WorldWideScience

Sample records for conventional x-ray plans

  1. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    Science.gov (United States)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  2. Investigation of image characteristics in phase-contrast X-Ray imaging (PCXI)) using a conventional X-Ray grid

    Science.gov (United States)

    Lim, Hyunwoo; Lee, Hunwoo; Cho, Hyosung; Seo, Changwoo; Je, Uikyu; Park, Chulkyu; Kim, Kyuseok; Kim, Guna; Park, Soyoung; Lee, Dongyeon; Kang, Seokyoon; Lee, Minsik

    2017-11-01

    Phase-contrast x-ray imaging (PCXI) is an emerging technology which allows for imaging of smaller features in the examined sample than conventional attenuation-based x-ray imaging with lower x-ray dose. In this work, we investigated a relatively simple approach to PCXI using a conventional x-ray grid, which has potential to open the way to further widespread use of the technique into many application fields. We performed a simulation using a useful PCXI software developed in our previous study to investigate the image characteristics. We also performed a preliminary experiment for PCXI using a table-top setup which consists of a focused-linear xray grid having a 200-lines/in strip density, a microfocus x-ray tube having a 55- μm focal spot, and a CMOS-type flat-panel detector having a 49- μm pixel resolution. We successfully extracted absorption, dark-field, and phase-contrast x-ray images of much enhanced visibility at a time from the raw image of the sample by Fourier analysis. Further, we made a composite image by combining the absorption image with the colored dark-field image and compared its image characteristic to that of the absorption image alone.

  3. X-ray monochromator for divergent beam radiography using conventional and laser-produced x-ray sources

    Science.gov (United States)

    Schnopper, Herbert W.; Romaine, Suzanne E.; Krol, Andrzej

    2001-12-01

    We discuss technology that will produce a wide angle monochromatic beam of X-rays that appears to diverge from a virtual point source. Although our ideas are discussed in the context of dual energy subtraction angiography (DESA) that we are developing to operate in a clinical setting, they are widely adaptable to all applications of x-ray radiography. The best DESA analysis is obtained from X-ray images made in narrow energy bands just below and just above the I K-absorption edge. Our monochromator will be used to isolate these narrow bands to produce high contrast, high spatial resolution, ECG gated angiographic images. Emission lines, that have X-ray energies below (E-) and above (E+) the I K-absorption edge at 33.2 keV, are readily available. We have deposited variable d-spacing artificial crystals, called multilayers, on optically flat, very smooth substrates, to create narrow pass band X-ray monochromators centered on La and Ba K-emission lines. We will record (E-) and (E+) exposures on either photographic plates or, in the future, with energy sensitive pixelated arrays of solid state detectors. After a suitable normalization, the exposures will be subtracted to yield a high resolution, high contrast image of the I filled arteries. Although initial results will be obtained with conventional X-ray tubes, our goal is to couple the monochromators to a high intensity, laser produced, X-ray plasma. We will present early test data that shows the multilayer performance.

  4. X-ray polarimetry with a conventional gas proportional counter through rise-time analysis

    CERN Document Server

    Hayashida, K; Tsunemi, H; Torii, K; Murakami, H; Ohno, Y; Tamura, K

    1999-01-01

    We have performed an experiment on the signal rise time of a Xe gas proportional counter using a polarized X-ray beam of synchrotron orbital radiation with energies from 10 to 40 keV. When the counter anode is perpendicular to the electric vector of the incident X-ray photons, the average rise time becomes significantly longer than that for the parallel case. This indicates that the conventional gas proportional counters are useful for X-ray polarimetry. The moderate modulation contrast of this rise-time polarimeter (M=0.1 for 10 keV X-rays and M=0.35 for 40 keV X-rays), with capability of the simultaneous measuring X-ray energies and the timing, would be useful for applications in X-ray astronomy and in other fields.

  5. Small-Angle X-ray Scattering Screening Complements Conventional Biophysical Analysis

    DEFF Research Database (Denmark)

    Tian, Xinsheng; Langkilde, Annette Eva; Thorolfsson, Matthias

    2014-01-01

    introduce small-angle X-ray scattering (SAXS) to characterize antibody solution behavior, which strongly complements conventional biophysical analysis. First, we apply a variety of conventional biophysical techniques for the evaluation of structural, conformational, and colloidal stability and report...

  6. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Rettenbacher, Thomas; Ennemoser, Sybille; Weirich, Harald [Innsbruck Medical University, Department of Radiology, Innsbruck (Austria); Ulmer, Hanno [Innsbruck Medical University, Department of Medical Statistics, Informatics, and Health Economics, Innsbruck (Austria); Hartig, Frank; Klotz, Werner; Herold, Manfred [Innsbruck Medical University, Department of Internal Medicine, Innsbruck (Austria)

    2008-03-15

    The aim was to compare X-ray and ultrasound (US) in diagnosing gout. In a prospective study, 105 consecutive patients with clinical suspicion of gout underwent conventional X-ray und high-resolution US in order to help in arriving at a definite diagnosis. X-ray findings suggestive of gout included soft-tissue opacifications with densities between soft tissue and bone, articular and periarticular bone erosions, and osteophytes at the margins of opacifications or erosions. US findings suggestive of gout included bright stippled foci and hyperechoic soft-tissue areas. Fifty-five patients had a definite diagnosis of gout (102 involved sites), 31 patients were diagnosed as having another disease (59 involved sites), and 19 patients were excluded from the study because a definite diagnosis could not be established. X-ray suggested gout with a sensitivity of 31% (32/102) and a specificity of 93% (55/59), whereas US suggested gout with a sensitivity of 96% (98/102) and a specificity of 73% (43/59). US was much more sensitive than conventional X-ray but less specific. Our data show that US often provided additional diagnostic information in patients with clinical suspicion of gout when laboratory findings and X-ray results were negative or inconclusive and should therefore be used in these cases. (orig.)

  7. [Hardware and software for X-ray therapy planning].

    Science.gov (United States)

    Zhizniakov, A L; Semenov, S I; Sushkova, L T; Troitskii, D P; Chirkov, K V

    2007-01-01

    Hardware, circuitry, and software suggested in this work make it possible to use the SLS-9 X-ray simulator for classical and computer tomographic imaging. The suggested hardware and software can be used as a basis for designing special-purpose tomographic systems.

  8. Advanced combined application of micro-X-ray diffraction/micro-X-ray fluorescence with conventional techniques for the identification of pictorial materials from Baroque Andalusia paintings.

    Science.gov (United States)

    Herrera, L K; Montalbani, S; Chiavari, G; Cotte, M; Solé, V A; Bueno, J; Duran, A; Justo, A; Perez-Rodriguez, J L

    2009-11-15

    The process of investigating paintings includes the identification of materials to solve technical and historical art questions, to aid in the deduction of the original appearance, and in the establishment of the chemical and physical conditions for adequate restoration and conservation. In particular, we have focused on the identification of several samples taken from six famous canvases painted by Pedro Atanasio Bocanegra, who created a very special collection depicting the life of San Ignacio, which is located in the church of San Justo y Pastor of Granada, Spain. The characterization of the inorganic and organic compounds of the textiles, preparation layers, and pictorial layers have been carried out using an XRD diffractometer, SEM observations, EDX spectrometry, FT-IR spectrometry (both in reflection and transmission mode), pyrolysis/gas chromatography/mass spectrometry and synchrotron-based micro-X-ray techniques. In this work, the advantages over conventional X-ray diffraction of using combined synchrotron-based micro-X-ray diffraction and micro-X-ray fluorescence in the identification of multi-layer paintings is demonstrated.

  9. A Comparison of X-ray Absorption in Thyroid and Lens by Conventional Radiography and RVG

    Directory of Open Access Journals (Sweden)

    Sefid Poor E

    1999-12-01

    Full Text Available This article presents a comparative clinical study of digital imaging, as a new technology, and"nconventional method for X - Ray absorption in lens and thyroid."nClinical examination was performed on 50 patients with an average of 28 years among the cases who were reffered to the department of rediology, Islamic Azad universiy of IRAN in 1999."nTwo pocket dosimeters were used to meausre the dose rate. One was placed on the skin of thyroid region and the other on the eyes."nThe results revealed that the absorbed dose in RVG was significantly lower than conventional method (P<0.0001."nDigital imaging, as a new technology, is in a state of rapid development."nIt is a likely that RVG will substute conventional radiography within the near future.

  10. Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, Giacomo [Getty Conservation Institute, Science Department, Los Angeles, CA (United States); Sarrazin, Philippe [Examinart LLC, Sunnyvale, CA (United States); Heginbotham, Arlen [The J. Paul Getty Museum, Sculpture and Decorative Arts Conservation, Los Angeles, CA (United States)

    2016-11-15

    Noninvasive techniques have become widespread in the cultural heritage analytical domain. The popular handheld X-ray fluorescence (XRF) devices give the elemental composition of all the layers that X-rays can penetrate, but no information on how atoms are bound together or at which depth they are located. A noninvasive portable X-ray powder diffraction/X-ray fluorescence (XRD/XRF) device may offer a solution to these limitations, since it can provide information on the composition of crystalline materials. This paper introduces applications of XRD beyond simple phase recognition. The two fundamental principles for XRD are: (1) the crystallites should be randomly oriented, to ensure proper intensity to all the diffraction peaks, and (2) the material should be positioned exactly in the focal plane of the instrument, respecting its geometry, as any displacement of the sample would results in 2θ shifts of the diffraction peaks. In conventional XRD, the sample is ground and set on the properly positioned sample holder. Using a noninvasive portable instrument, these two requirements are seldom fulfilled. The position, size and orientation of a given crystallite within a layered structure depend on the object itself. Equation correlating the displacement (distance from the focal plane) versus peak shift (angular difference in 2θ from the standard value) is derived and used to determine the depth at which a given substance is located. The quantitative composition of two binary Cu/Zn alloys, simultaneously present, was determined measuring the cell volume and using Vegard's law. The analysis of the whole object gives information on the texture and possible preferred orientations of the crystallites, which influences the peak intensity. This allows for the distinction between clad and electroplated daguerreotypes in the case of silver and between ancient and modern gilding for gold. Analyses of cross sections can be carried out successfully. Finally, beeswax, used in

  11. Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument

    Science.gov (United States)

    Chiari, Giacomo; Sarrazin, Philippe; Heginbotham, Arlen

    2016-11-01

    Noninvasive techniques have become widespread in the cultural heritage analytical domain. The popular handheld X-ray fluorescence (XRF) devices give the elemental composition of all the layers that X-rays can penetrate, but no information on how atoms are bound together or at which depth they are located. A noninvasive portable X-ray powder diffraction/X-ray fluorescence (XRD/XRF) device may offer a solution to these limitations, since it can provide information on the composition of crystalline materials. This paper introduces applications of XRD beyond simple phase recognition. The two fundamental principles for XRD are: (1) the crystallites should be randomly oriented, to ensure proper intensity to all the diffraction peaks, and (2) the material should be positioned exactly in the focal plane of the instrument, respecting its geometry, as any displacement of the sample would results in 2 θ shifts of the diffraction peaks. In conventional XRD, the sample is ground and set on the properly positioned sample holder. Using a noninvasive portable instrument, these two requirements are seldom fulfilled. The position, size and orientation of a given crystallite within a layered structure depend on the object itself. Equation correlating the displacement (distance from the focal plane) versus peak shift (angular difference in 2 θ from the standard value) is derived and used to determine the depth at which a given substance is located. The quantitative composition of two binary Cu/Zn alloys, simultaneously present, was determined measuring the cell volume and using Vegard's law. The analysis of the whole object gives information on the texture and possible preferred orientations of the crystallites, which influences the peak intensity. This allows for the distinction between clad and electroplated daguerreotypes in the case of silver and between ancient and modern gilding for gold. Analyses of cross sections can be carried out successfully. Finally, beeswax, used in

  12. An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer

    DEFF Research Database (Denmark)

    Shen, Yanbin; Pedersen, Erik Ejler; Christensen, Mogens

    2014-01-01

    An electrochemical cell has been designed for powder X-ray diffraction (PXRD) studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode...... materials in reflection mode. The cell design closely mimics that of standard battery testing coin cells and allows obtaining powder X-ray diffraction patterns under representative electrochemical conditions. In addition, the cell uses graphite as the X-ray window instead of beryllium, and it is easy...... to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li4Ti5O12 anode and LiMn2O4 cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na0.84Fe0.56Mn0.44O2)....

  13. A new concept for conventional X-ray diagnostics in an intensive-care unit. Neues Konzept fuer die konventionelle Roentgendiagnostik in der Intensivmedizin

    Energy Technology Data Exchange (ETDEWEB)

    Grabbe, E.; Fischer, N.; Vosshenrich, R. (Goettingen Univ. (Germany, F.R.). Abt. fuer Roentgendiagnostik)

    1989-07-01

    A modified examination concept to improve conventional X-ray diagnostics in an intensive-care unit is presented. This planning is based on the development of new technical components in the field of mobile diagnostics and the availability of improved basic materials that can certainly promote such a project. This is presently being installed in the Clinical Centre of the University of Goettingen and will be subjected to a critical cost/efficiency analysis during a run of one year. (orig.).

  14. Comparison of techniques for correction of magnification of pelvic x-rays for hip surgery planning

    NARCIS (Netherlands)

    The, Bertram; Kootstra, Johan W. J.; Hosman, Anton H.; Verdonschot, Nico; Gerritsma, Carina L. E.; Diercks, Ron L.

    2007-01-01

    The aim of this study was to develop an accurate method for correction of magnification of pelvic x-rays to enhance accuracy of hip surgery planning. All investigated methods aim at estimating the anteroposterior location of the hip joint in supine position to correctly position a reference object

  15. Comparison of techniques for correction of magnification of pelvic X-rays for hip surgery planning.

    NARCIS (Netherlands)

    The, B.; Kootstra, J.W.; Hosman, A.J.F.; Verdonschot, N.J.J.; Gerritsma, C.L.; Diercks, R.L.

    2007-01-01

    The aim of this study was to develop an accurate method for correction of magnification of pelvic x-rays to enhance accuracy of hip surgery planning.All investigated methods aim at estimating the anteroposterior location of the hip joint in supine position to correctly position a reference object

  16. Conical slit and conventional X-ray sources: Challenging steps for calcium spots detection

    Science.gov (United States)

    Fioreze, M.; Cusatis, C.; Keister, J. W.; Hönnicke, M. G.

    2017-09-01

    An easy and simple to build conical slit (CS) was designed and tested, in a sample model approach, in order to check its possible use to detect Calcium Oxalate (CO) breast microcalcifications (MC) using conventional X-ray sources. A single-cone conical slit (SCCS) and a multi-cones conical slit (MCCS) were designed and constructed. Also, the CS apertures were calculated in order to maximize the diffracted intensity, while also providing sufficient angular resolution. The detection was done by scintillation detector and by films. The alignment of SCCS and MCCS is straightforward. The SCCS and MCCS capability in resolving CO diffraction cones were tested under different background scattering condition. For this, composite samples made up of CO embedded in different soft materials (paraffin wax or polypropylene or polyamide) have been explored. SCCS showed some limitation especially due to the superposition with low order CO powder diffraction cones and diffraction cones arising from paraffin wax and polypropylene. On the other hand MCCS showed to be efficient to resolve the CO diffraction cones in any case. MCCS shall be useful for next step tests with real in-vitro breast samples.

  17. Dose levels in conventional X-rays; Niveles de dosis en radiografia convencional

    Energy Technology Data Exchange (ETDEWEB)

    Guerra M, J. A.; Gonzalez G, J. A.; Pinedo S, A.; Salas L, M. A.; Vega C, H. R. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Azorin N, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: rgg_df@hotmail.com

    2009-10-15

    There were a series of measures in the General Hospital of Fresnillo in the X-ray Department in the areas of X-1 and X-2-ray rooms and in the neonatal intensive care unit 2, was determined the dose surface entry in eyes, thyroid and gonads for patients undergoing to X-ray study of chest Tele by thermoluminescent dosimetry. Five dosemeters were used in each one of the scans; so find the following dose ranges 20 +{sub -} 23 mGy to 350 +{sub -} 41 mGy. With the results obtained we can conclude that the procedures used and the equipment calibration is adequate. (Author)

  18. Recent Measurements And Plans for the SLAC Compton X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Vlieks, A.E.; Akre, R.; Caryotakis, G.; DeStefano, C.; Frederick, W.J.; Heritage, J.P.; Luhmann, N.C.; Martin, D.; Pellegrini, C.; /SLAC /UC, Davis /UCLA

    2006-02-14

    A compact source of monoenergetic X-rays, generated via Compton backscattering, has been developed in a collaboration between U.C Davis and SLAC. The source consists of a 5.5 cell X-band photoinjector, a 1.05 m long high gradient accelerator structure and an interaction chamber where a high power (TW), short pulse (sub-ps) infrared laser beam is brought into a nearly head-on collision with a high quality focused electron beam. Successful completion of this project will result in the capability of generating a monoenergetic X-ray beam, continuously tunable from 20 - 85 keV. We have completed a series of measurements leading up to the generation of monoenergetic X-rays. Measurements of essential electron beam parameters and the techniques used in establishing electron/photon collisions will be presented. We discuss the design of an improved interaction chamber, future electro-optic experiments using this chamber and plans for expanding the overall program to the generation of Terahertz radiation.

  19. Estimates of Imaging Times for Conventional and Synchrotron X-Ray Sources

    CERN Document Server

    Kinney, J

    2003-01-01

    The following notes are to be taken as estimates of the time requirements for imaging NIF targets in three-dimensions with absorption contrast. The estimates ignore target geometry and detector inefficiency, and focus only on the statistical question of detecting compositional (structural) differences between adjacent volume elements in the presence of noise. The basic equations, from the classic reference by Grodzins, consider imaging times in terms of the required number of photons necessary to provide an image with given resolution and noise. The time estimates, therefore, have been based on the calculated x-ray fluxes from the proposed Advanced Light Source (ALS) imaging beamline, and from the calculated flux for a tungsten anode x-ray generator operated in a point focus mode.

  20. Expanded image database of pistachio x-ray images and classification by conventional methods

    Science.gov (United States)

    Keagy, Pamela M.; Schatzki, Thomas F.; Le, Lan Chau; Casasent, David P.; Weber, David

    1996-12-01

    In order to develop sorting methods for insect damaged pistachio nuts, a large data set of pistachio x-ray images (6,759 nuts) was created. Both film and linescan sensor images were acquired, nuts dissected and internal conditions coded using the U.S. Grade standards and definitions for pistachios. A subset of 1199 good and 686 insect damaged nuts was used to calculate and test discriminant functions. Statistical parameters of image histograms were evaluated for inclusion by forward stepwise discrimination. Using three variables in the discriminant function, 89% of test set nuts were correctly identified. Comparable data for 6 human subjects ranged from 67 to 92%. If the loss of good nuts is held to 1% by requiring a high probability to discard a nut as insect damaged, approximately half of the insect damage present in clean pistachio nuts may be detected and removed by x-ray inspection.

  1. Evaluation of phase-contrast CT of breast tissue at conventional X-ray sources - presentation of selected findings.

    Science.gov (United States)

    Grandl, Susanne; Willner, Marian; Herzen, Julia; Mayr, Doris; Auweter, Sigrid D; Hipp, Alexander; Pfeiffer, Franz; Reiser, Maximilian; Hellerhoff, Karin

    2013-09-01

    Grating-based phase contrast computed tomography (PC-CT) at synchrotron radiation sources has been shown to provide improved visualization of breast tumors. However, broad clinical application of phase-contrast imaging will likely depend on transferring the technology to standard polychromatic X-ray sources. On the basis of selected findings, we demonstrate the potential of grating-based PC-CT using a conventional X-ray source. Grating-based PC-CT of two ex-vivo formalin fixed breast specimens containing lobular carcinoma was conducted using a Talbot Lau interferometer run at a polychromatic X-ray source of 40kVp. Phase-contrast and absorption-based 3D-datasets of both specimens were simultaneously recorded. Radiological images were manually matched with corresponding histological sections. The visualization of selected histological findings in phase contrast was compared to absorption contrast. Grating-based PC-CT was able to depict the 3-dimensional structure of dilated ducts and high phase contrast was found as a correlate to thickened fibrous ductal walls. Differences in contrast between fibrous and less fibrous breast tissue were observed in phase- but not in absorption-contrast images. Furthermore, regions of low phase contrast correlated with the extension of compact tumor components. On the basis of selected findings, we show that grating-based PC-CT at a polychromatic X-ray source provides complementary information to conventional absorption contrast; albeit at lower spatial resolution than synchrotron-based imaging. Copyright © 2013. Published by Elsevier GmbH.

  2. 100-OL-1 Operable Unit Field Portable X-Ray Fluorescence (XRF) Analyzer Pilot Study Plans

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-07-01

    A pilot study is being conducted to support the approval of the Remedial Investigation/Feasibility Study (RI/FS) Work Plan to evaluate the 100-OL-1 Operable Unit (OU) pre-Hanford orchard lands. Based on comments received by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology, the pilot study will evaluate the use of field portable X-ray fluorescence (XRF) spectrometry measurements for evaluating lead and arsenic concentrations on the soil surface as an indicator of past use of lead arsenate pesticide residue in the OU. The work will be performed in the field during the summer of 2014, and assist in the planning for the characterization activities in the RI/FS.

  3. Optimization of standard patient radiographic images for chest, skull and pelvis exams in conventional x-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Pina, D R [Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Campus de Ribeirao Preto, SP 14040-901 (Brazil); Duarte, S B [Centro Brasileiro de Pesquisas FIsicas, Rio de Janeiro, RJ 22290-180 (Brazil); Netto, T Ghilardi [Centro de Ciencias da Imagem e FIsica Medica, Hospital das ClInicas da Faculdade de Medicina de Ribeirao Preto, SP 14048-900 (Brazil); Trad, C S [Centro de Ciencias da Imagem e FIsica Medica, Hospital das ClInicas da Faculdade de Medicina de Ribeirao Preto, SP 14048-900 (Brazil); Brochi, M A C [Centro de Ciencias da Imagem e FIsica Medica, Hospital das ClInicas da Faculdade de Medicina de Ribeirao Preto, SP 14048-900 (Brazil); Oliveira, S C de [Lehigh Valley Hospital, Allentown, PA 18103 (United States)

    2004-07-21

    Optimized radiographic techniques for clinical images of chest, skull and pelvis using conventional single-phase, three-phase and high-frequency x-ray units for a standard patient have been developed. Optimization of image contrast and optical density was obtained by using a homogeneous phantom (PEP) and an Anderson Rando anthropomorphic phantom. Image quality was evaluated by nine radiologists in independent analyses, leading to the choice of the optimized technique. A course of action to implement and validate these techniques in other radiographic systems has also been introduced. A realistic-analytic phantom (RAP) was constructed to certify the validation process. The optimized radiographic technique was implemented in the routine of our home hospital radiodiagnostic routine, enabling a reduction in patient doses around 25, 14 and 72%, respectively, for chest, skull and pelvis exams when compared with the previously used techniques. In addition, a corresponding reduction in the x-ray tube load of 68, 14 and 62% for the respective mentioned exams has been observed. In conclusion, implemented optimal techniques can lead to a reduction in the rate of film rejection, thus contributing to a better risk-benefit relationship for the patient and cost-benefit for the radiodiagnostic facility. (note)

  4. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  5. Comparative aspects of occult intrasacral meningocele with conventional X-ray, myelography and CT

    Energy Technology Data Exchange (ETDEWEB)

    Grivegnee, A.; Delince, P.; Ectors, P.

    1981-09-01

    A case of occult intrasacral meningocele is reported and the diagnostic reliability of conventional roentgenography, myelography and CT for the management of this rare lesions are evaluated. Probably, CT with the use of an intrathecal contrast agent could yield the most complete information about the precise nature of this cystic congenital dysraphism.

  6. Realization of radiobiological in vitro cell experiments at conventional X-ray tubes and unconventional radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Beyreuther, Elke

    2010-09-10

    More than hundred years after the discovery of X-rays different kinds of ionizing radiation are ubiquitous in medicine, applied to clinical diagnostics and cancer treatment as well. Irrespective of their nature, the widespread application of radiation implies its precise dosimetric characterization and detailed knowledge of the radiobiological effects induced in cancerous and normal tissue. Starting with in vitro cell irradiation experiments, which define basic parameters for the subsequent tissue and animal studies, the whole multi-stage process is completed by clinical trials that translate the results of fundamental research into clinical application. In this context, the present dissertation focuses on the establishment of radiobiological in vitro cell experiments at unconventional, but clinical relevant radiation qualities. In the first part of the present work the energy dependent biological effectiveness of photons was studied examining low-energy X-rays (≤ 50 keV), as used for mammography, and high-energy photons (≥ 20 MeV) as proposed for future radiotherapy. Cell irradiation experiments have been performed at conventional X-ray tubes providing low-energy photons and 200 kV reference radiation as well. In parallel, unconventional quasi-monochromatic channeling X-rays and high-energy bremsstrahlung available at the radiation source ELBE of the Forschungszentrum Dresden-Rossendorf were considered for radiobiological experimentation. For their precise dosimetric characterization dosimeters based on the thermally stimulated emission of exoelectrons and on radiochromic films were evaluated, whereas just the latter was found to be suitable for the determination of absolute doses and spatial dose distributions at cell position. Standard ionization chambers were deployed for the online control of cell irradiation experiments. Radiobiological effects were analyzed in human mammary epithelial cells on different subcellular levels revealing an increasing amount

  7. A new x-ray optics laboratory (XROL) at the ALS: mission, arrangement, metrology capabilities, performance, and future plans

    Science.gov (United States)

    Yashchuk, Valeriy V.; Artemiev, Nikolay A.; Lacey, Ian; McKinney, Wayne R.; Padmore, Howard A.

    2014-09-01

    The X-Ray Optics Laboratory (XROL) at the Advanced Light Source (ALS), a unique optical metrology lab, has been recently moved to a new, dedicated clean-room facility that provides improved environmental and instrumental conditions vitally required for high accuracy metrology with state-of-the-art X-ray optics. Besides the ALS, the XROL serves several DOE labs that lack dedicated on-site optical metrology capabilities, including the Linac Coherent Light Source (LCLS) at SLAC and LBNL's Center for X-Ray Optics (CXRO). The major role of XROL is to proactively support the development and optimal beamline use of x-ray optics. The application of different instruments available in the lab enables separate, often complementary, investigations and addresses of different potential sources of error affecting beamline performance. At the beamline, all the perturbations combine to produce a cumulative effect on the performance of the optic that makes it difficult to optimize the optic's operational performance. Ex situ metrology allows us to address the majority of the problems before the installation of the optic at a beamline, and to provide feedback on design and guidelines for the best usage of optics. We will review the ALS XROL mission, lab design and arrangement, ex situ metrology capabilities and performance, as well as the future plans for instrumentation upgrades. The discussion will be illustrated with the results of a broad spectrum of measurements of x-ray optics and optical systems performed at the XROL.

  8. Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters.

    Science.gov (United States)

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-12-01

    The objective of this study was to assess and compare the organ and effective doses in the knee area resulting from different commercially available multislice computed tomography devices (MSCT), one cone beam computed tomography device (CBCT) and one conventional X-ray radiography device using MOSFET dosemeters and an anthropomorphic RANDO knee phantom. Measurements of the MSCT devices resulted in effective doses ranging between 27 and 48 µSv. The CBCT measurements resulted in an effective dose of 12.6 µSv. The effective doses attained using the conventional radiography device were 1.8 µSv for lateral and 1.2 µSv for anterior-posterior projections. The effective dose resulting from conventional radiography was considerably lower than those recorded for the CBCT and MSCT devices. The MSCT effective dose results were two to four times higher than those measured on the CBCT device. This study demonstrates that CBCT can be regarded as a potential low-dose 3D imaging technique for knee examinations.

  9. Assessing the dose values received by patients during conventional radiography X-ray examinations and the technical condition of the equipment used for this purpose

    Directory of Open Access Journals (Sweden)

    Marcin Bekas

    2014-12-01

    Full Text Available Background: X-ray examination is associated with patient exposure to ionizing radiation. Dose values depend on the type of medical procedure used, the X-ray unit technical condition and exposure conditions selected. The aim of this study was to determine the dose value received by patients during certain conventional radiography X-ray examinations and to assess the technical condition of medical equipment used for this purpose. Material and Methods: The study covered the total number of 118 conventional diagnostic X-ray units located in the Masovian Voivodeship. The methodology used to assess the conventional diagnostic X-ray unit technical condition and the measurement of the radiation dose rate received by patients are based on test procedures developed by the Department of Radiation Protection and Radiobiology of the National Institute of Public Health – National Institute of Hygiene (Warszawa, Poland accredited for compliance with PN-EN 17025 standard by the Polish Centre for Accreditation. Results: It was found that 84.7% of X-ray units fully meet the criteria set out in the Polish legislation regarding the safe use of ionizing radiation in medicine, while 15.3% of the units do not meet some of them. The broadest dose value range was recorded for adult patients. Particularly, during lateral (LAT lumbar spine radiography the recorded entrance surface dose (ESD values ranged from 283.5 to 7827 μGy (mean: 2183.3 μGy. Conclusions: It is absolutely necessary to constantly monitor the technical condition of all X-ray units, because it affects population exposure to ionizing radiation. Furthermore, it is essential to raise radiographers’ awareness of the effects that ionizing radiation exposure can have on the human body. Med Pr 2014;65(6:715–721

  10. Virtual anthropology: a comparison between the performance of conventional X-ray and MDCT in investigating the trabecular structure of long bones.

