

    Science.gov (United States)

    He, Jinlan; Xiao, Jianghong; Peng, Xingchen; Duan, Baofeng; Li, Yan; Ai, Ping; Yao, Min; Chen, Nianyong

    2017-12-22

    Under the existing condition that the optimum radiotherapy regimen for spinal metastases is controversial, this study investigates the benefits of dose escalation by image-guided intensity-modulated radiotherapy (IG-IMRT) with 60-66 Gy in 20-30 fractions for spinal metastases. In the dose-escalation group, each D50 of planning gross tumor volume (PGTV) was above 60 Gy and each Dmax of spinal cord planning organ at risk volume (PRV) was below 48 Gy. The median biological effective dose (BED) of Dmax of spinal cord was lower in the dose-escalation group compared with that in the 30-Gy group (69.70 Gy vs. 83.16 Gy, p pain responses were better in the dose-escalation group than those in the 30-Gy group ( p = 0.005 and p = 0.024), and the complete pain relief rates were respectively 73.69% and 34.29% ( p = 0.006), 73.69% and 41.38% ( p = 0.028) in two compared groups. In the dose-escalation group, there is a trend of a longer duration of pain relief, a longer overall survival and a lower incidence of acute radiation toxicities. No late radiation toxicities were observed in both groups. Dosimetric parameters and clinical outcomes, including pain response, duration of pain relief, radiation toxicities and overall survival, were compared among twenty-five metastatic spinal lesions irradiated with the dose-escalation regimen and among forty-four lesions treated with the 30-Gy regimen. Conventionally-fractionated IG-IMRT for spinal metastases could escalate dose to the vertebral lesions while sparing the spinal cord, achieving a better pain relief without increasing radiation complications.

  12. Concurrent image-guided intensity modulated radiotherapy and chemotherapy following neoadjuvant chemotherapy for locally advanced nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Shueng, Pei-Wei; Hsieh, Chen-Hsi; Shen, Bing-Jie; Wu, Le-Jung; Liao, Li-Jen; Hsiao, Chi-Huang; Lin, Yu-Chin; Cheng, Po-Wen; Lo, Wu-Chia; Jen, Yee-Min

    2011-01-01

    To evaluate the experience of induction chemotherapy followed by concurrent chemoradiationwith helical tomotherapy (HT) for nasopharyngeal carcinoma (NPC). Between August 2006 and December 2009, 28 patients with pathological proven nonmetastatic NPC were enrolled. All patients were staged as IIB-IVB. Patients were first treated with 2 to 3 cycles of induction chemotherapy with EP-HDFL (Epirubicin, Cisplatin, 5-FU, and Leucovorin). After induction chemotherapy, weekly based PFL was administered concurrent with HT. Radiation consisted of 70 Gy to the planning target volumes of the primary tumor plus any positive nodal disease using 2 Gy per fraction. After completion of induction chemotherapy, the response rates for primary and nodal disease were 96.4% and 80.8%, respectively. With a median follow-up after 33 months (Range, 13-53 months), there have been 2 primary and 1 nodal relapse after completion of radiotherapy. The estimated 3-year progression-free rates for local, regional, locoregional and distant metastasis survival rate were 92.4%, 95.7%, 88.4%, and 78.0%, respectively. The estimated 3-year overall survival was 83.5%. Acute grade 3, 4 toxicities for xerostomia and dermatitis were only 3.6% and 10.7%, respectively. HT for locoregionally advanced NPC is feasible and effective in regard to locoregional control with high compliance, even after neoadjuvant chemotherapy. None of out-field or marginal failure noted in the current study confirms the potential benefits of treating NPC patients by image-guided radiation modality. A long-term follow-up study is needed to confirm these preliminary findings

  13. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus

    International Nuclear Information System (INIS)

    Zhang Lian; Chen Wenzhi; Liu Yinjiang; Hu Xiao; Zhou Kun; Chen Li; Peng Song; Zhu Hui; Zou Huiling; Bai Jin; Wang Zhibiao

    2010-01-01

    Purpose: To prospectively evaluate the feasibility of magnetic resonance (MR) imaging-guided high intensity focused ultrasound (HIFU) therapeutic ablation of uterine fibroids in patients with bowel lies anterior to uterus. Materials and methods: Twenty-one patients with 23 uterine fibroids underwent MR imaging-guided high intensity focused ultrasound treatment, with a mean age of 39.4 ± 6.9 (20-49) years, with fibroids average measuring 6.0 ± 1.6 (range, 2.9-9.5) cm in diameter. After being compressed with a degassed water balloon on abdominal wall, MR imaging-guided high intensity focused ultrasound treatment was performed under conscious sedation by using fentanyl and midazolam. This procedure was performed by a Haifu JM focused ultrasound tumour therapeutic system (JM2.5C, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Symphony, Siemens, Germany), which provides real-time guidance and control. Contrast-enhanced MR imaging was performed to evaluate the efficacy of thermal ablation immediately and 3 months after HIFU treatment. The treatment time and adverse events were recorded. Results: The mean fibroid volume was 97.0 ± 78.3 (range, 12.7-318.3) cm 3 . According to the treatment plan, an average 75.0 ± 11.4% (range, 37.8-92.4%) of the fibroid volume was treated. The mean fibroid volume immediately after HIFU was 109.7 ± 93.1 (range, 11.9-389.6) cm 3 , slightly enlarged because of edema. The average non-perfused volume was 83.3 ± 71.7 (range, 7.7-282.9) cm 3 , the average fractional ablation, which was defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 76.9 ± 18.7% (range, 21.0-97.0%). There were no statistically significant differences between the treatment volume and the non-perfused volume. Follow-up magnetic resonance imaging (MRI) at 3 months obtained in 12 patients, the fibroid volume decreased by 31.4 ± 29.3% (range, -1.9 to 60.0%) in average, with paired t

  14. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lian; Chen Wenzhi [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Liu Yinjiang; Hu Xiao [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Zhou Kun [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Chen Li [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Peng Song; Zhu Hui [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Zou Huiling [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Bai Jin [Institute of Ultrasound Engineering in Medicine of Chongqing University of Medical Sciences, Chongqing 400016 (China); Wang Zhibiao [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Institute of Ultrasound Engineering in Medicine of Chongqing University of Medical Sciences, Chongqing 400016 (China)], E-mail: wangzhibiao@haifu.com.cn

    2010-02-15

    Purpose: To prospectively evaluate the feasibility of magnetic resonance (MR) imaging-guided high intensity focused ultrasound (HIFU) therapeutic ablation of uterine fibroids in patients with bowel lies anterior to uterus. Materials and methods: Twenty-one patients with 23 uterine fibroids underwent MR imaging-guided high intensity focused ultrasound treatment, with a mean age of 39.4 {+-} 6.9 (20-49) years, with fibroids average measuring 6.0 {+-} 1.6 (range, 2.9-9.5) cm in diameter. After being compressed with a degassed water balloon on abdominal wall, MR imaging-guided high intensity focused ultrasound treatment was performed under conscious sedation by using fentanyl and midazolam. This procedure was performed by a Haifu JM focused ultrasound tumour therapeutic system (JM2.5C, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Symphony, Siemens, Germany), which provides real-time guidance and control. Contrast-enhanced MR imaging was performed to evaluate the efficacy of thermal ablation immediately and 3 months after HIFU treatment. The treatment time and adverse events were recorded. Results: The mean fibroid volume was 97.0 {+-} 78.3 (range, 12.7-318.3) cm{sup 3}. According to the treatment plan, an average 75.0 {+-} 11.4% (range, 37.8-92.4%) of the fibroid volume was treated. The mean fibroid volume immediately after HIFU was 109.7 {+-} 93.1 (range, 11.9-389.6) cm{sup 3}, slightly enlarged because of edema. The average non-perfused volume was 83.3 {+-} 71.7 (range, 7.7-282.9) cm{sup 3}, the average fractional ablation, which was defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 76.9 {+-} 18.7% (range, 21.0-97.0%). There were no statistically significant differences between the treatment volume and the non-perfused volume. Follow-up magnetic resonance imaging (MRI) at 3 months obtained in 12 patients, the fibroid volume decreased by 31.4 {+-} 29.3% (range, -1.9 to 60

  15. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    Science.gov (United States)

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  16. Effect of image-guided hypofractionated stereotactic radiotherapy on peripheral non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Wang SW

    2016-08-01

    Full Text Available Shu-wen Wang,1 Juan Ren,1 Yan-li Yan,2 Chao-fan Xue,2 Li Tan,2 Xiao-wei Ma2 1Department of Radiotherapy, First Affiliated Hospital of Xian Jiaotong University, 2Medical School of Xian Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Abstract: The objective of this study was to compare the effects of image-guided hypofractionated radiotherapy and conventional fractionated radiotherapy on non-small-cell lung cancer (NSCLC. Fifty stage- and age-matched cases with NSCLC were randomly divided into two groups (A and B. There were 23 cases in group A and 27 cases in group B. Image-guided radiotherapy (IGRT and stereotactic radiotherapy were conjugately applied to the patients in group A. Group A patients underwent hypofractionated radiotherapy (6–8 Gy/time three times per week, with a total dose of 64–66 Gy; group B received conventional fractionated radiotherapy, with a total dose of 68–70 Gy five times per week. In group A, 1-year and 2-year local failure survival rate and 1-year local failure-free survival rate were significantly higher than in group B (P<0.05. The local failure rate (P<0.05 and distant metastasis rate (P>0.05 were lower in group A than in group B. The overall survival rate of group A was significantly higher than that of group B (P=0.03, and the survival rate at 1 year was 87% vs 63%, (P<0.05. The median survival time of group A was longer than that of group B. There was no significant difference in the incidence of complications between the two groups (P>0.05. Compared with conventional fractionated radiation therapy, image-guided hypofractionated stereotactic radiotherapy in NSCLC received better treatment efficacy and showed good tolerability. Keywords: non-small-cell lung cancer, hypofractionated radiotherapy, stereotactic radiotherapy, segmentation, intensity-modulated radiotherapy, image-guided radiation therapy technology

  17. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Jennifer L., E-mail: peterson.jennifer2@mayo.edu [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States); Buskirk, Steven J. [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States); Heckman, Michael G.; Diehl, Nancy N. [Section of Biostatistics, Mayo Clinic Florida, Jacksonville, FL (United States); Bernard, Johnny R. [Section of Biostatistics, Mayo Clinic Florida, Jacksonville, FL (United States); Department of Radiation Oncology, Southern Ohio Medical Center, Portsmouth, OH (United States); Tzou, Katherine S.; Casale, Henry E.; Bellefontaine, Louis P.; Serago, Christopher; Kim, Siyong; Vallow, Laura A.; Daugherty, Larry C.; Ko, Stephen J. [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States)

    2014-04-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm{sup 3} of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications.

  18. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    International Nuclear Information System (INIS)

    Peterson, Jennifer L.; Buskirk, Steven J.; Heckman, Michael G.; Diehl, Nancy N.; Bernard, Johnny R.; Tzou, Katherine S.; Casale, Henry E.; Bellefontaine, Louis P.; Serago, Christopher; Kim, Siyong; Vallow, Laura A.; Daugherty, Larry C.; Ko, Stephen J.

    2014-01-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm 3 of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications

  19. Immobilization and positioning systems for treatment of patients with image-guided radiation therapy and intensity modulated radiation therapy)

    International Nuclear Information System (INIS)

    Hueso Bernad, M. Nuria; Suarez Dieguez, Raquel; Roures Ramos, M. Teresa; Broseta Tormos, M.Mercedes; Tirado Porcar, Miriam M; Del Castillo Arres, Jose; Franch Martinez, Silvia

    2009-01-01

    For adequate reproduction of daily patient positioning during treatment we use a 3-coordinate system alignment. The first set of axes would be the system of light (laser). - The second coordinate system is recognized by marks on the skin patient and / or immobilization systems. The third set of alignment refers to alignment of coordinates volume to try to locate the isocenter use Guided Radiotherapy Imaging when applied technologies with Intensity Modulated Radiotherapy treatment fields tend to be very small so it made individual protection and immobilization systems such as thermoplastic masks, vacuum sealed bags exterotaxicos conjugated systems and immobilization systems carbon fiber results by combining these immobilization and positioning systems can ensure effective treatment volume to be treated. There is no perfect immobilization system. However the choice of pool of qualified stun makes treatment more precise. (author)

  20. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    International Nuclear Information System (INIS)

    Sveistrup, Joen; Rosenschöld, Per Munck af; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-01-01

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction

  1. Preoperative intensity-modulated and image-guided radiotherapy with a simultaneous integrated boost in locally advanced rectal cancer: Report on late toxicity and outcome

    International Nuclear Information System (INIS)

    Engels, Benedikt; Platteaux, Nele; Van den Begin, Robbe; Gevaert, Thierry; Sermeus, Alexandra; Storme, Guy; Verellen, Dirk; De Ridder, Mark

    2014-01-01

    Background and purpose: The addition of chemotherapy to preoperative radiotherapy has been established as the standard of care for patients with cT3-4 rectal cancer. As an alternative strategy, we explored intensity-modulated and image-guided radiotherapy (IMRT–IGRT) with a simultaneous integrated boost (SIB) in a prospective phase II study. Here, we report outcome and late toxicity after a median follow-up of 54 months. Methods and materials: A total of 108 patients were treated preoperatively with IMRT–IGRT, delivering a dose of 46 Gy in fractions of 2 Gy. Patients (n = 57) displaying an anticipated circumferential resection margin (CRM) of less than 2 mm based on magnetic resonance imaging received a SIB to the tumor up to a total dose of 55.2 Gy. Results: The absolute incidence of grade ⩾3 late gastrointestinal and urinary toxicity was 9% and 4%, respectively, with a 13% rate of any grade ⩾3 late toxicity. The actuarial 5-year local control (LC), progression-free survival (PFS) and overall survival (OS) were 97%, 57%, and 68%. On multivariate analysis, R1 resection and pN2 disease were associated with significantly impaired OS. Conclusions: The use of preoperative IMRT–IGRT with a SIB resulted in a high 5-year LC rate and non-negligible late toxicity

  2. Impact of intensity-modulated and image-guided radiotherapy on elderly patients undergoing chemoradiation for locally advanced head and neck cancer

    International Nuclear Information System (INIS)

    Nguyen, N.P.; Chi, A.; Vock, J.

    2012-01-01

    Purpose: In this work, the treatment tolerance of elderly patients (≥ 70 years) undergoing intensity-modulated radiotherapy (IMRT) and image-guided radiotherapy (IGRT) and chemotherapy for locally advanced head and neck cancer was assessed. Patients and methods: A retrospective review of 112 patients undergoing concurrent chemoradiation for locally advanced head and neck cancer was performed. Treatment toxicity, protocol violations, long-term complications, and survival were compared between 85 younger patients (< 70 years) and 27 older patients (≥ 70 years). Results: Grade 3-4 treatment toxicity was observed in 88.2% and 88.8% for younger and older patients, respectively. Mean weight loss and treatment break were 5.9 and 3.9 kg (p = 0.03) and 7.3 and 7.8 days (p = 0.8) for younger and older patients, respectively. Seven patients (8.2%) did not complete treatment in the younger group compared to 1 patient (3.7%) in the older group (p = 0.6). No significant differences in protocol violations and survival were found between the two groups. Conclusion: Compared to younger patients, elderly patients with locally advanced head and neck cancer tolerated chemoradiation with IMRT and IGRT well, and should not be denied curative treatment based solely on age. (orig.)

  3. Image-guided intensity-modulated radiotherapy for patients with locally advanced gastric cancer: a clinical feasibility study.

    Science.gov (United States)

    Badakhshi, Harun; Gruen, Arne; Graf, Reinhold; Boehmer, Dirk; Budach, Volker

    2014-01-01

    The aim of this study was to determine the medical and technical feasibility of intensity-modulated radiotherapy (IMRT) in high-risk nonmetastatic gastric cancer stage II and III after primary gastrectomy and D2 lymphadenectomy. A prospective nonrandomized phase II trial was performed on 25 consecutive patients with gastric cancer with high risk (T3-4, N1-3, G2-3, R0-1). The dose delivered was 45 Gy (1.80 Gy per fraction) in IMRT technique. Concurrent 5-fluorouracil-based chemotherapy at 225 mg/m(2) was administered as a continuous intravenous infusion. Primary endpoints were acute gastrointestinal toxicity (CTC 4.0) and technical feasibility of IMRT in regard to dose planning and radiation delivery. Early acute events were defined as clinical and chemical adverse effects of IMRT and concurrent chemotherapy during treatment. By definition, 90 days after the end of IMRT has been evaluated as acute-phase toxicity. No patient had grade 4 or higher acute adverse events. Clinical grade 3 toxicity occurred in two patients (8%) with diarrhea and in one case (4%) with nausea. Hematological changes with grade 3 occurred in three cases (12%) with hemoglobin decrease, in five cases (25%) as leukopenia, and in one case (4%) with thrombocytopenia. The mean dose for liver was 16 Gy and the percentage volume exceeding 30 Gy (V30) was 21%. Mean dose for right and left kidney was 9 and 13 Gy, respectively, and V20 was 9% and 13%, respectively. Heart received a median dose of 15 Gy and V40 was 17%. The mean dose to the bowel was 11 Gy and V40 was 6%. Spinal cord had at maximum 33 Gy in median. Specifics of dose distribution, including the coverage, for the target region were as follows: minimum was 33 Gy, maximum 48.6 Gy, and mean dose 44.6 Gy. The prescribed dose (45 Gy) covered 99% and 95% of planning target volume (OTV) in 66% and 92% of cases, respectively. Median PTV was 15.77 ml (range, 805-3,604 ml). The data support the practical feasibility of IMRT in adjuvant treatment in

  4. Half-Fan-Based Intensity-Weighted Region-of-Interest Imaging for Low-Dose Cone-Beam CT in Image-Guided Radiation Therapy.

    Science.gov (United States)

    Yoo, Boyeol; Son, Kihong; Pua, Rizza; Kim, Jinsung; Solodov, Alexander; Cho, Seungryong

    2016-10-01

    With the increased use of computed tomography (CT) in clinics, dose reduction is the most important feature people seek when considering new CT techniques or applications. We developed an intensity-weighted region-of-interest (IWROI) imaging method in an exact half-fan geometry to reduce the imaging radiation dose to patients in cone-beam CT (CBCT) for image-guided radiation therapy (IGRT). While dose reduction is highly desirable, preserving the high-quality images of the ROI is also important for target localization in IGRT. An intensity-weighting (IW) filter made of copper was mounted in place of a bowtie filter on the X-ray tube unit of an on-board imager (OBI) system such that the filter can substantially reduce radiation exposure to the outer ROI. In addition to mounting the IW filter, the lead-blade collimation of the OBI was adjusted to produce an exact half-fan scanning geometry for a further reduction of the radiation dose. The chord-based rebinned backprojection-filtration (BPF) algorithm in circular CBCT was implemented for image reconstruction, and a humanoid pelvis phantom was used for the IWROI imaging experiment. The IWROI image of the phantom was successfully reconstructed after beam-quality correction, and it was registered to the reference image within an acceptable level of tolerance. Dosimetric measurements revealed that the dose is reduced by approximately 61% in the inner ROI and by 73% in the outer ROI compared to the conventional bowtie filter-based half-fan scan. The IWROI method substantially reduces the imaging radiation dose and provides reconstructed images with an acceptable level of quality for patient setup and target localization. The proposed half-fan-based IWROI imaging technique can add a valuable option to CBCT in IGRT applications.

  5. Use of deformed intensity distributions for on-line modification of image-guided IMRT to account for interfractional anatomic changes

    International Nuclear Information System (INIS)

    Mohan, Radhe; Zhang Xiaodong; Wang He; Kang Yixiu; Wang Xiaochun; Liu, Helen; Ang, K.; Kuban, Deborah; Dong Lei

    2005-01-01

    Purpose: Recent imaging studies have demonstrated that there can be significant changes in anatomy from day to day and over the course of radiotherapy as a result of daily positioning uncertainties and physiologic and clinical factors. There are a number of strategies to minimize such changes, reduce their impact, or correct for them. Measures to date have included improved immobilization of external and internal anatomy or adjustment of positions based on portal or ultrasound images. Perhaps the most accurate way is to use CT image-guided radiotherapy, for which the possibilities range from simple correction of setup based on daily CT images to on-line near real-time intensity modulated radiotherapy (IMRT) replanning. In addition, there are numerous intermediate possibilities. In this paper, we report the development of one such intermediate method that takes into account anatomic changes by deforming the intensity distributions of each beam based on deformations of anatomy as seen in the beam's-eye-view. Methods and materials: The intensity distribution deformations are computed based on anatomy deformations discerned from the changes in the current image relative to a reference image (e.g., the pretreatment CT scan). First, a reference IMRT plan is generated based on the reference CT image. A new CT image is acquired using an in-room CT for every fraction. The anatomic structure contours are obtained for the new image. (For this article, these contours were manually drawn. When image guided IMRT methods are implemented, anatomic structure contours on subsequent images will likely be obtained with automatic or semiautomatic means. This could be achieved by, for example, first deforming the original CT image to match today's image, and then using the same deformation transformation to map original contours to today's image.) The reference intensity distributions for each beam are then deformed so that the projected geometric relationship within the beam

  6. Effect of body mass index on shifts in ultrasound-based image-guided intensity-modulated radiation therapy for abdominal malignancies

    International Nuclear Information System (INIS)

    Choi, Mehee; Fuller, Clifton D.; Wang, Samuel J.; Siddiqi, Ather; Wong, Adrian; Thomas, Charles R.; Fuss, Martin

    2009-01-01

    Background and purpose: We investigated whether corrective shifts determined by daily ultrasound-based image-guidance correlate with body mass index (BMI) of patients treated with image-guided intensity-modulated radiation therapy (IG-IMRT) for abdominal malignancies. The utility of daily image-guidance, particularly for patients with BMI > 25.0, is examined. Materials and methods: Total 3162 ultrasound-directed shifts were performed in 86 patients. Direction and magnitude of shifts were correlated with pretreatment BMI. Bivariate statistical analysis and analysis of set-up correction data were performed using systematic and random error calculations. Results: Total 2040 daily alignments were performed. Average 3D vector of set-up correction for all patients was 12.1 mm/fraction. Directional and absolute shifts and 3D vector length were significantly different between BMI cohorts. 3D displacement averaged 4.9 mm/fraction and 6.8mm/fraction for BMI ≤ 25.0 and BMI > 25.0, respectively. Systematic error in all axes and 3D vector was significantly greater for BMI > 25.0. Differences in random error were not statistically significant. Conclusions: Set-up corrections derived from daily ultrasound-based IG-IMRT of abdominal tumors correlated with BMI. Daily image-guidance may improve precision of IMRT delivery with benefits assessed for the entire population, particularly patients with increased habitus. Requisite PTV margins suggested in the absence of daily image-guidance are significantly greater in patients with BMI > 25.0.

  7. Preservation of the endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound ablation of submucosal uterine fibroids

    International Nuclear Information System (INIS)

    Kim, Young-sun; Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie; Lim, Hyo Keun; Rhim, Hyunchul; Jung, Sin-Ho; Ahn, Joong Hyun

    2017-01-01

    To evaluate the integrity of endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of submucosal uterine fibroids based on contrast-enhanced MRI findings, and to identify the risk factors for endometrial impairment. In total, 117 submucosal fibroids (diameter: 5.9 ± 3.0 cm) in 101 women (age: 43.6 ± 4.4 years) treated with MR-HIFU ablation were retrospectively analysed. Endometrial integrity was assessed with contrast-enhanced T1-weighted images at immediate (n = 101), 3-month (n = 62) and 12-month (n = 15) follow-ups. Endometrial impairment was classified into grades 0 (continuous endometrium), 1 (pin-point, full-thickness discontinuity), 2 (between grade 1 and 3), or 3 (full-thickness discontinuity >1 cm). Risk factors were assessed with generalized estimating equation (GEE) analysis. Among 117 fibroids, grades 0, 1, 2 and 3 endometrial impairments were observed at initial examination in 56.4%, 24.8%, 13.7% and 4.3%, respectively. Among 37 fibroid cases of endometrial impairment for which follow-ups were conducted, 30 showed improvements at 3- and/or 12-month follow-up. GEE analysis revealed the degree of endometrial protrusion was significantly associated with severity of endometrial injury (P < 0.0001). After MR-HIFU ablation of submucosal fibroids, endometrial enhancement was preserved intact or minimally impaired in most cases. Impaired endometrium, which is more common after treating endometrially-protruded fibroids, may recover spontaneously. (orig.)

  8. A retrospective comparison of outcome and toxicity of preoperative image-guided intensity-modulated radiotherapy versus conventional pelvic radiotherapy for locally advanced rectal carcinoma

    International Nuclear Information System (INIS)

    Huang, Chun-Ming; Huang, Ming-Yii; Tsai, Hsiang-Lin; Huang, Ching-Wen; Ma, Cheng-Jen; Lin, Chih-Hung; Huang, Chih-Jen; Wang, Jaw-Yuan

    2017-01-01

    The aim of the study was to compare clinical outcomes and toxicity between 3D conformal radiotherapy (3DCRT) and image-guided intensity-modulated radiotherapy (IG-IMRT) administered through helical tomotherapy in locally advanced rectal cancer (LARC) patients receiving preoperative chemoradiotherapy. We reviewed 144 patients with Stage II–III rectal cancer receiving preoperative fluoropyrimidine-based chemoradiotherapy followed by radical resection. Tumor responses following chemoradiotherapy were evaluated using the Dworak tumor regression grade (TRG). Of the 144 patients, 45 received IG-IMRT and 99 received 3DCRT. A significant reduction in Grade 3 or 4 acute gastrointestinal toxicity (IG-IMRT, 6.7%; 3DCRT, 15.1%; P = 0.039) was observed by IG-IMRT. The pathologic complete response (pCR) rate did not differ between the IG-IMRT and the 3DCRT group (17.8% vs 15.1%, P = 0.52). Patients in the IG-IMRT group had the trend of favorable tumor regressions (TRG 3 or 4) compared with those in the 3DCRT group (66.7% vs 43.5%, P = 0.071). The median follow-up was 53 months (range, 18–95 months) in the 3DCRT group and 43 months (range, 17–69 months) in the IG-IMRT group. Four-year overall, disease-free, and local failure–free survival rates of the IG-IMRT and 3DCRT groups were 81.6% and 67.9% (P = 0.12), 53.8% and 51.8% (P = 0.51), and 88% and 75.1% (P = 0.031), respectively. LARC patients treated with preoperative IG-IMRT achieved lower acute gastrointestinal adverse effects and a higher local control rate than those treated with 3DCRT, but there was no prominent difference in distant metastasis rate and overall survival between two treatment modalities.

  9. Acute gastrointestinal and genitourinary toxicity of image-guided intensity modulated radiation therapy for prostate cancer using a daily water-filled endorectal balloon

    International Nuclear Information System (INIS)

    Deville, Curtiland; Both, Stefan; Bui, Viet; Hwang, Wei-Ting; Tan, Kay-See; Schaer, Mattia; Tochner, Zelig; Vapiwala, Neha

    2012-01-01

    Our purpose was to report acute gastrointestinal (GI) and genitourinary (GU) toxicity rates for prostate cancer patients undergoing image-guided intensity modulated radiation therapy (IG-IMRT) with a daily endorectal water-filled balloon (ERB H2O ), and assess associations with planning parameters and pretreatment clinical characteristics. The first 100 patients undergoing prostate and proximal seminal vesicle IG-IMRT with indexed-lumen 100 cc ERB H2O to 79.2 Gy in 1.8 Gy fractions at our institution from 12/2008- 12/2010 were assessed. Pretreatment characteristics, organ-at-risk dose volume histograms, and maximum GU and GI toxicities (CTCAE 3.0) were evaluated. Logistic regression models evaluated univariate association between toxicities and dosimetric parameters, and uni- and multivariate association between toxicities and pretreatment characteristics. Mean age was 68 (range 51–88). Thirty-two, 49, and 19 patients were low, intermediate, and high-risk, respectively; 40 received concurrent androgen deprivation. No grade 3 or greater toxicities were recorded. Maximum GI toxicity was grade 0, 1, and 2 in 69%, 23%, and 8%, respectively. Infield (defined as 1 cm above/below the CTV) rectal mean/median doses, D75, V30, and V40 and hemorrhoid history were associated with grade 2 GI toxicity (Ps < 0.05). Maximum acute GU toxicity was grade 0, 1, and 2 for 17%, 41%, and 42% of patients, respectively. Infield bladder V20 (P = 0.03) and pretreatment International Prostate Symptom Scale (IPSS) (P = 0.003) were associated with grade 2 GU toxicity. Prostate IG-IMRT using a daily ERB H2O shows low rates of acute GI toxicity compared to previous reports of air-filled ERB IMRT when using stringent infield rectum constraints and comparable GU toxicities

  10. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    Science.gov (United States)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-18

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  11. Preservation of the endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound ablation of submucosal uterine fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-sun [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); Uterine Fibroid Integrated Management Center, MINT Intervention Hospital, Department of Radiology, Seoul (Korea, Republic of); Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of); Lim, Hyo Keun [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); SAIHST, Sungkyunkwan University, Department of Health Sciences and Technology, Seoul (Korea, Republic of); Rhim, Hyunchul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); Jung, Sin-Ho [SAIHST, Sungkyunkwan University, Department of Health Sciences and Technology, Seoul (Korea, Republic of); Samsung Medical Center, Department of Biostatistics and Clinical Epidemiology, Seoul (Korea, Republic of); Ahn, Joong Hyun [Samsung Biomedical Research Institute, Samsung Medical Center, Biostatistics Team, Seoul (Korea, Republic of)

    2017-09-15

    To evaluate the integrity of endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of submucosal uterine fibroids based on contrast-enhanced MRI findings, and to identify the risk factors for endometrial impairment. In total, 117 submucosal fibroids (diameter: 5.9 ± 3.0 cm) in 101 women (age: 43.6 ± 4.4 years) treated with MR-HIFU ablation were retrospectively analysed. Endometrial integrity was assessed with contrast-enhanced T1-weighted images at immediate (n = 101), 3-month (n = 62) and 12-month (n = 15) follow-ups. Endometrial impairment was classified into grades 0 (continuous endometrium), 1 (pin-point, full-thickness discontinuity), 2 (between grade 1 and 3), or 3 (full-thickness discontinuity >1 cm). Risk factors were assessed with generalized estimating equation (GEE) analysis. Among 117 fibroids, grades 0, 1, 2 and 3 endometrial impairments were observed at initial examination in 56.4%, 24.8%, 13.7% and 4.3%, respectively. Among 37 fibroid cases of endometrial impairment for which follow-ups were conducted, 30 showed improvements at 3- and/or 12-month follow-up. GEE analysis revealed the degree of endometrial protrusion was significantly associated with severity of endometrial injury (P < 0.0001). After MR-HIFU ablation of submucosal fibroids, endometrial enhancement was preserved intact or minimally impaired in most cases. Impaired endometrium, which is more common after treating endometrially-protruded fibroids, may recover spontaneously. (orig.)

  12. Acute gastrointestinal and genitourinary toxicity of image-guided intensity modulated radiation therapy for prostate cancer using a daily water-filled endorectal balloon

    Directory of Open Access Journals (Sweden)

    Deville Curtiland

    2012-05-01

    Full Text Available Abstract Background Our purpose was to report acute gastrointestinal (GI and genitourinary (GU toxicity rates for prostate cancer patients undergoing image-guided intensity modulated radiation therapy (IG-IMRT with a daily endorectal water-filled balloon (ERBH2O, and assess associations with planning parameters and pretreatment clinical characteristics. Methods The first 100 patients undergoing prostate and proximal seminal vesicle IG-IMRT with indexed-lumen 100 cc ERBH2O to 79.2 Gy in 1.8 Gy fractions at our institution from 12/2008- 12/2010 were assessed. Pretreatment characteristics, organ-at-risk dose volume histograms, and maximum GU and GI toxicities (CTCAE 3.0 were evaluated. Logistic regression models evaluated univariate association between toxicities and dosimetric parameters, and uni- and multivariate association between toxicities and pretreatment characteristics. Results Mean age was 68 (range 51–88. Thirty-two, 49, and 19 patients were low, intermediate, and high-risk, respectively; 40 received concurrent androgen deprivation. No grade 3 or greater toxicities were recorded. Maximum GI toxicity was grade 0, 1, and 2 in 69%, 23%, and 8%, respectively. Infield (defined as 1 cm above/below the CTV rectal mean/median doses, D75, V30, and V40 and hemorrhoid history were associated with grade 2 GI toxicity (Ps  Conclusion Prostate IG-IMRT using a daily ERBH2O shows low rates of acute GI toxicity compared to previous reports of air-filled ERB IMRT when using stringent infield rectum constraints and comparable GU toxicities.

  13. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Wilcox SW

    2014-08-01

    Full Text Available Shea W Wilcox,1,4 Noel J Aherne,2,4 Linus C Benjamin,1 Bosco Wu,1 Thomaz de Campos Silva,3 Craig S McLachlan,4 Michael J McKay,3,5 Andrew J Last,1 Thomas P Shakespeare1–4 1North Coast Cancer Institute, Port Macquarie, NSW, Australia; 2North Coast Cancer Institute, Coffs Harbour, NSW, Australia; 3North Coast Cancer Institute, Lismore, NSW, Australia; 4The University of New South Wales, Rural Clinical School, Sydney, NSW, Australia; 5The University of Sydney, Sydney, NSW, Australia Purpose: Dose-escalated (DE radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS in several studies. In the same group of patients, androgen deprivation therapy (ADT has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT and ADT. Methods and materials: Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Results: Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2

  14. Late Side Effects After Image Guided Intensity Modulated Radiation Therapy Compared to 3D-Conformal Radiation Therapy for Prostate Cancer: Results From 2 Prospective Cohorts

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, Ruud C.; Incrocci, Luca [Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Pos, Floris J.; Heide, Uulke A. van der; Lebesque, Joos V. [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Aluwini, Shafak [Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Witte, Marnix G. [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Heemsbergen, Wilma D., E-mail: w.heemsbergen@nki.nl [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2016-06-01

    Purpose: Technical developments in the field of external beam radiation therapy (RT) enabled the clinical introduction of image guided intensity modulated radiation therapy (IG-IMRT), which improved target conformity and allowed reduction of safety margins. Whether this had an impact on late toxicity levels compared to previously applied three-dimensional conformal radiation therapy (3D-CRT) is currently unknown. We analyzed late side effects after treatment with IG-IMRT or 3D-CRT, evaluating 2 prospective cohorts of men treated for localized prostate cancer to investigate the hypothesized reductions in toxicity. Methods and Materials: Patients treated with 3D-CRT (n=189) or IG-IMRT (n=242) to 78 Gy in 39 fractions were recruited from 2 Dutch randomized trials with identical toxicity scoring protocols. Late toxicity (>90 days after treatment) was derived from self-assessment questionnaires and case report forms, according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG-EORTC) scoring criteria. Grade ≥2 endpoints included gastrointestinal (GI) rectal bleeding, increased stool frequency, discomfort, rectal incontinence, proctitis, and genitourinary (GU) obstruction, increased urinary frequency, nocturia, urinary incontinence, and dysuria. The Cox proportional hazards regression model was used to compare grade ≥2 toxicities between both techniques, adjusting for other modifying factors. Results: The 5-year cumulative incidence of grade ≥2 GI toxicity was 24.9% for IG-IMRT and 37.6% following 3D-CRT (adjusted hazard ratio [HR]: 0.59, P=.005), with significant reductions in proctitis (HR: 0.37, P=.047) and increased stool frequency (HR: 0.23, P<.001). GU grade ≥2 toxicity levels at 5 years were comparable with 46.2% and 36.4% following IG-IMRT and 3D-CRT, respectively (adjusted HR: 1.19, P=.33). Other strong predictors (P<.01) of grade ≥2 late toxicity were baseline complaints, acute toxicity, and age

  15. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, Ruud C.; Incrocci, Luca [Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Heemsbergen, Wilma D., E-mail: w.heemsbergen@nki.nl [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands)

    2015-03-15

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.

  16. [Accelerated partial breast irradiation with image-guided intensity-modulated radiotherapy following breast-conserving surgery - preliminary results of a phase II clinical study].

    Science.gov (United States)

    Mészáros, Norbert; Major, Tibor; Stelczer, Gábor; Zaka, Zoltán; Mózsa, Emõke; Fodor, János; Polgár, Csaba

    2015-06-01

    The purpose of the study was to implement accelerated partial breast irradiation (APBI) by means of image-guided intensity-modulated radiotherapy (IG-IMRT) following breast-conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive (St I-II) breast cancer who underwent BCS were enrolled in our phase II prospective study. Postoperative APBI was given by means of step and shoot IG-IMRT using 4 to 5 fields to a total dose of 36.9 Gy (9×4.1 Gy) using a twice-a-day fractionation. Before each fraction, series of CT images were taken from the region of the target volume using a kV CT on-rail mounted in the treatment room. An image fusion software was used for automatic image registration of the planning and verification CT images. Patient set-up errors were detected in three directions (LAT, LONG, VERT), and inaccuracies were adjusted by automatic movements of the treatment table. Breast cancer related events, acute and late toxicities, and cosmetic results were registered and analysed. At a median follow-up of 24 months (range 12-44) neither locoregional nor distant failure was observed. Grade 1 (G1), G2 erythema, G1 oedema, and G1 and G2 pain occurred in 21 (35%), 2 (3.3%), 23 (38.3%), 6 (10%) and 2 (3.3%) patients, respectively. No G3-4 acute side effects were detected. Among late radiation side effects G1 pigmentation, G1 fibrosis, and G1 fat necrosis occurred in 5 (8.3%), 7 (11.7%), and 2 (3.3%) patients, respectively. No ≥G2 late toxicity was detected. Excellent and good cosmetic outcome was detected in 45 (75%) and 15 (25%) patients. IG-IMRT is a reproducible and feasible technique for the delivery of APBI following conservative surgery for the treatment of low-risk, early-stage invasive breast carcinoma. Preliminary results are promising, early radiation side effects are minimal, and cosmetic results are excellent.

  17. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer.

    Science.gov (United States)

    Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P

    2014-01-01

    Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses and compares favorably with published series for

  18. Late Side Effects After Image Guided Intensity Modulated Radiation Therapy Compared to 3D-Conformal Radiation Therapy for Prostate Cancer: Results From 2 Prospective Cohorts

    International Nuclear Information System (INIS)

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Heide, Uulke A. van der; Lebesque, Joos V.; Aluwini, Shafak; Witte, Marnix G.; Heemsbergen, Wilma D.

    2016-01-01

    Purpose: Technical developments in the field of external beam radiation therapy (RT) enabled the clinical introduction of image guided intensity modulated radiation therapy (IG-IMRT), which improved target conformity and allowed reduction of safety margins. Whether this had an impact on late toxicity levels compared to previously applied three-dimensional conformal radiation therapy (3D-CRT) is currently unknown. We analyzed late side effects after treatment with IG-IMRT or 3D-CRT, evaluating 2 prospective cohorts of men treated for localized prostate cancer to investigate the hypothesized reductions in toxicity. Methods and Materials: Patients treated with 3D-CRT (n=189) or IG-IMRT (n=242) to 78 Gy in 39 fractions were recruited from 2 Dutch randomized trials with identical toxicity scoring protocols. Late toxicity (>90 days after treatment) was derived from self-assessment questionnaires and case report forms, according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG-EORTC) scoring criteria. Grade ≥2 endpoints included gastrointestinal (GI) rectal bleeding, increased stool frequency, discomfort, rectal incontinence, proctitis, and genitourinary (GU) obstruction, increased urinary frequency, nocturia, urinary incontinence, and dysuria. The Cox proportional hazards regression model was used to compare grade ≥2 toxicities between both techniques, adjusting for other modifying factors. Results: The 5-year cumulative incidence of grade ≥2 GI toxicity was 24.9% for IG-IMRT and 37.6% following 3D-CRT (adjusted hazard ratio [HR]: 0.59, P=.005), with significant reductions in proctitis (HR: 0.37, P=.047) and increased stool frequency (HR: 0.23, P<.001). GU grade ≥2 toxicity levels at 5 years were comparable with 46.2% and 36.4% following IG-IMRT and 3D-CRT, respectively (adjusted HR: 1.19, P=.33). Other strong predictors (P<.01) of grade ≥2 late toxicity were baseline complaints, acute toxicity, and age

  19. A Dosimetric Comparison between Conventional Fractionated and Hypofractionated Image-guided Radiation Therapies for Localized Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Ming Li

    2016-01-01

    Conclusions: To deliver the hypofractionated radiotherapy in prostate cancer, VMAT significantly increased PTV D95% dose and decreased the dose of radiation delivered to adjacent normal tissues comparing to 7-field, step-and-shoot IMRT. Daily online image-guidance and better management of bladder and rectum could make a more precise treatment delivery.

  20. Adjuvant radiotherapy for cutaneous melanoma: Comparing hypofractionation to conventional fractionation

    International Nuclear Information System (INIS)

    Chang, Daniel T.; Amdur, Robert J.; Morris, Christopher G. M.S.; Mendenhall, William M.

    2006-01-01

    Purpose: To examine locoregional control after adjuvant radiotherapy (RT) for cutaneous melanoma and compare outcomes between conventional fractionation and hypofractionation. Methods and Materials: Between January 1980 and June 2004, 56 patients with high-risk disease were treated with adjuvant RT. Indications for RT included: recurrent disease, cervical lymph node involvement, lymph nodes >3 cm, more than three lymph nodes involved, extracapsular extension, gross residual disease, close or positive margins, or satellitosis. Hypofractionation was used in 41 patients (73%) and conventional fractionation was used in 15 patients (27%). Results: The median age was 61 years (21->90). The median follow-up among living patients was 4.4 years (range, 0.6-14.4 years). The primary site was located in the head and neck in 49 patients (87%) and below the clavicles in 7 patients (13%). There were 7 in-field locoregional failures (12%), 3 out-of-field regional failures (5%), and 24 (43%) distant failures. The 5-year in-field locoregional control (ifLRC) and freedom from distant metastases (FFDM) rates were 87% and 43%, respectively. The 5-year cause-specific (CSS) and overall survival (OS) was 57% and 46%, respectively. The only factor associated with ifLRC was satellitosis (p = 0.0002). Nodal involvement was the only factor associated with FFDM (p = 0.0007), CSS (p = 0.0065), and OS (p = 0.016). Two patients (4%) who experienced severe late complications, osteoradionecrosis of the temporal bone and radiation plexopathy, and both received hypofractionation (5%). Conclusions: Although surgery and adjuvant RT provides excellent locoregional control, distant metastases remain the major cause of mortality. Hypofractionation and conventional fractionation are equally efficacious

  1. Parotid gland function following accelerated and conventionally fractionated radiotherapy

    International Nuclear Information System (INIS)

    Leslie, M.D.; Dische, S.

    1991-01-01

    The function of parotid glands in patients treated by 3 different schedules of radiotherapy was studied 9 months or more after its conclusion. All had received radiotherapy for a malignancy confined to 1 side of the head and neck region and only the gland on the side of the lesion was in the treatment volume; the contralateral gland acted as an internal control. Saliva was selectively collected from the parotid glands and the stimulated flow rate and pH of the saliva determined. Flow rates were expressed in each case as a percentage of that of the contralateral ('untreated') gland. Twelve glands that had received conventionally fractionated radiotherapy to a dose of 60-66 Gy showed a mean percentage flow of 20 percent and a significant fall in the pH of the saliva produced. Six glands that had received CHART (Continuous Hyperfractionated Accelerated RadioTherapy) and 8 conventionally fractionated radiotherapy to a dose of 35-40 Gy showed mean percentage flows of 57 and 65 percent respectively, with only slight and non-significant falls in saliva pH. The results show that in the treatment of squamous cell carcinoma in the head and neck the use of CHART can lead to considerable less late change in the function of the parotid gland. (author). 26 refs.; 5 figs.; 2 tabs

  2. Implementation of image-guided intensity-modulated accelerated partial breast irradiation. Three-year results of a phase II clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, Norbert; Major, Tibor; Stelczer, Gabor; Zaka, Zoltan; Takacsi-Nagy, Zoltan; Fodor, Janos; Polgar, Csaba [National Institute of Oncology, Center of Radiotherapy, Budapest (Hungary); Mozsa, Emoke [National Institute of Oncology, Center of Radiotherapy, Budapest (Hungary); Landesklinikum, Department of Radiooncology and Radiotherapy, Wiener Neustadt (Austria); Pukancsik, David [National Institute of Oncology, Department of Breast and Sarcoma Surgery, Budapest (Hungary)

    2017-01-15

    To report 3-year results of accelerated partial breast irradiation (APBI) using image-guided intensity-modulated radiotherapy (IG-IMRT) following breast conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive breast cancer underwent BCS and were enrolled in this phase II prospective study. The total dose was 36.9 Gy (9 fractions of 4.1 Gy, two fractions/day). Patient setup errors were detected in LAT, LONG and VERT directions. Local tumour control, survival results, early and late side effects and cosmetic outcome were assessed. At a median follow-up of 39 months, all patients were alive and neither locoregional nor distant failure occurred. One contralateral breast cancer and two new primary malignancies outside the breast were observed. No grade (G) 3-4 acute toxicity was detected. G1 and G2 erythema occurred in 21 (35%) and 2 (3.3%) patients, respectively; while G1 oedema was observed in 23 (38.8%) cases. G1 and G2 pain was reported by 6 (10%) and 2 (3.3%) patients, respectively. Among the late radiation side effects, G1 pigmentation or telangiectasia, G1 fibrosis and G1 asymptomatic fat necrosis occurred in 10 (16.7%), 7 (11.7%) and 3 (5%) patients, respectively. No ≥ G2 late toxicity was detected. Cosmetic outcome was excellent in 43 (71.7%) and good in 17 (28.3%) patients. IG-IMRT is a reproducible and feasible technique for delivery of external beam APBI following BCS for treatment of low-risk, early-stage invasive breast carcinoma. In order to avoid toxicity, image guidance performed before each radiation fraction is necessary to minimize the PTV. Three-year results are promising, early and late radiation side-effects are minimal, and cosmetic results are excellent to good. (orig.) [German] Evaluierung der 3-Jahres-Ergebnisse der Teilbrustbestrahlung (APBI) mittels bildgefuehrter intensitaetsmodulierter Strahlentherapie (IG-IMRT) nach brusterhaltender Operation (BCS

  3. The planning target volume margins detected by cone-beam CT in head and neck cancer patients treated by image-guided intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Liu Jun; Chen Hong; Zhang Guoqiao; Chen Fei; Zhang Li

    2011-01-01

    Objective: To determine the planning target volume margins of head and neck cancers treated by image guided radiotherapy (IGRT). Methods: 464 sets cone beam computed tomography (CBCT) images before setup correction and 126 sets CBCT images after correction were obtained from 51 head and neck cancer patients treated by IGRT in our department. The systematic and random errors were evaluated by either online or offline correction through registering the CBCT images to the planning CT. The data was divided into 3 groups according to the online correction times. Results: The isocenter shift were 0.37 mm ± 2.37 mm, -0.43 mm ± 2.30 mm and 0.47 mm ± 2.65 mm in right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively before correction, and it reduced to 0.08 mm ± 0.68 mm, -0.03 mm ± 0.74 mm and 0.03 mm ± 0.80 mm when evaluated by 126 sets corrected CBCT images. The planning target volume (PTV) margin from clinical target volume (CTV) before correction were: 6.41 mm, 6.15 mm and 7.10 mm based on two parameter model, and it reduced to 1.78 mm, 1.80 mm and 1.97 mm after correction. The PTV margins were 3.8 mm, 3.8 mm, 4.0 mm; 4.0 mm, 4.0 mm, 5.0 mm and 5.4 mm, 5.2 mm, 6.1 mm in RL, AP and SI respectively when online-correction times were more than 15 times, 11-15 times, 5-10 times. Conclusions: CBCT-based on online correction reduce the PTV margin for head and neck cancers treated by IGRT and ensure more precise dose delivery and less normal tissue complications. (authors)

  4. Conventionally fractionated stereotactic radiotherapy (FSRT) for acoustic neuromas

    International Nuclear Information System (INIS)

    Fuss, Martin; Debus, Juergen; Lohr, Frank; Huber, Peter; Rhein, Bernhard; Engenhart-Cabillic, Rita; Wannenmacher, Michael

    2000-01-01

    Purpose: Analysis of local tumor control and functional outcome following conventionally fractionated stereotactic radiotherapy (FSRT) for acoustic neuromas. Patients and Methods: From 11/1989 to 9/1999 51 patients with acoustic neuromas have been treated by FSRT. Mean total dose was 57.6 ± 2.5 Gy. Forty-two patients have been followed for at least 12 months and were subject of an outcome analysis. Mean follow-up was 42 months. We analyzed local control, hearing preservation, and facial and trigeminal nerve functional preservation. We evaluated influences of tumor size, age, and association with neurofibromatosis Type 2 (NF2) on outcome and treatment related toxicity. Results: Actuarial 2- and 5-year tumor control rates were 100% and 97.7%, respectively. Actuarial useful hearing preservation rate was 85% at 2 and 5 years. New hearing loss was diagnosed in 4 NF2 patients. Pretreatment normal facial nerve function was preserved in all cases. Two cases of new or impaired trigeminal nerve dysesthesia required medication. No other cranial nerve deficit was observed. In Patients without NF2 tumor size or age had no influence on tumor control and cranial nerve toxicity. Diagnosis of NF2 was associated with higher risk of hearing impairment (p 0.0002), the hearing preservation rate in this subgroup was 60%. Conclusion: FSRT has been shown to be an effective means of local tumor control. Excellent hearing preservation rates and 5th and 7th nerve functional preservation rates were achieved. The results support the conclusion that FSRT can be recommended to patients with acoustic neuromas where special attention has to be taken to preserve useful hearing and normal cranial nerve function. For NF2 patients, FSRT may be the treatment of choice with superior functional outcome compared to treatment alternatives.

  5. Treatment outcome of high-dose image-guided intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer at a single institute in Japan

    International Nuclear Information System (INIS)

    Takeda, Ken; Shimizu, Eiji; Abe, Keiko; Shirata, Yuko; Ishikawa, Yohjiro

    2012-01-01

    Several studies have confirmed the advantages of delivering high doses of external beam radiotherapy to achieve optimal tumor-control outcomes in patients with localized prostate cancer. We evaluated the medium-term treatment outcome after high-dose, image-guided intensity-modulated radiotherapy (IMRT) using intra-prostate fiducial markers for clinically localized prostate cancer. In total, 141 patients with localized prostate cancer treated with image-guided IMRT (76 Gy in 13 patients and 80 Gy in 128 patients) between 2003 and 2008 were enrolled in this study. The patients were classified according to the National Comprehensive Cancer Network-defined risk groups. Thirty-six intermediate-risk patients and 105 high-risk patients were included. Androgen-deprivation therapy was performed in 124 patients (88%) for a median of 11 months (range: 2–88 months). Prostate-specific antigen (PSA) relapse was defined according to the Phoenix-definition (i.e., an absolute nadir plus 2 ng/ml dated at the call). The 5-year actuarial PSA relapse-free survival, the 5-year distant metastasis-free survival, the 5-year cause-specific survival (CSS), the 5-year overall survival (OS) outcomes and the acute and late toxicities were analyzed. The toxicity data were scored according to the Common Terminology Criteria for Adverse Events, version 4.0. The median follow-up was 60 months. The 5-year PSA relapse-free survival rates were 100% for the intermediate-risk patients and 82.2% for the high-risk patients; the 5-year actuarial distant metastasis-free survival rates were 100% and 95% for the intermediate- and high-risk patients, respectively; the 5-year CSS rates were 100% for both patient subsets; and the 5-year OS rates were 100% and 91.7% for the intermediate- and high-risk patients, respectively. The Gleason score (<8 vs. ≥8) was significant for the 5-year PSA relapse-free survival on multivariate analysis (p = 0.044). There was no grade 3 or 4 acute toxicity. The incidence of

  6. Image-Guided Cancer Nanomedicine

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Kim

    2018-01-01

    Full Text Available Multifunctional nanoparticles with superior imaging properties and therapeutic effects have been extensively developed for the nanomedicine. However, tumor-intrinsic barriers and tumor heterogeneity have resulted in low in vivo therapeutic efficacy. The poor in vivo targeting efficiency in passive and active targeting of nano-therapeutics along with the toxicity of nanoparticles has been a major problem in nanomedicine. Recently, image-guided nanomedicine, which can deliver nanoparticles locally using non-invasive imaging and interventional oncology techniques, has been paid attention as a new opportunity of nanomedicine. This short review will discuss the existing challenges in nanomedicine and describe the prospects for future image-guided nanomedicine.

  7. Image guided percutaneous splenic interventions

    International Nuclear Information System (INIS)

    Kang, Mandeep; Kalra, Naveen; Gulati, Madhu; Lal, Anupam; Kochhar, Rohit; Rajwanshi, Arvind

    2007-01-01

    Aim: The objective of this study is to evaluate the efficacy and safety of image-guided percutaneous splenic interventions as diagnostic or therapeutic procedures. Materials and methods: We performed a retrospective review of our interventional records from July 2001 to June 2006. Ninety-five image-guided percutaneous splenic interventions were performed after informed consent in 89 patients: 64 men and 25 women who ranged in age from 5 months to 71 years (mean, 38.4 years) under ultrasound (n = 93) or CT (n = 2) guidance. The procedures performed were fine needle aspiration biopsy of focal splenic lesions (n = 78) and aspiration (n = 10) or percutaneous catheter drainage of a splenic abscess (n = 7). Results: Splenic fine needle aspiration biopsy was successful in 62 (83.78%) of 74 patients with benign lesions diagnosed in 43 (58.1%) and malignancy in 19 (25.67%) patients. The most common pathologies included tuberculosis (26 patients, 35.13%) and lymphoma (14 patients, 18.91%). Therapeutic aspiration or pigtail catheter drainage was successful in all (100%) patients. There were no major complications. Conclusions: Image-guided splenic fine needle aspiration biopsy is a safe and accurate technique that can provide a definitive diagnosis in most patients with focal lesions in the spleen. This study also suggests that image-guided percutaneous aspiration or catheter drainage of splenic abscesses is a safe and effective alternative to surgery

  8. Image guided prostate cancer treatments

    Energy Technology Data Exchange (ETDEWEB)

    Bard, Robert L. [Bard Cancer Center, Biofoundation for Angiogenesis Research and Development, New York, NY (United States); Fuetterer, Jurgen J. [Radboud Univ. Nijmegen, Medical Centre (Netherlands). Dept. of Radiology; Sperling, Dan (ed.) [Sperling Prostate Center, Alpha 3TMRI, New York, NY (United States)

    2014-07-01

    Systematic overview of the application of ultrasound and MRI in the diagnosis and treatment of diseases of the lower urinary tract. Detailed information on image-guided therapies, including focused ultrasound, photodynamic therapy, and microwave and laser ablation. Numerous high-quality illustrations based on high-end equipment. Represents the state of the art in Non Invasive Imaging and Minimally Invasive Ablation Treatment (MIAT). Image-Guided Prostate Cancer Treatments is a comprehensive reference and practical guide on the technology and application of ultrasound and MRI in the male pelvis, with special attention to the prostate. The book is organized into three main sections, the first of which is devoted to general aspects of imaging and image-guided treatments. The second section provides a systematic overview of the application of ultrasound and MRI to the diagnosis and treatment of diseases of the lower urinary tract. Performance of the ultrasound and MRI studies is explained, and the normal and abnormal pathological anatomy is reviewed. Correlation with the ultrasound in the same plane is provided to assist in understanding the MRI sequences. Biopsy and interventional procedures, ultrasound-MRI fusion techniques, and image-guided therapies, including focused ultrasound, photodynamic therapy, microwave and laser ablation, are all fully covered. The third section focuses on securing treatment effectiveness and the use of follow-up imaging to ensure therapeutic success and detect tumor recurrence at an early stage, which is vital given that prompt focal treatment of recurrence is very successful. Here, particular attention is paid to the role of Doppler ultrasound and DCE-MRI technologies. This book, containing a wealth of high-quality illustrations based on high-end equipment, will acquaint beginners with the basics of prostate ultrasound and MRI, while more advanced practitioners will learn new skills, means of avoiding pitfalls, and ways of effectively

  9. Toxicity and dosimetric analysis of non-small cell lung cancer patients undergoing radiotherapy with 4DCT and image-guided intensity modulated radiotherapy: a regional centre's experience.

    Science.gov (United States)

    Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart

    2016-09-01

    For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.

  10. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    International Nuclear Information System (INIS)

    Rata, Mihaela; Salomir, Rares; Lafon, Cyril; Umathum, Reiner; Jenne, Juergen; Bock, Michael; Cotton, Francois

    2008-01-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 x 0.25 x 3 mm 3 ) and accurate thermometry data (the PRFS method with a voxel size of 0.5 x 0.5 x 5 mm 3 , 2.2 s/image, 0.3 deg. C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  11. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    Science.gov (United States)

    Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael

    2008-11-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  12. The technical feasibility of an image-guided intensity-modulated radiotherapy (IG-IMRT) to perform a hypofractionated schedule in terms of toxicity and local control for patients with locally advanced or recurrent pancreatic cancer

    International Nuclear Information System (INIS)

    Son, Seok Hyun; Song, Jin Ho; Choi, Byung Ock; Kang, Young-nam; Lee, Myung Ah; Kang, Ki Mun; Jang, Hong Seok

    2012-01-01

    The purpose of this study was to evaluate the technical feasibility of an image-guided intensity modulated radiotherapy (IG-IMRT) using involved-field technique to perform a hypofractionated schedule for patients with locally advanced or recurrent pancreatic cancer. From May 2009 to November 2011, 12 patients with locally advanced or locally recurrent pancreatic cancer received hypofractionated CCRT using TomoTherapy Hi-Art with concurrent and sequential chemotherapy at Seoul St. Mary’s Hospital, the Catholic University of Korea. The total dose delivered was 45 Gy in 15 fractions or 50 Gy in 20 fractions. The target volume did not include the uninvolved regional lymph nodes. Treatment planning and delivery were performed using the IG-IMRT technique. The follow-up duration was a median of 31.1 months (range: 5.7-36.3 months). Grade 2 or worse acute toxicities developed in 7 patients (58%). Grade 3 or worse gastrointestinal and hematologic toxicity occurred in 0% and 17% of patients, respectively. In the response evaluation, the rates of partial response and stable disease were 58% and 42%, respectively. The rate of local failure was 8% and no regional failure was observed. Distant failure was the main cause of treatment failure. The progression-free survival and overall survival durations were 7.6 and 12.1 months, respectively. The involved-field technique and IG-IMRT delivered via a hypofractionated schedule are feasible for patients with locally advanced or recurrent pancreatic cancer

  13. Radiation therapy technology innovations applied to the treatment of head and neck patients: - Clinical results of Intensity Modulated Radiotherapy (IMRT), - Contribution of Image Guided Radiotherapy (IGRT) in the management of head and neck patients treated with IMRT

    International Nuclear Information System (INIS)

    Graff-Cailleaud, Pierre

    2011-01-01

    Numerous and exciting technological innovations were recently developed in radiotherapy. We aimed to assess benefits in two specific fields. 1) Clinical results of Intensity Modulated Radiotherapy (IMRT) applied to the treatment of Head and Neck (H and N) patients. The first study was a long-term mono-centric prospective registration of all H and N patients treated with IMRT in our institution. Locoregional control was excellent and toxicities limited. Recurrences were in-field. Dosimetric recommendations (parotids mean dose) were established. The second study assessed the impact of IMRT on health-related quality of life for H and N patients through a multicentric matched-pair comparison with conventional radiotherapy. Outstanding benefits were observed particularly in the fields of salivary dysfunction and oral discomfort. 2) Contribution of Image Guided Radiotherapy (IGRT) in the management of H and N patients treated with IMRT. The first study was a monitoring of delivered dose, using 3D dose recalculation from Megavoltage Cone-Beam CT (CBCT), as a quality assurance measure of a panel of H and N IMRT patients aligned with IGRT. Dosimetric consequences of anatomical changes were assessed. Contribution of color-coded MVCBCT dose-difference maps was studied. The aim of the second study was to quantify the inherent relative mobility between anatomic regions of the H and N area and to assess the dosimetric impact of several different matching procedures. Recommendations for the use of CBCT images in a daily practice were established. (author) [fr

  14. Dosimetric feasibility of magnetic resonance imaging-guided tri-cobalt 60 preoperative intensity modulated radiation therapy for soft tissue sarcomas of the extremity.

    Science.gov (United States)

    Kishan, Amar U; Cao, Minsong; Mikaeilian, Argin G; Low, Daniel A; Kupelian, Patrick A; Steinberg, Michael L; Kamrava, Mitchell

    2015-01-01

    The purpose of this study was to investigate the dosimetric differences of delivering preoperative intensity modulated radiation therapy (IMRT) to patients with soft tissue sarcomas of the extremity (ESTS) with a teletherapy system equipped with 3 rotating (60)Co sources and a built-in magnetic resonance imaging and with standard linear accelerator (LINAC)-based IMRT. The primary study population consisted of 9 patients treated with preoperative radiation for ESTS between 2008 and 2014 with LINAC-based static field IMRT. LINAC plans were designed to deliver 50 Gy in 25 fractions to 95% of the planning target volume (PTV). Tri-(60)Co system IMRT plans were designed with ViewRay system software. Tri-(60)Co-based IMRT plans achieved equivalent target coverage and dosimetry for organs at risk (long bone, skin, and skin corridor) compared with LINAC-based IMRT plans. The maximum and minimum PTV doses, heterogeneity indices, and ratio of the dose to 50% of the volume were equivalent for both planning systems. One LINAC plan violated the maximum bone dose constraint, whereas none of the tri-(60)Co plans did. Using a tri-(60)Co system, we were able to achieve equivalent dosimetry to the PTV and organs at risk for patients with ESTS compared with LINAC-based IMRT plans. The tri-(60)Co system may be advantageous over current treatment platforms by allowing PTV reduction and by elimination of the additional radiation dose associated with daily image guidance, but this needs to be evaluated prospectively. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  15. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan); Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan)

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  16. A Prospective Trial of Intensity Modulated Radiation Therapy (IMRT) Incorporating a Simultaneous Integrated Boost for Prostate Cancer: Long-term Outcomes Compared With Standard Image Guided IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Schild, Michael H. [Midwestern University, Glendale, Arizona (United States); Schild, Steven E., E-mail: sschild@mayo.edu [Department of Radiation Oncology, Mayo Clinic Hospital, Phoenix, Arizona (United States); Wong, William W.; Vora, Sujay A.; Keole, Sameer R.; Vargas, Carlos E.; Daniels, Thomas B.; Ezzell, Gary A. [Department of Radiation Oncology, Mayo Clinic Hospital, Phoenix, Arizona (United States); Nguyen, Ba D.; Roarke, Michael C. [Department of Radiology, Mayo Clinic, Scottsdale, Arizona (United States)

    2017-04-01

    Purpose: This report describes the long-term outcomes of a prospective trial of intensity modulated radiation therapy (IMRT), integrating a {sup 111}In capromab pendetide (ProstaScint) scan-directed simultaneous integrated boost (SIB) for localized prostate cancer. Methods and Materials: Seventy-one patients with T1N0M0 to T4N0M0 prostate cancer were enrolled, and their ProstaScint and pelvic computed tomography scans were coregistered for treatment planning. The entire prostate received 75.6 Gy in 42 fractions with IMRT, whereas regions of increased uptake on ProstaScint scans received 82 Gy as an SIB. Patients with intermediate- and high-risk disease also received 6 months and 12 months of adjuvant hormonal therapy, respectively. Results: The study enrolled 31 low-, 30 intermediate-, and 10 high-risk patients. The median follow-up was 120 months (range, 24-150 months). The 10-year biochemical control rates were 85% for the entire cohort and 84%, 84%, and 90% for patients with low-, intermediate-, and high-risk disease, respectively. The 10-year survival rate of the entire cohort was 69%. Pretreatment prostate-specific antigen level >10 ng/mL and boost volume of >10% of the prostate volume were significantly associated with poorer biochemical control and survival. The outcomes were compared with those of a cohort of 302 patients treated similarly but without the SIB and followed up for a median of 91 months (range, 6-138 months). The 5- and 10-year biochemical control rates were 86% and 61%, respectively, in patients without the SIB compared with 94% and 85%, respectively, in patients in this trial who received the SIB (P=.02). The cohort that received an SIB did not have increased toxicity. Conclusions: The described IMRT strategy, integrating multiple imaging modalities to administer 75.6 Gy to the entire prostate with a boost dose of 82 Gy, was feasible. The addition of the SIB was associated with greater biochemical control but not toxicity. Modern

  17. Single Vocal Cord Irradiation: Image Guided Intensity Modulated Hypofractionated Radiation Therapy for T1a Glottic Cancer: Early Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mamgani, Abrahim, E-mail: a.almamgani@nki.nl [Department of Radiation Oncology – Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam (Netherlands); Kwa, Stefan L.S.; Tans, Lisa; Moring, Michael; Fransen, Dennie; Mehilal, Robert; Verduijn, Gerda M. [Department of Radiation Oncology – Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam (Netherlands); Baatenburg de Jong, Rob J. [Department of Otolaryngology and Head and Neck Surgery – Erasmus MC, University Medical Center Rotterdam, Rotterdam (Netherlands); Heijmen, Ben J.M.; Levendag, Peter C. [Department of Radiation Oncology – Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam (Netherlands)

    2015-10-01

    Purpose: To report, from a retrospective analysis of prospectively collected data, on the feasibility, outcome, toxicity, and voice-handicap index (VHI) of patients with T1a glottic cancer treated by a novel intensity modulated radiation therapy technique developed at our institution to treat only the involved vocal cord: single vocal cord irradiation (SVCI). Methods and Materials: Thirty patients with T1a glottic cancer were treated by means of SVCI. Dose prescription was set to 16 × 3.63 Gy (total dose 58.08 Gy). The clinical target volume was the entire vocal cord. Setup verification was done by means of an online correction protocol using cone beam computed tomography. Data for voice quality assessment were collected prospectively at baseline, end of treatment, and 4, 6, and 12 weeks and 6, 12, and 18 months after treatment using VHI questionnaires. Results: After a median follow-up of 30 months (range, 7-50 months), the 2-year local control and overall survival rates were 100% and 90% because no single local recurrence was reported and 3 patients died because of comorbidity. All patients have completed the intended treatment schedule; no treatment interruptions and no grade 3 acute toxicity were reported. Grade 2 acute dermatitis or dysphagia was reported in only 5 patients (17%). No serious late toxicity was reported; only 1 patient developed temporary grade 2 laryngeal edema, and responded to a short-course of corticosteroid. The VHI improved significantly, from 33.5 at baseline to 9.5 and 10 at 6 weeks and 18 months, respectively (P<.001). The control group, treated to the whole larynx, had comparable local control rates (92.2% vs 100%, P=.24) but more acute toxicity (66% vs 17%, P<.0001) and higher VHI scores (23.8 and 16.7 at 6 weeks and 18 months, respectively, P<.0001). Conclusion: Single vocal cord irradiation is feasible and resulted in maximal local control rate at 2 years. The deterioration in VHI scores was slight and temporary and

  18. Encouraging Early Clinical Outcomes With Helical Tomotherapy–Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    International Nuclear Information System (INIS)

    Gupta, Tejpal; Wadasadawala, Tabassum; Master, Zubin; Phurailatpam, Reena; Pai-Shetty, Rajershi; Jalali, Rakesh

    2012-01-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11–26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  19. Encouraging Early Clinical Outcomes With Helical Tomotherapy-Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tejpal [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India); Wadasadawala, Tabassum; Master, Zubin; Phurailatpam, Reena; Pai-Shetty, Rajershi; Jalali, Rakesh [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India)

    2012-02-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11-26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  20. First Clinical Release of an Online, Adaptive, Aperture-Based Image-Guided Radiotherapy Strategy in Intensity-Modulated Radiotherapy to Correct for Inter- and Intrafractional Rotations of the Prostate

    International Nuclear Information System (INIS)

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schöller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-01-01

    Purpose: We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Method and Materials: Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. Results: In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume–planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3° (mean of means), standard deviation of means ±4.9°, maximum at 30.7°. Three-dimensional vector translations relative to skin markings were 9.3 ± 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 ± 1.5 min (maximum, 15.1 min) between kV imaging and last beam’s electronic portal images showed further L-R rotations of 2.5° ± 2.3° (maximum, 26.9°), and three-dimensional vector translations of 3.0 ±3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. Conclusion: We demonstrated the clinical feasibility of an online adaptive image-guided, intensity-modulated prostate protocol on a standard

  1. First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate.

    Science.gov (United States)

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schöller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-08-01

    We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume-planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3° (mean of means), standard deviation of means ±4.9°, maximum at 30.7°. Three-dimensional vector translations relative to skin markings were 9.3 ± 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 ± 1.5 min (maximum, 15.1 min) between kV imaging and last beam's electronic portal images showed further L-R rotations of 2.5° ± 2.3° (maximum, 26.9°), and three-dimensional vector translations of 3.0 ±3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. We demonstrated the clinical feasibility of an online adaptive image-guided, intensity-modulated prostate protocol on a standard linear accelerator to correct 6 degrees of freedom of

  2. Hydrogel Spacer Prospective Multicenter Randomized Controlled Pivotal Trial: Dosimetric and Clinical Effects of Perirectal Spacer Application in Men Undergoing Prostate Image Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mariados, Neil, E-mail: nmariados@ampofny.com [Associated Medical Professionals of New York, Syracuse, New York (United States); Sylvester, John [21st Century Oncology, East Bradenton, Florida (United States); Shah, Dhiren [Western New York Urology Associates, Cancer Care of WNY, Cheektowaga, New York (United States); Karsh, Lawrence [The Urology Center of Colorado, Denver, Colorado (United States); Hudes, Richard [Chesapeake Urology Research Associates, The Prostate Center, Owings Mills, Maryland (United States); Beyer, David [Arizona Oncology Services Foundation, Phoenix, Arizona (United States); Kurtzman, Steven [Urological Surgeons of Northern California, Campbell, California (United States); Bogart, Jeffrey [The Research Foundation of State University of New York, SUNY Upstate Medical University, Syracuse, New York (United States); Hsi, R. Alex [Peninsula Cancer Center, Poulsbo, Washington (United States); Kos, Michael [Urology Nevada, Reno, Nevada (United States); Ellis, Rodney [University Hospitals Case Medical Center, Cleveland, Ohio (United States); Logsdon, Mark [Sutter Health Sacramento Sierra Region, Sutter Institute for Medical Research, Sacramento, California (United States); Zimberg, Shawn [Advanced Radiation Centers of New York, Lake Success, New York (United States); Forsythe, Kevin [Oregon Urology Institute, Springfield, Oregon (United States); Zhang, Hong [University of Rochester, Rochester, New York (United States); Soffen, Edward [CentraState Medical Center, Freehold, New Jersey (United States); Francke, Patrick [Carolina Regional Cancer Center, 21st Century Oncology, Myrtle Beach, South Carolina (United States); Mantz, Constantine [21st Century Oncology, Fort Meyers, Florida (United States); Rossi, Peter [Emory University, Atlanta, Georgia (United States); DeWeese, Theodore [The Johns Hopkins University, Baltimore, Maryland (United States); and others

    2015-08-01

    Purpose: Perirectal spacing, whereby biomaterials are placed between the prostate and rectum, shows promise in reducing rectal dose during prostate cancer radiation therapy. A prospective multicenter randomized controlled pivotal trial was performed to assess outcomes following absorbable spacer (SpaceOAR system) implantation. Methods and Materials: Overall, 222 patients with clinical stage T1 or T2 prostate cancer underwent computed tomography (CT) and magnetic resonance imaging (MRI) scans for treatment planning, followed with fiducial marker placement, and were randomized to receive spacer injection or no injection (control). Patients received postprocedure CT and MRI planning scans and underwent image guided intensity modulated radiation therapy (79.2 Gy in 1.8-Gy fractions). Spacer safety and impact on rectal irradiation, toxicity, and quality of life were assessed throughout 15 months. Results: Spacer application was rated as “easy” or “very easy” 98.7% of the time, with a 99% hydrogel placement success rate. Perirectal spaces were 12.6 ± 3.9 mm and 1.6 ± 2.0 mm in the spacer and control groups, respectively. There were no device-related adverse events, rectal perforations, serious bleeding, or infections within either group. Pre-to postspacer plans had a significant reduction in mean rectal V70 (12.4% to 3.3%, P<.0001). Overall acute rectal adverse event rates were similar between groups, with fewer spacer patients experiencing rectal pain (P=.02). A significant reduction in late (3-15 months) rectal toxicity severity in the spacer group was observed (P=.04), with a 2.0% and 7.0% late rectal toxicity incidence in the spacer and control groups, respectively. There was no late rectal toxicity greater than grade 1 in the spacer group. At 15 months 11.6% and 21.4% of spacer and control patients, respectively, experienced 10-point declines in bowel quality of life. MRI scans at 12 months verified spacer absorption. Conclusions: Spacer

  3. Image-guided radiation therapy: physician's perspectives

    International Nuclear Information System (INIS)

    Gupta, T.; Anand Narayan, C.

    2012-01-01

    The evolution of radiotherapy has been ontogenetically linked to medical imaging. Over the years, major technological innovations have resulted in substantial improvements in radiotherapy planning, delivery, and verification. The increasing use of computed tomography imaging for target volume delineation coupled with availability of computer-controlled treatment planning and delivery systems have progressively led to conformation of radiation dose to the target tissues while sparing surrounding normal tissues. Recent advances in imaging technology coupled with improved treatment delivery allow near-simultaneous soft-tissue localization of tumor and repositioning of patient. The integration of various imaging modalities within the treatment room for guiding radiation delivery has vastly improved the management of geometric uncertainties in contemporary radiotherapy practice ushering in the paradigm of image-guided radiation therapy (IGRT). Image-guidance should be considered a necessary and natural corollary to high-precision radiotherapy that was long overdue. Image-guided radiation therapy not only provides accurate information on patient and tumor position on a quantitative scale, it also gives an opportunity to verify consistency of planned and actual treatment geometry including adaptation to daily variations resulting in improved dose delivery. The two main concerns with IGRT are resource-intensive nature of delivery and increasing dose from additional imaging. However, increasing the precision and accuracy of radiation delivery through IGRT is likely to reduce toxicity with potential for dose escalation and improved tumor control resulting in favourable therapeutic index. The radiation oncology community needs to leverage this technology to generate high-quality evidence to support widespread adoption of IGRT in contemporary radiotherapy practice. (author)

  4. Serial histopathological changes in irradiated guinea pig lung receiving conventional fractionated and hyperfractionated irradiation

    International Nuclear Information System (INIS)

    Itoh, Satoshi; Inomata, Taisuke; Ogawa, Yasuhiro; Yoshida, Shoji; Sonobe, Hiroshi; Ohtsuki, Yuji

    1999-01-01

    The purpose of this study is to determine serial histopathological differences in guinea pig lungs receiving the same total dose as clinically used between conventional fractionated and hyperfractionated irradiation. The guinea pigs received 80 Gy in 40 daily fractions of 2 Gy each (conventional fractionation), 80 Gy in 80 fractions of 1 Gy each twice a day (hyperfractionation), 81 Gy in 27 daily fractions of 3 Gy each (conventional fractionation), or 81 Gy in 54 fractions of 1.5 Gy each twice a day (hyperfractionation). We evaluated the histopathological changes of irradiated guinea pig lungs at 1, 2, 3, 6, 9, and 12 months after irradiation. The guinea pig lungs that received 81 Gy in 27 daily fractions showed histopathological changes of inflammation including formation of lymph follicles after 6 months. The lungs which received 81 Gy in 54 fractions showed similar but slightly less pronounced changes than those that received 81 Gy in 27 daily fractions. The guinea pig lungs of other groups showed no histopathological changes during the observation period. In hyperfractionated irradiation the damage to the guinea pig lung is quantitatively less than that occurring as a result of conventional fractionated irradiation of the same total dose. (author)

  5. Serial histopathological changes in irradiated guinea pig lung receiving conventional fractionated and hyperfractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Satoshi; Inomata, Taisuke; Ogawa, Yasuhiro; Yoshida, Shoji; Sonobe, Hiroshi; Ohtsuki, Yuji [Kochi Medical School, Nankoku (Japan)

    1999-05-01

    The purpose of this study is to determine serial histopathological differences in guinea pig lungs receiving the same total dose as clinically used between conventional fractionated and hyperfractionated irradiation. The guinea pigs received 80 Gy in 40 daily fractions of 2 Gy each (conventional fractionation), 80 Gy in 80 fractions of 1 Gy each twice a day (hyperfractionation), 81 Gy in 27 daily fractions of 3 Gy each (conventional fractionation), or 81 Gy in 54 fractions of 1.5 Gy each twice a day (hyperfractionation). We evaluated the histopathological changes of irradiated guinea pig lungs at 1, 2, 3, 6, 9, and 12 months after irradiation. The guinea pig lungs that received 81 Gy in 27 daily fractions showed histopathological changes of inflammation including formation of lymph follicles after 6 months. The lungs which received 81 Gy in 54 fractions showed similar but slightly less pronounced changes than those that received 81 Gy in 27 daily fractions. The guinea pig lungs of other groups showed no histopathological changes during the observation period. In hyperfractionated irradiation the damage to the guinea pig lung is quantitatively less than that occurring as a result of conventional fractionated irradiation of the same total dose. (author)

  6. Image-guided robotic surgery.

    Science.gov (United States)

    Marescaux, Jacques; Solerc, Luc

    2004-06-01

    Medical image processing leads to an improvement in patient care by guiding the surgical gesture. Three-dimensional models of patients that are generated from computed tomographic scans or magnetic resonance imaging allow improved surgical planning and surgical simulation that offers the opportunity for a surgeon to train the surgical gesture before performing it for real. These two preoperative steps can be used intra-operatively because of the development of augmented reality, which consists of superimposing the preoperative three-dimensional model of the patient onto the real intraoperative view. Augmented reality provides the surgeon with a view of the patient in transparency and can also guide the surgeon, thanks to the real-time tracking of surgical tools during the procedure. When adapted to robotic surgery, this tool tracking enables visual serving with the ability to automatically position and control surgical robotic arms in three dimensions. It is also now possible to filter physiologic movements such as breathing or the heart beat. In the future, by combining augmented reality and robotics, these image-guided robotic systems will enable automation of the surgical procedure, which will be the next revolution in surgery.

  7. Image-guided and adaptive radiotherapy

    International Nuclear Information System (INIS)

    Louvel, G.; Chajon, E.; Henry, O.; Cazoulat, G.; Le Maitre, A.; Simon, A.; Bensadoun, R.J.; Crevoisier, R. de

    2012-01-01

    Image-guided radiotherapy (IGRT) aims to take into account anatomical variations occurring during irradiation by visualization of anatomical structures. It may consist of a rigid registration of the tumour by moving the patient, in case of prostatic irradiation for example. IGRT associated with intensity-modulated radiotherapy (IMRT) is strongly recommended when high-dose is delivered in the prostate, where it seems to reduce rectal and bladder toxicity. In case of significant anatomical deformations, as in head and neck tumours (tumour shrinking and decrease in volume of the salivary glands), re-planning appears to be necessary, corresponding to the adaptive radiotherapy. This should ideally be 'monitored' and possibly triggered based on a calculation of cumulative dose, session after session, compared to the initial planning dose, corresponding to the concept of dose-guided adaptive radiotherapy. The creation of 'planning libraries' based on predictable organ positions (as in cervical cancer) is another way of adaptive radiotherapy. All of these strategies still appear very complex and expensive and therefore require stringent validation before being routinely applied. (authors)

  8. Concept for quantifying the dose from image guided radiotherapy

    International Nuclear Information System (INIS)

    Schneider, Uwe; Hälg, Roger; Besserer, Jürgen

    2015-01-01

    Radiographic image guidance is routinely used for patient positioning in radiotherapy. All radiographic guidance techniques can give a significant radiation dose to the patient. The dose from diagnostic imaging is usually managed by using effective dose minimization. In contrast, image-guided radiotherapy adds the imaging dose to an already high level of therapeutic radiation which cannot be easily managed using effective dose. The purpose of this work is the development of a concept of IGRT dose quantification which allows a comparison of imaging dose with commonly accepted variations of therapeutic dose. It is assumed that dose variations of the treatment beam which are accepted in the spirit of the ALARA convention can also be applied to the additional imaging dose. Therefore we propose three dose categories: Category I: The imaging dose is lower than a 2 % variation of the therapy dose. Category II: The imaging dose is larger than in category I, but lower than the therapy dose variations between different treatment techniques. Category III: The imaging dose is larger than in Category II. For various treatment techniques dose measurements are used to define the dose categories. The imaging devices were categorized according to the measured dose. Planar kV-kV imaging is a category I imaging procedure. kV-MV imaging is located at the edge between category I and II and is for increasing fraction size safely a category I imaging technique. MV-MV imaging is for all imaging technologies a category II procedure. MV fan beam CT for localization is a category I technology. Low dose protocols for kV CBCT are located between category I and II and are for increasing fraction size a category I imaging technique. All other investigated Pelvis-CBCT protocols are category II procedures. Fan beam CT scout views are category I technology. Live imaging modalities are category III for conventional fractionation, but category II for stereotactic treatments. Dose from radiotherapy

  9. Quality assurance for image-guided radiotherapy

    International Nuclear Information System (INIS)

    Marinello, Ginette

    2008-01-01

    The topics discussed include, among others, the following: Quality assurance program; Image guided radiotherapy; Commissioning and quality assurance; Check of agreement between visual and displayed scales; quality controls: electronic portal imaging device (EPID), MV-kV and kV-kV, cone-beam CT (CBCT), patient doses. (P.A.)

  10. Different styles of image-guided radiotherapy

    NARCIS (Netherlands)

    van Herk, Marcel

    2007-01-01

    To account for geometric uncertainties during radiotherapy, safety margins are applied. In many cases, these margins overlap organs at risk, thereby limiting dose escalation. The aim of image-guided radiotherapy is to improve the accuracy by imaging tumors and critical structures on the machine just

  11. Efficacy and toxicity of conventionally fractionated pelvic radiation with a hypo fractionated simultaneous versus conventionally fractionated sequential boost for patients with high-risk prostate cancer

    International Nuclear Information System (INIS)

    McDonald, Andrew M.; Jacob, Rojymon; Dobelbower, Michael C.; Kim, Robert Y.; Fiveash, John B.

    2013-01-01

    Purpose: To determine if high-risk prostate cancer responds differently to hypo fractionation. Material and methods: One hundred and fifty-seven men with NCCN high-risk (T3, PSA 20, or Gleason 8) clinically localized prostate cancer treated between 1998 and 2010 met the inclusion criteria for the analysis. Eighty-two were treated with conventional WPRT with a conventionally fractionated sequential boost to the prostate (cRT), with the prostate receiving 75-77 Gy in 1.8 - 2.0 Gy fractions. Seventy-five were treated with pelvic IMRT with a hypo fractionated simultaneous boost to the prostate (hRT), with the prostate receiving 70 Gy in 2.5 Gy fractions. The dose to the pelvic lymph nodes was 45 Gy in the cRT group and 50.4 Gy in the hRT group, both at 1.8 Gy per fraction. Ninety-two percent received neoadjuvant hormonal ablation therapy, typically beginning two months prior to the start of RT. Results: Median follow-up was 6.5 years for men receiving cRT and 3.7 years for those receiving hRT. The actuarial rate of biochemical control at four years was 88% for cRT and 94% for hRT (p=0.82). The rates of early rectal and urinary grade ≥2 toxicities were 35% (29 of 82) and 49% (40 of 82) for the cRT group and 36% (27 of 75) and 44% (33 of 75) for the hRT group. The actuarial rate of late grade 2 rectal toxicity at four years was 25% for the cRT group and 13% for the hRT group (p=0.037). The rate of late grade 3 rectal complications was 4% (3 of 82) for patients receiving cRT and 1% (1 of 75) for patients receiving hRT. Conclusion: Initial follow-up indicates equivalent biochemical control between regimens. Patients receiving hRT experienced fewer late rectal complications

  12. Better compliance with hypofractionation vs. conventional fractionation in adjuvant breast cancer radiotherapy. Results of a single, institutional, retrospective study

    International Nuclear Information System (INIS)

    Rudat, Volker; Nour, Alaa; Hammoud, Mohamed; Abou Ghaida, Salam

    2017-01-01

    The aim of the study was to identify factors significantly associated with the occurrence of unintended treatment interruptions in adjuvant breast cancer radiotherapy. Patients treated with postoperative radiotherapy of the breast or chest wall between March 2014 and August 2016 were evaluated. The radiotherapy regimens and techniques applied were either conventional fractionation (CF; 28 daily fractions of 1.8 Gy or 25 fractions of 2.0 Gy) or hypofractionation (HF; 15 daily fractions of 2.67 Gy) with inverse planned intensity-modulated radiotherapy (IMRT) or three-dimensional planned conformal radiotherapy (3DCRT). Logistic regression analysis was used to identify factors associated with noncompliance. Noncompliance was defined as the missing of at least one scheduled radiotherapy fraction. In all, 19 of 140 (13.6%) patients treated with HF and 39 of 146 (26.7%) treated with CF experienced treatment interruptions. Of 23 factors tested, the fractionation regimen emerged as the only independent significant prognostic factor for noncompliance on multivariate analysis (CF; p = 0.007; odds ratio, 2.3; 95% confidence interval, 1.3-4.2). No statistically significant differences concerning the reasons for treatment interruptions could be detected between patients treated with CF or HF. HF is significantly associated with a better patient compliance with the prescribed radiotherapy schedule compared with CF. The data suggest that this finding is basically related to the shorter overall treatment time of HF. (orig.) [de

  13. Histopathological changes in the irradiated normal organs of guinea pigs with conventional fractionation and hyperfractionation

    International Nuclear Information System (INIS)

    Inomata, Taisuke; Itoh, Satoshi; Tsuboi, Nobuaki

    1998-01-01

    Guinea pigs were divided into groups according to four irradiation schedules : 2 Gy/3 Gy x 1/day, five fractions/week, total 80 Gy/81 Gy (A/C group) and 1.0 Gy/1.5 Gy x 2/day, ten fractions/week, total 80 Gy/81 Gy (B/D group). The A group and the C group pathologically caused severe damage in the kidney six and three months after irradiation, respectively. In the B group pathological analysis suggested that only slight-to-moderate changes were occurred in the Bowman's capsule. The D group caused slight damage in the kidney six months after irradiation. Hyperfractionation (B/D group) used in this protocol can clearly reduce radiation damage in the kidney of guinea pigs as compared with conventional fractionation (A/C group). (author)

  14. Impact of drug permeability of blood-brain barrier after whole brain conventional fractionation irradiation

    International Nuclear Information System (INIS)

    Zhang Longzhen; Cao Yuandong; Chen Yong; Yu Changzhou; Zhuang Ming

    2006-01-01

    Objective: To explore the effect of drug permeability in rat blood-brain barrier(BBB) after different doses of whole brain conventional fractionation irradiation in rats and provide the experimental basis for the optimum time of clinical chemotherapy. Methods: According to different irradiation doses, 100 adult Sprague-Dowley rats were divided randomly into 5 groups: the normal control group(0 Gy); 10 Gy; 20 Gy; 30 Gy; and 40 Gy group. All rats were exposed to conventional fractionation(2 Gy/d, 5 d/w) with 60 Co γ-ray. MTX(25 mg/kg) was injected through the tail mainline 16 hours after whole brain irradiation. Cerebrospinal fluid(CSF) and blood were collected 2 hours later. Those samples were used to assay MTX concentration using RP-HPLC. Results: MTX mean concentrations in CSF was 0.07, 0.08, 0.12, 0.24, 0.23 mg/L in the control, 10 Gy, 20 Gy, 30 Gy, 40 Gy groups, respectively. All the data was analyzed with rank test of transform. MTX concentration of CSF was significantly different except the control and 10 Gy, 30 Gy and 40 Gy group. MTX concentration of blood was not significantly different in all groups (P>0.05). Conclusions: Irradiation can directly damage the function of BBB. BBB would be opened gradually following the increase of irradiation dose. It could be considered as the optimum time of chemotherapy when the whole brain irradiation ranges from 20 Gy to 30 Gy. (authors)

  15. Endovascular image-guided interventions (EIGIs)

    International Nuclear Information System (INIS)

    Rudin, Stephen; Bednarek, Daniel R.; Hoffmann, Kenneth R.

    2008-01-01

    Minimally invasive interventions are rapidly replacing invasive surgical procedures for the most prevalent human disease conditions. X-ray image-guided interventions carried out using the insertion and navigation of catheters through the vasculature are increasing in number and sophistication. In this article, we offer our vision for the future of this dynamic field of endovascular image-guided interventions in the form of predictions about (1) improvements in high-resolution detectors for more accurate guidance, (2) the implementation of high-resolution region of interest computed tomography for evaluation and planning, (3) the implementation of dose tracking systems to control patient radiation risk, (4) the development of increasingly sophisticated interventional devices, (5) the use of quantitative treatment planning with patient-specific computer fluid dynamic simulations, and (6) the new expanding role of the medical physicist. We discuss how we envision our predictions will come to fruition and result in the universal goal of improved patient care.

  16. Trilogy Image-Guided Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Huntzinger, Calvin; Friedman, William; Bova, Frank; Fox, Timothy; Bouchet, Lionel; Boeh, Lester M.B.A.

    2007-01-01

    Full integration of advanced imaging, noninvasive immobilization, positioning, and motion-management methods into radiosurgery have resulted in fundamental changes in therapeutic strategies and approaches that are leading us to the treatment room of the future. With the introduction of image-guided radiosurgery (IGRS) systems, such as Trilogy TM , physicians have for the first time a practical means of routinely identifying and treating very small lesions throughout the body. Using new imaging processes such as positron emission tomography/computed tomography (PET/CT) scans, clinics may be able to detect these lesions and then eradicate them with image-guided stereotactic radiosurgery treatments. Thus, there is promise that cancer could be turned into a chronic disease, managed through a series of checkups, and Trilogy treatments when metastatic lesions reappear

  17. Issues in image-guided therapy.

    OpenAIRE

    Haigron , Pascal; Luo , Limin ,; Coatrieux , Jean-Louis

    2009-01-01

    International audience; Medical robotics, computer- assisted surgery (CAS), image-guided therapy (IGT), and the like emerged more than 20 years ago, and many advances have been made since. Conferences and workshops have been organized; scientific contributions, position papers, and patents have been published; new academic societies have been launched; and companies were created all over the world to propose methods, devices, and systems in the area. Researchers in robotics, computer vision a...

  18. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Yin Fangfang; Gao Qinghuai; Xie Huchen; Nelson, Diana F.; Yu Yan; Kwok, W. Edmund; Totterman, Saara; Schell, Michael C.; Rubin, Philip

    1998-01-01

    Purpose: To investigate a method for the generation of digitally reconstructed radiographs directly from MR images (DRR-MRI) to guide a computerized portal verification procedure. Methods and Materials: Several major steps were developed to perform an MR image-guided portal verification procedure. Initially, a wavelet-based multiresolution adaptive thresholding method was used to segment the skin slice-by-slice in MR brain axial images. Some selected anatomical structures, such as target volume and critical organs, were then manually identified and were reassigned to relatively higher intensities. Interslice information was interpolated with a directional method to achieve comparable display resolution in three dimensions. Next, a ray-tracing method was used to generate a DRR-MRI image at the planned treatment position, and the ray tracing was simply performed on summation of voxels along the ray. The skin and its relative positions were also projected to the DRR-MRI and were used to guide the search of similar features in the portal image. A Canny edge detector was used to enhance the brain contour in both portal and simulation images. The skin in the brain portal image was then extracted using a knowledge-based searching technique. Finally, a Chamfer matching technique was used to correlate features between DRR-MRI and portal image. Results: The MR image-guided portal verification method was evaluated using a brain phantom case and a clinical patient case. Both DRR-CT and DRR-MRI were generated using CT and MR phantom images with the same beam orientation and then compared. The matching result indicated that the maximum deviation of internal structures was less than 1 mm. The segmented results for brain MR slice images indicated that a wavelet-based image segmentation technique provided a reasonable estimation for the brain skin. For the clinical patient case with a given portal field, the MR image-guided verification method provided an excellent match between

  19. Image-guided procedures in brain biopsy.

    Science.gov (United States)

    Fujita, K; Yanaka, K; Meguro, K; Narushima, K; Iguchi, M; Nakai, Y; Nose, T

    1999-07-01

    Image-guided procedures, such as computed tomography (CT)-guided stereotactic and ultrasound-guided methods, can assist neurosurgeons in localizing the relevant pathology. The characteristics of image-guided procedures are important for their appropriate use, especially in brain biopsy. This study reviewed the results of various image-guided brain biopsies to ascertain the advantages and disadvantages. Brain biopsies assisted by CT-guided stereotactic, ultrasound-guided, Neuronavigator-guided, and the combination of ultrasound and Neuronavigator-guided procedures were carried out in seven, eight, one, and three patients, respectively. Four patients underwent open biopsy without a guiding system. Twenty of 23 patients had a satisfactory diagnosis after the initial biopsy. Three patients failed to have a definitive diagnosis after the initial procedure, one due to insufficient volume sampling after CT-guided procedure, and two due to localization failure by ultrasound because the lesions were nonechogenic. All patients who underwent biopsy using the combination of ultrasound and Neuronavigator-guided methods had a satisfactory result. The CT-guided procedure provided an efficient method of approaching any intracranial target and was appropriate for the diagnosis of hypodense lesions, but tissue sampling was sometimes not sufficient to achieve a satisfactory diagnosis. The ultrasound-guided procedure was suitable for the investigation of hyperdense lesions, but was difficult to localize nonechogenic lesions. The combination of ultrasound and Neuronavigator methods improved the diagnostic accuracy even in nonechogenic lesions such as malignant lymphoma. Therefore, it is essential to choose the most appropriate guiding method for brain biopsy according to the radiological nature of the lesions.

  20. Image-guided positioning and tracking.

    Science.gov (United States)

    Ruan, Dan; Kupelian, Patrick; Low, Daniel A

    2011-01-01

    Radiation therapy aims at maximizing tumor control while minimizing normal tissue complication. The introduction of stereotactic treatment explores the volume effect and achieves dose escalation to tumor target with small margins. The use of ablative irradiation dose and sharp dose gradients requires accurate tumor definition and alignment between patient and treatment geometry. Patient geometry variation during treatment may significantly compromise the conformality of delivered dose and must be managed properly. Setup error and interfraction/intrafraction motion are incorporated in the target definition process by expanding the clinical target volume to planning target volume, whereas the alignment between patient and treatment geometry is obtained with an adaptive control process, by taking immediate actions in response to closely monitored patient geometry. This article focuses on the monitoring and adaptive response aspect of the problem. The term "image" in "image guidance" will be used in a most general sense, to be inclusive of some important point-based monitoring systems that can be considered as degenerate cases of imaging. Image-guided motion adaptive control, as a comprehensive system, involves a hierarchy of decisions, each of which balances simplicity versus flexibility and accuracy versus robustness. Patient specifics and machine specifics at the treatment facility also need to be incorporated into the decision-making process. Identifying operation bottlenecks from a system perspective and making informed compromises are crucial in the proper selection of image-guidance modality, the motion management mechanism, and the respective operation modes. Not intended as an exhaustive exposition, this article focuses on discussing the major issues and development principles for image-guided motion management systems. We hope these information and methodologies will facilitate conscientious practitioners to adopt image-guided motion management systems

  1. Value of conventionally fractionated radiotherapy for the local treatment of HIV associated Kaposi's sarcoma

    International Nuclear Information System (INIS)

    Saran, F.; Adamietz, I.A.; Mose, S.; Thilmann, C.; Boettcher, H.D.

    1995-01-01

    From June 1991 to June 1993, 43 patients with 111 HIV-associated Kaposi's sarcoma of the skin or oral cavity were treated. Lesions were irradiated with 5 to 12 MeV electrons or 60Co gamma-rays. The fractionation scheme was 5 times 2 Gy/week for skin and enoral lesions with a total reference dosage of up to 20 Gy. Side effects were assessed during therapy and the therapeutic result 6 weeks after end of treatment. Thirty-eight out of 111 lesions were judged as complete response (CR) (34%), 61/111 as partial response (PR) (55%) and 12/111 were judged as no change (NC) (11%). Overall response (CR + PR) was 89%. Two patients with lesions of oral cavity suffered from RTOG grade-IV mucositis after 10 and 14 Gy. In 71/106 skin lesions (67%), radiation induced RTOG grade-I reactions were observed. Conclusion: In patients with HIV associated Kaposi's sarcoma effective palliation can be achieved by means of radiotherapy with an overall dose of 20 Gy in conventional fractionation. Yet, the fraction of patients with complete responses is with 34 to 47% lower compared with doses above 20 Gy (66 to 100%). With reference to the reported data our results point to a dose-response relationship for Kaposi's sarcoma. Therefore higher total reference doses, e.g. 30 Gy with weekly 5 times 2 Gy or 24 Gy with 5 times 1.6 Gy for mucous lesions, respectively, are suggested as by this mean the complete response rate can be coubled. (orig./MG) [de

  2. INNOLAB- image guided surgery and therapy lab

    Directory of Open Access Journals (Sweden)

    Fritzsche Holger

    2017-09-01

    Full Text Available Incremental innovation, something better or cheaper or more effective, is the standard innovation process for medical product development. Disruptive innovation is often not recognized as disruptive, because it very often starts as a simple and easy alternative to existing products with much reduced features and bad performance. Innovation is the invention multiplied with a commercial use, or in other words something that eventually provides a value to a clinical user or patient. To create such innovation not a technology push (technology delivered from a technical need perspective but rather a pull (by learning and working with the clinical users is required. Medical technology students need to understand that only through proper observation, procedure know-how and subsequent analysis and evaluation, clinically relevant and affordable innovation can be generated and possibly subsequently used for entrepreneurial ventures. The dedicated laboratory for innovation, research and entrepreneurship- INNOLAB ego.-INKUBATOR IGT (Image Guided Therapies is financed by the state of Sachsen-Anhalt as part of the European ego.-INKUBATOR program with (EFRE funds at the university clinic operated by the technical chair for catheter technologies and image guided surgeries. It forms a network node between medicine, research and economics. It teaches students to lead innovation processes, technology transfer to the user and is designed to stimulate the start-up intentions.

  3. Image-guided radiotherapy for effective radiotherapy delivery

    CERN Document Server

    Karlsson, Ulf Lennart

    2016-01-01

    Image-guided radiotherapy (IGRT) is a new radiotherapy technology that combines the rapid dose fall off associated with intensity-modulated radiotherapy (IMRT) and daily tumor imaging allowing for high precision tumor dose delivery and effective sparing of surrounding normal organs. The new radiation technology requires close collaboration between radiologists, nuclear medicine specialists, and radiation oncologists to avoid marginal miss. Modern diagnostic imaging such as positron emission tomography (PET) scans, positron emission tomography with Computed Tomograpgy (PET-CT), and magnetic resonance imaging (MRI) allows the radiation oncologist to target the positive tumor with high accuracy. As the tumor is well visualized during radiation treatment, the margins required to avoid geographic miss can be safely reduced , thus sparing the normal organs from excessive radiation. When the tumor is located close to critical radiosensitive structures such as the spinal cord, IGRT can deliver a high dose of radiatio...

  4. Strategies for Biologic Image-Guided Dose Escalation: A Review

    International Nuclear Information System (INIS)

    Sovik, Aste; Malinen, Eirik; Olsen, Dag Rune

    2009-01-01

    There is increasing interest in how to incorporate functional and molecular information obtained by noninvasive, three-dimensional tumor imaging into radiotherapy. The key issues are to identify radioresistant regions that can be targeted for dose escalation, and to develop radiation dose prescription and delivery strategies providing optimal treatment for the individual patient. In the present work, we review the proposed strategies for biologic image-guided dose escalation with intensity-modulated radiation therapy. Biologic imaging modalities and the derived images are discussed, as are methods for target volume delineation. Different dose escalation strategies and techniques for treatment delivery and treatment plan evaluation are also addressed. Furthermore, we consider the need for response monitoring during treatment. We conclude with a summary of the current status of biologic image-based dose escalation and of areas where further work is needed for this strategy to become incorporated into clinical practice

  5. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada); Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Bezjak, Andrea, E-mail: andrea.bezjak@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada)

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  6. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    International Nuclear Information System (INIS)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre; Le, Lisa W.; Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John; Bezjak, Andrea

    2012-01-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors ≥5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  7. Radiation resistivity of pure-silica core image guide

    International Nuclear Information System (INIS)

    Hayami, H.; Ishitani, T.; Kishihara, O.; Suzuki, K.

    1988-01-01

    Radiation resistivity of pure-silica core image guides were investigated in terms of incremental spectral loss and quality of pictures transmitted through the image guides. Radiation-induced spectral losses were measured so as to clarify the dependences of radiation resistivity on such parameters as core materials (OH and Cl contents), picture element dimensions, (core packing density and cladding thickness), number of picture elements and drawing conditions. As the results, an image guide with OH-and Cl-free pure-silica core, 30-45% in core packing density, and 1.8 ∼ 2.2 μm in cladding thickness showed the lowest loss. The parameters to design this image guide were almost the same as those to obtain a image guide with good picture quality. Radiation resistivity of the image guide was not dependent on drawing conditions and number of picture elements, indicating that the image guide has large allowable in production conditions and that reliable quality is constantly obtained in production. Radiation resistivity under high total doses was evaluated using the image guide with the lowest radiation-induced loss. Maximum usable lengths of the image guide for practical use under specific high total doses and maximum allowable total doses for the image guide in specific lengths were extrapolated. Picture quality in terms of radiation-induced degradation in color fidelity in the pictures transmitted through image guides was quantitatively evaluated in the chromaticity diagram based on the CIE standard colorimetric system and in the color specification charts according to three attributes of colors. The image guide with the least spectral incremental loss gives the least radiation-induced degradation in color fidelity in the pictures as well. (author)

  8. Image-Guided Spinal Ablation: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Koch, Guillaume, E-mail: guillaume.koch@chru-strasbourg.fr; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr; Garnon, Julien, E-mail: julien.garnon@chru-strasbourg.fr; Cazzato, Roberto Luigi, E-mail: roberto-luigi.cazzato@chru-strasbourg.fr; Edalat, Faramarz, E-mail: faramarz.edalat@gmail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [Strasbourg University Hospital (France)

    2016-09-15

    The image-guided thermal ablation procedures can be used to treat a variety of benign and malignant spinal tumours. Small size osteoid osteoma can be treated with laser or radiofrequency. Larger tumours (osteoblastoma, aneurysmal bone cyst and metastasis) can be addressed with radiofrequency or cryoablation. Results on the literature of spinal microwave ablation are scarce, and thus it should be used with caution. A distinct advantage of cryoablation is the ability to monitor the ice-ball by intermittent CT or MRI. The different thermal insulation, temperature and electrophysiological monitoring techniques should be applied. Cautious pre-procedural planning and intermittent intra-procedural monitoring of the ablation zone can help reduce neural complications. Tumour histology, patient clinical-functional status and life-expectancy should define the most efficient and least disabling treatment option.

  9. Better compliance with hypofractionation vs. conventional fractionation in adjuvant breast cancer radiotherapy. Results of a single, institutional, retrospective study

    Energy Technology Data Exchange (ETDEWEB)

    Rudat, Volker; Nour, Alaa; Hammoud, Mohamed; Abou Ghaida, Salam [Saad Specialist Hospital, Department of Radiation Oncology, Al Khobar (Saudi Arabia)

    2017-05-15

    The aim of the study was to identify factors significantly associated with the occurrence of unintended treatment interruptions in adjuvant breast cancer radiotherapy. Patients treated with postoperative radiotherapy of the breast or chest wall between March 2014 and August 2016 were evaluated. The radiotherapy regimens and techniques applied were either conventional fractionation (CF; 28 daily fractions of 1.8 Gy or 25 fractions of 2.0 Gy) or hypofractionation (HF; 15 daily fractions of 2.67 Gy) with inverse planned intensity-modulated radiotherapy (IMRT) or three-dimensional planned conformal radiotherapy (3DCRT). Logistic regression analysis was used to identify factors associated with noncompliance. Noncompliance was defined as the missing of at least one scheduled radiotherapy fraction. In all, 19 of 140 (13.6%) patients treated with HF and 39 of 146 (26.7%) treated with CF experienced treatment interruptions. Of 23 factors tested, the fractionation regimen emerged as the only independent significant prognostic factor for noncompliance on multivariate analysis (CF; p = 0.007; odds ratio, 2.3; 95% confidence interval, 1.3-4.2). No statistically significant differences concerning the reasons for treatment interruptions could be detected between patients treated with CF or HF. HF is significantly associated with a better patient compliance with the prescribed radiotherapy schedule compared with CF. The data suggest that this finding is basically related to the shorter overall treatment time of HF. (orig.) [German] Ziel der Untersuchung war es, Faktoren zu identifizieren, die mit ungeplanten Behandlungsunterbrechungen bei der adjuvanten Strahlentherapie des Mammakarzinoms assoziiert sind. Es wurden Patienten untersucht, die eine adjuvante Strahlentherapie der Mamma oder Brustwand zwischen Maerz 2014 und August 2016 erhielten. Zur Anwendung kamen als Fraktionierungsprotokoll und strahlentherapeutische Technik eine konventionell fraktionierte (CF; 28 Fraktionen mit

  10. Image-guided drug delivery: preclinical applications and clinical translation

    NARCIS (Netherlands)

    Ojha, Tarun; Rizzo, Larissa; Storm, Gerrit; Kiessling, Fabian; Lammers, Twan Gerardus Gertudis Maria

    2015-01-01

    Image-guided drug delivery refers to the combination of drug targeting and imaging. Preclinically, image-guided drug delivery can be used for several different purposes, including for monitoring biodistribution, target site accumulation, off-target localization, drug release and drug efficacy.

  11. Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis

    International Nuclear Information System (INIS)

    Mahan, Stephen L.; Ramsey, Chester R.; Scaperoth, Daniel D.; Chase, Daniel J.; Byrne, Thomas E.

    2005-01-01

    Introduction: Patients with vertebral metastasis that receive radiation therapy are typically treated to the spinal cord tolerance dose. As such, it is difficult to successfully deliver a second course of radiation therapy for patients with overlapping treatment volumes. In this study, an image-guided helical tomotherapy system was evaluated for the retreatment of previously irradiated vertebral metastasis. Methods and Materials: Helical tomotherapy dose gradients and maximum cord doses were measured in a cylindrical phantom for geometric test cases with separations between the planning target volume (PTV) and the spinal cord organ at risk (OAR) of 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm. Megavoltage computed tomography (CT) images were examined for their ability to localize spinal anatomy for positioning purposes by repeat imaging of the cervical spine in an anthropomorphic phantom. In addition to the phantom studies, 8 patients with cord compressions that had received previous radiation therapy were retreated to a mean dose of 28 Gy using conventional fractionation. Results and Discussion: Megavoltage CT images were capable of positioning an anthropomorphic phantom to within ±1.2 mm (2σ) superior-inferiorly and within ±0.6 mm (2σ) anterior-posteriorly and laterally. Dose gradients of 10% per mm were measured in phantom while PTV uniformity indices of less than 11% were maintained. The calculated maximum cord dose was 25% of the prescribed dose for a 10-mm PTV-to-OAR separation and 71% of the prescribed dose for a PTV-to-OAR separation of 2 mm. Eight patients total have been treated without radiation-induced myelopathy or any other adverse effects from treatment. Conclusions: A technique has been evaluated for the retreatment of vertebral metastasis using image-guided helical tomotherapy. Phantom and patient studies indicated that a tomotherapy system is capable of delivering dose gradients of 10% per mm and positioning the patient within 1.2 mm without the use of

  12. Image-Guided Hypofractionated Radiotherapy in Low-Risk Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Maurizio Valeriani

    2014-01-01

    Full Text Available Aim. To evaluate efficacy and toxicity of image-guided hypofractionated radiotherapy (HFRT in the treatment of low-risk prostate cancer. Outcomes and toxicities of this series of patients were compared to another group of 32 low-risk patients treated with conventional fractionation (CFRT. Methods. Fifty-nine patients with low-risk prostate cancer were analysed. Total dose for the prostate and proximal seminal vesicles was 60 Gy delivered in 20 fractions. Results. The median follow-up was 30 months. The actuarial 4-year overall survival, biochemical free survival, and disease specific survival were 100%, 97.4%, and 97.4%, respectively. Acute grade 1-2 gastrointestinal (GI and genitourinary (GU toxicity rates were 11.9% and 40.7%, respectively. Grade 1 GI and GU late toxicity rates were 8.5% and 13.6%, respectively. No grade ≥2 late toxicities were recorded. Acute grade 2-3 GU toxicity resulted significantly lower (P=0.04 in HFRT group compared to the CFRT group. The cumulative 4-year incidence of grade 1-2 GU toxicity was significantly higher (P<0.001 for HFRT patients. Conclusions. Our study demonstrated that hypofractionated regimen provided excellent biochemical control in favorable risk prostate cancer patients. The incidence of GI and GU toxicity was low. However, HFRT presented higher cumulative incidence of low-grade late GU toxicity than CFRT.

  13. Tumor Localization Using Cone-Beam CT Reduces Setup Margins in Conventionally Fractionated Radiotherapy for Lung Tumors

    International Nuclear Information System (INIS)

    Yeung, Anamaria R.; Li, Jonathan G.; Shi Wenyin; Newlin, Heather E.; Chvetsov, Alexei; Liu, Chihray; Palta, Jatinder R.; Olivier, Kenneth

    2009-01-01

    Purpose: To determine whether setup margins can be reduced using cone-beam computed tomography (CBCT) to localize tumor in conventionally fractionated radiotherapy for lung tumors. Methods and Materials: A total of 22 lung cancer patients were treated with curative intent with conventionally fractionated radiotherapy using daily image guidance with CBCT. Of these, 13 lung cancer patients had sufficient CBCT scans for analysis (389 CBCT scans). The patients underwent treatment simulation in the BodyFix immobilization system using four-dimensional CT to account for respiratory motion. Daily alignment was first done according to skin tattoos, followed by CBCT. All 389 CBCT scans were retrospectively registered to the planning CT scans using automated soft-tissue and bony registration; the resulting couch shifts in three dimensions were recorded. Results: The daily alignment to skin tattoos with no image guidance resulted in systematic (Σ) and random (σ) errors of 3.2-5.6 mm and 2.0-3.5 mm, respectively. The margin required to account for the setup error introduced by aligning to skin tattoos with no image guidance was approximately 1-1.6 cm. The difference in the couch shifts obtained from the bone and soft-tissue registration resulted in systematic (Σ) and random (σ) errors of 1.5-4.1 mm and 1.8-5.3 mm, respectively. The margin required to account for the setup error introduced using bony anatomy as a surrogate for the target, instead of localizing the target itself, was 0.5-1.4 cm. Conclusion: Using daily CBCT soft-tissue registration to localize the tumor in conventionally fractionated radiotherapy reduced the required setup margin by up to approximately 1.5 cm compared with both no image guidance and image guidance using bony anatomy as a surrogate for the target.

  14. Evaluation of Image-Guided Positioning for Frameless Intracranial Radiosurgery

    International Nuclear Information System (INIS)

    Lamba, Michael; Breneman, John C.; Warnick, Ronald E.

    2009-01-01

    Purpose: The standard for target alignment and immobilization in intracranial radiosurgery is frame-based alignment and rigid immobilization using a stereotactic head ring. Recent improvements in image-guidance systems have introduced the possibility of image-guided radiosurgery with nonrigid immobilization. We present data on the alignment accuracy and patient stability of a frameless image-guided system. Methods and Materials: Isocenter alignment errors were measured for in vitro studies in an anthropomorphic phantom for both frame-based stereotactic and frameless image-guided alignment. Subsequently, in vivo studies assessed differences between frame-based and image-guided alignment in patients who underwent frame-based intracranial radiosurgery. Finally, intratreatment target stability was determined by image-guided alignment performed before and after image-guided mask immobilized radiosurgery. Results: In vitro hidden target localization errors were comparable for the framed (0.7 ± 0.5 mm) and image-guided (0.6 ± 0.2 mm) techniques. The in vivo differences in alignment were 0.9 ± 0.5 mm (anteroposterior), -0.2 ± 0.4 mm (superoinferior), and 0.3 ± 0.5 mm (lateral). For in vivo stability tests, the mean distance differed between the pre- and post-treatment positions with mask-immobilized radiosurgery by 0.5 ± 0.3 mm. Conclusion: Frame-based and image-guided alignment accuracy in vitro was comparable for the system tested. In vivo tests showed a consistent trend in the difference of alignment in the anteroposterior direction, possibly due to torque to the ring and mounting system with frame-based localization. The mask system as used appeared adequate for patient immobilization.