    Science.gov (United States)

    de Froidmont, Sébastien; Grabherr, Silke; Vaucher, Paul; De Cesare, Mariangela; Egger, Coraline; Papageorgopoulou, Christina; Roth, Viviane; Morand, Grégoire; Mangin, Patrice; Uldin, Tanya

    2013-02-10

    Recently, modern cross-sectional imaging techniques such as multi-detector computed tomography (MDCT) have pioneered post mortem investigations, especially in forensic medicine. Such approaches can also be used to investigate bones non-invasively for anthropological purposes. Long bones are often examined in forensic cases because they are frequently discovered and transferred to medico-legal departments for investigation. To estimate their age, the trabecular structure must be examined. This study aimed to compare the performance of MDCT with conventional X-rays to investigate the trabecular structure of long bones. Fifty-two dry bones (24 humeri and 28 femora) from anthropological collections were first examined by conventional X-ray, and then by MDCT. Trabecular structure was evaluated by seven observers (two experienced and five inexperienced in anthropology) who analyzed images obtained by radiological methods. Analyses contained the measurement of one quantitative parameter (caput diameter of humerus and femur) and staging the trabecular structure of each bone. Preciseness of each technique was indicated by describing areas of trabecular destruction and particularities of the bones, such as pathological changes. Concerning quantitative parameters, the measurements demonstrate comparable results for the MDCT and conventional X-ray techniques. In contrast, the overall inter-observer reliability of the staging was low with MDCT and conventional X-ray. Reliability increased significantly when only the results of the staging performed by the two experienced observers were compared, particularly regarding the MDCT analysis. Our results also indicate that MDCT appears to be better suited to a detailed examination of the trabecular structure. In our opinion, MDCT is an adequate tool with which to examine the trabecular structure of long bones. However, adequate methods should be developed or existing methods should be adapted to MDCT. Copyright © 2012 Elsevier

  11. Early diagnosis of bowel motility disorders, with US in urgency, compared to conventional X-ray investigation: personal collection and literature.

    Science.gov (United States)

    Russo, Antonella

    2012-01-01

    Ultrasound investigation is more and more useful instrumental investigation, for early detection of rising signs of bowel occlusion, if compared to conventional abdominal x-ray. A personal collection of 25 intestinal occlusions is reported, comparing the conventional radiographic and ultrasonographic essays. The static x-ray of abdomen didn't reveal adynamic condition in 11/15 patients, confirmed by US supporting clinical examination; 4/25 has been even treated conservatively, completely restored, though radiological diagnosis of occlusion, relying on clinical and sonographic reports. In 9/25 subjects x-ray has not been performed, relying on US only to achieve instrumental diagnosis. The most important advantage of echography, such as dynamic evaluation, allows the study of potential mechanical peristaltic disorders, revealing the stratification of liquid and gas enteric contents, one of the most peculiar sign of intestinal occlusion. Supporting clinical suspect, in the reported collection, it recruited on one hand early surgical solution for the most of them and conservative approach for five patients on the other.

  12. Planned Use of Pulsed Crab Cavities for Short X-Ray Pulse Generation at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Michael; Carwardine, J.; Chae, Y.; Emery, L.; Den Hartog, Patric; Harkay, K.C.; Lumpkin, A.H.; Nassiri, A.; Sajaev, V.; Sereno, Nicholas S.; Waldschmidt, G.; Yang, B.X.; /Argonne; Dolgashev, V.; /SLAC

    2007-11-06

    Recently, we have explored application to the Advanced Photon Source (APS) of Zholents'[1] crab cavity scheme for production of short x-ray pulses. We assumed use of superconducting (SC) cavities in order to have a continuous stream of crabbed bunches and flexibility of operating modes. The challenges of the SC approach are related to the size, cost, and development time of the cavities and associated systems. A good case can be made [2] for a pulsed system using room-temperature cavities. APS has elected to pursue such a system in the near term, with the SC-based system planned for a later date. This paper describes the motivation for the pulsed system and gives an overview of the planned implementation and issues. Among these are overall configuration options and constraints, cavity design options, frequency choice, cavity design challenges, tolerances, instabilities, and diagnostics plans.

  13. Monochromatic Mammographic Imaging Using X-ray Polycapillary Optics

    National Research Council Canada - National Science Library

    Sugiro, Francisca

    2000-01-01

    .... Monochromatic x rays can be used to produce higher contrast images. Polycapillary x-ray optics technology can produce a highly parallel, monochromatic, x-ray beam from a conventional radiographic source...

  14. Joint x-ray

    Science.gov (United States)

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  16. X-ray tensor tomography

    Science.gov (United States)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  17. Hand x-ray

    Science.gov (United States)

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  18. X-Ray

    Science.gov (United States)

    ... show up on chest X-rays. Breast cancer. Mammography is a special type of X-ray test used to examine breast tissue. Enlarged heart. This sign of congestive heart failure shows up clearly on X-rays. Blocked blood vessels. Injecting a contrast material that contains iodine can help highlight sections ...

  19. Fast and accurate Monte Carlo modeling of a kilovoltage X-ray therapy unit using a photon-source approximation for treatment planning in complex media

    Directory of Open Access Journals (Sweden)

    B Zeinali-Rafsanjani

    2015-01-01

    Full Text Available To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL, percentage depth doses (PDDs and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam.

  20. Fast and accurate Monte Carlo modeling of a kilovoltage X-ray therapy unit using a photon-source approximation for treatment planning in complex media.

    Science.gov (United States)

    Zeinali-Rafsanjani, B; Mosleh-Shirazi, M A; Faghihi, R; Karbasi, S; Mosalaei, A

    2015-01-01

    To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL), percentage depth doses (PDDs) and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs) placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam.

  1. Comparison of Unmonochromatized Synchrotron Radiation and Conventional X-rays in the Imaging of Mammographic Phantom and Human Breast Specimens: A Preliminary Result

    Science.gov (United States)

    Jung, Haijo; Kim, Eun-Kyung; Hong, Jin-O; Je, Jung Ho; Hwu, Yeukuang; Tsai, Wen-Li; Magaritondo, Giorgio; Yoo, Hyung-Sik

    2005-01-01

    A simple imaging setup based on the principle of coherence-based contrast X-ray imaging with unmonochromatized synchrotron radiation was used for studying mammographic phantom and human breast specimens. The use of unmonochromatized synchrotron radiation simplifies the instrumentation, decreases the cost and makes the procedure simpler and potentially more suitable for clinical applications. The imaging systems consisted of changeable silicon wafer attenuators, a tungsten slit system, a CdWO4 scintillator screen, a CCD (Charge Coupled Device) camera coupled to optical magnification lenses, and a personal computer. In preliminary studies, a spatial resolution test pattern and glass capillary filled with air bubbles were imaged to evaluate the resOolution characteristics and coherence-based contrast enhancement. Both the spatial resolution and image quality of the proposed system were compared with those of a conventional mammography system in order to establish the characteristic advantages of this approach. The images obtained with the proposed system showed a resolution of at least 25 µm on the test pattern with much better contrast, while the images of the capillary filled with air bubbles revealed coherence-based edge enhancement. This result shows that the coherence-based contrast imaging system, which emphasizes the refraction effect from the edge of materials of different refractive indexes, is applicable to imaging studies in fundamental medicine and biology, although further research works will be required before it can be used for clinical applications. PMID:15744811

  2. Conventional digital subtraction x-ray angiography versus magnetic resonance angiography in the evaluation of carotid disease: patient satisfaction and preferences

    Energy Technology Data Exchange (ETDEWEB)

    U-King-Im, J.M. E-mail: jhg21@cam.ac.uk; Trivedi, R.; Cross, J.; Higgins, N.; Graves, M.; Kirkpatrick, P.; Antoun, N.; Gillard, J.H

    2004-04-01

    AIM: To compare conventional digital subtraction x-ray angiography (DSA) and contrast-enhanced magnetic resonance angiography (MRA) of the carotid arteries in terms of patient satisfaction and preferences. METHODS: One hundred and sixty-seven patients with symptomatic carotid artery disease, who underwent both DSA and MRA, were prospectively recruited in this study. Patients' perceptions of each method were assessed by the use of a questionnaire after each procedure. Main outcome measures were anxiety, pain, satisfaction rate and patient preferences. RESULTS: DSA generated more anxiety and pain during the procedure, but the severity of these ill-effects was mild. Satisfaction rates for each method were similar. More patients were, however, willing to have a repeat MRA compared with DSA (67 versus 41%). The majority of patients (62%) preferred MRA over DSA (31%). The shorter MRA imaging time was found to be a significant factor in patients' acceptance of the technique. The main reasons cited by patients for their dislike of a particular procedure was noise and claustrophobia for MRA and invasiveness, pain and post-procedural bed rest for DSA. CONCLUSIONS: MRA is the method that is preferred by the majority of patients, although the actual disutility of DSA may be small. Assuming equal diagnostic accuracy, our data supports replacement of DSA by MRA for routine carotid imaging.

  3. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Adrian [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); University Hospital Pitie-Salpetriere, Department of Polyvalent and Oncological Radiology, Paris (France); Landau, Julia; Buetikofer, Yanik; Leidolt, Lars; Brela, Barbara; May, Michelle; Heverhagen, Johannes; Christe, Andreas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Ebner, Lukas [University Hospital Inselspital Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Bern (Switzerland); Duke University Medical Center, Department of Radiology, Durham, NC (United States)

    2016-10-15

    To investigate the detection rate of pulmonary nodules in ultralow-dose CT acquisitions. In this lung phantom study, 232 nodules (115 solid, 117 ground-glass) of different sizes were randomly distributed in a lung phantom in 60 different arrangements. Every arrangement was acquired once with standard radiation dose (100 kVp, 100 references mAs) and once with ultralow radiation dose (80 kVp, 6 mAs). Iterative reconstruction was used with optimized kernels: I30 for ultralow-dose, I70 for standard dose and I50 for CAD. Six radiologists examined the axial 1-mm stack for solid and ground-glass nodules. During a second and third step, three radiologists used maximum intensity projection (MIPs), finally checking with computer-assisted detection (CAD), while the others first used CAD, finally checking with the MIPs. The detection rate was 95.5 % with standard dose (DLP 126 mGy*cm) and 93.3 % with ultralow-dose (DLP: 9 mGy*cm). The additional use of either MIP reconstructions or CAD software could compensate for this difference. A combination of both MIP reconstructions and CAD software resulted in a maximum detection rate of 97.5 % with ultralow-dose. Lung cancer screening with ultralow-dose CT using the same radiation dose as a conventional chest X-ray is feasible. (orig.)

  4. Comparison of unmonochromatized synchrotron radiation and conventional X-rays in the imaging of mammographic phantom and human breast specimens: a preliminary result.

    Science.gov (United States)

    Jung, Haijo; Kim, Hee-Joung; Kim, Eun-Kyung; Hong, Jin-O; Je, Jung Ho; Hwu, Yeukuang; Tsai, Wen-Li; Magaritondo, Giorgio; Yoo, Hyung-Sik

    2005-02-28

    A simple imaging setup based on the principle of coherence-based contrast X-ray imaging with unmonochromatized synchrotron radiation was used for studying mammographic phantom and human breast specimens. The use of unmonochromatized synchrotron radiation simplifies the instrumentation, decreases the cost and makes the procedure simpler and potentially more suitable for clinical applications. The imaging systems consisted of changeable silicon wafer attenuators, a tungsten slit system, a CdWO4 scintillator screen, a CCD (Charge Coupled Device) camera coupled to optical magnification lenses, and a personal computer. In preliminary studies, a spatial resolution test pattern and glass capillary filled with air bubbles were imaged to evaluate the resOolution characteristics and coherence-based contrast enhancement. Both the spatial resolution and image quality of the proposed system were compared with those of a conventional mammography system in order to establish the characteristic advantages of this approach. The images obtained with the proposed system showed a resolution of at least 25 microm on the test pattern with much better contrast, while the images of the capillary filled with air bubbles revealed coherence-based edge enhancement. This result shows that the coherence-based contrast imaging system, which emphasizes the refraction effect from the edge of materials of different refractive indexes, is applicable to imaging studies in fundamental medicine and biology, although further research works will be required before it can be used for clinical applications.

  5. X-Ray Polarimetry

    OpenAIRE

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  6. Comparing natural and artificial carious lesions in human crowns by means of conventional hard x-ray micro-tomography and two-dimensional x-ray scattering with synchrotron radiation

    Science.gov (United States)

    Botta, Lea Maria; White, Shane N.; Deyhle, Hans; Dziadowiec, Iwona; Schulz, Georg; Thalmann, Peter; Müller, Bert

    2016-10-01

    Dental caries, one of the most prevalent infectious bacterial diseases in the world, is caused by specific types of acid-producing bacteria. Caries is a disease continuum resulting from the earliest loss of ions from apatite crystals through gross cavitation. Enamel dissolution starts when the pH-value drops below 5.5. Neutralizing the pH-value in the oral cavity opposes the process of demineralization, and so caries lesions occur in a dynamic cyclic de-mineralizing/remineralizing environment. Unfortunately, biomimetic regeneration of cavitated enamel is not yet possible, although remineralization of small carious lesions occurs under optimal conditions. Therefore, the development of methods that can regenerate carious lesions, and subsequently recover and retain teeth, is highly desirable. For the present proceedings we analyzed one naturally occurring sub-surface and one artificially produced lesion. For the characterization of artificial and natural lesions micro computed tomography is the method of choice when looking to determine three-dimensional mineral distribution and to quantify the degree of mineralization. In this pilot study we elucidate that the de-mineralized enamel in natural and artificially induced lesions shows comparable X-ray attenuation behavior, thereby implying that the study protocol employed herein seems to be appropriate. Once we know that the lesions are comparable, a series of well-reproducible in vitro experiments on enamel regeneration could be performed. In order to quantify further lesion morphology, the anisotropy of the enamel's nanostructure can be characterized by using spatially resolved, small-angle X-ray scattering. We wanted to demonstrate that the artificially induced defect fittingly resembles the natural carious lesion.

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ...

  9. X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fenster, A. [Univ. of Western Ontario, J.P. Robarts Institute, London, Ontario (Canada); Yaffe, M.J. [Univ. of Toronto, Depts. of Medical Biophysics and Medical Imaging, North York, Ontario (Canada)

    1995-09-01

    In this article, we briefly review the principles of x-ray imaging, consider some of its applications in medicine and describe some of the developments in this area which have taken place in Canada. X rays were first used for diagnosis and therapy in medicine almost immediately after the report of their discovery by Roentgen in 1895. X-ray imaging has remained the primary tool for the investigation of structures within the body up to the present time (Johns and Cunningham 1983). Medical x rays are produced in a vacuum tube by the electron bombardment of a metallic target. Electrons emitted from a heated cathode are accelerated through an electric field to energies of 20-150 keV (wavelength 6.2-0.83 nm) and strike a target anode. X rays appear in a spectrum of bremsstrahlung radiation with energies ranging from 0 to a value that is numerically equal to the peak voltage applied between the cathode and anode of the x-ray tube (Figure 1). In addition, where the energy of the impinging electrons exceeds the binding energy of inner atomic orbitals of the target material, electrons may be ejected from those shells. Filling of these shells by more loosely-bound electrons gives rise to x rays whose energies are equal to the difference of the binding energies of the donor and acceptor shells. The energies of these characteristic x rays are unique to the target material. Less than 1% of the energy of the incident electrons is converted to that of x rays, while the remainder is dissipated as heat in the target. For this reason, a tremendous amount of engineering has gone into the design of x-ray tubes that can yield a large fluence rate of quanta from a small effective source size, while withstanding the enormous applied heat loading (e.g. 10 kJ per exposure). Tungsten is by far the most common material used for targets in tubes for diagnostic radiology, because of its high melting point and its high atomic number; the efficiency of x-ray production is proportional to Z of the

  10. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  13. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight March is National Colorectal Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight February is American Heart Month Recently posted: Carotid Intima-Media Thickness Test ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  20. Sinus x-ray

    Science.gov (United States)

    ... an infection and inflammation of the sinuses called sinusitis . A sinus x-ray is ordered when you have any of the following: Symptoms of sinusitis Other sinus disorders, such as a deviated septum ( ...

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... and You Take our survey Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound Radiology and You ...

  4. X-ray

    Science.gov (United States)

    ... X-ray References Geleijns J, Tack D. Medical physics: radiation risks. In: Adam A, Dixon AK, Gillard ... Updated by: C. Benjamin Ma, MD, Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic ...

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... and use a very small dose of ionizing radiation to produce pictures of the inside of the ... x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. ... University in Durham, North Carolina. I’d like to talk with you about chest radiography also known ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... Index A-Z Spotlight October is National Breast Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray (Radiography) - ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  15. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  16. Laser induced x-ray `RADAR' particle physics model

    Science.gov (United States)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  17. Dual Energy X-Ray CT by Compton Scattering Hard X-Ray Source

    CERN Document Server

    Uesaka, Mitsuru; Kaneyasu, Tatsuo; Torikoshi, Masami

    2005-01-01

    We have developed a compact Compton scattering hard X-ray source at Nuclear Engineering Research Laboratory, University of Tokyo. The compact hard X-ray source can produce tunable monochromatic hard X-rays. The monochromatic hard X-rays are required in large field of medical and biological applications. We are planning to perform dual-energy X-ray CT, which enables us to measure atomic number Z distribution and electron density re distribution in a material. The hard X-ray source has an advantage to perform dual-energy X-ray CT. The X-ray energy can be changed quickly by introducing a fundamental frequency and a second harmonic frequency lasers. This quick energy change is indispensable to medical imaging and very difficult in a large SR light source and others. The information on the atomic number and electron density will be used for treatment plan in radiotherapy as well as for identification of materials in a nondestructive test. We examined applicability of the dual-energy X-ray CT for atomic number meas...

  18. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.|info:eu-repo/dai/nl/08747610X

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  19. Comparison of Unmonochromatized Synchrotron Radiation and Conventional X-rays in the Imaging of Mammographic Phantom and Human Breast Specimens: A Preliminary Result

    OpenAIRE

    Jung, Haijo; Kim, Hee-Joung; Kim, Eun-Kyung; Hong, Jin-O; Je, Jung Ho; Hwu, Yeukuang; Tsai, Wen-Li; Magaritondo, Giorgio; Yoo, Hyung-Sik

    2005-01-01

    A simple imaging setup based on the principle of coherence-based contrast X-ray imaging with unmonochromatized synchrotron radiation was used for studying mammographic phantom and human breast specimens. The use of unmonochromatized synchrotron radiation simplifies the instrumentation, decreases the cost and makes the procedure simpler and potentially more suitable for clinical applications. The imaging systems consisted of changeable silicon wafer attenuators, a tungsten slit system, a CdWO4...

  20. Fabrication of large area X-ray diffraction grating for X-ray phase imaging

    Science.gov (United States)

    Noda, Daiji; Tokuoka, Atsushi; Katori, Megumi; Minamiyama, Yasuto; Yamashita, Kenji; Nishida, Satoshi; Hattori, Tadashi

    2012-07-01

    X-ray lithography, which uses highly directional synchrotron radiation, is one of the technologies that can be used for fabricating micrometer-sized structures. In X-ray lithography, the accuracy of the fabricated structure depends largely on the accuracy of the X-ray mask. Since X-ray radiation is highly directional, a micro-fabrication technology that produces un-tapered and high aspect ratio highly absorbent structures on a low absorbent membrane is required. Conventionally, a resin material is used as the support membrane for large area X-ray masks. However, resin membranes have the disadvantage that they can sag after several cycles of X-ray exposure due to the heat generated by the X-rays. Therefore, we proposed and used thin carbon wafers for the membrane material because carbon has an extremely small thermal expansion coefficient. We fabricated new carbon membrane X-ray masks, and these results of X-ray lithography demonstrate the superior performance.

  1. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) ... top of page What are some common uses of the procedure? A bone x-ray is used ...

  3. Lumbosacral spine x-ray

    Science.gov (United States)

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  4. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  5. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight November is National Lung Cancer Awareness Month Recently posted: Carotid Intima-Media Thickness ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions ... Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, ...

  8. Pelvis x-ray

    Science.gov (United States)

    The x-ray is used to look for: Fractures Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... Abnormal results may suggest: Pelvic fractures Arthritis of the hip joint ... spondylitis (abnormal stiffness of the spine and joint) ...

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... Radiology (IDoR) Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript ... Carotid Intima-Media Thickness Test Medical Imaging Costs Video: Abdominal Ultrasound Video: Pelvic Ultrasound November 8 is ...

  10. X-ray filter for x-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  11. The Evaluation of Conventional X-ray Exposure Parameters Including Tube Voltage and Exposure Time in Private and Governmental Hospitals of Lorestan Province, Iran

    Directory of Open Access Journals (Sweden)

    Mehrdad Gholami

    2015-07-01

    Full Text Available Introduction In radiography, dose and image quality are dependent on radiographic parameters. The problem is caused from incorrect use of radiography equipment and from the radiation exposure to patients much more than required. Therefore, the aim of this study was to implement a quality-control program to detect changes in exposure parameters, which may affect diagnosis or patient radiation dose. Materials and Methods This cross-sectional study was performed on seven stationary X-ray units in sixhospitals of Lorestan province. The measurements were performed, using a factory-calibrated Barracuda dosimeter (model: SE-43137. Results According to the results, the highest output was obtained in A Hospital (M1 device, ranging from 107×10-3 to 147×10-3 mGy/mAs. The evaluation of tube voltage accuracy showed a deviation from the standard value, which ranged between 0.81% (M1 device and 17.94% (M2 device at A Hospital. The deviation ranges at other hospitals were as follows: 0.30-27.52% in B Hospital (the highest in this study, 8.11-20.34% in C Hospital, 1.68-2.58% in D Hospital, 0.90-2.42% in E Hospital and 0.10-1.63% in F Hospital. The evaluation of exposure time accuracy showed that E, C, D and A (M2 device hospitals complied with the requirements (allowing a deviation of ±5%, whereas A (M1 device, F and B hospitals exceeded the permitted limit. Conclusion The results of this study showed that old X-ray equipments with poor or no maintenance are probably the main sources of reducing radiographic image quality and increasing patient radiation dose.

  12. Focal spot size reduction using asymmetric collimation to enable reduced anode angles with a conventional angiographic x-ray tube for use with high resolution detectors

    Science.gov (United States)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations ... patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... shades of gray and air appears black. Until recently, x-ray images were maintained on large film ... assist you in finding the most comfortable position possible that still ensures x-ray image quality. top ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  17. Coherent x-ray optics

    CERN Document Server

    Paganin, David M

    2006-01-01

    'Coherent X-Ray Optics' gives a thorough treatment of the rapidly expanding field of coherent x-ray optics, which has recently experienced something of a renaissance with the availability of third-generation synchrotron sources.

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissues around or in bones. top of page How should I prepare? Most bone x-rays require ... is placed beneath the patient. top of page How does the procedure work? X-rays are a ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ... and procedures may vary by geographic region. Discuss the fees associated with your prescribed ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used ... placed beneath the patient. top of page How does the procedure work? X-rays are a form ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of ionizing radiation to produce pictures of the inside of the body. X-rays are the oldest ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray technologist if there is any possibility that they are pregnant. Many imaging tests are not performed during pregnancy ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? A bone x-ray is used to: ... and x-rays. top of page What does the equipment look like? The equipment typically used for ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... be taken to minimize radiation exposure to the baby. See the Safety page for more information about pregnancy and x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of an x-ray tube suspended over a table on which the patient ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  13. X-Ray Exam: Forearm

    Science.gov (United States)

    ... recorded on a computer or special X-ray film. This image shows the soft tissues and bones of the forearm. The X-ray image is black and white. Dense structures that block the passage of the X-ray beam through the body, such as the bones, appear white on the ...

  14. Jovian X-ray emissions

    Science.gov (United States)

    Waite, J. H.; Lewis, W. S.; Gladstone, G. R.; Fabian, A. C.; Brandt, W. N.

    1996-01-01

    The Einstein and Rosat observations of X-ray emissions from Jupiter are summarized. Jupiter's soft X-ray emission is observed to originate from the planet's auroral zones, and specifically, from its equatorial region. The processes responsible for these emissions are not established. The brightness distribution of the Jovian X-rays is characterized by the dependence on central meridian longitude and by north-south and morning-afternoon asymmetries. The X-rays observed during the impact of the comet Shoemaker-Levy 9 are believed to be impact-induced brightenings of the X-ray aurora.

  15. Global Properties of X-Ray Flashes and X-Ray-Rich GRBs Observed by Swift

    Science.gov (United States)

    Sakamoto, T.; Yamazaki, R.; Cummings, J.; Krimm, H.; Parsons, A.; Hullinger, D.; Barbier, L.; Fenimore, E.; Markwardt, C.; Tueller, J.; hide

    2007-01-01

    We describe and discuss the spectral and temporal characteristics of the prompt emission and X-ray afterglow emission of X-ray flashes (XRFs) detected and observed by Swift between December 2005 and September 2006. We compare these characteristics to a sample of X-ray rich gamma-ray bursts (XRRs) and conventional classical gamma-ray bursts (C-GRBs)observed during the same period. We confirm the correlation between Epeak and fluence noted by others and find further evidence that XRFs and C-GRBs form a continuum. We also confirmed that our known redshift samples are consistent with the correlation between the peak energy (Epeak) and the isotropic radiated energy (Eiso), so called the Epeak-Eiso relation. The spectral properties of X-ray afterglows are similar to those of gamma-ray burst afterglows, but the temporal properties of the two classes are quite different. We found that the light curves of C-GRBs afterglow show a break to steeper indices (shallow-to-steep break) at much earlier times than do XRF afterglows. Moreover, the overall luminosity of X-ray afterglows of XRFs are systematically smaller by a factor of two or more compared with that of C-GRBs. These distinct differences in the X-ray afterglow between XRFs and C-GRBs are key to understanding not only a mysterious shallow-to-steep phase in the X-ray afterglow but also the unique nature of XRFs.

  16. MRI-CEST assessment of tumour perfusion using X-ray iodinated agents: comparison with a conventional Gd-based agent

    Energy Technology Data Exchange (ETDEWEB)

    Anemone, Annasofia; Consolino, Lorena [Universita degli Studi di Torino, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Torino (Italy); Longo, Dario Livio [Universita degli Studi di Torino, Istituto di Biostrutture e Bioimmagini (CNR) c/o Centro di Biotecnologie Molecolari, Torino (Italy)

    2017-05-15

    X-ray iodinated contrast media have been shown to generate contrast in MR images when used with the chemical exchange saturation transfer (CEST) approach. The aim of this study is to compare contrast enhancement (CE) capabilities and perfusion estimates between radiographic molecules and a Gd-based contrast agent in two tumour murine models with different vascularization patterns. MRI-CEST and MRI-CE T{sub 1w} images were acquired in murine TS/A and 4 T1 breast tumours upon sequential i.v. injection of iodinated contrast media (iodixanol, iohexol, and iopamidol) and of gadoteridol. The signal enhancements observed in the two acquisition modalities were evaluated using Pearson's correlation, and the correspondence in the spatial distribution was assessed by a voxelwise comparison. A significant, positive correlation was observed between iodinated contrast media and gadoteridol for tumour contrast enhancement and perfusion values for both tumour models (r = 0.51-0.62). High spatial correlations were observed in perfusion maps between iodinated molecules and gadoteridol (r = 0.68-0.86). Tumour parametric maps derived by iodinated contrast media and gadoteridol showed high spatial similarities. A good to strong spatial correlation between tumour perfusion parameters derived from MRI-CEST and MRI-CE modalities indicates that the two procedures provide similar information. (orig.)

  17. New intraoral x-ray fluorographic imaging for dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, T.; Osada, T.; Aoyama, W.; Iguchi, M.; Suzuki, S.; Kanno, M.; Moriya, K.; Yoshimura, M.; Tusuda, M.

    1983-06-01

    A new dental x-ray fluorographic unit has been developed. This unit is composed of small intraoral x-ray tube, a compact x-ray image intensifier, and a high-resolution TV system. The purposes for developing this equipment were to (1) directly observe the tooth during endodontic procedures and (2) reduce x-ray exposure to the patient and the dentist. The radiation exposure can be reduced to about 1/600 the exposure used with conventional dental film. In clinical trials, a satisfactory fluorographic dental image for endodontic treatment was obtained with this new device.

  18. X-ray imaging with the PILATUS 100k detector

    DEFF Research Database (Denmark)

    Bech, Martin; Bunk, O.; David, C.

    2008-01-01

    We report on the application of the PILATUS 100K pixel detector for medical imaging. Experimental results are presented in the form of X-ray radiographs using standard X-ray absorption contrast and a recently developed phase contrast imaging method. The results obtained with the PILATUS detector...... are compared to results obtained with a conventional X-ray imaging system consisting of an X-ray scintillation screen, lens optics, and a charge coupled device. Finally, the results for both systems are discussed more quantitatively based on an image power spectrum analysis. Udgivelsesdato: April...

  19. Application of kinoform lens for X-ray reflectivity analysis.

    Science.gov (United States)

    Tiwari, M K; Alianelli, L; Dolbnya, I P; Sawhney, K J S

    2010-03-01

    In this paper the first practical application of kinoform lenses for the X-ray reflectivity characterization of thin layered materials is demonstrated. The focused X-ray beam generated from a kinoform lens, a line of nominal size approximately 50 microm x 2 microm, provides a unique possibility to measure the X-ray reflectivities of thin layered materials in sample scanning mode. Moreover, the small footprint of the X-ray beam, generated on the sample surface at grazing incidence angles, enables one to measure the absolute X-ray reflectivities. This approach has been tested by analyzing a few thin multilayer structures. The advantages achieved over the conventional X-ray reflectivity technique are discussed and demonstrated by measurements.

  20. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  1. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  2. X-ray instrumentation for SR beamlines

    CERN Document Server

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  3. Slump sitting X-ray of the lumbar spine is superior to the conventional flexion view in assessing lumbar spine instability.

    Science.gov (United States)

    Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Lim, Joel-Louis; Choong, Denise Ai-Wen; Tan, Chuen-Seng; Liu, Gabriel Ka-Po; Wong, Hee-Kit

    2017-03-01

    Flexion radiographs have been used to identify cases of spinal instability. However, current methods are not standardized and are not sufficiently sensitive or specific to identify instability. This study aimed to introduce a new slump sitting method for performing lumbar spine flexion radiographs and comparison of the angular range of motions (ROMs) and displacements between the conventional method and this new method. This study used is a prospective study on radiological evaluation of the lumbar spine flexion ROMs and displacements using dynamic radiographs. Sixty patients were recruited from a single spine tertiary center. Angular and displacement measurements of lumbar spine flexion were carried out. Participants were randomly allocated into two groups: those who did the new method first, followed by the conventional method versus those who did the conventional method first, followed by the new method. A comparison of the angular and displacement measurements of lumbar spine flexion between the conventional method and the new method was performed and tested for superiority and non-inferiority. The measurements of global lumbar angular ROM were, on average, 17.3° larger (p<.0001) using the new slump sitting method compared with the conventional method. They were most significant at the levels of L3-L4, L4-L5, and L5-S1 (p<.0001, p<.0001 and p=.001, respectively). There was no significant difference between both methods when measuring lumbar displacements (p=.814). The new method of slump sitting dynamic radiograph was shown to be superior to the conventional method in measuring the angular ROM and non-inferior to the conventional method in the measurement of displacement. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Soft X-ray optics

    CERN Document Server

    Spiller, Eberhard A

    1993-01-01

    This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction.

  5. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  6. Clinical and radiological evaluation of ARDS. Comparison of conventional X-ray procedures and computed tomography in patients from the intensive care unit. Klinische und radiologische Beurteilung des ARDS. Vergleich von konventionellen Roentgenbildern und Computertomogramm bei Intensivpatienten

    Energy Technology Data Exchange (ETDEWEB)

    Hirt, S.W.

    1985-08-19

    Thirty patients under long-term artificial respiration being at risk of or suffering from ARDS were observed on the intensive care unit right from the beginning of treatment. In all cases, the lungs were visualised by means of computed tomography. Computed tomography of the lungs provided valuable information as to the pulmonal distribution of ARDS-related changes. In gradually developing acute respiratory insufficiency caused by parenchymal changes that start from the paravertebral regions CT scans also permitted the so-called 'silent period' to be ascertained that is always seen to escape radiological detection. Comparative evaluations confirmed the diagnostic superiority of computed tomography to conventional X-ray procedures and arterial blood gas analysis in those ARDS patients where the tissue changes begin in the dorsal sections of the lungs. (orig./MBC).

  7. JEUMICO: Czech-Bavarian astronomical X-ray optics project

    Science.gov (United States)

    Hudec, R.; Döhring, T.

    2017-07-01

    Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  8. Optimization of conventional X-ray images for the detection of hook of hamate fractures; Optimierung von konventionellen Roentgenaufnahmen zur Erkennung von Hamulus ossis hamati Frakturen

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, R.; Adam, C. [Abt. fuer Bildgebende Diagnostik und Interventionelle Radiologie, KMG Klinikum Guestrow, Akademisches Lehrkrankenhaus der Univ. Rostock, Guestrow (Germany); Radmer, S. [Abt. fuer Orthopaedie und Rheumachirurgie, Immanuel Krankenhaus, Akademisches Lehrkrankenhaus der FU-Berlin (Germany); Scheufler, O. [Abt. fuer Plastische, Rekonstruktive und Aesthetische Chirurgie, Universitaetsspital Basel (Switzerland); Bogusch, G. [Inst. fuer Anatomie des Universitaetsklinikums Charite, Humboldt Univ. zu Berlin (Germany)

    2006-07-01

    Fractures of the hook of the hamate are a rare event. The fracture cannot always be detected clinically and standard radiographs do not always provide an overlap-free image of the hook of the hamate, so that fractures can easily be overlooked. The objective of the present study was to examine if the sensitivity of detecting hamulus ossis hamati fractures can further be improved by a modified conventional radiographic projection. After dissection of the hook of the hamate on 10 cadaver hands, a fracture was produced close to the base using a surgical chisel. Conventional radiographs were then performed in four different projections (dorso-palmar, lateral, carpal-tunnel and oblique view). The oblique view was obtained in a 45 supination position, slight extension and radial duction, with the tube tilted from distal to proximal by 30 . An axial spiral CT was used as a reference for detection of the fracture. The highest sensitivity of the conventional radiographs, with 8/10 identified fractures (80%), was achieved by the oblique view. The carpal-tunnel view with 4/10 (40%) and the dorso-palmar projection with 3/10 (30%) were much lower. All fractures were missed in the lateral projection. If all of the conventional radiographic projections are taken into account, the sensitivity is increased to 90%. All of the fractures were reliably detected in the axial CT-image. If a hamulus ossis hamati fracture is suspected clinically, in addition to the dorso-palmar and carpal-tunnel view, the special oblique view described here should be performed as a third projection plane, while the lateral view can be dispensed with. However, even if all projections are taken into account, a negative finding in the conventional radiographic imaging does not exclude a fracture with absolute certainty. In such cases, a CT or MRI should be performed to exclude a fracture. (orig.)

  9. Evaluation of odontological X ray and conventional radiology, and mammography installed at Recife, Pernambuco, Brazil, during the period of 2005 to 2010; Avaliacao dos equipamentos de raios-X odontologicos e de radiologia convencional e mamografos instalados em Recife no periodo de 2005 a 2010

    Energy Technology Data Exchange (ETDEWEB)

    Asfora, Viviane Khoury; Andrade, Marcos Ely; Barros, Vinicius Saito de; Khoury, Helen J.; Brasileiro, Izabela V. [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-10-26

    This paper studied the performance of 48 X ray equipment of odontological clinics, 22 mammography, 104 conventional X ray equipment. Accuracy tests were performed and the reproducibility of exposure time and the applied voltage to the X ray tube, collimation and alignment of the radiation beam, half-thickness and filtration. The obtained results have shown that for the mammography, only 55% of evaluated equipment attended to all requirements of the Portaria 453 of the Ministry of Health and that 46% of the odontological equipment and 53% of X-ray equipment attended to all the requirements of the document. The items presenting more inadequacy were collimation, beam filtration and time of accuracy of exposure ad voltage

  10. X-ray microtomography of porous media at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, B. [Brookhaven National Labs., Upton, NY (United States)

    1997-02-01

    This session is comprised of pertinent information about the historical aspects, current status of research, technical achievements, and future plans in X-ray computed microtomography at Brookhaven National Laboratories. An explanation with specifications and diagrams of X-ray instrumentation is provided. Several high resolution 3-D color images of reservoir rock drill cores and other materials are included.

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays to pass through them. As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... diagnosis and treatment. No radiation remains in a patient's body after an x-ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for both patients and physicians. Because x-ray imaging is fast and easy, it is ... Radiation Exposure Special care is taken during x-ray examinations to use ...

  15. Chandra's X-ray Vision

    Indian Academy of Sciences (India)

    1999-07-23

    Jul 23, 1999 ... GENERAL I ARTICLE. Chandra's X-ray Vision. K P Singh. Chandra X-ray Observatory (CXO) is a scientific satellite (moon/ chandra), named after the Indian-born Nobel laureate. Subrahmanyan Chandrasekhar - one of the foremost astro- physicists of the twentieth century and popularly known as. Chandra.

  16. X-Ray Exam: Ankle

    Science.gov (United States)

    ... radiation through the ankle, and black and white images of the bones and soft tissues are recorded on a computer or special X-ray film. Dense structures that block the passage of the X-ray beam through the body, such as bones, appear white. Softer body tissues, ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ...

  18. X-Ray Tomographic Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  19. X-ray spectroscopy of manganese clusters

    Energy Technology Data Exchange (ETDEWEB)

    Grush, M.M. [Univ. of California, Davis, CA (United States). Dept. of Applied Science]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-06-01

    Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

  20. Assessment of bone tissue mineralization by conventional x-ray microcomputed tomography: Comparison with synchrotron radiation microcomputed tomography and ash measurements.

    Science.gov (United States)

    Kazakia, G J; Burghardt, A J; Cheung, S; Majumdar, S

    2008-07-01

    Assessment of bone tissue mineral density (TMD) may provide information critical to the understanding of mineralization processes and bone biomechanics. High-resolution three-dimensional assessment of TMD has recently been demonstrated using synchrotron radiation microcomputed tomography (SRμCT); however, this imaging modality is relatively inaccessible due to the scarcity of SR facilities. Conventional desktop μCT systems are widely available and have been used extensively to assess bone microarchitecture. However, the polychromatic source and cone-shaped beam geometry complicate assessment of TMD by conventional μCT. The goal of this study was to evaluate μCT-based measurement of degree and distribution of tissue mineralization in a quantitative, spatially resolved manner. Specifically, μCT measures of bone mineral content (BMC) and TMD were compared to those obtained by SRμCT and gravimetric methods. Cylinders of trabecular bone were machined from human femoral heads (n=5), vertebrae (n=5), and proximal tibiae (n=4). Cylinders were imaged in saline on a polychromatic μCT system at an isotropic voxel size of 8 μm. Volumes were reconstructed using beam hardening correction algorithms based on hydroxyapatite (HA)-resin wedge phantoms of 200 and 1200 mg HA/cm3. SRμCT imaging was performed at an isotropic voxel size of 7.50 μm at the National Synchrotron Light Source. Attenuation values were converted to HA concentration using a linear regression derived by imaging a calibration phantom. Architecture and mineralization parameters were calculated from the image data. Specimens were processed using gravimetric methods to determine ash mass and density. μCT-based BMC values were not affected by altering the beam hardening correction. Volume-averaged TMD values calculated by the two corrections were significantly different (p=0.008) in high volume fraction specimens only, with the 1200 mg HA/cm3 correction resulting in a 4.7% higher TMD value.

  1. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  2. Comparison of high resolution x-ray detectors with conventional FPDs using experimental MTFs and apodized aperture pixel design for reduced aliasing

    Science.gov (United States)

    Shankar, A.; Russ, M.; Vijayan, S.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    Apodized Aperture Pixel (AAP) design, proposed by Ismailova et.al, is an alternative to the conventional pixel design. The advantages of AAP processing with a sinc filter in comparison with using other filters include non-degradation of MTF values and elimination of signal and noise aliasing, resulting in an increased performance at higher frequencies, approaching the Nyquist frequency. If high resolution small field-of-view (FOV) detectors with small pixels used during critical stages of Endovascular Image Guided Interventions (EIGIs) could also be extended to cover a full field-of-view typical of flat panel detectors (FPDs) and made to have larger effective pixels, then methods must be used to preserve the MTF over the frequency range up to the Nyquist frequency of the FPD while minimizing aliasing. In this work, we convolve the experimentally measured MTFs of an Microangiographic Fluoroscope (MAF) detector, (the MAF-CCD with 35μm pixels) and a High Resolution Fluoroscope (HRF) detector (HRF-CMOS50 with 49.5μm pixels) with the AAP filter and show the superiority of the results compared to MTFs resulting from moving average pixel binning and to the MTF of a standard FPD. The effect of using AAP is also shown in the spatial domain, when used to image an infinitely small point object. For detectors in neurovascular interventions, where high resolution is the priority during critical parts of the intervention, but full FOV with larger pixels are needed during less critical parts, AAP design provides an alternative to simple pixel binning while effectively eliminating signal and noise aliasing yet allowing the small FOV high resolution imaging to be maintained during critical parts of the EIGI.

  3. Harmonic lasing in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-05-15

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned X-ray FEL facilities. In particular, LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multi-gigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other X-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact X-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the

  4. X-Ray Optics Research

    Science.gov (United States)

    1990-09-20

    OF FUNDING NUMBERS Building 410 PORM POET TS OKUI Bolig FBDC2032648ELEMENT NO. NO. NO ACCESiON NO 11. TITLE (include Security Classification) X - Ray Optics Research...by block number) This report describes work conducted during the period I October 1987 through 30 April 1990, under Contract AFOSR-88-00l0, " X - Ray Optics Research...growth and structure of multilayer interfaces. This capability is central to the development of future materials for multilayer x - ray optics , because

  5. Attenuation properties and percentage depth dose of tannin-based Rhizophora spp. particleboard phantoms using computed tomography (CT) and treatment planning system (TPS) at high energy x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, M. F. Mohd, E-mail: mfahmi@usm.my [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan (Malaysia); Abdullah, R. [School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan (Malaysia); Tajuddin, A. A. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang (Malaysia); Hashim, R. [School of Industrial Technologies, Universiti Sains Malaysia, 11800 Penang (Malaysia); Bauk, S. [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2016-01-22

    A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm{sup 3}. The mass attenuation coefficient of the phantom was measured using {sup 60}Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ{sup 2} value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Z{sub max}.

  6. Attenuation properties and percentage depth dose of tannin-based Rhizophora spp. particleboard phantoms using computed tomography (CT) and treatment planning system (TPS) at high energy x-ray beams

    Science.gov (United States)

    Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.

    2016-01-01

    A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm3. The mass attenuation coefficient of the phantom was measured using 60Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ2 value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Zmax.

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  8. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation ... x-ray uses a very small dose of ionizing radiation to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones or joint dislocation. Bone ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray machine is a compact apparatus that can be taken to the patient in a hospital ... so that any change in a known abnormality can be monitored over time. Follow-up examinations are ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones ... x-rays involves exposing a part of the body to a small dose of ionizing radiation to ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... or in bones. top of page How should I prepare? Most bone x-rays require no special ... to 10 minutes. top of page What will I experience during and after the procedure? A bone ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... examination may also be necessary so that any change in a known abnormality can be monitored over ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient for both ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the patient in a hospital bed or the emergency room. The x-ray tube is connected to ... equipment is relatively inexpensive and widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care or referring physician , who ... Medicine Radiation Safety How to Read Your Radiology Report Images related to X-ray (Radiography) - Bone Sponsored ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... here Images × Image Gallery Radiological technologist preparing to take an arm x-ray on a patient. View ... and/or your insurance provider to get a better understanding of the possible charges you will incur. ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in evaluating the hips of children with congenital problems. top of page This page was reviewed on ... Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... white on the x-ray, soft tissue shows up in shades of gray and air appears black. ... who will discuss the results with you. Follow-up examinations may be necessary. Your doctor will explain ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... imaged. When necessary, sandbags, pillows or other positioning devices will be used to help you maintain the ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... little information about muscles, tendons or joints. An MRI may be more useful in identifying bone and ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media Arthritis X-ray, Interventional Radiology and ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... very small dose of ionizing radiation to produce pictures of any bone in the body. It is ... a small dose of ionizing radiation to produce pictures of the inside of the body. X-rays ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page What are some common uses ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and easiest ... is used to: diagnose fractured bones or joint dislocation. demonstrate proper alignment and stabilization of bony fragments ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. ... appliances, eye glasses and any metal objects or clothing that might interfere with the x-ray images. ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects in soft ... frequently compared to current x-ray images for diagnosis and disease management. top of page How is ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... radiation dose for this procedure varies. See the Safety page for more information about radiation dose. Women ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a form of radiation like light or radio waves. X-rays pass through most objects, including the ... individual patient's condition. Ultrasound imaging, which uses sound waves instead of ionizing radiation to create diagnostic images, ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is ... taking our brief survey: Survey Do you have a personal story about radiology? Share your patient story ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. top of page What does ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary ... radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and ... to view and assess bone fractures, injuries and joint abnormalities. This exam requires little to no special ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... information you were looking for? Yes No Please type your comment or suggestion into the following text ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in varying degrees. Dense ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg ( ... x-ray tube is connected to a flexible arm that is extended over the patient while an ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ... in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pass through them. As a result, bones appear white on the x-ray, soft tissue shows up ... for a physician to view and assess bone injuries, including fractures, and joint abnormalities, such as arthritis. ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... abnormal bone growths and bony changes seen in metabolic conditions. assist in the detection and diagnosis of ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... may also be asked to remove jewelry, removable dental appliances, eye glasses and any metal objects or clothing that might interfere with the x-ray images. Women should always inform their physician and ...

  8. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  9. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  10. Why Do I Need X-Rays?

    Science.gov (United States)

    ... Child at Risk for Early Childhood Tooth Decay? Pacifiers Have Negative and Positive Effects The History of ... Sets the Record Straight on Dental X-Rays Types of X-Rays X-Rays Help Predict Permanent ...

  11. Nanometer x-ray lithography

    Science.gov (United States)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  12. Pioneering New Filters for X-ray Astrophysics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We plan to produce filters with holes so small that longer wavelength photons are unable to propagate through, whereas the shorter wavelength x-ray photons simply...

  13. Medical CT image reconstruction accuracy in the presence of metal objects using x-rays up to 1 MeV with x-ray targets of beryllium, carbon, aluminum, copper, and tungsten

    Science.gov (United States)

    Clayton, James; Ganguly, Arundhuti; Virshup, Gary

    2012-04-01

    Flat panels imagers based on amorphous silicon technology (a-Si) for digital radiography have been accepted by the medical community as having several advantages over film-based systems. Radiotherapy treatment planning systems employ computed tomographic (CT) data sets and projection images to delineate tumor targets and normal structures that are to be spared from radiation treatment. The accuracy of CT numbers is crucial for radiotherapy dose calculations. Conventional CT scanners operating at kilovoltage X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in human body. Megavoltage X-ray energies have problems maintaining contrast sensitivity for the same dose as kV X-ray systems. We intend to demonstrate significant improvement in metal artifact reductions and electron density measurements using an amorphous silicon a-Si imager obtained with an X-ray source that can operate at energies up to 1 MeV. We will investigate the ability to maintain contrast sensitivity at this higher X-ray energy by using targets with lower atomic numbers and appropriate amounts of Xray filtration than are typically used as X-ray production targets and filters.

  14. Center for X-Ray Optics, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  15. Optoelectronic Picosecond Detection of Synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Stephen M. [Purdue Univ., West Lafayette, IN (United States)

    2017-08-04

    The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results of this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.

  16. Progress toward a hard x-ray insertion device beam position monitor at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Decker, G.; Den Hartog, P.; Singh, O.; Rosenbaum, G.; Univ. of Georgia

    2008-01-01

    Long-term pointing stability at synchrotron light sources using conventional rf-based particle beam position monitoring is limited by the mechanical stability of the pickup electrode assembly. Photoemission-based photon beam position monitors for insertion device beams suffer from stray radiation backgrounds and other gap- dependent systematic errors. To achieve the goal of 500-nanoradian peak-to-peak pointing stability over a one-week period, the development of a photon beam position detector sensitive only to hard X-rays (> several keV) using copper X-ray fluorescence has been initiated. Initial results and future plans are presented.

  17. Soft x-ray excitonics

    Science.gov (United States)

    Moulet, A.; Bertrand, J. B.; Klostermann, T.; Guggenmos, A.; Karpowicz, N.; Goulielmakis, E.

    2017-09-01

    The dynamic response of excitons in solids is central to modern condensed-phase physics, material sciences, and photonic technologies. However, study and control have hitherto been limited to photon energies lower than the fundamental band gap. Here we report application of attosecond soft x-ray and attosecond optical pulses to study the dynamics of core-excitons at the L2,3 edge of Si in silicon dioxide (SiO2). This attosecond x-ray absorption near-edge spectroscopy (AXANES) technique enables direct probing of the excitons’ quasiparticle character, tracking of their subfemtosecond relaxation, the measurement of excitonic polarizability, and observation of dark core-excitonic states. Direct measurement and control of core-excitons in solids lay the foundation of x-ray excitonics.

  18. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    Science.gov (United States)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  19. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    Energy Technology Data Exchange (ETDEWEB)

    Barton, M.Q.; Craft, B.; Williams, G.P. (eds.)

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization. (LEW)

  20. A miniature X-ray tube based on carbon nanotube for an intraoral dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Park, Han Beom; Lee, Ju Hyuk; Cho, Sung Oh [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The number of human teeth that can be radiographically taken is limited. Moreover, at least two X-ray shots are required to get images of teeth from both sides of the mouth. In order to overcome the disadvantages of conventional dental radiography, a dental radiograph has been proposed in which an X-ray tube is inserted into the mouth while an X-ray detector is placed outside the mouth. The miniature X-ray tube is required small size to insert into the mouth. Recently, we have fabricated a miniature x-ray tube with the diameter of 7 mm using a carbon nanotube (CNT) field. But, commercialized miniature X-ray tube were adopted a thermionic type using tungsten filament. The X-ray tubes adopted thermionic emission has a disadvantage of increasing temperature of x-ray tube. So it need to cooling system to cool x-ray tube. On the other hands, X-ray tubes adopted CNT field emitters don't need cooling systems because electrons are emitted from CNT by applying high voltage without heating. We have developed the miniature x-ray tube that produce x-ray with uniform spatial distribution based on carbon nanotube field emitters. The fabricated miniature x-ray tube can be stably and reliably operated at 50kV without any vacuum pump. The developed miniature X-ray tube was applied for intraoral dental radiography that employs an intra-oral CNT-based miniature X-ray tube and extra-oral X-ray detectors. An X-ray image of many teeth was successfully obtained by a single X-ray shot using the intra-oral miniature X-ray tube system. Furthermore, images of both molar teeth of pig were simultaneously obtained by a single X-ray shot. These results show that the intraoral dental radiography, which employs an intraoral miniature X-ray tube and an extraoral X-ray detector, performs better than conventional dental radiography.

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... An x-ray (radiograph) is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... dislocations. In elderly or patients with osteoporosis, a hip fracture may be clearly seen on a CT scan, while it may be barely seen, if at all, on a hip x-ray. For suspected spine injury or other ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ... This ensures that those parts of a patient's body not being imaged receive minimal radiation ... x-ray images are among the clearest, most detailed views of ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... may be placed over your pelvic area or breasts when feasible to protect from ... chance of cancer from excessive exposure to radiation. However, the benefit ...

  6. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and easiest way for your doctor ... shin), ankle or foot. top of page What are some common uses of the ... bones or joint dislocation. demonstrate proper alignment and stabilization of bony ...

  8. X-rays and magnetism.

    Science.gov (United States)

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ... bear denotes child-specific content. Related Articles and Media ... Images related to X-ray (Radiography) - Bone Sponsored by ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluated). MRI can also detect subtle or occult fractures or bone bruises (also called bone contusions or microfractures) not visible on x-ray images. CT is being used widely to assess trauma patients in ... fractures, subtle fractures or dislocations. In elderly or patients ...

  12. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... pelvis and an image is recorded on special film or a computer. This image shows the bones of the pelvis, which include the two hip bones, plus the sacrum and the coccyx (tailbone). The X-ray image is black and white. Dense body parts that block the passage of the X- ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... any possibility that they are pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. A Word About Minimizing ... imaging tests and treatments have special pediatric considerations. The teddy ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... way for your doctor to view and assess bone fractures, injuries and joint abnormalities. This exam requires little ... way for a physician to view and assess bone injuries, including fractures, and joint abnormalities, such as arthritis. X-ray ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... for a physician to view and assess bone injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it ...

  16. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  17. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    Science.gov (United States)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  18. Microfocus/Polycapillary-Optic Crystallographic X-Ray System

    Science.gov (United States)

    Joy, Marshall; Gubarev, Mikhail; Ciszak, Ewa

    2005-01-01

    A system that generates an intense, nearly collimated, nearly monochromatic, small-diameter x-ray beam has been developed for use in macromolecular crystallography. A conventional x-ray system for macromolecular crystallography includes a rotating-anode x-ray source, which is massive (.500 kg), large (approximately 2 by 2 by 1 m), and power-hungry (between 2 and 18 kW). In contrast, the present system generates a beam of the required brightness from a microfocus source, which is small and light enough to be mounted on a laboratory bench, and operates at a power level of only tens of watts. The figure schematically depicts the system as configured for observing x-ray diffraction from a macromolecular crystal. In addition to the microfocus x-ray source, the system includes a polycapillary optic . a monolithic block (typically a bundle of fused glass tubes) that contains thousands of straight or gently curved capillary channels, along which x-rays propagate with multiple reflections. This particular polycapillary optic is configured to act as a collimator; the x-ray beam that emerges from its output face consists of quasi-parallel subbeams with a small angular divergence and a diameter comparable to the size of a crystal to be studied. The gap between the microfocus x-ray source and the input face of the polycapillary optic is chosen consistently with the focal length of the polycapillary optic and the need to maximize the solid angle subtended by the optic in order to maximize the collimated x-ray flux. The spectrum from the source contains a significant component of Cu K (photon energy is 8.08 keV) radiation. The beam is monochromatized (for Cu K ) by a nickel filter 10 m thick. In a test, this system was operated at a power of 40 W (current of 897 A at an accelerating potential of 45 kV), with an anode x-ray spot size of 41+/-2 microns. Also tested, in order to provide a standard for comparison, was a commercial rotating-anode x-ray crystallographic system with a

  19. An Intraoral Miniature X-ray Tube Based on Carbon Nanotubes for Dental Radiography

    Directory of Open Access Journals (Sweden)

    Hyun Jin Kim

    2016-06-01

    Full Text Available A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

  20. An intraoral miniature x-ray tube based on carbon nanotubes for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Park, Han Beom; Cho, Sung Oh [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

  1. A simple X-ray emitter.

    Science.gov (United States)

    Murakami, Hiroaki; Ono, Ryoichi; Hirai, Atsuhiko; Hosokawa, Yoshinori; Kawai, Jun

    2005-07-01

    A compact X-ray emission instrument is made, and the X-ray spectra are measured by changing the applied electric potential. Strong soft X-rays are observed when evacuating roughly and applying a high voltage to an insulator settled in this device. The X-ray intensity is higher as the applied voltage is increased. A light-emitting phenomenon is observed when this device emits X-rays. The present X-ray emitter is made of a small cylinder with a radius of 20 mm and a height of 50 mm. This X-ray generator has a potential to be used as an X-ray source in an X-ray fluorescence spectrometer.

  2. Progress on the Slumped Glass X-Ray Optics for the International X-Ray Observatory

    Science.gov (United States)

    Petre, Robert

    2011-01-01

    NASA has been developing technology for the large area IXO mirror based on precise slumping of glass sheets into parabolic and hyperbolic mirror segments. Recent progress toward attaining the stringent IXO angular resolution requirement and demonstrating technical readiness of the slumped glass technology will be described. This includes a series of X-ray measurements of mirror segment pairs in a flight-like mount. Additionally, the plan for maturing the slumped glass approach over the next several years will be summarized.

  3. Effective X-ray beam size measurements of an X-ray tube and polycapillary X-ray lens system using a scanning X-ray fluorescence method

    Energy Technology Data Exchange (ETDEWEB)

    Gherase, Mihai R., E-mail: mgherase@csufresno.edu; Vargas, Andres Felipe

    2017-03-15

    Size measurements of an X-ray beam produced by an integrated polycapillary X-ray lens (PXL) and X-ray tube system were performed by means of a scanning X-ray fluorescence (SXRF) method using three different metallic wires. The beam size was obtained by fitting the SXRF data with the analytical convolution between a Gaussian and a constant functions. For each chemical element in the wire an effective energy was calculated based on the incident X-ray spectrum and its photoelectric cross section. The proposed method can be used to measure the effective X-ray beam size in XRF microscopy studies.

  4. Diffractive X-ray Telescopes

    OpenAIRE

    Skinner, Gerald K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super...

  5. X-ray Cryogenic Facility (XRCF) Handbook

    Science.gov (United States)

    Kegley, Jeffrey R.

    2016-01-01

    The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama

  6. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  7. Imaging performance of a thin Lu2O3:Eu nanophosphor scintillating screen coupled to a high resolution CMOS sensor under X-ray radiographic conditions: comparison with Gd2O2S:Eu conventional phosphor screen

    Science.gov (United States)

    Seferis, I.; Michail, C.; Valais, I.; Zeler, J.; Liaparinos, P.; Kalyvas, N.; Fountos, G.; Zych, E.; Kandarakis, I.; Panayiotakis, G.