  15. Radiation resistivity of pure silica core image guides for industrial fiberscopes

    International Nuclear Information System (INIS)

    Okamoto, Shinichi; Ohnishi, Tokuhiro; Kanazawa, Tamotsu; Tsuji, Yukio; Hayami, Hiroyuki; Ishitani, Tadayoshi; Akutsu, Takeji; Suzuki, Koichi.

    1991-01-01

    Industrial fiberscopes incorporating pure silica core image guides have been extensively used for remote visual inspection in radiation fields including nuclear power plants, owing to their superior radiation resistivity. The authors have been intensively conducting R and D on improving radiation resistivity of pure silica core image guides. This paper reports the results of experiments to compare the effects of core materials on radiation resistivity and to investigate the dependence of radiation resistivity on total dose, does rate, and support pipe material. The results confirmed the superior radiation resistivity of the core material containing fluorine at any irradiation condition and indicated the existence of a critical dose rate at which radiation-induced deterioration was stabilized. No difference in radiation resistivity attributable to support layer material was observed. (author)

  16. Radiation Effect on Body Weight and Hematological Changes of Hybrid Mice by Conventional Fraction, Large Abdominal Field Irradiation

    International Nuclear Information System (INIS)

    Lee, Sung Heon; Shin, Sei One; Kim, Myung Se

    1985-01-01

    Radiation effect on mammals, especially on hematologic changes, has been studied since discovery of x-ray. Various experimental animals were tried for radiobiological studies. 72 hybrid mice with conventional fraction (5X/week), large abdominal field (2 x 3cm, from symphysis pubic to xyphoid process) were used. Body weight was declined gradually by increasing irradiation doses, nadir was about 29.7% in male ; 30.4% in female at 6000 rad irradiation group. Hemoglobin value was nearly normal throughout entire treatment. Significant dropping of WBC count was noted to 40-50% of pretreatment values by only 1000 rad irradiation. Change of differential count was interesting; lymphocyte proportion showed gradual reduction, instead of gradual increasing of segmented neutrophil. Those proportion were reversed after 6000 rad irradiation. Urinary protein tests showed + - +++, showing no correlation with dosage. Application. of our study in clinical combination therapy (radiation + chemotherapy) was discussed

  17. IMRT for Image-Guided Single Vocal Cord Irradiation

    International Nuclear Information System (INIS)

    Osman, Sarah O.S.; Astreinidou, Eleftheria; Boer, Hans C.J. de; Keskin-Cambay, Fatma; Breedveld, Sebastiaan; Voet, Peter; Al-Mamgani, Abrahim; Heijmen, Ben J.M.; Levendag, Peter C.

    2012-01-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose ± standard deviation to the planning target volume was 67 ± 1 Gy. The contralateral vocal cord dose was reduced from 66 ± 1 Gy in the conventional plans to 39 ± 8 Gy and 36 ± 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

  18. IMRT for Image-Guided Single Vocal Cord Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Astreinidou, Eleftheria; Boer, Hans C.J. de; Keskin-Cambay, Fatma; Breedveld, Sebastiaan; Voet, Peter; Al-Mamgani, Abrahim; Heijmen, Ben J.M.; Levendag, Peter C. [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands)

    2012-02-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

  19. Image-guided pleural biopsy: diagnostic yield and complications

    International Nuclear Information System (INIS)

    Benamore, R.E.; Scott, K.; Richards, C.J.; Entwisle, J.J.

    2006-01-01

    Background: Pleural biopsy and cytology are standard procedures for the investigation of pleural disease. Recent medical literature has suggested that image-guided pleural biopsy shows improved sensitivity for the diagnosis of pleural malignancy, when compared with the more commonly performed reverse bevel needle biopsy such as Abrams' needle. In our centre there has been an increasing trend towards performing image-guided pleural biopsies, and to our knowledge there is no large published series documenting the complication rate and diagnostic yield. Methods: The radiology and pathology databases were searched for all image-guided [computed tomography (CT) and ultrasound (US)] pleural biopsies from January 2001 to December 2004. All imaging and histology were reviewed, and final diagnostic information about patients was obtained from the respiratory multidisciplinary team database and patient notes. A record was made of complications following biopsy, presence of pleura in the biopsy, and adequacy of tissue for histological diagnosis. Results: A total of 82 patients underwent 85 image-guided pleural biopsies over a 4-year period. 80 cases were performed under CT and five under US guidance. The rate of new pneumothorax detected by chest radiography was 4.7%. No patient required a chest drain or blood transfusion to treat complications. In 10 (12%) cases, there was inadequate tissue to reach a confident histological diagnosis and in eight (9%) of these, no pleura was present. Assuming all suspicious and inadequate biopsies are treated as benign, which is the worst case scenario, image-guided pleural biopsy has a sensitivity and specificity of 76% and 100%, respectively, for the diagnosis of malignant disease. Conclusions: Image-guided pleural biopsy is a safe procedure with few associated complications and has a higher sensitivity than previously published series for reverse cutting needle biopsy in the diagnosis of malignant pleural disease

  20. Image-guided pleural biopsy: diagnostic yield and complications

    Energy Technology Data Exchange (ETDEWEB)

    Benamore, R.E. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom)]. E-mail: rachelbenamore@doctors.org.uk; Scott, K. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Richards, C.J. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Entwisle, J.J. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom)

    2006-08-15

    Background: Pleural biopsy and cytology are standard procedures for the investigation of pleural disease. Recent medical literature has suggested that image-guided pleural biopsy shows improved sensitivity for the diagnosis of pleural malignancy, when compared with the more commonly performed reverse bevel needle biopsy such as Abrams' needle. In our centre there has been an increasing trend towards performing image-guided pleural biopsies, and to our knowledge there is no large published series documenting the complication rate and diagnostic yield. Methods: The radiology and pathology databases were searched for all image-guided [computed tomography (CT) and ultrasound (US)] pleural biopsies from January 2001 to December 2004. All imaging and histology were reviewed, and final diagnostic information about patients was obtained from the respiratory multidisciplinary team database and patient notes. A record was made of complications following biopsy, presence of pleura in the biopsy, and adequacy of tissue for histological diagnosis. Results: A total of 82 patients underwent 85 image-guided pleural biopsies over a 4-year period. 80 cases were performed under CT and five under US guidance. The rate of new pneumothorax detected by chest radiography was 4.7%. No patient required a chest drain or blood transfusion to treat complications. In 10 (12%) cases, there was inadequate tissue to reach a confident histological diagnosis and in eight (9%) of these, no pleura was present. Assuming all suspicious and inadequate biopsies are treated as benign, which is the worst case scenario, image-guided pleural biopsy has a sensitivity and specificity of 76% and 100%, respectively, for the diagnosis of malignant disease. Conclusions: Image-guided pleural biopsy is a safe procedure with few associated complications and has a higher sensitivity than previously published series for reverse cutting needle biopsy in the diagnosis of malignant pleural disease.

  1. Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation

    Directory of Open Access Journals (Sweden)

    Terrence T. Kim

    2016-01-01

    Full Text Available We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy.

  2. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Yin, F.-F.; Gao, Q.H.; Xie, H.; Nelson, D.F.; Yu, Y.; Kwok, W.E.; Totterman, S.; Schell, M.C.; Rubin, P.

    1996-01-01

    and marrow information within the skull. Next, a ray-tracing method is used to generate a projection (pseudo-portal) image at the planned treatment position. In this situation, the ray-tracing is simply performed on pixels rather than attenuation coefficients. The skull and its relative positions are also projected to the pseudo-portal image and are used as 'hint' for the search of similar features in the portal images. A Canny edge detector is applied to the region of treatment field and is used to enhance brain contour and skull. The skull in the brain is then identified using a snake technique which is guided by the ''hint'', the projected features from MR images. Finally, a Chamfer matching technique is used to correlate features between the MR projection and portal images. Results: MR image-guided portal verification technique is evaluated using a clinical patient case who has an astrocytoma brain tumor and is treated by radiation therapy. The segmented results for brain MR slice images indicate that a wavelet-based image segmentation technique provides a reasonable estimation for the brain skull. Compared to the brain portal image, the method developed in this study for the generation of brain projection images provides skull structure about 3 mm differences. However, overall matching results are within 2 mm compared to the results between portal and simulation images. In addition, tumor volume can be accurately visualized in the projection image and be mapped over to portal images for treatment verification with this approach. Conclusions: A method for MR image-guided portal verification of brain treatment field is being developed. Although the projection image from MR images dose not have the similar radiographic appearance as portal images, it provides certain essential anatomical features (landmarks and gross tumor) as well as their relative locations to be used as references for computerized portal verification

  3. Radiologists' leading position in image-guided therapy

    NARCIS (Netherlands)

    Helmberger, Thomas; Martí-Bonmatí, Luis; Pereira, Philippe; Gillams, Alice; Martínez, Jose; Lammer, Johannes; Malagari, Katarina; Gangi, Afshin; de Baere, Thierry; Adam, E. Jane; Rasch, Coen; Budach, Volker; Reekers, Jim A.

    2013-01-01

    Image-guided diagnostic and therapeutic procedures are related to, or performed under, some kind of imaging. Such imaging may be direct inspection (as in open surgery) or indirect inspection as in endoscopy or laparoscopy. Common to all these techniques is the transformation of optical and visible

  4. Commissioning an image-guided localization system for radiotherapy

    International Nuclear Information System (INIS)

    Phillips, Mark H.; Singer, Karen; Miller, Elizabeth; Stelzer, Keith

    2000-01-01

    Purpose: To describe the design and commissioning of a system for the treatment of classes of tumors that require highly accurate target localization during a course of fractionated external-beam therapy. This system uses image-guided localization techniques in the linac vault to position patients being treated for cranial tumors using stereotactic radiotherapy, conformal radiotherapy, and intensity-modulated radiation therapy techniques. Design constraints included flexibility in the use of treatment-planning software, accuracy and precision of repeat localization, limits on the time and human resources needed to use the system, and ease of use. Methods and Materials: A commercially marketed, stereotactic radiotherapy system, based on a system designed at the University of Florida, Gainesville, was adapted for use at the University of Washington Medical Center. A stereo pair of cameras in the linac vault were used to detect the position and orientation of an array of fiducial markers that are attached to a patient's biteblock. The system was modified to allow the use of either a treatment-planning system designed for stereotactic treatments, or a general, three-dimensional radiation therapy planning program. Measurements of the precision and accuracy of the target localization, dose delivery, and patient positioning were made using a number of different jigs and devices. Procedures were developed for the safe and accurate clinical use of the system. Results: The accuracy of the target localization is comparable to that of other treatment-planning systems. Gantry sag, which cannot be improved, was measured to be 1.7 mm, which had the effect of broadening the dose distribution, as confirmed by a comparison of measurement and calculation. The accuracy of positioning a target point in the radiation field was 1.0 ± 0.2 mm. The calibration procedure using the room-based lasers had an accuracy of 0.76 mm, and using a floor-based radiosurgery system it was 0.73 mm

  5. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Deng Jun; Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior–inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT–contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  6. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States); Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior-inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT-contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  7. Concurrent cisplatin, infusional fluorouracil, and conventionally fractionated radiation therapy in head and neck cancer: Dose-limiting mucosal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Denham, J.W.; Abbott, R.L. (Royal Adelaide Hospital (Australia))

    1991-03-01

    After a preliminary dose-finding study involving 12 patients with advanced or locally recurrent head and neck cancer, 27 patients were treated on a phase II protocol, using fluorouracil 350 mg/m2/d by continuous intravenous (IV) infusion over 5 days, followed on the sixth day by a 2-hour IV infusion of cisplatin 50 mg/m2, administered during the first and fourth weeks of radiation therapy to total doses between 60 and 64 Gy, using 2 Gy daily fractions. Eight of these 27 patients had American Joint Committee on Cancer Staging (AJCC) stage III disease, and 12 had stage IV disease. Four had recurrent disease after surgery. Three-year follow-up is now available. Twenty-one (77.8%) remitted completely following treatment, and 11 remain free of local and regional relapse at 3 years. Four have developed systemic metastases. Following successful salvage treatment in two cases, estimated determinate survival at 3 years is 64%. Acute toxicity was manageable with this regime. Eleven instances of grade 3 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC) mucositis were observed, which caused interruptions to radiotherapy in only four cases. No late sequelae have so far been recorded. It is concluded that the protocol described is tolerable but probably did not cause a greater number of locoregional cures than would have been expected following conventional radiotherapy alone in this group of patients. The use of infusional fluorouracil with concurrent conventionally fractionated radiation therapy and cisplatin infusion results in mucositis that limits the dose of fluorouracil to levels that are probably subtherapeutic.

  8. Thyroid dysfunction as a late effect in childhood medulloblastoma: a comparison of hyperfractionated versus conventionally fractionated craniospinal radiotherapy

    International Nuclear Information System (INIS)

    Ricardi, Umberto; Corrias, Andrea; Einaudi, Silvia; Genitori, Lorenzo; Sandri, Alessandro; Cordero Di Montezemolo, Luca; Besenzon, Luigi; Madon, Enrico; Urgesi, Alessandro

    2001-01-01

    Purpose: Primary hypothyroidism is a common sequela of craniospinal radiotherapy in the treatment of childhood medulloblastoma. Due to the strong radiobiologic rationale, hyperfractionation can reduce the delayed effects of radiation injury. Methods and Materials: The authors compared the incidence of thyroid dysfunction after conventionally fractionated radiotherapy (Group A, n=20 patients) vs. hyperfractionated radiotherapy (Group B, n=12 patients) in a group of pediatric patients with posterior fossa primitive neuroectodermal tumor (PNET). Results: The mean age at the time of tumor diagnosis was 7.4 years in Group A and 8.4 years in Group B. Thyroid function was evaluated yearly, with ultrasonographic examination every 2 years. The patients were followed after diagnosis for a mean of 10.8 years for Group A and 6.0 years for Group B. Approximately 80% of the Group A (16/20) and 33.3% of the Group B (4/12) patients developed primary hypothyroidism within a similar period after irradiation (4.2 vs. 3.5 years, respectively). Analysis by cumulative incidence function demonstrated a significant difference in the risk of developing thyroid dysfunction between these two groups of patients (p<0.05). Ultrasonography showed reduced thyroid volume in 7 Group A patients and structural changes in 21 patients (17 Group A, 4 Group B cases); a thyroid benign nodule was detected in 2 Group A patients. Conclusions: The current study findings suggest that the use of hyperfractionated craniospinal radiotherapy in the treatment of childhood medulloblastoma is associated with a lower risk of these patients' developing late thyroid dysfunction

  9. Hypofractionated Prostate Radiotherapy with or without Conventionally Fractionated Nodal Irradiation: Clinical Toxicity Observations and Retrospective Daily Dosimetry.

    Science.gov (United States)

    McDonald, Andrew M; Bishop, Justin M; Jacob, Rojymon; Dobelbower, Michael C; Kim, Robert Y; Yang, Eddy S; Smith, Heather; Wu, Xingen; Fiveash, John B

    2012-01-01

    Purpose. To evaluate toxicity associated with the addition of elective nodal irradiation (ENI) to a hypofractionated regimen for the treatment of prostate cancer. Methods and Materials. Fifty-seven patients received pelvic image-guided IMRT to 50.4 Gy in 28 fractions with a hypofractionated simultaneous boost to the prostate to 70 Gy. Thirty-one patients received prostate-only treatment to 70 Gy in 28 fractions. Results. Median followup was 41.1 months. Early grade ≥2 urinary toxicity rates were 49% (28 of 57) for patients receiving ENI and 58% (18 of 31) for those not (P = 0.61). Early grade ≥2 rectal toxicity rates were 40% (23 of 57) and 23% (7 of 31), respectively (P = 0.09). The addition of ENI resulted in a 21% actuarial rate of late grade ≥2 rectal toxicity at 4 years, compared to 0% for patients treated to the prostate only (P = 0.02). Retrospective daily dosimetry of patients experiencing late rectal toxicity revealed an average increase of 2.67% of the rectal volume receiving 70 Gy compared to the original plan. Conclusions. The addition of ENI resulted in an increased risk of late rectal toxicity. Grade ≥2 late rectal toxicity was associated with worse daily rectal dosimetry compared to the treatment plan.

  10. The efficacy of Elekta Synergy image-guided radiotherapy

    International Nuclear Information System (INIS)

    Takamatsu, Shigeyuki; Takanaka, Tsuyoshi; Kumano, Tomoyasu

    2008-01-01

    We evaluated the efficacy of Elekta Synergy image-guided radiotherapy (IGRT) system equipped with cone beam CT (CBCT) for high accuracy radiation therapy. In cases set up with body marking who had large set up error could be adjusted by this system within 1 mm error. IGRT with CBCT correction provided precise set up. Elekta Synergy IGRT system is useful for high accuracy set up and will facilitate novel precise radiotherapy techniques. (author)

  11. Image-guided regularization level set evolution for MR image segmentation and bias field correction.

    Science.gov (United States)

    Wang, Lingfeng; Pan, Chunhong

    2014-01-01

    Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Acute and Short-Term Toxicities of Conventionally Fractionated Versus Hypofractionated Whole Breast Irradiation in a Prospective, Randomized Trial

    Science.gov (United States)

    Shaitelman, Simona F.; Schlembach, Pamela J.; Arzu, Isidora; Ballo, Matthew; Bloom, Elizabeth S.; Buchholz, Daniel; Chronowski, Gregory M.; Dvorak, Tomas; Grade, Emily; Hoffman, Karen E.; Kelly, Patrick; Ludwig, Michelle; Perkins, George H.; Reed, Valerie; Shah, Shalin; Stauder, Michael C.; Strom, Eric A.; Tereffe, Welela; Woodward, Wendy A.; Ensor, Joe; Baumann, Donald; Thompson, Alastair M.; Amaya, Diana; Davis, Tanisha; Guerra, William; Hamblin, Lois; Hortobagyi, Gabriel; Hunt, Kelly K.; Buchholz, Thomas A.; Smith, Benjamin D.

    2015-01-01

    IMPORTANCE The most appropriate dose-fractionation for whole breast irradiation (WBI) remains uncertain. OBJECTIVE To assess acute and six-month toxicity and quality of life (QoL) with conventionally fractionated WBI (CF-WBI) versus hypofractionated WBI (HF-WBI). DESIGN Unblinded randomized trial of CF-WBI (n=149; 50 Gy/25 fractions + boost [10–14 Gy/5–7 fractions]) versus HF-WBI (n=138; 42.56 Gy/16 fractions + boost [10–12.5 Gy/4–5 fractions]). SETTING Community-based and academic cancer centers. PARTICIPANTS 287 women age ≥ 40 years with stage 0–II breast cancer treated with breast-conserving surgery for whom whole breast irradiation without addition of a third field was recommended. 76% (n=217) were overweight or obese. Patients were enrolled from February 2011 through February 2014. INTERVENTION(S) FOR CLINICAL TRIALS CF-WBI versus HF-WBI. MAIN OUTCOME MEASURES Physician-reported acute and six-month toxicities using NCICTCv4.0 and patient-reported QoL using the FACT-B version 4. All analyses were intention-to-treat, with outcomes compared using chi-square, Cochran-Armitage test, and ordinal logistic regression. Patients were followed for a minimum of 6 months. RESULTS Treatment arms were well-matched for baseline characteristics including FACT-B total score (P=0.46) and individual QoL items such as lack of energy (P=0.86) and trouble meeting family needs (P=0.54). Maximal physician-reported acute dermatitis (P<0.001), pruritus (P<0.001), breast pain (P=0.001), hyperpigmentation (P=0.002), and fatigue (P=0.02) during radiation were lower in patients randomized to HF-WBI. Overall grade ≥2 acute toxicity was less with HF-WBI vs. CF-WBI (47% vs. 78%; P<0.001). Six months after radiation, physicians reported less fatigue in patients randomized to HF-WBI (P=0.01), and patients randomized to HF-WBI reported less lack of energy (P<0.001) and less trouble meeting family needs (P=0.01). Multivariable regression confirmed the superiority of HF-WBI in terms

  13. Automated dental implantation using image-guided robotics: registration results.

    Science.gov (United States)

    Sun, Xiaoyan; McKenzie, Frederic D; Bawab, Sebastian; Li, Jiang; Yoon, Yongki; Huang, Jen-K

    2011-09-01

    One of the most important factors affecting the outcome of dental implantation is the accurate insertion of the implant into the patient's jaw bone, which requires a high degree of anatomical accuracy. With the accuracy and stability of robots, image-guided robotics is expected to provide more reliable and successful outcomes for dental implantation. Here, we proposed the use of a robot for drilling the implant site in preparation for the insertion of the implant. An image-guided robotic system for automated dental implantation is described in this paper. Patient-specific 3D models are reconstructed from preoperative Cone-beam CT images, and implantation planning is performed with these virtual models. A two-step registration procedure is applied to transform the preoperative plan of the implant insertion into intra-operative operations of the robot with the help of a Coordinate Measurement Machine (CMM). Experiments are carried out with a phantom that is generated from the patient-specific 3D model. Fiducial Registration Error (FRE) and Target Registration Error (TRE) values are calculated to evaluate the accuracy of the registration procedure. FRE values are less than 0.30 mm. Final TRE values after the two-step registration are 1.42 ± 0.70 mm (N = 5). The registration results of an automated dental implantation system using image-guided robotics are reported in this paper. Phantom experiments show that the practice of robot in the dental implantation is feasible and the system accuracy is comparable to other similar systems for dental implantation.

  14. Compact instrument for fluorescence image-guided surgery

    Science.gov (United States)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  15. Image-guided breast biopsy: state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    O' Flynn, E.A.M., E-mail: lizoflynn@doctors.org.u [South East London Breast Screening Programme and National Breast Screening Training Centre, Kings College Hospital NHS Foundation Trust, London SE5 9RS (United Kingdom); Wilson, A.R.M.; Michell, M.J. [South East London Breast Screening Programme and National Breast Screening Training Centre, Kings College Hospital NHS Foundation Trust, London SE5 9RS (United Kingdom)

    2010-04-15

    Percutaneous image-guided breast biopsy is widely practised to evaluate predominantly non-palpable breast lesions. There has been steady development in percutaneous biopsy techniques. Fine-needle aspiration cytology was the original method of sampling, followed in the early 1990s by large core needle biopsy. The accuracy of both has been improved by ultrasound and stereotactic guidance. Larger bore vacuum-assisted biopsy devices became available in the late 1990s and are now commonplace in most breast units. We review the different types of breast biopsy devices currently available together with various localization techniques used, focusing on their advantages, limitations and current controversial clinical management issues.

  16. Usefulness of automated biopsy guns in image-guided biopsy

    International Nuclear Information System (INIS)

    Lee, Jung Hyung; Rhee, Chang Soo; Lee, Sung Moon; Kim, Hong; Woo, Sung Ku; Suh, Soo Jhi

    1994-01-01

    To evaluate the usefulness of automated biopsy guns in image-guided biopsy of lung, liver, pancreas and other organs. Using automated biopsy devices, 160 biopsies of variable anatomic sites were performed: Biopsies were performed under ultrasonographic(US) guidance in 95 and computed tomographic (CT) guidance in 65. We retrospectively analyzed histologic results and complications. Specimens were adequate for histopathologic diagnosis in 143 of the 160 patients(89.4%)-Diagnostic tissue was obtained in 130 (81.3%), suggestive tissue obtained in 13(8.1%), and non-diagnostic tissue was obtained in 14(8.7%). Inadequate tissue was obtained in only 3(1.9%). There was no statistically significant difference between US-guided and CT-guided percutaneous biopsy. There was no occurrence of significant complication. We have experienced mild complications in only 5 patients-2 hematuria and 2 hematochezia in transrectal prostatic biopsy, and 1 minimal pneumothorax in CT-guided percutaneous lung biopsy. All of them were resolved spontaneously. The image-guided biopsy using the automated biopsy gun was a simple, safe and accurate method of obtaining adequate specimen for the histopathologic diagnosis

  17. Usefulness of automated biopsy guns in image-guided biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Hyung; Rhee, Chang Soo; Lee, Sung Moon; Kim, Hong; Woo, Sung Ku; Suh, Soo Jhi [School of Medicine, Keimyung University, Daegu (Korea, Republic of)

    1994-12-15

    To evaluate the usefulness of automated biopsy guns in image-guided biopsy of lung, liver, pancreas and other organs. Using automated biopsy devices, 160 biopsies of variable anatomic sites were performed: Biopsies were performed under ultrasonographic(US) guidance in 95 and computed tomographic (CT) guidance in 65. We retrospectively analyzed histologic results and complications. Specimens were adequate for histopathologic diagnosis in 143 of the 160 patients(89.4%)-Diagnostic tissue was obtained in 130 (81.3%), suggestive tissue obtained in 13(8.1%), and non-diagnostic tissue was obtained in 14(8.7%). Inadequate tissue was obtained in only 3(1.9%). There was no statistically significant difference between US-guided and CT-guided percutaneous biopsy. There was no occurrence of significant complication. We have experienced mild complications in only 5 patients-2 hematuria and 2 hematochezia in transrectal prostatic biopsy, and 1 minimal pneumothorax in CT-guided percutaneous lung biopsy. All of them were resolved spontaneously. The image-guided biopsy using the automated biopsy gun was a simple, safe and accurate method of obtaining adequate specimen for the histopathologic diagnosis.

  18. Preliminary comparison of the therapeutic efficacy of accelerated relative to conventional fractionation radiotherapy by treatment of spontaneous canine malignancies

    International Nuclear Information System (INIS)

    Denman, David L.; Levin, Rebecca; Buncher, C. Ralph; Aron, Bernard S.

    1996-01-01

    Purpose/Objective: This study's ultimate goals involve development of an accelerated fractionation (AF) regimen with an integrated final concomitant boost (CB) and examination of factors prognostic of the CB's therapeutic efficacy which could be measured during the initial AF portion to determine for which patients CB should be used. These endpoints can be accurately determined quickly by evaluating the treatment (tx) of spontaneous canine veterinary patient tumors. Because surviving tumor clonogen growth rate increases after radiotherapy (RT) begins, this accelerated repopulation (AR) should be reduced by AF. Furthermore, CB using a small field encompassing only the tumor bed, given as a second daily tx during the last week of RT, should further reduce AR. The initial portion of this project which is nearing completion was designed to determine if incidentally treated normal tissues could tolerate the AF regimen and project whether addition of the tumor bed CB would also be tolerated. Materials and Methods: Currently 20 canine patients with biopsy proven localized tumors have received canine AF radiotherapy given as 3.2Gy/fraction(fx) administered 5 days a week (Mon-Fri) to a total of 15 fxs (48Gy) within 18 elapsed days. RT is given with a 60 Co teletherapy unit. Their tumor response, control, survival, and acute normal tissue responses are being directly compared to results we previously obtained from canines receiving a nearly equivalent dose/fx and total dose conventional fractionation (CF) regimen which was given alone or with adjuvant hyperthermia (HT). In that study the canines were stratified by tumor histology and anatomic site and randomly assigned to receive canine CF (3.5Gy/fx, 3 fxs/week [Mon-Wed-Fri] to 14 fxs (49Gy) in an elapsed time of approx. 30 days) either alone or followed weekly by local HT (44 deg. +/- 2 deg. C) for 30 minutes (5 HT fxs). As is currently done, these CF+/-HT patients were followed up to 3 years to quantitate the magnitudes

  19. Role of image-guided patient repositioning and online planning in localized prostate cancer IMRT

    International Nuclear Information System (INIS)

    Lerma, Fritz A.; Liu, Bei; Wang, Zhendong; Yi, Byongyong; Amin, Pradip; Liu, Sandy; Feng Yuanming; Yu, Cedric X.

    2009-01-01

    Purpose: To determine the expected benefit of image-guided online replanning over image-guided repositioning of localized prostate cancer intensity-modulated radiotherapy (IMRT). Materials and methods: On 10 to 11 CT scans of each of 10 early-stage prostate cancer patients, the prostate, bladder and rectum are manually segmented. Using a 3-mm PTV margin expansion from the CTV, an IMRT plan is made on the first CT scan of each patient. Online repositioning is simulated by recalculating the IMRT plan from the initial CT scan on the subsequent CT scans of each patient. For online replanning, IMRT is replanned twice on all CT scans, using 0-mm and 3-mm margins. The doses from subsequent CT images of each patient are then deformed to the initial CT anatomy using a mesh-based thin-plate B-spline deformation method and are accumulated for DVH and isodose review. Results: Paired t-tests show that online replanning with 3-mm margins significantly increases the prostate volume receiving the prescribed dose over replanning with 0-mm margins (p-value 0.004); gives marginally better target coverage than repositioning with 3-mm margins(p-value 0.06-0.343), and reduces variations in target coverage over repositioning. Fractional volumes of rectum and bladder receiving 75%, 80%, 85%, 90%, and 95% (V75, V80, V85, V90, and V95) of the prescription dose are evaluated. V90 and V95 values for the rectum are 1.6% and 0.7 % for 3-mm margin replanning and 1% and 0.4 % for 0-mm margin replanning, with p-values of 0.010-0.011. No significant differences between repositioning and replanning with 3-mm margins are found for both the rectum and the bladder. Conclusions: Image-guided replanning using 3-mm margins reduces target coverage variations, and maintains comparable rectum and bladder sparing to patient repositioning in localized prostate cancer IMRT. Marginal reductions in doses to rectum and bladder are possible when planning margins are eliminated in the online replanning scenario

  20. Preoperative imaging as the basis for image-guided neurosurgery

    International Nuclear Information System (INIS)

    Winkler, D.; Strauss, G.; Hesse, S.; Sabri, O.; Goldammer, A.; Meixensberger, J.; Hund-Georgiadis, M.; Richter, A.; Kahn, T.

    2004-01-01

    With the progressive development of soft- and hardware, the acceptance of image-guided neurosurgery has increased dramatically. Additional image data are required to analyze the nature and the dimensions of pathological processes and the surrounding tissue. In this context, fMRI, SPECT, PET, as well as special modalities of CT and MR imaging, are routinely used. Secondary post-processing options are used to detect intracerebral lesions as well as adjacent functional eloquent regions in the parenchymatous organ pre- and intraoperatively. The integration of different image information guarantees the precise planning and realization of surgical maneuvers. The segmentation of interesting structures and risk structures, as well as their implementation in the neuronavigation systems, help to avoid additional intraoperative traumatization and offer a higher level of safety and precision. In this article the value and limitations of presurgical imaging will be discussed. (orig.) [de

  1. Fast-MICP for frameless image-guided surgery

    International Nuclear Information System (INIS)

    Lee, Jiann-Der; Huang, Chung-Hsien; Wang, Sheng-Ta; Lin, Chung-Wei; Lee, Shin-Tseng

    2010-01-01

    Purpose: In image-guided surgery (IGS) systems, image-to-physical registration is critical for reliable anatomical information mapping and spatial guidance. Conventional stereotactic frame-based or fiducial-based approaches provide accurate registration but are not patient-friendly. This study proposes a frameless cranial IGS system that uses computer vision techniques to replace the frame or fiducials with the natural features of the patient. Methods: To perform a cranial surgery with the proposed system, the facial surface of the patient is first reconstructed by stereo vision. Accuracy is ensured by capturing parallel-line patterns projected from a calibrated LCD projector. Meanwhile, another facial surface is reconstructed from preoperative computed tomography (CT) images of the patient. The proposed iterative closest point (ICP)-based algorithm [fast marker-added ICP (Fast-MICP)] is then used to register the two facial data sets, which transfers the anatomical information from the CT images to the physical space. Results: Experimental results reveal that the Fast-MICP algorithm reduces the computational cost of marker-added ICP (J.-D. Lee et al., ''A coarse-to-fine surface registration algorithm for frameless brain surgery,'' in Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 836-839) to 10% and achieves comparable registration accuracy, which is under 3 mm target registration error (TRE). Moreover, two types of optical-based spatial digitizing devices can be integrated for further surgical navigation. Anatomical information or image-guided surgical landmarks can be projected onto the patient to obtain an immersive augmented reality environment. Conclusion: The proposed frameless IGS system with stereo vision obtains TRE of less than 3 mm. The proposed Fast-MICP registration algorithm reduces registration time by 90% without compromising accuracy.

  2. Fast-MICP for frameless image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiann-Der; Huang, Chung-Hsien; Wang, Sheng-Ta; Lin, Chung-Wei; Lee, Shin-Tseng [Department of Electrical Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Mechatronics, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Neurosurgery and Medical Augmented Reality Research Center, Chang Gung Memorial Hospital, No. 199, Tunghwa Rd., Taipei 105, Taiwan (China)

    2010-09-15

    Purpose: In image-guided surgery (IGS) systems, image-to-physical registration is critical for reliable anatomical information mapping and spatial guidance. Conventional stereotactic frame-based or fiducial-based approaches provide accurate registration but are not patient-friendly. This study proposes a frameless cranial IGS system that uses computer vision techniques to replace the frame or fiducials with the natural features of the patient. Methods: To perform a cranial surgery with the proposed system, the facial surface of the patient is first reconstructed by stereo vision. Accuracy is ensured by capturing parallel-line patterns projected from a calibrated LCD projector. Meanwhile, another facial surface is reconstructed from preoperative computed tomography (CT) images of the patient. The proposed iterative closest point (ICP)-based algorithm [fast marker-added ICP (Fast-MICP)] is then used to register the two facial data sets, which transfers the anatomical information from the CT images to the physical space. Results: Experimental results reveal that the Fast-MICP algorithm reduces the computational cost of marker-added ICP (J.-D. Lee et al., ''A coarse-to-fine surface registration algorithm for frameless brain surgery,'' in Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 836-839) to 10% and achieves comparable registration accuracy, which is under 3 mm target registration error (TRE). Moreover, two types of optical-based spatial digitizing devices can be integrated for further surgical navigation. Anatomical information or image-guided surgical landmarks can be projected onto the patient to obtain an immersive augmented reality environment. Conclusion: The proposed frameless IGS system with stereo vision obtains TRE of less than 3 mm. The proposed Fast-MICP registration algorithm reduces registration time by 90% without compromising accuracy.

  3. Radiologists' leading position in image-guided therapy.

    Science.gov (United States)

    Helmberger, Thomas; Martí-Bonmatí, Luis; Pereira, Philippe; Gillams, Alice; Martínez, Jose; Lammer, Johannes; Malagari, Katarina; Gangi, Afshin; de Baere, Thierry; Adam, E Jane; Rasch, Coen; Budach, Volker; Reekers, Jim A

    2013-02-01

    Image-guided diagnostic and therapeutic procedures are related to, or performed under, some kind of imaging. Such imaging may be direct inspection (as in open surgery) or indirect inspection as in endoscopy or laparoscopy. Common to all these techniques is the transformation of optical and visible information to a monitor or the eye of the operator. Image-guided therapy (IGT) differs by using processed imaging data acquired before, during and after a wide range of different imaging techniques. This means that the planning, performing and monitoring, as well as the control of the therapeutic procedure, are based and dependent on the "virtual reality" provided by imaging investigations. Since most of such imaging involves radiology in the broadest sense, there is a need to characterise IGT in more detail. In this paper, the technical, medico-legal and medico-political issues will be discussed. The focus will be put on state-of-the-art imaging, technical developments, methodological and legal requisites concerning radiation protection and licensing, speciality-specific limitations and crossing specialty borders, definition of technical and quality standards, and finally to the issue of awareness of IGT within the medical and public community. The specialty-specific knowledge should confer radiologists with a significant role in the overall responsibility for the imaging-related processes in various non-radiological specialties. These processes may encompass purchase, servicing, quality management, radiation protection and documentation, also taking responsibility for the definition and compliance with the legal requirements regarding all radiological imaging performed by non-radiologists.

  4. Biologic targets identified from dynamic 18FDG-PET and implications for image-guided therapy

    International Nuclear Information System (INIS)

    Rusten, Espen; Malinen, Eirik; Roedal, Jan; Bruland, Oeyvind S.

    2013-01-01

    Purpose: The outcome of biologic image-guided radiotherapy depends on the definition of the biologic target. The purpose of the current work was to extract hyper perfused and hypermetabolic regions from dynamic positron emission tomography (D-PET) images, to dose escalate either region and to discuss implications of such image guided strategies. Methods: Eleven patients with soft tissue sarcomas were investigated with D-PET. The images were analyzed using a two-compartment model producing parametric maps of perfusion and metabolic rate. The two image series were segmented and exported to a treatment planning system, and biological target volumes BTV per and BTV met (perfusion and metabolism, respectively) were generated. Dice's similarity coefficient was used to compare the two biologic targets. Intensity-modulated radiation therapy (IMRT) plans were generated for a dose painting by contours regime, where planning target volume (PTV) was planned to 60 Gy and BTV to 70 Gy. Thus, two separate plans were created for each patient with dose escalation of either BTV per or BTV met . Results: BTV per was somewhat smaller than BTV met (209 ±170 cm 3 against 243 ±143 cm 3 , respectively; population-based mean and s.d.). Dice's coefficient depended on the applied margin, and was 0.72 ±0.10 for a margin of 10 mm. Boosting BTV per resulted in mean dose of 69 ±1.0 Gy to this region, while BTV met received 67 ±3.2 Gy. Boosting BTV met gave smaller dose differences between the respective non-boost DVHs (such as D 98 ). Conclusions: Dose escalation of one of the BTVs results in a partial dose escalation of the other BTV as well. If tumor aggressiveness is equally pronounced in hyper perfused and hypermetabolic regions, this should be taken into account in the treatment planning

  5. Extreme Hypofractionated Image-Guided Radiotherapy for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Carlo Greco

    2013-09-01

    Full Text Available An emerging body of data suggests that hypofractionated radiation schedules, where a higher dose per fraction is delivered in a smaller number of sessions, may be superior to conventional fractionation schemes in terms of both tumour control and toxicity profile in the management of adenocarcinoma of the prostate. However, the optimal hypofractionation scheme is still the subject of scientific debate. Modern computer-driven technology enables the safe implementation of extreme hypo fractionation (often referred to as stereotactic body radiation therapy [SBRT]. Several studies are currently being conducted to clarify the yet unresolved issues regarding treatment techniques and fractionation regimens. Recently, the American Society for Radiation Oncology (ASTRO issued a model policy indicating that data supporting the use of SBRT for prostate cancer have matured to a point where SBRT could be considered an appropriate alternative for select patients with low-to-intermediate risk disease. The present article reviews some of the currently available data and examines the impact of tracking technology to mitigate intra-fraction target motion, thus, potentially further improving the clinical outcomes of extreme hypofractionated radiation therapy in appropriately selected prostate cancer patients. The Champalimaud Centre for the Unknown (CCU’s currently ongoing Phase I feasibility study is described; it delivers 45 Gy in five fractions using prostate fixation via a rectal balloon, and urethral sparing via catheter placement with on-line intra-fractional motion tracking through beacon transponder technology.

  6. Fluorescent supramolecular micelles for imaging-guided cancer therapy

    Science.gov (United States)

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-02-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth

  7. Image-guided radiofrequency ablation of renal cell carcinoma

    International Nuclear Information System (INIS)

    Boss, Andreas; Clasen, Stephan; Pereira, Philippe L.; Kuczyk, Markus; Schick, Fritz

    2007-01-01

    The incidence of renal cell carcinoma is rising with the increased number of incidental detection of small tumours. During the past few years, percutaneous imaging-guided radiofrequency ablation has evolved as a minimally invasive treatment of small unresectable renal tumours offering reduced patient morbidity and overall health care costs. In radiofrequency ablation, thermal energy is deposited into a targeted tumour by means of a radiofrequency applicator. In recent studies, radiofrequency ablation was shown to be an effective and safe modality for local destruction of renal cell carcinoma. Radiofrequency applicator navigation can be performed via ultrasound, computed tomography or magnetic resonance guidance; however, ultrasound seems less favourable because of the absence of monitoring capabilities during ablation. On-line monitoring of treatment outcome can only be performed with magnetic resonance imaging giving the possibility of eventual applicator repositioning to ablate visible residual tumour tissue. Long-term follow-up is crucial to assess completeness of tumour ablation. New developments in ablation technology and radiological equipment will further increase the indication field for radiofrequency ablation of renal cell carcinoma. Altogether, radiofrequency ablation seems to be a promising new modality for the minimally invasive treatment of renal cell carcinoma, which was demonstrated to exhibit high short-term effectiveness. (orig.)

  8. Image guided placement of temporary anchorage devices for tooth movement

    Energy Technology Data Exchange (ETDEWEB)

    Bahl-Palomo, L.; Bissada, N. [Case Western Reserve Univ. School of Dental Medicine, Dept. of Periodontics, Cleveland, OH (United States); Palomo, J.M.; Hans, M.G. [Case Western Reserve Univ. School of Dental Medicine, Dept. of Orthodontics, Cleveland, OH (United States)

    2007-06-15

    The aim of this project is to develop an image guided protocol for placement of a temporary anchorage device without surgically reflecting a mucoperiosteal flap. Eighteen orthodontic cases were selected for skeletal anchorage from the department of orthodontics at Case University. CBCT images of the subjects were taken using the Hitachi CB MercuRay system set at 15 mA, 120 kVp. CBCT images evaluated the ideal location for TAD placement in three dimensions. Horizontal and vertical linear measurements were taken from fixed dental landmarks to clearly define the location for placement. Transverse slices were used to evaluate the thickness of the buccal plate. Using the transverse view, the angle of insertion was determined such that the maximum buccal plate surface area would contact the screw. TADs were placed in the optimum location, with the most appropriate angle of insertion using a closed approach and with minimal local anesthesia and without flap elevation. Results: All TADs were placed without anatomic encroachment and enabled fixed orthodontic anchorage. (orig.)

  9. Quantifying attention shifts in augmented reality image-guided neurosurgery.

    Science.gov (United States)

    Léger, Étienne; Drouin, Simon; Collins, D Louis; Popa, Tiberiu; Kersten-Oertel, Marta

    2017-10-01

    Image-guided surgery (IGS) has allowed for more minimally invasive procedures, leading to better patient outcomes, reduced risk of infection, less pain, shorter hospital stays and faster recoveries. One drawback that has emerged with IGS is that the surgeon must shift their attention from the patient to the monitor for guidance. Yet both cognitive and motor tasks are negatively affected with attention shifts. Augmented reality (AR), which merges the realworld surgical scene with preoperative virtual patient images and plans, has been proposed as a solution to this drawback. In this work, we studied the impact of two different types of AR IGS set-ups (mobile AR and desktop AR) and traditional navigation on attention shifts for the specific task of craniotomy planning. We found a significant difference in terms of the time taken to perform the task and attention shifts between traditional navigation, but no significant difference between the different AR set-ups. With mobile AR, however, users felt that the system was easier to use and that their performance was better. These results suggest that regardless of where the AR visualisation is shown to the surgeon, AR may reduce attention shifts, leading to more streamlined and focused procedures.

  10. Image-Guided percutaneous biopsies with a biopsy gun

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hwan; Lim, Hyo Keun; Kim, Eun Ah; Yun, Ku Sub; Bae, Sang Hoo; Shin, Hyung Sik [Hallym University College of Medicine, Seoul (Korea, Republic of)

    1994-07-15

    We report the results of image-guided percutaneous biopsies with a biopsy gun and evaluate the clinical usefulness. One hundred and five biopsies under ultrasonographic or fluoroscopic guidance were performed. Various anatomic sites were targeted(liver; 50, chest; 22, kidney; 12, pancreas; 8, intraperitoeum; 7, retroperitoneum; ). Obtained tissue was diagnostic in 98 of the 105 biopsies(93%). In each instance, representative core tissue specimens were obtained. Evaluation of the core tissue by pathologist revealed consistent, uniform specimens that contained significant crush artifact in no case. Five biopsies yielded inadequate tissue which were too small for histopathologic interpretation or were composed of necrotic debris. Two biopsies yielded adequate tissues, but tissues were not of the target. The diagnoses were malignancy in 77 biopsies and benign disease in 21 biopsies. No complications other than mild, localized discomfort were encountered except a transient hemoptysis and pneumothorax which was observed in two patients. Cutting biopsy with a biopsy gun provided sufficient amount of target tissue for an accurate diagnosis of malignant and benign disease. It was a safe and useful procedure for percutaneous biopsy.

  11. Ultrasonic image analysis and image-guided interventions.

    Science.gov (United States)

    Noble, J Alison; Navab, Nassir; Becher, H

    2011-08-06

    The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.

  12. Real-time Fluorescence Image-Guided Oncologic Surgery

    Science.gov (United States)

    Mondal, Suman B.; Gao, Shengkui; Zhu, Nan; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Medical imaging plays a critical role in cancer diagnosis and planning. Many of these patients rely on surgical intervention for curative outcomes. This requires a careful identification of the primary and microscopic tumors, and the complete removal of cancer. Although there have been efforts to adapt traditional imaging modalities for intraoperative image guidance, they suffer from several constraints such as large hardware footprint, high operation cost, and disruption of the surgical workflow. Because of the ease of image acquisition, relatively low cost devices and intuitive operation, optical imaging methods have received tremendous interests for use in real-time image-guided surgery. To improve imaging depth under low interference by tissue autofluorescence, many of these applications utilize light in the near-infra red (NIR) wavelengths, which is invisible to human eyes. With the availability of a wide selection of tumor-avid contrast agents, advancements in imaging sensors, electronic and optical designs, surgeons are able to combine different attributes of NIR optical imaging techniques to improve treatment outcomes. The emergence of diverse commercial and experimental image guidance systems, which are in various stages of clinical translation, attests to the potential high impact of intraoperative optical imaging methods to improve speed of oncologic surgery with high accuracy and minimal margin positivity. PMID:25287689

  13. Synthesis of multifunctional gold nanoparticles for image guided therapy

    International Nuclear Information System (INIS)

    Laurent, Gautier

    2014-01-01

    The original properties of nanoparticles make them extremely attractive in the field of oncology. In fast, gold nanoparticles coated by macrocyclic ligands allow imaging and therapy with only one object. Therefore, multifunctional platforms are very promising for image-guided therapy, winch constitutes an important step towards personalization of treatment. This consists of stimulating the therapeutic activity of the nanoparticles when their accumulation is high within the tumor zone and low in healthy tissues. A higher selectivity of the treatment is therefore expected. Biodistribution study by SPECT/CT has shown free circulation, renal elimination and a moderate retention by the liver of the nanoparticles. However, this retention is not due to the opsonisation processes. The MRI study of rats' brain carrying a gliosarcoma has shown an accumulation of nanoparticles Au-at-FADOTAGA-Gd in the tumor. Moreover, the co-labeling of these nanoparticles by Ge and 64Cts2+ was successfully performed. As a result, PET/MRI images, a much researched combination but rarely achieved, were acquired on the same animal alter intravenous injection of the co-labeled nanoparticles. The radiosensitizing character of nanoparticles Au-at-TADOTAGA was confirmed by the follow up of tumor growth alter a treatment by MRT (microbeam irradiation) 15 minutes after intratumoral injection of nanoparticles. The therapeutic gain of this treatment has been validated by MRT 24 hours after intravenous injection of nanoparticles to rats carrying gliosarcoma (radioresistant tumor in radiosensitive organ). (author)

  14. Image guided placement of temporary anchorage devices for tooth movement

    International Nuclear Information System (INIS)

    Bahl-Palomo, L.; Bissada, N.; Palomo, J.M.; Hans, M.G.

    2007-01-01

    The aim of this project is to develop an image guided protocol for placement of a temporary anchorage device without surgically reflecting a mucoperiosteal flap. Eighteen orthodontic cases were selected for skeletal anchorage from the department of orthodontics at Case University. CBCT images of the subjects were taken using the Hitachi CB MercuRay system set at 15 mA, 120 kVp. CBCT images evaluated the ideal location for TAD placement in three dimensions. Horizontal and vertical linear measurements were taken from fixed dental landmarks to clearly define the location for placement. Transverse slices were used to evaluate the thickness of the buccal plate. Using the transverse view, the angle of insertion was determined such that the maximum buccal plate surface area would contact the screw. TADs were placed in the optimum location, with the most appropriate angle of insertion using a closed approach and with minimal local anesthesia and without flap elevation. Results: All TADs were placed without anatomic encroachment and enabled fixed orthodontic anchorage. (orig.)

  15. Image-guided robotic radiosurgery for spinal metastases

    International Nuclear Information System (INIS)

    Gibbs, Iris C.; Kamnerdsupaphon, Pimkhuan; Ryu, Mi-Ryeong; Dodd, Robert; Kiernan, Michaela; Chang, Steven D.; Adler, John R.

    2007-01-01

    Background and Purpose: To determine the effectiveness and safety of image-guided robotic radiosurgery for spinal metastases. Materials/Methods: From 1996 to 2005, 74 patients with 102 spinal metastases were treated using the CyberKnife TM at Stanford University. Sixty-two (84%) patients were symptomatic. Seventy-four percent (50/68) of previously treated patients had prior radiation. Using the CyberKnife TM , 16-25 Gy in 1-5 fractions was delivered. Patients were followed clinically and radiographically for at least 3 months or until death. Results: With mean follow-up of 9 months (range 0-33 months), 36 patients were alive and 38 were dead at last follow-up. No death was treatment related. Eighty-four (84%) percent of symptomatic patients experienced improvement or resolution of symptoms after treatment. Three patients developed treatment-related spinal injury. Analysis of dose-volume parameters and clinical parameters failed to identify predictors of spinal cord injury. Conclusions: Robotic radiosurgery is effective and generally safe for spinal metastases even in previously irradiated patients

  16. Clinical Outcome of Dose-Escalated Image-Guided Radiotherapy for Spinal Metastases

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Goebel, Joachim; Wilbert, Juergen; Baier, Kurt; Richter, Anne; Sweeney, Reinhart A.; Bratengeier, Klaus; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the outcomes after dose-escalated radiotherapy (RT) for spinal metastases and paraspinal tumors. Methods and Materials: A total of 14 patients, 12 with spinal metastases and a long life expectancy and 2 with paraspinal tumors, were treated for 16 lesions with intensity-modulated, image-guided RT. A median biologic effective dose of 74 Gy 10 (range, 55-86) in a median of 20 fractions (range, 3-34) was prescribed to the target volume. The spinal canal was treated to 40 Gy in 20 fractions using a second intensity-modulated RT dose level in the case of epidural involvement. Results: After median follow-up of 17 months, one local recurrence was observed, for an actuarial local control rate of 88% after 2 years. Local control was associated with rapid and long-term pain relief. Of 11 patients treated for a solitary spinal metastasis, 6 developed systemic disease progression. The actuarial overall survival rate for metastatic patients was 85% and 63% after 1 and 2 years, respectively. Acute Grade 2-3 skin toxicity was seen in 2 patients with no late toxicity greater than Grade 2. No radiation-induced myelopathy was observed. Conclusion: Dose-escalated irradiation of spinal metastases was safe and resulted in excellent local control. Oligometastatic patients with a long life expectancy and epidural involvement are considered to benefit the most from fractionated RT.

  17. A Single-Institution Experience in Percutaneous Image-Guided Biopsy of Malignant Pleural Mesothelioma

    International Nuclear Information System (INIS)

    Welch, B. T.; Eiken, P. W.; Atwell, T. D.; Peikert, T.; Yi, E. S.; Nichols, F.; Schmit, G. D.

    2017-01-01

    PurposeMesothelioma has been considered a difficult pathologic diagnosis to achieve via image-guided core needle biopsy. The purpose of this study was to assess the diagnostic sensitivity of percutaneous image-guided biopsy for diagnosis of pleural mesothelioma.Materials and MethodsRetrospective review was performed to identify patients with a confirmed diagnosis of pleural mesothelioma and who underwent image-guided needle biopsy between January 1, 2002, and January 1, 2016. Thirty-two patients with pleural mesothelioma were identified and included for analysis in 33 image-guided biopsy procedures. Patient, procedural, and pathologic characteristics were recorded. Complications were characterized via standardized nomenclature [Common Terminology for Clinically Adverse Events (CTCAE)].ResultsPercutaneous image-guided biopsy was associated with an overall sensitivity of 81%. No CTCAE clinically significant complications were observed. No image-guided procedures were complicated by pneumothorax or necessitated chest tube placement. No patients had tumor seeding of the biopsy tract.ConclusionPercutaneous image-guided biopsy can achieve high sensitivity for pathologic diagnosis of pleural mesothelioma with a low procedural complication rate, potentially obviating need for surgical biopsy.

  18. A Single-Institution Experience in Percutaneous Image-Guided Biopsy of Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Welch, B. T., E-mail: Welch.brian@mayo.edu; Eiken, P. W.; Atwell, T. D. [Mayo Clinic, Department of Radiology (United States); Peikert, T. [Mayo Clinic, Department of Pulmonary and Critical Care Medicine (United States); Yi, E. S. [Mayo Clinic, Department of Pathology (United States); Nichols, F. [Mayo Clinic, Department of Thoracic Surgery (United States); Schmit, G. D. [Mayo Clinic, Department of Radiology (United States)

    2017-06-15

    PurposeMesothelioma has been considered a difficult pathologic diagnosis to achieve via image-guided core needle biopsy. The purpose of this study was to assess the diagnostic sensitivity of percutaneous image-guided biopsy for diagnosis of pleural mesothelioma.Materials and MethodsRetrospective review was performed to identify patients with a confirmed diagnosis of pleural mesothelioma and who underwent image-guided needle biopsy between January 1, 2002, and January 1, 2016. Thirty-two patients with pleural mesothelioma were identified and included for analysis in 33 image-guided biopsy procedures. Patient, procedural, and pathologic characteristics were recorded. Complications were characterized via standardized nomenclature [Common Terminology for Clinically Adverse Events (CTCAE)].ResultsPercutaneous image-guided biopsy was associated with an overall sensitivity of 81%. No CTCAE clinically significant complications were observed. No image-guided procedures were complicated by pneumothorax or necessitated chest tube placement. No patients had tumor seeding of the biopsy tract.ConclusionPercutaneous image-guided biopsy can achieve high sensitivity for pathologic diagnosis of pleural mesothelioma with a low procedural complication rate, potentially obviating need for surgical biopsy.

  19. Navigation concepts for magnetic resonance imaging-guided musculoskeletal interventions.

    Science.gov (United States)

    Busse, Harald; Kahn, Thomas; Moche, Michael

    2011-08-01

    Image-guided musculoskeletal (MSK) interventions are a widely used alternative to open surgical procedures for various pathological findings in different body regions. They traditionally involve one of the established x-ray imaging techniques (radiography, fluoroscopy, computed tomography) or ultrasound scanning. Over the last decades, magnetic resonance imaging (MRI) has evolved into one of the most powerful diagnostic tools for nearly the whole body and has therefore been increasingly considered for interventional guidance as well.The strength of MRI for MSK applications is a combination of well-known general advantages, such as multiplanar and functional imaging capabilities, wide choice of tissue contrasts, and absence of ionizing radiation, as well as a number of MSK-specific factors, for example, the excellent depiction of soft-tissue tumors, nonosteolytic bone changes, and bone marrow lesions. On the downside, the magnetic resonance-compatible equipment needed, restricted space in the magnet, longer imaging times, and the more complex workflow have so far limited the number of MSK procedures under MRI guidance.Navigation solutions are generally a natural extension of any interventional imaging system, in particular, because powerful hardware and software for image processing have become routinely available. They help to identify proper access paths, provide accurate feedback on the instrument positions, facilitate the workflow in an MRI environment, and ultimately contribute to procedural safety and success.The purposes of this work were to describe some basic concepts and devices for MRI guidance of MSK procedures and to discuss technical and clinical achievements and challenges for some selected implementations.

  20. Image guided versus palpation guided core needle biopsy of palpable breast masses: a prospective study

    Directory of Open Access Journals (Sweden)

    Smriti Hari

    2016-01-01

    Interpretation & conclusions: Our results showed that in palpable breast masses, image guided biopsy was superior to palpation guided biopsy in terms of sensitivity, false negative rate and repeat biopsy rates.

  1. A small animal image guided irradiation system study using 3D dosimeters

    International Nuclear Information System (INIS)

    Qian, Xin; Wuu, Cheng-Shie; Admovics, John

    2015-01-01

    In a high resolution image-guided small animal irradiation platform, a cone beam computed tomography (CBCT) is integrated with an irradiation unit for precise targeting. Precise quality assurance is essential for both imaging and irradiation components. The conventional commissioning techniques with films face major challenges due to alignment uncertainty and labour intensive film preparation and scanning. In addition, due to the novel design of this platform the mouse stage rotation for CBCT imaging is perpendicular to the gantry rotation for irradiation. Because these two rotations are associated with different mechanical systems, discrepancy between rotation isocenters exists. In order to deliver x-ray precisely, it is essential to verify coincidence of the imaging and the irradiation isocenters. A 3D PRESAGE dosimeter can provide an excellent tool for checking dosimetry and verifying coincidence of irradiation and imaging coordinates in one system. Dosimetric measurements were performed to obtain beam profiles and percent depth dose (PDD). Isocentricity and coincidence of the mouse stage and gantry rotations were evaluated with starshots acquired using PRESAGE dosimeters. A single PRESAGE dosimeter can provide 3 -D information in both geometric and dosimetric uncertainty, which is crucial for translational studies

  2. Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks

    OpenAIRE

    Heintz, Keely A.; Mayerich, David; Slater, John H.

    2017-01-01

    This detailed protocol outlines the implementation of image-guided, laser-based hydrogel degradation for the fabrication of vascular-derived microfluidic networks embedded in PEGDA hydrogels. Here, we describe the creation of virtual masks that allow for image-guided laser control; the photopolymerization of a micromolded PEGDA hydrogel, suitable for microfluidic network fabrication and pressure head-driven flow; the setup and use of a commercially available laser scanning confocal microscope...

  3. Percutaneous Image-guided radiofrequency ablation of tumors in inoperable patients - immediate complications and overall safety

    Directory of Open Access Journals (Sweden)

    Anubha Sahay

    2016-01-01

    Conclusions: Percutaneous image-guided RFA is an option in patients where most other tumor management modalities have been exhausted or rejected. RFA may not be free from side effects such as postablation syndrome, pain, and there may be other serious complications such as bleeding, but based on our observations, percutaneous image-guided RFA of tumors is a safe palliative and therapeutic treatment option.

  4. Magnetic resonance imaging guided reirradiation of recurrent and second primary head and neck cancer.

    Science.gov (United States)

    Chen, Allen M; Cao, Minsong; Hsu, Sophia; Lamb, James; Mikaeilian, Argin; Yang, Yingli; Agazaryan, Nzhde; Low, Daniel A; Steinberg, Michael L

    2017-01-01

    To report a single-institutional experience using magnetic resonance imaging (MRI) guided radiation therapy for the reirradiation of recurrent and second cancers of the head and neck. Between October 2014 and August 2016, 13 consecutive patients with recurrent or new primary cancers of the head and neck that occurred in a previously irradiated field were prospectively enrolled in an institutional registry trial to investigate the feasibility and efficacy of MRI guided radiation therapy using a 0.35-T MRI scanner with a cobalt-60 radiation therapy source called the ViewRay system (ViewRay Inc., Cleveland, OH). Eligibility criteria included biopsy-proven evidence of recurrent or new primary squamous cell carcinoma of the head and neck, measurable disease, and previous radiation to >60 Gy. MRI guided reirradiation was delivered either using intensity modulated radiation therapy with conventional fractionation to a median dose of 66 Gy or stereotactic body radiation therapy (SBRT) using 7 to 8 Gy fractions on nonconsecutive days to a median dose of 40 Gy. Two patients (17%) received concurrent chemotherapy. The 1- and 2-year estimates of in-field control were 72% and 72%, respectively. A total of 227 daily MRI scans were obtained to guide reirradiation. The 2-year estimates of overall survival and progression-free survival were 53% and 59%, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis and/or conjunctivitis, and 1 case of aspiration pneumonia. Our preliminary findings show that reirradiation with MRI guided radiation therapy results in effective disease control with relatively low morbidity for patients with recurrent and second primary cancers of the head and neck. The superior soft tissue resolution of the MRI scans that were used for planning and delivery has the potential to improve the therapeutic ratio.

  5. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, T. [Brigham & Women’s Hospital (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  6. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    International Nuclear Information System (INIS)

    Kapur, T.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  7. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Amini Arya

    2012-03-01

    Full Text Available Abstract Background While conventionally fractionated radiation therapy alone is an acceptable option for poor prognostic patients with unresectable stage III NSCLC, we hypothesized that accelerated hypofractionated radiotherapy will have similar efficacy without increasing toxicity. Methods This is a retrospective analysis of 300 patients diagnosed with stage III NSCLC treated between 1993 and 2009. Patients included in the study were medically or surgically inoperable, were free of metastatic disease at initial workup and did not receive concurrent chemotherapy. Patients were categorized into three groups. Group 1 received 45 Gy in 15 fractions over 3 weeks (Accelerated Radiotherapy (ACRT while group 2 received 60-63 Gy (Standard Radiation Therapy 1 (STRT1 and group 3 received > 63 Gy (Standard Radiation Therapy (STRT2. Results There were 119 (39.7% patients in the ACRT group, 90 (30.0% in STRT1 and 91 (30.3% in STRT2. More patients in the ACRT group had KPS ≤ 60 (p 5% (p = 0.002, and had stage 3B disease (p Conclusions Despite the limitations of a retrospective analysis, our experience of accelerated hypofractionated radiation therapy with 45 Gy in 15 fractions appears to be an acceptable treatment option for poor performance status patients with stage III inoperable tumors. Such a treatment regimen (or higher doses in 15 fractions should be prospectively evaluated using modern radiation technologies with the addition of sequential high dose chemotherapy in stage III NSCLC.

  8. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia.

    Science.gov (United States)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N; Le Baron, Olivier; Ferrara, Katherine W

    2016-07-21

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  9. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    Science.gov (United States)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  10. Image-guided pain therapy. Sympathicolysis; Bildgestuetzte Schmerztherapie. Sympathikolyse

    Energy Technology Data Exchange (ETDEWEB)

    Burbelko, M.; Wagner, H.J. [Vivantes Klinikum im Friedrichshain, Institut fuer Radiologie und Interventionelle Therapie, Berlin (Germany); Gutberlet, M.; Grothoff, M. [Universitaet Leipzig - Herzzentrum, Abteilung fuer Diagnostische und Interventionelle Radiologie, Leipzig (Germany)

    2015-06-15

    In the autonomic nerve system most sympathetic neurons synapse peripherally in the ganglia of the sympathetic trunk. A reduction in sympathicotonia by partial elimination of these ganglia is a therapeutic approach that has been used for more than 100 years. In the early 1920s the first attempts at percutaneous sympathicolysis (SL) were carried out. Nowadays, minimally invasive image-guided SL has become an integral part of interventional radiology. Established indications for SL are hyperhidrosis, critical limb ischemia and the complex regional pain syndrome. The standard imaging guidance modality in SL is computed tomography (CT) which allows the exact placement of the puncture needle in the target area under visualization of the surrounding structures. Ethanol is normally used for chemical lysis, which predominantly eliminates the unmyelinated autonomic axons. In order to visualize the distribution of the ethanol during application, iodine-containing contrast medium is added. The sympathetic nervous system (SNS) controls sweat secretion via the efferent neurons; therefore, effective therapy of idiopathic palmar, axillary and plantar hyperhidrosis can be achieved when SL is performed at the corresponding level of the sympathetic trunk. Furthermore, due to the vasomotor innervation of most blood vessels, by reduction of the sympathicotonus an atony of the smooth muscles and therefore vasodilatation occurs, which is used as a palliative therapeutic option in patients with critical limb ischemia. By elimination of the afferent sensory fibers this also results in pain relief. This principle is also used in the SL therapy of the complex regional pain syndrome. After the introduction of CT guidance, major complications have become rare events. In addition to the usual risks of percutaneous interventions there are, however, a number of specific complications, such as syncope caused by irritation of cardiac sympathetic nerves in thoracic SL and ureteral injury in lumbar

  11. A randomized trial comparing hypofractionated and conventionally fractionated three-dimensional external-beam radiotherapy for localized prostate adenocarcinoma. A report on acute toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Norkus, Darius; Miller, Albert; Kurtinaitis, Juozas; Valuckas, Konstantinas Povilas [Dept. of Radiotherapy, Inst. of Oncology, Vilnius Univ. (Lithuania); Haverkamp, Uwe [Dept. of Radiology, Clemenshospital, Muenster (Germany); Popov, Sergey [Dept. of Radiotherapy, Riga Eastern Hospital, Latvian Oncology Center, Riga (Latvia); Prott, Franz-Josef [Inst. of Radiology and Radiotherapy (RNS), St. Josefs Hospital, Wiesbaden (Germany)

    2009-11-15

    Purpose: to compare acute gastrointestinal (GI) and genitourinary (GU) toxicity between patient groups with localized prostate adenocarcinoma, treated with conventionally fractionated (CFRT) and hypofractionated (HFRT) three-dimensional conformal external-beam radiotherapy (3D-CRT). Patients and methods: 91 patients were enrolled into a randomized study with a minimum follow-up of 3 months. 44 men in the CFRT arm were irradiated with 74 Gy in 37 fractions at 2 Gy per fraction for 7.5 weeks. 47 men in the HFRT arm were treated with 57 Gy in 17 fractions for 3.5 weeks, given as 13 fractions of 3 Gy plus four fractions of 4.5 Gy. The clinical target volume (CTV) included the prostate and the base of seminal vesicles. The CTV-to-PTV (planning target volume) margin was 8-10 mm. Study patients had portal imaging and/or simulation performed on the first fractions and repeated at least weekly. Results: no acute grade 3 or 4 toxicities were observed. The grade 2 GU acute toxicity proportion was significantly lower in the HFRT arm: 19.1% versus 47.7% ({chi}{sup 2}-test, p = 0.003). The grade 2 GU acute toxicity-free survival was significantly better in the HFRT arm (log-rank test, p = 0.008). The median duration of overall GI acute toxicity was shorter with HFRT: 3 compared to 6 weeks with CFRT (median test, p = 0.017). Conclusion: in this first evaluation, the HFRT schedule is feasible and induces acceptable or even lower acute toxicity compared with the toxicities in the CFRT schedule. Extended follow-up is needed to justify this fractionation schedule's safety in the long term. (orig.)

  12. A multicenter investigation of late adverse events in Japanese women treated with breast-conserving surgery plus conventional fractionated whole-breast radiation therapy

    International Nuclear Information System (INIS)

    Nozaki, Miwako; Kagami, Yoshikazu; Mitsumori, Michihide; Hiraoka, Masahiro

    2012-01-01

    The objective of this study was to investigate late adverse events in Japanese women treated with breast-conserving surgery plus conventional fractionated radiation therapy in 24 hospitals. This is a prospective investigation into patients who have been followed for 3 years or more after the completion of radiation therapy. The women visited hospitals for routine medical follow-up between 1 March and 31 May 2008. All patients underwent interviews and visual/palpating examinations. Their clinical chart, past chest X-rays and laboratory findings were reviewed. Evaluation criteria for late adverse events and breast cosmetic outcome were based on the Common Terminology Criteria for Adverse Events v.3 and the European Organization for Research and Treatment of Cancer Global Cosmetic Rating System. Seven hundred and three women, including 448 treated with whole-breast irradiation and 255 treated with whole-breast and boost irradiation, were examined by radiation oncologists in 24 hospitals. The frequent adverse events were breast pain (Grade 1, 115; Grade 2, 2), breast fibrosis (Grade 1, 72; Grade 2, 8), chest wall pain (Grade 1, 67; Grade 2, 3), telangiectasia (Grade 1, 29; Grade 2, 5) and pneumonitis (Grade 1, 20; Grade 2, 6; Grade 3, 3). Adverse events of Grade 2 or 3 were found in 27 patients (3.8%); 3 presented with radiation pneumonitis of Grade 3. The percentage of patients with an excellent or good cosmetic outcome was 69.1%. In the first multicenter investigation for Japanese women after breast-conserving therapy, the evaluation of late adverse events and breast cosmetic outcome was similar to several other reports from clinical trials in North America and Europe. (author)

  13. Intrafractional prostate motion during online image guided intensity-modulated radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Budiharto, Tom; Slagmolen, Pieter; Haustermans, Karin; Maes, Frederik; Junius, Sara; Verstraete, Jan; Oyen, Raymond; Hermans, Jeroen; Van den Heuvel, Frank

    2011-01-01

    Introduction: Intrafractional motion consists of two components: (1) the movement between the on-line repositioning procedure and the treatment start and (2) the movement during the treatment delivery. The goal of this study is to estimate this intrafractional movement of the prostate during prostate cancer radiotherapy. Material and methods: Twenty-seven patients with prostate cancer and implanted fiducials underwent a marker match procedure before a five-field IMRT treatment. For all fields, in-treatment images were obtained and then processed to enable automatic marker detection. Combining the subsequent projection images, five positions of each marker were determined using the shortest path approach. The residual set-up error (RSE) after kV-MV based prostate localization, the prostate position as a function of time during a radiotherapy session and the required margins to account for intrafractional motion were determined. Results: The mean RSE and standard deviation in the antero-posterior, cranio-caudal and left-right direction were 2.3 ± 1.5 mm, 0.2 ± 1.1 mm and -0.1 ± 1.1 mm, respectively. Almost all motions occurred in the posterior direction before the first treatment beam as the percentage of excursions >5 mm was reduced significantly when the RSE was not accounted for. The required margins for intrafractional motion increased with prolongation of the treatment. Application of a repositioning protocol after every beam could decrease the 1 cm margin from CTV to PTV by 2 mm. Conclusions: The RSE is the main contributor to intrafractional motion. This RSE after on-line prostate localization and patient repositioning in the posterior direction emphasizes the need to speed up the marker match procedure. Also, a prostate IMRT treatment should be administered as fast as possible, to ensure that the pre-treatment repositioning efforts are not erased by intrafractional prostate motion. This warrants an optimized workflow with the use of faster treatment techniques.

  14. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Hess, Clayton B.; Thompson, Holly M.; Benedict, Stanley H.; Seibert, J. Anthony; Wong, Kenneth; Vaughan, Andrew T.; Chen, Allen M.

    2016-01-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of “gentle IGRT.”

  15. Rectal dose variation during the course of image-guided radiation therapy of prostate cancer

    International Nuclear Information System (INIS)

    Chen Lili; Paskalev, Kamen; Xu Xiu; Zhu, Jennifer; Wang Lu; Price, Robert A.; Hu Wei; Feigenberg, Steven J.; Horwitz, Eric M.; Pollack, Alan; Charlie Ma, C.M.

    2010-01-01

    Background and purpose: To investigate the change in rectal dose during the treatment course for intensity-modulated radiotherapy (IMRT) of prostate cancer with image-guidance. Materials and methods: Twenty prostate cancer patients were recruited for this retrospective study. All patients have been treated with IMRT. For each patient, MR and CT images were fused for target and critical structure delineation. IMRT treatment planning was performed on the simulation CT images. Inter-fractional motion during the course of treatment was corrected using a CT-on-rails system. The rectum was outlined on both the original treatment plan and the subsequent daily CT images from the CT-on-rails by the same investigator. Dose distributions on these daily CT images were recalculated with the isocenter shifts relative to the simulation CT images using the leaf sequences/MUs based on the original treatment plan. The rectal doses from the subsequent daily CTs were compared with the original doses planned on the simulation CT using our clinical acceptance criteria. Results: Based on 20 patients with 139 daily CT sets, 28% of the subsequent treatment dose distributions did not meet our criterion of V 40 65 < 17%. The inter-fractional rectal volume variation is significant for some patients. Conclusions: Due to the large inter-fractional variation of the rectal volume, it is more favorable to plan prostate IMRT based on an empty rectum and deliver treatment to patients with an empty rectum. Over 70% of actual treatments showed better rectal doses than our clinical acceptance criteria. A significant fraction (27%) of the actual treatments would benefit from adaptive image-guided radiotherapy based on daily CT images.

  16. Patient positioning with X-ray detector self-calibration for image guided therapy

    International Nuclear Information System (INIS)

    Selby, B.P.; Sakas, G.; Stilla, U.; Groch, W.-D.

    2011-01-01

    Full text: Automatic alignment estimation from projection images has a range of applications, but misaligned cameras induce inaccuracies. Calibration methods for optical cameras requiring calibration bodies or detectable features have been a matter of research for years. Not so for image guided therapy, although exact patient pose recovery is crucial. To image patient anatomy, X-ray instead of optical equipment is used. Feature detection is often infeasible. Furthermore, a method not requiring a calibration body, usable during treatment, would be desirable to improve accuracy of the patient alignment. We present a novel approach not relying on image features but combining intensity based calibration with 3D pose recovery. A stereoscopic X-ray camera model is proposed, and effects of erroneous parameters on the patient alignment are evaluated. The relevant camera parameters are automatically computed by comparison of X-ray to CT images and are incorporated in the patient alignment computation. The methods were tested with ground truth data of an anatomic phantom with artificially produced misalignments and available real-patient images from a particle therapy machine. We show that our approach can compensate patient alignment errors through mis-calibration of a camera from more than 5 mm to below 0.2 mm. Usage of images with artificial noise shows that the method is robust against image degradation of 2-5%. X-ray camera sel calibration improves accuracy when cameras are misaligned. We could show that rigid body alignment was computed more accurately and that self-calibration is possible, even if detection of corresponding image features is not. (author)

  17. Retractor-induced brain shift compensation in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  18. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Clayton B. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Thompson, Holly M. [Department of Diagnostic Radiology, University of California Davis Medical Center, Sacramento, California (United States); Benedict, Stanley H. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Seibert, J. Anthony [Department of Diagnostic Radiology, University of California Davis Medical Center, Sacramento, California (United States); Wong, Kenneth [Department of Radiation Oncology, University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California David Geffen School of Medicine, Los Angeles, California (United States); Vaughan, Andrew T. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Chen, Allen M., E-mail: allenmchen@yahoo.com [Department of Radiation Oncology, University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California David Geffen School of Medicine, Los Angeles, California (United States)

    2016-04-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of “gentle IGRT.”.

  19. Determination of tolerances in the positioning of the treatment table from an image-guided system

    International Nuclear Information System (INIS)

    Perez Moreno, J. M.; Zucca Aparicio, D.; Fernandez leton, P.; Garcia Ruiz-Zorrilla, J.; Minanbres Moro, A.

    2011-01-01

    The use of techniques of image-guided radiotherapy (TGRT) aims to reduce the uncertainties associated with patient positioning. One of the techniques more recent development is the cone beam CT (CBCT), consisting of the acquisition of volumetric images of the patient by a detector integrated into the linear accelerator. By analyzing the results of all sessions of treatment to all patients in which the positioning has been carried out with image-guided system MV CBCT have been determined tolerance tables for translational coordinates of the table treatment based on pathology and immobilization system used. (Author)

  20. The Role of Seminal Vesicle Motion in Target Margin Assessment for Online Image-Guided Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Liang Jian; Wu Qiuwen; Yan Di

    2009-01-01

    Purpose: For patients with intermediate- and high-risk prostate cancer, the seminal vesicles (SVs) are included in the clinical target volume (CTV). The purposes of this study are to investigate interfraction motion characteristics of the SVs and determine proper margins for online computed tomography image guidance. Methods and Materials: Twenty-four patients, each with 16 daily helical computed tomography scans, were included in this study. A binary image mask was used for image registration to determine daily organ motion. Two online image-guided radiotherapy strategies (prostate only and prostate + SVs) were simulated in a hypofractionated scheme. Three margin designs were studied for both three-dimensional conformal radiotherapy and intensity-modulated radiotherapy (IMRT). In prostate-only guidance, Margin A was uniformly applied to the whole CTV, and Margin B was applied to the SVs with a fixed 3-mm prostate margin. In prostate plus SV guidance, Margin C was uniformly applied to the CTV. The minimum margins were sought to satisfy the criterion that minimum cumulative CTV dose be more than those of the planning target volume in the plan for greater than 95% of patients. Results: The prostate and SVs move significantly more in the anterior-posterior and superior-inferior than right-left directions. The anterior-posterior motion of the prostate and SVs correlated (R 2 = 0.7). The SVs move significantly more than the prostate. The minimum margins found were 2.5 mm for three-dimensional conformal radiotherapy and 4.5, 4.5, and 3.0 mm for Margins A, B, and C for IMRT, respectively. Margins for IMRT were larger, but the irradiated volume and doses to critical structures were smaller. Minimum margins of 4.5 mm to the SVs and 3 mm to the prostate are recommended for IMRT with prostate-only guidance. Conclusions: The SVs move independently from the prostate gland, and additional margins are necessary for image-guided radiotherapy

  1. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    Science.gov (United States)

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  2. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    International Nuclear Information System (INIS)

    Xie Yaoqin; Gu Jia; Xing Lei; Liu Wu

    2013-01-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow. (paper)

  3. Evaluation of the precision of portal-image-guided head-and-neck localization: An intra- and interobserver study

    International Nuclear Information System (INIS)

    Court, Laurence E.; Allen, Aaron; Tishler, Roy

    2007-01-01

    There is increasing evidence that, for some patients, image-guided intensity-modulated radiation therapy (IMRT) for head-and-neck cancer patients may maintain target dose coverage and critical organ (e.g., parotids) dose closer to the planned doses than setup using lasers alone. We investigated inter- and intraobserver uncertainties in patient setup in head-and-neck cancer patients. Twenty-two sets of orthogonal digital portal images (from five patients) were selected from images used for daily localization of head-and-neck patients treated with IMRT. To evaluate interobserver variations, five radiation therapists compared the portal images with the plan digitally reconstructed radiographs and reported shifts for the isocenter (∼C2) and for a supraclavicular reference point. One therapist repeated the procedure a month later to evaluate intraobserver variations. The procedure was then repeated with teams of two therapists. The frequencies for which agreement between the shift reported by the observer and the daily mean shift (average of all observers for a given image set) were less than 1.5 and 2.5 mm were calculated. Standard errors of measurement for the intra- and interobserver uncertainty (SEM intra and SEM inter ) for the individual and teams were calculated. The data showed that there was very little difference between individual therapists and teams. At isocenter, 80%-90% of all reported shifts agreed with the daily average within 1.5 mm, showing consistency in the ways both individuals and teams interpret the images (SEM inter ∼1 mm). This dropped to 65% for the supraclavicular point (SEM inter ∼1.5 mm). Uncertainties increased for larger setup errors. In conclusion, image-guided patient positioning allows head-and-neck patients to be controlled within 3-4 mm. This is similar to the setup uncertainties found for most head-and-neck patients, but may provide some improvement for the subset of patients with larger setup uncertainties

  4. Image-guided surgery and therapy: current status and future directions

    Science.gov (United States)

    Peters, Terence M.

    2001-05-01

    Image-guided surgery and therapy is assuming an increasingly important role, particularly considering the current emphasis on minimally-invasive surgical procedures. Volumetric CT and MR images have been used now for some time in conjunction with stereotactic frames, to guide many neurosurgical procedures. With the development of systems that permit surgical instruments to be tracked in space, image-guided surgery now includes the use of frame-less procedures, and the application of the technology has spread beyond neurosurgery to include orthopedic applications and therapy of various soft-tissue organs such as the breast, prostate and heart. Since tracking systems allow image- guided surgery to be undertaken without frames, a great deal of effort has been spent on image-to-image and image-to- patient registration techniques, and upon the means of combining real-time intra-operative images with images acquired pre-operatively. As image-guided surgery systems have become increasingly sophisticated, the greatest challenges to their successful adoption in the operating room of the future relate to the interface between the user and the system. To date, little effort has been expended to ensure that the human factors issues relating to the use of such equipment in the operating room have been adequately addressed. Such systems will only be employed routinely in the OR when they are designed to be intuitive, unobtrusive, and provide simple access to the source of the images.

  5. Automated tru-cut imaging-guided core needle biopsy of canine ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate the diagnostic value of imaging-guided core needle biopsy for canine orbital mass diagnosis. A second excisional biopsy obtained during surgery or necropsy was used as the reference standard. A prospective feasibility study was conducted in 23 canine orbital masses at a single ...

  6. Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions

    NARCIS (Netherlands)

    Schmitz, A.C.; Gianfelice, D.; Daniel, B.L.; Mali, W.P.T.M.; Bosch, M.A.A.J. van den

    2008-01-01

    Image-guided focussed ultrasound (FUS) ablation is a noninvasive procedure that has been used for treatment of benign or malignant breast tumours. Image-guidance during ablation is achieved either by using real-time ultrasound (US) or magnetic resonance imaging (MRI). The past decade phase I

  7. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy

    NARCIS (Netherlands)

    Smitsmans, Monique H. P.; de Bois, Josien; Sonke, Jan-Jakob; Betgen, Anja; Zijp, Lambert J.; Jaffray, David A.; Lebesque, Joos V.; van Herk, Marcel

    2005-01-01

    PURPOSE: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the

  8. Image-guided diagnosis of prostate cancer can increase detection of tumors

    Science.gov (United States)

    In the largest prospective study to date of image-guided technology for identifying suspicious regions of the prostate to biopsy, researchers compared the ability of this technology to detect high-risk prostate cancer with that of the current standard of

  9. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery

    NARCIS (Netherlands)

    Webers, V.S.C.; Bauer, N.J.C.; Visser, N.; Berendschot, T.T.J.M.; van den Biggelaar, F.J.H.M.; Nuijts, R.M.M.A.

    2017-01-01

    Purpose To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. Setting University Eye Clinic Maastricht, Maastricht, the Netherlands. Design Prospective randomized clinical trial. Methods Eyes with

  10. Feasibility and effectiveness of image-guided percutaneous biopsy of the urinary bladder.

    Science.gov (United States)

    Butros, Selim Reha; McCarthy, Colin James; Karaosmanoğlu, Ali Devrim; Shenoy-Bhangle, Anuradha S; Arellano, Ronald S

    2015-08-01

    To evaluate the indications, technique, results, and complications of image-guided percutaneous biopsy of the urinary bladder. This retrospective study included 15 patients (10 male, 5 female) who underwent image-guided percutaneous biopsy of the urinary bladder between January 1999 and December 2013. The medical records, imaging studies, procedural details, and long-term follow-up of each patient were reviewed in detail to assess the feasibility of percutaneous bladder biopsy. Ten patients had focal bladder masses and 5 patients had asymmetric or diffuse bladder wall thickening. Eleven patients had either negative or unsatisfactory cystoscopies prior to the biopsy. Percutaneous biopsies were performed under computed tomography guidance in 12 patients and ultrasound in 3 patients. All procedures were technically successful and there were no procedural complications. Malignancy was confirmed in 8 patients, among whom 6 had transitional cell carcinoma, 1 cervical cancer, and 1 prostate cancer metastasis. Seven patients had a benign diagnosis, including 3 that were later confirmed by pathology following surgery and 2 patients with a false-negative result. The overall sensitivity was 80% and accuracy was 87%. Image-guided percutaneous biopsy of the urinary bladder is a safe and technically feasible procedure with a high sensitivity and accuracy rate. Although image-guided bladder biopsy is an uncommon procedure, it should be considered in selected cases when more traditional methods of tissue sampling are either not possible or fail to identify abnormalities detected by cross-sectional imaging.

  11. Microencapsulation of indocyanine green for potential applications in image-guided drug delivery.

    Science.gov (United States)

    Zhu, Zhiqiang; Si, Ting; Xu, Ronald X

    2015-02-07

    We present a novel process to encapsulate indocyanine green (ICG) in liposomal droplets at high concentration for potential applications in image-guided drug delivery. The microencapsulation process follows two consecutive steps of droplet formation by liquid-driven coaxial flow focusing (LDCFF) and solvent removal by oil phase dewetting. These biocompatible lipid vesicles may have important applications in drug delivery and fluorescence imaging.

  12. Imaging-guided hyperstimulation analgesia in low back pain

    Directory of Open Access Journals (Sweden)

    Gorenberg M

    2013-06-01

    Full Text Available Miguel Gorenberg,1,2 Kobi Schwartz31Department of Nuclear Medicine, B'nai Zion Medical Center, Haifa, Israel; 2The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; 3Department of Physical Therapy, B'nai Zion Medical Center, Haifa, IsraelAbstract: Low back pain in patients with myofascial pain syndrome is characterized by painful active myofascial trigger points (ATPs in muscles. This article reviews a novel, noninvasive modality that combines simultaneous imaging and treatment, thus taking advantage of the electrodermal information available from imaged ATPs to deliver localized neurostimulation, to stimulate peripheral nerve endings (Aδ fibers and in turn, to release endogenous endorphins. "Hyperstimulation analgesia" with localized, intense, low-rate electrical pulses applied to painful ATPs was found to be effective in 95% patients with chronic nonspecific low back pain, in a clinical validation study.Keywords: myofascial, noninvasive, electrical, impedance

  13. Functional image guided radiation therapy planning in volumetric modulated arc therapy for patients with malignant pleural mesothelioma

    Directory of Open Access Journals (Sweden)

    Yoshiko Doi, MD

    2017-04-01

    Conclusions: Significant reductions in fV5, fV10, fMLD, V5, and MLD were achieved with the functional image guided VMAT plan without negative effects on other factors. LAA-based functional image guided radiation therapy planning in VMAT is a feasible method to spare the functional lung in patients with MPM.

  14. Gamma Imaging-Guided Minimally Invasive Breast Biopsy: Initial Clinical Experience.

    Science.gov (United States)

    Brem, Rachel F; Mehta, Anita K; Rapelyea, Jocelyn A; Akin, Esma A; Bazoberry, Adriana M; Velasco, Christel D

    2018-03-01

    The purpose of this study was to evaluate our initial experience with gamma imaging-guided vacuum-assisted breast biopsy in women with abnormal findings. A retrospective review of patients undergoing breast-specific gamma imaging (BSGI), also known as molecular breast imaging (MBI), between April 2011 and October 2015 found 117 nonpalpable mammographically and sonographically occult lesions for which gamma imaging-guided biopsies were recommended. Biopsy was performed with a 9-gauge vacuum-assisted device with subsequent placement of a titanium biopsy site marker. Medical records and pathologic findings were evaluated. Of the 117 biopsies recommended, 104 were successful and 13 were canceled. Of the 104 performed biopsies, 32 (30.8%) had abnormal pathologic findings. Of those 32 biopsies, nine (28.1%) found invasive cancers, six (18.8%) found ductal carcinoma in situ (DCIS), and 17 (53.1%) found high-risk lesions. Of the 17 high-risk lesions, there were three (17.6%) lobular carcinomas in situ, five (29.4%) atypical ductal hyperplasias, two (11.8%) atypical lobular hyperplasias, one (5.9%) flat epithelial atypia, and six (35.3%) papillomas. Two cases of atypical ductal hyperplasia were upgraded to DCIS at surgery. The overall cancer detection rate for gamma imaging-guided biopsy was 16.3%. In this study, gamma imaging-guided biopsy had a positive predictive value of total successful biopsies of 16.3% for cancer and 30.8% for cancer and high-risk lesions. Gamma imaging-guided biopsy is a viable approach to sampling BSGI-MBI-detected lesions without sonographic or mammographic correlate. Our results compare favorably to those reported for MRI-guided biopsy.

  15. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K. [National Cancer Institute (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  16. Percutaneous image-guided needle biopsy in children - summary of our experience with 57 children

    International Nuclear Information System (INIS)

    Sklair-Levy, M.; Lebensart, P.D.; Applbaum, Y.H.; Bar-Ziv, J.; Libson, E.; Ramu, N.; Freeman, A.; Gozal, D.; Gross, E.; Sherman, Y.

    2001-01-01

    Background: Percutaneous image-guided needle biopsy in children has been slower to gain acceptance than in adults where it is regarded as the standard clinical practice in screening suspicious masses. Objectives: To report our experience with percutaneous image-guided needle biopsy in the pediatric population and assess its clinical use, efficacy and limitations. Material and methods: Sixty-nine percutaneous image-guided needle biopsies were performed in 57 children. The age of the children ranged from 4 days to 14 years (mean 5.6 years). We used 16- to-20-gauge cutting-edge needles. Sixty-two biopsies were core-needle biopsies and 7 fine-needle aspiration biopsies. Results: There were 50 malignant lesions, 10 benign lesions and 2 infectious lesions. In 55 (88.7 %) lesions the needle biopsy was diagnostic. In 7 (11.3 %) the biopsy was non-diagnostic and the diagnosis was made by surgery. Core-needle biopsy was diagnostic in 47 of 50 (94 %) of the malignant solid tumors. In 3 out of 5 children with lymphoma, an accurate diagnosis was obtained with needle aspiration. Seven children underwent a repeated core-needle biopsy, (5 for Wilms' tumor and 2 for neuroblastoma) that was diagnostic in all cases. All the biopsies were performed without complications. Conclusion: Percutaneous image-guided needle biopsy is a simple, minimally invasive, safe and accurate method for the evaluation of children with suspicious masses. These data suggest that image-guided needle biopsy is an excellent tool for diagnosing solid tumors in the pediatric population. Negative studies should be considered nondiagnostic and followed by excisional surgical biopsies when clinical suspicion of malignancy is high. (orig.)

  17. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    International Nuclear Information System (INIS)

    Farahani, K.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  18. Functional image-guided stereotactic body radiation therapy planning for patients with hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Tsegmed, Uranchimeg [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Nakashima, Takeo [Division of Radiation Therapy, Hiroshima University Hospital, Hiroshima (Japan); Nakamura, Yuko; Higaki, Toru [Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Imano, Nobuki; Doi, Yoshiko; Kenjo, Masahiro; Ozawa, Shuichi; Murakami, Yuji [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Awai, Kazuo [Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan)

    2017-07-01

    The aim of the current planning study is to evaluate the ability of gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI)–guided stereotactic body radiation therapy (SBRT) planning by using intensity-modulated radiation therapy (IMRT) techniques in sparing the functional liver tissues during SBRT for hepatocellular carcinoma. In this study, 20 patients with hepatocellular carcinoma were enrolled. Functional liver tissues were defined according to quantitative liver-spleen contrast ratios ≥ 1.5 on a hepatobiliary phase scan. Functional images were fused with the planning computed tomography (CT) images; the following 2 SBRT plans were designed using a “step-and-shoot” static IMRT technique for each patient: (1) an anatomical SBRT plan optimization based on the total liver; and (2) a functional SBRT plan based on the functional liver. The total prescribed dose was 48 gray (Gy) in 4 fractions. Dosimetric parameters, including dose to 95% of the planning target volume (PTV D{sub 95%}), percentages of total and functional liver volumes, which received doses from 5 to 30 Gy (V5 to V30 and fV5 to fV30), and mean doses to total and functional liver (MLD and fMLD, respectively) of the 2 plans were compared. Compared with anatomical plans, functional image-guided SBRT plans reduced MLD (mean: plan A, 5.5 Gy; and plan F, 5.1 Gy; p < 0.0001) and fMLD (mean: plan A, 5.4 Gy; and plan F, 4.9 Gy; p < 0.0001), as well as V5 to V30 and fV5 to fV30. No differences were noted in PTV coverage and nonhepatic organs at risk (OARs) doses. In conclusion, EOB-MRI–guided SBRT planning using the IMRT technique may preserve functional liver tissues in patients with hepatocellular carcinoma (HCC).

  19. Optimizing MR imaging-guided navigation for focused ultrasound interventions in the brain

    Science.gov (United States)

    Werner, B.; Martin, E.; Bauer, R.; O'Gorman, R.

    2017-03-01

    MR imaging during transcranial MR imaging-guided Focused Ultrasound surgery (tcMRIgFUS) is challenging due to the complex ultrasound transducer setup and the water bolus used for acoustic coupling. Achievable image quality in the tcMRIgFUS setup using the standard body coil is significantly inferior to current neuroradiologic standards. As a consequence, MR image guidance for precise navigation in functional neurosurgical interventions using tcMRIgFUS is basically limited to the acquisition of MR coordinates of salient landmarks such as the anterior and posterior commissure for aligning a stereotactic atlas. Here, we show how improved MR image quality provided by a custom built MR coil and optimized MR imaging sequences can support imaging-guided navigation for functional tcMRIgFUS neurosurgery by visualizing anatomical landmarks that can be integrated into the navigation process to accommodate for patient specific anatomy.

  20. Image-guided interventions and computer-integrated therapy: Quo vadis?

    Science.gov (United States)

    Peters, Terry M; Linte, Cristian A

    2016-10-01

    Significant efforts have been dedicated to minimizing invasiveness associated with surgical interventions, most of which have been possible thanks to the developments in medical imaging, surgical navigation, visualization and display technologies. Image-guided interventions have promised to dramatically change the way therapies are delivered to many organs. However, in spite of the development of many sophisticated technologies over the past two decades, other than some isolated examples of successful implementations, minimally invasive therapy is far from enjoying the wide acceptance once envisioned. This paper provides a large-scale overview of the state-of-the-art developments, identifies several barriers thought to have hampered the wider adoption of image-guided navigation, and suggests areas of research that may potentially advance the field. Copyright © 2016. Published by Elsevier B.V.

  1. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform

    Science.gov (United States)

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W. G. M.; Zhang, Hong

    2015-09-01

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, 1O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm-2) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii

  2. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    Science.gov (United States)

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  3. Hard and soft nanoparticles for image-guided surgery in nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, Erica; Monaco, Ilaria; Comes Franchini, Mauro, E-mail: mauro.comesfranchini@unibo.it [University of Bologn, Department of Industrial Chemistry, “Toso Montanari” (Italy)

    2015-08-15

    The use of hard and/or soft nanoparticles for therapy, collectively called nanomedicine, has great potential in the battle against cancer. Major research efforts are underway in this area leading to development of new drug delivery approaches and imaging techniques. Despite this progress, the vast majority of patients who are affected by cancer today sadly still need surgical intervention, especially in the case of solid tumors. An important perspective for researchers is therefore to provide even more powerful tools to the surgeon for pre- and post-operative approaches. In this context, image-guided surgery, in combination with nanotechnology, opens a new strategy to win this battle. In this perspective, we will analyze and discuss the recent progress with nanoparticles of both metallic and biomaterial composition, and their use to develop powerful systems to be applied in image-guided surgery.

  4. Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: A systematic review and meta-analysis.

    Science.gov (United States)

    Mauri, Giovanni; Sconfienza, Luca Maria; Pescatori, Lorenzo Carlo; Fedeli, Maria Paola; Alì, Marco; Di Leo, Giovanni; Sardanelli, Francesco

    2017-08-01

    To systematically review studies concerning imaging-guided minimally-invasive breast cancer treatments. An online database search was performed for English-language articles evaluating percutaneous breast cancer ablation. Pooled data and 95% confidence intervals (CIs) were calculated. Technical success, technique efficacy, minor and major complications were analysed, including ablation technique subgroup analysis and effect of tumour size on outcome. Forty-five studies were analysed, including 1,156 patients and 1,168 lesions. Radiofrequency (n=577; 50%), microwaves (n=78; 7%), laser (n=227; 19%), cryoablation (n=156; 13%) and high-intensity focused ultrasound (HIFU, n=129; 11%) were used. Pooled technical success was 96% (95%CI 94-97%) [laser=98% (95-99%); HIFU=96% (90-98%); radiofrequency=96% (93-97%); cryoablation=95% (90-98%); microwave=93% (81-98%)]. Pooled technique efficacy was 75% (67-81%) [radiofrequency=82% (74-88); cryoablation=75% (51-90); laser=59% (35-79); HIFU=49% (26-74)]. Major complications pooled rate was 6% (4-8). Minor complications pooled rate was 8% (5-13%). Differences between techniques were not significant for technical success (p=0.449), major complications (p=0.181) or minor complications (p=0.762), but significant for technique efficacy (p=0.009). Tumour size did not impact on variables (p>0.142). Imaging-guided percutaneous ablation techniques of breast cancer have a high rate of technical success, while technique efficacy remains suboptimal. Complication rates are relatively low. • Imaging-guided ablation techniques for breast cancer are 96% technically successful. • Overall technique efficacy rate is 75% but largely inhomogeneous among studies. • Overall major and minor complication rates are low (6-8%).

  5. Intermediate-term results of image-guided brachytherapy and high-technology external beam radiotherapy in cervical cancer: Chiang Mai University experience.

    Science.gov (United States)

    Tharavichitkul, Ekkasit; Chakrabandhu, Somvilai; Wanwilairat, Somsak; Tippanya, Damrongsak; Nobnop, Wannapha; Pukanhaphan, Nantaka; Galalae, Razvan M; Chitapanarux, Imjai

    2013-07-01

    To evaluate the outcomes of image-guided brachytherapy combined with 3D conformal or intensity modulated external beam radiotherapy (3D CRT/IMRT) in cervical cancer at Chiang Mai University. From 2008 to 2011, forty-seven patients with locally advanced cervical cancer were enrolled in this study. All patients received high-technology (3D CRT/IMRT) whole pelvic radiotherapy with a total dose of 45-46 Gy plus image-guided High-Dose-Rate intracavitary brachytherapy 6.5-7 Gy × 4 fractions to a High-Risk Clinical Target Volume (HR-CTV) according to GEC-ESTRO recommendations. The dose parameters of the HR-CTV for bladder, rectum and sigmoid colon were recorded, as well as toxicity profiles. In addition, the endpoints for local control, disease-free, metastasis-free survival and overall survival were calculated. At the median follow-up time of 26 months, the local control, disease-free survival, and overall survival rates were 97.9%, 85.1%, and 93.6%, respectively. The mean dose of HR-CTV, bladder, rectum and sigmoid were 93.1, 88.2, 69.6, and 72 Gy, respectively. In terms of late toxicity, the incidence of grade 3-4 bladder and rectum morbidity was 2.1% and 2.1%, respectively. A combination of image-guided brachytherapy and IMRT/3D CRT showed very promising results of local control, disease-free survival, metastasis-free survival and overall survival rates. It also caused a low incidence of grade 3-4 toxicity in treated study patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. [Image guided and robotic treatment--the advance of cybernetics in clinical medicine].

    Science.gov (United States)

    Fosse, E; Elle, O J; Samset, E; Johansen, M; Røtnes, J S; Tønnessen, T I; Edwin, B

    2000-01-10

    The introduction of advanced technology in hospitals has changed the treatment practice towards more image guided and minimal invasive procedures. Modern computer and communication technology opens up for robot aided and pre-programmed intervention. Several robotic systems are in clinical use today both in microsurgery and in major cardiac and orthopedic operations. As this trend develops, professions which are new in this context such as physicists, mathematicians and cybernetic engineers will be increasingly important in the treatment of patients.

  7. Craniospinal treatment with IMRT multi-isocentric and image-guided linear accelerator based on Gantry

    International Nuclear Information System (INIS)

    Sanz Beltran, M.; Caballero Perea, B.; Rodriguez Rodriguez, C.; Arminio Diaz, E.; Lopez Fernandez, A.; Gomez Fervienza, J. R.; Crespo Diez, P.; Cantarero Valenzuela, N.; Alvarez Sanchez, M.; Martin Martin, G.; Gomez Fervienza, J. r.; Crespo Diez, P.; Cantarero Valenzuela, N.; Alvarez Sanchez, M.; Martin Martin, G.

    2011-01-01

    The objective is the realization of craniospinal treatment with a linear accelerator equipped with gantry based on MLC, carbon fiber table and Image Guided capability. The great length of treatment (patient l,80m in height) was a great difficulty for want of full length of the longitudinal movement of the table to adequately cover the PTV, plus free metallic screws fastening the head of the table extender preventing further incidents.

  8. Robust surface registration using salient anatomical features for image-guided liver surgery: Algorithm and validation

    OpenAIRE

    Clements, Logan W.; Chapman, William C.; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2008-01-01

    A successful surface-based image-to-physical space registration in image-guided liver surgery (IGLS) is critical to provide reliable guidance information to surgeons and pertinent surface displacement data for use in deformation correction algorithms. The current protocol used to perform the image-to-physical space registration involves an initial pose estimation provided by a point based registration of anatomical landmarks identifiable in both the preoperative tomograms and the intraoperati...

  9. The role of contrast-enhanced ultrasonography in image-guided liver ablations

    International Nuclear Information System (INIS)

    Pescatori, Lorenzo Carlo; Sconfienza, Luca Maria; Mauri, Giovanni

    2016-01-01

    We read with great interest the paper by Kim et al. entitled “Local ablation therapy with contrast enhanced ultrasonography for hepatocellular carcinoma: a practical review,” recently published in Ultrasonography. We think that contrast-enhanced ultrasonography (CEUS), together with the development of reliable navigation systems, is likely to represent one of the most important advances in image-guided ablations in recent years. Thus, we offer some considerations on the topic

  10. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery.

    Science.gov (United States)

    Webers, Valentijn S C; Bauer, Noel J C; Visser, Nienke; Berendschot, Tos T J M; van den Biggelaar, Frank J H M; Nuijts, Rudy M M A

    2017-06-01

    To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. University Eye Clinic Maastricht, Maastricht, the Netherlands. Prospective randomized clinical trial. Eyes with regular corneal astigmatism of at least 1.25 diopters (D) that required cataract surgery and toric IOL implantation (Acrysof SN6AT3-T9) were randomly assigned to the image-guided group or the manual-marking group. The primary outcome was the alignment of the toric IOL based on preoperative images and images taken immediately after surgery. Secondary outcome measures were residual astigmatism, uncorrected distance visual acuity (UDVA), and complications. The study enrolled 36 eyes (24 patients). The mean toric IOL misalignment was significantly less in the image-guided group than in the manual group 1 hour (1.3 degrees ± 1.6 [SD] versus 2.8 ± 1.8 degrees; P = .02) and 3 months (1.7 ± 1.5 degrees versus 3.1 ± 2.1 degrees; P image-guided group and manual group, respectively (P > .05). The mean UDVA was 0.03 ± 0.10 logarithm of minimum angle of resolution (logMAR) and 0.04 ± 0.09 logMAR, respectively (both P > .05). No intraoperative complications occurred during any surgery. The IOL misalignment was significantly less with digital marking than with manual marking; this did not result in a better UDVA or lower residual refractive astigmatism. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Technique for Targeting Arteriovenous Malformations Using Frameless Image-Guided Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Hristov, Dimitre; Liu, Lina; Adler, John R.; Gibbs, Iris C.; Moore, Teri; Sarmiento, Marily; Chang, Steve D.; Dodd, Robert; Marks, Michael; Do, Huy M.

    2011-01-01

    Purpose: To integrate three-dimensional (3D) digital rotation angiography (DRA) and two-dimensional (2D) digital subtraction angiography (DSA) imaging into a targeting methodology enabling comprehensive image-guided robotic radiosurgery of arteriovenous malformations (AVMs). Methods and Materials: DRA geometric integrity was evaluated by imaging a phantom with embedded markers. Dedicated DSA acquisition modes with preset C-arm positions were configured. The geometric reproducibility of the presets was determined, and its impact on localization accuracy was evaluated. An imaging protocol composed of anterior-posterior and lateral DSA series in combination with a DRA run without couch displacement between acquisitions was introduced. Software was developed for registration of DSA and DRA (2D-3D) images to correct for: (a) small misalignments of the C-arm with respect to the estimated geometry of the set positions and (b) potential patient motion between image series. Within the software, correlated navigation of registered DRA and DSA images was incorporated to localize AVMs within a 3D image coordinate space. Subsequent treatment planning and delivery followed a standard image-guided robotic radiosurgery process. Results: DRA spatial distortions were typically smaller than 0.3 mm throughout a 145-mm x 145-mm x 145-mm volume. With 2D-3D image registration, localization uncertainties resulting from the achievable reproducibility of the C-arm set positions could be reduced to about 0.2 mm. Overall system-related localization uncertainty within the DRA coordinate space was 0.4 mm. Image-guided frameless robotic radiosurgical treatments with this technique were initiated. Conclusions: The integration of DRA and DSA into the process of nidus localization increases the confidence with which radiosurgical ablation of AVMs can be performed when using only an image-guided technique. Such an approach can increase patient comfort, decrease time pressure on clinical and

  12. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    OpenAIRE

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-01-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer...

  13. IMAGE-GUIDED EVALUATION AND MONITORING OF TREATMENT RESPONSE IN PATIENTS WITH DRY EYE DISEASE

    Science.gov (United States)

    Hamrah, Pedram

    2014-01-01

    Dry eye disease (DED) is one of the most common ocular disorders worldwide. The pathophysiological mechanisms involved in the development of DED are not well understood and thus treating DED has been a significant challenge for ophthalmologists. Most of the currently available diagnostic tests demonstrate low correlation to patient symptoms and have low reproducibility. Recently, sophisticated in vivo imaging modalities have become available for patient care, namely, in vivo confocal microscopy (IVCM) and optical coherence tomography (OCT). These emerging modalities are powerful and non-invasive, allowing real-time visualization of cellular and anatomical structures of the cornea and ocular surface. Here we discuss how, by providing both qualitative and quantitative assessment, these techniques can be used to demonstrate early subclinical disease, grade layer-by-layer severity, and allow monitoring of disease severity by cellular alterations. Imaging-guided stratification of patients may also be possible in conjunction with clinical examination methods. Visualization of subclinical changes and stratification of patients in vivo, allows objective image-guided evaluation of tailored treatment response based on cellular morphological alterations specific to each patient. This image-guided approach to DED may ultimately improve patient outcomes and allow studying the efficacy of novel therapies in clinical trials. PMID:24696045

  14. New real-time MR image-guided surgical robotic system for minimally invasive precision surgery

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, M.; Yasunaga, T.; Konishi, K. [Kyushu University, Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Fukuoka (Japan); Tanoue, K.; Ieiri, S. [Kyushu University Hospital, Department of Advanced Medicine and Innovative Technology, Fukuoka (Japan); Kishi, K. [Hitachi Ltd, Mechanical Engineering Research Laboratory, Hitachinaka-Shi, Ibaraki (Japan); Nakamoto, H. [Hitachi Medical Corporation, Application Development Office, Kashiwa-Shi, Chiba (Japan); Ikeda, D. [Mizuho Ikakogyo Co. Ltd, Tokyo (Japan); Sakuma, I. [The University of Tokyo, Graduate School of Engineering, Bunkyo-Ku, Tokyo (Japan); Fujie, M. [Waseda University, Graduate School of Science and Engineering, Shinjuku-Ku, Tokyo (Japan); Dohi, T. [The University of Tokyo, Graduate School of Information Science and Technology, Bunkyo-Ku, Tokyo (Japan)

    2008-04-15

    To investigate the usefulness of a newly developed magnetic resonance (MR) image-guided surgical robotic system for minimally invasive laparoscopic surgery. The system consists of MR image guidance [interactive scan control (ISC) imaging, three-dimensional (3-D) navigation, and preoperative planning], an MR-compatible operating table, and an MR-compatible master-slave surgical manipulator that can enter the MR gantry. Using this system, we performed in vivo experiments with MR image-guided laparoscopic puncture on three pigs. We used a mimic tumor made of agarose gel and with a diameter of approximately 2 cm. All procedures were successfully performed. The operator only advanced the probe along the guidance device of the manipulator, which was adjusted on the basis of the preoperative plan, and punctured the target while maintaining the operative field using robotic forceps. The position of the probe was monitored continuously with 3-D navigation and 2-D ISC images, as well as the MR-compatible laparoscope. The ISC image was updated every 4 s; no artifact was detected. A newly developed MR image-guided surgical robotic system is feasible for an operator to perform safe and precise minimally invasive procedures. (orig.)

  15. A study on the ferrite image guide for Ka-band

    International Nuclear Information System (INIS)

    Arestova, Iliyana

    2018-01-01

    A ferrite image guide (FIG) has been investigated experimentally in the frequency range 26÷40 GHz by cavity resonator method (CRM) and theoretically by finite element method (FEM). The FIG’s wavelengths have been obtained and compared in a demagnetized state as well as in three different cases of homogeneous magnetization: 1) magnetization, which is perpendicular to the direction of propagation and parallel to the ground plane (Case 1); 2) magnetization, which is perpendicular to the direction of propagation and the ground plane (Case 2); 3) magnetization, which is parallel to the direction of propagation (Case 3). The distribution of the electric field magnitude in these three cases of magnetization has been verified by numerical simulations. Our investigations have shown that Case 2 seems to be the most promising from a point of view of practical realization of millimetre wave non reciprocal devices. Only in this case an asymmetrical shift of the maximum of the electric field magnitude has been observed, which fully corresponds to non reciprocal behaviour of coupled ferrite-dielectric image guide structures in millimetre wave range. Key words: ferrite devices, image guide, cavity resonator method, finite element method, millimetre waves

  16. New real-time MR image-guided surgical robotic system for minimally invasive precision surgery

    International Nuclear Information System (INIS)

    Hashizume, M.; Yasunaga, T.; Konishi, K.; Tanoue, K.; Ieiri, S.; Kishi, K.; Nakamoto, H.; Ikeda, D.; Sakuma, I.; Fujie, M.; Dohi, T.

    2008-01-01

    To investigate the usefulness of a newly developed magnetic resonance (MR) image-guided surgical robotic system for minimally invasive laparoscopic surgery. The system consists of MR image guidance [interactive scan control (ISC) imaging, three-dimensional (3-D) navigation, and preoperative planning], an MR-compatible operating table, and an MR-compatible master-slave surgical manipulator that can enter the MR gantry. Using this system, we performed in vivo experiments with MR image-guided laparoscopic puncture on three pigs. We used a mimic tumor made of agarose gel and with a diameter of approximately 2 cm. All procedures were successfully performed. The operator only advanced the probe along the guidance device of the manipulator, which was adjusted on the basis of the preoperative plan, and punctured the target while maintaining the operative field using robotic forceps. The position of the probe was monitored continuously with 3-D navigation and 2-D ISC images, as well as the MR-compatible laparoscope. The ISC image was updated every 4 s; no artifact was detected. A newly developed MR image-guided surgical robotic system is feasible for an operator to perform safe and precise minimally invasive procedures. (orig.)

  17. Localized irradiation of mouse legs using an image-guided robotic linear accelerator.

    Science.gov (United States)

    Kufeld, Markus; Escobar, Helena; Marg, Andreas; Pasemann, Diana; Budach, Volker; Spuler, Simone

    2017-04-01

    To investigate the potential of human satellite cells in muscle regeneration small animal models are useful to evaluate muscle regeneration. To suppress the inherent regeneration ability of the tibialis muscle of mice before transplantation of human muscle fibers, a localized irradiation of the mouse leg should be conducted. We analyzed the feasibility of an image-guided robotic irradiation procedure, a routine treatment method in radiation oncology, for the focal irradiation of mouse legs. After conducting a planning computed tomography (CT) scan of one mouse in its customized mold a three-dimensional dose plan was calculated using a dedicated planning workstation. 18 Gy have been applied to the right anterior tibial muscle of 4 healthy and 12 mice with immune defect in general anesthesia using an image-guided robotic linear accelerator (LINAC). The mice were fixed in a customized acrylic mold with attached fiducial markers for image guided tracking. All 16 mice could be irradiated as prevised without signs of acute radiation toxicity or anesthesiological side effects. The animals survived until scarification after 8, 21 and 49 days as planned. The procedure was straight forward and the irradiation process took 5 minutes to apply the dose of 18 Gy. Localized irradiation of mice legs using a robotic LINAC could be conducted as planned. It is a feasible procedure without recognizable side effects. Image guidance offers precise dose delivery and preserves adjacent body parts and tissues.

  18. Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system.

    Science.gov (United States)

    Andreozzi, Jacqueline M; Mooney, Karen E; Brůža, Petr; Curcuru, Austen; Gladstone, David J; Pogue, Brian W; Green, Olga

    2018-06-01

    Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. A 40 × 30.5 × 37.5 cm 3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm 2 , 10.5 × 10.5 cm 2 , and 14.7 × 14.7 cm 2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to p

  19. Current External Beam Radiation Therapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Liu, Chihray; Li, Jonathan G.

    2008-01-01

    The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this 'one-size-fits-all' prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes

  20. Treatment of malignant brain tumor. Today and tomorrow. Image-guided neurosurgery for brain tumor. A current perspective

    International Nuclear Information System (INIS)

    Kajita, Yasukazu; Fujii, Masazumi; Yoshida, Jun; Maesawa, Satoshi

    2008-01-01

    Although usefulness of the image-guided neurosurgery is well documented, there are scarce facilities having the actually operating system in Japan. Since 2006, authors' Nagoya University Hospital has had an operating room named ''Brain THEATER'', where an open MRI system APERTO (Hitachi-Medical Co.) and a navigation system Vector Vision (BrainLAB) are connected to conduct the complete image-guided neurosurgery for brain tumor by using the intraoperative MRI for continuously updating the residual tumor tissue to be dissected out. The room is pre- and intra-operatively supported by Departments of image analysis and of radiation technology in the University, and as well, is connected by net-working with another image-guided surgical room ''Brain Suite'' (Siemens 1.5 T MRI system: BrainLAB) in the neighboring facility, Nagoya Central Hospital. This paper describes the circumstances of the introduction of these systems in the Hospital, details of the image-guided surgery in the operation rooms with illustration of actual photos of the rooms and of pre-, intra- and post-operative images, outcomes of image-guided neurosurgery for brain tumor reported hitherto, image-guided neurosurgery for brain tumor's future perspectives involving robotic surgery and operation on the virtual 3D image including the net-worked one. Efforts should be made to further spread the system for performing the more non-invasive and precise surgery, and for conducting the diagnosis united with treatment. (R.T.)