    2014-03-01

    The purpose of the present study was to experimentally evaluate the imaging characteristics of the Lu2O3:Eu nanophosphor thin screen coupled to a high resolution CMOS sensor under radiographic conditions. Parameters such as the Modulation Transfer Function (MTF), the Normalized Noise Power Spectrum (NNPS) and the Detective Quantum Efficiency (DQE) were investigated at 70 kVp under three exposure levels (20 mAs, 63 mAs and 90 mAs). Since Lu2O3:Eu emits light in the red wavelength range, the imaging characteristics of a 33.3 mg/cm2 Gd2O2S:Eu conventional phosphor screen were also evaluated for comparison purposes. The Lu2O3:Eu nanophosphor powder was produced by the combustion synthesis, using urea as fuel. A scintillating screen of 30.2 mg/cm2 was prepared by sedimentation of the nanophosphor powder on a fused silica substrate. The CMOS/Lu2O3:Eu detector`s imaging characteristics were evaluated using an experimental method proposed by the International Electrotechnical Commission (IEC) guidelines. It was found that the CMOS/Lu2O3:Eu nanophosphor system has higher MTF values compared to the CMOS/Gd2O2S:Eu sensor/screen combination in the whole frequency range examined. For low frequencies (0 to 2 cycles/mm) NNPS values of the CMOS/Gd2O2S:Eu system were found 90% higher compared to the NNPS values of the CMOS/Lu2O3:Eu nanophosphor system, whereas from medium to high frequencies (2 to 13 cycles/mm) were found 40% higher. In contrast with the CMOS/ Gd2O2S:Eu system, CMOS/Lu2O3:Eu nanophosphor system appears to retain high DQE values in the whole frequency range examined. Our results indicate that Lu2O3:Eu nanophosphor is a promising scintillator for further research in digital X-ray radiography.

  8. Understanding the Nature of X-ray Weak Quasars

    Science.gov (United States)

    Brandt, William

    Eddington ratio. Specifically, we will measure if/how the fraction of X-ray weak quasars declines when considering quasar samples with increasing C IV emission-line equivalent width. X-ray spectral measurements will also be used to search for heavy X-ray absorption and Compton-reflection signatures occurring when our line of sight intercepts the thick inner disk. These measurements will clarify if inner-disk shielding plays a broader role in setting the high-ionization emission-line strengths of quasars. Furthermore, our new sample of X-ray weak quasars will let us identify reliably the UV emission-line, UV continuum, and spectral energy distribution properties that trace X-ray weakness, so that physical modeling of identified connections can proceed with confidence. There is mounting evidence that some X-ray weak quasars, including a significant fraction of broad absorption line (BAL) quasars, simply lack the means to produce a typical level of X-ray emission. We will utilize both individual spectroscopic and X-ray stacking analyses to determine the frequency of BAL quasars with intrinsically weak Xray emission, thereby clarifying the overall importance of intrinsic X-ray weakness for the launching of quasar winds. Utilizing quasars with multiple X-ray observations, we will also assess how often extreme X-ray variability causes transient X-ray weakness. Finally, given our past results, we expect our greatly improved sample to reveal new unexpected X-ray weak quasars that can provide fresh insights. The proposed program will probe the nature of black holes, explore the extreme physical conditions of the Universe, and investigate outstanding issues in the development of galaxies over cosmic time. It thereby directly addresses NASA's strategic objective to discover how the Universe works, and how it began and evolved (Objective 1.6 of the 2014 NASA Strategic Plan).

  9. Composite materials for x-ray protection

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, M.J.; Mawdsley, G.E.; Lilley, M.; Servant, R.; Reh, G. (Univ. of Toronto, Ontario, (Canada))

    1991-05-01

    We have developed and tested a radiation protection material that provides similar attenuation for diagnostic x-ray spectra to that of conventional Pb apron materials with approximately 30% reduced weight. By combining a number of elements with different K absorption energies, such as Ba, W, and Pb, energy attenuation for given spectra can be optimized with respect to total cross-sectional mass loading. Alternatively, garments with much higher protective factors at equivalent weight to conventional garments could be produced. The reduction in the amount of Pb used also reduces problems associated with the toxicity of the material during manufacture and disposal. Back strain can be reduced for personnel performing special radiological procedures that require wearing protective garments for long periods of time.

  10. Prototyping iridium coated mirrors for x-ray astronomy

    Science.gov (United States)

    Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Emmerich, Florian; Stehlíková, Veronika; Inneman, Adolf

    2017-05-01

    X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Earth's atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  11. Geometry calibration between X-ray source and detector for tomosynthesis with a portable X-ray system.

    Science.gov (United States)

    Sato, Kohei; Ohnishi, Takashi; Sekine, Masashi; Haneishi, Hideaki

    2017-05-01

    Tomosynthesis is attracting attention as a low-dose tomography technology compared with X-ray CT. However, conventional tomosynthesis imaging devices are large and stationary. Furthermore, there is a limitation in the working range of the X-ray source during image acquisition. We have previously proposed the use of a portable X-ray device for tomosynthesis that can be used for ward rounds and emergency medicine. The weight of this device can be reduced by using a flat panel detector (FPD), and flexibility is realized by the free placement of the X-ray source and FPD. Tomosynthesis using a portable X-ray device requires calibration of the geometry between the X-ray source and detector at each image acquisition. We propose a method for geometry calibration and demonstrate tomosynthesis image reconstruction by this method. An image processing-based calibration method using an asymmetric and multilayered calibration object (AMCO) is presented. Since the AMCO is always attached to the X-ray source housing for geometry calibration, the additional setting of a calibration object or marker around or on the patients is not required. The AMCO's multilayer structure improves the calibration accuracy, especially in the out-of-plane direction. Two experiments were conducted. The first was performed to evaluate the calibration accuracy using an XY positioning stage and a gonio stage. As a result, an accuracy of approximately 1 mm was achieved both in the in-plane and out-of-plane directions. An angular accuracy of approximately [Formula: see text] was confirmed. The second experiment was conducted to evaluate the reconstructed image using a foot model phantom. Only the sagittal plane could be clearly observed with the proposed method. We proposed a tomosynthesis imaging system using a portable X-ray device. From the experimental results, the proposed method could provide sufficient calibration accuracy and a clear sagittal plane of the reconstructed tomosynthesis image.

  12. Cryotomography x-ray microscopy state

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  13. Center for X-ray Optics, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  14. X-Ray Exam: Scoliosis (For Parents)

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Scoliosis KidsHealth / For Parents / X-Ray Exam: Scoliosis What's in this article? What It Is Why ... You Have Questions Print What It Is A scoliosis X-ray is a relatively safe and painless ...

  15. Techniques in X-ray Astronomy

    Indian Academy of Sciences (India)

    ray telescopes in space, leading to a veritable revolution. Stich telescopes require distortion free focusing of X-rays and the use of position sensitive X- ray detectors. In this article I shall describe the importance of X-ray imaging, the optical ...

  16. Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources

    Science.gov (United States)

    Šimon, V.

    2017-07-01

    We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.

  17. Microwave calorimetry using X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Nicula, R., E-mail: radu.nicula@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Stir, M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Wurm, A. [University of Rostock, Institute of Physics, Wismarsche Str. 43-45, 18051 Rostock (Germany); Catala-Civera, J.M. [Universidad Politecnica de Valencia, Camino Vera s/n, E-46022 Valencia (Spain); Ishizaki, K.; Vaucher, S. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Zhuravlev, E.; Schick, C. [University of Rostock, Institute of Physics, Wismarsche Str. 43-45, 18051 Rostock (Germany)

    2011-11-10

    Highlights: Black-Right-Pointing-Pointer New approach for microwave calorimetry using synchrotron radiation powder diffraction. Black-Right-Pointing-Pointer In situ monitoring of the magnetostructural transformation of Co under magnetic microwave heating at 2.45 GHz. Black-Right-Pointing-Pointer Magnetic heat capacity of Co due to the spin-reorientation transition at microwave frequencies. - Abstract: An alternative approach for microwave calorimetry is proposed which relies on the synchrotron radiation powder diffraction technique as well as on the Grueneisen formalism for the analysis of thermal expansion. Cobalt was selected as suitable magnetic material for the present evaluation of the method. First results are reported concerning the calorimetric assessment of the HCP (hexagonal close-packed) to FCC (face centered cubic) transition of cobalt from in situ time-resolved X-ray diffraction experiments performed during magnetic (H-field) microwave heating. The X-ray calorimetry method yields specific heat capacity estimations that compare well with results from conventional differential scanning calorimetry measurements. In the presence of the 2.45 GHz microwave H-field, an 'anomalous' behaviour of the heat capacity across the structural phase transition is detected, which can be correlated with the magnetic spin reorientation transition of cobalt in the same temperature range.

  18. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  19. NIKOLA TESLA AND THE X-RAY

    OpenAIRE

    Rade R. Babic

    2005-01-01

    After professor Wilhelm Konrad Röntgen published his study of an x-ray discovery (Academy Bulletin, Berlin, 08. 11. 1895.), Nikola Tesla published his first study of an x-ray on the 11th of March in 1896. (X-ray, Electrical Review). Until the 11th of August in 1897 he had published ten studies on this subject. All Tesla,s x-ray studies were experimental, which is specific to his work. Studying the nature of the x-ray, he established a new medical branch-radiology. He wrote:” There’s no doubt...

  20. X-ray Spectroscopy of Cooling Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.R.; /SLAC; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  1. Observational Aspects of Hard X-ray Polarimetry

    Science.gov (United States)

    Chattopadhyay, Tanmoy

    2016-04-01

    of such hard X-ray telescopes, which may provide sensitive polarization measurements due to flux concentration in hard X-rays with a very low background. On the other hand, such a configuration ensures implementation of an optimized geometry close to an ideal one for the Compton polarimeters. In this context, we initiated the development of a focal plane Compton polarimeter, consisting of a plastic scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. Geant-4 simulations of the planned configuration estimates 1% MDP for a 100 mCrab source in 1 million seconds of exposure. Sensitivity of the instrument is found to be critically dependent on the lower energy detection limit of the plastic scatterer; lower the threshold, better is the sensitivity. In the actual experiment, the plastic is readout by a photomultiplier tube procured from Saint-Gobain. We carried out extensive experiments to characterize the plastic especially for lower energy depositions. The CsI(Tl) scintillators are readout by Si photomultipliers (SiPM). SiPMs are small in size and robust and therefore provide the compactness necessary for the designing of focal plane detectors. Each of the CsI(Tl)-SiPM systems was characterized precisely to estimate their energy threshold and detection probability along the length of the scintillators away from SiPM. Finally, we integrated the Compton polarimeter and tested its response to polarized and unpolarized radiation and compared the experimental results with Geant-4 simulation. Despite the growing realization of the scientific values of X-ray polarimetry and the efforts in developing sensitive X-ray polarimeters, there has not been a single dedicated X-ray polarimetry mission planned in near future. In this scenario, it is equally important to attempt polarization measurements from the existing or planned instruments which are not meant for X-ray polarization measurements but could be sensitive to it. There have been several attempts in past in

  2. Quality assessment of digital X-ray chest images using an anthropomorphic chest phantom

    Science.gov (United States)

    Vodovatov, A. V.; Kamishanskaya, I. G.; Drozdov, A. A.; Bernhardsson, C.

    2017-02-01

    The current study is focused on determining the optimal tube voltage for the conventional X-ray digital chest screening examinations, using a visual grading analysis method. Chest images of an anthropomorphic phantom were acquired in posterior-anterior projection on four digital X-ray units with different detector types. X-ray images obtained with an anthropomorphic phantom were accepted by the radiologists as corresponding to a normal human anatomy, hence allowing using phantoms in image quality trials without limitations.

  3. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    Science.gov (United States)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  4. Toward active x-ray telescopes II

    Science.gov (United States)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Johnson-Wilke, Raegan L.; Kolodziejczak, Jeffery J.; Lillie, Charles F.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2012-10-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the observation time required to achieve a given sensitivity has decreased by eight orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope, culminating with the exquisite subarcsecond imaging performance of the Chandra X-ray Observatory. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (technologically challenging—requiring precision fabrication, alignment, and assembly of large areas (x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes current progress toward active x-ray telescopes.

  5. On stellar X-ray emission

    Science.gov (United States)

    Rosner, R.; Golub, L.; Vaiana, G. S.

    1985-01-01

    Stellar X-ray astronomy represents an entirely new astronomical discipline which has emerged during the past five years. It lies at the crossroads of solar physics, stellar physics, and general astrophysics. The present review is concerned with the main physical problems which arise in connection with a study of the stellar X-ray data. A central issue is the extent to which the extrapolation from solar physics is justified and the definition (if possible) of the limits to such extrapolation. The observational properties of X-ray emission from stars are considered along with the solar analogy and the modeling of X-ray emission from late-type stars, the modeling of X-ray emission from early-type stars, the physics of stellar X-ray emission, stellar X-ray emission in the more general astrophysical context, and future prospects.

  6. Dynamic angle selection in X-ray computed tomography

    NARCIS (Netherlands)

    A. Dabravolski (Andrei); K.J. Batenburg (Joost); J. Sijbers (Jan)

    2014-01-01

    htmlabstractIn X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number

  7. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    OpenAIRE

    Sun, Tianxi; MacDonald, C.A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens.

  8. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics.

    Science.gov (United States)

    Sun, Tianxi; Macdonald, C A

    2013-02-07

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens.

  9. X-Ray Holography for Imaging Large Specimen with a Ag X-Ray Laser

    Science.gov (United States)

    Lee, Kyoung Hwan; Yun, Hyeok; Sung, Jae Hee; Lee, Seong Ku; Jeong, Tae Moon; Kim, Hyung Taek; Nam, Chang Hee

    We developed a new variant of Fourier transform holography (FTH) to overcome the separation condition of FTH by subtracting the autocorrelation signal, named as autocorrelation-subtracted FTH (AS-FHT). AS-FTH is advantageous in imaging large specimen using light sources of limited coherent photons because AS-FTH requires a much smaller coherent illumination area than conventional FTH. We experimentally demonstrated the AS-FTH using a Ni-like Ag x-ray laser at 13.9 nm. The hidden part of an image under its autocorrelation was successfully recovered by subtracting an independently measured autocorrelation signal.

  10. Polishing X-ray Mirror Mandrel

    Science.gov (United States)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. MSFC's Space Optics Manufacturing Technology Center (SOMTC) has grinding and polishing equipment ranging from conventional spindles to custom-designed polishers. These capabilities allow us to grind precisely and polish a variety of optical devices, including x-ray mirror mandrels. This image shows Charlie Griffith polishing the half-meter mandrel at SOMTC.

  11. Bi-directional x-ray phase-contrast mammography.

    Directory of Open Access Journals (Sweden)

    Kai Scherer

    Full Text Available Phase-contrast x-ray imaging is a promising improvement of conventional absorption-based mammography for early tumor detection. This potential has been demonstrated recently, utilizing structured gratings to obtain differential phase and dark-field scattering images. However, the inherently anisotropic imaging sensitivity of the proposed mono-directional approach yields only insufficient diagnostic information, and has low diagnostic sensitivity to highly oriented structures. To overcome these limitations, we present a two-directional x-ray phase-contrast mammography approach and demonstrate its advantages by applying it to a freshly dissected, cancerous mastectomy breast specimen. We illustrate that the two-directional scanning procedure overcomes the insufficient diagnostic value of a single scan, and reliably detects tumor structures, independently from their orientation within the breast. Our results indicate the indispensable diagnostic necessity and benefit of a multi-directional approach for x-ray phase-contrast mammography.

  12. The impact of an ICME on the Jovian X-ray aurora

    OpenAIRE

    Dunn, William R.; Branduardi-Raymont, Graziella; Elsner, Ronald F.; Vogt, Marissa F.; Lamy, Laurent; Ford, Peter G.; Coates, Andrew J.; Gladstone, G. Randall; Jackman, Caitriona M.; Nichols, Jonathan D.; Rae, I. Jonathan; Varsani, Ali; Kimura, Tomoki; Hansen, Kenneth C.; Jasinski, Jamie M.

    2016-01-01

    International audience; We report the first Jupiter X-ray observations planned to coincide with an interplanetary coronal mass ejection (ICME). At the predicted ICME arrival time, we observed a factor of ∼8 enhancement in Jupiter's X-ray aurora. Within 1.5 h of this enhancement, intense bursts of non-Io decametric radio emission occurred. Spatial, spectral, and temporal characteristics also varied between ICME arrival and another X-ray observation two days later. Gladstone et al. (2002) disco...

  13. Diffractive X-Ray Telescopes

    Science.gov (United States)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  14. ZnTe :O phosphor development for x-ray imaging applications

    Science.gov (United States)

    Kang, Z. T.; Summers, C. J.; Menkara, H.; Wagner, B. K.; Durst, R.; Diawara, Y.; Mednikova, G.; Thorson, T.

    2006-03-01

    An efficient ZnTe :O x-ray powder phosphor was prepared by a dry synthesis process using gaseous doping and etching medias. The x-ray luminescent properties were evaluated and compared to standard commercial phosphors exhibited an x-ray luminescent efficiency equivalent to 76% of Gd2O2S:Tb and an equal resolution of 2.5lines/mm. In addition, the fast decay time, low afterglow, and superior spectral match to conventional charge-coupled devices-indicate that ZnTe :O is a very promising phosphor candidate for x-ray imaging applications.

  15. Preliminary Research on Dual-Energy X-Ray Phase-Contrast Imaging

    OpenAIRE

    Han, Huajie; Wang, Shenghao; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Peiping

    2015-01-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure bone mineral density (BMD) and soft-tissue composition of human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption. While X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method t...

  16. Digital correction of magnification in pelvic x rays for preoperative planning of hip joint replacements : Theoretical development and clinical results of a new protocol

    NARCIS (Netherlands)

    The, B; Diercks, RL; Stewart, RE; van Ooijen, PMA; van Horn, [No Value; van Horn, J.R.

    The introduction of digital radiological facilities leads to the necessity of digital preoperative planning, which is an essential part of joint, replacement surgery. To avoid errors in the preparation and execution of hip surgery, reliable correction of the Magnification of the projected hip is a

  17. The X-ray corona of Procyon

    Science.gov (United States)

    Schmitt, J. H. M. M.; Harnden, F. R., Jr.; Rosner, R.; Peres, G.; Serio, S.

    1985-01-01

    X-ray emission from the nearby system Procyon A/B (F5 IV + DF) was detected, using the IPC (Imaging Proportional Counter) on board the Einstein Observatory. Analysis of the X-ray pulse height spectrum suggests that the observed X-ray emission originates in Procyon A rather than in the white dwarf companion Procyon B, since the derived X-ray temperature, log T = 6.2, agrees well with temperatures found for quiescent solar X-ray emission. Modeling Procyon's corona with loops characterized by some apex temperature Tmax and emission length scale L, it is found that Tmax is well constrained, but L, and consequently the filling factor of the X-ray emitting gas, are essentially unconstrained even when EUV emission from the transition region is included in the analysis.

  18. Handbook of X-Ray Data

    CERN Document Server

    Zschornack, Günter

    2007-01-01

    This sourcebook is intended as an X-ray data reference for scientists and engineers working in the field of energy or wavelength dispersive X-ray spectrometry and related fields of basic and applied research, technology, or process and quality controlling. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). This includes X-ray energies, emission rates and widths as well as level characteristics such as binding energies, fluorescence yields, level widths and absorption edges. The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed. This reference book addresses all researchers and practitioners working with X-ray radiation and fills a gap in the available literature.

  19. X-ray microdiffraction of biominerals.

    Science.gov (United States)

    Tamura, Nobumichi; Gilbert, Pupa U P A

    2013-01-01

    Biominerals have complex and heterogeneous architectures, hence diffraction experiments with spatial resolutions between 500 nm and 10 μm are extremely useful to characterize them. X-ray beams in this size range are now routinely produced at many synchrotrons. This chapter provides a review of the different hard X-ray diffraction and scattering techniques, used in conjunction with efficient, state-of-the-art X-ray focusing optics. These include monochromatic X-ray microdiffraction, polychromatic (Laue) X-ray microdiffraction, and microbeam small-angle X-ray scattering. We present some of the most relevant discoveries made in the field of biomineralization using these approaches. © 2013 Elsevier Inc. All rights reserved.

  20. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  1. Knot detection in X-ray images of wood planks using dictionary learning

    DEFF Research Database (Denmark)

    Hansson, Nils Mattias; Enescu, Alexandru; Brandt, Sami Sebastian

    2015-01-01

    This paper considers a novel application of x-ray imaging of planks, for the purpose of detecting knots in high quality furniture wood. X-ray imaging allows the detection of knots invisible from the surface to conventional cameras. Our approach is based on texture analysis, or more specifically...

  2. A Comparison of X-Ray Image Segmentation Techniques

    Directory of Open Access Journals (Sweden)

    STOLOJESCU-CRISAN, C.

    2013-08-01

    Full Text Available Image segmentation operation has a great importance in most medical imaging applications, by extracting anatomical structures from medical images. There are many image segmentation techniques available in the literature, each of them having advantages and disadvantages. The extraction of bone contours from X-ray images has received a considerable amount of attention in the literature recently, because they represent a vital step in the computer analysis of this kind of images. The aim of X-ray segmentation is to subdivide the image in various portions, so that it can help doctors during the study of the bone structure, for the detection of fractures in bones, or for planning the treatment before surgery. The goal of this paper is to review the most important image segmentation methods starting from a data base composed by real X-ray images. We will discuss the principle and the mathematical model for each method, highlighting the strengths and weaknesses.

  3. Handbook of X-ray Astronomy

    Science.gov (United States)

    Arnaud, Keith; Smith, Randall; Siemiginowska, Aneta; Ellis, Richard; Huchra, John; Kahn, Steve; Rieke, George; Stetson, Peter B.

    2011-11-01

    Practical guide to X-ray astronomy for graduate students, professional astronomers and researchers. Presenting X-ray optics, basic detector physics and data analysis. It introduces the reduction and calibration of X-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The appendices provide reference material often required during data analysis. The handbook web page contains figures and tables: http://xrayastronomyhandbook.com/

  4. Sandia Mark II X-Ray System

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, L.W.

    1979-11-01

    The Sandia Mark II X-Ray System was designed and developed to provide an intense source of mononergetic, ultra-soft x rays with energies between 0.282 and 1.486 keV. The x-ray tube design is similar to one developed by B.L. Henke and incorporates modifications made by Tom Ellsberry. An operations manual section is incorporated to help the experimenter/operator.

  5. X-ray data booklet. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  6. Fine features of parametric X-ray radiation by relativistic electrons and ions

    Science.gov (United States)

    Korotchenko, K. B.; Eikhorn, Yu. L.; Dabagov, S. B.

    2017-11-01

    In present work within the frame of dynamic theory for parametric X-ray radiation in two-beam approximation we have presented detailed studies on parametric radiation emitted by relativistic both electrons and ions at channeling in crystals that is highly requested at planned experiments. The analysis done has shown that the intensity of radiation at relativistic electron channeling in Si (110) with respect to the conventional parametric radiation intensity has up to 5% uncertainty, while the error of approximate formulas for calculating parametric X-ray radiation maxima does not exceed 1.2%. We have demonstrated that simple expressions for the Fourier components of Si crystal susceptibility χ0 and χgσ could be reduced, as well as the temperature dependence for radiation maxima in Si crystal (diffraction plane (110)) within Debye model. Moreover, for any types of channeled ions it is shown that the parametric X-ray radiation intensity is proportional to z 2 - b (Z , z) / z with the function b (Z , z) depending on the screening parameter and the ion charge number z = Z -Ze.

  7. Characterization of a new transmission detector for patient individualized online plan verification and its influence on 6MV X-ray beam characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Thoelking, Johannes; Sekar, Yuvaraj; Fleckenstein, Jens; Lohr, Frank; Wenz, Frederik; Wertz, Hansjoerg [Heidelberg Univ., University Medical Center Mannheim (Germany). Dept. of Radiation Oncology

    2016-11-01

    Online verification and 3D dose reconstruction on daily patient anatomy have the potential to improve treatment delivery, accuracy and safety. One possible implementation is to recalculate dose based on online fluence measurements with a transmission detector (TD) attached to the linac. This study provides a detailed analysis of the influence of a new TD on treatment beam characteristics. The influence of the new TD on surface dose was evaluated by measurements with an Advanced Markus Chamber (Adv-MC) in the build-up region. Based on Monte Carlo simulations, correction factors were determined to scale down the over-response of the Adv-MC close to the surface. To analyze the effects beyond d{sub max} percentage depth dose (PDD), lateral profiles and transmission measurements were performed. All measurements were carried out for various field sizes and different SSDs. Additionally, 5 IMRT-plans (head and neck, prostate, thorax) and 2 manually created test cases (3 x 3 cm{sup 2} fields with different dose levels, sweeping gap) were measured to investigate the influence of the TD on clinical treatment plans. To investigate the performance of the TD, dose linearity as well as dose rate dependency measurements were performed. With the TD inside the beam an increase in surface dose was observed depending on SSD and field size (maximum of +11%, SSD = 80 cm, field size = 30 x 30 cm{sup 2}). Beyond d{sub max} the influence of the TD on PDDs was below 1%. The measurements showed that the transmission factor depends slightly on the field size (0.893-0.921 for 5 x 5 cm{sup 2} to 30 x 30 cm{sup 2}). However, the evaluation of clinical IMRT-plans measured with and without the TD showed good agreement after using a single transmission factor (γ{sub (2%/2mm)} > 97%, δ{sub ±3%} >95%). Furthermore, the response of TD was found to be linear and dose rate independent (maximum difference <0.5% compared to reference measurements). When placed in the path of the beam, the TD introduced

  8. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  9. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  10. X-ray Observations at Gaisberg Tower

    Directory of Open Access Journals (Sweden)

    Pasan Hettiarachchi

    2018-01-01

    Full Text Available We report the occurrence of X-rays at ground level due to cloud-to-ground flashes of upward-initiated lightning from Gaisberg Tower, in Austria, which is located at an altitude of 1300 m. This is the first observation of X-ray emissions from upward lightning from a tower top located at high altitude. Measurements were carried out using scintillation detectors installed close to the tower top in two phases from 2011 to 2015. X-rays were recorded in three subsequent strokes of three flashes out of the total of 108 flashes recorded in the system during both phases. In contrast to the observations from downward natural or triggered lightning, X-rays were observed only within 10 µs before the subsequent return stroke. This shows that X-rays were emitted when the dart leader was in the vicinity of the tower top, hence during the most intense phase of the dart leader. Both the detected energy and the fluence of X-rays are far lower compared to X-rays from downward natural or rocket-triggered lightning. In addition to the above 108 flashes, an interesting observation of X-rays produced by a nearby downward flash is also presented. The shorter length of dart-leader channels in Gaisberg is suggested as a possible cause of this apparently weaker X-ray production.

  11. X-ray laser microscope apparatus

    Science.gov (United States)

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  12. Detector development for x-ray imaging

    Science.gov (United States)

    Mentzer, M. A.; Herr, D. A.; Brewer, K. J.; Ojason, N.; Tarpine, H. A.

    2010-02-01

    X-ray imaging requires unique optical detector system configuration for optimization of image quality, resolution, and contrast ratio. A system is described whereby x-ray photons from multiple anode sources create a series of repetitive images on fast-decay scintillator screens, from which an intensified image is transferred to a fast phosphor on a GEN II image intensifier and collected as a cineradiographic video with high speed digital imagery. The work addresses scintillator material formulation, flash x-ray implementation, image intensification, and high speed video processing and display. Novel determination of optimal scintillator absorption, x-ray energy and dose relationships, contrast ratio determination, and test results are presented.

  13. X-ray Observations of "Recycled" Pulsars

    Science.gov (United States)

    Bogdanov, Slavko

    2014-11-01

    The Chandra X-ray Observatory has been instrumental in establishing the X-ray properties of the Galactic population of rotation-powered ("recycled") millisecond pulsars. In this talk I will provide a summary of deep X-ray studies of globular cluster millisecond pulsars, as well as several nearby field millisecond pulsars. These include thermally-emitting recycled pulsars that may provide stringent constraints on the elusive neutron star equation of state, and so-called "redback" binary pulsars, which seem to sporadically revert to an X-ray binary-like state.

  14. X-ray spectrometry using polycapillary X-ray optics and position sensitive detector.

    Science.gov (United States)

    Ding, X; Xie, J; He, Y; Pan, Q; Yan, Y

    2000-10-02

    Polycapillary X-ray optics (capillary X-ray lens) are now popular in X-ray fluorescence (XRF) analysis. Such an X-ray lens can collect X-rays emitted from an X-ray source in a large solid angle and form a very intense X-ray microbeam which is very convenient for microbeam X-ray fluorescence (MXRF) analysis giving low minimum detection limits (MDLs) in energy dispersive X-ray fluorescence (EDXRF). A new method called position sensitive X-ray spectrometry (PSXS) which combines an X-ray lens used to form an intense XRF source and a position sensitive detector (PSD) used for wavelength dispersive spectrometry (WDS) measurement was developed recently in the X-ray Optics Laboratory of Institute of Low Energy Nuclear Physics (ILENP) at Beijing Normal University. Such a method can give high energy and spacial resolution and high detection efficiency simultaneously. A short view of development of both the EDXRF using a capillary X-ray lens and the new PSXS is given in this paper.

  15. Digital radiography can reduce scoliosis x-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kling, T.F. Jr.; Cohen, M.J.; Lindseth, R.E.; De Rosa, G.P. (Indiana Univ. School of Medicine, Indianapolis (USA))

    1990-09-01

    Digital radiology is a new computerized system of acquiring x-rays in a digital (electronic) format. It possesses a greatly expanded dose response curve that allows a very broad range of x-ray dose to produce a diagnostic image. Potential advantages include significantly reduced radiation exposure without loss of image quality, acquisition of images of constant density irrespective of under or over exposure, and reduced repeat rates for unsatisfactory films. The authors prospectively studied 30 adolescents with scoliosis who had both conventional (full dose) and digital (full, one-half, or one-third dose) x-rays. They found digital made AP and lateral image with all anatomic areas clearly depicted at full and one-half dose. Digital laterals were better at full dose and equal to conventional at one-half dose. Cobb angles were easily measured on all one-third dose AP and on 8 of 10 one-third dose digital laterals. Digital clearly depicted the Risser sign at one-half and one-third dose and the repeat rate was nil in this study, indicating digital compensates well for exposure errors. The study indicates that digital does allow radiation dose to be reduced by at least one-half in scoliosis patients and that it does have improved image quality with good contrast over a wide range of x-ray exposure.