  1. Analysis of nodal coverage utilizing image guided radiation therapy for primary gynecologic tumor volumes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Faisal [University of Utah School of Medicine, Salt Lake City, UT (United States); Loma Linda University Medical Center, Department of Radiation Oncology, Loma Linda, CA (United States); Sarkar, Vikren; Gaffney, David K.; Salter, Bill [Department of Radiation Oncology, University of Utah, Salt Lake City, UT (United States); Poppe, Matthew M., E-mail: matthew.poppe@hci.utah.edu [Department of Radiation Oncology, University of Utah, Salt Lake City, UT (United States)

    2016-10-01

    Purpose: To evaluate radiation dose delivered to pelvic lymph nodes, if daily Image Guided Radiation Therapy (IGRT) was implemented with treatment shifts based on the primary site (primary clinical target volume [CTV]). Our secondary goal was to compare dosimetric coverage with patient outcomes. Materials and methods: A total of 10 female patients with gynecologic malignancies were evaluated retrospectively after completion of definitive intensity-modulated radiation therapy (IMRT) to their pelvic lymph nodes and primary tumor site. IGRT consisted of daily kilovoltage computed tomography (CT)-on-rails imaging fused with initial planning scans for position verification. The initial plan was created using Varian's Eclipse treatment planning software. Patients were treated with a median radiation dose of 45 Gy (range: 37.5 to 50 Gy) to the primary volume and 45 Gy (range: 45 to 64.8 Gy) to nodal structures. One IGRT scan per week was randomly selected from each patient's treatment course and re-planned on the Eclipse treatment planning station. CTVs were recreated by fusion on the IGRT image series, and the patient's treatment plan was applied to the new image set to calculate delivered dose. We evaluated the minimum, maximum, and 95% dose coverage for primary and nodal structures. Reconstructed primary tumor volumes were recreated within 4.7% of initial planning volume (0.9% to 8.6%), and reconstructed nodal volumes were recreated to within 2.9% of initial planning volume (0.01% to 5.5%). Results: Dosimetric parameters averaged less than 10% (range: 1% to 9%) of the original planned dose (45 Gy) for primary and nodal volumes on all patients (n = 10). For all patients, ≥99.3% of the primary tumor volume received ≥ 95% the prescribed dose (V95%) and the average minimum dose was 96.1% of the prescribed dose. In evaluating nodal CTV coverage, ≥ 99.8% of the volume received ≥ 95% the prescribed dose and the average minimum dose was 93%. In

  2. Five Fraction Image-Guided Radiosurgery for Primary and Recurrent Meningiomas

    Directory of Open Access Journals (Sweden)

    Eric Karl Oermann

    2013-08-01

    Full Text Available Purpose: Benign tumors that arise from the meninges can be difficult to treat due to their potentially large size and proximity to critical structures such as cranial nerves and sinuses. Single fraction radiosurgery may increase the risk of symptomatic peritumoral edema. In this study, we report our results on the efficacy and safety of five fraction image-guided radiosurgery for benign meningiomas. Materials/Methods: Clinical and radiographic data from 38 patients treated with five fraction radiosurgery were reviewed retrospectively. Mean tumor volume was 3.83mm3 (range, 1.08-20.79 mm3. Radiation was delivered using the CyberKnife, a frameless robotic image-guided radiosurgery system with a median total dose of 25 Gy (range, 25 Gy-35 Gy. Results: The median follow-up was 20 months. Acute toxicity was minimal with eight patients (21% requiring a short course of steroids for headache at the end of treatment. Pre-treatment neurological symptoms were present in 24 patients (63.2%. Post treatment, neurological symptoms resolved completely in 14 patients (58.3%, and were persistent in eight patients (33.3%. There were no local failures, 24 tumors remained stable (64% and 14 regressed (36%. Pre-treatment peritumoral edema was observed in five patients (13.2%. Post-treatment asymptomatic peritumoral edema developed in five additional patients (13.2%. On multivariate analysis, pre-treatment peritumoral edema and location adjacent to a large vein were significant risk factors for radiographic post-treatment edema (p = 0.001 and p = 0.026 respectively. Conclusions: These results suggest that five fraction image-guided radiosurgery is well tolerated with a response rate for neurologic symptoms that is similar to other standard treatment options. Rates of peritumoral edema and new cranial nerve deficits following five fraction radiosurgery were low. Longer follow-up is required to validate the safety and long-term effectiveness of this treatment approach.

  3. Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice.

    Directory of Open Access Journals (Sweden)

    Yan Gong

    Full Text Available The mouse model of laser-induced choroidal neovascularization (CNV has been used in studies of the exudative form of age-related macular degeneration using both the conventional slit lamp and a new image-guided laser system. A standardized protocol is needed for consistent results using this model, which has been lacking. We optimized details of laser-induced CNV using the image-guided laser photocoagulation system. Four lesions with similar size were consistently applied per eye at approximately double the disc diameter away from the optic nerve, using different laser power levels, and mice of various ages and genders. After 7 days, the mice were sacrificed and retinal pigment epithelium/choroid/sclera was flat-mounted, stained with Isolectin B4, and imaged. Quantification of the area of the laser-induced lesions was performed using an established and constant threshold. Exclusion criteria are described that were necessary for reliable data analysis of the laser-induced CNV lesions. The CNV lesion area was proportional to the laser power levels. Mice at 12-16 weeks of age developed more severe CNV than those at 6-8 weeks of age, and the gender difference was only significant in mice at 12-16 weeks of age, but not in those at 6-8 weeks of age. Dietary intake of omega-3 long-chain polyunsaturated fatty acid reduced laser-induced CNV in mice. Taken together, laser-induced CNV lesions can be easily and consistently applied using the image-guided laser platform. Mice at 6-8 weeks of age are ideal for the laser-induced CNV model.

  4. Value of MR contrast media in image-guided body interventions.

    Science.gov (United States)

    Saeed, Maythem; Wilson, Mark

    2012-01-28

    In the past few years, there have been multiple advances in magnetic resonance (MR) instrumentation, in vivo devices, real-time imaging sequences and interventional procedures with new therapies. More recently, interventionists have started to use minimally invasive image-guided procedures and local therapies, which reduce the pain from conventional surgery and increase drug effectiveness, respectively. Local therapy also reduces the systemic dose and eliminates the toxic side effects of some drugs to other organs. The success of MR-guided procedures depends on visualization of the targets in 3D and precise deployment of ablation catheters, local therapies and devices. MR contrast media provide a wealth of tissue contrast and allows 3D and 4D image acquisitions. After the development of fast imaging sequences, the clinical applications of MR contrast media have been substantially expanded to include pre- during- and post-interventions. Prior to intervention, MR contrast media have the potential to localize and delineate pathologic tissues of vital organs, such as the brain, heart, breast, kidney, prostate, liver and uterus. They also offer other options such as labeling therapeutic agents or cells. During intervention, these agents have the capability to map blood vessels and enhance the contrast between the endovascular guidewire/catheters/devices, blood and tissues as well as direct therapies to the target. Furthermore, labeling therapeutic agents or cells aids in visualizing their delivery sites and tracking their tissue distribution. After intervention, MR contrast media have been used for assessing the efficacy of ablation and therapies. It should be noted that most image-guided procedures are under preclinical research and development. It can be concluded that MR contrast media have great value in preclinical and some clinical interventional procedures. Future applications of MR contrast media in image-guided procedures depend on their safety, tolerability

  5. MR imaging-guided percutaneous cryotherapy for lung tumors: initial experience.

    Science.gov (United States)

    Liu, Shangang; Ren, Ruimei; Liu, Ming; Lv, Yubo; Li, Bin; Li, Chengli

    2014-09-01

    To evaluate prospectively the initial clinical experience of magnetic resonance (MR) imaging-guided percutaneous cryotherapy of lung tumors. MR imaging-guided percutaneous cryotherapy was performed in 21 patients with biopsy-proven lung tumors (12 men, 9 women; age range, 39-79 y). Follow-up consisted of contrast-enhanced chest computed tomography (CT) scan performed at 3-month intervals to assess tumor control; CT scanning was carried out for 12 months or until death. Cryotherapy procedures were successfully completed in all 21 patients. Pneumothorax occurred in 7 (33.3%) of 21 patients. Chest tube placement was required in one (4.8%) case. Hemoptysis was exhibited by 11 (52.4%) patients, and pleural effusion occurred in 6 (28.6%) patients. Other complications were observed in 14 (66.7%) patients. The mean follow-up period was 10.5 months (range, 9-12 mo) in patients who died. At month 12 of follow-up, 7 (33.3%) patients had a complete response to therapy, and 10 (47.6%) patients showed a partial response. In addition, two patients had stable disease, and two patients developed progressive disease; one patient developed a tumor in the liver, and the other developed a tumor in the brain. The 1-year local control rate was 81%, and 1-year survival rate was 90.5%. MR imaging-guided percutaneous cryotherapy appears feasible, effective, and minimally invasive for lung tumors. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  6. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    Science.gov (United States)

    Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James; Jiang, Steve B; Mason, Ralph P; Stojadinovic, Strahinja

    2018-01-01

    Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol

  7. Preoperative magnetic resonance imaging protocol for endoscopic cranial base image-guided surgery.

    Science.gov (United States)

    Grindle, Christopher R; Curry, Joseph M; Kang, Melissa D; Evans, James J; Rosen, Marc R

    2011-01-01

    Despite the increasing utilization of image-guided surgery, no radiology protocols for obtaining magnetic resonance (MR) imaging of adequate quality are available in the current literature. At our institution, more than 300 endonasal cranial base procedures including pituitary, extended pituitary, and other anterior skullbase procedures have been performed in the past 3 years. To facilitate and optimize preoperative evaluation and assessment, there was a need to develop a magnetic resonance protocol. Retrospective Technical Assessment was performed. Through a collaborative effort between the otolaryngology, neurosurgery, and neuroradiology departments at our institution, a skull base MR image-guided (IGS) protocol was developed with several ends in mind. First, it was necessary to generate diagnostic images useful for the more frequently seen pathologies to improve work flow and limit the expense and inefficiency of case specific MR studies. Second, it was necessary to generate sequences useful for IGS, preferably using sequences that best highlight that lesion. Currently, at our institution, all MR images used for IGS are obtained using this protocol as part of preoperative planning. The protocol that has been developed allows for thin cut precontrast and postcontrast axial cuts that can be used to plan intraoperative image guidance. It also obtains a thin cut T2 axial series that can be compiled separately for intraoperative imaging, or may be fused with computed tomographic images for combined modality. The outlined protocol obtains image sequences effective for diagnostic and operative purposes for image-guided surgery using both T1 and T2 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Treating locally advanced lung cancer with a 1.5T MR-Linac - Effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated radiotherapy.

    Science.gov (United States)

    Bainbridge, Hannah E; Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe; McDonald, Fiona

    2017-11-01

    This study investigates the feasibility and potential benefits of radiotherapy with a 1.5T MR-Linac for locally advanced non-small cell lung cancer (LA NSCLC) patients. Ten patients with LA NSCLC were retrospectively re-planned six times: three treatment plans were created according to a protocol for conventionally fractionated radiotherapy and three treatment plans following guidelines for isotoxic target dose escalation. In each case, two plans were designed for the MR-Linac, either with standard (∼7mm) or reduced (∼3mm) planning target volume (PTV) margins, while one conventional linac plan was created with standard margins. Treatment plan quality was evaluated using dose-volume metrics or by quantifying dose escalation potential. All generated treatment plans fulfilled their respective planning constraints. For conventionally fractionated treatments, MR-Linac plans with standard margins had slightly increased skin dose when compared to conventional linac plans. Using reduced margins alleviated this issue and decreased exposure of several other organs-at-risk (OAR). Reduced margins also enabled increased isotoxic target dose escalation. It is feasible to generate treatment plans for LA NSCLC patients on a 1.5T MR-Linac. Margin reduction, facilitated by an envisioned MRI-guided workflow, enables increased OAR sparing and isotoxic target dose escalation for the respective treatment approaches. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Patient dose in image guided radiotherapy: Monte Carlo study of the CBCT dose contribution

    OpenAIRE

    Leotta, Salvatore; Amato, Ernesto; Settineri, Nicola; Basile, Emilia; Italiano, Antonio; Auditore, Lucrezia; Santacaterina, Anna; Pergolizzi, Stefano

    2018-01-01

    Image Guided RadioTherapy (IGRT) is a technique whose diffusion is growing thanks to the well-recognized gain in accuracy of dose delivery. However, multiple Cone Beam Computed Tomography (CBCT) scans add dose to patients, and its contribution has to be assessed and minimized. Aim of our work was to evaluate, through Monte Carlo simulations, organ doses in IGRT due to CBCT and therapeutic MV irradiation in head-neck, thorax and pelvis districts. We developed a Monte Carlo simulation in GAMOS ...

  10. Quality assurance (QA) and quality control (QC) of image guided radiotherapy (IGRT). Osaka Rosai Hospital experience

    International Nuclear Information System (INIS)

    Tsuboi, Kazuki; Yagi, Masayuki; Fujiwara, Kanta

    2013-01-01

    The linear accelerator with image guided radiation therapy (IGRT) was introduced in May 2010. We performed the verification of the IGRT system, id est (i.e.), acceptance test and our original performance test and confirmed the acceptability for clinical use. We also performed daily QA/QC program before the start of treatment. One-year experience of QA/QC program showed excellent stability of IGRT function compared with our old machine. We further hope to establish the more useful management system and QA/QC program. (author)

  11. Bladder cancer diagnosis with fluorescence-image-guided optical coherence tomography

    Science.gov (United States)

    Wang, Z. G.; Durand, D. B.; Adler, H.; Pan, Y. T.

    2006-02-01

    A fluorescence-image-guided OCT (FIG-OCT) system is described, and its ability to enhance the sensitivity and specificity is examined in an animal bladder cancer model. Total 97 specimens were examined by fluorescence imaging, OCT and histological microscopy. The sensitivity and specificity of FIG-OCT is 100% and 93% respectively, compared to 79% and 53% for fluorescence imaging, while the OCT examination time has been dramatically decreased by 3~4 times. In combination of endoscopic OCT, FIG-OCT is a promising technique for effective early bladder cancer diagnosis.

  12. Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery.

    Science.gov (United States)

    Miga, Michael I

    2016-01-01

    With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.

  13. Image-guided percutaneous disc sampling: impact of antecedent antibiotics on yield

    International Nuclear Information System (INIS)

    Agarwal, V.; Wo, S.; Lagemann, G.M.; Tsay, J.; Delfyett, W.T.

    2016-01-01

    Aim: To evaluate the effect of antecedent antimicrobial therapy on diagnostic yield from percutaneous image-guided disc-space sampling. Materials and methods: A retrospective review of the electronic health records of all patients who underwent image-guided percutaneous sampling procedures for suspected discitis/osteomyelitis over a 5-year period was performed. One hundred and twenty-four patients were identified. Demographics, medical history, and culture results were recorded as well as duration of presenting symptoms and whether antecedent antibiotic therapy had been administered. Results: Of the 124 patients identified who underwent image-guided percutaneous disc-space sampling, 73 had received antecedent antibiotic treatment compared with 51 who had not. The overall positive culture rate for the present study population was 24% (n=30). The positive culture rate from patients previously on antibiotics was 21% (n=15) compared with 29% (n=15) for patients who had not received prior antibiotic treatment, which is not statistically significant (p=0.26). Eighty-six percent (n=63) of patients who had antecedent antibiotics received treatment for 4 or more days prior to their procedure, whereas 14% (n=10) received treatment for 1–3 days prior to their procedure. The difference in culture positivity rate between these two groups was not statistically significant (p=0.43). Culture results necessitated a change in antibiotic therapy in a third of the patients who had received antecedent antibiotic therapy. Conclusion: Antecedent antibiotic therapy, regardless of duration, did not result in significantly diminished diagnostic yield from percutaneous sampling for suspected discitis/osteomyelitis. The present results suggest that percutaneous biopsy may nonetheless yield positive diagnostic information despite prior antimicrobial therapy. If the diagnostic information may impact choice of therapeutic regimen, percutaneous biopsy should still be considered in cases where

  14. Anaphylaxis at image-guided epidural pain block secondary to corticosteroid compound.

    LENUS (Irish Health Repository)

    Moran, Deirdre E

    2012-09-01

    Anaphylaxis during image-guided interventional procedures is a rare but potentially fatal event. Anaphylaxis to iodinated contrast is an established and well-recognized adverse effect. However, anaphylaxis to some of the other frequently administered medications given during interventional procedures, such as corticosteroids, is not common knowledge. During caudal epidural injection, iodinated contrast is used to confirm needle placement in the epidural space at the level of the sacral hiatus. A combination of corticosteroid, local anesthetic, and saline is subsequently injected. We describe a very rare case of anaphylaxis to a component of the steroid medication instilled in the caudal epidural space.

  15. Clinical outcome of hypofractionated breath-hold image-guided SABR of primary lung tumors and lung metastases

    International Nuclear Information System (INIS)

    Boda-Heggemann, Judit; Wenz, Frederik; Lohr, Frank; Frauenfeld, Anian; Weiss, Christel; Simeonova, Anna; Neumaier, Christian; Siebenlist, Kerstin; Attenberger, Ulrike; Heußel, Claus Peter; Schneider, Frank

    2014-01-01

    Stereotactic Ablative RadioTherapy (SABR) of lung tumors/metastases has been shown to be an effective treatment modality with low toxicity. Outcome and toxicity were retrospectively evaluated in a unique single-institution cohort treated with intensity-modulated image-guided breath-hold SABR (igSABR) without external immobilization. The dose–response relationship is analyzed based on Biologically Equivalent Dose (BED). 50 lesions in 43 patients with primary NSCLC (n = 27) or lung-metastases of various primaries (n = 16) were consecutively treated with igSABR with Active-Breathing-Coordinator (ABC®) and repeat-breath-hold cone-beam-CT. After an initial dose-finding/-escalation period, 5x12 Gy for peripheral lesions and single doses of 5 Gy to varying dose levels for central lesions were applied. Overall-survival (OS), progression-free-survival (PFS), progression pattern, local control (LC) and toxicity were analyzed. The median BED2 was 83 Gy. 12 lesions were treated with a BED2 of <80 Gy, and 38 lesions with a BED2 of >80 Gy. Median follow-up was 15 months. Actuarial 1- and 2-year OS were 67% and 43%; respectively. Cause of death was non-disease-related in 27%. Actuarial 1- and 2-year PFS was 42% and 28%. Progression site was predominantly distant. Actuarial 1- and 2 year LC was 90% and 85%. LC showed a trend for a correlation to BED2 (p = 0.1167). Pneumonitis requiring conservative treatment occurred in 23%. Intensity-modulated breath-hold igSABR results in high LC-rates and low toxicity in this unfavorable patient cohort with inoperable lung tumors or metastases. A BED2 of <80 Gy was associated with reduced local control

  16. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Koong, Albert C.; Christofferson, Erin; Le, Quynh-Thu; Goodman, Karyn A.; Ho, Anthony; Kuo, Timothy; Ford, James M.; Fisher, George A.; Greco, Ralph; Norton, Jeffrey; Yang, George P.

    2005-01-01

    Purpose: To determine the efficacy of concurrent 5-fluorouracil (5-FU) and intensity-modulated radiotherapy (IMRT) followed by body stereotactic radiosurgery (SRS) in patients with locally advanced pancreatic cancer. Methods and Materials: In this prospective study, all patients (19) had pathologically confirmed adenocarcinoma and were uniformly staged. Our treatment protocol consisted of 45 Gy IMRT with concurrent 5-FU followed by a 25 Gy SRS boost to the primary tumor. Results: Sixteen patients completed the planned therapy. Two patients experienced Grade 3 toxicity (none had more than Grade 3 toxicity). Fifteen of these 16 patients were free from local progression until death. Median overall survival was 33 weeks. Conclusions: Concurrent IMRT and 5-FU followed by SRS in patients with locally advanced pancreatic cancer results in excellent local control, but does not improve overall survival and is associated with more toxicity than SRS, alone

  17. Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria—A 10-Year Update

    Science.gov (United States)

    Solbiati, Luigi; Brace, Christopher L.; Breen, David J.; Callstrom, Matthew R.; Charboneau, J. William; Chen, Min-Hua; Choi, Byung Ihn; de Baère, Thierry; Dodd, Gerald D.; Dupuy, Damian E.; Gervais, Debra A.; Gianfelice, David; Gillams, Alice R.; Lee, Fred T.; Leen, Edward; Lencioni, Riccardo; Littrup, Peter J.; Livraghi, Tito; Lu, David S.; McGahan, John P.; Meloni, Maria Franca; Nikolic, Boris; Pereira, Philippe L.; Liang, Ping; Rhim, Hyunchul; Rose, Steven C.; Salem, Riad; Sofocleous, Constantinos T.; Solomon, Stephen B.; Soulen, Michael C.; Tanaka, Masatoshi; Vogl, Thomas J.; Wood, Bradford J.; Goldberg, S. Nahum

    2014-01-01

    Image-guided tumor ablation has become a well-established hallmark of local cancer therapy. The breadth of options available in this growing field increases the need for standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison among treatments that use different technologies, such as chemical (eg, ethanol or acetic acid) ablation, thermal therapies (eg, radiofrequency, laser, microwave, focused ultrasound, and cryoablation) and newer ablative modalities such as irreversible electroporation. This updated consensus document provides a framework that will facilitate the clearest communication among investigators regarding ablative technologies. An appropriate vehicle is proposed for reporting the various aspects of image-guided ablation therapy including classification of therapies, procedure terms, descriptors of imaging guidance, and terminology for imaging and pathologic findings. Methods are addressed for standardizing reporting of technique, follow-up, complications, and clinical results. As noted in the original document from 2003, adherence to the recommendations will improve the precision of communications in this field, leading to more accurate comparison of technologies and results, and ultimately to improved patient outcomes. © RSNA, 2014 Online supplemental material is available for this article. PMID:24927329

  18. Integration of intraoperative stereovision imaging for brain shift visualization during image-guided cranial procedures

    Science.gov (United States)

    Schaewe, Timothy J.; Fan, Xiaoyao; Ji, Songbai; Roberts, David W.; Paulsen, Keith D.; Simon, David A.

    2014-03-01

    Dartmouth and Medtronic Navigation have established an academic-industrial partnership to develop, validate, and evaluate a multi-modality neurosurgical image-guidance platform for brain tumor resection surgery that is capable of updating the spatial relationships between preoperative images and the current surgical field. A stereovision system has been developed and optimized for intraoperative use through integration with a surgical microscope and an image-guided surgery system. The microscope optics and stereovision CCD sensors are localized relative to the surgical field using optical tracking and can efficiently acquire stereo image pairs from which a localized 3D profile of the exposed surface is reconstructed. This paper reports the first demonstration of intraoperative acquisition, reconstruction and visualization of 3D stereovision surface data in the context of an industry-standard image-guided surgery system. The integrated system is capable of computing and presenting a stereovision-based update of the exposed cortical surface in less than one minute. Alternative methods for visualization of high-resolution, texture-mapped stereovision surface data are also investigated with the objective of determining the technical feasibility of direct incorporation of intraoperative stereo imaging into future iterations of Medtronic's navigation platform.

  19. Magnetic Nanoparticle Facilitated Drug Delivery for Cancer Therapy with Targeted and Image-Guided Approaches.

    Science.gov (United States)

    Huang, Jing; Li, Yuancheng; Orza, Anamaria; Lu, Qiong; Guo, Peng; Wang, Liya; Yang, Lily; Mao, Hui

    2016-06-14

    With rapid advances in nanomedicine, magnetic nanoparticles (MNPs) have emerged as a promising theranostic tool in biomedical applications, including diagnostic imaging, drug delivery and novel therapeutics. Significant preclinical and clinical research has explored their functionalization, targeted delivery, controllable drug release and image-guided capabilities. To further develop MNPs for theranostic applications and clinical translation in the future, we attempt to provide an overview of the recent advances in the development and application of MNPs for drug delivery, specifically focusing on the topics concerning the importance of biomarker targeting for personalized therapy and the unique magnetic and contrast-enhancing properties of theranostic MNPs that enable image-guided delivery. The common strategies and considerations to produce theranostic MNPs and incorporate payload drugs into MNP carriers are described. The notable examples are presented to demonstrate the advantages of MNPs in specific targeting and delivering under image guidance. Furthermore, current understanding of delivery mechanisms and challenges to achieve efficient therapeutic efficacy or diagnostic capability using MNP-based nanomedicine are discussed.

  20. Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.

    Science.gov (United States)

    Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig

    2017-06-01

    Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.

  1. Precise image-guided irradiation of small animals: a flexible non-profit platform

    International Nuclear Information System (INIS)

    Tillner, Falk; Thute, Prasad; Löck, Steffen; Dietrich, Antje; Fursov, Andriy; Haase, Robert; Lukas, Mathias; Krause, Mechthild; Baumann, Michael; Bütof, Rebecca; Enghardt, Wolfgang; Rimarzig, Bernd; Sobiella, Manfred

    2016-01-01

    Preclinical in vivo studies using small animals are essential to develop new therapeutic options in radiation oncology. Of particular interest are orthotopic tumour models, which better reflect the clinical situation in terms of growth patterns and microenvironmental parameters of the tumour as well as the interplay of tumours with the surrounding normal tissues. Such orthotopic models increase the technical demands and the complexity of preclinical studies as local irradiation with therapeutically relevant doses requires image-guided target localisation and accurate beam application. Moreover, advanced imaging techniques are needed for monitoring treatment outcome. We present a novel small animal image-guided radiation therapy (SAIGRT) system, which allows for precise and accurate, conformal irradiation and x-ray imaging of small animals. High accuracy is achieved by its robust construction, the precise movement of its components and a fast high-resolution flat-panel detector. Field forming and x-ray imaging is accomplished close to the animal resulting in a small penumbra and a high image quality. Feasibility for irradiating orthotopic models has been proven using lung tumour and glioblastoma models in mice. The SAIGRT system provides a flexible, non-profit academic research platform which can be adapted to specific experimental needs and therefore enables systematic preclinical trials in multicentre research networks. (paper)

  2. Image-guided biopsy in patients with suspected ovarian carcinoma: a safe and effective technique?

    International Nuclear Information System (INIS)

    Griffin, Nyree; Grant, Lee A.; Freeman, Susan J.; Berman, Laurence H.; Sala, Evis; Jimenez-Linan, Mercedes; Earl, Helena; Ahmed, Ahmed Ashour; Crawford, Robin; Brenton, James

    2009-01-01

    In patients with suspected advanced ovarian carcinoma, a precise histological diagnosis is required before commencing neo-adjuvant chemotherapy. This study aims to determine the diagnostic accuracy and complication rate of percutaneous biopsies performed under ultrasound or computed tomography guidance. Between 2002 to 2007, 60 consecutive image-guided percutaneous biopsies were performed in patients with suspected ovarian cancer. The following variables were recorded: tissue biopsied, imaging technique, experience of operator, biopsy needle gauge, number of passes, complications, and final histology. Forty-seven patients had omental biopsies, 12 pelvic mass biopsies, and 1 para-aortic lymph node biopsy. Thirty-five biopsies were performed under ultrasound, 25 under computed tomography guidance. Biopsy needle gauges ranged from 14-20 swg with two to five passes for each patient. There were no complications. Histology was obtained in 52 (87%) patients. Percutaneous image-guided biopsy of peritoneal disease or pelvic mass is safe with high diagnostic accuracy. The large-gauge biopsy needle is as safe as the small gauge needle, but has the added value of obtaining tissue samples for immunohistochemistry and genomic studies. (orig.)

  3. Intracranial depth electrodes implantation in the era of image-guided surgery

    Directory of Open Access Journals (Sweden)

    Ricardo Silva Centeno

    2011-08-01

    Full Text Available The advent of modern image-guided surgery has revolutionized depth electrode implantation techniques. Stereoelectroencephalography (SEEG, introduced by Talairach in the 1950s, is an invasive method for three-dimensional analysis on the epileptogenic zone based on the technique of intracranial implantation of depth electrodes. The aim of this article is to discuss the principles of SEEG and their evolution from the Talairach era to the image-guided surgery of today, along with future prospects. Although the general principles of SEEG have remained intact over the years, the implantation of depth electrodes, i.e. the surgical technique that enables this method, has undergone tremendous evolution over the last three decades, due the advent of modern imaging techniques, computer systems and new stereotactic techniques. The use of robotic systems, the constant evolution of imaging and computing techniques and the use of depth electrodes together with microdialysis probes will open up enormous prospects for applying depth electrodes and SEEG both for investigative use and for therapeutic use. Brain stimulation of deep targets and the construction of "smart" electrodes may, in the near future, increase the need to use this method.

  4. Intracranial depth electrodes implantation in the era of image-guided surgery.

    Science.gov (United States)

    Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas; Caboclo, Luis Otávio Sales Ferreira; Júnior, Henrique Carrete; Cavalheiro, Sérgio

    2011-08-01

    The advent of modern image-guided surgery has revolutionized depth electrode implantation techniques. Stereoelectroencephalography (SEEG), introduced by Talairach in the 1950s, is an invasive method for three-dimensional analysis on the epileptogenic zone based on the technique of intracranial implantation of depth electrodes. The aim of this article is to discuss the principles of SEEG and their evolution from the Talairach era to the image-guided surgery of today, along with future prospects. Although the general principles of SEEG have remained intact over the years, the implantation of depth electrodes, i.e. the surgical technique that enables this method, has undergone tremendous evolution over the last three decades, due the advent of modern imaging techniques, computer systems and new stereotactic techniques. The use of robotic systems, the constant evolution of imaging and computing techniques and the use of depth electrodes together with microdialysis probes will open up enormous prospects for applying depth electrodes and SEEG both for investigative use and for therapeutic use. Brain stimulation of deep targets and the construction of "smart" electrodes may, in the near future, increase the need to use this method.

  5. An integrated multimodality image-guided robot system for small-animal imaging research

    International Nuclear Information System (INIS)

    Hsu, Wen-Lin; Hsin Wu, Tung; Hsu, Shih-Ming; Chen, Chia-Lin; Lee, Jason J.S.; Huang, Yung-Hui

    2011-01-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO 2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO 2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  6. Quality Assurance of Multiport Image-Guided Minimally Invasive Surgery at the Lateral Skull Base

    Directory of Open Access Journals (Sweden)

    Maria Nau-Hermes

    2014-01-01

    Full Text Available For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG, which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.

  7. Clinical practice of image-guided spine radiosurgery - results from an international research consortium

    Directory of Open Access Journals (Sweden)

    Guckenberger Matthias

    2011-12-01

    Full Text Available Abstract Background Spinal radiosurgery is a quickly evolving technique in the radiotherapy and neurosurgical communities. However, the methods of spine radiosurgery have not been standardized. This article describes the results of a survey about the methods of spine radiosurgery at five international institutions. Methods All institutions are members of the Elekta Spine Radiosurgery Research Consortium and have a dedicated research and clinical focus on image-guided radiosurgery. The questionnaire consisted of 75 items covering all major steps of spine radiosurgery. Results Strong agreement in the methods of spine radiosurgery was observed. In particular, similarities were observed with safety and quality assurance playing an important role in the methods of all institutions, cooperation between neurosurgeons and radiation oncologists in case selection, dedicated imaging for target- and organ-at-risk delineation, application of proper safety margins for the target volume and organs-at-risk, conformal planning and precise image-guided treatment delivery, and close clinical and radiological follow-up. In contrast, three major areas of uncertainty and disagreement were identified: 1 Indications and contra-indications for spine radiosurgery; 2 treatment dose and fractionation and 3 tolerance dose of the spinal cord. Conclusions Results of this study reflect the current practice of spine radiosurgery in large academic centers. Despite close agreement was observed in many steps of spine radiosurgery, further research in form of retrospective and especially prospective studies is required to refine the details of spinal radiosurgery in terms of safety and efficacy.

  8. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery.

    Science.gov (United States)

    Yu, Zhan; Vanstalle, Marie; La Tessa, Chiara; Jiang, Guo-Liang; Durante, Marco

    2012-07-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery.

  9. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery

    International Nuclear Information System (INIS)

    Yu, Z.; Vanstalle, M.; La Tessa, C.; Durante, M.; Jiang Guoliang

    2012-01-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery. (author)

  10. Active illumination based 3D surface reconstruction and registration for image guided medialization laryngoplasty

    Science.gov (United States)

    Jin, Ge; Lee, Sang-Joon; Hahn, James K.; Bielamowicz, Steven; Mittal, Rajat; Walsh, Raymond

    2007-03-01

    The medialization laryngoplasty is a surgical procedure to improve the voice function of the patient with vocal fold paresis and paralysis. An image guided system for the medialization laryngoplasty will help the surgeons to accurately place the implant and thus reduce the failure rates of the surgery. One of the fundamental challenges in image guided system is to accurately register the preoperative radiological data to the intraoperative anatomical structure of the patient. In this paper, we present a combined surface and fiducial based registration method to register the preoperative 3D CT data to the intraoperative surface of larynx. To accurately model the exposed surface area, a structured light based stereo vision technique is used for the surface reconstruction. We combined the gray code pattern and multi-line shifting to generate the intraoperative surface of the larynx. To register the point clouds from the intraoperative stage to the preoperative 3D CT data, a shape priori based ICP method is proposed to quickly register the two surfaces. The proposed approach is capable of tracking the fiducial markers and reconstructing the surface of larynx with no damage to the anatomical structure. We used off-the-shelf digital cameras, LCD projector and rapid 3D prototyper to develop our experimental system. The final RMS error in the registration is less than 1mm.

  11. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    International Nuclear Information System (INIS)

    Hargrave, C; Deegan, T; Gibbs, A; Poulsen, M; Moores, M; Harden, F; Mengersen, K

    2014-01-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  12. Image-guided therapy and minimally invasive surgery in children: a merging future

    International Nuclear Information System (INIS)

    Shlomovitz, Eran; Amaral, Joao G.; Chait, Peter G.

    2006-01-01

    Minimally invasive image-guided therapy for children, also known as pediatric interventional radiology (PIR), is a new and exciting field of medicine. Two key elements that helped the rapid evolution and dissemination of this specialty were the creation of devices appropriate for the pediatric population and the development of more cost-effective and minimally invasive techniques. Despite its clear advantages to children, many questions are raised regarding who should be performing these procedures. Unfortunately, this is a gray zone with no clear answer. Surgeons fear that interventional radiologists will take over additional aspects of the surgical/procedural spectrum. Interventional radiologists, on the other hand, struggle to avoid becoming highly specialized technicians rather than physicians who are responsible for complete care of their patients. In this article, we briefly discuss some of the current aspects of minimally invasive image-guided therapy in children and innovations that are expected to be incorporated into clinical practice in the near future. Then, we approach the current interspecialty battles over the control of this field and suggest some solutions to these issues. Finally, we propose the development of a generation of physicians with both surgical and imaging skills. (orig.)

  13. Image guided surgery innovation with graduate students - a new lecture format

    Directory of Open Access Journals (Sweden)

    Friebe Michael

    2015-09-01

    Full Text Available In Image Guided Surgeries (IGS, incremental innovation is normally not a technology push (technology delivered but rather a pull (by learning and working with the clinical users from understanding how these surgeries are performed. Engineers need to understand that only through proper observation, procedure know-how and subsequent analysis and evaluation, clinically relevant innovation can be generated. And, it is also essential to understand the associated health economics that could potentially come with new technological approaches. We created a new lecture format (6 ECTS for graduate students that combined the basics of image guided procedures with innovation tools (Design Thinking, Lean Engineering, Value Proposition Canvas, Innovation Games and actual visits of a surgical procedure. The students had to attend these procedures in small groups and had to identify and work on one or more innovation projects based on their observations and based on a prioritisation of medical need, pains and gains of the stakeholders, and ease of implementation. Almost 200 graduate students completed this training in the past 5 years with excellent results for the participating clinicians, and for the future engineers. This paper presents the lecture content, the setup, some statistics and results with the hope that other institutions will follow to offer similar programs that not only help the engineering students identify what clinically relevant innovation is (invention x clinical implementation, but that also pave the path for future interdisciplinary teams that will lead to incremental and disruptive innovation.

  14. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    Science.gov (United States)

    Hargrave, C.; Moores, M.; Deegan, T.; Gibbs, A.; Poulsen, M.; Harden, F.; Mengersen, K.

    2014-03-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  15. Multimodal scanning laser ophthalmoscopy for image guided treatment of age-related macular degeneration

    Science.gov (United States)

    Hammer, Daniel X.; Ferguson, R. D.; Patel, Ankit H.; Iftimia, Nicusor V.; Mujat, Mircea; Husain, Deeba

    2009-02-01

    Subretinal neovascular membranes (SRNM) are a deleterious complication of laser eye injury and retinal diseases such as age-related macular degeneration (AMD), choroiditis, and myopic retinopathy. Photodynamic therapy (PDT) and anti-vascular endothelial growth factor (VEGF) drugs are approved treatment methods. PDT acts by selective dye accumulation, activation by laser light, and disruption and clotting of the new leaky vessels. However, PDT surgery is currently not image-guided, nor does it proceed in an efficient or automated manner. This may contribute to the high rate of re-treatment. We have developed a multimodal scanning laser ophthalmoscope (SLO) for automated diagnosis and image-guided treatment of SRNMs associated with AMD. The system combines line scanning laser ophthalmoscopy (LSLO), fluorescein angiography (FA), indocyanine green angiography (ICGA), PDT laser delivery, and retinal tracking in a compact, efficient platform. This paper describes the system hardware and software design, performance characterization, and automated patient imaging and treatment session procedures and algorithms. Also, we present initial imaging and tracking measurements on normal subjects and automated lesion demarcation and sizing analysis of previously acquired angiograms. Future pre-clinical testing includes line scanning angiography and PDT treatment of AMD subjects. The automated acquisition procedure, enhanced and expedited data post-processing, and innovative image visualization and interpretation tools provided by the multimodal retinal imager may eventually aid in the diagnosis, treatment, and prognosis of AMD and other retinal diseases.

  16. Development of automatic navigation measuring system using template-matching software in image guided neurosurgery

    International Nuclear Information System (INIS)

    Watanabe, Yohei; Hayashi, Yuichiro; Fujii, Masazumi; Wakabayashi, Toshihiko; Kimura, Miyuki; Tsuzaka, Masatoshi; Sugiura, Akihiro

    2010-01-01

    An image-guided neurosurgery and neuronavigation system based on magnetic resonance imaging has been used as an indispensable tool for resection of brain tumors. Therefore, accuracy of the neuronavigation system, provided by periodic quality assurance (QA), is essential for image-guided neurosurgery. Two types of accuracy index, fiducial registration error (FRE) and target registration error (TRE), have been used to evaluate navigation accuracy. FRE shows navigation accuracy on points that have been registered. On the other hand, TRE shows navigation accuracy on points such as tumor, skin, and fiducial markers. This study shows that TRE is more reliable than FRE. However, calculation of TRE is a time-consuming, subjective task. Software for QA was developed to compute TRE. This software calculates TRE automatically by an image processing technique, such as automatic template matching. TRE was calculated by the software and compared with the results obtained by manual calculation. Using the software made it possible to achieve a reliable QA system. (author)

  17. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling

    Science.gov (United States)

    Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.

  18. Imaging guided interventional procedures in paediatric uroradiology--a case based overview

    Energy Technology Data Exchange (ETDEWEB)

    Riccabona, M. E-mail: michael.riccabona@kfunigraz.ac.at; Sorantin, E.; Hausegger, K

    2002-08-01

    Objective: To describe the potential and application of interventional image guided procedures in the paediatric urinary tract. Patients and methods: The different techniques are illustrated using case reports. The examples comprise established indications such as percutaneous nephrostomy for compromised kidneys in obstructive uropathy and infection, sonographic guided renal biopsy including monitoring or treatment of complications after biopsy, and evaluation and balloon dilatation of childhood renal artery stenosis. There are new applications such as treatment of stenosis in cutaneous ureterostomy or sonographically guided catheterism for deployment of therapeutic agents. Results: Generally, the procedures are safe and successful. However, complications may occur, and peri-/post-interventional monitoring is mandatory to insure early detection and adequate management. Sometimes additional treatment such as percutaneous embolisation of a symptomatic post biopsy arterio-venous fistula, or a second biopsy for recurrent disease may become necessary. Conclusion: Imaging guided interventional procedures are performed successfully in a variety of diseases of the paediatric urinary tract. They can be considered a valuable additional modality throughout infancy and childhood.

  19. Imaging guided interventional procedures in paediatric uroradiology--a case based overview

    International Nuclear Information System (INIS)

    Riccabona, M.; Sorantin, E.; Hausegger, K.

    2002-01-01

    Objective: To describe the potential and application of interventional image guided procedures in the paediatric urinary tract. Patients and methods: The different techniques are illustrated using case reports. The examples comprise established indications such as percutaneous nephrostomy for compromised kidneys in obstructive uropathy and infection, sonographic guided renal biopsy including monitoring or treatment of complications after biopsy, and evaluation and balloon dilatation of childhood renal artery stenosis. There are new applications such as treatment of stenosis in cutaneous ureterostomy or sonographically guided catheterism for deployment of therapeutic agents. Results: Generally, the procedures are safe and successful. However, complications may occur, and peri-/post-interventional monitoring is mandatory to insure early detection and adequate management. Sometimes additional treatment such as percutaneous embolisation of a symptomatic post biopsy arterio-venous fistula, or a second biopsy for recurrent disease may become necessary. Conclusion: Imaging guided interventional procedures are performed successfully in a variety of diseases of the paediatric urinary tract. They can be considered a valuable additional modality throughout infancy and childhood

  20. Image-guided conformation arc therapy for prostate cancer: Early side effects

    International Nuclear Information System (INIS)

    Soete, Guy; Verellen, Dirk; Michielsen, Dirk; Rappe, Bernard; Keuppen, Frans; Storme, Guy

    2006-01-01

    Purpose: To evaluate early side effects in prostate cancer patients treated with image-guided conformation arc therapy (IGCAT) using a minimultileaf collimator and daily X-ray-assisted patient positioning. Methods and Materials: Between May 2000 and November 2004, 238 cT1-T3N0M0 tumors were treated with doses of 70 or 78 Gy. Seventy patients also received neoadjuvant or concurrent hormonal treatment. Median follow-up is 18 months (range, 4-55 months). Radiation Therapy Oncology Group and the European Organization for Research and Treatment of Cancer toxicity scoring system was used to evaluate early side effects. Results: Grade 1, 2, and >2 acute side effects occurred in 19, 6, and 0% (gastrointestinal) and 37, 16, and 0% (genitourinary) of the patients. No relation between radiation dose and early side effects was observed. Conclusion: Patients treated with image-guided conformation arc therapy experience a low rate of Grade 2 (i.e., requiring medication) early side effects. The definitive evaluation of late side effects and biochemical control requires further follow-up

  1. Quality assurance of multiport image-guided minimally invasive surgery at the lateral skull base.

    Science.gov (United States)

    Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg

    2014-01-01

    For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.

  2. Reliability of the Bony Anatomy in Image-Guided Stereotactic Radiotherapy of Brain Metastases

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Baier, Kurt; Guenther, Iris; Richter, Anne; Wilbert, Juergen; Sauer, Otto; Vordermark, Dirk; Flentje, Michael

    2007-01-01

    Purpose: To evaluate whether the position of brain metastases remains stable between planning and treatment in cranial stereotactic radiotherapy (SRT). Methods and Materials: Eighteen patients with 20 brain metastases were treated with single-fraction (17 lesions) or hypofractionated (3 lesions) image-guided SRT. Median time interval between planning and treatment was 8 days. Before treatment a cone-beam CT (CBCT) and a conventional CT after application of i.v. contrast were acquired. Setup errors using automatic bone registration (CBCT) and manual soft-tissue registration of the brain metastases (conventional CT) were compared. Results: Tumor size was not significantly different between planning and treatment. The three-dimensional setup error (mean ± SD) was 4.0 ± 2.1 mm and 3.5 ± 2.2 mm according to the bony anatomy and the lesion itself, respectively. A highly significant correlation between automatic bone match and soft-tissue registration was seen in all three directions (r ≥ 0.88). The three-dimensional distance between the isocenter according to bone match and soft-tissue registration was 1.7 ± 0.7 mm, maximum 2.8 mm. Treatment of intracranial pressure with steroids did not influence the position of the lesion relative to the bony anatomy. Conclusion: With a time interval of approximately 1 week between planning and treatment, the bony anatomy of the skull proved to be an excellent surrogate for the target position in image-guided SRT

  3. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    Directory of Open Access Journals (Sweden)

    Tsuicheng D Chiu

    Full Text Available Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT imaging alone. In this study, we characterized a research magnetic resonance (MR scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This

  4. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Science.gov (United States)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  5. An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization

    International Nuclear Information System (INIS)

    Grimson, W.E.L.; Lozano-Perez, T.; White, S.J.; Wells, W.M. III; Kikinis, R.

    1996-01-01

    There is a need for frameless guidance systems to help surgeons plan the exact location for incisions, to define the margins of tumors, and to precisely identify locations of neighboring critical structures. The authors have developed an automatic technique for registering clinical data, such as segmented magnetic resonance imaging (MRI) or computed tomography (CT) reconstructions, with any view of the patient on the operating table. They demonstrate on the specific example of neurosurgery. The method enables a visual mix of live video of the patient and the segmented three-dimensional (3-D) MRI or CT model. This supports enhanced reality techniques for planning and guiding neurosurgical procedures and allows them to interactively view extracranial or intracranial structures nonintrusively. Extensions of the method include image guided biopsies, focused therapeutic procedures, and clinical studies involving change detection over time sequences of images

  6. Percutaneous Image-guided Radiofrequency Ablation of Tumors in Inoperable Patients - Immediate Complications and Overall Safety.

    Science.gov (United States)

    Sahay, Anubha; Sahay, Nishant; Kapoor, Ashok; Kapoor, Jyoti; Chatterjee, Abhishek

    2016-01-01

    Percutaneous destruction of cancer cells using a radiofrequency energy source has become an accepted part of the modern armamentarium for managing malignancies. Radiofrequency ablation (RFA) is a relatively novel procedure for treating recurrent and metastatic tumors. It is used for debulking tumors and as adjuvant therapy for palliative care apart from its role as a pain management tool. Its use in the third world countries is limited by various factors such as cost and expertise. In the remotest parts of India, where economic development has been slow, abject poverty with poor health care facilities advanced malignancies present a challenge to health care providers. We undertook this study to assess the safety of the percutaneous RFA tumor ablation as a therapeutic or palliative measure in patients where surgery was not possible. We observed that RFA may be an effective, alternative therapeutic modality for some inoperable tumors where other therapeutic modalities cannot be considered. Palliative and therapeutic image-guided RFAs of tumors may be the only treatment option in patients who are inoperable for a variety of reasons. To assess the safety and complications of RFA in such a patient population is important before embarking upon any interventions given their physically, mentally, and socially compromised status in a country such as India. To assess the safety of percutaneous image-guided radiofrequency tumor ablation and to note the various immediate and early complications of the intervention. This was a prospective, observational study conducted in Tata Main Hospital, Jamshedpur, Jharkhand, India. After approval by the Hospital Approval Committee all patients who consented for percutaneous RFA of their tumor admitted in the hospital were included after taking fully informed consent from patient/close relative keeping the following criteria in view. Patients who were likely to derive a direct benefit in the survival or as a palliative measure for relief

  7. Image-guided radiotherapy of bladder cancer: bladder volume variation and its relation to margins

    DEFF Research Database (Denmark)

    Muren, Ludvig; Redpath, Anthony Thomas; Lord, Hannah

    2007-01-01

    : The correlation between the relative bladder volume (RBV, defined as repeat scan volume/planning scan volume) and the margins required to account for internal motion was first studied using a series of 20 bladder cancer patients with weekly repeat CT scanning during treatment. Both conformal RT (CRT) and IGRT......BACKGROUND AND PURPOSE: To control and account for bladder motion is a major challenge in radiotherapy (RT) of bladder cancer. This study investigates the relation between bladder volume variation and margins in conformal and image-guided RT (IGRT) for this disease. MATERIALS AND METHODS...... these patients were given fluid intake restrictions on alternating weeks during treatment. RESULTS: IGRT gave the strongest correlation between the RBV and margin size (R(2)=0.75; p10mm were required in only 1% of the situations when the RBV1, whereas isotropic margins >10...

  8. Stochastic approach to error estimation for image-guided robotic systems.

    Science.gov (United States)

    Haidegger, Tamas; Gyõri, Sándor; Benyo, Balazs; Benyó, Zoltáán

    2010-01-01

    Image-guided surgical systems and surgical robots are primarily developed to provide patient safety through increased precision and minimal invasiveness. Even more, robotic devices should allow for refined treatments that are not possible by other means. It is crucial to determine the accuracy of a system, to define the expected overall task execution error. A major step toward this aim is to quantitatively analyze the effect of registration and tracking-series of multiplication of erroneous homogeneous transformations. First, the currently used models and algorithms are introduced along with their limitations, and a new, probability distribution based method is described. The new approach has several advantages, as it was demonstrated in our simulations. Primarily, it determines the full 6 degree of freedom accuracy of the point of interest, allowing for the more accurate use of advanced application-oriented concepts, such as Virtual Fixtures. On the other hand, it becomes feasible to consider different surgical scenarios with varying weighting factors.

  9. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics

    Science.gov (United States)

    Jiang, Shan; Win, Khin Yin; Liu, Shuhua; Teng, Choon Peng; Zheng, Yuangang; Han, Ming-Yong

    2013-03-01

    In this article, the very recent progress of various functional inorganic nanomaterials is reviewed including their unique properties, surface functionalization strategies, and applications in biosensing and imaging-guided therapeutics. The proper surface functionalization renders them with stability, biocompatibility and functionality in physiological environments, and further enables their targeted use in bioapplications after bioconjugation via selective and specific recognition. The surface-functionalized nanoprobes using the most actively studied nanoparticles (i.e., gold nanoparticles, quantum dots, upconversion nanoparticles, and magnetic nanoparticles) make them an excellent platform for a wide range of bioapplications. With more efforts in recent years, they have been widely developed as labeling probes to detect various biological species such as proteins, nucleic acids and ions, and extensively employed as imaging probes to guide therapeutics such as drug/gene delivery and photothermal/photodynamic therapy.

  10. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures

    Science.gov (United States)

    Shin, Kwangsoo; Choi, Jin Woo; Ko, Giho; Baik, Seungmin; Kim, Dokyoon; Park, Ok Kyu; Lee, Kyoungbun; Cho, Hye Rim; Han, Sang Ihn; Lee, Soo Hong; Lee, Dong Jun; Lee, Nohyun; Kim, Hyo-Cheol; Hyeon, Taeghwan

    2017-07-01

    Tissue adhesives have emerged as an alternative to sutures and staples for wound closure and reconnection of injured tissues after surgery or trauma. Owing to their convenience and effectiveness, these adhesives have received growing attention particularly in minimally invasive procedures. For safe and accurate applications, tissue adhesives should be detectable via clinical imaging modalities and be highly biocompatible for intracorporeal procedures. However, few adhesives meet all these requirements. Herein, we show that biocompatible tantalum oxide/silica core/shell nanoparticles (TSNs) exhibit not only high contrast effects for real-time imaging but also strong adhesive properties. Furthermore, the biocompatible TSNs cause much less cellular toxicity and less inflammation than a clinically used, imageable tissue adhesive (that is, a mixture of cyanoacrylate and Lipiodol). Because of their multifunctional imaging and adhesive property, the TSNs are successfully applied as a hemostatic adhesive for minimally invasive procedures and as an immobilized marker for image-guided procedures.

  11. A new fiducial marker for Image-guided radiotherapy of prostate cancer: Clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Hoejkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V. (Dept. of Medical Physics, Oncology, Aalborg Hospital (Denmark))

    2008-08-15

    Background. A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. Method. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. Results. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. Discussion. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs

  12. A new fiducial marker for Image-guided radiotherapy of prostate cancer: clinical experience.

    Science.gov (United States)

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Højkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V

    2008-01-01

    A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs.

  13. Image-guided percutaneous removal of ballistic foreign bodies secondary to air gun injuries.

    Science.gov (United States)

    Rothermund, Jacob L; Rabe, Andrew J; Zumberge, Nicholas A; Murakami, James W; Warren, Patrick S; Hogan, Mark J

    2018-01-01

    Ballistic injuries with retained foreign bodies from air guns is a relatively common problem, particularly in children and adolescents. If not removed in a timely fashion, the foreign bodies can result in complications, including pain and infection. Diagnostic methods to identify the presence of the foreign body run the entire gamut of radiology, particularly radiography, ultrasound (US) and computed tomography (CT). Removal of the foreign bodies can be performed by primary care, emergency, surgical, and radiologic clinicians, with or without imaging guidance. To evaluate the modalities of radiologic detection and the experience of image-guided ballistic foreign body removal related to air gun injuries within the interventional radiology department of a large pediatric hospital. A database of more than 1,000 foreign bodies that were removed with imaging guidance by the interventional radiologists at our institution was searched for ballistic foreign bodies from air guns. The location, dimensions, diagnostic modality, duration, complications and imaging modality used for removal were recorded. In addition, the use of sedation and anesthesia required for the procedures was also recorded. Sixty-one patients with ballistic foreign bodies were identified. All foreign bodies were metallic BBs or pellets. The age of the patients ranged from 5 to 20 years. The initial diagnostic modality to detect the foreign bodies was primarily radiography. The primary modality to assist in removal was US, closely followed by fluoroscopy. For the procedure, 32.7% of the patients required some level of sedation. Only two patients had an active infection at the time of the removal. The foreign bodies were primarily in the soft tissues; however, successful removal was also performed from intraosseous, intraglandular and intratendinous locations. All cases resulted in successful removal without complications. Image-guided removal of ballistic foreign bodies secondary to air guns is a very

  14. SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy

    International Nuclear Information System (INIS)

    Jia, J; Cao, R; Pei, X; Wang, H; Hu, L

    2015-01-01

    Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For the training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy

  15. A Low-Cost, Passive Navigation Training System for Image-Guided Spinal Intervention.

    Science.gov (United States)

    Lorias-Espinoza, Daniel; Carranza, Vicente González; de León, Fernando Chico-Ponce; Escamirosa, Fernando Pérez; Martinez, Arturo Minor

    2016-11-01

    Navigation technology is used for training in various medical specialties, not least image-guided spinal interventions. Navigation practice is an important educational component that allows residents to understand how surgical instruments interact with complex anatomy and to learn basic surgical skills such as the tridimensional mental interpretation of bidimensional data. Inexpensive surgical simulators for spinal surgery, however, are lacking. We therefore designed a low-cost spinal surgery simulator (Spine MovDigSys 01) to allow 3-dimensional navigation via 2-dimensional images without altering or limiting the surgeon's natural movement. A training system was developed with an anatomical lumbar model and 2 webcams to passively digitize surgical instruments under MATLAB software control. A proof-of-concept recognition task (vertebral body cannulation) and a pilot test of the system with 12 neuro- and orthopedic surgeons were performed to obtain feedback on the system. Position, orientation, and kinematic variables were determined and the lateral, posteroanterior, and anteroposterior views obtained. The system was tested with a proof-of-concept experimental task. Operator metrics including time of execution (t), intracorporeal length (d), insertion angle (α), average speed (v¯), and acceleration (a) were obtained accurately. These metrics were converted into assessment metrics such as smoothness of operation and linearity of insertion. Results from initial testing are shown and the system advantages and disadvantages described. This low-cost spinal surgery training system digitized the position and orientation of the instruments and allowed image-guided navigation, the generation of metrics, and graphic recording of the instrumental route. Spine MovDigSys 01 is useful for development of basic, noninnate skills and allows the novice apprentice to quickly and economically move beyond the basics. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Initial Results With Image-guided Cochlear Implant Programming in Children.

    Science.gov (United States)

    Noble, Jack H; Hedley-Williams, Andrea J; Sunderhaus, Linsey; Dawant, Benoit M; Labadie, Robert F; Camarata, Stephen M; Gifford, René H

    2016-02-01

    Image-guided cochlear implant (CI) programming can improve hearing outcomes for pediatric CI recipients. CIs have been highly successful for children with severe-to-profound hearing loss, offering potential for mainstreamed education and auditory-oral communication. Despite this, a significant number of recipients still experience poor speech understanding, language delay, and, even among the best performers, restoration to normal auditory fidelity is rare. Although significant research efforts have been devoted to improving stimulation strategies, few developments have led to significant hearing improvement over the past two decades. Recently introduced techniques for image-guided CI programming (IGCIP) permit creating patient-customized CI programs by making it possible, for the first time, to estimate the position of implanted CI electrodes relative to the nerves they stimulate using CT images. This approach permits identification of electrodes with high levels of stimulation overlap and to deactivate them from a patient's map. Previous studies have shown that IGCIP can significantly improve hearing outcomes for adults with CIs. The IGCIP technique was tested for 21 ears of 18 pediatric CI recipients. Participants had long-term experience with their CI (5 mo to 13 yr) and ranged in age from 5 to 17 years old. Speech understanding was assessed after approximately 4 weeks of experience with the IGCIP map. Using a two-tailed Wilcoxon signed-rank test, statistically significant improvement (p < 0.05) was observed for word and sentence recognition in quiet and noise, as well as pediatric self-reported quality-of-life (QOL) measures. Our results indicate that image guidance significantly improves hearing and QOL outcomes for pediatric CI recipients.