  16. Analyzing the Spectra of Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael

    , we will develop the new software module (essentially a computer code representing the theoretical model) necessary to perform the analysis of accretion-powered pulsar X-ray spectra in the XSPEC spectral analysis environment. Also in this first year we will analyze new Suzaku Cycle 6 Target of Opportunity observations of GX 304-1 and 4U 0115+63, two known cyclotron line sources, that we have recently carried out. In the second year of this study we will apply our new XSPEC spectral continuum module to the archival X-ray observational data from a number of accreting X-ray pulsars from the RXTE/PCA/HEXTE and Suzaku/XIS/HXD instruments to extract basic accretion parameters. Our source list contains eight pulsars, seven of which have observed cyclotron scattering lines. These pulsars span a range in magnetic field strength, luminosity, expected accretion rate, expected polar cap size, and Comptonizing temperature. In the second year of this work we also plan to make our new fully tested XSPEC continuum analysis module available to the Goddard Space Flight Center HEASARC for distribution to the astrophysical research community. The development and analysis tasks proposed here will provide for the first time a physical basis for the analysis and interpretation of data on accreting X-ray pulsar spectra.

  17. Wrist Injuries in Elderly Women is Overlooked when Using X-ray in Comparison to MRI

    DEFF Research Database (Denmark)

    Eckmann, Johan Høising; Brix, Lau; Nielsen, Randi

    by X-ray (Fractured radius = 12, fractures carpalbones = 3, bone bruise = 4, fractured scaphoid = 3, other pathology = 3, noappreciable disease = 15).   Discussion:The standard strategy for unraveling wrist injuries is by conventional X-ray.This approach is fast, economically feasible and is able...... strength, lower mobility andincreased risk of degenerative joint disease. The standard approach fordiagnosing fractures or injuries of the ligaments is by conventional X-ray. Ifno pathology can be established and there is a suspected scaphoid bone fracturea supplemental MRI of the wrist is performed....... The MRI often show pathology inthe wrist which is not visible on X-ray. The purposeof this project was to evaluate how often the supplemental MRI of the wrist wasable to demonstrate pathology which was invisible using standard X-ray.   Subjects& Methods: Forty women were included in the study (mean age...

  18. [The Development of Luminescent Nano-probes on Hard X-ray Irradiation].

    Science.gov (United States)

    Osakada, Yasuko

    2016-01-01

      X-rays are widely used in imaging applications such as diffraction imaging of crystals and medical imaging. In particular, X-ray computed tomography (CT) is a critical tool for clinical and disease diagnostics. The principle of conventional CT is based on X-ray attenuation caused by photoelectric absorption and scattering. In addition to conventional CT, a number of novel methodologies are presently under development, including state-of-the-art instrument technologies and chemical probes to fulfill diagnosis criteria. Among these novel methodologies, we have utilized hard X-ray-excited optical luminescence (hXEOL) as a new methodology to enhance the contrast of the image. Herein, we explored the possibility of hXEOL via iridium-doped polymer nanoparticles and biomolecule-directed metal clusters and propose it as a potential platform for new X-ray imaging.

  19. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  20. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors ...

  1. Low Energy X-Ray Diagnostics - 1981.

    Science.gov (United States)

    1981-01-01

    ray Analysis, 18, 26 (1975). practicA !ity of thermal recording of intense x-rays. 2. R.P. Godwin, Adv. in X-rays Analysis, 19, 533 Many optical...the 15. T. W. Barbee Jr., in "National Science Foundation behavior of LSM dispersion elements. - Twenty Sixth Annual Report for Fiscal Year Extension

  2. Instrumental technique in X-ray astronomy

    Science.gov (United States)

    Peterson, L. E.

    1975-01-01

    A detailed review of the development of instruments for X-ray astronomy is given with major emphasis on nonfocusing high-sensitivity counter techniques used to detect cosmic photons in the energy range between 0.20 and 300 keV. The present status of X-ray astronomy is summarized together with significant results of the Uhuru observations, and photon interactions of importance for the detection of X-rays in space are noted. The three principal devices used in X-ray astronomy (proportional, scintillation, and solid-state counters) are described in detail, data-processing systems for these devices are briefly discussed, and the statistics of nuclear counting as applied to X-ray astronomy is outlined analytically. Effects of the near-earth X-ray environment and atmospheric gamma-ray production on X-ray detection by low-orbit satellites are considered. Several contemporary instruments are described (proportional-counter systems, scintillation-counter telescopes, modulation collimators), and X-ray astronomical satellite missions are tabulated.

  3. X-ray Galaxy Clusters & Cosmology

    Science.gov (United States)

    Ettori, Stefano

    2011-09-01

    I present a summary of the four lectures given on these topics: (i) Galaxy Clusters in a cosmological context: an introduction; (ii) Galaxy Clusters in X-ray: how and what we observe, limits and prospects; (iii) X-ray Galaxy Clusters and Cosmology: total mass, gas mass & systematics; (iv) Properties of the ICM: scaling laws and metallicity.

  4. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  5. The Beginnings of X-ray Crystallography

    Indian Academy of Sciences (India)

    IAS Admin

    Those were the days when Science was hovering around the wave–particle duality. William. Henry Bragg was toying with the idea that X-rays are particles and the observation made by Max von Laue that X-rays are diffracted by crystals could indeed lead to the understanding of crystal structures. On the other hand, his son, ...

  6. The role of landscape planning in European landscape convention implementation

    Directory of Open Access Journals (Sweden)

    Vasiljević Nevena

    2008-01-01

    Full Text Available The most important recent policy initiative concerning quality and diversity, as well as natural and cultural landscape's values within all Europe is European Landscape Convention. The Convention was adopted by Council of Europe's Community of Ministers on 20th October 2000., in Firenze, Italy. The main goal of the Convention is protection, planning and management of the landscape as important part of the quality of life for people living everywhere: in urban areas and in countryside, in degraded areas as well as in the areas with high quality and those recognized as being of outstanding beauty. Serbia has singed Convention on 21 of September 2007. Diversity and quality, the cultural and natural values linked to European landscapes are part of Europe's common heritage, and it is important to co-operate towards its protection, management and planning According to explored international experiences, landscape plan, with its known methodology, is recognized as the most suitable tool in the most Countries which have already implemented European Landscape Convention. As to situation in Serbia, landscape planning is not treated in adequate or appropriate way within system of spatial planning. On the basis of the recent European experiences regarding The European Landscape Convention, the paper will underline the inevitability of landscape planning integration into the spatial planning system at the national, regional and city level, in Serbia.

  7. X-ray monitoring for astrophysical applications on Cubesat

    Science.gov (United States)

    Pina, L.; Hudec, R.; Inneman, A.; Cerna, D.; Jakubek, J.; Sieger, L.; Dániel, V.; Cash, W.; Mikulickova, L.; Pavlica, R.; Belas, E.; Polak, J.

    2015-05-01

    The primary objective of the project VZLUSAT-1 is the development, manufacturing, qualification and experimental verification of products and technologies in Earth orbit (IOD - In-Orbit Demonstration). This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. On board the functions and features of Radiation Hardened Composite Housing (RHCH), Solar panels based on composite substrate and Hollow Retro Reflector Array based on composite (HRRA) will be verified. To verify the properties of the developed products the satellite is equipped by Health Monitoring system (HM). HM system includes temperature, volatiles, radiation and mechanical properties sensors. The custom ADCS algorithms are being developed within the project. Given the number of IOD experiments and the necessary power the 1U CubeSat is equipped with Composite Deployable Panels (CDP) where HM panels and additional Solar panels are located. Satellite platform is assembled from commercial parts. Mission VZLUSAT-1 is planned for 6 months with launch in 2016.

  8. Recent X-ray hybrid CMOS detector developments and measurements

    Science.gov (United States)

    Hull, Samuel V.; Falcone, Abraham D.; Burrows, David N.; Wages, Mitchell; Chattopadhyay, Tanmoy; McQuaide, Maria; Bray, Evan; Kern, Matthew

    2017-08-01

    The Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors (TIS), have progressed their efforts to improve soft X-ray Hybrid CMOS detector (HCD) technology on multiple fronts. Having newly acquired a Teledyne cryogenic SIDECARTM ASIC for use with HxRG devices, measurements were performed with an H2RG HCD and the cooled SIDECARTM. We report new energy resolution and read noise measurements, which show a significant improvement over room temperature SIDECARTM operation. Further, in order to meet the demands of future high-throughput and high spatial resolution X-ray observatories, detectors with fast readout and small pixel sizes are being developed. We report on characteristics of new X-ray HCDs with 12.5 micron pitch that include in-pixel CDS circuitry and crosstalk-eliminating CTIA amplifiers. In addition, PSU and TIS are developing a new large-scale array Speedster-EXD device. The original 64 × 64 pixel Speedster-EXD prototype used comparators in each pixel to enable event driven readout with order of magnitude higher effective readout rates, which will now be implemented in a 550 × 550 pixel device. Finally, the detector lab is involved in a sounding rocket mission that is slated to fly in 2018 with an off-plane reflection grating array and an H2RG X-ray HCD. We report on the planned detector configuration for this mission, which will increase the NASA technology readiness level of X-ray HCDs to TRL 9.

  9. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+ ...

    Indian Academy of Sciences (India)

    tribpo

    X-ray Measurements of Black Hole X-ray Binary Source GRS. 1915+105 and the Evolution of Hard X-ray Spectrum. R. K. Manchanda, Tata Institute of Fundamental Research, Mumbai 400 005, India,. Received 1999 December 28; accepted 2000 February 9. Abstract. We report the spectral measurement of GRS 1915+105 ...

  10. The X-ray imager on AXO

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Westergaard, Niels Jørgen Stenfeldt

    2001-01-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated....... Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X-ray...... Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active...

  11. Hybrid scintillators for x-ray imaging

    Science.gov (United States)

    Bueno, Clifford; Rairden, Richard L.; Betz, Robert A.

    1996-04-01

    The objective of this effort is to improve x-ray absorption and light production while maintaining high spatial resolution in x-ray imaging phosphor screens. Our current target is to improve screen absorption efficiency and screen brightness by factors of 2 or greater over existing screens that have 10-1p/mm resolution. In this program, commercial phosphor screens are combined with highly absorbing, high-resolution scintillating fiber-optic (SFO) face plates to provide a hybrid sensor that exhibits superior spatial resolution, x-ray absorption, and brightness values over the phosphor material alone. These characteristics of hybrid scintillators can be adjusted to meet specific x-ray imaging requirements over a wide range of x-ray energy. This paper discusses the design, fabrication, and testing of a new series of hybrid scintillators.

  12. X-ray modeling for SMILE

    Science.gov (United States)

    Sun, T.; Wang, C.; Wei, F.; Liu, Z. Q.; Zheng, J.; Yu, X. Z.; Sembay, S.; Branduardi-Raymont, G.

    2016-12-01

    SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) is a novel mission to explore the coupling of the solar wind-magnetosphere-ionosphere system via providing global images of the magnetosphere and aurora. As the X-ray imaging is a brand new technique applied to study the large scale magnetopause, modeling of the solar wind charge exchange (SWCX) X-ray emissions in the magnetosheath and cusps is vital in various aspects: it helps the design of the Soft X-ray Imager (SXI) on SMILE, selection of satellite orbits, as well as the analysis of expected scientific outcomes. Based on the PPMLR-MHD code, we present the simulation results of the X-ray emissions in geospace during storm time. Both the polar orbit and the Molniya orbit are used. From the X-ray images of the magnetosheath and cusps, the magnetospheric responses to an interplanetary shock and IMF southward turning are analyzed.

  13. Status of the hard X-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility.

    Science.gov (United States)

    Martínez-Criado, Gema; Tucoulou, Rémi; Cloetens, Peter; Bleuet, Pierre; Bohic, Sylvain; Cauzid, Jean; Kieffer, Isabelle; Kosior, Ewelina; Labouré, Sylvain; Petitgirard, Sylvain; Rack, Alexander; Sans, Juan Angel; Segura-Ruiz, Jaime; Suhonen, Heikki; Susini, Jean; Villanova, Julie

    2012-01-01

    The ESRF synchrotron beamline ID22, dedicated to hard X-ray microanalysis and consisting of the combination of X-ray fluorescence, X-ray absorption spectroscopy, diffraction and 2D/3D X-ray imaging techniques, is one of the most versatile instruments in hard X-ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.

  14. Evaluation of the Beam Quality of Intraoral X-ray Equipment using Intraoral Standard Films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Sub; Kwon, Hyok Rak; Sim, Woo Hyoun; Oh, Seung Hyoun; Lee, Ji Youn; Jeon, Kug Jin; Kim, Kee Deog; Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of)

    2000-09-15

    This study was to evaluate the beam quality of intraoral X-ray equipment used at Yonsei University Dental Hospital (YUDH) using the half value layer (HVL) and the characteristic curve of intraoral standard X-ray film. The study was done using the intraoral X-ray equipment used at each clinical department at YUDH. Aluminum filter was used to determine the HVL. Intraoral standard film was used to get the characteristic curve of each intraoral X-ray equipment. Most of the HVLs of intraoral X-ray equipment were higher than the least recommended thickness, but the REX 601 model used at the operative dentistry department and the X-707 model used at the pediatric dentistry department had HVLs lower than the recommended thickness. The slopes of the characteristic curves of films taken using the PANPAS 601 model and REX 601 model at operative dentistry department, the X-70S model of prosthodontic dentistry department, and the REX 601 model at the student clinic were relatively low. HVL and the characteristic curve of X-ray film can be used to evaluate the beam quality of intraoral X-ray equipment. In order to get the best X-ray films with the least radiation exposure to patients and best diagnostic information in clinical dentistry, X-ray equipment should be managed in the planned and organized fashion.

  15. X-ray detectors at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella, E-mail: carini@slac.stanford.edu; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-21

    This paper offers an overview of area detectors developed for use at the Linac Coherent Light Source (LCLS) with particular emphasis on their impact on science. The experimental needs leading to the development of second-generation cameras for LCLS are discussed and the new detector prototypes are presented. Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  16. Assessing the registration of CT-scan data to intraoperative x rays by fusing x rays and preoperative information

    Science.gov (United States)

    Gueziec, Andre P.

    1999-05-01

    This paper addresses a key issue of providing clinicians with visual feedback to validate a computer-generated registration of pre-operative and intra-operative data. With this feedback information, the clinician may decide to proceed with a computer-assisted intervention, revert to a manual intervention, or potentially provide information to the computer system to improve the registration. The paper focuses on total hip replacement (THR) surgery, but similar techniques could be applied to other types of interventions or therapy, including orthopedics, neurosurgery, and radiation therapy. Pre-operative CT data is used to plane the surgery (select an implant type, size and precise position), and is registered to intra-operative X-ray images, allowing to execute the plan: mill a cavity with the implant's shape. (Intra-operative X-ray images must be calibrated with respect to the surgical device executing the plan). One novel technique presented in this paper consists of simulating a post-operative X-ray image of the tissue of interest before doing the procedure, by projecting the registered implant onto an intra-operative X- ray image (corrected for distortion or not), providing clinicians with familiar and easy to interpret images. As an additional benefit, this method provides new means for comparing various strategies for registering pre-operative data to the physical space of the operating room.

  17. X-ray absorption near edge theory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rehr, J.J.

    1997-05-01

    One of the long term research goals has been to attain a quantitative theory of deep core X-ray spectroscopies. These spectroscopies include X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), X-ray magnetic circular dichroism (XMCD), diffraction anomalous fine structure (DAFS), photoelectron diffraction (PD), and others. All are used extensively at modern synchrotron radiation facilities. Since they share in common the same excited state electronic structure, these spectroscopies have similar theoretical underpinings: they all can be described in terms of a curved wave multiple scattering (MS) formalism. These spectroscopies are important probes of local atomic structure, especially in non-crystalline materials where conventional diffraction techniques are inapplicable. However, their interpretation usually requires accurate theoretical models or experimental reference standards. With the development of the authors fast XAFS codes FEFF, they have taken a giant step toward these goals. MS codes are generally equivalent or better than experimental standards, and have been recognized as the best of those available. Accomplishments are summarized. They include an improved photoelectron self-energy approximation for near edge calculations, intrinsic and interference effects, improved edge calculations, background fine structure, improved FEFF code, full MS XANES calculations, and calculation of the fine structure in the XMCD of Gd.

  18. X-ray scattering signatures of {beta}-thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, Omar S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt); Elshemey, Wael M. [Biophysics Department, Faculty of Science, Cairo University (Egypt)], E-mail: waelelshemey@yahoo.com; Selim, Nabila S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt)

    2009-08-11

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm{sup -1}, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; {beta}-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of {beta}-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm{sup -1}, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  19. Novelty detection of foreign objects in food using multi-modal X-ray imaging

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Emerson, Monica Jane; Clemmensen, Line Katrine Harder

    2016-01-01

    In this paper we demonstrate a method for novelty detection of foreign objects in food products using grating-based multimodal X-ray imaging. With this imaging technique three modalities are available with pixel correspondence, enhancing organic materials such as wood chips, insects and soft...... plastics not detectable by conventional X-ray absorption radiography. We conduct experiments, where several food products are imaged with common foreign objects typically found in the food processing industry. To evaluate the benefit from using this multi-contrast X-ray technique over conventional X...

  20. X-Ray Background from Early Binaries

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  1. Toward Adaptive X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  2. Multiple beam x-ray diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kewish, C.M.; Davis, J.R.; Coyle, R.A. [Monash University, Clayton, VIC (Australia). Department of Physics

    1999-12-01

    Full text: X-ray diffraction computed tomography (XDT) is an imaging modality that utilises scattered x-rays to reconstruct an image. Since its inception in 1985, various detection scenarios and imaging techniques have been developed to demonstrate the accuracy and applicability of XDT. Many of the previous methods for measuring the scattered x-rays from an object utilise detectors that accept x-rays scattered from the entire length of the raypath through the object. The detector apertures must therefore have dimensions similar to the largest width of the scanned object. This creates a situation where the detected x-rays are not derived from a single scattering angle. A new method of scanning the x-rays scattered from an object is presented which allows quantitative determination of the spatial distribution of differential scattering cross section within a cross-sectional plane of the object. The new method incorporates a position sensitive detector and an arrangement of Soller slits. The acquired data represents both spatial and angular information. For each raypath through the object, a partial diffraction projection is measured at the off-axis detector and a set of diffraction projections is assembled by combining the diffracted signal from all rays through the object. A reconstruction strategy that accounts for attenuation of the primary beam and the scattered beam allows us to reconstruct a map of the differential scattering cross section in the sample for a given angle. Copyright (1999) Australian X-ray Analytical Association Inc. 3 refs.

  3. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    Science.gov (United States)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles

  4. X- rays and matter- the basic interactions

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens

    2008-01-01

    In this introductory article we attempt to provide the theoretical basis for developing the interaction between X-rays and matter, so that one can unravel properties of matter by interpretation of X-ray experiments on samples. We emphasize that we are dealing with the basics, which means that we...... shall limit ourselves to a discussion of the interaction of an X-ray photon with an isolated atom, or rather with a single electron in a Hartree-Fock atom. Subsequent articles in this issue deal with more complicated - and interesting - forms of matter encompassing many atoms or molecules. To cite...

  5. X-ray Emission from Millisecond Pulsars

    Science.gov (United States)

    Zavlin, Vyacheslav

    2006-01-01

    Isolated (solitary or non-accreting) millisecond pulsars with observed X-ray emission can be divided in two distinct groups: those emitting nonthermal (magnetospheric) radiation and pulsars with the bulk of X-rays of a thermal origin, presumably emitted from small hot spots around the magnetic poles on the neutron star surface (polar caps). I will discuss properties of X-ray emission detected with Chandra and XMM-Newton from a number of millisecond pulsars, with emphasis on those of the thermal component, and compare them with predictions of radio pulsar models.

  6. Materials for refractive x-ray optics.

    Science.gov (United States)

    Lund, M W

    1997-01-01

    An X-ray lens using refraction has been proposed by Tomie, and demonstrated for 14 keV X-rays by Snigirev et al. This type of lens is made from a series of very weak lens elements. I calculate the properties of such lenses constructed of various chemical elements and compounds over the range of 1 to 30 keV. In general, I find that X-ray optics made from low density, low Z materials have the widest useful apertures, but require more lens elements than denser and higher Z materials.

  7. The Future of X-Ray Optics

    Science.gov (United States)

    Weisskopf, Martin C.

    2013-01-01

    The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.

  8. The ROSAT X-ray Background Dipole

    OpenAIRE

    Plionis, M.; Georgantopoulos, I.

    1998-01-01

    We estimate the dipole of the diffuse 1.5 keV X-ray background from the ROSAT all-sky survey map of Snowden et al (1995). We first subtract the diffuse Galactic emission by fitting to the data an exponential scale height, finite radius, disk model. We further exclude regions of low galactic latitudes, of local X-ray emission (eg the North Polar Spur) and model them using two different methods. We find that the ROSAT X-ray background (XRB) dipole points towards $(l,b) ~ (288, 25) \\pm 19 degree...

  9. Two methods for studying the X-ray variability

    NARCIS (Netherlands)

    Yan, Shu-Ping; Ji, Li; Méndez, Mariano; Wang, Na; Liu, Siming; Li, Xiang-Dong

    2016-01-01

    The X-ray aperiodic variability and quasi-periodic oscillation (QPO) are the important tools to study the structure of the accretion flow of X-ray binaries. However, the origin of the complex X-ray variability from X-ray binaries remains yet unsolved. We proposed two methods for studying the X-ray

  10. X-ray phase contrast imaging of biological samples using a betatron x-ray source generated in a laser wakefield accelerator

    Science.gov (United States)

    Chaulagain, U.; Bohacek, K.; Kozlova, M.; Nejdl, J.; Krus, M.; Horny, V.; Mahieu, B.; Ta-Phuoc, K.

    2017-05-01

    In a plasma wakefield accelerator, an intense laser pulse propagates in an under-dense plasma that drives a relativistic plasma wave in which electrons can be injected and accelerated to relativistic energies within a short distance. These accelerated electrons undergo betatron oscillation and emit a collimated X-ray beam along the direction of electron velocity. This X-ray source is characterised with a source size of the order of a micrometer, a pulse duration of the order of femtosecond, and with a high spectral brightness. This novel X-ray source provides an excellent imaging tool to achieve unprecedented high-resolution image through phase contrast imaging. The phase contrast technique has the potential to reveal structures which are invisible with the conventional absorption imaging. In the X-ray phase contrast imaging, the image contrast is obtained thanks to phase shifts induced on the X-rays passing through the sample. It involves the real part of refractive index of the object. Here we present high-resolution phase contrast X-ray images of two biological samples using laser-driven Betatron X-ray source.

  11. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W.; Page, A.M. [Univ. of London (United Kingdom); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  12. Optimizing configuration parameters of a stationary digital breast tomosynthesis system based on carbon nanotube x-ray sources

    Science.gov (United States)

    Tucker, Andrew; Qian, Xin; Gidcumb, Emily; Spronk, Derrek; Sprenger, Frank; Kuo, Johnny; Ng, Susan; Lu, Jianping; Zhou, Otto

    2012-03-01

    The stationary Digital Breast Tomosynthesis System (s-DBT) has the advantage over the conventional DBT systems as there is no motion blurring in the projection images associated with the x-ray source motion. We have developed a prototype s-DBT system by retrofitting a Hologic Selenia Dimensions rotating gantry tomosynthesis system with a distributed carbon nanotube (CNT) x-ray source array. The linear array consists of 31 x-ray generating focal spots distributed over a 30 degree angle. Each x-ray beam can be electronically activated allowing the flexibility and easy implementation of novel tomosynthesis scanning with different scanning parameters and configurations. Here we report the initial results of investigation on the imaging quality of the s-DBT system and its dependence on the acquisition parameters including the number of projections views, the total angular span of the projection views, the dose distribution between different projections, and the total dose. A mammography phantom is used to visually assess image quality. The modulation transfer function (MTF) of a line wire phantom is used to evaluate the system spatial resolution. For s-DBT the in-plan system resolution, as measured by the MTF, does not change for different configurations. This is in contrast to rotating gantry DBT systems, where the MTF degrades for increased angular span due to increased focal spot blurring associated with the x-ray source motion. The overall image quality factor, a composite measure of the signal difference to noise ratio (SdNR) for mass detection and the z-axis artifact spread function for microcalcification detection, is best for the configuration with a large angular span, an intermediate number of projection views, and an even dose distribution. These results suggest possible directions for further improvement of s-DBT systems for high quality breast cancer imaging.

  13. Gold nanoparticle contrast agents in advanced X-ray imaging technologies.

    Science.gov (United States)

    Ahn, Sungsook; Jung, Sung Yong; Lee, Sang Joon

    2013-05-17

    Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au) is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs) and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.

  14. Gold Nanoparticle Contrast Agents in Advanced X-ray Imaging Technologies

    Directory of Open Access Journals (Sweden)

    Sungsook Ahn

    2013-05-01

    Full Text Available Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.

  15. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    Science.gov (United States)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  16. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  17. The physics of radiotherapy X-rays and electrons

    CERN Document Server

    Metcalfe, Peter; Hoban, Peter

    2012-01-01

    The Physics of Radiotherapy X-Rays and Electrons is an updated successor to The Physics of Radiotherapy X-Rays from Linear Accelerators published in 1997. This new volume includes a significant amount of new material, including new chapters on electrons in radiotherapy and IMRT, IGRT, and tomotherapy, which have become key developments in radiation therapy. Also updated from the earlier edition are the physics beam modeling chapters, including Monte Carlo methods, adding those mysterious electrons, as well as discourse on radiobiological modeling including TCP, NTCP, and EUD and the impact of these concepts on plan analysis and inverse planning. This book is intended as a standard reference text for postgraduate radiation oncology medical physics students. It will also be of interest to radiation oncology registrars and residents, dosimetrists, and radiation therapists. The new text contains review questions at the end of each chapter and full bibliographic entries. Fully indexed. Selected questions and ans...

  18. Insights from soft X-rays

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten

    2008-01-01

    The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength of the pri......The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength...... of the primary X-ray beam is relatively close to the absorption edge of selected elements of the sample. The resulting effects are summarized as "anomalous dispersion" and can be always observed with "soft" X-rays (wavelength around 2 A) since they match the absorption edges of sulfur and chlorine...

  19. Demonstration of X-ray talbot interferometry

    CERN Document Server

    Momose, A; Kawamoto, S; Hamaishi, Y; Takai, K; Suzuki, Y

    2003-01-01

    First Talbot interferometry in the hard X-ray region was demonstrated using a pair of transmission gratings made by forming gold stripes on glass plates. By aligning the gratings on the optical axis of X-rays with a separation that caused the Talbot effect by the first grating, moire fringes were produced inclining one grating slightly against the other around the optical axis. A phase object placed in front of the first grating was detected by moire-fringe bending. Using the technique of phase-shifting interferometry, the differential phase corresponding to the phase object could also be measured. This result suggests that X-ray Talbot interferometry is a novel and simple method for phase-sensitive X-ray radiography. (author)

  20. Center for X-ray Optics (CXRO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for X-Ray Optics at Lawrence Berkeley National Laboratory works to further science and technology using short wavelength optical systems and techniques....

  1. Chest X-Ray (Chest Radiography)

    Science.gov (United States)

    ... Lung tissue absorbs little radiation and will appear dark on the image. Until recently, x-ray images ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  2. Microfabrication of hard x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik

    This thesis deals with the development of silicon compound refractive lenses (Si-CRLs) for shaping hard x-ray beams. The CRLs are to be fabricated using state of the art microfabrication techniques. The primary goal of the thesis work is to produce Si-CRLs with considerably increased structure...... developed. Inverse replica molding in PDMS of the CRLs was established as an effective way to circumvent the limitations AFM probes have when concave surfaces need to be characterized, e.g. due to the finite lengths of AFM probes. Four different x-ray optical components have been designed, manufactured...... of space for sample surroundings and ensure low-divergent and wide x-ray beams with narrow waists. Both results are substantial improvements to what was available at the start of this thesis work. The challenge of making x-ray objectives in silicon by interdigitation of lenslets alternately focusing...

  3. X-ray Optics Development at MSFC

    Science.gov (United States)

    Sharma, Dharma P.

    2017-01-01

    Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.

  4. Silicon Wafer X-ray Mirror Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this one year research project, we propose to do the following four tasks; (1) Design the silicon wafer X-ray mirror demo unit and develop a ray-tracing code to...

  5. Tuberculosis, advanced - chest x-rays (image)

    Science.gov (United States)

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  6. Nonrelativistic quantum X-ray physics

    CERN Document Server

    Hau-Riege, Stefan P

    2015-01-01

    Providing a solid theoretical background in photon-matter interaction, Nonrelativistic Quantum X-Ray Physics enables readers to understand experiments performed at XFEL-facilities and x-ray synchrotrons. As a result, after reading this book, scientists and students will be able to outline and perform calculations of some important x-ray-matter interaction processes. Key features of the contents are that the scope reaches beyond the dipole approximation when necessary and that it includes short-pulse interactions. To aid the reader in this transition, some relevant examples are discussed in detail, while non-relativistic quantum electrodynamics help readers to obtain an in-depth understanding of the formalisms and processes. The text presupposes a basic (undergraduate-level) understanding of mechanics, electrodynamics, and quantum mechanics. However, more specialized concepts in these fields are introduced and the reader is directed to appropriate references. While primarily benefiting users of x-ray light-sou...

  7. Experimental X-Ray Ghost Imaging.

    Science.gov (United States)

    Pelliccia, Daniele; Rack, Alexander; Scheel, Mario; Cantelli, Valentina; Paganin, David M

    2016-09-09

    We report an experimental proof of principle for ghost imaging in the hard-x-ray energy range. We use a synchrotron x-ray beam that is split using a thin crystal in Laue diffraction geometry. With an ultrafast imaging camera, we are able to image x rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam is correlated with the spatially resolved intensity measured in the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x rays may open the way to protocols to reduce radiation damage in medical imaging and in nondestructive structural characterization using free electron lasers.

  8. X-ray induced optical reflectivity

    Directory of Open Access Journals (Sweden)

    Stephen M. Durbin

    2012-12-01

    Full Text Available The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity. Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4, a semiconductor (gallium arsenide, GaAs, and a metal (gold, Au, obtained with ∼100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

  9. Milli X-Ray Fluorescence Spectrometer

    Data.gov (United States)

    Federal Laboratory Consortium — The Eagle III Micro XRF unit is similar to a traditional XRF unit, with the primary difference being that the X-rays are focused by a polycapillary optic into a spot...

  10. Silicon Wafer X-ray Mirror Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this one year research project, we propose to do the following four tasks;(1) Design the silicon wafer X-ray mirror demo unit and develop a ray-tracing code to...

  11. Quantum optics with X-rays

    Science.gov (United States)

    Kuznetsova, Elena; Kocharovskaya, Olga

    2017-11-01

    The demonstration of strong coupling between two nuclear polariton modes in the X-ray spectral region using two coupled cavities each containing a thin layer of iron brings new opportunities for exploring quantum science.

  12. X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method

    DEFF Research Database (Denmark)

    2012-01-01

    Source: US2012008736A An X-ray diffraction contrast tomography system (DCT) comprising a laboratory X-ray source (2), a staging device (5) rotating a polycrystalline material sample in the direct path of the X-ray beam, a first X-ray detector (6) detecting the direct X-ray beam being transmitted...

  13. Linking Jet Emission, X-Ray States, and Hard X-Ray Tails in the Neutron Star X-Ray Binary GX 17+2

    NARCIS (Netherlands)

    Migliari, S.; Miller-Jones, J.C.A.; Fender, R.P.; Homan, J.; di Salvo, T.; Rothschild, R.E.; Rupen, M.P.; Tomsick, J.A.; Wijnands, R.; van der Klis, M.

    2007-01-01

    We present the results of simultaneous radio (VLA) and X-ray (RXTE) observations of the Z-type neutron star X-ray binary GX 17+2. The aim is to assess the coupling between X-ray and radio properties throughout its three rapidly variable X-ray states and during the time-resolved transitions. These

  14. A metallic magnetic calorimeter dedicated to the spectrometry of L X-rays emitted by actinides

    Directory of Open Access Journals (Sweden)

    Rodrigues Matias

    2017-01-01

    Full Text Available Many actinides emit intense L X-rays consecutively to their decay. However the intensities of these X-rays are not well known: they are generally calculated with relatively large uncertainties and do not always agree with existing measurements. The latter ones are obtained with semiconductor spectrometers, but due to their insufficient energy resolution, these detectors are not able to separate the many X-ray lines and to give detailed emission intensities. So new measurements of precise and detailed L X-ray emission intensities are required. These would be beneficial on the one hand for the knowledge of the decay schemes and on the other hand as reference data for end-users of X-ray spectrometry. Therefore a spectrometer with a high energy resolution has been developed based on the technology of metallic magnetic calorimeters. The L X-ray spectra from 241Am and 210Pb decays show a FWHM energy resolution of 26 eV associated with a constant detection efficiency between 5 and 26 keV. With such performance, about 30 relative L X-ray intensities can be determined for 241Am and 210Pb. The measured emission intensities of L X-ray groups are compared with those published as obtained with conventional techniques; the good agreement between the data validated our technique.

  15. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  16. Parametric X-rays at FAST

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji [Fermilab

    2016-06-01

    We discuss the generation of parametric X-rays (PXR) in the photoinjector at the new FAST facility at Fermilab. Detailed calculations of the intensity spectrum, energy and angular widths and spectral brilliance with a diamond crystal are presented. We also report on expected results with PXR generated while the beam is channeling. The low emittance electron beam makes this facility a promising source for creating brilliant X-rays.

  17. Nanofocusing Refractive X-Ray Lenses

    OpenAIRE

    Boye, Pit

    2010-01-01

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive x-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution x-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. ...

  18. Lacquer polishing of x-ray optics.

    Science.gov (United States)

    Catura, R C; Joki, E G; Roethig, D T; Brookover, W J

    1987-04-15

    Techniques for polishing figured x-ray optics by a lacquer-coating process are described. This acrylic lacquer coating has been applied with an optical quality of an eighth wave in red light and very effectively covers surface roughness with spatial wavelengths less than ~0.2 mm. Tungsten films have been deposited on the lacquer coatings to provide highly efficient x-ray reflectivity.

  19. X-Ray Emission from Compact Sources

    Energy Technology Data Exchange (ETDEWEB)

    Cominsky, L

    2004-03-23

    This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

  20. ASSESSMENT OF RESTORATION METHODS OF X-RAY IMAGES WITH EMPHASIS ON MEDICAL PHOTOGRAMMETRIC USAGE

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2016-06-01

    Full Text Available Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  1. Assessment of Restoration Methods of X-Ray Images with Emphasis on Medical Photogrammetric Usage

    Science.gov (United States)

    Hosseinian, S.; Arefi, H.

    2016-06-01

    Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  2. Lightweight and High Angular Resolution X-Ray Optics

    Science.gov (United States)

    Zhang, William W.

    2009-01-01

    The International X-ray Observatory (IXO) mission requires a lightweight and high throughput spectroscopic telescope. The fabrication, alignment, and integration of this mirror assembly require breakthroughs in many areas. In this paper we report on our recent progress in all these areas, including mirror fabrication, coating, metrology, alignment, mechanical characteristics, and their integration into mirror modules. In particular, we will also outline our plan for the next few of years, showing approaches that will progress toward reaching the 5" HPD requirement.

  3. Hard X-ray Sources for the Mexican Synchrotron Project

    Science.gov (United States)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  4. Optics Developments for X-Ray Astronomy

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  5. X-ray emission from normal stars

    Science.gov (United States)

    Rosner, Robert

    1990-01-01

    The paper addresses the potential for future X-ray missions to determine the fundamental cause of stellar X-ray emissions based on available results and existing analyses. The determinants of stellar X-ray emission are listed, and the relation of stellar X-ray emissions to the 'universal' activity-rotation connection is discussed. The specific rotation-activity connection for evolved stars is mentioned, and the 'decay' of stellar activity at the low-mass end of the main sequence is related to observational data. The data from Einstein and EXOSAT missions that correspond to these issues are found to be sparse, and more observational work is found to be necessary. Also, it is concluded that some issues need to be addressed, such as the X-ray dividing line in evolved stars and the absence of X-ray emission from dA stars. The related observational requirements and instrumental capabilities are given for each significant research focus.

  6. X-ray Studies of Planetary Nebulae

    Science.gov (United States)

    Montez, Rodolfo

    2017-10-01

    X-ray emission from planetary nebulae (PNe) provides unique insight on the formation and evolution of PNe. Past observations and the ongoing Chandra Planetary Nebulae Survey (ChanPlaNS) provide a consensus on the two types of X-ray emission detected from PNe: extended and compact point-like sources. Extended X-ray emission arises from a shocked ``hot bubble'' plasma that resides within the nebular shell. Cooler than expected hot bubble plasma temperatures spurred a number of potential solutions with one emerging as the likely dominate process. The origin of X-ray emission from compact sources at the location of the central star is less clear. These sources might arise from one or combinations of the following processes: self-shocking stellar winds, spun-up binary companions, and/or accretion, perhaps from mass transfer, PN fallback, or debris disks. In the discovery phase, X-ray studies of PNe have mainly focused on the origin of the various emission processes. New directions incorporate multi-wavelength observations to study the influence of X-ray emission on the rest of the electromagnetic spectrum.

  7. The universe in X-rays

    CERN Document Server

    Hasinger, Günther

    2008-01-01

    In the last 45 years, X-ray astronomy has become an integral part of modern astrophysics and cosmology. There is a wide range of astrophysical objects and phenomena, where X-rays provide crucial diagnostics. In particular they are well suited to study hot plasmas and matter under extreme physical conditions in compact objects. This book summarizes the present status of X-ray astronomy in terms of observational results and their astrophysical interpretation. It is written for students, astrophysicists as well a growing community of physicists interested in the field. An introduction including historical material is followed by chapters on X-ray astronomical instrumentation. The next two parts summarize in 17 chapters the present knowledge on various classes of X-ray sources in the galactic and extragalactic realm. While the X-ray astronomical highlights discussed in this book are mainly based on results from ROSAT, ASCA, RXTE, BeppoSAX, Chandra and XMM-Newton, a final chapter provides an outlook on observation...

  8. Nano structured materials studied by coherent X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gulden, Johannes

    2013-03-15

    Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the

  9. Software System for the Calibration of X-Ray Measuring Instruments

    Science.gov (United States)

    Gaytán-Gallardo, E.; Tovar-Muñoz, V. M.; Cruz-Estrada, P.; Vergara-Martínez, F. J.; Rivero-Gutiérrez, T.

    2006-09-01

    A software system that facilities the calibration of X-ray measuring instruments used in medical applications is presented. The Secondary Standard Dosimetry Laboratory (SSDL) of the Nuclear Research National Institute in México (ININ in Spanish), supports activities concerning with ionizing radiations in medical area. One of these activities is the calibration of X-ray measuring instruments, in terms of air kerma or exposure by substitution method in an X-ray beam at a point where the rate has been determined by means of a standard ionization chamber. To automatize this process, a software system has been developed, the calibration system is composed by an X-ray unit, a Dynalizer IIIU X-ray meter by RADCAL, a commercial data acquisition card, the software system and the units to be tested and calibrated. A quality control plan has been applied in the development of the software system, ensuring that quality assurance procedures and standards are being followed.

  10. X-rays as a probe of the Universe

    Indian Academy of Sciences (India)

    Table of contents. X-rays as a probe of the Universe · Probing the Universe ….. Flux = sT4 umax = 1011 T (in Kelvin) · History of x-ray astronomy · X-ray Production · X-ray spectra · Celestial sphere as seen by UHURU (1970) · Slide 8 · X-rays from accreting binary systems · Slide 10 · Neutron stars: Black Hole: · Primary X-ray ...

  11. [X-ray hardening correction for ICT in testing workpiece].

    Science.gov (United States)

    Peng, Guang-han; Cai, Xin-hua; Han, Zhong; Yang, Xue-heng

    2008-06-01

    Since energy spectrum of X-ray is polychromatic source in X-ray industrial computerized tomography, the variation of attenuation coefficient with energy leads to the lower energy of X-ray radiation being absorbed preferentially when X-ray is transmitting the materials. And the higher the energy of X-ray, the lower the attenuation coefficient of X-ray. With the increase in the X-ray transmission thickness, it becomes easier for the X-ray to transmit the matter. Thus, the phenomenon of energy spectrum hardening of X-ray takes place, resulting from the interaction between X-ray and the materials. This results in false images in the reconstruction of X-ray industrial computerized tomography. Therefore, hardening correction of energy spectrum of X-ray has to be done. In the present paper, not only is the hardening phenomenon of X-ray transmitting the materials analyzed, but also the relation between the X-ray beam sum and the transmission thickness of X-ray is discussed. And according to the Beer law and the characteristics of interaction when X-ray is transmitting material, and by getting the data of X-ray beam sum, the relation equation is fitted between the X-ray beam sum and X-ray transmission thickness. Then, the relation and the method of equivalence are carried out for X-ray beam sum being corrected. Finally, the equivalent and monochromatic attenuation coefficient fitted value for X-ray transmitting the material is reasoned out. The attenuation coefficient fitted value is used for product back-projection image reconstruction in X-ray industrial computerized tomography. Thus, the effect caused by X-ray beam hardening is wiped off effectively in X-ray industrial computerized tomography.

  12. Hard X-ray emission spectroscopy with pink beam

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Kristina O.; Rossberg, Andre; Exner, Joerg; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    Valence-band X-ray emission spectroscopy (XES) with a ''pink beam'', i.e. a beam with large energy bandwidth produced by a double-multilayer monochromator, is introduced here to overcome the weak count rate of monochromatic beams produced by conventional double-crystal monochromators. Our results demonstrate that - in spite of the large bandwidth in the order of 100 eV - the high spectral resolution of the Johann-type spectrometer is maintained, while the two orders of magnitude higher flux greatly reduces the required counting time. The short working distance Johann-type X-ray emission spectrometer and multilayer monochromator is available at ROBL.

  13. Magnetic Circular Dichroism in X-Ray Emission from Ferromagnets

    Science.gov (United States)

    Inami, Toshiya

    2017-09-01

    The existence of novel magnetic circular dichroism in core-level x-ray emission is reported. By means of circular polarization analysis, the dichroic effect of the Fe Kα 1 emission spectrum is measured on an Fe single crystal. The observed dichroic effect (12%) is remarkably large, if one takes into account the small dichroic effect (about 0.5%) in the conventional K -edge absorption spectroscopy of 3 d transition metal elements. The mechanism is ascribed to exchange splitting of the 2 p level possessing large spin-orbit coupling. This new magnetooptical effect enables us to explore a variety of new research subjects in the magnetism of 3 d transition metals and their compounds by fully utilizing its large dichroic effect, the true bulk sensitivity of hard x rays, and the element selectivity of core-level spectroscopy.

  14. X-ray total reflection mirrors for coherent illumination

    CERN Document Server

    Ishikawa, T; Yabashi, M; Souvorov, A; Yamauchi, K; Yamamura, K; Mimura, H; Saito, A; Mori, Y

    2002-01-01

    X-ray mirrors for coherent illumination demand much higher surface quality than is achievable with the conventional polishing techniques. Plasma chemical vaporization machining (CVM) and elastic emission machining (EEM) have been applied for x-ray mirror manufacturing. Figure error of a flat silicon single crystal mirrors made with CVM+EEM process was reduced to 2.0 nm peak-to-valley and 0.2 nm RMS. The machining process was also applied to make elliptical mirrors. One-dimensional focusing with a single elliptical mirror showed diffraction-limited properties with the focal width of 200 nm. Two-dimensional focusing with Kirkpatric-Baez configuration gave a focal spot size of 200 nm x 200 nm. (author)

  15. Recent Developments in the X-Ray Reflectivity Analysis for Rough Surfaces and Interfaces of Multilayered Thin Film Materials

    OpenAIRE

    Yoshikazu Fujii

    2013-01-01

    X-ray reflectometry is a powerful tool for investigations on rough surface and interface structures of multilayered thin film materials. The X-ray reflectivity has been calculated based on the Parratt formalism, accounting for the effect of roughness by the theory of Nevot-Croce conventionally. However, in previous studies, the calculations of the X-ray reflectivity often show a strange effect where interference effects would increase at a rough surface. And estimated surface and interface ro...

  16. The new X-ray mapping: X-ray spectrum imaging above 100 kHz output count rate with the silicon drift detector.

    Science.gov (United States)

    Newbury, Dale E

    2006-02-01

    Electron-excited X-ray mapping is a key operational mode of the scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometry (EDS). The popularity of X-ray mapping persists despite the significant time penalty due to the relatively low output count rates, typically less than 25 kHz, that can be processed with the conventional EDS. The silicon drift detector (SDD) uses the same measurement physics, but modifications to the detector structure permit operation at a factor of 5-10 times higher than conventional EDS for the same resolution. Output count rates as high as 500 kHz can be achieved with 217 eV energy resolution (at MnKalpha). Such extraordinarily high count rates make possible X-ray mapping through the method of X-ray spectrum imaging, in which a complete spectrum is captured at each pixel of the scan. Useful compositional data can be captured in less than 200 s with a pixel density of 160 x 120. Applications to alloy and rock microstructures, ultrapure materials with rare inclusions, and aggregate particles with complex chemistry illustrate new approaches to characterization made practical by high-speed X-ray mapping with the SDD.Note: The Siegbahn notation for characteristic X-rays is commonly used in the field of electron beam X-ray spectrometry and will be used in this article. The equivalent IUPAC notation is indicated in parentheses at the first use. In this article, the following arbitrary definitions will be used when referring to concentration (C) ranges: major: C > 0.1 (10 wt%), minor: 0.01

  17. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (hard X-rays, making them excellent sources for time-resolved studies. Here we show that, despite the inherent instabilities of current (SASE based) XFELs, they can be used for measuring high......-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  18. Laser-pumped coherent x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    P. Sprangle

    2009-05-01

    Full Text Available In a laser-pumped x-ray free-electron laser (FEL an intense laser field replaces the magnetic wiggler field of a conventional FEL. Depending on the intensity and quality of both the electron beam and pump laser, the Thomson backscattered radiation can be coherently amplified. In a conventional FEL the generation of x rays requires electron beam energies in the multi-GeV range. In a laser-pumped x-ray FEL, electron beam energies in the multi-MeV range would be sufficient. To generate coherent x rays with this mechanism a number of physics and technology issues must be addressed. Foremost among these are the stringent requirements placed on the electron beam quality and brightness as well as on the pump laser. The seed radiation for the laser-pumped FEL is the laser-induced spontaneous radiation. The evolution of incoherent radiation into coherent radiation as well as the power gain lengths associated with the coherent x rays are analyzed and discussed. There is excellent agreement between our analytical results and GENESIS simulations for the radiated power, gain length, conversion efficiency, linewidth, and saturation length. These issues, as well as others, necessary to achieve coherent amplified x rays in a laser-pumped FEL are discussed. While a coherent x-ray source would have a number of attractive features, the requirements placed on both the electron beam and pump laser are extremely challenging.

  19. Ultrafast x-ray-induced nuclear dynamics in diatomic molecules using femtosecond x-ray-pump–x-ray-probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, C. S.; Picón, A.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Moonshiram, D.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M.; Doumy, G.; Erk, B.; Ferguson, K. R.; Gorkhover, T.; Ho, P. J.; Kanter, E. P.; Krässig, B.; Krzywinski, J.; Lutman, A. A.; March, A. M.; Ray, D.; Young, L.; Pratt, S. T.; Southworth, S. H.

    2016-07-01

    The availability at x-ray free electron lasers of generating two intense, femtosecond x-ray pulses with controlled time delay opens the possibility of performing time-resolved experiments for x-ray induced phenomena. We have applied this capability to molecular dynamics. In diatomic molecules composed of low-Z elements, K-shell ionization creates a core-hole state in which the main decay is an Auger process involving two electrons in the valence shell. After Auger decay, the nuclear wavepackets of the transient two-valence-hole states continue evolving on the femtosecond timescale, leading either to separated atomic ions or long-lived quasi-bound states. By using an x-ray pump and an x-ray probe pulse tuned above the K-shell ionization threshold of the nitrogen molecule, we are able to observe ion dissociation in progress by measuring the time-dependent kinetic energy releases of different breakup channels. We simulated the measurements on N2 with a molecular dynamics model that accounts for K-shell ionization, Auger decay, and time evolution of the nuclear wavepackets. In addition to explaining the time-dependent feature in the measured kinetic energy release distributions from the dissociative states, the simulation also reveals the contributions of quasi-bound states.

  20. Handbook of X-Ray Astronomy

    Science.gov (United States)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  1. X-Ray Point-source Populations Constituting the Galactic Ridge X-Ray Emission

    Science.gov (United States)

    Morihana, Kumiko; Tsujimoto, Masahiro; Yoshida, Tessei; Ebisawa, Ken

    2013-03-01

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above ≈10-14 erg cm-2 s-1, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe Kα emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  2. Development Roadmap for an Adjustable X-Ray Optics Observatory

    Science.gov (United States)

    Schwartz, Dan; Brissenden, R.; Bookbinder, J.; Davis, W.; Forman, W.; Freeman, M.; O'Dell, S.; Ramsey, B.; Reid, P.; Romaine, S.; hide

    2011-01-01

    We are developing adjustable X-ray optics to use on a mission such as SMART-X (see posters 38.02, 38.03 and Presentation 30.03). To satisfy the science problems expected to be posed by the next decadal survey, we anticipate requiring effective area greater than 1 square meter and Chandra-like angular resolution: approximately equal to 0.5 inches. To achieve such precise resolution we are developing adjustable mirror technology for X-ray astronomy application. This uses a thin film of piezoelectric material deposited on the back surface of the mirror to correct for figure distortions, including manufacturing errors and deflections due to gravity and thermal effects. We present here a plan to raise this technology from its current Level 2, to Level 6, by 2018.

  3. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  4. X-ray detectors for digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, M.J.; Rowlands, J.A. [Imaging Research Program, Sunnybrook Health Science Centre, University of Toronto, Toronto, ON (Canada)

    1997-01-01

    Digital radiography offers the potential of improved image quality as well as providing opportunities for advances in medical image management, computer-aided diagnosis and teleradiology. Image quality is intimately inked to the precise and accurate acquisition of information from the x-ray beam transmitted by the patient, i.e. to the performance of the x-ray detector. Detectors for digital radiography must meet the needs of the specific radiological procedure where they will be used. Key parameters are partial resolution, uniformity of response, contrast sensitivity, dynamic range, acquisition speed and frame rate. The underlying physical considerations defining the performance of x-ray detectors for radiography will be reviewed. Some of the more promising existing and experimental detector technologies which may be suitable for digital radiography will be considered. Devices that can be employed in full-area detectors and also those more appropriate for scanning x-ray systems will be discussed. These include various approaches based on phosphor x-ray converters, where light quanta are produced as an intermediate stage, as well as direct -ray-to-charge conversion materials such as zinc cadmium telluride, amorphous selenium and crystalline silicon. (author)

  5. X-ray optics of gold nanoparticles.

    Science.gov (United States)

    Letfullin, Renat R; Rice, Colin E W; George, Thomas F

    2014-11-01

    Gold nanoparticles have been investigated as contrast agents for traditional x-ray medical procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance the contrast of the detected x-ray image. Here we use the Kramers-Kronig relation for complex atomic scattering factors to find the real and imaginary parts of the index of refraction for the medium composed of single-element materials or compounds in the x-ray range of the spectrum. These complex index of refraction values are then plugged into a Lorenz-Mie theory to calculate the absorption efficiency of various size gold nanoparticles for photon energies in the 1-100 keV range. Since the output from most medical diagnostic x-ray devices follows a wide and filtered spectrum of photon energies, we introduce and compute the effective intensity-absorption-efficiency values for gold nanoparticles of radii varying from 5 to 50 nm, where we use the TASMIP model to integrate over all spectral energies generated by typical tungsten anode x-ray tubes with kilovolt potentials ranging from 50 to 150 kVp.

  6. X-ray spectroscopy an introduction

    CERN Document Server

    Agarwal, Bipin K

    1979-01-01

    Rontgen's discovery of X-rays in 1895 launched a subject which became central to the development of modern physics. The verification of many of the predic­ tions of quantum theory by X-ray spectroscopy in the early part of the twen­ tieth century stimulated great interest in thi's area, which has subsequently influenced fields as diverse as chemical physics, nuclear physics, and the study of the electronic properties of solids, and led to the development of techniques such as Auger, Raman, and X-ray photoelectron spectroscopy. The improvement of the theoretical understanding of the physics underlying X-ray spectroscopy has been accompanied by advances in experimental techniques, and the subject provides an instructive example of how progress on both these fronts can be mutually beneficial. This book strikes a balance between his­ torical description, which illustrates this symbiosis, and the discussion of new developments. The application of X-ray spectroscopic methods to the in­ vestigation of chemical b...

  7. Globular cluster X-ray sources

    Science.gov (United States)

    Pooley, D.

    We know from observations that globular clusters are very efficient catalysts in forming unusual binary systems, such as low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), and millisecond pulsars (MSPs), with formation rates per unit mass exceeding those in the Galactic disk by orders of magnitude. The high stellar densities in globular clusters trigger various dynamical interactions: exchange encounters, direct collisions, destruction of binaries, and tidal capture. This binary population is, in turn, critical to the stabilization of globular clusters against gravitational collapse; the long-term stability of a cluster is thought to depend on tapping into the gravitational binding energy of such close binaries. I will present an overview of the current state of globular cluster X-ray observations, as well as our work on deep Chandra observations of M4, where we reach some of the lowest X-ray luminosities in any globular cluster (comparable to the deep observations of 47 Tuc and NGC 6397). One of M4 X-ray sources previously classified as a white dwarf binary is likely a neutron star binary, and another X-ray source is a sub-subgiant, the nature of which is still unclear. skip=3pt

  8. X-ray irradiation of yeast cells

    Science.gov (United States)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  9. X-ray diffraction from single GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas

    2012-11-12

    In recent years, developments in X-ray focussing optics have allowed to produce highly intense, coherent X-ray beams with spot sizes in the range of 100 nm and below. Together with the development of new experimental stations, X-ray diffraction techniques can now be applied to study single nanometer-sized objects. In the present work, X-ray diffraction is applied to study different aspects of the epitaxial growth of GaAs nanowires. Besides conventional diffraction methods, which employ X-ray beams with dimensions of several tens of {mu}m, special emphasis lies on the use of nanodiffraction methods which allow to study single nanowires in their as-grown state without further preparation. In particular, coherent X-ray diffraction is applied to measure simultaneously the 3-dimensional shape and lattice parameters of GaAs nanowires grown by metal-organic vapor phase epitaxy. It is observed that due to a high density of zinc-blende rotational twins within the nanowires, their lattice parameter deviates systematically from the bulk zinc-blende phase. In a second step, the initial stage in the growth of GaAs nanowires on Si (1 1 1) surfaces is studied. This nanowires, obtained by Ga-assisted growth in molecular beam epitaxy, grow predominantly in the cubic zinc-blende structure, but contain inclusions of the hexagonal wurtzite phase close to their bottom interface. Using nanodiffraction methods, the position of the different structural units along the growth axis is determined. Because the GaAs lattice is 4% larger than silicon, these nanowires release their lattice mismatch by the inclusion of dislocations at the interface. Whereas NWs with diameters below 50 nm are free of strain, a rough interface structure in nanowires with diameters above 100 nm prevents a complete plastic relaxation, leading to a residual strain at the interface that decays elastically along the growth direction. Finally, measurements on GaAs-core/InAs-shell nanowire heterostructures are presented

  10. 3D Forward and Back-Projection for X-Ray CT Using Separable Footprints

    OpenAIRE

    Long, Yong; Fessler, Jeffrey A.; Balter, James M.

    2010-01-01

    Iterative methods for 3D image reconstruction have the potential to improve image quality over conventional filtered back projection (FBP) in X-ray computed tomography (CT). However, the computation burden of 3D cone-beam forward and back-projectors is one of the greatest challenges facing practical adoption of iterative methods for X-ray CT. Moreover, projector accuracy is also important for iterative methods. This paper describes two new separable footprint (SF) projector methods that appro...

  11. Review of X-ray Tomography and X-ray Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    This literature review will focus on both laboratory and synchrotron based X-ray tomography of materials and highlight the inner workings of these instruments. X-ray fluorescence spectroscopy will also be reviewed and applications of the tandem use of these techniques will be explored. The real world application of these techniques during the internship will also be discussed.

  12. X-ray photoelectron spectroscopy, high-resolution X-ray diffraction ...

    Indian Academy of Sciences (India)

    Powder X-ray diffraction studies were carried out on doped lithium niobate for phase identification. High-resolution X-ray diffraction technique was used to study the crystalline quality through full-width at half-maximum values. The refractive index values are more for doped samples than for pure sample as determined by ...

  13. Digital X-ray imager

    CERN Document Server

    LLNL &MedOptics Corporation

    1998-01-01

    The global objective of this cooperation was to lower the cost and improve the quality of breast health care in the United States. We planned to achieve it by designing a very high performance digital radiography unit for breast surgical specimen radiography in the operating room. These technical goals needed to be achieved at reasonable manufacturing costs to enable MedOptics to achieve high market penetration at a profit. Responsibility for overall project execution rested with MedOptics. MedOptics fabricated and demonstrated hardware, and selected components and handled the overall integration. After completion of this CRADA, MedOptics worked with collaborators to demonstrate clinical performance and utility. Finally, the company marketed the device. LLNL convened a multi-directorate expert panel for an intensive review of MedOptics point design. A written brief of panel conclusions and recommendations was prepared. In addition, LLNL was responsible for: computationally simulating the effects of varying so...

  14. Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Kronast, F.; Ovsyannikov, R.; Kaiser, A.; Wiemann, C.; Yang, S.-H.; Locatelli, A.; Burgler, D.E.; Schreiber, R.; Salmassi, F.; Fischer, P.; Durr, H.A.; Schneider, C.M.; Eberhardt, W.; Fadley, C.S.