  17. SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jia, J; Cao, R; Pei, X; Wang, H; Hu, L [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Engineering Technology Research Center of Accurate Radiotherapy of Anhui Province, Hefei 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, SuZhou (China)

    2015-06-15

    Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For the training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy.

  18. Lipiodol as a Fiducial Marker for Image-Guided Radiation Therapy for Bladder Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Freilich, Jessica M.; Spiess, Philippe E.; Biagioli, Matthew C.; Fernandez, Daniel C.; Shi, Ellen J.; Hunt, Dylan C.; Gupta, Shilpa; Wilder, Richard B., E-mail: richard.wilder@moffitt.org [Moffitt Cancer Center, Tampa, FL (United States)

    2014-03-15

    Purpose: To evaluate Lipiodol as a liquid, radio-opaque fiducial marker for image-guided radiation therapy (IGRT) for bladder cancer; Materials and Methods: Between 2011 and 2012, 5 clinical T2a-T3b N0 M0 stage II-III bladder cancer patients were treated with maximal transurethral resection of a bladder tumor (TURBT) and image-guided radiation therapy (IGRT) to 64.8 Gy in 36 fractions ± concurrent weekly cisplatin-based or gemcitabine chemotherapy. Ten to 15mL Lipiodol, using 0.5mL per injection, was injected into bladder submucosa circumferentially around the entire periphery of the tumor bed immediately following maximal TURBT. The authors looked at inter-observer variability regarding the size and location of the tumor bed (CTVboost) on computed tomography scans with versus without Lipiodol. Results: Median follow-up was 18 months. Lipiodol was visible on every orthogonal two-dimensional kV portal image throughout the entire, 7-week course of IGRT. There was a trend towards improved inter-observer agreement on the CTVboost with Lipiodol (p = 0.06). In 2 of 5 patients, the tumor bed based upon Lipiodol extended outside a planning target volume that would have been treated with a radiation boost based upon a cystoscopy report and an enhanced computed tomography (CT) scan for staging. There was no toxicity attributable to Lipiodol: Conclusions: Lipiodol constitutes a safe and effective fiducial marker that an urologist can use to demarcate a tumor bed immediately following maximal TURBT. Lipiodol decreases inter-observer variability in the definition of the extent and location of a tumor bed on a treatment planning CT scan for a radiation boost. (author)

  19. Early Outcomes From Three Prospective Trials of Image-Guided Proton Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Mendenhall, Nancy P.; Li Zuofeng; Hoppe, Bradford S.; Marcus, Robert B.; Mendenhall, William M.; Nichols, R. Charles; Morris, Christopher G.; Williams, Christopher R.; Costa, Joseph; Henderson, Randal

    2012-01-01

    Purpose: To report early outcomes with image-guided proton therapy for prostate cancer. Methods and Materials: We accrued 211 prostate cancer patients on prospective Institutional Review Board-approved trials of 78 cobalt gray equivalent (CGE) in 39 fractions for low–risk disease, dose escalation from 78 to 82 CGE for intermediate-risk disease, and 78 CGE with concomitant docetaxel followed by androgen deprivation for high-risk disease. Minimum follow-up was 2 years. Results: One intermediate-risk patient and 2 high-risk patients had disease progression. Pretreatment genitourinary (GU) symptom management was required in 38% of patients. A cumulative 88 (42%) patients required posttreatment GU symptom management. Four transient Grade 3 GU toxicities occurred, all among patients requiring pretreatment GU symptom management. Multivariate analysis showed correlation between posttreatment GU 2+ symptoms and pretreatment GU symptom management (p < 0.0001) and age (p = 0.0048). Only 1 Grade 3+ gastrointestinal (GI) symptom occurred. The prevalence of Grade 2+ GI symptoms was 0 (0%), 10 (5%), 12 (6%), and 8 (4%) at 6, 12, 18, and 24 months, with a cumulative incidence of 20 (10%) patients at 2 years after proton therapy. Univariate and multivariate analyses showed significant correlation between Grade 2+ rectal bleeding and proctitis and the percentage of rectal wall (rectum) receiving doses ranging from 40 CGE (10 CGE) to 80 CGE. Conclusions: Early outcomes with image-guided proton therapy suggest high efficacy and minimal toxicity with only 1.9% Grade 3 GU symptoms and <0.5% Grade 3 GI toxicities.

  20. Early Outcomes From Three Prospective Trials of Image-Guided Proton Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, Nancy P., E-mail: menden@shands.ufl.edu [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Li Zuofeng; Hoppe, Bradford S.; Marcus, Robert B.; Mendenhall, William M.; Nichols, R. Charles; Morris, Christopher G. [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Williams, Christopher R.; Costa, Joseph [Division of Urology, College of Medicine, University of Florida, Jacksonville, FL (United States); Henderson, Randal [University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2012-01-01

    Purpose: To report early outcomes with image-guided proton therapy for prostate cancer. Methods and Materials: We accrued 211 prostate cancer patients on prospective Institutional Review Board-approved trials of 78 cobalt gray equivalent (CGE) in 39 fractions for low-risk disease, dose escalation from 78 to 82 CGE for intermediate-risk disease, and 78 CGE with concomitant docetaxel followed by androgen deprivation for high-risk disease. Minimum follow-up was 2 years. Results: One intermediate-risk patient and 2 high-risk patients had disease progression. Pretreatment genitourinary (GU) symptom management was required in 38% of patients. A cumulative 88 (42%) patients required posttreatment GU symptom management. Four transient Grade 3 GU toxicities occurred, all among patients requiring pretreatment GU symptom management. Multivariate analysis showed correlation between posttreatment GU 2+ symptoms and pretreatment GU symptom management (p < 0.0001) and age (p = 0.0048). Only 1 Grade 3+ gastrointestinal (GI) symptom occurred. The prevalence of Grade 2+ GI symptoms was 0 (0%), 10 (5%), 12 (6%), and 8 (4%) at 6, 12, 18, and 24 months, with a cumulative incidence of 20 (10%) patients at 2 years after proton therapy. Univariate and multivariate analyses showed significant correlation between Grade 2+ rectal bleeding and proctitis and the percentage of rectal wall (rectum) receiving doses ranging from 40 CGE (10 CGE) to 80 CGE. Conclusions: Early outcomes with image-guided proton therapy suggest high efficacy and minimal toxicity with only 1.9% Grade 3 GU symptoms and <0.5% Grade 3 GI toxicities.

  1. Lipiodol as a Fiducial Marker for Image-Guided Radiation Therapy for Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Jessica M. Freilich

    2014-04-01

    Full Text Available Purpose To evaluate Lipiodol as a liquid, radio-opaque fiducial marker for image-guided radiation therapy (IGRT for bladder cancer.Materials and Methods Between 2011 and 2012, 5 clinical T2a-T3b N0 M0 stage II-III bladder cancer patients were treated with maximal transurethral resection of a bladder tumor (TURBT and image-guided radiation therapy (IGRT to 64.8 Gy in 36 fractions ± concurrent weekly cisplatin-based or gemcitabine chemotherapy. Ten to 15mL Lipiodol, using 0.5mL per injection, was injected into bladder submucosa circumferentially around the entire periphery of the tumor bed immediately following maximal TURBT. The authors looked at inter-observer variability regarding the size and location of the tumor bed (CTVboost on computed tomography scans with versus without Lipiodol.Results Median follow-up was 18 months. Lipiodol was visible on every orthogonal two-dimensional kV portal image throughout the entire, 7-week course of IGRT. There was a trend towards improved inter-observer agreement on the CTVboost with Lipiodol (p = 0.06. In 2 of 5 patients, the tumor bed based upon Lipiodol extended outside a planning target volume that would have been treated with a radiation boost based upon a cystoscopy report and an enhanced computed tomography (CT scan for staging. There was no toxicity attributable to Lipiodol.Conclusions Lipiodol constitutes a safe and effective fiducial marker that an urologist can use to demarcate a tumor bed immediately following maximal TURBT. Lipiodol decreases inter-observer variability in the definition of the extent and location of a tumor bed on a treatment planning CT scan for a radiation boost.

  2. Site-specific induction of lymphatic malformations in a rat model for image-guided therapy

    Energy Technology Data Exchange (ETDEWEB)

    Short, Robert F.; Shiels, William E. [Ohio State University College of Medicine and Public Health, Department of Radiology, The Children' s Radiological Institute, Children' s Hospital, Columbus, OH (United States); Sferra, Thomas J. [Ohio State University College of Medicine and Public Health, Department of Gastroenterology, The Columbus Children' s Research Institute, Children' s Hospital, Columbus, OH (United States); Nicol, Kathleen K. [Ohio State University College of Medicine and Public Health, Department of Pathology, Children' s Hospital, Columbus, OH (United States); Schofield, Minka; Wiet, Gregory J. [Ohio State University College of Medicine and Public Health, Department of Otolaryngology, Children' s Hospital, Columbus, OH (United States)

    2007-06-15

    Lymphatic malformation is a common benign mass in children and adults and is representative of a derangement in lymphangiogenesis. These lesions have high recurrence rates and significant morbidity associated with surgery. Several sclerotherapy regimens have been developed clinically to treat lymphatic malformations; however, an animal model has not been developed that is adequate to test the efficacy of image-guided therapeutic interventions. To develop an animal model suitable for evaluation of percutaneous treatments of lymphatic malformations. Male Harlan Sprague-Dawley rats (n = 9) received two US-guided injections of Incomplete Freund's Adjuvant (IFA) over a 2-week period. All nine rats were injected twice into the peritoneum (IP); a subgroup (n = 3) received additional injections into the neck. Three animals that received IP injections of saline were used as controls. The injection sites were monitored for the development of lesions by high-resolution ultrasonography at 2-week intervals for 100 days. High-resolution (4.7 Tesla) magnetic resonance imaging was then performed on two animals noted to have developed masses. The rats were sacrificed and histologic examination of the identified lesions was performed, including immunohistochemical staining for vascular (CD31) and lymphatic (Flt-4 and Prox-1) endothelium. All animals injected with IFA developed cystic lesions. The three animals injected at dual sites were noted to have both microcystic and macrocystic malformations in the neck and microcystic plaque-like lesions in the peritoneum. The macrocystic malformations ({>=}5 mm) in the neck were detected by ultrasonography and grossly later during necropsy. Histopathologic analysis revealed the cystic spaces to be lined by lymphatic endothelium supported by a connective tissue stroma. Control animals did not exhibit detectable lesions with either ultrasonography or necropsy. This model represents a promising tool for translational development of image-guided

  3. Dosimetric impact of image-guided 3D conformal radiation therapy of prostate cancer

    International Nuclear Information System (INIS)

    Schaly, B; Song, W; Bauman, G S; Battista, J J; Van Dyk, J

    2005-01-01

    The goal of this work is to quantify the impact of image-guided conformal radiation therapy (CRT) on the dose distribution by correcting patient setup uncertainty and inter-fraction tumour motion. This was a retrospective analysis that used five randomly selected prostate cancer patients that underwent approximately 15 computed tomography (CT) scans during their radiation treatment course. The beam arrangement from the treatment plan was imported into each repeat CT study and the dose distribution was recalculated for the new beam setups. Various setup scenarios were then compared to assess the impact of image guidance on radiation treatment precision. These included (1) daily alignment to skin markers, thus representing a conventional beam setup without image guidance (2) alignment to bony anatomy for correction of daily patient setup error, thus representing on-line portal image guidance, and (3) alignment to the 'CTV of the day' for correction of inter-fraction tumour motion, thus representing on-line CT or ultrasound image guidance. Treatment scenarios (1) and (3) were repeated with a reduced CTV to PTV margin, where the former represents a treatment using small margins without daily image guidance. Daily realignment of the treatment beams to the prostate showed an average increase in minimum tumour dose of 1.5 Gy, in all cases where tumour 'geographic miss' without image guidance was apparent. However, normal tissue sparing did not improve unless the PTV margin was reduced. Daily realignment to the tumour combined with reducing the margin size by a factor of 2 resulted in an average escalation in tumour dose of 9.0 Gy for all five static plans. However, the prescription dose could be escalated by 13.8 Gy when accounting for changes in anatomy by accumulating daily doses using nonlinear image registration techniques. These results provide quantitative information on the effectiveness of image-guided radiation treatment of prostate cancer and demonstrate that

  4. A new fiducial marker for Image-guided radiotherapy of prostate cancer: Clinical experience

    International Nuclear Information System (INIS)

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Hoejkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V.

    2008-01-01

    Background. A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. Method. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. Results. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. Discussion. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs

  5. Site-specific induction of lymphatic malformations in a rat model for image-guided therapy

    International Nuclear Information System (INIS)

    Short, Robert F.; Shiels, William E.; Sferra, Thomas J.; Nicol, Kathleen K.; Schofield, Minka; Wiet, Gregory J.

    2007-01-01

    Lymphatic malformation is a common benign mass in children and adults and is representative of a derangement in lymphangiogenesis. These lesions have high recurrence rates and significant morbidity associated with surgery. Several sclerotherapy regimens have been developed clinically to treat lymphatic malformations; however, an animal model has not been developed that is adequate to test the efficacy of image-guided therapeutic interventions. To develop an animal model suitable for evaluation of percutaneous treatments of lymphatic malformations. Male Harlan Sprague-Dawley rats (n = 9) received two US-guided injections of Incomplete Freund's Adjuvant (IFA) over a 2-week period. All nine rats were injected twice into the peritoneum (IP); a subgroup (n = 3) received additional injections into the neck. Three animals that received IP injections of saline were used as controls. The injection sites were monitored for the development of lesions by high-resolution ultrasonography at 2-week intervals for 100 days. High-resolution (4.7 Tesla) magnetic resonance imaging was then performed on two animals noted to have developed masses. The rats were sacrificed and histologic examination of the identified lesions was performed, including immunohistochemical staining for vascular (CD31) and lymphatic (Flt-4 and Prox-1) endothelium. All animals injected with IFA developed cystic lesions. The three animals injected at dual sites were noted to have both microcystic and macrocystic malformations in the neck and microcystic plaque-like lesions in the peritoneum. The macrocystic malformations (≥5 mm) in the neck were detected by ultrasonography and grossly later during necropsy. Histopathologic analysis revealed the cystic spaces to be lined by lymphatic endothelium supported by a connective tissue stroma. Control animals did not exhibit detectable lesions with either ultrasonography or necropsy. This model represents a promising tool for translational development of image-guided

  6. Image-guided chemoport insertion by interventional radiologists: A single-center experience on periprocedural complications

    International Nuclear Information System (INIS)

    Yaacob, Yazmin; Nguyen, Dang V; Mohamed, Zahiah; Ralib, A Razali A; Zakaria, Rozman; Muda, Sobri

    2013-01-01

    To report our early experience in image-guided chemoport insertions by interventional radiologists. This was a cross-sectional study conducted in a tertiary center with 161 chemoport insertions done from June 2008 to June 2010. The chemoports were inserted either at the angiography suite or at the mobile operation theater unit. Ninety percent of the chemoports had right internal jugular vein (IJV) as the entry site. Other entry sites included the left IJV, subclavian veins and the inferior vena cava. Immediate and early complications were recorded. All insertions were performed under image guidance with the aid of ultrasound and fluoroscopy. The technical success rate was 99.4%. In terms of immediate complications, there were only two cases of arterial puncture that resolved with local compression. No pneumothorax or air embolism was documented. Twenty-six early complications were recorded. The most common early complication was catheter blockage (12/161; 7.4%), followed by catheter-related infection (9/161; 5.6%). Other complications were catheter malposition, venous thrombosis and catheter dislodgement or leak. A total of 11 (6.8%) chemoports had to be removed within 30 days; most of them were due to infections that failed to respond to systemic antibiotic therapy. In terms of place of procedure, there were no significant differences in complication rates between the angiography suite and the mobile operation theater unit. Image-guided chemoport insertion by interventional radiologist gives low periprocedural complication rates. Using right IJV as the entry site, the image guidance gives good success rate with least complication

  7. Nerve-Highlighting Fluorescent Contrast Agents for Image-Guided Surgery

    Directory of Open Access Journals (Sweden)

    Summer L. Gibbs-Strauss

    2011-03-01

    Full Text Available Nerve damage is the major morbidity of many surgeries, resulting in chronic pain, loss of function, or both. The sparing of nerves during surgical procedures is a vexing problem because surrounding tissue often obscures them. To date, systemically administered nerve-highlighting contrast agents that can be used for nerve-sparing image-guided surgery have not been reported. In the current study, physicochemical and optical properties of 4,4‘-[(2-methoxy-1,4-phenylenedi-(1E-2,1-ethenediyl]bis-benzenamine (BMB and a newly synthesized, red-shifted derivative 4-[(1E-2-[4-[(1E-2-[4-aminophenyl]ethenyl]-3-methoxyphenyl]ethenyl]-benzonitrile (GE3082 were characterized in vitro and in vivo. Both agents crossed the blood-nerve barrier and blood-brain barrier and rendered myelinated nerves fluorescent after a single systemic injection. Although both BMB and GE3082 also exhibited significant uptake in white adipose tissue, GE3082 underwent a hypsochromic shift in adipose tissue that provided a means to eliminate the unwanted signal using hyperspectral deconvolution. Dose and kinetic studies were performed in mice to determine the optimal dose and drug-imaging interval. The results were confirmed in rat and pig, with the latter used to demonstrate, for the first time, simultaneous fluorescence imaging of blood vessels and nerves during surgery using the FLARE™ (Fluorescence-Assisted Resection and Exploration imaging system. These results lay the foundation for the development of ideal nerve-highlighting fluorophores for image-guided surgery.

  8. Pneumodissection for skin protection in image-guided cryoablation of superficial musculoskeletal tumours.

    Science.gov (United States)

    Maybody, Majid; Tang, Peter Q; Moskowitz, Chaya S; Hsu, Meier; Yarmohammadi, Hooman; Boas, F Edward

    2017-03-01

    Pneumodissection is described as a simple method for preventing skin injury during cryoablation of superficial musculoskeletal tumours. Superficial tumour cryoablations performed from 2009 to 2015 were retrospectively reviewed. Pneumodissection was performed in 13 patients when the shortest tumour-skin distance was less than 25 mm. Indications were pain palliation (n = 9) and local tumour control (n = 4). Patients, target tumours, technical characteristics and complications up to 60 days post ablation were reviewed. The ice ball-skin distances with and without pneumodissection were compared by a paired t-test and further assessed for association with covariates using ANCOVA. Technical success for ablation was 12 of 13. The mean shortest tumour-skin distance was 15.0 mm (3.2-24.5 mm). The mean thickness of pneumodissection was 9.6 mm (5.2-16.6 mm) resulting in mean elevation of skin of 3.4 mm (1.2-5.3 mm). Mean shortest ice ball-skin distance after pneumodissection was 10.5 mm (4.2-19.7 mm). No infection or systemic air embolism was noted. No intraprocedural frostbite was observed. Pneumodissection is feasible, effective and safe in protecting the skin during image-guided cryoablation of superficial tumours. • Frostbite during image-guided cryoablation of superficial tumours is commonly under-reported. • Frostbites are painful and may introduce infection into the superficial ablation zone. • Warm compress, saline and CO 2 have shortcomings in protecting the skin. • Pneumodissection is free, readily available, easy to use and safe and effective.

  9. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    Science.gov (United States)

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding

  10. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy.

    Science.gov (United States)

    Sheng, Zonghai; Hu, Dehong; Zheng, Mingbin; Zhao, Pengfei; Liu, Huilong; Gao, Duyang; Gong, Ping; Gao, Guanhui; Zhang, Pengfei; Ma, Yifan; Cai, Lintao

    2014-12-23

    Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a light-activated local treatment modality that is under intensive preclinical and clinical investigations for cancer. To enhance the treatment efficiency of phototherapy and reduce the light-associated side effects, it is highly desirable to improve drug accumulation and precision guided phototherapy for efficient conversion of the absorbed light energy to reactive oxygen species (ROS) and local hyperthermia. In the present study, a programmed assembly strategy was developed for the preparation of human serum albumin (HSA)-indocyanine green (ICG) nanoparticles (HSA-ICG NPs) by intermolecular disulfide conjugations. This study indicated that HSA-ICG NPs had a high accumulation with tumor-to-normal tissue ratio of 36.12±5.12 at 24 h and a long-term retention with more than 7 days in 4T1 tumor-bearing mice, where the tumor and its margin, normal tissue were clearly identified via ICG-based in vivo near-infrared (NIR) fluorescence and photoacoustic dual-modal imaging and spectrum-resolved technology. Meanwhile, HSA-ICG NPs efficiently induced ROS and local hyperthermia simultaneously for synergetic PDT/PTT treatments under a single NIR laser irradiation. After an intravenous injection of HSA-ICG NPs followed by imaging-guided precision phototherapy (808 nm, 0.8 W/cm2 for 5 min), the tumor was completely suppressed, no tumor recurrence and treatments-induced toxicity were observed. The results suggest that HSA-ICG NPs generated by programmed assembly as smart theranostic nanoplatforms are highly potential for imaging-guided cancer phototherapy with PDT/PTT synergistic effects.

  11. Image Guided Hypofractionated Radiotherapy by Helical Tomotherapy for Prostate Carcinoma: Toxicity and Impact on Nadir PSA

    Directory of Open Access Journals (Sweden)

    Salvina Barra

    2014-01-01

    Full Text Available Aim. To evaluate the toxicity of a hypofractionated schedule for primary radiotherapy (RT of prostate cancer as well as the value of the nadir PSA (nPSA and time to nadir PSA (tnPSA as surrogate efficacy of treatment. Material and Methods. Eighty patients underwent hypofractionated schedule by Helical Tomotherapy (HT. A dose of 70.2 Gy was administered in 27 daily fractions of 2.6 Gy. Acute and late toxicities were graded on the RTOG/EORTC scales. The nPSA and the tnPSA for patients treated with exclusive RT were compared to an equal cohort of 20 patients treated with conventional fractionation and standard conformal radiotherapy. Results. Most of patients (83% did not develop acute gastrointestinal (GI toxicity and 50% did not present genitourinary (GU toxicity. After a median follow-up of 36 months only grade 1 of GU and GI was reported in 6 and 3 patients as late toxicity. Average tnPSA was 30 months. The median value of nPSA after exclusive RT with HT was 0.28 ng/mL and was significantly lower than the median nPSA (0.67 ng/mL of the conventionally treated cohort (P=0.02. Conclusions. Hypofractionated RT schedule with HT for prostate cancer treatment reports very low toxicity and reaches a low level of nPSA that might correlate with good outcomes.

  12. Imaging-Guided Percutaneous Radiofrequency Ablation of Adrenal Metastases: Preliminary Results at a Single Institution with a Single Device

    International Nuclear Information System (INIS)

    Carrafiello, G.; Lagana, D.; Recaldini, C.; Giorgianni, A.; Ianniello, A.; Lumia, D.; D'Ambrosio, A.; Petulla, M.; Dionigi, G.; Fugazzola, C.

    2008-01-01

    The aim of this study was to show the feasibility, safety, imaging appearance, and short-term efficacy of image-guided percutaneous radiofrequency ablation (RFA) of adrenal metastases (AM). Seven imaging-guided percutaneous RFA treatments were performed in six patients (two men and four women; mean age, 67.2 years; range, 55-74 years) with six AM who were referred to our institution from 2003 to 2006. One patient was treated twice for recurrence after first treatment. The average diameter of the treated AM was 29 mm (range, 15-40 mm). In all patients, the diagnosis was obtained with CT current protocols in use at our institution and confirmed by pathology with an image-guided biopsy. No major complications occurred. In one patient shortly after initiation of the procedure, severe hypertension was noted; another patient developed post-RFA syndrome. In five of six lesions, there was no residual enhancement of the treated tumor. In one patient CT examination showed areas of residual enhancement of the tumor after treatment. Our preliminary results suggest that imaging-guided percutaneous RFA is effective for local control of AM, without major complications and with a low morbidity rate related to the procedure. Long-term follow-up will need to be performed and appropriate patient selection criteria will need to be determined in future randomized trials.

  13. The using of megavoltage computed tomography in image-guided brachytherapy for cervical cancer: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Tharavichitkul, Ekkasit; Janla-or, Suwapim; Wanwilairat, Somsak; Chakrabandhu, Somvilai; Klunklin, Pitchayaponne; Onchan, Wimrak; Supawongwattana, Bongkot; Chitapanarux, Imjai [Division of Therapeutic Radiology and Oncology, Dept. of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai (Thailand); Galalae, Razvan M. [Faculty of Medicine, Christian-Albrecht University (Campus Kiel), Kiel (Germany)

    2015-06-15

    We present a case of cervical cancer treated by concurrent chemoradiation. In radiation therapy part, the combination of the whole pelvic helical tomotherapy plus image-guided brachytherapy with megavoltage computed tomography of helical tomotherapy was performed. We propose this therapeutic approach could be considered in a curative setting in some problematic situation as our institution.

  14. Image-guided drainage of multiple intraabdominal abscesses in children with perforated appendicitis: an alternative to laparotomy

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Jeffrey W.; Krishnamurthy, Ganesh; Connolly, Bairbre L. [Hospital for Sick Children, Image Guided Therapy, Department of Diagnostic Imaging, Toronto, Ontario (Canada); Maroo, Sanjay; Amaral, Joao G.; Parra, Dimitri; Temple, Michael; John, Philip [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Wales, Paul [Hospital for Sick Children, Department of Surgery, Toronto (Canada)

    2008-06-15

    Appendicitis is the most common cause of an acute abdomen in children. With perforation, multiple intraperitoneal collections can be seen at presentation. In this situation, surgical treatment alone is rarely effective. To determine the role of image-guided drainage in treating patients with acute appendicitis complicated by multiple intraabdominal collections. A retrospective review of patient charts and interventional radiology records was performed to identify all patients with acute complicated appendicitis treated by multiple image-guided drainage procedures. Data reviewed included the number of drainages and aspirations performed, drain dwell time, the clinical course and temperature profile, and the length of inpatient hospital stay and any complications experienced. The study population comprised 42 children with a mean age of 107.6 months. A total of 100 drainage catheters were inserted and 56 aspirations were performed. Of the 42 children, 24 were successfully treated at a single sitting, while 18 returned for further intervention. The mean drain dwell time was 8.18 days. The mean inpatient stay was 15.02 days. Treatment of the acute presentation with image-guided intervention was successful in 92.3% of children. Successful management of acute perforated appendicitis with multiple intraabdominal abscesses can be achieved with multiple minimally invasive image-guided drainage procedures. (orig.)

  15. Image-guided left ventricular lead placement in cardiac resynchronization therapy for patients with heart failure: a meta-analysis.

    Science.gov (United States)

    Jin, Yan; Zhang, Qi; Mao, Jia-Liang; He, Ben

    2015-05-10

    Heart failure (HF) is a debilitating condition that affects millions of people worldwide. One means of treating HF is cardiac resynchronization therapy (CRT). Recently, several studies have examined the use of echocardiography (ECHO) in the optimization of left ventricular (LV) lead placement to increase the response to CRT. The objective of this study was to synthesize the available data on the comparative efficacy of image-guided and standard CRT. We searched the PubMed, Cochrane, Embase, and ISI Web of Knowledge databases through April 2014 with the following combinations of search terms: left ventricular lead placement, cardiac resynchronization therapy, image-guided, and echocardiography-guided. Studies meeting all of the inclusion criteria and none of the exclusion criteria were eligible for inclusion. The primary outcome measures were CRT response rate, change in LV ejection fraction (LVEF), and change in LV end systolic volume (LVESV). Secondary outcomes included the rates of all-cause mortality and HF-related hospitalization. Our search identified 103 articles, 3 of which were included in the analysis. In total, 270 patients were randomized to the image-guided CRT and 241, to the standard CRT. The pooled estimates showed a significant benefit for image-guided CRT (CRT response: OR, 2.098, 95 % CI, 1.432-3.072; LVEF: difference in means, 3.457, 95 % CI, 1.910-5.005; LVESV: difference in means, -20.36, 95 % CI, -27.819 - -12.902). Image-guided CRT produced significantly better clinical outcomes than the standard CRT. Additional trials are warranted to validate the use of imaging in the prospective optimization of CRT.

  16. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, J. [Johns Hopkins University (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  17. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, R. [Children’s National Health System (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  18. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    International Nuclear Information System (INIS)

    Siewerdsen, J.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  19. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    International Nuclear Information System (INIS)

    Shekhar, R.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  20. Development of ProCaRS Clinical Nomograms for Biochemical Failure-free Survival Following Either Low-Dose Rate Brachytherapy or Conventionally Fractionated External Beam Radiation Therapy for Localized Prostate Cancer

    Science.gov (United States)

    Warner, Andrew; Pickles, Tom; Crook, Juanita; Martin, Andre-Guy; Souhami, Luis; Catton, Charles; Lukka, Himu

    2015-01-01

    Purpose: Although several clinical nomograms predictive of biochemical failure-free survival (BFFS) for localized prostate cancer exist in the medical literature, making valid comparisons can be challenging due to variable definitions of biochemical failure, the disparate distribution of prognostic factors, and received treatments in patient populations. The aim of this investigation was to develop and validate clinically-based nomograms for 5-year BFFS using the ASTRO II “Phoenix” definition for two patient cohorts receiving low-dose rate (LDR) brachytherapy or conventionally fractionated external beam radiation therapy (EBRT) from a large Canadian multi-institutional database. Methods and Materials: Patients were selected from the GUROC (Genitourinary Radiation Oncologists of Canada) Prostate Cancer Risk Stratification (ProCaRS) database if they received (1) LDR brachytherapy ≥ 144 Gy (n=4208) or (2) EBRT ≥ 70 Gy  (n=822). Multivariable Cox regression analysis for BFFS was performed separately for each cohort and used to generate clinical nomograms predictive of 5-year BFFS. Nomograms were validated using calibration plots of nomogram predicted probability versus observed probability via Kaplan-Meier estimates. Results: Patients receiving LDR brachytherapy had a mean age of 64 ± 7 years, a mean baseline PSA of 6.3 ± 3.0 ng/mL, 75% had a Gleason 6, and 15% had a Gleason 7, whereas patients receiving EBRT had a mean age of 70 ± 6 years, a mean baseline PSA of 11.6 ± 10.7 ng/mL, 30% had a Gleason 6, 55% had a Gleason 7, and 14% had a Gleason 8-10. Nomograms for 5-year BFFS included age, use and duration of androgen deprivation therapy (ADT), baseline PSA, T stage, and Gleason score for LDR brachytherapy and an ADT (months), baseline PSA, Gleason score, and biological effective dose (Gy) for EBRT. Conclusions: Clinical nomograms examining 5-year BFFS were developed for patients receiving either LDR brachytherapy or conventionally fractionated EBRT and

  1. Prospective assessment of the quality of life before, during and after image guided intensity modulated radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Sveistrup, Joen; Mortensen, Ole Steen; Bjørner, Jakob B; Engelholm, Svend Aage; Munck af Rosenschöld, Per; Petersen, Peter Meidahl

    2016-01-01

    Radiotherapy (RT) in combination with androgen deprivation therapy (ADT) for prostate cancer (PCa) carries a risk of gastrointestinal (GI) and genitourinary toxicity, which might affect the quality of life (QoL). The purpose of this study was to assess the QoL in patients with PCa before, during and after radiotherapy (RT) and to compare the QoL 1 year after RT to a normal population. The QoL was evaluated prospectively by the self-administered questionnaire SF-36 in 87 patients with PCa. The SF-36 was completed before RT (baseline), at start of RT, at end of RT and 1 year after RT. A mixed model analysis was used to determine the changes in QoL at each time point compared to baseline. The patients’ QoL 1 year after RT was compared to a normal population consisting of 462 reference subjects matched on age and education. One year after RT, patients reported significantly less pain and significantly fewer limitations due to their physical health compared to baseline. Compared to the normal population, patients reported significantly less pain 1 year after RT. However, patients also reported significantly less vitality, worse mental health as well as significantly more limitations due to physical and mental health 1 year after RT compared to the normal population. In this study, patients with PCa did not experience significant impairment in the QoL 1 year after RT compared to baseline. However, patients reported significantly worse mental health before, during and 1 year after RT compared to the normal population

  2. Prospective assessment of the quality of life before, during and after image guided intensity modulated radiotherapy for prostate cancer

    DEFF Research Database (Denmark)

    Sveistrup, Joen; Mortensen, Ole Steen; Bjørner, Jakob B.

    2016-01-01

    BACKGROUND: Radiotherapy (RT) in combination with androgen deprivation therapy (ADT) for prostate cancer (PCa) carries a risk of gastrointestinal (GI) and genitourinary toxicity, which might affect the quality of life (QoL). The purpose of this study was to assess the QoL in patients with PCa bef...

  3. Prostate bed motion may cause geographic miss in post-prostatectomy image-guided intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Bell, Linda J.; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2013-01-01

    There is little data to guide radiation oncologists on appropriate margin selection in the post-prostatectomy setting. The aim of this study was to quantify interfraction variation in motion of the prostate bed to determine these margins. The superior and inferior surgical clips in the prostate bed were tracked on pretreatment cone beam CT images (n=377) for 40 patients who had received post-prostatectomy radiotherapy. Prostate bed motion was calculated for the upper and lower segments by measuring the position of surgical clips located close to midline relative to bony anatomy in the axial (translational) and sagittal (tilt) planes. The frequency of potential geographic misses was calculated for either 1cm or 0.5cm posterior planning target volume margins. The mean magnitude of movement of the prostate bed in the anterior–posterior, superior–inferior and left–right planes, respectively, were as follows: upper portion, 0.50cm, 0.28cm, 0.10cm; lower portion, 0.18cm, 0.18cm, 0.08cm. The random and systematic errors, respectively, of the prostate bed motion in the anterior–posterior, superior–inferior and left–right planes, respectively, were as follows: upper portion, 0.47cm and 0.50cm, 0.28cm and 0.27cm, 0.11cm and 0.11cm; lower portion, 0.17cm and 18cm, 0.17cm and 0.19cm, 0.08cm and 0.10cm. Most geographic misses occurred in the upper prostate bed in the anterior–posterior plane. The median prostate bed tilt was 1.8° (range −23.4° to 42.3°). Variability was seen in all planes for the movement of both surgical clips. The greatest movement occurred in the anterior–posterior plane in the upper prostate bed, which could cause geographic miss of treatment delivery. The variability in the movement of the superior and inferior clips indicates a prostate bed tilt that would be difficult to correct with standard online matching techniques. This creates a strong argument for using anisotropic planning target volume margins in post-prostatectomy radiotherapy.

  4. Definition and visualisation of regions of interest in post-prostatectomy image-guided intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Linda J, E-mail: linda.bell1@health.nsw.gov.au; Cox, Jennifer [Radiation Oncology Department, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales (Australia); Eade, Thomas; Rinks, Marianne; Kneebone, Andrew [Radiation Oncology Department, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales (Australia)

    2014-09-15

    Standard post-prostatectomy radiotherapy (PPRT) image verification uses bony anatomy alignment. However, the prostate bed (PB) moves independently of bony anatomy. Cone beam computed tomography (CBCT) can be used to soft tissue match, so radiation therapists (RTs) must understand pelvic anatomy and PPRT clinical target volumes (CTV). The aims of this study are to define regions of interest (ROI) to be used in soft tissue matching image guidance and determine their visibility on planning CT (PCT) and CBCT. Published CTV guidelines were used to select ROIs. The PCT scans (n = 23) and CBCT scans (n = 105) of 23 post-prostatectomy patients were reviewed. Details on ROI identification were recorded. Eighteen patients had surgical clips. All ROIs were identified on PCTs at least 90% of the time apart from mesorectal fascia (MF) (87%) due to superior image quality. When surgical clips are present, the seminal vesicle bed (SVB) was only seen in 2.3% of CBCTs and MF was unidentifiable. Most other structures were well identified on CBCT. The anterior rectal wall (ARW) was identified in 81.4% of images and penile bulb (PB) in 68.6%. In the absence of surgical clips, the MF and SVB were always identified; the ARW was identified in 89.5% of CBCTs and PB in 73.7%. Surgical clips should be used as ROIs when present to define SVB and MF. In the absence of clips, SVB, MF and ARW can be used. RTs must have a strong knowledge of soft tissue anatomy and PPRT CTV to ensure coverage and enable soft tissue matching.

  5. Image-guided intensity modulated radiotherapy with helical tomotherapy for postoperative treatment of high-risk oral cavity cancer

    Directory of Open Access Journals (Sweden)

    Chen Yu-Jen

    2011-01-01

    Full Text Available Abstract Background The aim of this study was to assess the treatment results and toxicity profiles of helical tomotherapy (HT for postoperative high-risk oral cavity cancer. Methods From December 6, 2006 through October 9, 2009, 19 postoperative high-risk oral cavity cancer patients were enrolled. All of the patients received HT with (84% or without (16% chemotherapy. Results The median follow-up time was 17 months. The 2-year overall survival, disease-free survival, locoregional control, and distant metastasis-free rates were 94%, 84%, 92%, and 94%, respectively. The package of overall treatment time > 13 wk, the interval between surgery and radiation ≤ 6 wk, and the overall treatment time of radiation ≤ 7 wk was 21%, 84%, and 79%, respectively. The percentage of grade 3 mucositis, dermatitis, and leucopenia was 42%, 5% and 5%, respectively. Conclusions HT achieved encouraging clinical outcomes for postoperative high-risk oral cavity cancer patients with high compliance. A long-term follow-up study is needed to confirm these preliminary findings.

  6. Image-guided intensity modulated radiotherapy with helical tomotherapy for postoperative treatment of high-risk oral cavity cancer

    International Nuclear Information System (INIS)

    Hsieh, Chen-Hsi; Hsieh, Yen-Ping; Lin, Shoei Long; Chen, Chun-Yi; Chen, Chien-An; Shueng, Pei-Wei; Kuo, Ying-Shiung; Liao, Li-Jen; Hu, Kawang-Yu; Lin, Shih-Chiang; Wu, Le-Jung; Lin, Yu-Chin; Chen, Yu-Jen; Wang, Li-Ying

    2011-01-01

    The aim of this study was to assess the treatment results and toxicity profiles of helical tomotherapy (HT) for postoperative high-risk oral cavity cancer. From December 6, 2006 through October 9, 2009, 19 postoperative high-risk oral cavity cancer patients were enrolled. All of the patients received HT with (84%) or without (16%) chemotherapy. The median follow-up time was 17 months. The 2-year overall survival, disease-free survival, locoregional control, and distant metastasis-free rates were 94%, 84%, 92%, and 94%, respectively. The package of overall treatment time > 13 wk, the interval between surgery and radiation ≤ 6 wk, and the overall treatment time of radiation ≤ 7 wk was 21%, 84%, and 79%, respectively. The percentage of grade 3 mucositis, dermatitis, and leucopenia was 42%, 5% and 5%, respectively. HT achieved encouraging clinical outcomes for postoperative high-risk oral cavity cancer patients with high compliance. A long-term follow-up study is needed to confirm these preliminary findings

  7. Definition and visualisation of regions of interest in post-prostatectomy image-guided intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Bell, Linda J; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-01-01

    Standard post-prostatectomy radiotherapy (PPRT) image verification uses bony anatomy alignment. However, the prostate bed (PB) moves independently of bony anatomy. Cone beam computed tomography (CBCT) can be used to soft tissue match, so radiation therapists (RTs) must understand pelvic anatomy and PPRT clinical target volumes (CTV). The aims of this study are to define regions of interest (ROI) to be used in soft tissue matching image guidance and determine their visibility on planning CT (PCT) and CBCT. Published CTV guidelines were used to select ROIs. The PCT scans (n = 23) and CBCT scans (n = 105) of 23 post-prostatectomy patients were reviewed. Details on ROI identification were recorded. Eighteen patients had surgical clips. All ROIs were identified on PCTs at least 90% of the time apart from mesorectal fascia (MF) (87%) due to superior image quality. When surgical clips are present, the seminal vesicle bed (SVB) was only seen in 2.3% of CBCTs and MF was unidentifiable. Most other structures were well identified on CBCT. The anterior rectal wall (ARW) was identified in 81.4% of images and penile bulb (PB) in 68.6%. In the absence of surgical clips, the MF and SVB were always identified; the ARW was identified in 89.5% of CBCTs and PB in 73.7%. Surgical clips should be used as ROIs when present to define SVB and MF. In the absence of clips, SVB, MF and ARW can be used. RTs must have a strong knowledge of soft tissue anatomy and PPRT CTV to ensure coverage and enable soft tissue matching

  8. Image-guided adaptive gating of lung cancer radiotherapy: a computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, Michalis; Rottmann, Joerg; Park, Sang-June; Berbeco, Ross I [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Nishioka, Seiko [Department of Radiology, NTT Hospital, Sapporo (Japan); Shirato, Hiroki, E-mail: maristophanous@lroc.harvard.ed [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan)

    2010-08-07

    The purpose of this study is to investigate the effect that image-guided adaptation of the gating window during treatment could have on the residual tumor motion, by simulating different gated radiotherapy techniques. There are three separate components of this simulation: (1) the 'Hokkaido Data', which are previously measured 3D data of lung tumor motion tracks and the corresponding 1D respiratory signals obtained during the entire ungated radiotherapy treatments of eight patients, (2) the respiratory gating protocol at our institution and the imaging performed under that protocol and (3) the actual simulation in which the Hokkaido Data are used to select tumor position information that could have been collected based on the imaging performed under our gating protocol. We simulated treatments with a fixed gating window and a gating window that is updated during treatment. The patient data were divided into different fractions, each with continuous acquisitions longer than 2 min. In accordance to the imaging performed under our gating protocol, we assume that we have tumor position information for the first 15 s of treatment, obtained from kV fluoroscopy, and for the rest of the fractions the tumor position is only available during the beam-on time from MV imaging. The gating window was set according to the information obtained from the first 15 s such that the residual motion was less than 3 mm. For the fixed gating window technique the gate remained the same for the entire treatment, while for the adaptive technique the range of the tumor motion during beam-on time was measured and used to adapt the gating window to keep the residual motion below 3 mm. The algorithm used to adapt the gating window is described. The residual tumor motion inside the gating window was reduced on average by 24% for the patients with regular breathing patterns and the difference was statistically significant (p-value = 0.01). The magnitude of the residual tumor motion

  9. Comparison between skin-mounted fiducials and bone-implanted fiducials for image-guided neurosurgery

    Science.gov (United States)

    Rost, Jennifer; Harris, Steven S.; Stefansic, James D.; Sillay, Karl; Galloway, Robert L., Jr.

    2004-05-01

    Point-based registration for image-guided neurosurgery has become the industry standard. While the use of intrinsic points is appealing because of its retrospective nature, affixing extrinsic objects to the head prior to scanning has been demonstrated to provide much more accurate registrations. Points of reference between image space and physical space are called fiducials. The extrinsic objects which generate those points are fiducial markers. The markers can be broken down into two classifications: skin-mounted and bone-implanted. Each has distinct advantages and disadvantages. Skin-mounted fiducials require simply sticking them on the patient in locations suggested by the manufacturer, however, they can move with tractions placed on the skin, fall off and perhaps the most dangerous problem, they can be replaced by the patient. Bone implanted markers being rigidly affixed to the skull do not present such problems. However, a minor surgical intervention (analogous to dental work) must be performed to implant the markers prior to surgery. Therefore marker type and use has become a decision point for image-guided surgery. We have performed a series of experiments in an attempt to better quantify aspects of the two types of markers so that better informed decisions can be made. We have created a phantom composed of a full-size plastic skull [Wards Scientific Supply] with a 500 ml bag of saline placed in the brain cavity. The skull was then sealed. A skin mimicking material, DragonSkinTM [SmoothOn Company] was painted onto the surface and allowed to dry. Skin mounted fiducials [Medtronic-SNT] and bone-implanted markers [Z-Kat]were placed on the phantom. In addition, three additional bone-implanted markers were placed (two on the base of the skull and one in the eye socket for use as targets). The markers were imaged in CT and 4 MRI sequences (T1-weighted, T2 weighted, SPGR, and a functional series.) The markers were also located in physical space using an Optotrak

  10. Predictors of Toxicity After Image-guided High-dose-rate Interstitial Brachytherapy for Gynecologic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Larissa J. [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States)

    2012-12-01

    Purpose: To identify predictors of grade 3-4 complications and grade 2-4 rectal toxicity after three-dimensional image-guided high-dose-rate (HDR) interstitial brachytherapy for gynecologic cancer. Methods and Materials: Records were reviewed for 51 women (22 with primary disease and 29 with recurrence) treated with HDR interstitial brachytherapy. A single interstitial insertion was performed with image guidance by computed tomography (n = 43) or magnetic resonance imaging (n = 8). The median delivered dose in equivalent 2-Gy fractions was 72.0 Gy (45 Gy for external-beam radiation therapy and 24 Gy for brachytherapy). Toxicity was reported according to the Common Toxicity Criteria for Adverse Events. Actuarial toxicity estimates were calculated by the Kaplan-Meier method. Results: At diagnosis, the median patient age was 62 years and the median tumor size was 3.8 cm. The median D90 and V100 were 71.4 Gy and 89.5%; the median D2cc for the bladder, rectum, and sigmoid were 64.6 Gy, 61.0 Gy, and 52.7 Gy, respectively. The actuarial rates of all grade 3-4 complications at 2 years were 20% gastrointestinal, 9% vaginal, 6% skin, 3% musculoskeletal, and 2% lymphatic. There were no grade 3-4 genitourinary complications and no grade 5 toxicities. Grade 2-4 rectal toxicity was observed in 10 patients, and grade 3-4 complications in 4; all cases were proctitis with the exception of 1 rectal fistula. D2cc for rectum was higher for patients with grade 2-4 (68 Gy vs 57 Gy for grade 0-1, P=.03) and grade 3-4 (73 Gy vs 58 Gy for grade 0-2, P=.02) rectal toxicity. The estimated dose that resulted in a 10% risk of grade 2-4 rectal toxicity was 61.8 Gy (95% confidence interval, 51.5-72.2 Gy). Discussion: Image-guided HDR interstitial brachytherapy results in acceptable toxicity for women with primary or recurrent gynecologic cancer. D2cc for the rectum is a reliable predictor of late rectal complications. Three-dimensional-based treatment planning should be performed to ensure

  11. The effective quality assurance for image guided device using the AMC G-Box

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chong Mi [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2014-12-15

    According to the rapid increase recently in image-guided radiation therapy, It is necessary to control of the image guidance system completely. In particular for the main subject to the accuracy of image guided radiation therapy device to be done essentially the quality assurance. We made efficient phantom in AMC for the management of the accurate and efficient. By setting up of five very important as a quality assurance inventory of the Image guidance system, we made (AMC G-Box) phantom for quality assurance efficient and accurate. Quality assurance list were the Iso-center align, the real measurement, the center align of four direction, the accuracy of table movement and the reproducibility of Hounsfield Unit. The rectangular phantom; acrylic with a thickness of 1 cm to 10 cm × 10 cm × 10 cm was inserted the three materials with different densities respectively for measure the CBCT HU. The phantom was to perform a check of consistency centered by creating a marker that indicates the position of the center fixed. By performing the quality assurance using the phantom of existing, comparing the resulting value to the different resulting value using the AMC G-Box, experiment was analyzed time and problems. Therapy equipment was used Varian device. It was measured twice at 1-week intervals. When implemented quality assurance of an image guidance system using AMC G-Box and a phantom existing has been completed, the quality assurance result is similar in 0.2 mm ± 0.1. In the case of the conventional method, it was 45 minutes at 30 minutes. When using AMC G-Box, it takes 20 minutes 15 minutes, and declined to 50% of the time. The consistency and accurate of image guidance system tend to decline using device. Therefore, We need to perform thoroughly on the quality assurance related. It needs to be checked daily to consistency check especially. When using the AMC G-Box, It is possible to enhance the accuracy of the patient care and equipment efficiently performing

  12. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

    Science.gov (United States)

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-01-01

    Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth

  13. SU-E-J-123: Targeting Accuracy of Image-Guided Radiosurgery for Intracranial Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y; Wen, N; Zhao, B; Kim, J; Gordon, J; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: To evaluate the setup accuracies of image-guided intracranial radiosurgery across several different linear accelerator platforms. Methods: A CT scan with a slice thickness of 1.0 mm was acquired of a Rando head phantom (The Phantom Laboratory) in a U-frame mask (BrainLAB AG). The phantom had three embedded BBs, simulating a central, left, and anterior lesion. The phantom was setup with each BB placed at the radiation isocenter under image guidance. Four different setup procedures were investigated: (1) NTX-ExacTrac: 6 degree-of-freedom (6D) correction on a Novalis Tx (BrainLAB AG) with ExacTrac localization (BrainLAB AG); (2) NTX-CBCT: 4D correction on the Novalis Tx with cone-beam computed tomography (CBCT); (3) TrueBeam-CBCT: 4D correction on a TrueBeam (Varian) with CBCT; (4) Edge-CBCT: 6D correction on an Edge (Varian) with CBCT. The experiment was repeated 5 times with different initial setup error at each BB location on each platform, and the mean (μ) and one standard deviation (σ) of the residual error was compared.The congruence between radiation and imaging isocenters on each platform was evaluated by acquiring Winston Lutz (WL) images of a WL jig followed by imaging using ExacTrac or CBCT. The difference in coordinates of the jig relative to radiation and imaging isocenters was then recorded. Results: Averaged over all three BB locations, the residual vector setup errors (μ±σ) of the phantom in mm were 0.6±0.2, 1.0±0.5, 0.2±0.1, and 0.3±0.1 on NTX-ExacTrac, NTX-CBCT, TrueBeam-CBCT, and Edge-CBCT, with their ranges in mm being 0.4∼1.1, 0.4∼1.9, 0.1∼0.5, and 0.2∼0.6, respectively. And imaging isocenter was found stable relative to radiation isocenter, with the congruence to radiation isocenter in mm being 0.6±0.1, 0.7±0.1, 0.3±0.1, 0.2±0.1, respectively, on the four systems in the same order. Conclusion: Millimeter accuracy can be achieved with image-guided radiosurgery for intracranial lesions based on this set of experiments.

  14. Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Hälg, Roger A.; Besserer, Jürgen; Schneider, Uwe

    2012-01-01

    Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1

  15. A technique for adaptive image-guided helical tomotherapy for lung cancer

    International Nuclear Information System (INIS)

    Ramsey, Chester R.; Langen, Katja M.; Kupelian, Patrick A.; Scaperoth, Daniel D.; Meeks, Sanford L.; Mahan, Stephen L.; Seibert, Rebecca M.

    2006-01-01

    Purpose: The gross tumor volume (GTV) for many lung cancer patients can decrease during the course of radiation therapy. As the tumor reduces in size during treatment, the margin added around the GTV effectively becomes larger, which can result in the excessive irradiation of normal lung tissue. The specific goal of this study is to evaluate the feasibility of using image-guided adaptive radiation therapy to adjust the planning target volume weekly based on the previous week's CT image sets that were used for image-guided patient setup. Methods and Materials: Megavoltage computed tomography (MVCT) images of the GTV were acquired daily on a helical tomotherapy system. These images were used to position the patient and to measure reduction in GTV volume. A planning study was conducted to determine the amount of lung-sparing that could have been achieved if adaptive therapy had been used. Treatment plans were created in which the target volumes were reduced after tumor reduction was measured. Results: A total of 158 MVCT imaging sessions were performed on 7 lung patients. The GTV was reduced by 60-80% during the course of treatment. The tumor reduction in the first 60 days of treatment can be modeled using the second-order polynomial R 0.0002t 2 - 0.0219t + 1.0, where R is the percent reduction in GTV, and t is the number of elapsed days. Based on these treatment planning studies, the absolute volume of ipsilateral lung receiving 20 Gy can be reduced between 17% and 23% (21% mean) by adapting the treatment delivery. The benefits of adaptive therapy are the greatest for tumor volumes ≥25 cm 3 and are directly dependent on GTV reduction during treatment. Conclusions: Megavoltage CT-based image guidance can be used to position lung cancer patients daily. This has the potential to decrease margins associated with daily setup error. Furthermore, the adaptive therapy technique described in this article can decrease the volume of healthy lung tissue receiving above 20 Gy

  16. A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery

    International Nuclear Information System (INIS)

    Fu Dongshan; Kuduvalli, Gopinath

    2008-01-01

    The authors developed a fast and accurate two-dimensional (2D)-three-dimensional (3D) image registration method to perform precise initial patient setup and frequent detection and correction for patient movement during image-guided cranial radiosurgery treatment. In this method, an approximate geometric relationship is first established to decompose a 3D rigid transformation in the 3D patient coordinate into in-plane transformations and out-of-plane rotations in two orthogonal 2D projections. Digitally reconstructed radiographs are generated offline from a preoperative computed tomography volume prior to treatment and used as the reference for patient position. A multiphase framework is designed to register the digitally reconstructed radiographs with the x-ray images periodically acquired during patient setup and treatment. The registration in each projection is performed independently; the results in the two projections are then combined and converted to a 3D rigid transformation by 2D-3D geometric backprojection. The in-plane transformation and the out-of-plane rotation are estimated using different search methods, including multiresolution matching, steepest descent minimization, and one-dimensional search. Two similarity measures, optimized pattern intensity and sum of squared difference, are applied at different registration phases to optimize accuracy and computation speed. Various experiments on an anthropomorphic head-and-neck phantom showed that, using fiducial registration as a gold standard, the registration errors were 0.33±0.16 mm (s.d.) in overall translation and 0.29 deg. ±0.11 deg. (s.d.) in overall rotation. The total targeting errors were 0.34±0.16 mm (s.d.), 0.40±0.2 mm (s.d.), and 0.51±0.26 mm (s.d.) for the targets at the distances of 2, 6, and 10 cm from the rotation center, respectively. The computation time was less than 3 s on a computer with an Intel Pentium 3.0 GHz dual processor

  17. Evaluation of every other day-cone beam computed tomography in image guided radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Park, Byoung Suk; Ahn, Jong Ho; Kim, Jong Sik; Song, Ki Won

    2014-01-01

    Cone Beam Computed Tomography(CBCT) in Image Guided Radiation Therapy(IGRT), Set-up error can be reduced but exposure dose of the patient due to CBCT will increase. Through this study, we are to evaluate by making a scenario with the implementation period of CBCT as every other day. Of prostate cancer patients, 9 patients who got a Intensity Modulated Radiation Therapy(IMRT) with CBCT in IGRT were analyzed. Based on values corrected by analyzing set-up error by using CBCT every day during actual treatment, we created a scenario that conducts CBCT every other day. After applying set-up error values of the day not performing CBCT in the scenario to the treatment planning system(Pinnacle 9.2, Philips, USA) by moving them from the treatment iso-center during actual treatment, we established re-treatment plan under the same conditions as actual treatment. Based on this, the dose distribution of normal organs and Planning Target Volume(PTV) was compared and analyzed. In the scenario that performs CBCT every other day based on set-up error values when conducting CBCT every day, average X-axis : 0.2±0.73 mm , Y-axis : 0.1±0.58 mm , Z-axis : -1.3±1.17 mm difference was shown. This was applied to the treatment planning to establish re-treatment plan and dose distribution was evaluated and as a result, Dmean : -0.17 Gy, D99% : -0.71 Gy of PTV difference was shown in comparison with the result obtained when carrying out CBCT every day. As for normal organs, V66 : 1.55% of rectal wall, V66 : -0.76% of bladder difference was shown. In case of a CBCT perform every other day could reduce exposure dose and additional treatment time. And it is thought to be able to consider the application depending on the condition of the patient because the difference in the dose distribution of normal organs, PTV is not large

  18. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    Science.gov (United States)

    Li, Dengwang; Li, Hongsheng; Wan, Honglin; Chen, Jinhu; Gong, Guanzhong; Wang, Hongjun; Wang, Liming; Yin, Yong

    2012-08-01

    gross tumor volume re-contouring for clinical PET/CT image-guided radiation therapy throughout the course of radiotherapy is also studied, and the overlap between the automatically generated contours for the CT image and the contours delineated by the oncologist used for the planning system are on average 90%.