    2008-11-24

    We present an extension of conventional laterally resolved soft x-ray photoelectron emission microscopy. A depth resolution along the surface normal down to a few {angstrom} can be achieved by setting up standing x-ray wave fields in a multilayer substrate. The sample is an Ag/Co/Au trilayer, whose first layer has a wedge profile, grown on a Si/MoSi2 multilayer mirror. Tuning the incident x-ray to the mirror Bragg angle we set up standing x-ray wave fields. We demonstrate the resulting depth resolution by imaging the standing wave fields as they move through the trilayer wedge structure.

  15. X-ray optics developments at ESA

    DEFF Research Database (Denmark)

    Bavdaz, M.; Wille, E.; Wallace, K.

    2013-01-01

    Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA......) in collaboration with research institutions and industry, enabling leading-edge future science missions. Silicon Pore Optics (SPO) [1 to 21] and Slumped Glass Optics (SGO) [22 to 29] are lightweight high performance X-ray optics technologies being developed in Europe, driven by applications in observatory class...... reflective coatings [30 to 35]. In addition, the progress with the X-ray test facilities and associated beam-lines is discussed [36]. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  16. The quantum X-ray radiology apparatus

    CERN Document Server

    Hilt, B; Prevot, G

    2000-01-01

    The paper entitled 'New Quantum Detection System for Very Low Dose X-ray Radiology', presented at the talk session, discusses the preliminary data obtained using a new quantum X-ray radiology system with a high-efficiency solid-state detector and highly sensitive electronics, making it possible to reduce significantly the dose administered to a patient in X-ray radiology examinations. The present paper focuses more on the technological aspects of the apparatus, such as the integration of the detector with the two Asics, and the computer system. Namely, it is shown how the computer system calibrates the detection system, acquires the data in real time, and controls the scan parameters and image filtering process.

  17. X-ray optics of tapered capillaries.

    Science.gov (United States)

    Balaic, D X; Nugent, K A

    1995-11-01

    The optics of x-ray concentration by tapered glass capillaries is analyzed in terms of a phase-space construction describing their transmission efficiency. The parameters defining the intensity gain are given in terms of parameters describing the x-ray source used, the capillary taper profile, and glass characteristics. We introduce some key concepts in understanding these devices: the extreme ray and a phase-space description of sources and optics. They are used to develop an analytical formulation for the optimum gain characteristics of generalized tapers for use with synchrotrons and other low-divergence sources. This general solution is solved further for the case of conical taper profile. The predictions of this theory are compared with the results of three-dimensional, ray-tracing simulations of x-ray concentration efficiency for conical and paraboloidal tapers.

  18. Bone diagnosis by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil)], E-mail: inaya@lin.ufrj.br; Anjos, M.J. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil); Physics Institute, UERJ (Brazil); Farias, M.L.F. [University Hospital, UFRJ (Brazil); Parcegoni, N.; Rosenthal, D. [Biophysics Institute, UFRJ (Brazil); Duarte, M.E.L. [Histologic and Embriology Department, UFRJ (Brazil); Lopes, R.T. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil)

    2008-12-15

    In this work, two X-ray techniques used were 3D microcomputed tomography (micro-CT) and X-ray microfluorescence (micro-XRF) in order to investigate the internal structure of the bone samples. Those two techniques work together, e.g. as a complement to each other, to characterize bones structure and composition. Initially, the specimens were used to do the scan procedure in the microcomputer tomography system and the second step consists of doing the X-ray microfluorescence analysis. The results show that both techniques are powerful methods for analyzing, inspecting and characterizing bone samples: they are alternative procedures for examining bone structures and compositions and they are complementary.

  19. Spontaneous emission effects in optically pumped x-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Smetanin, I.V.; Grigor`ev, S.V. [P.N. Lebedev Physics Institute, Moscow (Russian Federation)

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  20. X-ray reflectivity imager with 15 W power X-ray source.

    Science.gov (United States)

    Jiang, Jinxing; Sakurai, Kenji

    2016-09-01

    X-ray reflectivity is usually used for the routine analysis of layered structures of uniform thin films. So far, the technique has some limitations in the application to more practical inhomogeneous/patterned samples. X-ray reflectivity imaging is recently developed technique and can give the reconstructed image from many X-ray reflection projections. The present article gives the instrumental details of the compact X-ray reflectivity imager. Though the power of X-ray source is only 15 W, it works well. The calibration of the system has been discussed, because it is particularly important for the present grazing incidence geometry. We also give a visualization example of the buried interface, physical meaning of the reconstructed image, and discussions about possibilities for improvement.

  1. Incidental findings in chest X-rays; Zufallsbefunde im Roentgenthorax

    Energy Technology Data Exchange (ETDEWEB)

    Wielpuetz, M.O.; Kauczor, H.U. [Universitaetsklinikum Heidelberg, Klinik fuer Diagnostische und Interventionelle Radiologie, Heidelberg (Germany); Universitaet Heidelberg, Translational Lung Research Center (TLRC), Deutsches Zentrum fuer Lungenforschung (DZL), Heidelberg (Germany); Universitaetsklinikum Heidelberg, Klinik fuer Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik, Heidelberg (Germany); Weckbach, S. [Universitaetsklinikum Heidelberg, Klinik fuer Diagnostische und Interventionelle Radiologie, Heidelberg (Germany); Universitaet Heidelberg, Translational Lung Research Center (TLRC), Deutsches Zentrum fuer Lungenforschung (DZL), Heidelberg (Germany)

    2017-04-15

    Conventional projection radiography (chest x-ray) is one of the most frequently requested procedures in radiology. Even though chest x-ray imaging is frequently performed in asymptomatic patients for preoperative assessment, clinically relevant incidental findings are relatively scarce. This is due to the relatively low sensitivity of chest x-rays where few clinically relevant incidental findings are to be expected, as any detectable pathologies will as a rule already be clinically symptomatic. Recommendations from relevant societies for the management of incidental findings, apart from the clarification of incidental nodules, do not exist. This review article therefore describes the most frequent and typical incidental findings of lung parenchyma (apart from pulmonary nodules), mediastinal structures including the hilum of the lungs, pleura, chest wall and major vessels. Also described are those findings which can be diagnosed with sufficient certainty from chest x-rays so that further clarification is not necessary and those which must be further clarified by multislice imaging procedures or other techniques. (orig.) [German] Eine der haeufigsten Untersuchungen in der Radiologie ist die konventionelle Projektionsradiographie des Thorax (Roentgenthorax). Auch wenn projektionsradiographische Aufnahmen im Rahmen einer praeoperativen Abklaerung haeufig als orientierende Untersuchung angefertigt werden, sind - bedingt durch die relativ geringe Sensitivitaet des Roentgenthorax - wenig klinisch relevante Zufallsbefunde zu erwarten, da nachweisbare Pathologien in der Regel bereits auch klinisch apparent sind. Empfehlungen entsprechender Fachgesellschaften zu Zufallsbefunden im Roentgenthorax jenseits der Abklaerung von Rundherden liegen nicht vor. Die vorliegende Arbeit beleuchtet daher haeufige und typische Zufallsbefunde des Lungenparenchyms (ausser den Lungenrundherden), der mediastinalen Strukturen einschliesslich der Hili, der Pleura, der Thoraxwand sowie der

  2. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  3. Differential phase contrast X-ray imaging system and components

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Daniel; Finkenthal, Michael

    2017-11-21

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  4. Differential phase contrast X-ray imaging system and components

    Science.gov (United States)

    Stutman, Daniel; Finkenthal, Michael

    2017-01-31

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  5. Soft X-ray focusing Telescope aboard AstroSat

    DEFF Research Database (Denmark)

    Singh, K. P.; Dewangan, G. C.; Chandra, S.

    2017-01-01

    The Soft X-ray focusing Telescope (SXT) is a moderateresolution X-ray imaging spectrometer supplementing the ultraviolet and hard X-ray payloads for broadband studies of cosmic sources with AstroSat. Well suited for observing bright X-ray sources, SXT observations of nearby active galactic nuclei...

  6. Grazing Incidence X-ray Scattering and Diffraction

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Grazing Incidence X-ray Scattering and Diffraction. Jaydeep K Basu. General Article Volume 19 Issue 12 December ... Keywords. X-ray reflectivity; X-ray diffuse scattering; grazing incident diffraction; grazing incident; small angle X-ray scattering.

  7. XRASE: The X-Ray Spectroscopic Explorer

    DEFF Research Database (Denmark)

    Schnopper, H.W.; Silver, E.; Murray, S.

    2001-01-01

    The X-Ray Spectroscopic Explorer (XRASE) has a unique combination of features that will make it possible to address many of NASA's scientific goals. These include how galaxy clusters form, the physics and chemistry of the ISM, the heating of stellar coronae, the amount and content of intergalactic...... eV at 6 keV) and efficiency with a field-of-view of 26 arcmin(2) . A deep orbit allows for long, continuous observations. Monitoring instruments in the optical (WOM-X), UV (TAUVEX) and hard X-RAY (GRAM) bands will offer exceptional opportunities to make simultaneous multi-wavelength observations....

  8. Tantalum/Copper X-Ray Targets

    Science.gov (United States)

    Waters, William J.; Edmonds, Brian

    1993-01-01

    Lewis Research Center developed unique solution to subsidiary problem of fabrication of x-ray target. Plasma spraying enabled fabrication of lightweight, high-performance targets. Power settings, atmosphere-control settings, rate of deposition, and other spraying parameters developed. Thin coats of tantalum successfully deposited on copper targets. Targets performed successfully in tests and satisfied all criteria expressed in terms of critical parameters. Significantly reduces projected costs of fabrication of targets and contributes to development of improved, long-lived, lightweight x-ray system.

  9. Studying Microquasars with X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Giorgio Matt

    2018-03-01

    Full Text Available Microquasars are Galactic black hole systems in which matter is transferred from a donor star and accretes onto a black hole of, typically, 10–20 solar masses. The presence of an accretion disk and a relativistic jet made them a scaled down analogue of quasars—thence their name. Microquasars feature prominently in the scientific goals of X-ray polarimeters, because a number of open questions, which are discussed in this paper, can potentially be answered: the geometry of the hot corona believed to be responsible for the hard X-ray emission; the role of the jet; the spin of the black hole.

  10. Hard X-ray Laue monochromator

    Science.gov (United States)

    Kocharyan, V. R.; Gogolev, A. S.; Kiziridi, A. A.; Batranin, A. V.; Muradyan, T. R.

    2016-06-01

    Experimental studies of X-ray diffraction from reflecting atomic planes (10¯11) of X-cut quartz single crystal in Laue geometry influenced by the temperature gradient were carried out. It is shown that by using the temperature gradient it is possible to reflect a hard X- ray beam with photon energy near the 100 keV with high efficiency. It has been experimentally proved that the intensity of the reflected beam can be increased by more than order depending on the value of the temperature gradient.

  11. Radiobiological studies using gamma and x rays.

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.; Lin, Yong; Wilder, Julie; Hutt, Julie A.; Padilla, Mabel T.; Gott, Katherine M.

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  12. Single Particle X-ray Diffractive Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  13. Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids.

    Science.gov (United States)

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Kim, Hae Koo; Lee, Sang Joon

    2010-07-27

    X-ray-based imaging is one of the most powerful and convenient methods in terms of versatility in applicable energy and high performance in use. Different from conventional nuclear medicine imaging, contrast agents are required in X-ray imaging especially for effectively targeted and molecularly specific functions. Here, in contrast to much reported static accumulation of the contrast agents in targeted organs, dynamic visualization in a living organism is successfully accomplished by the particle-traced X-ray imaging for the first time. Flow phenomena across perforated end walls of xylem vessels in rice are monitored by a gold nanoparticle (AuNP) (approximately 20 nm in diameter) as a flow tracing sensor working in nontransparent biofluids. AuNPs are surface-modified to control the hydrodynamic properties such as hydrodynamic size (DH), zeta-potential, and surface plasmonic properties in aqueous conditions. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray nanoscopy (XN), and X-ray microscopy (XM) are used to correlate the interparticle interactions with X-ray absorption ability. Cluster formation and X-ray contrast ability of the AuNPs are successfully modulated by controlling the interparticle interactions evaluated as flow-tracing sensors.

  14. Applications and measurements of polycapillary x-ray optics.

    Science.gov (United States)

    Macdonald, C A

    1996-01-01

    The recent invention of Kumakhov polycapillary x-ray and neutron optics has expanded the ways x-ray beams can be controlled. X rays incident on the interior of glass tubes at small angles can be guided down the tubes by total external reflection. Now, arrays of curved tapered capillaries can be used to focus, collimate, and filter x-ray radiation. Extensive research is being conducted on the performance and potential applications of these optics. Potential medical applications include mammography, digital energy subtraction angiography, and focused beam therapy. Other applications are x-ray lithography, x-ray astronomy, crystal diffraction, x-ray fluorescence, and neutron prompt gamma analysis.

  15. 3D RECONSTRUCTION FROM MULTI-VIEW MEDICAL X-RAY IMAGES – REVIEW AND EVALUATION OF EXISTING METHODS

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2015-12-01

    Full Text Available The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT scan and magnetic resonance imaging (MRI have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT. Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.

  16. 12th International Conference on X-Ray Lasers

    CERN Document Server

    Nam, Chang; Janulewicz, Karol

    2011-01-01

    This book provides a comprehensive review of the present status of achievements in the area of soft X-ray laser sources, supplemented by information about sources based on relativistic laser˗matter interaction and their future, and incoherent sources within a very broad spectral range. The diversity of demonstrated or planned applications presented in the book supports the thesis that such sources have now reached a mature stage of development. There is a significant effort worldwide to develop very bright, ultra-short duration, radiation sources in the extreme ultraviolet and X-ray spectral regions, driven by a diversity of potential applications in nearly all branches of science. This book updates the status in this field and focuses on developments in laser plasma-based methods. The scheme of transient inversion proves its robustness by being dominant in the area of repetitive X-ray lasers pumped at grazing-incidence-geometry by optical lasers of moderate energy at increasing repetition rates – these ch...

  17. THz Pump and X-Ray Probe Development at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan S; /SLAC, LCLS; Durr, Hermann; /SIMES, Stanford /SLAC, PULSE; Lindenberg, Aaron; Stanford U., Materials Sci.Dept.; /SIMES, Stanford /SLAC, PULSE; Reis, David; /SIMES, Stanford /SLAC, PULSE /Stanford U., Dept. Appl. Phys.; Frisch, Josef; Loos, Henrik; Petree, Mark; /SLAC, LCLS; Daranciang, Dan; /Stanford U., Chem. Dept.; Fuchs, Matthias; /SLAC, PULSE; Ghimire, Shambhu; /SLAC, PULSE; Goodfellow, John; /Stanford U., Materials Sci. Dept.

    2011-11-08

    We report on measurements of broadband, intense, coherent transition radiation at terahertz frequencies, generated as the highly compressed electron bunches in Linear Coherent Light Source (LCLS) pass through a thin metal foil. The foil is inserted at 45{sup o} to the electron beam, 31 m downstream of the undulator. The THz emission passes downward through a diamond window to an optical table below the beamline. A fully compressed 350-pC bunch produces up to 0.5 mJ in a nearly half-cycle pulse of 50 fs FWHM with a spectrum peaking at 10 THz. We estimate a peak field at the focus of over 2.5 GV/m. A 20-fs Ti:sapphire laser oscillator has recently been installed for electro-optic measurements. We are developing plans to add an x-ray probe to this THz pump, by diffracting FEL x rays onto the table with a thin silicon crystal. The x rays would arrive with an adjustable time delay after the THz. This will provide a rapid start to user studies of materials excited by intense single-cycle pulses and will serve as a step toward a THz transport line for LCLS-II.

  18. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  19. FINDING FOSSIL GROUPS: OPTICAL IDENTIFICATION AND X-RAY CONFIRMATION

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Eric D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Rykoff, Eli S. [E.O. Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, CA 94720 (United States); Dupke, Renato A. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Mendes de Oliveira, Claudia; Proctor, Robert N. [Departamento de Astronomia, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas da Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-090 Sao Paulo (Brazil); Lopes de Oliveira, Raimundo [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-970 Sao Carlos, SP (Brazil); Garmire, Gordon P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Koester, Benjamin P. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); McKay, Timothy A., E-mail: milleric@mit.edu [Department of Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109 (United States)

    2012-03-10

    We report the discovery of 12 new fossil groups (FGs) of galaxies, systems dominated by a single giant elliptical galaxy and cluster-scale gravitational potential, but lacking the population of bright galaxies typically seen in galaxy clusters. These FGs, selected from the maxBCG optical cluster catalog, were detected in snapshot observations with the Chandra X-ray Observatory. We detail the highly successful selection method, with an 80% success rate in identifying 12 FGs from our target sample of 15 candidates. For 11 of the systems, we determine the X-ray luminosity, temperature, and hydrostatic mass, which do not deviate significantly from expectations for normal systems, spanning a range typical of rich groups and poor clusters of galaxies. A small number of detected FGs are morphologically irregular, possibly due to past mergers, interaction of the intra-group medium with a central active galactic nucleus (AGN), or superposition of multiple massive halos. Two-thirds of the X-ray-detected FGs exhibit X-ray emission associated with the central brightest cluster galaxy (BCG), although we are unable to distinguish between AGN and extended thermal galaxy emission using the current data. This sample representing a large increase in the number of known FGs, will be invaluable for future planned observations to determine FG temperature, gas density, metal abundance, and mass distributions, and to compare to normal (non-fossil) systems. Finally, the presence of a population of galaxy-poor systems may bias mass function determinations that measure richness from galaxy counts. When used to constrain power spectrum normalization and {Omega}{sub m}, these biased mass functions may in turn bias these results.

  20. X-ray insights into star and planet formation

    OpenAIRE

    Feigelson, Eric D.

    2010-01-01

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the...

  1. Technical Development of Profile Measurement for the Soft X-Ray Via Compton Backward Scattering

    CERN Document Server

    Saito, Taku; Hayano, Hitoshi; Hidume, Kentaro; Kashiwagi, Shigeru; Kuroda, Ryunosuke; Minamiguchi, Shuichi; Oshima, Akihiro; Ueyama, Daisuke; Urakawa, Junji; Washio, Masakazu

    2005-01-01

    A compact X-ray source is called for such various fields as material development, biological science, and medical treatment. At Waseda University, we have already succeeded to generate the soft X-ray of the wavelength within so-called water window region (250-500eV) via Compton backward scattering between 1047nm Nd:YLF laser and 4.2MeV high quality electron beam. Although this method equips some useful characters, e.g. high intensity, short pulse, energy variableness, etc, the X-ray generating system is compact enough to fit in tabletop size. In the next step, there rises two principal tasks, that is, to make the soft X-ray intensity higher, and to progress X-ray profile measurement techniques as preliminary experiments for biomicroscopy. Specifically, we utilize two-pass amp for the former, and irradiate X-ray to a resist film which is previously exposed by UV lamp or get images with X-ray CCD for the latter. In this conference, we will show the experimental results and some future plans.

  2. Critical-angle transmission grating technology development for high resolving power soft x-ray spectrometers on Arcus and Lynx

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Song, Jungki; Kolodziejczak, Jeffery; Gaskin, Jessica A.; O'Dell, Stephen L.; Cheimetz, Peter; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; La Caria, Marlis-Madeleine; Schattenburg, Mark L.

    2017-08-01

    Soft x-ray spectroscopy with high resolving power (R = λ/Δλ) and large effective area (A) addresses numerous unanswered science questions about the physical laws that lead to the structure of our universe. In the soft x-ray band R > 1000 can currently only be achieved with diffraction grating-based spectroscopy. Criticalangle transmission (CAT) gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (relaxed alignment tolerances and temperature requirements, transparent at higher energies, low mass), resulting in minimal mission resource requirements, while greatly improving figures of merit. Diffraction efficiency > 33% and R > 10, 000 have been demonstrated for CAT gratings. Last year the technology has been certified at Technology Readiness Level 4 based on a probe class mission concept. The Explorer-scale (A > 450 cm2 , R > 2500) grating spectroscopy Arcus mission can be built with today's CAT grating technology and has been selected in the current Explorer round for a Phase A concept study. Its figure of merit for the detection of weak absorption lines will be an order of magnitude larger than current instruments on Chandra and XMM-Newton. Further CAT grating technology development and improvements in the angular resolution of x-ray optics can provide another order of magnitude improvement in performance, as is envisioned for the X-ray Surveyor/Lynx mission concept currently under development for input into the 2020 Decadal Survey. For Arcus we have tested CAT gratings in a spectrometer setup in combination with silicon pore optics (SPO) and obtained resolving power results that exceed Arcus requirements before and after environmental testing of the gratings. We have recently fabricated the largest (32 mm x 32 mm) CAT gratings to date, and plan to increase grating size further. We mounted two of these large gratings to frames and aligned them in the

  3. X-ray Chirped Pulse Amplification: towards GW Soft X-ray Lasers

    Directory of Open Access Journals (Sweden)

    Marta Fajardo

    2013-07-01

    Full Text Available Extensive modeling of the seeding of plasma-based soft X-ray lasers is reported in this article. Seminal experiments on amplification in plasmas created from solids have been studied in detail and explained. Using a transient collisional excitation scheme, we show that a 18 µJ, 80 fs fully coherent pulse is achievable by using plasmas pumped by a compact 10 Hz laser. We demonstrate that direct seeding of plasmas created by nanosecond lasers is not efficient. Therefore, we propose and fully study the transposition to soft X-rays of the Chirped Pulse Amplification (CPA technique. Soft X-ray pulses with energy of 6 mJ and 200 fs duration are reachable by seeding plasmas pumped by compact 100 J, sub-ns, 1 shot/min lasers. These soft X-ray lasers would reach GW power, corresponding to an increase of 100 times as compared to the highest peak power achievable nowadays in the soft X-ray region (30 eV–1 keV. X-ray CPA is opening new horizon for soft x-ray ultra-intense sources.

  4. First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)

    Science.gov (United States)

    Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz

    2017-03-01

    Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.

  5. Compact stellar X-ray sources

    NARCIS (Netherlands)

    Lewin, W.H.G.; van der Klis, M.

    2006-01-01

    X-ray astronomy is the prime available window on astrophysical compact objects: black holes, neutron stars and white dwarfs. In the last ten years new observational opportunities have led to an explosion of knowledge in this field. This book provides a comprehensive overview of the astrophysics of

  6. ROSAT: X ray survey of compact groups

    NARCIS (Netherlands)

    van Gorkom, Jacqueline

    1993-01-01

    This is the final technical report on grant NAG5-1954, which was awarded under the NASA ROSAT Guest Investigator Program to Columbia University. This grant was awarded for a number of projects on two rather different topics: (1) an x-ray survey of compact groups of galaxies; and (2) the fate of gas

  7. Fourier techniques in X-ray timing

    NARCIS (Netherlands)

    van der Klis, M.

    1988-01-01

    Basic principles of Fourier techniques often used in X-ray time series analysis are reviewed. The relation between the discrete Fourier transform and the continuous Fourier transform is discussed to introduce the concepts of windowing and aliasing. The relation is derived between the power spectrum

  8. A microcapillary lens for X-rays

    CERN Document Server

    Dudchik, Y I

    1999-01-01

    A new design of a compound refractive lens for X-rays is proposed. The lens is made as a set of glue microlenses placed in a glass capillary. The technique of lens fabrication is described. Results of ray tracing calculations for 8 and 15 keV photons are represented.

  9. X-ray optics for axion helioscopes

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Pivovaroff, Michael J.; Christensen, Finn Erland

    2013-01-01

    A method of optimizing grazing incidence x-ray coatings in ground based axion helioscopes is presented. Software has been been developed to find the optimum coating when taking both axion spectrum and Micromegas detector quantum efficiency into account. A comparison of the relative effective area...... of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  10. Exploring subluminous X-ray binaries

    NARCIS (Netherlands)

    Degenaar, N.D.

    2010-01-01

    Halfway the twentieth century, technological developments made it possible to carry detection instruments outside the absorbing layers of the Earth’s atmosphere onboard rockets and satellites. This opened up the opportunity to detect the emission from celestial objects at X-ray wavelengths, thereby

  11. Techniques in X-ray Astronomy

    Indian Academy of Sciences (India)

    Kulinder Pal Singh is in the Department of. Astronomy and Astro- physics of the Tata. Institute of Fundamental. Research, Mumbai. His primary fields of research are X-ray studies of hot plasmas in stars, super- nova remnants, galaxies, intergalactic medium in clusters of galaxies, active galactic nuclei, cataclys- mic variables ...

  12. Supernova remnants: the X-ray perspective

    NARCIS (Netherlands)

    Vink, J.

    2012-01-01

    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And

  13. Reconstructing misaligned x-ray CT data

    Energy Technology Data Exchange (ETDEWEB)

    Divin, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-24

    Misalignment errors for x-ray computed tomography (CT) systems can manifest as artifacts and a loss of spatial and contrast resolution. To mitigate artifacts, significant effort is taken to determine the system geometry and minimizing any residual error in the system alignment. This project improved our ability to post-correct data which was acquired on a misaligned CT system.

  14. X-ray signals in renal osteopathy

    Energy Technology Data Exchange (ETDEWEB)

    Rieden, K.

    1984-10-01

    Chronic renal insufficiency is associated with metabolic disturbances which ultimately lead to typical, partly extremely painful changes in the skeletal system the longer the disease persists. Regular X-ray control of certain skeletal segments allows early detection of renal oesteopathy if the radiological findings described in this article are carefully scrutinised and interpreted.

  15. X-ray Studies of Flaring Plasma

    Indian Academy of Sciences (India)

    We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument calibration, the absolute fluxes in a ...

  16. X-ray microscopy of human malaria

    Energy Technology Data Exchange (ETDEWEB)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  17. X-Ray Exam: Cervical Spine

    Science.gov (United States)

    ... open mouth (odontoid view). Occasionally, additional pictures like flexion and extension views of the cervical spine might be needed. continue Why It's Done A cervical spine X-ray can help find the cause of symptoms such as neck, shoulder, upper back, or arm pain, as well ...

  18. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... leg, and an image is recorded on special film or a computer. This image shows the soft tissues and the bone in the upper leg, which is called the femur. The X-ray image is black and white. Dense body parts that block the passage of the X- ...

  19. PREPARATION, SPECTROSCOPIC STUDIES AND X-RAY ...

    African Journals Online (AJOL)

    These complexes have been characterized by analysis, molar conductance, magnetic measurements, infrared spectral studies and X-ray diffraction. The analytical data showed 1:3 (metal:ligand) stoichiometry. Molar conductance measurements in dmf indicate 1:3 electrolytes in all cases. Magnetic moment values are close ...

  20. Kinematic X-Ray Analysis Apparatus

    NARCIS (Netherlands)

    Koningsberger, D.C.; Brinkgreve, P.

    1983-01-01

    In an X-ray analysis apparatus, a moving mechanism is provided by a main guide member along which a main slide device can be displaced. Rotatably connected with the main slide device is a detector guide member along which a detection slide device is displaced. The main slide device, as well as the

  1. A Stainless-Steel Mandrel for Slumping Glass X-ray Mirrors

    Science.gov (United States)

    Gubarev, Mikhail V.; O'Dell, Stephen L.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2009-01-01

    We have fabricated a precision full-cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm diameter primary (paraboloid) mirror of an 840-cm focal-length Wolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C.of glass mirror segments at Goddard Space Flight Center, in support of NASA's participation in the International X-ray Observatory (IXO). Precision turning of stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  2. Mystery of Cometary X-Rays Solved

    Science.gov (United States)

    2000-07-01

    On July 14, 2000 NASA's Chandra X-ray Observatory imaged Comet C/1999 S4 (LINEAR) and detected X-rays from oxygen and nitrogen ions. The details of the X-ray emission, as recorded on Chandra's Advanced CCD Imaging Spectrometer, show that they are produced by collisions of ions racing away from the Sun with gas in the comet. "This observation solves one mystery. It proves how comets produce X-rays," said Dr. Carey Lisse of the Space Telescope Science Institute (STScI) leader of a team of scientists from STScI, NASA's Goddard Space Flight Center, Max Planck Institute in Germany, Johns Hopkins University, the University of California, Berkeley, and the Harvard-Smithsonian Center for Astrophysics. "With an instrument like Chandra, we can now study the chemistry of the solar wind, and observe the X-ray glow from the atmospheres of comets as well as planets such as Venus. It may even be possible to observe other, nearby solar systems." Comets, which resemble "dirty snow balls" a few miles in diameter, were thought to be too cold for such energetic emission, so the detection of X-rays by the ROSAT observatory from comet Hyakutake in 1996 was a surprise. Several explanations were suggested, but the source of cometary X-ray emission remained a puzzle until the Chandra observation of Comet C/1999 S4 (LINEAR). Chandra's imaging spectrometer revealed a strong X-ray signal from oxygen and nitrogen ions, clinching the case for the production of X-rays due to the exchange of electrons in collisions between nitrogen and oxygen ions in the solar wind and electrically neutral elements (predominantly hydrogen) in the comets atmosphere. The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on July 14, 2000 for a total of 2 ½ hours. The comet will be re-observed with Chandra during the weeks of July 29 - Aug 13. Comet C/1999 S4 (LINEAR) was discovered in September 1999 by the Lincoln Near Earth Asteroid Research (LINEAR) project, which is operated by the

  3. A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Lipp, J; Mir, J A; Simmons, J E; Spill, E J; Stephenson, R; Dobson, B R; Farrow, R C; Helsby, W I; Mutikainen, R; Suni, I

    2002-01-01

    The Gas Microstrip Detector has counting rate capabilities several orders of magnitude higher than conventional wire proportional counters while providing the same (or better) energy resolution for X-rays. In addition the geometric flexibility provided by the lithographic process combined with the self-supporting properties of the substrate offers many exciting possibilities for X-ray detectors, particularly for the demanding experiments carried out on Synchrotron Radiation Sources. Using experience obtained in designing detectors for Particle Physics we have developed a detector for Wide Angle X-ray Scattering studies. The detector has a fan geometry which makes possible a gas detector with high detection efficiency, sub-millimetre spatial resolution and good energy resolution over a wide range of X-ray energy. The detector is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  4. X-ray diffraction and scanning electron microscopy of galvannealed coatings on steel.