  19. The preliminary study of setup errors' impact on dose distribution of image guide radiation therapy for head and neck cancer

    International Nuclear Information System (INIS)

    Xu Luying; Pan Jianji; Wang Xiaoliang; Bai Penggang; Li Qixin; Fei Zhaodong; Chen Chuanben; Ma Liqin; Tang Tianlan

    2011-01-01

    Objective: To measure the set-up errors of patients with head and neck (H and N) cancer during the image guided intensity-modulated radiotherapy (IMRT) treatment and analyze the impact of setup errors on dose distribution; then to further investigate the necessity of adjustment online for H and N cancer during IMRT treatment. Methods: Cone-beam CT (CBCT) scanning of thirty patients with H and N cancer were acquired by once weekly with a total of 6 times during IMRT treatment. The CBCT images and the original planning CT images were matched by the bony structure and worked out the translational errors of the x, y, z axis, as well as rotational errors. The dose distributions were recalculated based on the data of each setup error. The dose of planning target volume (PTV) and organs at risk were calculated in the re-planning, and than compared with the original plan by paired t-test. Results: The mean value of x, y, z axis translational set-up errors were (1.06 ± 0.95)mm, (0.95 ± 0.77)mm and (1.31 ± 1.07)mm, respectively. The rotational error of x, y, z axis were (1.04 ±0.791), (1.06 ±0.89) and (0.81 ±0.61 ), respectively. PTV 95% volume dose (D 95 ) and PTV minimal dose of re-planning for 6 times set-up were lower than original plan (6526.6 cGy : 6630.3 cGy, t =3.98, P =0.000 and 5632.6 cGy : 5792.5 cGy, t =- 2.89, P =0.007). Brain stem received 45 Gydose volume (V 45 ) and 1% brain stem volume dose (D 01 )were higher than original plan (3.54% : 2.75%, t =3.84, P =0.001 and 5129.7 cGy : 4919.3 cGy, t =4.36, P =0.000). Conclusions: The set-up errors led to the dose of PTV D 95 obviously insufficient and significantly increased V 45 , D 01 of the brainstem. So, adjustment online is necessary for H and N cancer during IMRT treatment. (authors)

  20. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanle, E-mail: Hu.Yanle@mayo.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 and Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona 85054 (United States); Rankine, Leith; Green, Olga L.; Kashani, Rojano; Li, H. Harold; Li, Hua; Rodriguez, Vivian; Santanam, Lakshmi; Wooten, H. Omar; Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Nana, Roger; Shvartsman, Shmaryu; Victoria, James; Dempsey, James F. [ViewRay, Inc., Oakwood Village, Ohio 44146 (United States)

    2015-10-15

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm{sup 3} spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19

  1. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    International Nuclear Information System (INIS)

    Hu, Yanle; Rankine, Leith; Green, Olga L.; Kashani, Rojano; Li, H. Harold; Li, Hua; Rodriguez, Vivian; Santanam, Lakshmi; Wooten, H. Omar; Mutic, Sasa; Nana, Roger; Shvartsman, Shmaryu; Victoria, James; Dempsey, James F.

    2015-01-01

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm 3 spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19

  2. TU-AB-BRA-12: Quality Assurance of An Integrated Magnetic Resonance Image Guided Adaptive Radiotherapy Machine Using Cherenkov Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, J; Bruza, P; Saunders, S; Pogue, B [Dartmouth College, Hanover, NH (United States); Mooney, K; Curcuru, A; Green, O [Washington University School of Medicine, Saint Louis, MO (United States); Gladstone, D [Dartmouth-Hitchcock Med. Ctr., Lebanon, NH (Lebanon)

    2016-06-15

    Purpose: To investigate the viability of using Cherenkov imaging as a fast and robust method for quality assurance tests in the presence of a magnetic field, where other instruments can be limited. Methods: Water tank measurements were acquired from a clinically utilized adaptive magnetic resonance image guided radiation therapy (MR-IGRT) machine with three multileaf-collimator equipped 60Co sources. Cherenkov imaging used an intensified charge coupled device (ICCD) camera placed 3.5m from the treatment isocenter, looking down the bore of the 0.35T MRI into a water tank. Images were post-processed to make quantitative comparison between Cherenkov light intensity with both film and treatment planning system predictions, in terms of percent depth dose curves as well as lateral beam profile measurements. A TG-119 commissioning test plan (C4: C-Shape) was imaged in real-time at 6.33 frames per second to investigate the temporal and spatial resolution of the Cherenkov imaging technique. Results: A .33mm/pixel Cherenkov image resolution was achieved across 1024×1024 pixels in this setup. Analysis of the Cherenkov image of a 10.5×10.5cm treatment beam in the water tank successfully measured the beam width at the depth of maximum dose within 1.2% of the film measurement at the same point. The percent depth dose curve for the same beam was on average within 2% of ionization chamber measurements for corresponding depths between 3–100mm. Cherenkov video of the TG-119 test plan provided qualitative agreement with the treatment planning system dose predictions, and a novel temporal verification of the treatment. Conclusions: Cherenkov imaging was successfully used to make QA measurements of percent depth dose curves and cross beam profiles of MRI-IGRT radiotherapy machines after only several seconds of beam-on time and data capture; both curves were extracted from the same data set. Video-rate imaging of a dynamic treatment plan provided new information regarding temporal

  3. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Li Dengwang; Wan Honglin; Li Hongsheng; Chen Jinhu; Gong Guanzhong; Yin Yong; Wang Hongjun; Wang Liming

    2012-01-01

    adaptive gross tumor volume re-contouring for clinical PET/CT image-guided radiation therapy throughout the course of radiotherapy is also studied, and the overlap between the automatically generated contours for the CT image and the contours delineated by the oncologist used for the planning system are on average 90%. (paper)

  4. Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy.

    Science.gov (United States)

    Kim, Jung-In; Lee, Hanyoung; Wu, Hong-Gyun; Chie, Eui Kyu; Kang, Hyun-Cheol; Park, Jong Min

    2017-09-01

    The aim of this study is to develop a visual guidance patient-controlled (VG-PC) respiratory gating system for respiratory-gated magnetic-resonance image-guided radiation therapy (MR-IGRT) and to evaluate the performance of the developed system. The near-real-time cine planar MR image of a patient acquired during treatment was transmitted to a beam projector in the treatment room through an optical fiber cable. The beam projector projected the cine MR images inside the bore of the ViewRay system in order to be visible to a patient during treatment. With this visual information, patients voluntarily controlled their respiration to put the target volume into the gating boundary (gating window). The effect of the presence of the beam projector in the treatment room on the image quality of the MRI was investigated by evaluating the signal-to-noise ratio (SNR), uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity with the VG-PC gating system. To evaluate the performance of the developed system, we applied the VG-PC gating system to a total of seven patients; six patients received stereotactic ablative radiotherapy (SABR) and one patient received conventional fractionated radiation therapy. The projected cine MR images were visible even when the room light was on. No image data loss or additional time delay during delivery of image data were observed. Every indicator representing MRI quality, including SNR, uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity exhibited values higher than the tolerance levels of the manufacturer with the VG-PC gating system; therefore, the presence of the VG-PC gating system in the treatment room did not degrade the MR image quality. The average beam-off times due to respiratory gating with and without the VG-PC gating system were 830.3 ± 278.2 s and 1264.2 ± 302.1 s respectively (P = 0.005). Consequently, the total treatment times excluding

  5. Nanoscale Metal-Organic Frameworks Decorated with Graphene Oxide for Magnetic Resonance Imaging Guided Photothermal Therapy.

    Science.gov (United States)

    Meng, Jing; Chen, Xiujin; Tian, Yang; Li, Zhongfeng; Zheng, Qingfeng

    2017-12-11

    Imaging-guided photothermal therapy (PTT) provides an attractive way to treat cancer. A composite material of a nanoscale metal-organic framework (NMOF) and graphene oxide (GO) has been prepared for potential use in tumor-guided PTT with magnetic resonance imaging (MRI). The NMOFs containing Fe 3+ were prefabricated with an octahedral morphology through a solvothermal reaction to offer a strong T 2 -weighted contrast in MRI. Then the NMOFs were decorated with GO nanosheets, which had good photothermal properties. After decoration, zeta-potential characterization shows that the aqueous stability of the composite material is enhanced, UV/Vis and near-infrared (NIR) spectra confirm that NIR absorption is also increased, and photothermal experiments reveal that the composite materials express higher photothermal conversion effects and conversion stability. The fabricated NMOF/GO shows low cytotoxicity, effective T 2 -weighted contrast of MRI, and positive PTT behavior for a tumor model in vitro. The performance of the composite NMOF/GO for MRI and PTT was also tested upon injection into A549 tumor-bearing mice. The studies in vivo revealed that the fabricated NMOF/GO was efficient in T 2 -weighted imaging and ablation of the A549 tumor with low cytotoxicity, which implied that the prepared composite contrast agent was a potential multifunctional nanotheranostic agent. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M

    2016-09-07

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  7. An image-guided transcranial direct current stimulation system: a pilot phantom study

    International Nuclear Information System (INIS)

    Jung, Young-Jin; Kim, Jung-Hoon; Kim, Daejeong; Im, Chang-Hwan

    2013-01-01

    In this study, an image-guided transcranial direct current stimulation (IG-tDCS) system that can deliver an increased stimulation current to a target brain area without the need to adjust the location of an active electrode was implemented. This IG-tDCS system was based on the array-type tDCS concept, which was validated through computer simulations in a previous study. Unlike a previous study, the present IG-tDCS system adopts a single reference electrode and an active electrode array consisting of 16 (4 × 4) sub-electrodes. The proposed IG-tDCS system is capable of shaping current flow inside the human head by controlling the input currents of the arrayed electrodes. Once a target brain area has been selected, the optimal injection current of each arrayed sub-electrode is evaluated automatically using a genetic algorithm in order to deliver the maximum available current to the target area. The operation of our pilot system was confirmed through a simple phantom experiment. (paper)

  8. A finite state model for respiratory motion analysis in image guided radiation therapy

    International Nuclear Information System (INIS)

    Wu Huanmei; Sharp, Gregory C; Salzberg, Betty; Kaeli, David; Shirato, Hiroki; Jiang, Steve B

    2004-01-01

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates

  9. A finite state model for respiratory motion analysis in image guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huanmei [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Sharp, Gregory C [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States); Salzberg, Betty [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Kaeli, David [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)

    2004-12-07

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.

  10. [Shall all lobular intraepithelial neoplasia diagnosed on image-guided biopsy require a surgical management?].

    Science.gov (United States)

    Fischer-Hunsinger, Maeva; Guinebretière, Jean-Marc; Lasry, Serge; Langer, Adriana; Berment, Hélène; Nekka, Ibtissem; Nodiot, Philippe; Cherel, Pascal

    2016-05-01

    Lobular intraepithelial neoplasia (LIN) diagnosed on image-guided biopsy may be associated with an undiagnosed cancer. This is called under-diagnosis. The consequence is that management of these lesions is often surgical. But many surgeries finally are unnecessary. The aim of our study was to define criteria to avoid unnecessary surgery. This is a single-center, retrospective after a database collected prospectively study. Fourteen thousand biopsies were analyzed, including 456 diagnosed NLI. Under-diagnosis rates were analyzed according to many criteria. The average duration of following was 45 months. For atypical lobular hyperplasia (ALH), we obtained 7.6% under-diagnosis and combining several criteria, we got a low risk of cancer (2%). For LCIS, this rate was 23% and any low-risk group could be identified. ALH with calcifications≤20 mm, without any atypical lesion associated, histologically focal and whose removal is representative may be safely observed. For other LIN, surgery remains indicated. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  11. The clinical utility of multimodal MR image-guided needle biopsy in cerebral gliomas.

    Science.gov (United States)

    Yao, Chengjun; Lv, Shunzeng; Chen, Hong; Tang, Weijun; Guo, Jun; Zhuang, Dongxiao; Chrisochoides, Nikos; Wu, Jinsong; Mao, Ying; Zhou, Liangfu

    2016-01-01

    Our aim was to evaluate the diagnostic value of multimodal Magnetic Resonance (MR) Image in the stereotactic biopsy of cerebral gliomas, and investigate its implications. Twenty-four patients with cerebral gliomas underwent (1)H Magnetic Resonance Spectroscopy ((1)H-MRS)- and intraoperative Magnetic Resonance Imaging (iMRI)-supported stereotactic biopsy, and 23 patients underwent only the preoperative MRI-guided biopsy. The diagnostic yield, morbidity and mortality rates were analyzed. In addition, 20 patients underwent subsequent tumor resection, thus the diagnostic accuracy of the biopsy was further evaluated. The diagnostic accuracies of biopsies evaluated by tumor resection in the trial groups were better than control groups (92.3% and 42.9%, respectively, p = 0.031). The diagnostic yield in the trial groups was better than the control groups, but the difference was not statistically significant (100% and 82.6%, respectively, p = 0.05). The morbidity and mortality rates were similar in both groups. Multimodal MR image-guided glioma biopsy is practical and valuable. This technique can increase the diagnostic accuracy in the stereotactic biopsy of cerebral gliomas. Besides, it is likely to increase the diagnostic yield but requires further validation.

  12. Patient dose in image guided radiotherapy: Monte Carlo study of the CBCT dose contribution

    Directory of Open Access Journals (Sweden)

    Salvatore Leotta

    2018-02-01

    Full Text Available Image Guided RadioTherapy (IGRT is a technique whose diffusion is growing thanks to the well-recognized gain in accuracy of dose delivery. However, multiple Cone Beam Computed Tomography (CBCT scans add dose to patients, and its contribution has to be assessed and minimized. Aim of our work was to evaluate, through Monte Carlo simulations, organ doses in IGRT due to CBCT and therapeutic MV irradiation in head-neck, thorax and pelvis districts. We developed a Monte Carlo simulation in GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations, reproducing an Elekta Synergy medical linac operating at 6 and 10 MV photon energy, and we set up a scalable anthropomorphic model. After a validation by comparison with the experimental quality indexes, we evaluated the average doses to all organs and tissues belonging to the model for the three cases of irradiated district. Scattered radiation in therapy is larger than that diffused by CBCT by one to two orders of magnitude.

  13. WE-DE-209-04: 3D Surface Image-Guided

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X. [Memorial Sloan Kettering Cancer Center (United States)

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  14. Selecting electrode configurations for image-guided cochlear implant programming using template matching.

    Science.gov (United States)

    Zhang, Dongqing; Zhao, Yiyuan; Noble, Jack H; Dawant, Benoit M

    2018-04-01

    Cochlear implants (CIs) are neural prostheses that restore hearing using an electrode array implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). We have proposed a system to assist the audiologist in programming the CI that we call image-guided CI programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend deactivation of a subset of electrodes to avoid NSO. We have shown that IGCIP significantly improves hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires manual intervention. With expertise, distance-versus-frequency curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. We propose an automated technique for electrode configuration selection. A comparison between this approach and one we have previously proposed shows that our method produces results that are as good as those obtained with our previous method while being generic and requiring fewer parameters.

  15. Current Brachytherapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    2008-01-01

    In the past decade, brachytherapy has shifted from the traditional surgical paradigm to more modern three-dimensional image-based planning and delivery approaches. The role of intraoperative and multimodality image-based planning is growing. Published American Association of Physicists in Medicine, American College of Radiology, European Society for Therapeutic Radiology and Oncology, and International Atomic Energy Agency quality assurance (QA) guidelines largely emphasize the QA of planning and delivery devices rather than processes. These protocols have been designed to verify compliance with major performance specifications and are not risk based. With some exceptions, complete and clinically practical guidance exists for sources, QA instrumentation, non-image-based planning systems, applicators, remote afterloading systems, dosimetry, and calibration. Updated guidance is needed for intraoperative imaging systems and image-based planning systems. For non-image-based brachytherapy, the American Association of Physicists in Medicine Task Group reports 56 and 59 provide reasonable guidance on procedure-specific process flow and QA. However, improved guidance is needed even for established procedures such as ultrasound-guided prostate implants. Adaptive replanning in brachytherapy faces unsolved problems similar to that of image-guided adaptive external beam radiotherapy

  16. Developing Quality Assurance Processes for Image-Guided Adaptive Radiation Therapy

    International Nuclear Information System (INIS)

    Yan Di

    2008-01-01

    Quality assurance has long been implemented in radiation treatment as systematic actions necessary to provide adequate confidence that the radiation oncology service will satisfy the given requirements for quality care. The existing reports from the American Association of Physicists in Medicine Task Groups 40 and 53 have provided highly detailed QA guidelines for conventional radiotherapy and treatment planning. However, advanced treatment processes recently developed with emerging high technology have introduced new QA requirements that have not been addressed previously in the conventional QA program. Therefore, it is necessary to expand the existing QA guidelines to also include new considerations. Image-guided adaptive radiation therapy (IGART) is a closed-loop treatment process that is designed to include the individual treatment information, such as patient-specific anatomic variation and delivered dose assessed during the therapy course in treatment evaluation and planning optimization. Clinical implementation of IGART requires high levels of automation in image acquisition, registration, segmentation, treatment dose construction, and adaptive planning optimization, which brings new challenges to the conventional QA program. In this article, clinical QA procedures for IGART are outlined. The discussion focuses on the dynamic or four-dimensional aspects of the IGART process, avoiding overlap with conventional QA guidelines

  17. Phantom evaluation of a commercially available three modality image guided radiation therapy system

    International Nuclear Information System (INIS)

    Ploquin, Nicolas; Rangel, Alejandra; Dunscombe, Peter

    2008-01-01

    The authors describe a detailed evaluation of the capabilities of imaging and image registration systems available with Varian linear accelerators for image guided radiation therapy (IGRT). Specifically, they present modulation transfer function curves for megavoltage planar, kilovoltage (kV) planar, and cone beam computed tomography imaging systems and compare these with conventional computed tomography. While kV planar imaging displayed the highest spatial resolution, all IGRT imaging techniques were assessed as adequate for their intended purpose. They have also characterized the image registration software available for use in conjunction with these imaging systems through a comprehensive phantom study involving translations in three orthogonal directions. All combinations of imaging systems and image registration software were found to be accurate, although the planar kV imaging system with automatic registration was generally superior, with both accuracy and precision of the order of 1 mm, under the conditions tested. Based on their phantom study, the attainable accuracy for rigid body translations using any of the features available with Varian equipment will more likely be limited by the resolution of the couch readouts than by inherent limitations in the imaging systems and image registration software. Overall, the accuracy and precision of currently available IGRT technology exceed published experience with the accuracy and precision of contouring for planning.

  18. Designing a wearable navigation system for image-guided cancer resection surgery.

    Science.gov (United States)

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2014-11-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.

  19. Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17

    International Nuclear Information System (INIS)

    Donzelli, Mattia; Bräuer-Krisch, Elke; Nemoz, Christian; Brochard, Thierry; Oelfke, Uwe

    2016-01-01

    Purpose: Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. Methods: This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. Results: Using four external fiducial markers of 1.7  mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2  mm can be achieved with an angular deviation of less than 2 ∘ . Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1  mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. Conclusions: The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.

  20. Predicting respiratory motion signals for image-guided radiotherapy using multi-step linear methods (MULIN)

    International Nuclear Information System (INIS)

    Ernst, Floris; Schweikard, Achim

    2008-01-01

    Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested. MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy. The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms. The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required. (orig.)

  1. Image-guided recording system for spatial and temporal mapping of neuronal activities in brain slice.

    Science.gov (United States)

    Choi, Geonho; Lee, Jeonghyeon; Kim, Hyeongeun; Jang, Jaemyung; Im, Changkyun; Jeon, Nooli; Jung, Woonggyu

    2018-03-01

    In this study, we introduce the novel image-guided recording system (IGRS) for efficient interpretation of neuronal activities in the brain slice. IGRS is designed to combine microelectrode array (MEA) and optical coherence tomography at the customized upright microscope. It allows to record multi-site neuronal signals and image of the volumetric brain anatomy in a single body configuration. For convenient interconnection between a brain image and neuronal signals, we developed the automatic mapping protocol that enables us to project acquired neuronal signals on a brain image. To evaluate the performance of IGRS, hippocampal signals of the brain slice were monitored, and corresponding with two-dimensional neuronal maps were successfully reconstructed. Our results indicated that IGRS and mapping protocol can provide the intuitive information regarding long-term and multi-sites neuronal signals. In particular, the temporal and spatial mapping capability of neuronal signals would be a very promising tool to observe and analyze the massive neuronal activity and connectivity in MEA-based electrophysiological studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Design and implementation of a PC-based image-guided surgical system.

    Science.gov (United States)

    Stefansic, James D; Bass, W Andrew; Hartmann, Steven L; Beasley, Ryan A; Sinha, Tuhin K; Cash, David M; Herline, Alan J; Galloway, Robert L

    2002-11-01

    In interactive, image-guided surgery, current physical space position in the operating room is displayed on various sets of medical images used for surgical navigation. We have developed a PC-based surgical guidance system (ORION) which synchronously displays surgical position on up to four image sets and updates them in real time. There are three essential components which must be developed for this system: (1) accurately tracked instruments; (2) accurate registration techniques to map physical space to image space; and (3) methods to display and update the image sets on a computer monitor. For each of these components, we have developed a set of dynamic link libraries in MS Visual C++ 6.0 supporting various hardware tools and software techniques. Surgical instruments are tracked in physical space using an active optical tracking system. Several of the different registration algorithms were developed with a library of robust math kernel functions, and the accuracy of all registration techniques was thoroughly investigated. Our display was developed using the Win32 API for windows management and tomographic visualization, a frame grabber for live video capture, and OpenGL for visualization of surface renderings. We have begun to use this current implementation of our system for several surgical procedures, including open and minimally invasive liver surgery.

  3. Towards image-guided atrial septal defect repair: an ex vivo analysis

    Science.gov (United States)

    Kwartowitz, David M.; Mefleh, Fuad N.; Baker, George H.

    2012-02-01

    The use of medical images in the operating room for navigation and planning is well established in many clinical disciplines. In cardiology, the use of fluoroscopy for the placement of catheters within the heart has become the standard of care. While fluoroscopy provides a live video sequence with the current location, it poses risks the patient and clinician through exposure to radiation. Radiation dose is cumulative and thus children are at even greater risk from exposure. To reduce the use of radiation, and improve surgical technique we have begun development of an image-guided navigation system, which can deliver therapeutic devices via catheter. In this work we have demonstrated the intrinsic properties of our imaging system, which have led to the development of a phantom emulating a childs heart with an ASD. Further investigation into the use of this information, in a series of mock clinical experiments, will be performed to design procedures for inserting devices into the heart while minimizing fluoroscopy use.

  4. Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17

    Energy Technology Data Exchange (ETDEWEB)

    Donzelli, Mattia, E-mail: donzelli@esrf.fr [European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble 38000, France and The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG (United Kingdom); Bräuer-Krisch, Elke; Nemoz, Christian; Brochard, Thierry [European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble 38000 (France); Oelfke, Uwe [The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG (United Kingdom)

    2016-06-15

    Purpose: Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. Methods: This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. Results: Using four external fiducial markers of 1.7  mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2  mm can be achieved with an angular deviation of less than 2{sup ∘}. Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1  mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. Conclusions: The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.

  5. Development and application of stent-based image guided navigation system for oral and maxillofacial surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo Jin; Kim, Dae Seung [Interdisciplinary Program in Radiation Applied Life Science, Dental Research Institute and BK21, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul; Heo, Min Suk; Huh, Kyung Hoe; Kim, Myung Jin; Lee, Jee Ho [Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2009-09-15

    The purpose of this study was to develop a stent-based image guided surgery system and to apply it to oral and maxillofacial surgeries for anatomically complex sites. We devised a patient-specific stent for patient-to-image registration and navigation. Three dimensional positions of the reference probe and the tool probe were tracked by an optical camera system and the relative position of the handpiece drill tip to the reference probe was monitored continuously on the monitor of a PC. Using 8 landmarks for measuring accuracy, the spatial discrepancy between CT image coordinate and physical coordinate was calculated for testing the normality. The accuracy over 8 anatomical landmarks showed an overall mean of 0.56 {+-} 0.16 mm. The developed system was applied to a surgery for a vertical alveolar bone augmentation in right mandibular posterior area and possible interior alveolar nerve injury case of an impacted third molar. The developed system provided continuous monitoring of invisible anatomical structures during operation and 3D information for operation sites. The clinical challenge showed sufficient accuracy and availability of anatomically complex operation sites. The developed system showed sufficient accuracy and availability in oral and maxillofacial surgeries for anatomically complex sites.

  6. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy.

    Science.gov (United States)

    Jiang, Yuyan; Cui, Dong; Fang, Yuan; Zhen, Xu; Upputuri, Paul Kumar; Pramanik, Manojit; Ding, Dan; Pu, Kanyi

    2017-11-01

    Chemo-photothermal nanotheranostics has the advantage of synergistic therapeutic effect, providing opportunities for optimized cancer therapy. However, current chemo-photothermal nanotheranostic systems generally comprise more than three components, encountering the potential issues of unstable nanostructures and unexpected conflicts in optical and biophysical properties among different components. We herein synthesize an amphiphilic semiconducting polymer (PEG-PCB) and utilize it as a multifunctional nanocarrier to simplify chemo-photothermal nanotheranostics. PEG-PCB has a semiconducting backbone that not only serves as the diagnostic component for near-infrared (NIR) fluorescence and photoacoustic (PA) imaging, but also acts as the therapeutic agent for photothermal therapy. In addition, the hydrophobic backbone of PEG-PCB provides strong hydrophobic and π-π interactions with the aromatic anticancer drug such as doxorubicin for drug encapsulation and delivery. Such a trifunctionality of PEG-PCB eventually results in a greatly simplified nanotheranostic system with only two components but multimodal imaging and therapeutic capacities, permitting effective NIR fluorescence/PA imaging guided chemo-photothermal therapy of cancer in living mice. Our study thus provides a molecular engineering approach to integrate essential properties into one polymer for multimodal nanotheranostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. In-room CT techniques for image-guided radiation therapy

    International Nuclear Information System (INIS)

    Ma, C.-M. Charlie; Paskalev, Kamen M.S.

    2006-01-01

    Accurate patient setup and target localization are essential to advanced radiation therapy treatment. Significant improvement has been made recently with the development of image-guided radiation therapy, in which image guidance facilitates short treatment course and high dose per fraction radiotherapy, aiming at improving tumor control and quality of life. Many imaging modalities are being investigated, including x-ray computed tomography (CT), ultrasound imaging, positron emission tomography, magnetic resonant imaging, magnetic resonant spectroscopic imaging, and kV/MV imaging with flat panel detectors. These developments provide unique imaging techniques and methods for patient setup and target localization. Some of them are different; some are complementary. This paper reviews the currently available kV x-ray CT systems used in the radiation treatment room, with a focus on the CT-on-rails systems, which are diagnostic CT scanners moving on rails installed in the treatment room. We will describe the system hardware including configurations, specifications, operation principles, and functionality. We will review software development for image fusion, structure recognition, deformation correction, target localization, and alignment. Issues related to the clinical implementation of in-room CT techniques in routine procedures are discussed, including acceptance testing and quality assurance. Clinical applications of the in-room CT systems for patient setup, target localization, and adaptive therapy are also reviewed for advanced radiotherapy treatments

  8. Virtual Reality Aided Positioning of Mobile C-Arms for Image-Guided Surgery

    Directory of Open Access Journals (Sweden)

    Zhenzhou Shao

    2014-06-01

    Full Text Available For the image-guided surgery, the positioning of mobile C-arms is a key technique to take X-ray images in a desired pose for the confirmation of current surgical outcome. Unfortunately, surgeons and patient often suffer the radiation exposure due to the repeated imaging when the X-ray image is of poor quality or not captured at a good projection view. In this paper, a virtual reality (VR aided positioning method for the mobile C-arm is proposed by the alignment of 3D surface model of region of interest and preoperative anatomy, so that a reference pose of the mobile C-arm with respect to the inside anatomy can be figured out from outside view. It allows a one-time imaging from the outside view to greatly reduce the additional radiation exposure. To control the mobile C-arm to the desired pose, the mobile C-arm is modeled as a robotic arm with a movable base. Experiments were conducted to evaluate the accuracy of appearance model and precision of mobile C-arm positioning. The appearance model was reconstructed with the average error of 2.16 mm. One-time imaging of mobile C-arm was achieved, and new modeling of mobile C-arm with 8 DoFs enlarges the working space in the operating room.

  9. 5-ALA Fluorescence Image Guided Resection of Glioblastoma Multiforme: A Meta-Analysis of the Literature

    Directory of Open Access Journals (Sweden)

    Samy Eljamel

    2015-05-01

    Full Text Available Background: Glioblastoma multiforme (GBM is one of the most deadly cancers in humans. Despite recent advances in anti-cancer therapies, most patients with GBM die from local disease progression. Fluorescence image guided surgical resection (FIGR was recently advocated to enhance local control of GBM. This is meta-analyses of 5-aminolevulinic (5-ALA induced FIGR. Materials: Review of the literature produced 503 potential publications; only 20 of these fulfilled the inclusion criteria of this analysis, including a total of 565 patients treated with 5-ALA-FIGR reporting on its outcomes and 800 histological samples reporting 5-ALA-FIGR sensitivity and specificity. Results: The mean gross total resection (GTR rate was 75.4% (95% CI: 67.4–83.5, p < 0.001. The mean time to tumor progression (TTP was 8.1 months (95% CI: 4.7–12, p < 0.001. The mean overall survival gain reported was 6.2 months (95% CI: −1–13, p < 0.001. The specificity was 88.9% (95% CI: 83.9–93.9, p < 0.001 and the sensitivity was 82.6% (95% CI: 73.9–91.9, p < 0.001. Conclusion: 5-ALA-FIGR in GBM is highly sensitive and specific, and imparts significant benefits to patients in terms of improved GTR and TTP.

  10. WE-DE-209-04: 3D Surface Image-Guided

    International Nuclear Information System (INIS)

    Tang, X.

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  11. Imaging-guided two-photon excitation-emission-matrix measurements of human skin tissues

    Science.gov (United States)

    Yu, Yingqiu; Lee, Anthony M. D.; Wang, Hequn; Tang, Shuo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2012-07-01

    There are increased interests on using multiphoton imaging and spectroscopy for skin tissue characterization and diagnosis. However, most studies have been done with just a few excitation wavelengths. Our objective is to perform a systematic study of the two-photon fluorescence (TPF) properties of skin fluorophores, normal skin, and diseased skin tissues. A nonlinear excitation-emission-matrix (EEM) spectroscopy system with multiphoton imaging guidance was constructed. A tunable femtosecond laser was used to vary excitation wavelengths from 730 to 920 nm for EEM data acquisition. EEM measurements were performed on excised fresh normal skin tissues, seborrheic keratosis tissue samples, and skin fluorophores including: NADH, FAD, keratin, melanin, collagen, and elastin. We found that in the stratum corneum and upper epidermis of normal skin, the cells have large sizes and the TPF originates from keratin. In the lower epidermis, cells are smaller and TPF is dominated by NADH contributions. In the dermis, TPF is dominated by elastin components. The depth resolved EEM measurements also demonstrated that keratin structure has intruded into the middle sublayers of the epidermal part of the seborrheic keratosis lesion. These results suggest that the imaging guided TPF EEM spectroscopy provides useful information for the development of multiphoton clinical devices for skin disease diagnosis.

  12. Molecular image guided radiation therapy-MIGRT in radiobioluminescence and nanoradioguidance

    International Nuclear Information System (INIS)

    Rao, V.L. Papineni

    2014-01-01

    Accurate dose delivery to malignant tissue in radiotherapy is essential for enhancing the treatment efficacy while minimizing morbidity of surrounding normal tissues. Advances in therapeutic strategies and diagnosis technologies along with our understanding of the biology of tumor response to radiation therapy have paved way to allow nearly 60% of current cancer patients to be treated with Radiation Therapy. The confluence of molecular imaging and nanotechnology fields are bridging physics and medicine and are quickly making strides in opening new avenues and therapeutic strategies that complement radiation therapy - with a distinct footprint in immunotherapy, adoptive cell therapy, and targeted chemotherapy. Incorporating optical imaging in radiation therapy in my laboratory, endogenous bioluminescence resulting from whole body irradiation in different organs, and in different animals, which is distinct from the Cherenkov radiation. The endogenous bioluminescence in response to irradiation is coined recently as radiobioluminescence. Thus with the necessity, the design, construction, and validation of Molecular Image Guided Radiation Therapy (MIGRT) instrumentation for preclinical theragnostics is carried out

  13. Development and application of stent-based image guided navigation system for oral and maxillofacial surgery

    International Nuclear Information System (INIS)

    Lee, Woo Jin; Kim, Dae Seung; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul; Heo, Min Suk; Huh, Kyung Hoe; Kim, Myung Jin; Lee, Jee Ho

    2009-01-01

    The purpose of this study was to develop a stent-based image guided surgery system and to apply it to oral and maxillofacial surgeries for anatomically complex sites. We devised a patient-specific stent for patient-to-image registration and navigation. Three dimensional positions of the reference probe and the tool probe were tracked by an optical camera system and the relative position of the handpiece drill tip to the reference probe was monitored continuously on the monitor of a PC. Using 8 landmarks for measuring accuracy, the spatial discrepancy between CT image coordinate and physical coordinate was calculated for testing the normality. The accuracy over 8 anatomical landmarks showed an overall mean of 0.56 ± 0.16 mm. The developed system was applied to a surgery for a vertical alveolar bone augmentation in right mandibular posterior area and possible interior alveolar nerve injury case of an impacted third molar. The developed system provided continuous monitoring of invisible anatomical structures during operation and 3D information for operation sites. The clinical challenge showed sufficient accuracy and availability of anatomically complex operation sites. The developed system showed sufficient accuracy and availability in oral and maxillofacial surgeries for anatomically complex sites.

  14. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Science.gov (United States)

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  15. Relationships between cone beam CT value and physical density in image guided radiation therapy

    International Nuclear Information System (INIS)

    Jiang Xiaoqin; Bai Sen; Zhong Renming; Tang Zhiquan; Jiang Qinfeng; Li Tao

    2007-01-01

    Objective: To evaluate the main factors affecting the relationship between physical density and CT value in cone-beam computed tomography(CBCT) for imaging guided radiation therapy(IGRT) by comparing the CT value in the image from cone-beam scanner and from fan-beam (FBCT) scanner of a reference phantom. Methods: A taking-park reference phantom with a set of tissue equivalent inserts was scanned at different energies different fields of view (FOV) for IGRT-CBCT and FBCT. The CT value of every insert was measured and compared. Results: The position of inserts in phantom, the size of phantom, the FOV of scanner and different energies had more effect on the relationships between physical density and the CT value from IGRT-CBCT than those from the normal FBCT. The higher the energy was, the less effect of the position of inserts in phantom, the size of phantom and the FOV of scanner on CT value, and the poorer density contrast was observed. Conclusion: At present, the CT value of IGRT-CBCT is not in the true HU value since the manufacturer has not corrected its number. Therefore, we are not able to use the CT value of CBCT for dose calculation in TPS. (authors)

  16. Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures.

    Science.gov (United States)

    Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2017-11-01

    Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries.

  17. Image-guided macular laser therapy: design considerations and progress toward implementation

    Science.gov (United States)

    Berger, Jeffrey W.; Shin, David S.

    1999-06-01

    Laser therapy is currently the only treatment of proven benefit for exudative age related macular degeneration and diabetic retinopathy. To guide treatment for macular diseases, investigations were initiated to permit overlay of previously-stored angiographic images and image sequences superimposed onto the real-time biomicroscopic fundus image. Prior to treatment, a set of partially overlapping fundus images is acquired and montaged in order to provide a map for subsequent tracking operations. A binocular slit-lamp biomicroscope interfaced to a CCD camera, framegrabber board, and PC permits acquisition and rendering of retinal images. Computer-vision algorithms facilitate robust tracking, registration, and near-video-rate image overlay of previously-stored retinal photographic and angiographic images onto the real-time fundus image. Laser treatment is guided in this augmented reality environment where the borders of the treatment target--for example, the boundaries of a choroidal neovascularization complex--are easily identified through overlay of angiographic information superimposed on, and registered with, the real-time fundus image. During periods of misregistration as judged by the amplitude of the tracking similarity metric, laser function is disabled, affording additional safety. Image-guided macular laser therapy should facilitate accurate targeting of treatable lesions and less unintentional retinal injury when compared with standard techniques.

  18. Image-guided core-needle biopsy of peripheral lymph nodes allows the diagnosis of lymphomas

    International Nuclear Information System (INIS)

    Kerviler, Eric de; Bazelaire, Cedric de; Mathieu, Olivier; Frija, Jacques; Mounier, Nicolas; Gisselbrecht, Christian; Brethon, Benoit; Briere, Josette; Marolleau, Jean-Pierre; Brice, Pauline

    2007-01-01

    It is commonly admitted that the diagnosis of lymphomas can be assessed by the image-guided needle biopsy (IGNB) of deep lymph nodes. However, when peripheral lymph nodes are present, surgical dissection remains the standard strategy. The aim of this study was to evaluate the diagnostic yield of IGNB of peripheral lymph nodes in patients with suspected lymphomas. The records of 180 multisampling IGNBs of peripheral lymph nodes in 180 patients were reviewed. One hundred and twenty-three IGNBs were observed at first diagnosis and 57 at progression using large-cutting core-biopsy needles ranging between 18 G and 14 G in size. Immunohistochemistry studies were performed in all cases and at least one biopsy was systematically frozen. A diagnosis of lymphoma with sufficient information such that a therapeutic decision could be made was obtained in 146 of the 152 patients with lymphoproliferative disorders (96%). IGNB was equally effective in making the correct diagnosis of lymphoma at the time of original diagnosis than at relapse. The results did not depend on the biopsy site, lymph nodes size, or needle type. We recommend that IGNB may be performed as an initial procedure for the diagnosis of lymphomas either in the presence of peripheral or deep lymph nodes, as it avoids surgery. (orig.)

  19. WE-H-209-00: Carson/Zagzebski Distinguished Lectureship: Image Guided Ultrasound Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Focused ultrasound has been shown to be the only method that allows noninvasive thermal coagulation of tissues and recently this potential has been explored for image-guided drug delivery. In this presentation, the advances in ultrasound phased array technology for energy delivery, exposure monitoring and control will be discussed. Experimental results from novel multi-frequency transmit/receive arrays will be presented. In addition, the feasibility of fully electronically focused and steered high power arrays with many thousands of transducer elements will be discussed. Finally, some of the recent clinical and preclinical results for the treatment of brain disease will be reviewed. Learning Objectives: Introduce FUS therapy principles and modern techniques Discuss use of FUS for drug delivery Cover the technology required to deliver FUS and monitor therapy Present clinical examples of the uses of these techniques This research was supported by funding from The Canada Research Chair Program, Grants from CIHR and NIH (no. EB003268).; K. Hynynen, Canada Foundation for Innovation; Canadian Institutes of Health Research; Focused Ultrasound Surgery Foundation; Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada; Ontario Research Fund; National Institutes of Health; Canadian Cancer Society Research Institute; The Weston Brain Institute; Harmonic Medical; Focused Ultrasound Instruments.

  20. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    Science.gov (United States)

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (design, patient stability in the SBF should be verified with portal imaging.

  1. The anterior approach for a non-image-guided intra-articular hip injection.

    Science.gov (United States)

    Mei-Dan, Omer; McConkey, Mark O; Petersen, Brian; McCarty, Eric; Moreira, Brett; Young, David A

    2013-06-01

    The purpose of this study was to investigate and validate the accuracy and safety of a technique using an anterior approach for non-image-guided intra-articular injection of the hip by use of anatomic landmarks. We enrolled 55 patients. Injections were performed before supine hip arthroscopy after landmarking and before application of traction. After the needle insertion, success was confirmed with an air arthrogram and by direct visualization after arthroscope insertion. Accuracy and difficulty achieving correct needle placement were correlated with age, weight, height, body mass index, body type, gender, and surgical indication, as well as femoral and pelvic morphology. Forty-five patients who underwent injection in the office were followed up separately to document injection side effects. Needle placement accuracy was correlated to patients' demographics. All statistical tests with P values were 2 sided, with the level of significance set at P injections by use of the direct anterior approach, from the intersection of the lines drawn from the anterior superior iliac spine and 1 cm distal to the tip of the greater trochanter, are safe and reproducible. Patient characteristics, such as increased subcutaneous adipose tissue or osseous anatomic variants, can lead to difficulty in placing the needle successfully. These characteristics can be predicted with the aid of physical examination and careful study of the pelvic radiographs. Level IV, therapeutic case series. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Frame-less image-guided intracranial and extracranial radiosurgery using the Cyberknife robotic system

    International Nuclear Information System (INIS)

    Gibbs, I.C.

    2006-01-01

    The Cyberknife TM is an image-guided robotic radiosurgery system. The image guidance system includes a kilo-voltage X-ray imaging source and amorphous silica detectors. The radiation delivery device is a mobile X-band linear accelerator mounted onto a robotic arm. Through a highly complex interplay between the image guidance system, an automated couch, and the high-speed linear accelerator, near real-time tracking of the target is achieved. The Cyberknife TM gained Federal Drug Administration clearance in the United States in 2001 for treatment of tumors 'anywhere in the body where radiation treatment is indicated'. Because the Cyberknife TM system does not rely on rigid fixation of a stereotactic frame, tumors outside of the intracranial compartment, even those tumors that move with respiration can be treated with a similar degree of ease as intracranial targets. A description of the Cyberknife TM technology and a review of some of the current intracranial and extracranial applications are detailed herein. (author)

  3. Predicting respiratory motion signals for image-guided radiotherapy using multi-step linear methods (MULIN)

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Floris; Schweikard, Achim [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany)

    2008-06-15

    Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested. MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy. The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms. The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required. (orig.)

  4. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy

    International Nuclear Information System (INIS)

    Haie-Meder, Christine; Siebert, Frank-Andre; Poetter, Richard

    2011-01-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on 'Radiotherapy and Oncology'. These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted.

  5. Image-Guided Stereotactic Radiosurgery Using a Specially Designed High-Dose-Rate Linac

    International Nuclear Information System (INIS)

    Bayouth, John E.; Kaiser, Heather S.; Smith, Mark C.; Pennington, Edward C.; Anderson, Kathleen M. C.; Ryken, Timothy C.; Buatti, John M.

    2007-01-01

    Stereotactic radiosurgery and image-guided radiotherapy (IGRT) place enhanced demands on treatment delivery machines. In this study, we describe a high-dose-rate output accelerator as a part of our stereotactic IGRT delivery system. The linac is a Siemens Oncor without a flattening filter, and enables dose rates to reach 1000 monitor units (MUs) per minute. Even at this high-dose-rate, the linac dosimetry system remains robust; constancy, linearity, and beam energy remain within 1% for 3 to 1000 MU. Dose profiles for larger field sizes are not flat, but they are radially symmetric and, as such, able to be modeled by a treatment planning system. Target localization is performed via optical guidance utilizing a 3-dimensional (3D) ultrasound probe coupled to an array of 4 infrared light-emitting diodes. These diodes are identified by a fixed infrared camera system that determines diode position and, by extension, all objects imaged in the room coordinate system. This system provides sub-millimeter localization accuracy for cranial applications and better than 1.5 mm for extracranial applications. Because stereotactic IGRT can require significantly longer times for treatment delivery, the advantages of the high-dose-rate design and its direct impact on IGRT are discussed

  6. Incorporation of a laser range scanner into image-guided liver surgery: Surface acquisition, registration, and tracking

    OpenAIRE

    Cash, David M.; Sinha, Tuhin K.; Chapman, William C.; Terawaki, Hiromi; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2003-01-01

    As image guided surgical procedures become increasingly diverse, there will be more scenarios where point-based fiducials cannot be accurately localized for registration and rigid body assumptions no longer hold. As a result, procedures will rely more frequently on anatomical surfaces for the basis of image alignment and will require intraoperative geometric data to measure and compensate for tissue deformation in the organ. In this paper we outline methods for which a laser range scanner may...

  7. Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation

    OpenAIRE

    Bucki, Marek; Lobos, Claudio; Payan, Yohan

    2007-01-01

    In this paper we present a methodology to address the problem of brain tissue deformation referred to as 'brain-shift'. This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on pre-operative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intra-operative image-guided system, we desc...

  8. Dosimetric evaluation of the OneDoseTM MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures.

    Science.gov (United States)

    Ding, George X; Coffey, Charles W

    2010-09-01

    The purpose of this study is to investigate the feasibility of using a single-use dosimeter, OneDose MOSFET designed for in vivo patient dosimetry, for measuring the radiation dose from kilovoltage (kV) x rays resulting from image-guided procedures. The OneDose MOSFET dosimeters were precalibrated by the manufacturer using Co-60 beams. Their energy response and characteristics for kV x rays were investigated by using an ionization chamber, in which the air-kerma calibration factors were obtained from an Accredited Dosimetry Calibration Laboratory (ADCL). The dosimetric properties have been tested for typical kV beams used in image-guided radiation therapy (IGRT). The direct dose reading from the OneDose system needs to be multiplied by a correction factor ranging from 0.30 to 0.35 for kilovoltage x rays ranging from 50 to 125 kVp, respectively. In addition to energy response, the OneDose dosimeter has up to a 20% reduced sensitivity for beams (70-125 kVp) incident from the back of the OneDose detector. The uncertainty in measuring dose resulting from a kilovoltage beam used in IGRT is approximately 20%; this uncertainty is mainly due to the sensitivity dependence of the incident beam direction relative to the OneDose detector. The ease of use may allow the dosimeter to be suitable for estimating the dose resulting from image-guided procedures.

  9. Comparison of corneal power obtained from VERION image-guided surgery system and four other devices

    Directory of Open Access Journals (Sweden)

    Lin HY

    2017-07-01

    Full Text Available Hung-Yuan Lin,1,* Hsin-Yang Chen,1,2,* Han Bor Fam,3 Ya-Jung Chuang,1 Ronald Yeoh,4 Pi-Jung Lin5 1Universal Eye Center, Zhongli Branch, Zhongli County, TaoYuan City, Taiwan, Republic of China; 2Ophthalmology Department, Ningbo First Hospital, Ningbo, Zhejiang Province, People’s Republic of China; 3Ophthalmology Department, Tan Tock Seng Hospital, Jalan Tan Tock Seng, 4Ophthalmology Department, Eye and Retina Surgeons, Camden Medical Centre, Singapore; 5Universal Eye Center, Xinnan Branch, Taipei City, Taiwan, Republic of China *These authors contributed equally to this work Purpose: To assess the corneal keratometric values obtained using the VERION image-guided surgery system and other devices.Methods: This study evaluated the right eyes of 115 cataract patients before intraocular lens (IOL implantation through consecutive tests using 5 devices: VERION Reference Unit , Placido-based corneal topography (OPD-Scan III, monochromatic light-emitting diodes (LenStar LS900 and AL-Scan, and rotary prism technology (auto kerato-refractometer KR-8800. Analyzed parameters were corneal steep and flat keratometric values (Ks and Kf and corneal astigmatism and axis. These parameters were evaluated using the one-sample two-tailed t-test and the 95% limits of agreement (95% LOAs between the devices.Results: The mean corneal cylinder value measurements were -0.97±0.63 D, -0.88± 0.60 D, -0.90±0.69 D, -0.90±0.67 D, and -0.83±0.60 D with VERION, LenStar, AL-Scan (2.4 mm, OPD III, and KR-8800, respectively. Only KR-8800 showed a significant difference from VERION in the corneal cylinder value (P<0.05. The mean differences in the Kf and Ks of VERION compared to those of OPD III were 0.18±0.45 D and 0.17±0.38 D (P<0.05, respectively. The 95% LOAs of Bland–Altman analysis for the corneal astigmatism axis of the VERION with LenStar, AL-Scan (2.4 mm, OPD III, and KR-8800 were -26.25° to 58.71°, -20.61° to 47.44°, -25.03° to 58.98°, and -27.85

  10. Effect of rectal enema on intrafraction prostate movement during image-guided radiotherapy.

    Science.gov (United States)

    Choi, Youngmin; Kwak, Dong-Won; Lee, Hyung-Sik; Hur, Won-Joo; Cho, Won-Yeol; Sung, Gyung Tak; Kim, Tae-Hyo; Kim, Soo-Dong; Yun, Seong-Guk

    2015-04-01

    Rectal volume and movement are major factors that influence prostate location. The aim of this study was to assess the effect of a rectal enema on intrafraction prostate motion. The data from 12 patients with localised prostate cancer were analysed. Each patient underwent image-guided radiotherapy (RT), receiving a total dose of 70 Gy in 28 fractions. Rectal enemas were administered to all of the patients before each RT fraction. The location of the prostate was determined by implanting three fiducial markers under the guidance of transrectal ultrasound. Each patient underwent preparation for IGRT twice before an RT fraction and in the middle of the fraction. The intrafraction displacement of the prostate was calculated by comparing fiducial marker locations before and in the middle of an RT fraction. The rectal enemas were well tolerated by patients. The mean intrafraction prostate movement in 336 RT fractions was 1.11 ± 0.77 mm (range 0.08-7.20 mm). Intrafraction motions of 1, 2 and 3 mm were observed in 56.0%, 89.0% and 97.6% of all RT fractions, respectively. The intrafraction movements on supero-inferior and anteroposterior axes were larger than on the right-to-left axes (P movement, calculated using the van Herk formula (2.5Σ + 0.7σ), was 1.50 mm. A daily rectal enema before each RT fraction was tolerable and yielded little intrafraction prostate displacement. We think the use of rectal enemas is a feasible method to reduce prostate movement during RT. © 2014 The Royal Australian and New Zealand College of Radiologists.

  11. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    International Nuclear Information System (INIS)

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  12. Localization and registration accuracy in image guided neurosurgery: a clinical study

    International Nuclear Information System (INIS)

    Shamir, Reuben R.; Joskowicz, Leo; Spektor, Sergey; Shoshan, Yigal

    2009-01-01

    To measure and compare the clinical localization and registration errors in image-guided neurosurgery, with the purpose of revising current assumptions. Twelve patients who underwent brain surgeries with a navigation system were randomly selected. A neurosurgeon localized and correlated the landmarks on preoperative MRI images and on the intraoperative physical anatomy with a tracked pointer. In the laboratory, we generated 612 scenarios in which one landmark pair was defined as the target and the remaining ones were used to compute the registration transformation. Four errors were measured: (1) fiducial localization error (FLE); (2) target registration error (TRE); (3) fiducial registration error (FRE); (4) Fitzpatrick's target registration error estimation (F-TRE). We compared the different errors and computed their correlation. The image and physical FLE ranges were 0.5-2.0 and 1.6-3.0 mm, respectively. The measured TRE, FRE and F-TRE were 4.1±1.6, 3.9±1.2, and 3.7±2.2 mm, respectively. Low correlations of 0.19 and 0.37 were observed between the FRE and TRE and between the F-TRE and the TRE, respectively. The differences of the FRE and F-TRE from the TRE were 1.3±1.0 mm (max=5.5 mm) and 1.3±1.2 mm (max=7.3 mm), respectively. Contrary to common belief, the FLE presents significant variations. Moreover, both the FRE and the F-TRE are poor indicators of the TRE in image-to-patient registration. (orig.)

  13. Localization and registration accuracy in image guided neurosurgery: a clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, Reuben R.; Joskowicz, Leo [Hebrew University of Jerusalem, School of Engineering and Computer Science, Jerusalem (Israel); Spektor, Sergey; Shoshan, Yigal [Hadassah University Hospital, Department of Neurosurgery, School of Medicine, Jerusalem (Israel)

    2009-01-15

    To measure and compare the clinical localization and registration errors in image-guided neurosurgery, with the purpose of revising current assumptions. Twelve patients who underwent brain surgeries with a navigation system were randomly selected. A neurosurgeon localized and correlated the landmarks on preoperative MRI images and on the intraoperative physical anatomy with a tracked pointer. In the laboratory, we generated 612 scenarios in which one landmark pair was defined as the target and the remaining ones were used to compute the registration transformation. Four errors were measured: (1) fiducial localization error (FLE); (2) target registration error (TRE); (3) fiducial registration error (FRE); (4) Fitzpatrick's target registration error estimation (F-TRE). We compared the different errors and computed their correlation. The image and physical FLE ranges were 0.5-2.0 and 1.6-3.0 mm, respectively. The measured TRE, FRE and F-TRE were 4.1{+-}1.6, 3.9{+-}1.2, and 3.7{+-}2.2 mm, respectively. Low correlations of 0.19 and 0.37 were observed between the FRE and TRE and between the F-TRE and the TRE, respectively. The differences of the FRE and F-TRE from the TRE were 1.3{+-}1.0 mm (max=5.5 mm) and 1.3{+-}1.2 mm (max=7.3 mm), respectively. Contrary to common belief, the FLE presents significant variations. Moreover, both the FRE and the F-TRE are poor indicators of the TRE in image-to-patient registration. (orig.)

  14. Image-guided Ommaya reservoir insertion for intraventricular chemotherapy: a retrospective series.

    Science.gov (United States)

    Lau, Jonathan C; Kosteniuk, Suzanne E; Macdonald, David R; Megyesi, Joseph F

    2018-03-01

    Ayub Ommaya proposed a surgical technique for subcutaneous reservoir and pump placement in 1963 to allow access to intraventricular cerebrospinal fluid (CSF). Currently, the most common indication for Ommaya reservoir insertion (ORI) in adults is for patients with hematologic or leptomeningeal disorders requiring repeated injection of chemotherapy into the CSF space. Historically, the intraventricular catheter has been inserted blindly based on anatomical landmarks. The purpose of this study was to examine short-term complication rates with ORI with image guidance (IG) and without image guidance (non-IG). We retrospectively evaluated all operative cases of ORI from 2000 to 2014 by the senior author. Patient demographic data, surgical outcomes, and peri-operative complications were collected. Accurate placement and early (30-day) morbidity or mortality were considered primary outcomes. Fifty-five consecutive patients underwent ORI by the senior author over the study period (43.5 ± 16.6 years; 40.0% female). Indications for placement included acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and leptomeningeal carcinomatosis. There were seven (12.7%) total complications: three (37.5%) with no-IG versus four (8.5%) with IG. Catheter malpositions were significantly higher in the non-IG group at 37.5% compared to 2.1%. Catheters were also more likely to require multiple passes with non-IG at 25% compare to 0% with IG. There were no early infections in either group. We demonstrate improved accuracy and decreased complications using an image-guided approach compared with a traditional approach. Our results support routine use of intra-operative image guidance for proximal catheter insertion in elective ORI for intraventricular chemotherapy.

  15. Transarterial Fiducial Marker Placement for Image-guided Proton Therapy for Malignant Liver Tumors

    International Nuclear Information System (INIS)

    Ohta, Kengo; Shimohira, Masashi; Sasaki, Shigeru; Iwata, Hiromitsu; Nishikawa, Hiroko; Ogino, Hiroyuki; Hara, Masaki; Hashizume, Takuya; Shibamoto, Yuta

    2015-01-01

    PurposeThe aim of this study is to analyze the technical and clinical success rates and safety of transarterial fiducial marker placement for image-guided proton therapy for malignant liver tumors.Methods and MaterialsFifty-five patients underwent this procedure as an interventional treatment. Five patients had 2 tumors, and 4 tumors required 2 markers each, so the total number of procedures was 64. The 60 tumors consisted of 46 hepatocellular carcinomas and 14 liver metastases. Five-mm-long straight microcoils of 0.018 inches in diameter were used as fiducial markers and placed in appropriate positions for each tumor. We assessed the technical and clinical success rates of transarterial fiducial marker placement, as well as the complications associated with it. Technical success was defined as the successful delivery and placement of the fiducial coil, and clinical success was defined as the completion of proton therapy.ResultsAll 64 fiducial coils were successfully installed, so the technical success rate was 100 % (64/64). Fifty-four patients underwent proton therapy without coil migration. In one patient, proton therapy was not performed because of obstructive jaundice due to bile duct invasion by hepatocellular carcinoma. Thus, the clinical success rate was 98 % (54/55). Slight bleeding was observed in one case, but it was stopped immediately and then observed. None of the patients developed hepatic infarctions due to fiducial marker migration.ConclusionTransarterial fiducial marker placement appears to be a useful and safe procedure for proton therapy for malignant liver tumors

  16. Empyema and Effusion: Outcome of Image-Guided Small-Bore Catheter Drainage

    International Nuclear Information System (INIS)

    Keeling, A. N.; Leong, S.; Logan, P. M.; Lee, M. J.