    Science.gov (United States)

    Schmid, P; Uran, K; Macherey, F; Ebert, M; Ullrich, H-J; Sommer, D; Friedel, F

    2009-04-01

    The formation of Fe-Zn intermetallic compounds, as relevant in the commercial product galvannealed steel sheet, was investigated by scanning electron microscopy and different methods of X-ray diffraction. A scanning electron microscope with high resolution was applied to investigate the layers of the galvannealed coating and its topography. Grazing incidence X-ray diffraction (GID) was preferred over conventional Bragg-Brentano geometry for analysing thin crystalline layers because of its lower incidence angle alpha and its lower depth of information. Furthermore, in situ experiments at an environmental scanning electron microscope (ESEM) with an internal heating plate and at an X-ray diffractometer equipped with a high-temperature chamber were carried out. Thus, it was possible to investigate the phase evolution during heat treatment by X-ray diffraction and to display the growth of the zeta crystals in the ESEM.

  5. In-laboratory diffraction-enhanced X-ray imaging for articular cartilage.

    Science.gov (United States)

    Muehleman, Carol; Fogarty, Daniel; Reinhart, Benjamin; Tzvetkov, Tochko; Li, Jun; Nesch, Ivan

    2010-07-01

    The loss of articular cartilage characteristic of osteoarthritis can only be diagnosed by joint space narrowing when conventional radiography is used. This is due to the lack of X-ray contrast of soft tissues. Whereas conventional radiography harnesses the X-ray attenuation properties of tissues, Diffraction Enhanced Imaging (DEI), a novel radiographic technique, allows the visualization of soft tissues simultaneous with calcified tissues by virtue of its ability to not only harness X-ray attenuation but also the X-ray refraction from tissue boundaries. Previously, DEI was dependent upon synchrotron X-rays, but more recently, the development of nonsynchrotron DEI units has been explored. These developments serve to elaborate the full potential of radiography. Here, we tested the potential of an in-laboratory DEI system, called Diffraction-Enhanced X-ray Imaging (DEXI), to render images of articular cartilage displaying varying degrees of degradation, ex vivo. DEXI allowed visualization of even early stages of cartilage degeneration such as surface fibrillation. This may be of eventual clinical significance for the diagnosis of early stages of degeneration, or at the very least, to visualize soft tissue degeneration simultaneous with bone changes. (c) 2010 Wiley-Liss, Inc.

  6. X-ray-cured carbon-fiber composites for vehicle use

    Science.gov (United States)

    Herer, Arnold; Galloway, Richard A.; Cleland, Marshall R.; Berejka, Anthony J.; Montoney, Daniel; Dispenza, Dan; Driscoll, Mark

    2009-07-01

    Carbon-fiber-reinforced composites were cured in molds using X-rays derived from a high-energy, high-current electron beam. X-rays could penetrate the mold walls as well as the fiber reinforcements and polymerize a matrix system. Matrix materials made from modified epoxy-acrylates were tailored to suitably low viscosity so that fiber wetting and adhesion could be attained. Techniques similar to vacuum-assisted resin transfer molding (VARTM) and conventional vacuum bagging of wet lay-ups were used. Inexpensive reinforced polyester molds were used to fabricate vehicle fenders. Moderately low-dose X-ray exposure was sufficient to attain functional properties, such as resistance to heat distortion at temperatures as high as 180 °C. The matrix system contained an impact additive which imparted toughness to the cured articles. "Class A" high gloss surfaces were achieved. Thermo-analytical techniques were used on small-sized samples of X-ray-cured matrix materials to facilitate selection of a system for use in making prototypes of vehicle components. X-rays-penetrated metal pieces that were placed within layers of carbon-fiber twill, which were cured and bonded into a structure that could be mechanically attached without concern over fracturing the composite. X-ray curing is a low temperature process that eliminates residual internal stresses which are imparted by conventional thermo-chemical curing processes.

  7. X-ray vector radiography of a human hand

    Science.gov (United States)

    Jud, Christoph; Braig, Eva; Dierolf, Martin; Eggl, Elena; Günther, Benedikt; Achterhold, Klaus; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Münzel, Daniela

    2017-03-01

    Grating based x-ray phase-contrast reveals differential phase-contrast (DPC) and dark-field contrast (DFC) on top of the conventional absorption image. X-ray vector radiography (XVR) exploits the directional dependence of the DFC and yields the mean scattering strength, the degree of anisotropy and the orientation of scattering structures by combining several DFC-projections. Here, we perform an XVR of an ex vivo human hand specimen. Conventional attenuation images have a good contrast between the bones and the surrounding soft tissue. Within the bones, trabecular structures are visible. However, XVR detects subtler differences within the trabecular structure: there is isotropic scattering in the extremities of the phalanx in contrast to anisotropic scattering in its body. The orientation changes as well from relatively random in the extremities to an alignment along the longitudinal trabecular orientation in the body. In the other bones measured, a similar behavior was found. These findings indicate a deeper insight into the anatomical configuration using XVR compared to conventional radiography. Since microfractures cause a discontinuous trabecular structure, XVR could help to detect so-called radiographically occult fractures of the trabecular bones.

  8. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Beye, M., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ochmann, M.; Huse, N. [Institute for Nanostructure and Solid State Physics, University of Hamburg, Jungiusstr. 11, 20355 Hamburg, Germany and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg (Germany); Ross, M.; Khalil, M. [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States); Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Föhlisch, A. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany)

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  9. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  10. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of ~200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  11. Influence by x-ray facula on dimension measurement

    Science.gov (United States)

    Qin, Xulei; Li, Ye; Duanmu, Qingduo; Zhao, Peng

    2015-03-01

    Based on the imaging features of the original image intensifier of X-ray, the light halo caused by X-ray projective halation is analyzed, the result shows the stray X-ray energy is lower than the direct X-ray energy. The screen brightness generated by the image intensifier of X-ray stimulated by the stray X-ray energy is weaker than that generated by the direct X-ray energy. In addition the projector facula reflected from the direct X-ray is focused on the central region of X-ray image intensifier, therefore a toroidal ring similar to the solar halation is formed around the projector halation. The results of the theoretical analysis and experimental discovery show this phenomenon caused by X-ray tube on X-ray image intensifier can not be eliminated and in the system of X-ray size detection composed of them the X-ray halation will reduce the detection accuracy resulting in measurement results' deviation dispersion under given conditions. This kind of nonlinear system error can not be canceled out by the segmented modification of coefficient compensation but it can be restrained through the adjustment of correction coefficients. After the physical testing and comparison of the physical normal size the accuracy of 0.1mm of the compensated X-ray measurement results after the adjustment of correction coefficient has been reached. The results are highly reproducible and the method of the segmented coefficient compensation has been improved.

  12. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  13. X-ray optics the diffraction of X-rays by finite and imperfect crystals

    CERN Document Server

    Wilson, Arthur J C

    1949-01-01

    This fascinating text contains a detailed treatise on the use of X-Ray optics in the taxonomy of minerals and gem stones. An interesting and informative book on the subject, X-Ray Optics - The Diffraction of X-Rays by Finite and Imperfect Crystals is a must-have for anyone with an interest the study of crystals and constitutes a great addition to any gemmological collection. Arthur James Cochran Wilson (28 November 1914 - 1 July 1995) was a Canadian crystallographer, most famous for his contributions to X-ray crystallography and elected as a Fellow of the Royal Society in 1963. This book has been elected for republication now due to its immense educational value, and is proudly republished here complete with a new introduction to the subject.

  14. X-Ray Optics on a Chip: Guiding X Rays in Curved Channels.

    Science.gov (United States)

    Salditt, T; Hoffmann, S; Vassholz, M; Haber, J; Osterhoff, M; Hilhorst, J

    2015-11-13

    We study the propagation of hard x rays in single curved x-ray waveguide channels and observe waveguide effects down to surprisingly small radii of curvature R≃10  mm and a large contour length s≃5  mm, deflecting beams up to 30°. At these high angles, about 2 orders of magnitude above the critical angle of total reflection θ(c), most radiation modes are lost by "leaking" into the cladding, while certain "survivor" modes persist. This may open up a new form of integrated x-ray optics "on a chip," requiring curvatures mostly well below the extreme values studied here, e.g., to split and to delay x-ray pulses.

  15. Soft X-ray Absorbers Enabling Study of the Diffuse X-ray Background Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Absorbers for soft x-rays need to be made thinner and with larger area, to collect more photons, and with minimal number of support stems. However, the structure is...

  16. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity

    Directory of Open Access Journals (Sweden)

    Malik Muhammad Abdullah

    2016-09-01

    Full Text Available We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit, we employ a Monte-Carlo-molecular dynamics-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units, we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution, we have used two different spatial beam profiles, Gaussian and flattop.

  17. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    Science.gov (United States)

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  19. Nanofocusing refractive X-ray lenses

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Pit

    2010-02-05

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  20. X-RAY POLARIZATION FROM HIGH-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, T. [NASA/GSFC, Code 662, Greenbelt, MD 20771 (United States); Dorodnitsyn, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Blondin, J. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2015-12-10

    X-ray astronomy allows study of objects that may be associated with compact objects, i.e., neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically nonspherical, and likely noncircular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. Potential targets for future X-ray polarization observations are the high-mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early-type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature that depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  1. ZBLAN-based x-ray storage phosphors and scintillators for digital x-ray imaging

    Science.gov (United States)

    Chen, Gang; Johnson, Jacqueline A.; Weber, Richard; Schweizer, Stefan; MacFarlane, Douglas; Woodford, John; De Carlo, Francesco

    2005-04-01

    X-ray storage phosphors have several advantages over traditional films as well as digital X-ray detectors based on thin-film transistors (TFT). Commercially used storage phosphors do not have high resolution due to light scattering from powder grains. To solve this problem, we have developed storage phosphor plates based on modified fluorozirconate (ZBLAN) glasses. The newly developed imaging plates are "grainless" and, therefore, can significantly reduce light scattering and improve image resolution. To study the structure and image performance of the novel storage phosphor plates, we conducted X-ray diffraction (XRD) and X-ray imaging analyses at the Advanced Photon Source, Argonne National Laboratory. The XRD results show that BaCl2 crystallites are embedded in the glass matrix. These crystallites enlarge and are under residual stress after heat treatment. The X-ray imaging study shows that these storage phosphor plates have a much better resolution than a commercially used storage phosphor screen. The results also show that some of the glass ceramics are high-resolution scintillators. Our study demonstrates that these fluorozirconate-based glass ceramics are a promising candidate for high-resolution digital X-ray detectors for both medical and scientific research purposes.

  2. HERMES: a soft X-ray beamline dedicated to X-ray microscopy.

    Science.gov (United States)

    Belkhou, Rachid; Stanescu, Stefan; Swaraj, Sufal; Besson, Adrien; Ledoux, Milena; Hajlaoui, Mahdi; Dalle, Didier

    2015-07-01

    The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity.

  3. X-Ray Polarization Measurements with the EXIST Hard X-Ray Survey Telescope

    Science.gov (United States)

    Krawczynski, Henric; Garson, A., III; Hong, J.; Grindlay, J. E.

    2009-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed NASA mission for scanning the entire sky in intermediate and hard X-rays. The EXIST mission includes a wide field of view High Energy Telescope (HET) covering the 5-600 keV energy range, and an infrared telescope. The HET has the capability to measure the energy dependent X-ray polarization properties of moderately bright and bright X-ray sources. Here we report on a study of the polarization sensitivity of EXIST as a function of the integration time. Broadband X-ray polarization measurements with EXIST have the potential to make important contributions to our understanding of a number of astrophysical source types including binary black holes, accreting neutron stars, magnetars, pulsar wind nebulae, active galactic nuclei and gamma-ray bursts. EXIST observations of the X-rays from binary black holes can be used to constrain the spins of black holes. Last but not least, EXIST observations of active galactic nuclei and gamma-ray bursts can be used for extremely sensitive Lorentz Invariance tests.

  4. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  5. A soft X-ray image of the moon

    Science.gov (United States)

    Schmitt, J. H. M. M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Snowden, S. L.

    1991-01-01

    A soft X-ray image of the moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the moon's X-ray luminosity arises from backscattering of solar X-rays. The moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one percent of that of the bright side; this emission very probably results from energetic solar-wind electrons striking the moon's surface.

  6. NIF conventional facilities construction health and safety plan

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, D W

    1998-05-14

    The purpose of this Plan is to outline the minimum health and safety requirements to which all participating Lawrence Livermore National Laboratory (LLNL) and non-LLNL employees (excluding National Ignition Facility [NIF] specific contractors and subcontractors covered under the construction subcontract packages (e.g., CSP-9)-see Construction Safety Program for the National Ignition Facility [CSP] Section I.B. ''NIF Construction Contractors and Subcontractors'' for specifics) shall adhere to for preventing job-related injuries and illnesses during Conventional Facilities construction activities at the NIF Project. For the purpose of this Plan, the term ''LLNL and non-LLNL employees'' includes LLNL employees, LLNL Plant Operations staff and their contractors, supplemental labor, contract labor, labor-only contractors, vendors, DOE representatives, personnel matrixed/assigned from other National Laboratories, participating guests, and others such as visitors, students, consultants etc., performing on-site work or services in support of the NIF Project. Based upon an activity level determination explained in Section 1.2.18, in this document, these organizations or individuals may be required by site management to prepare their own NIF site-specific safety plan. LLNL employees will normally not be expected to prepare a site-specific safety plan. This Plan also outlines job-specific exposures and construction site safety activities with which LLNL and non-LLNL employees shall comply.

  7. X-ray radiography for container inspection

    Science.gov (United States)

    Katz, Jonathan I [Clayton, MO; Morris, Christopher L [Los Alamos, NM

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  8. Soft X-ray multilayers and filters

    CERN Document Server

    Wang Zhan Shan; Tang Wei Xing; Qin Shuji; Zhou Bing; Chen Ling Ya

    2002-01-01

    The periodic and non-periodic multilayers were designed by using a random number to change each layer and a suitable merit function. Ion beam sputtering and magnetron sputtering were used to fabricate various multilayers and beam splitters in soft X-ray range. The characterization of multilayers by small angle X-ray diffraction, Auger electron spectroscopy, Rutherford back scattering spectroscopy and reflectivity illustrated the multilayers had good structures and smooth interlayers. The reflectivity and transmission of a beam splitter is about 5%. The fabrication and transmission properties of Ag, Zr were studied. The Rutherford back scattering spectroscopy and auger electron spectroscopy were used to investigate the contents and distributions of impurities and influence on qualities of filters. The attenuation coefficients were corrected by the data obtained by measurements

  9. Neutron and X-ray Spectroscopy

    CERN Document Server

    Hippert, Françoise; Hodeau, Jean Louis; Lelièvre-Berna, Eddy; Regnard, Jean-René

    2006-01-01

    Neutron and X-Ray Spectroscopy delivers an up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources, including recent developments. The chapters are based on a course of lectures and practicals (the HERCULES course) delivered to young scientists who require these methods in their professional careers. Each chapter, written by a leading specialist in the field, introduces the basic concepts of the technique and provides an overview of recent work. This volume, which focuses on spectroscopic techniques in synchrotron radiation and inelastic neutron scattering, will be a primary source of information for physicists, chemists and materials scientists who wish to acquire a basic understanding of these techniques and to discover the possibilities offered by them. Emphasizing the complementarity of the neutron and X-ray methods, this tutorial will also be invaluable to scientists already working in neighboring fields who seek to extend thei...

  10. X-Ray Polarimetry with GEMS

    Science.gov (United States)

    Strohmayer, Tod

    2011-01-01

    The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges

  11. High precision x ray lithographic masks

    Science.gov (United States)

    Pease, R. F.; Browning, R.

    1992-09-01

    This contract period was first concerned with winding up the projects on the embedded X-ray Mask structure and on the 'quantum lithography' idea. As a result of developments elsewhere it became clear that among the most critical issues in achieving high precision X-ray masks were those associated with achieving high precision in both feature size and feature placement in electron beam lithography. Most of the effort in this reporting period was aimed at achieving precision in feature size; notably an attack on the problem of proximity effects. There were two approaches: (1) A short term approach aimed at correcting effects in existing electron beam pattern generators (notably the ETEC MEBES 3 and 4) for feature sizes down 500 nm; and (2) A long term approach aimed at avoiding proximity effects by employing low energy electron exposure for feature size below 500 nm.

  12. X-ray Winds from Black Holes

    Science.gov (United States)

    Miller, Jon M.

    2017-08-01

    Across the mass scale, high-resolution X-ray spectroscopy has transformed our view of accretion onto black holes. The ionized disk winds observed from stellar-mass black holes may sometimes eject more mass than is able to accrete onto the black hole. It is possible that these winds can probe the fundamental physics that drive disk accretion. The most powerful winds from accretion onto massive black holes may play a role in feedback, seeding host bulges with hot gas and halting star formation. The lessons and techniques emerging from these efforts can also reveal the accretion flow geometry in tidal disruption events (TDEs), an especially rich discovery space. This talk will review some recent progress enabled by high-resolution X-ray spectroscopy, and look at the potential of gratings spectrometers and microcalorimeters in the years ahead.

  13. The microchannel x-ray telescope status

    Science.gov (United States)

    Götz, D.; Meuris, A.; Pinsard, F.; Doumayrou, E.; Tourrette, T.; Osborne, J. P.; Willingale, R.; Sykes, J. M.; Pearson, J. F.; Le Duigou, J. M.; Mercier, K.

    2016-07-01

    We present design status of the Microchannel X-ray Telescope, the focussing X-ray telescope on board the Sino- French SVOM mission dedicated to Gamma-Ray Bursts. Its optical design is based on square micro-pore optics (MPOs) in a Lobster-Eye configuration. The optics will be coupled to a low-noise pnCCD sensitive in the 0.2{10 keV energy range. With an expected point spread function of 4.5 arcmin (FWHM) and an estimated sensitivity adequate to detect all the afterglows of the SVOM GRBs, MXT will be able to provide error boxes smaller than 60 (90% c.l.) arc sec after five minutes of observation.

  14. [Can digital selenium-based radiography in thoracic diagnosis replace the analog x-ray imaging technic?].

    Science.gov (United States)

    Zähringer, M; Krug, B; Dölken, W; Gossmann, A; Lackner, K

    1997-07-01

    To find out the diagnostic value of digital selenium radiography, we compared the image quality of chest x-ray images from 50 patients who had been examined via conventional chest x-ray and digital selenium radiography of the chest. 50 patients with a malignant melanoma underwent chest x-ray within 3 months in conventional technique and with digital selenium radiography (Thoravision: Philips Medical Systems, Hamburg, Germany). In this period none of the patients showed a difference in respect of clinical status or radiological diagnosis. Simultaneous examinations on the same day were not performed to avoid unnecessary exposure to x-rays. The digital and conventional images were compared by 4 radiologists with regard to image quality by the detection of defined anatomic structures. Image quality of digital selenium radiography was considered superior to that of conventional chest x-rays in the mediastinum, the retrocardiac and retrodiaphragmatic areas, the superior and inferior lobes of the lung especially near the parietal pleura, and the chest wall. Compared to analogous techniques there is no loss of image information when employing digital selenium radiography in chest x-rays. On the contrary, new assessment criteria may be gained. We conclude that digital selenium radiography offers diagnostic advantages in chest x-ray examination.

  15. The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes.

    Science.gov (United States)

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2013-06-07

    X-ray spectroscopy at the metal K-edge is an important tool for understanding catalytic processes and provides insight into the geometric and electronic structures of transition metal complexes. In particular, X-ray emission-based methods such as high-energy resolution fluorescence detection (HERFD), X-ray absorption near-edge spectroscopy (XANES) and valence-to-core X-ray emission spectroscopy (V2C-XES) hold the promise of providing increased chemical sensitivity compared to conventional X-ray absorption spectroscopy. Here, we explore the ability of HERFD-XANES and V2C-XES spectroscopy to distinguish substitutions beyond the directly coordinated atoms for the example of ferrocene and selected ferrocene derivatives. The experimental spectra are assigned and interpreted through the use of density functional theory (DFT) calculations. We find that while the pre-edge peaks in the HERFD-XANES spectra are affected by substituents at the cyclopentadienyl ring containing π-bonds [A. J. Atkins, Ch. R. Jacob and M. Bauer, Chem.-Eur. J., 2012, 18, 7021], the V2C-XES spectra are virtually unchanged. The pre-edge in HERFD-XANES probes the weak transition to unoccupied metal d-orbitals, while the V2C-XES spectra are determined by dipole-allowed transitions from occupied ligand orbitals to the 1s core hole. The latter turn out to be less sensitive to changes beyond the first coordination shell.

  16. Diagnosing and Mapping Pulmonary Emphysema on X-Ray Projection Images: Incremental Value of Grating-Based X-Ray Dark-Field Imaging

    Science.gov (United States)

    Meinel, Felix G.; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö.; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F.; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    Purpose To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Materials and Methods Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Results Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, pemphysema provides color-coded parametric maps, which show the best correlation with histopathology. Conclusion In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections. PMID:23555692

  17. Two-channel X-ray reflectometer

    CERN Document Server

    Touryanski, A G; Pirshin, I V

    2000-01-01

    The two-channel X-ray reflectometer is proposed providing an increase in accuracy and sensitivity especially to nanoscale oxide layers. The reflectometer has two independent measuring channels controlled by a processor and the beam-splitting and spectral selection device based on a row of semitransparent plates of pyrolitic graphite. Results of reflection curve measurements in a relative mode are presented for an Ni film and GaAs monocrystal.

  18. X-ray microimaging by diffractive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kirz, Janos; Jacobsen, Chris

    2001-07-31

    The report summarizes the development of soft x-ray microscopes at the National Synchrotron Light Source X-1A beamline. We have developed a soft x-ray microscopy beamline (X-1A) at the National Synchrotron Light Source at Brookhaven National Laboratory. This beamline has been upgraded recently to provide two endstations dedicated to microscopy experiments. One endstation hosts a brand new copy of the redesigned room temperature scanning x-ray microscope (STXM), and the other end station hosts a cryo STXM and the original redesigned room temperature microscope, which has been commissioned and has started operation. Cryo STXM and the new microscope use the same new software package, running under the LINUX operating system. The new microscope is showing improved image resolution and extends spectromicroscopy to the nitrogen, oxygen and iron edges. These microscopes are used by us, and by users of the facility, to image hydrated specimens at 50 nm or better spatial resolution and with 0.1-0.5 eV energy resolution. This allows us to carry out chemical state mapping in biological, materials science, and environmental and colloidal science specimens. In the cryo microscope, we are able to do chemical state mapping and tomography of frozen hydrated specimens, and this is of special importance for radiation-sensitive biological specimens. for spectromicroscopic analysis, and methods for obtaining real-space images from the soft x-ray diffraction patterns of non-crystalline specimens. The user program provides opportunities for collaborators and other groups to exploit the techniques available and to develop them further. We have also developed new techniques such as an automated method for acquiring ''stacks'' of images.

  19. Axion mass limits from pulsar x rays

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.E.

    1984-12-01

    Axions thermally emitted by a neutron star would be converted into x rays in the strong magnetic field surrounding the star. An improvement in the observational upper limit of pulsed x rays from the Vela pulsar (PSR 0833-45) by a factor of 12 would constrain the axion mass M/sub a/ < 2 x 10/sup -3/eV if the core is non-superfluid and at temperature T/sub c/ greater than or equal to 2 x 10/sup 8/K. If the core is superfluid throughout, an improvement factor of 240 would be needed to provide the same constraint on the axion mass, while in the absence of superfluidity, an improvement factor of 200 could constrain M/sub a/ < 6 x 10/sup -4/eV. A search for modulated hard x rays from PSR 1509-58 or other young pulsars at presently attainable sensitivities may enable the setting of an upper limit for the axion mass. Observation of hard x rays from a very young hot pulsar with T/sub c/ greater than or equal to 7 x 10/sup 8/K could set a firm bound on the axion mass, since neutron superfluidity is not expected above this temperature. The remaining axion mass range 6 x 10/sup -4/eV > M/sub a/ > 10/sup -5/eV (the cosmological lower bound) can be covered by an improved Sikivie type laboratory cavity detector for relic axions constituting the galactic halo. 48 refs.

  20. Early x-ray diagnosis of coxarthrosis

    Energy Technology Data Exchange (ETDEWEB)

    Lingg, G.; Nebel, G.

    Radiological and pathological comparisons on specimen of femur head and neck at autopsy have shown a statistical relationship between osteophytosis of the femoral head and ulcerations of the joint cartilage. Especially, there are highly significant relationships between the length of osteophytes and the diameter of the ulcera. The 'plaque'-sign is shown to be a very sensitive indicator of early arthrosis. So there exist semiquantitative parameters for the X-ray diagnosis of early coxarthrosis.

  1. Clustering of X-Ray-Selected AGN

    Directory of Open Access Journals (Sweden)

    N. Cappelluti

    2012-01-01

    that galaxy mergers may constitute the main AGN-triggering mechanism. However, detailed analysis of observational data, acquired with modern telescopes, and the use of the new halo occupation formalism has revealed that the triggering of an AGN could also be attributed to phenomena-like tidal disruption or disk instability and to galaxy evolution. This paper reviews results from 1988 to 2011 in the field of X-ray-selected AGN clustering.

  2. Monitoring Instrument for X-Ray Box

    CERN Document Server

    Cifuentes Ospina, Alberto; Kuehn, Susanne; Schaepe, Steffen; CERN. Geneva. EP Department

    2017-01-01

    A humidity and temperature readout instrument has been designed and implemented in order to monitor the X-Ray Box used for testing the silicon detectors prototypes of the ITk. The sensors are connected to an Arduino Mega board equipped with 16 analog inputs and a serial port to a computer. A user-friendly software has been also designed in order to give an easy access to all measurements.

  3. Basic of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Giacovazzo, C. [Bari Univ. (Italy). Dip. Geomineralogico

    1996-09-01

    The basic concepts of X-ray diffraction may be more easily understood if it is made preliminary use of a mathematical background. In these pages the authors will first define the delta function and its use for the representation of a lattice. Then the concepts of Fourier transform and convolution are given. At the end of this talk one should realize that a crystal is the convolution of the lattice with a function representing the content of the unit cell.

  4. The X-ray Telescope of CAST

    CERN Document Server

    Kuster, M.; Cebrian, S.; Davenport, M.; Elefteriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F.H.; Hoffmann, D.H.H.; Hoffmeister, G.; Joux, J.N.; Kang, D.; Konigsmann, Kay; Kotthaus, R.; Papaevangelou, T.; Lasseur, C.; Lippitsch, A.; Lutz, G.; Morales, J.; Rodriguez, A.; Struder, L.; Vogel, J.; Zioutas, K.

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  5. X-raying galaxies: a Chandra legacy.

    Science.gov (United States)

    Wang, Q Daniel

    2010-04-20

    This presentation reviews Chandra's major contribution to the understanding of nearby galaxies. After a brief summary on significant advances in characterizing various types of discrete x-ray sources, the presentation focuses on the global hot gas in and around galaxies, especially normal ones like our own. The hot gas is a product of stellar and active galactic nuclear feedback--the least understood part in theories of galaxy formation and evolution. Chandra observations have led to the first characterization of the spatial, thermal, chemical, and kinetic properties of the gas in our galaxy. The gas is concentrated around the galactic bulge and disk on scales of a few kiloparsec. The column density of chemically enriched hot gas on larger scales is at least an order magnitude smaller, indicating that it may not account for the bulk of the missing baryon matter predicted for the galactic halo according to the standard cosmology. Similar results have also been obtained for other nearby galaxies. The x-ray emission from hot gas is well correlated with the star formation rate and stellar mass, indicating that the heating is primarily due to the stellar feedback. However, the observed x-ray luminosity of the gas is typically less than a few percent of the feedback energy. Thus the bulk of the feedback (including injected heavy elements) is likely lost in galaxy-wide outflows. The results are compared with simulations of the feedback to infer its dynamics and interplay with the circumgalactic medium, hence the evolution of galaxies.

  6. Healing X-ray scattering images.

    Science.gov (United States)

    Liu, Jiliang; Lhermitte, Julien; Tian, Ye; Zhang, Zheng; Yu, Dantong; Yager, Kevin G

    2017-07-01

    X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  7. Healing X-ray scattering images

    Directory of Open Access Journals (Sweden)

    Jiliang Liu

    2017-07-01

    Full Text Available X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  8. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  9. Precise measurement of inner diameter of mono-capillary optic using X-ray imaging technique.

    Science.gov (United States)

    Kwon, Soonmu; Lim, Jae Hong; Namba, Yoshiharu; Chon, Kwon Su

    2017-11-16

    Mono-capillary optics have been applied to increase the performance of X-ray instruments. However, performance of a mono-capillary optic strongly depends on the shape accuracy, which is determined by the diameters of the inner hollow of the capillary along the axial direction. To precisely