    2008-01-01

    Empyema and complicated pleural effusion represent common medical problems. Current treatment options are multiple. The purpose of this study was to access the outcome of image-guided, small-bore catheter drainage of empyema and effusion. We evaluated 93 small-bore catheters in 82 patients with pleural effusion (n = 30) or empyema (n = 52), over a 2-year period. Image guidance was with ultrasound (US; n = 56) and CT (n = 37). All patients were followed clinically, with catheter dwell times, catheter outcome, pleural fluid outcome, reinsertion rates, and need for urokinase or surgery recorded. Ninety-three small-bore chest drains (mean=10.2 Fr; range, 8.2-12.2 Fr) were inserted, with an average dwell time of 7.81 days for empyemas and 7.14 days for effusions (p > 0.05). Elective removal rates (73% empyema vs 86% effusions) and dislodgement rates (12% empyema vs 13% effusions) were similar for both groups. Eight percent of catheters became blocked and 17% necessitated reinsertion in empyemas, with no catheters blocked or requiring reinsertion in effusions (p < 0.05). Thirty-two patients (51%) required urokinase in the empyema group, versus 2 patients (6%) in the effusion group (p < 0.05). All treatment failures, requiring surgery, occurred in the empyema group (19%; n = 12; p < 0.05). In conclusion, noninfected pleural collections are adequately treated with small-bore catheters, however, empyemas have a failure rate of 19%. The threshold for using urokinase and larger-bore catheters should be low in empyema

  17. Image-guided radiotherapy for fifty-eight patients with lung cancer

    International Nuclear Information System (INIS)

    Liang Jun; Zhang Tao; Wang Wenqin

    2009-01-01

    Objective: To study the value of image-guided radiotherapy (IGRT) in lung cancer. Methods: From Mar. 2007 to Dec. 2007,58 patients with lung cancer were treated with IGRT. Set-up errors in each axial direction was calculated based on IGRT images of each patient. The change of GTV was evaluated on both cone-beam CT and CT simulator images. Results: Twenty-two patients with left lung cancer,30 with right lung cancer, 5 with mediastinal lymphanode metastasis and one with vertebra metastasis were included. The set-up error in x, y and z axes was (0.02±0.26) cm, (0.14±0.49) cm and ( -0.13± 0.27) cm, respectively,while the rotary set-up error in each axis was -0.15 degree ± 1.59 degree, -0.01 degree ± 1.50 degree and 0.12 degree ±1.08 degree, respectively. The set-up errors were significantly decreased by using of IGRT. GTV movement was observed in 15 patients (25.9%) ,including 5 with left upper lung cancer. GTV moving to the anterior direction was observed in 9 patients,including 4 with]eft upper lung cancer. GTV reduced in 23 (44.2%) patients during treatment. Asymmetric GTV reduction of 22 lesions was observed,with a mean reductive volume of 4.9 cm 3 . When GTV began to shrink,the irradiation dose was 4 -46 Gy, with 20 -30 Gy in 9 patients. Conclusions: The use of IGRT can significantly reduce set-up errors. GTV movement and reduction are observed in some cases. The time to modify the target volume needs to be further studied. (authors)

  18. Evaluation of Setup Error Correction for Patients Using On Board Imager in Image Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soo Man [Dept. of Radiation Oncology, Kosin University Gospel Hospital, Busan (Korea, Republic of)

    2008-09-15

    To reduce side effects in image guided radiation therapy (IGRT) and to improve the quality of life of patients, also to meet accurate SETUP condition for patients, the various SETUP correction conditions were compared and evaluated by using on board imager (OBI) during the SETUP. Each 30 cases of the head, the neck, the chest, the belly, and the pelvis in 150 cases of IGRT patients was corrected after confirmation by using OBI at every 2-3 day. Also, the difference of the SETUP through the skin-marker and the anatomic SETUP through the OBI was evaluated. General SETUP errors (Transverse, Coronal, Sagittal) through the OBI at original SETUP position were Head and Neck: 1.3 mm, Brain: 2 mm, Chest: 3 mm, Abdoman: 3.7 mm, Pelvis: 4 mm. The patients with more that 3 mm in the error range were observed in the correction devices and the patient motions by confirming in treatment room. Moreover, in the case of female patients, the result came from the position of hairs during the Head and Neck, Brain tumor. Therefore, after another SETUP in each cases of over 3 mm in the error range, the treatment was carried out. Mean error values of each parts estimated after the correction were 1 mm for the head, 1.2 mm for the neck, 2.5 mm for the chest, 2.5 mm for the belly, and 2.6 mm for the pelvis. The result showed the correction of SETUP for each treatment through OBI is extremely difficult because of the importance of SETUP in radiation treatment. However, by establishing the average standard of the patients from this research result, the better patient satisfaction and treatment results could be obtained.

  19. Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy

    Directory of Open Access Journals (Sweden)

    Taratula O

    2015-03-01

    Full Text Available Olena Taratula,1 Mehulkumar Patel,2 Canan Schumann,1 Michael A Naleway,1 Addison J Pang,1 Huixin He,2 Oleh Taratula1 1Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA; 2Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA Abstract: We report a novel cancer-targeted nanomedicine platform for imaging and prospect for future treatment of unresected ovarian cancer tumors by intraoperative multimodal phototherapy. To develop the required theranostic system, novel low-oxygen graphene nanosheets were chemically modified with polypropylenimine dendrimers loaded with phthalocyanine (Pc as a photosensitizer. Such a molecular design prevents fluorescence quenching of the Pc by graphene nanosheets, providing the possibility of fluorescence imaging. Furthermore, the developed nanoplatform was conjugated with poly(ethylene glycol, to improve biocompatibility, and with luteinizing hormone-releasing hormone (LHRH peptide, for tumor-targeted delivery. Notably, a low-power near-infrared (NIR irradiation of single wavelength was used for both heat generation by the graphene nanosheets (photothermal therapy [PTT] and for reactive oxygen species (ROS-production by Pc (photodynamic therapy [PDT]. The combinatorial phototherapy resulted in an enhanced destruction of ovarian cancer cells, with a killing efficacy of 90%–95% at low Pc and low-oxygen graphene dosages, presumably conferring cytotoxicity to the synergistic effects of generated ROS and mild hyperthermia. An animal study confirmed that Pc loaded into the nanoplatform can be employed as a NIR fluorescence agent for imaging-guided drug delivery. Hence, the newly developed Pc-graphene nanoplatform has the significant potential as an effective NIR theranostic probe for imaging and combinatorial phototherapy. Keywords: graphene nanosheets, phthalocyanine, photothermal therapy, photodynamic therapy, theranostic 

  20. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy

    Science.gov (United States)

    Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy

    2011-08-01

    Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

  1. Diabetic mastopathy: Imaging features and the role of image-guided biopsy in its diagnosis

    International Nuclear Information System (INIS)

    Kim, Jong Hyeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung; Yoon, Jung Hyun

    2016-01-01

    The goal of this study was to evaluate the imaging features of diabetic mastopathy (DMP) and the role of image-guided biopsy in its diagnosis. Two experienced radiologists retrospectively reviewed the mammographic and sonographic images of 19 pathologically confirmed DMP patients. The techniques and results of the biopsies performed in each patient were also reviewed. Mammograms showed negative findings in 78% of the patients. On ultrasonography (US), 13 lesions were seen as masses and six as non-mass lesions. The US features of the mass lesions were as follows: irregular shape (69%), oval shape (31%), indistinct margin (69%), angular margin (15%), microlobulated margin (8%), well-defined margin (8%), heterogeneous echogenicity (62%), hypoechoic echogenicity (38%), posterior shadowing (92%), parallel orientation (100%), the absence of calcifications (100%), and the absence of vascularity (100%). Based on the US findings, 17 lesions (89%) were classified as Breast Imaging Reporting and Data System category 4 and two (11%) as category 3. US-guided core biopsy was performed in 18 patients, and 10 (56%) were diagnosed with DMP on that basis. An additional vacuum-assisted biopsy was performed in seven patients and all were diagnosed with DMP. The US features of DMP were generally suspicious for malignancy, whereas the mammographic findings were often negative or showed only focal asymmetry. Core biopsy is an adequate method for initial pathological diagnosis. However, since it yields non-diagnostic results in a considerable number of cases, the evaluation of correlations between imaging and pathology plays an important role in the diagnostic process

  2. Diabetic mastopathy: Imaging features and the role of image-guided biopsy in its diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung; Yoon, Jung Hyun [Dept. of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-03-15

    The goal of this study was to evaluate the imaging features of diabetic mastopathy (DMP) and the role of image-guided biopsy in its diagnosis. Two experienced radiologists retrospectively reviewed the mammographic and sonographic images of 19 pathologically confirmed DMP patients. The techniques and results of the biopsies performed in each patient were also reviewed. Mammograms showed negative findings in 78% of the patients. On ultrasonography (US), 13 lesions were seen as masses and six as non-mass lesions. The US features of the mass lesions were as follows: irregular shape (69%), oval shape (31%), indistinct margin (69%), angular margin (15%), microlobulated margin (8%), well-defined margin (8%), heterogeneous echogenicity (62%), hypoechoic echogenicity (38%), posterior shadowing (92%), parallel orientation (100%), the absence of calcifications (100%), and the absence of vascularity (100%). Based on the US findings, 17 lesions (89%) were classified as Breast Imaging Reporting and Data System category 4 and two (11%) as category 3. US-guided core biopsy was performed in 18 patients, and 10 (56%) were diagnosed with DMP on that basis. An additional vacuum-assisted biopsy was performed in seven patients and all were diagnosed with DMP. The US features of DMP were generally suspicious for malignancy, whereas the mammographic findings were often negative or showed only focal asymmetry. Core biopsy is an adequate method for initial pathological diagnosis. However, since it yields non-diagnostic results in a considerable number of cases, the evaluation of correlations between imaging and pathology plays an important role in the diagnostic process.

  3. Transarterial Fiducial Marker Placement for Image-guided Proton Therapy for Malignant Liver Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Kengo, E-mail: yesterday.is.yesterday@gmail.com; Shimohira, Masashi, E-mail: mshimohira@gmail.com [Nagoya City University Graduate School of Medical Sciences, Department of Radiology (Japan); Sasaki, Shigeru, E-mail: ssasaki916@yahoo.co.jp; Iwata, Hiromitsu, E-mail: h-iwa-ncu@nifty.com; Nishikawa, Hiroko, E-mail: piroko1018@gmail.com; Ogino, Hiroyuki, E-mail: oginogio@gmail.com; Hara, Masaki, E-mail: mhara@med.nagoya-cu.ac.jp [Nagoya City West Medical Center, Department of Radiation Oncology, Nagoya Proton Therapy Center (Japan); Hashizume, Takuya, E-mail: tky300@gmail.com; Shibamoto, Yuta, E-mail: yshiba@med.nagoya-cu.ac.jp [Nagoya City University Graduate School of Medical Sciences, Department of Radiology (Japan)

    2015-10-15

    PurposeThe aim of this study is to analyze the technical and clinical success rates and safety of transarterial fiducial marker placement for image-guided proton therapy for malignant liver tumors.Methods and MaterialsFifty-five patients underwent this procedure as an interventional treatment. Five patients had 2 tumors, and 4 tumors required 2 markers each, so the total number of procedures was 64. The 60 tumors consisted of 46 hepatocellular carcinomas and 14 liver metastases. Five-mm-long straight microcoils of 0.018 inches in diameter were used as fiducial markers and placed in appropriate positions for each tumor. We assessed the technical and clinical success rates of transarterial fiducial marker placement, as well as the complications associated with it. Technical success was defined as the successful delivery and placement of the fiducial coil, and clinical success was defined as the completion of proton therapy.ResultsAll 64 fiducial coils were successfully installed, so the technical success rate was 100 % (64/64). Fifty-four patients underwent proton therapy without coil migration. In one patient, proton therapy was not performed because of obstructive jaundice due to bile duct invasion by hepatocellular carcinoma. Thus, the clinical success rate was 98 % (54/55). Slight bleeding was observed in one case, but it was stopped immediately and then observed. None of the patients developed hepatic infarctions due to fiducial marker migration.ConclusionTransarterial fiducial marker placement appears to be a useful and safe procedure for proton therapy for malignant liver tumors.

  4. Use of percutaneous image-guided coaxial core-needle biopsy for diagnosis of intraabdominal lymphoma

    International Nuclear Information System (INIS)

    Shimizu, Ikuo; Okazaki, Yoichi; Takeda, Wataru; Kirihara, Takehiko; Sato, Keijiro; Fujikawa, Yuko; Ueki, Toshimitsu; Hiroshima, Yuki; Sumi, Masahiko; Ueno, Mayumi; Ichikawa, Naoaki; Kobayashi, Hikaru

    2014-01-01

    Although pathological diagnosis is essential for managing malignant lymphoma, intraabdominal lesions are generally difficult to approach due to the invasiveness of abdominal surgery. Here, we report the use of percutaneous image-guided coaxial core-needle biopsy (CNB) to obtain intraabdominal specimens for diagnosing intraabdominal lymphomas, which typically requires histopathological and immunohistochemical evaluation. We retrospectively reviewed consecutive cases involving computed tomography (CT)- or ultrasonography (US)-guided CNB to obtain pathological specimens for intraabdominal lesions from 1999 to 2011. Liver, spleen, kidney, and inguinal node biopsies were excluded. We compared CNBs with laparotomic biopsies. A total of 66 CNBs were performed for 59 patients (32 males, 27 females; median age, 63.5), including second or third repeat procedures. Overall diagnostic rate was 88.5%. None of the patients required additional surgical biopsies. Notably, the median interval between recognition of an intraabdominal mass and biopsy was only 1 day. Forty-five procedures were performed for hematological malignancies. Adequate specimens were obtained for histopathological diagnosis in 86% of cases. Flow cytometry detected lymphoma cells in 79.5% of cases. Twelve patients (nine males, three females; median age, 60) were eligible for surgical biopsy. While every postoperative course was satisfactory, median duration from lesion recognition to therapy initiation for lymphoma cases was significantly shorter for CNB than for surgical biopsy (14 vs. 35 days). While one-fourth of the patients were not eligible for the procedures, CNB is safe and highly effective for diagnosis of intraabdominal lymphomas. This method significantly improves sampling and potentially helps attain immunohistological distinction, allowing for more timely therapy initiation

  5. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    International Nuclear Information System (INIS)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Wong, John; Iordachita, Iulian; Siewerdsen, Jeffrey

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  6. A cost effective and high fidelity fluoroscopy simulator using the Image-Guided Surgery Toolkit (IGSTK)

    Science.gov (United States)

    Gong, Ren Hui; Jenkins, Brad; Sze, Raymond W.; Yaniv, Ziv

    2014-03-01

    The skills required for obtaining informative x-ray fluoroscopy images are currently acquired while trainees provide clinical care. As a consequence, trainees and patients are exposed to higher doses of radiation. Use of simulation has the potential to reduce this radiation exposure by enabling trainees to improve their skills in a safe environment prior to treating patients. We describe a low cost, high fidelity, fluoroscopy simulation system. Our system enables operators to practice their skills using the clinical device and simulated x-rays of a virtual patient. The patient is represented using a set of temporal Computed Tomography (CT) images, corresponding to the underlying dynamic processes. Simulated x-ray images, digitally reconstructed radiographs (DRRs), are generated from the CTs using ray-casting with customizable machine specific imaging parameters. To establish the spatial relationship between the CT and the fluoroscopy device, the CT is virtually attached to a patient phantom and a web camera is used to track the phantom's pose. The camera is mounted on the fluoroscope's intensifier and the relationship between it and the x-ray source is obtained via calibration. To control image acquisition the operator moves the fluoroscope as in normal operation mode. Control of zoom, collimation and image save is done using a keypad mounted alongside the device's control panel. Implementation is based on the Image-Guided Surgery Toolkit (IGSTK), and the use of the graphics processing unit (GPU) for accelerated image generation. Our system was evaluated by 11 clinicians and was found to be sufficiently realistic for training purposes.

  7. Swallowable capsule with air channel for improved image-guided cancer detection in the esophagus

    Science.gov (United States)

    Seibel, Eric J.; Melville, C. David; Lung, Jonathan K. C.; Babchanik, Alexander P.; Lee, Cameron M.; Johnston, Richard S.; Dominitz, Jason A.

    2009-02-01

    A new type of endoscope has been developed and tested in the human esophagus, a tethered-capsule endoscope (TCE) that requires no sedation for oral ingestion and esophageal inspection. The TCE uses scanned red, green, and blue laser light to image the upper digestive tract using a swallowable capsule of 6.4mm in diameter and 18mm in length on a 1.4mm diameter tether. The TCE has been modified for image-guided interventions in the lower esophagus, specifically for more effective detection and measurement of the extent of Barrett's esophagus, a precursor to esophageal cancer. Three modifications have been tested in vivo: (1) weighting the capsule so it is negatively buoyant in water, (2) increasing the frame rate of 500-line images to 30 Hz (video rate), and (3) adding a 1.0mm inner diameter working channel alongside the tether for distending the lower esophagus with air pressure during endoscopy. All three modifications proved effective for more clearly visualizing the lower esophagus in the first few human subjects. The air channel was especially useful because it did not change tolerability in the first subject for unsedated endoscopy and the air easily removed bubbles obscuring tissue from the field of view. The air provided a non-invasive intervention by stimulating the mechanosensor of the lower esophageal sphincter at the precise time that the TCE was positioned for most informative imaging. All three TCE modifications proved successful for improved visualization of esophageal pathology, such as suspected Barrett's esophagus, without the use of sedation.

  8. Evaluation of Setup Error Correction for Patients Using On Board Imager in Image Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Kang, Soo Man

    2008-01-01

    To reduce side effects in image guided radiation therapy (IGRT) and to improve the quality of life of patients, also to meet accurate SETUP condition for patients, the various SETUP correction conditions were compared and evaluated by using on board imager (OBI) during the SETUP. Each 30 cases of the head, the neck, the chest, the belly, and the pelvis in 150 cases of IGRT patients was corrected after confirmation by using OBI at every 2-3 day. Also, the difference of the SETUP through the skin-marker and the anatomic SETUP through the OBI was evaluated. General SETUP errors (Transverse, Coronal, Sagittal) through the OBI at original SETUP position were Head and Neck: 1.3 mm, Brain: 2 mm, Chest: 3 mm, Abdoman: 3.7 mm, Pelvis: 4 mm. The patients with more that 3 mm in the error range were observed in the correction devices and the patient motions by confirming in treatment room. Moreover, in the case of female patients, the result came from the position of hairs during the Head and Neck, Brain tumor. Therefore, after another SETUP in each cases of over 3 mm in the error range, the treatment was carried out. Mean error values of each parts estimated after the correction were 1 mm for the head, 1.2 mm for the neck, 2.5 mm for the chest, 2.5 mm for the belly, and 2.6 mm for the pelvis. The result showed the correction of SETUP for each treatment through OBI is extremely difficult because of the importance of SETUP in radiation treatment. However, by establishing the average standard of the patients from this research result, the better patient satisfaction and treatment results could be obtained.

  9. Technical Note: Rapid prototyping of 3D grid arrays for image guided therapy quality assurance

    International Nuclear Information System (INIS)

    Kittle, David; Holshouser, Barbara; Slater, James M.; Guenther, Bob D.; Pitsianis, Nikos P.; Pearlstein, Robert D.

    2008-01-01

    Three dimensional grid phantoms offer a number of advantages for measuring imaging related spatial inaccuracies for image guided surgery and radiotherapy. The authors examined the use of rapid prototyping technology for directly fabricating 3D grid phantoms from CAD drawings. We tested three different fabrication process materials, photopolymer jet with acrylic resin (PJ/AR), selective laser sintering with polyamide (SLS/P), and fused deposition modeling with acrylonitrile butadiene styrene (FDM/ABS). The test objects consisted of rectangular arrays of control points formed by the intersections of posts and struts (2 mm rectangular cross section) and spaced 8 mm apart in the x, y, and z directions. The PJ/AR phantom expanded after immersion in water which resulted in permanent warping of the structure. The surface of the FDM/ABS grid exhibited a regular pattern of depressions and ridges from the extrusion process. SLS/P showed the best combination of build accuracy, surface finish, and stability. Based on these findings, a grid phantom for assessing machine-dependent and frame-induced MR spatial distortions was fabricated to be used for quality assurance in stereotactic neurosurgical and radiotherapy procedures. The spatial uniformity of the SLS/P grid control point array was determined by CT imaging (0.6x0.6x0.625 mm 3 resolution) and found suitable for the application, with over 97.5% of the control points located within 0.3 mm of the position specified in CAD drawing and none of the points off by more than 0.4 mm. Rapid prototyping is a flexible and cost effective alternative for development of customized grid phantoms for medical physics quality assurance.

  10. Automatic block-matching registration to improve lung tumor localization during image-guided radiotherapy

    Science.gov (United States)

    Robertson, Scott Patrick

    To improve relatively poor outcomes for locally-advanced lung cancer patients, many current efforts are dedicated to minimizing uncertainties in radiotherapy. This enables the isotoxic delivery of escalated tumor doses, leading to better local tumor control. The current dissertation specifically addresses inter-fractional uncertainties resulting from patient setup variability. An automatic block-matching registration (BMR) algorithm is implemented and evaluated for the purpose of directly localizing advanced-stage lung tumors during image-guided radiation therapy. In this algorithm, small image sub-volumes, termed "blocks", are automatically identified on the tumor surface in an initial planning computed tomography (CT) image. Each block is independently and automatically registered to daily images acquired immediately prior to each treatment fraction. To improve the accuracy and robustness of BMR, this algorithm incorporates multi-resolution pyramid registration, regularization with a median filter, and a new multiple-candidate-registrations technique. The result of block-matching is a sparse displacement vector field that models local tissue deformations near the tumor surface. The distribution of displacement vectors is aggregated to obtain the final tumor registration, corresponding to the treatment couch shift for patient setup correction. Compared to existing rigid and deformable registration algorithms, the final BMR algorithm significantly improves the overlap between target volumes from the planning CT and registered daily images. Furthermore, BMR results in the smallest treatment margins for the given study population. However, despite these improvements, large residual target localization errors were noted, indicating that purely rigid couch shifts cannot correct for all sources of inter-fractional variability. Further reductions in treatment uncertainties may require the combination of high-quality target localization and adaptive radiotherapy.

  11. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, H

    2014-06-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.

  12. TU-A-304-01: Introduction and Workflow of Image-Guided SBRT

    International Nuclear Information System (INIS)

    Salter, B.

    2015-01-01

    Increased use of SBRT and hypo fractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide updated knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT or IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional (3D and 4D) and multi-modality (CT, beam-level X-ray imaging, pre- and on-treatment 3D/4D MRI, PET, robotic ultrasound, etc.) for reliable guidance of SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. Discuss treatment planning and quality assurance issues specific to SBRT. Research grant from Varian Medical Systems

  13. TU-A-304-01: Introduction and Workflow of Image-Guided SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Salter, B. [University of Utah Huntsman Cancer Institute (United States)

    2015-06-15

    Increased use of SBRT and hypo fractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide updated knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT or IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional (3D and 4D) and multi-modality (CT, beam-level X-ray imaging, pre- and on-treatment 3D/4D MRI, PET, robotic ultrasound, etc.) for reliable guidance of SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. Discuss treatment planning and quality assurance issues specific to SBRT. Research grant from Varian Medical Systems.

  14. Estimate of the real-time respiratory simulation system in cyberknife image-guided radiosurgery

    International Nuclear Information System (INIS)

    Min, Chul Kee; Chung, Weon Kuu; Lee, Suk

    2010-01-01

    The purpose of this study was to evaluate the target accuracy according to the movement with respiration of an actual patient in a quantitative way by developing a real-time respiratory simulation system (RRSS), including a patient customized 3D moving phantom. The real-time respiratory simulation system (RRSS) consists of two robots in order to implement both the movement of body surfaces and the movement of internal organs caused by respiration. The quantitative evaluation for the 3D movement of the RRSS was performed using a real-time laser displacement sensor for each axis. The average difference in the static movement of the RRSS was about 0.01 ∼ 0.06 mm. Also, in the evaluation of the dynamic movement by producing a formalized sine wave with the phase of four seconds per cycle, the difference between the measured and the calculated values for each cycle length in the robot that was in charge of body surfaces and the robot that was in charge of the movement of internal tumors showed 0.10 ∼ 0.55 seconds, and the correlation coefficients between the calculated and the measured values were 0.998 ∼ 0.999. The differences between the maximum and the minimum amplitudes were 0.01 ∼ 0.06 mm, and the reproducibility was within ±0.5 mm. In the case of the application and non-application of respiration, the target errors were -0.05 ∼ 1.05 mm and -0.13 ∼ 0.74 mm, respectively, and the entire target errors were 1.30 mm and 0.79 mm, respectively. Based on the accuracy in the RRSS system, various respiration patterns of patients can be reproduced in real-time. Also, this system can be used as an optimal tool for applying patient customized accuracy management in image-guided radiosurgery.

  15. Effect of rectal enema on intrafraction prostate movement during image-guided radiotherapy

    International Nuclear Information System (INIS)

    Choi, Youngmin; Kwak, Dong-Won; Lee, Hyung-Sik; Hur, Won-Jooh; Cho, Won-Yeol; Sung, Gyung Tak; Kim, Tae-Hyo; Kim, Soo-Dong; Yun, Seong-Guk

    2015-01-01

    Rectal volume and movement are major factors that influence prostate location. The aim of this study was to assess the effect of a rectal enema on intrafraction prostate motion. The data from 12 patients with localised prostate cancer were analysed. Each patient underwent image-guided radiotherapy (RT), receiving a total dose of 70 Gy in 28 fractions. Rectal enemas were administered to all of the patients before each RT fraction. The location of the prostate was determined by implanting three fiducial markers under the guidance of transrectal ultrasound. Each patient underwent preparation for IGRT twice before an RT fraction and in the middle of the fraction. The intrafraction displacement of the prostate was calculated by comparing fiducial marker locations before and in the middle of an RT fraction. The rectal enemas were well tolerated by patients. The mean intrafraction prostate movement in 336 RT fractions was 1.11 ± 0.77 mm (range 0.08–7.20 mm). Intrafraction motions of 1, 2 and 3 mm were observed in 56.0%, 89.0% and 97.6% of all RT fractions, respectively. The intrafraction movements on supero-inferior and anteroposterior axes were larger than on the right-to-left axes (P < 0.05). The CTV-to-PTV margin necessary to allow for movement, calculated using the van Herk formula (2.5Σ + 0.7σ), was 1.50 mm. A daily rectal enema before each RT fraction was tolerable and yielded little intrafraction prostate displacement. We think the use of rectal enemas is a feasible method to reduce prostate movement during RT.

  16. Estimate of the real-time respiratory simulation system in cyberknife image-guided radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Min, Chul Kee [Konyang Univ. Hospital, Daejeon (Korea, Republic of); Kyonggi University, Seoul (Korea, Republic of); Chung, Weon Kuu [Konyang Univ. Hospital, Daejeon (Korea, Republic of); Lee, Suk [Korea University, Seoul (Korea, Republic of); and others

    2010-01-15

    The purpose of this study was to evaluate the target accuracy according to the movement with respiration of an actual patient in a quantitative way by developing a real-time respiratory simulation system (RRSS), including a patient customized 3D moving phantom. The real-time respiratory simulation system (RRSS) consists of two robots in order to implement both the movement of body surfaces and the movement of internal organs caused by respiration. The quantitative evaluation for the 3D movement of the RRSS was performed using a real-time laser displacement sensor for each axis. The average difference in the static movement of the RRSS was about 0.01 {approx} 0.06 mm. Also, in the evaluation of the dynamic movement by producing a formalized sine wave with the phase of four seconds per cycle, the difference between the measured and the calculated values for each cycle length in the robot that was in charge of body surfaces and the robot that was in charge of the movement of internal tumors showed 0.10 {approx} 0.55 seconds, and the correlation coefficients between the calculated and the measured values were 0.998 {approx} 0.999. The differences between the maximum and the minimum amplitudes were 0.01 {approx} 0.06 mm, and the reproducibility was within {+-}0.5 mm. In the case of the application and non-application of respiration, the target errors were -0.05 {approx} 1.05 mm and -0.13 {approx} 0.74 mm, respectively, and the entire target errors were 1.30 mm and 0.79 mm, respectively. Based on the accuracy in the RRSS system, various respiration patterns of patients can be reproduced in real-time. Also, this system can be used as an optimal tool for applying patient customized accuracy management in image-guided radiosurgery.

  17. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    Science.gov (United States)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  18. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    Science.gov (United States)

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Markerless laser registration in image-guided oral and maxillofacial surgery.

    Science.gov (United States)

    Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan

    2004-07-01

    The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.

  20. Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform)

    International Nuclear Information System (INIS)

    Sorcini, B.; Tilikidis, A.

    2006-01-01

    Image-guided radiation therapy (IGRT) can be used to measure and correct positional errors for target and critical structures immediately prior to or during treatment delivery. Some of the most recent available methods applied for target localization are: trans-abdominal ultrasound, implanted markers with in room MV or kV X-rays, optical surface tracking systems, implantable electromagnetic markers, in room CT such as kVCT on rail, kilo-voltage or mega-voltage cone-beam CT (CBCT) and helical megavoltage CT. The verification of the accurate treatment position in conjunction with detailed anatomical information before every fraction can be essential for the outcome of the treatment. In this paper we present the on-board imager (OBI, Varian Medical Systems, Palo Alto, CA) that has been in routine clinical use at the Karolinska University Hospital since June 2004. The OBI has been used for on-line set-up correction of prostate patients using internal gold markers. Displacements of these markers can be monitored radiographically during the treatment course and the registered marker shifts act as a surrogate for prostate motion. For this purpose, on-board kV-kV seems to be an ideal system in terms of image quality. The CBCT function of OBI was installed in March 2005 at our department. It focuses on localizing tumors based on internal anatomy, not just on the conventional external marks or tattoos. The CBCT system provides the capacity for soft tissue imaging in the treatment position and real-time radiographic monitoring during treatment delivery. (authors)

  1. A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system.

    Science.gov (United States)

    Yoo, Myung Hoon; Lee, Hwan Seo; Yang, Chan Joo; Lee, Seung Hwan; Lim, Hoon; Lee, Seongpung; Yi, Byung-Ju; Chung, Jong Woo

    2017-10-01

    Surgical precision would be better achieved with the development of an anatomical monitoring and controlling robot system than by traditional surgery techniques alone. We evaluated the feasibility of robot-assisted mastoidectomy in terms of duration, precision, and safety. Human cadaveric study. We developed a multi-degree-of-freedom robot system for a surgical drill with a balancing arm. The drill system is manipulated by the surgeon, the motion of the drill burr is monitored by the image-guided system, and the brake is controlled by the robotic system. The system also includes an alarm as well as the brake to help avoid unexpected damage to vital structures. Experimental mastoidectomy was performed in 11 temporal bones of six cadavers. Parameters including duration and safety were assessed, as well as intraoperative damage, which was judged via pre- and post-operative computed tomography. The duration of mastoidectomy in our study was comparable with that required for chronic otitis media patients. Although minor damage, such as dura exposure without tearing, was noted, no critical damage to the facial nerve or other important structures was observed. When the brake system was set to 1 mm from the facial nerve, the postoperative average bone thicknesses of the facial nerve was 1.39, 1.41, 1.22, 1.41, and 1.55 mm in the lateral, posterior pyramidal and anterior, lateral, and posterior mastoid portions, respectively. Mastoidectomy can be successfully performed using our robot-assisted system while maintaining a pre-set limit of 1 mm in most cases. This system may thus be useful for more inexperienced surgeons. NA.

  2. High-volume image-guided injection for recalcitrant medial collateral ligament injuries of the knee

    International Nuclear Information System (INIS)

    Drumm, O.; Chan, O.; Malliaras, P.; Morrissey, D.; Maffulli, N.

    2014-01-01

    Aim: To evaluate the effectiveness of a novel injection technique in the management of recalcitrant medial collateral ligament (MCL) injuries of the knee. Materials and methods: The injection, comprising 10 ml local anaesthetic with 25–50 mg hydrocortisone, is directed beneath the periosteal attachment of the MCL. Twenty-eight patients who received the intervention were asked to complete a questionnaire, a visual analogue scale (VAS) and the International Knee Documentation Committee (IKDC) subjective knee form to quantify symptoms pre-injection and at follow-up. Data were assessed using descriptive statistics. Further analysis was conducted using the Wilcoxon signed-rank test and Fisher's exact test. Results: Sixty-eight percent (n = 19) of patients responded. Three patients were excluded according to the exclusion criteria. Of those studied, 37.5% (n = 6) were professional athletes. At follow-up, patients reported a mean improvement on the VAS of 75.5% (SD = 23.6). There was a significant improvement in IKDC scores (mean difference 42%, SD = 14.2) pre- and post-injection (Wilcoxon signed-rank test, p < 0.001). No residual symptoms were reported by 50% (n = 8) of patients, and a further 37.5% (n = 6) of patients had improved. Of those patients who played sport, two-thirds (n = 10) had returned to their previous level of sport at follow-up, including all of the professional athletes. Conclusion: Periosteal high-volume image-guided injection is a useful treatment for recalcitrant MCL injury. Results are encouraging, particularly amongst the professional athletes studied

  3. Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability.

    Science.gov (United States)

    Payne, Allison H; Hawryluk, Gregory W; Anzai, Yoshimi; Odéen, Henrik; Ostlie, Megan A; Reichert, Ethan C; Stump, Amanda J; Minoshima, Satoshi; Cross, Donna J

    2017-12-01

    Spinal cord injury (SCI) affects thousands of people every year in the USA, and most patients are left with some permanent paralysis. Therapeutic options are limited and only modestly affect outcome. To address this issue, we used magnetic resonance imaging-guided focused ultrasound (MRgFUS) as a non-invasive approach to increase permeability in the blood-spinal cord barrier (BSCB). We hypothesize that localized, controlled sonoporation of the BSCB by MRgFUS will aid delivery of therapeutics to the injury. Here, we report our preliminary findings for the ability of MRgFUS to increase BSCB permeability in the thoracic spinal cord of a normal rat model. First, an excised portion of normal rat spinal column was used to characterize the acoustic field and to estimate the insertion losses that could be expected in an MRgFUS blood spinal cord barrier opening. Then, in normal rats, MRgFUS was applied in combination with intravenously administered microbubbles to the spinal cord region. Permeability of the BSCB was indicated as signal enhancement by contrast administered prior to T1-weighted magnetic resonance imaging and verified by Evans blue dye. Neurological testing using the Basso, Beattie, and Breshnahan scale and the ladder walk was normal in 8 of 10 rats tested. Two rats showed minor impairment indicating need for further refinement of parameters. No gross tissue damage was evident by histology. In this study, we have opened successfully the blood spinal cord barrier in the thoracic region of the normal rat spine using magnetic resonance-guided focused ultrasound combined with microbubbles.

  4. Anisotropic Margin Expansions in 6 Anatomic Directions for Oropharyngeal Image Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Yock, Adam D.; Garden, Adam S.; Court, Laurence E.; Beadle, Beth M.; Zhang, Lifei; Dong, Lei

    2013-01-01

    Purpose: The purpose of this work was to determine the expansions in 6 anatomic directions that produced optimal margins considering nonrigid setup errors and tissue deformation for patients receiving image-guided radiation therapy (IGRT) of the oropharynx. Methods and Materials: For 20 patients who had received IGRT to the head and neck, we deformably registered each patient's daily images acquired with a computed tomography (CT)-on-rails system to his or her planning CT. By use of the resulting vector fields, the positions of volume elements within the clinical target volume (CTV) (target voxels) or within a 1-cm shell surrounding the CTV (normal tissue voxels) on the planning CT were identified on each daily CT. We generated a total of 15,625 margins by dilating the CTV by 1, 2, 3, 4, or 5 mm in the posterior, anterior, lateral, medial, inferior, and superior directions. The optimal margins were those that minimized the relative volume of normal tissue voxels positioned within the margin while satisfying 1 of 4 geometric target coverage criteria and 1 of 3 population criteria. Results: Each pair of geometric target coverage and population criteria resulted in a unique, anisotropic, optimal margin. The optimal margin expansions ranged in magnitude from 1 to 5 mm depending on the anatomic direction of the expansion and on the geometric target coverage and population criteria. Typically, the expansions were largest in the medial direction, were smallest in the lateral direction, and increased with the demand of the criteria. The anisotropic margin resulting from the optimal set of expansions always included less normal tissue than did any isotropic margin that satisfied the same pair of criteria. Conclusions: We demonstrated the potential of anisotropic margins to reduce normal tissue exposure without compromising target coverage in IGRT to the head and neck

  5. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    International Nuclear Information System (INIS)

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  6. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  7. Target Coverage in Image-Guided Stereotactic Body Radiotherapy of Liver Tumors

    International Nuclear Information System (INIS)

    Wunderink, Wouter; Romero, Alejandra Mendez; Osorio, Eliana M. Vasquez; Boer, Hans C.J. de; Brandwijk, Rene P.; Levendag, Peter C.; Heijmen, Ben

    2007-01-01

    Purpose: To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. Methods and Materials: By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV + ) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV + , derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Results: Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (≥99%) ITV + coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (≤2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Conclusion: Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging

  8. SU-F-J-194: Development of Dose-Based Image Guided Proton Therapy Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Pham, R; Sun, B; Zhao, T; Li, H; Yang, D; Grantham, K; Goddu, S; Santanam, L; Bradley, J; Mutic, S; Kandlakunta, P; Zhang, T [Washington University School of Medicine, Saint Louis, MO (United States)

    2016-06-15

    Purpose: To implement image-guided proton therapy (IGPT) based on daily proton dose distribution. Methods: Unlike x-ray therapy, simple alignment based on anatomy cannot ensure proper dose coverage in proton therapy. Anatomy changes along the beam path may lead to underdosing the target, or overdosing the organ-at-risk (OAR). With an in-room mobile computed tomography (CT) system, we are developing a dose-based IGPT software tool that allows patient positioning and treatment adaption based on daily dose distributions. During an IGPT treatment, daily CT images are acquired in treatment position. After initial positioning based on rigid image registration, proton dose distribution is calculated on daily CT images. The target and OARs are automatically delineated via deformable image registration. Dose distributions are evaluated to decide if repositioning or plan adaptation is necessary in order to achieve proper coverage of the target and sparing of OARs. Besides online dose-based image guidance, the software tool can also map daily treatment doses to the treatment planning CT images for offline adaptive treatment. Results: An in-room helical CT system is commissioned for IGPT purposes. It produces accurate CT numbers that allow proton dose calculation. GPU-based deformable image registration algorithms are developed and evaluated for automatic ROI-delineation and dose mapping. The online and offline IGPT functionalities are evaluated with daily CT images of the proton patients. Conclusion: The online and offline IGPT software tool may improve the safety and quality of proton treatment by allowing dose-based IGPT and adaptive proton treatments. Research is partially supported by Mevion Medical Systems.

  9. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    International Nuclear Information System (INIS)

    Abdollahi, H

    2014-01-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging

  10. Effectiveness of imaging-guided intra-articular injection: a comparison study between fluoroscopy and ultrasound.

    Science.gov (United States)

    Furtado, Rita Nely Vilar; Pereira, Daniele Freitas; da Luz, Karine Rodrigues; dos Santos, Marla Francisca; Konai, Monique Sayuri; Mitraud, Sonia de Aguiar Vilela; Rosenfeld, Andre; Fernandes, Artur da Rocha Correa; Natour, Jamil

    2013-01-01

    Compare the effectiveness of ultrasound and fluoroscopy to guide intra-articular injections (IAI) in selected cases. A prospective study in our outpatient clinics at the Rheumatology Division at Universidade Federal de São Paulo (UNIFESP), Brazil, was conducted to compare the short-term (4 weeks) effectiveness of ultrasound and fluoroscopy-guided IAI in patients with rheumatic diseases. Inclusion criteria were: adults with refractory synovitis undergoing IAI with glucocorticoid. All patients had IAI performed with triamcinolone hexacetonide (20mg/ml) with varying doses according to the joint injected. A total of 71 rheumatic patients were evaluated (52 women, 44 whites). Mean age was 51.9 ± 13 years and 47 of them (66.2%) were on regular DMARD use. Analysis of the whole sample (71 patients) and hip sub-analysis (23 patients) showed that significant improvement was observed for both groups in terms of pain (P < 0.001). Global analysis also demonstrated better outcomes for patients in the FCG in terms of joint flexion (P < 0.001) and percentage change in joint flexion as compared to the USG. Likert scale score analyses demonstrated better results for the patients in the USG as compared to the FCG at the end of the study (P < 0.05). No statistically significant difference between groups was observed for any other study variable. Imaging-guided IAI improves regional pain in patients with various types of synovitis in the short term. For the vast majority of variables, no significant difference in terms of effectiveness was observed between fluoroscopy and ultrasound guided IAI.

  11. Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma.

    Science.gov (United States)

    Selch, Michael T; Tenn, Steve; Agazaryan, Nzhde; Lee, Steve P; Gorgulho, Alessandra; De Salles, Antonio A F

    2012-01-01

    To retrospectively review the efficacy and safety of image-guided linear accelerator-based radiosurgery for spinal hemangioblastomas. Between August 2004 and September 2010, nine patients with 20 hemangioblastomas underwent spinal radiosurgery. Five patients had von Hipple-Lindau disease. Four patients had multiple tumors. Ten tumors were located in the thoracic spine, eight in the cervical spine, and two in the lumbar spine. Tumor volume varied from 0.08 to 14.4 cc (median 0.72 cc). Maximum tumor dimension varied from 2.5 to 24 mm (median 10.5 mm). Radiosurgery was performed with a dedicated 6 MV linear accelerator equipped with a micro-multileaf collimator. Median peripheral tumor dose and prescription isodose were 12 Gy and 90%, respectively. Image guidance was performed by optical tracking of infrared reflectors, fusion of oblique radiographs with dynamically reconstructed digital radiographs, and automatic patient positioning. Follow-up varied from 14 to 86 months (median 51 months). Kaplan-Meier estimated 4-year overall and solid tumor local control rates were 90% and 95%, respectively. One tumor progressed 12 months after treatment and a new cyst developed 10 months after treatment in another tumor. There has been no clinical or imaging evidence for spinal cord injury. Results of this limited experience indicate linear accelerator-based radiosurgery is safe and effective for spinal cord hemangioblastomas. Longer follow-up is necessary to confirm the durability of tumor control, but these initial results imply linear accelerator-based radiosurgery may represent a therapeutic alternative to surgery for selected patients with spinal hemangioblastomas.

  12. Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery.

    Science.gov (United States)

    Buchs, Nicolas C; Volonte, Francesco; Pugin, François; Toso, Christian; Fusaglia, Matteo; Gavaghan, Kate; Majno, Pietro E; Peterhans, Matthias; Weber, Stefan; Morel, Philippe

    2013-10-01

    Stereotactic navigation technology can enhance guidance during surgery and enable the precise reproduction of planned surgical strategies. Currently, specific systems (such as the CAS-One system) are available for instrument guidance in open liver surgery. This study aims to evaluate the implementation of such a system for the targeting of hepatic tumors during robotic liver surgery. Optical tracking references were attached to one of the robotic instruments and to the robotic endoscopic camera. After instrument and video calibration and patient-to-image registration, a virtual model of the tracked instrument and the available three-dimensional images of the liver were displayed directly within the robotic console, superimposed onto the endoscopic video image. An additional superimposed targeting viewer allowed for the visualization of the target tumor, relative to the tip of the instrument, for an assessment of the distance between the tumor and the tool for the realization of safe resection margins. Two cirrhotic patients underwent robotic navigated atypical hepatic resections for hepatocellular carcinoma. The augmented endoscopic view allowed for the definition of an accurate resection margin around the tumor. The overlay of reconstructed three-dimensional models was also used during parenchymal transection for the identification of vascular and biliary structures. Operative times were 240 min in the first case and 300 min in the second. There were no intraoperative complications. The da Vinci Surgical System provided an excellent platform for image-guided liver surgery with a stable optic and instrumentation. Robotic image guidance might improve the surgeon's orientation during the operation and increase accuracy in tumor resection. Further developments of this technological combination are needed to deal with organ deformation during surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Cost-effectiveness of MR Imaging-guided Strategies for Detection of Prostate Cancer in Biopsy-Naive Men.

    Science.gov (United States)

    Pahwa, Shivani; Schiltz, Nicholas K; Ponsky, Lee E; Lu, Ziang; Griswold, Mark A; Gulani, Vikas

    2017-10-01

    Purpose To evaluate the cost-effectiveness of multiparametric diagnostic magnetic resonance (MR) imaging examination followed by MR imaging-guided biopsy strategies in the detection of prostate cancer in biopsy-naive men presenting with clinical suspicion of cancer for the first time. Materials and Methods A decision-analysis model was created for biopsy-naive men who had been recommended for prostate biopsy on the basis of abnormal digital rectal examination results or elevated prostate-specific antigen levels (age groups: 41-50 years, 51-60 years, and 61-70 years). The following three major strategies were evaluated: (a) standard transrectal ultrasonography (US)-guided biopsy; (b) diagnostic MR imaging followed by MR imaging-targeted biopsy, with no biopsy performed if MR imaging findings were negative; and (c) diagnostic MR imaging followed by MR imaging-targeted biopsy, with a standard biopsy performed when MR imaging findings were negative. The following three MR imaging-guided biopsy strategies were further evaluated in each MR imaging category: (a) biopsy with cognitive guidance, (b) biopsy with MR imaging/US fusion guidance, and (c) in-gantry MR imaging-guided biopsy. Model parameters were derived from the literature. The primary outcome measure was net health benefit (NHB), which was measured as quality-adjusted life-years (QALYs) gained or lost by investing resources in a new strategy compared with a standard strategy at a willingness-to-pay (WTP) threshold of $50 000 per QALY gained. Probabilistic sensitivity analysis was performed by using Monte Carlo simulations. Results Noncontrast MR imaging followed by cognitively guided MR biopsy (no standard biopsy if MR imaging findings were negative) was the most cost-effective approach, yielding an additional NHB of 0.198 QALY compared with the standard biopsy approach. Noncontrast MR imaging followed by in-gantry MR imaging-guided biopsy (no standard biopsy if MR imaging findings were negative) led to the

  14. Protocol of image guided off-line using cone beam CT megavoltage; Protocolo de imagen guiada off-line mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Perez Moreno, J. M.; Zucca Aparicio, D.; Minambres Moro, A.

    2013-07-01

    The goal of image guided protocols offline is to reduce systematic errors in positioning of the patient in the treatment unit, being more important than the random errors, since the systematic have one contribution in the margin of the CTV to the PTV. This paper proposes a protocol for image guided offline with the different actions to take with their threshold values evaluated previously by anatomic location in a sample of 474 patients and 4821Cone beam Megavoltaje CT (CBCT). (Author)

  15. Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS foundation Trust, Sutton, London SM2 5PT (United Kingdom)

    2016-01-15

    Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison with normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking

  16. Real-time continuous image-guided surgery: Preclinical investigation in glossectomy.

    Science.gov (United States)

    Tabanfar, Reza; Qiu, Jimmy; Chan, Harley; Aflatouni, Niousha; Weersink, Robert; Hasan, Wael; Irish, Jonathan C

    2017-10-01

    To develop, validate, and study the efficacy of an intraoperative real-time continuous image-guided surgery (RTC-IGS) system for glossectomy. Prospective study. We created a RTC-IGS system and surgical simulator for glossectomy, enabling definition of a surgical target preoperatively, real-time cautery tracking, and display of a surgical plan intraoperatively. System performance was evaluated by a group of otolaryngology residents, fellows, medical students, and staff under a reproducible setting by using realistic tongue phantoms. Evaluators were grouped into a senior and a junior group based on surgical experience, and guided and unguided tumor resections were performed. National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores and a Likert scale were used to measure workloads and impressions of the system, respectively. Efficacy was studied by comparing surgical accuracy, time, collateral damage, and workload between RTC-IGS and non-navigated resections. The senior group performed more accurately (80.9% ± 3.7% vs. 75.2% ± 5.5%, P = .28), required less time (5.0 ± 1.3 minutes vs. 7.3 ± 1.2 minutes, P = .17), and experienced lower workload (43 ± 2.0 vs. 64.4 ± 1.3 NASA-TLX score, P = .08), suggesting a trend of construct validity. Impressions were favorable, with participants reporting the system is a valuable practice tool (4.0/5 ± 0.3) and increases confidence (3.9/5 ± 0.4). Use of RTC-IGS improved both groups' accuracy, with the junior group improving from 64.4% ± 5.4% to 75.2% ± 5.5% (P = .01) and the senior group improving from 76.1% ± 4.5% to 80.9% ± 3.7% (P = .16). We created an RTC-IGS system and surgical simulator and demonstrated a trend of construct validity. Our navigated simulator allows junior trainees to practice glossectomies outside the operating room. In all evaluators, navigation assistance resulted in increased surgical accuracy. NA Laryngoscope, 127:E347-E353, 2017. © 2017 The American Laryngological

  17. Present status and future of high-precision image guided adaptive brachytherapy for cervix carcinoma

    International Nuclear Information System (INIS)

    Poetter, Richard; Kirisits, Christian; Fidarova, Elena F.; Dimopoulos, Johan nes C. A.; Berger, Daniel; Tanderup, Kari; Lindegaard, Jacob C.

    2008-01-01

    Introduction. Image guided adaptive brachytherapy (IGABT) for cervical cancer, using mainly MRI, is an evolving method, increasingly replacing the 2D approach based on conventional radiography. During the complex 4D chain of this procedure image-assistance is provided for disease assessment, provisional treatment planning ('pre-planning'), applicator placement and reconstruction, as well as for contouring, definitive treatment planning and quality control of dose delivery. With IGABT changes of topography adjacent to the applicator, caused by tumour regression, oedema, organ changes and dilation are identified. Thus, the CTV for IGABT is primarily based on the tumour volume at the time of BT and takes into account both time and spatial domains. IGABT requires systematic concepts for target, OAR, biological modelling, DVH analysis, and dose-volume-adaptation. Methods and Results. This report focuses on the advantages and uncertainties, dose-effect relations and clinical results of the IGABT procedure addressing the current status and future perspectives. Uncertainties during the 4D chain of IGABT are mainly related to target contouring, applicator reconstruction, as well as to inter-fraction, intra-fraction and inter-application variability, as caused by tumour response and organ changes. Different from EBRT where set-up uncertainties are compensated by adding a margin to the CTV, no margins to the lateral and anterior-posterior directions can be used for IGABT. Discussion. By 3D treatment planning for IGABT significant improvement of the DVH parameters is achieved compared to 2D library plans. In small tumours the benefit is primarily obtained by a decrease of dose to nearby OAR while in large tumours the use of supplementary interstitial techniques and optimization may double the target volume that can be treated at a therapeutic dose level. The clinical impact of IGABT could recently be demonstrated by the establishment of some correlations between target- and

  18. Reliability of EUCLIDIAN: An autonomous robotic system for image-guided prostate brachytherapy

    International Nuclear Information System (INIS)

    Podder, Tarun K.; Buzurovic, Ivan; Huang Ke; Showalter, Timothy; Dicker, Adam P.; Yu, Yan

    2011-01-01

    Purpose: Recently, several robotic systems have been developed to perform accurate and consistent image-guided brachytherapy. Before introducing a new device into clinical operations, it is important to assess the reliability and mean time before failure (MTBF) of the system. In this article, the authors present the preclinical evaluation and analysis of the reliability and MTBF of an autonomous robotic system, which is developed for prostate seed implantation. Methods: The authors have considered three steps that are important in reliability growth analysis. These steps are: Identification and isolation of failures, classification of failures, and trend analysis. For any one-of-a-kind product, the reliability enhancement is accomplished through test-fix-test. The authors have used failure mode and effect analysis for collection and analysis of reliability data by identifying and categorizing the failure modes. Failures were classified according to severity. Failures that occurred during the operation of this robotic system were considered as nonhomogenous Poisson process. The failure occurrence trend was analyzed using Laplace test. For analyzing and predicting reliability growth, commonly used and widely accepted models, Duane's model and the Army Material Systems Analysis Activity, i.e., Crow's model, were applied. The MTBF was used as an important measure for assessing the system's reliability. Results: During preclinical testing, 3196 seeds (in 53 test cases) were deposited autonomously by the robot and 14 critical failures were encountered. The majority of the failures occurred during the first few cases. The distribution of failures followed Duane's postulation as well as Crow's postulation of reliability growth. The Laplace test index was -3.82 (<0), indicating a significant trend in failure data, and the failure intervals lengthened gradually. The continuous increase in the failure occurrence interval suggested a trend toward improved reliability. The MTBF

  19. Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications

    International Nuclear Information System (INIS)

    Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Kashani, Rojano; Parikh, Parag; Yang, Deshan; Zhao, Tianyu; Green, Olga; Wooten, Omar; Li, H. Harold; Hu, Yanle; Rodriguez, Vivian; Olsen, Lindsey; Robinson, Clifford; Michalski, Jeff; Mutic, Sasa; Olsen, Jeffrey

    2016-01-01

    Purpose: To demonstrate the feasibility of online adaptive magnetic resonance (MR) image guided radiation therapy (MR-IGRT) through reporting of our initial clinical experience and workflow considerations. Methods and Materials: The first clinically deployed online adaptive MR-IGRT system consisted of a split 0.35T MR scanner straddling a ring gantry with 3 multileaf collimator-equipped "6"0Co heads. The unit is supported by a Monte Carlo–based treatment planning system that allows real-time adaptive planning with the patient on the table. All patients undergo computed tomography and MR imaging (MRI) simulation for initial treatment planning. A volumetric MRI scan is acquired for each patient at the daily treatment setup. Deformable registration is performed using the planning computed tomography data set, which allows for the transfer of the initial contours and the electron density map to the daily MRI scan. The deformed electron density map is then used to recalculate the original plan on the daily MRI scan for physician evaluation. Recontouring and plan reoptimization are performed when required, and patient-specific quality assurance (QA) is performed using an independent in-house software system. Results: The first online adaptive MR-IGRT treatments consisted of 5 patients with abdominopelvic malignancies. The clinical setting included neoadjuvant colorectal (n=3), unresectable gastric (n=1), and unresectable pheochromocytoma (n=1). Recontouring and reoptimization were deemed necessary for 3 of 5 patients, and the initial plan was deemed sufficient for 2 of the 5 patients. The reasons for plan adaptation included tumor progression or regression and a change in small bowel anatomy. In a subsequently expanded cohort of 170 fractions (20 patients), 52 fractions (30.6%) were reoptimized online, and 92 fractions (54.1%) were treated with an online-adapted or previously adapted plan. The median time for recontouring, reoptimization, and QA was 26

  20. Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Kashani, Rojano; Parikh, Parag; Yang, Deshan; Zhao, Tianyu; Green, Olga; Wooten, Omar; Li, H. Harold; Hu, Yanle; Rodriguez, Vivian; Olsen, Lindsey; Robinson, Clifford; Michalski, Jeff; Mutic, Sasa; Olsen, Jeffrey, E-mail: jolsen@radonc.wustl.edu

    2016-02-01

    Purpose: To demonstrate the feasibility of online adaptive magnetic resonance (MR) image guided radiation therapy (MR-IGRT) through reporting of our initial clinical experience and workflow considerations. Methods and Materials: The first clinically deployed online adaptive MR-IGRT system consisted of a split 0.35T MR scanner straddling a ring gantry with 3 multileaf collimator-equipped {sup 60}Co heads. The unit is supported by a Monte Carlo–based treatment planning system that allows real-time adaptive planning with the patient on the table. All patients undergo computed tomography and MR imaging (MRI) simulation for initial treatment planning. A volumetric MRI scan is acquired for each patient at the daily treatment setup. Deformable registration is performed using the planning computed tomography data set, which allows for the transfer of the initial contours and the electron density map to the daily MRI scan. The deformed electron density map is then used to recalculate the original plan on the daily MRI scan for physician evaluation. Recontouring and plan reoptimization are performed when required, and patient-specific quality assurance (QA) is performed using an independent in-house software system. Results: The first online adaptive MR-IGRT treatments consisted of 5 patients with abdominopelvic malignancies. The clinical setting included neoadjuvant colorectal (n=3), unresectable gastric (n=1), and unresectable pheochromocytoma (n=1). Recontouring and reoptimization were deemed necessary for 3 of 5 patients, and the initial plan was deemed sufficient for 2 of the 5 patients. The reasons for plan adaptation included tumor progression or regression and a change in small bowel anatomy. In a subsequently expanded cohort of 170 fractions (20 patients), 52 fractions (30.6%) were reoptimized online, and 92 fractions (54.1%) were treated with an online-adapted or previously adapted plan. The median time for recontouring, reoptimization, and QA was 26

  1. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Roesch, Johannes; Baier, Kurt; Sweeney, Reinhart A; Flentje, Michael

    2012-01-01

    To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate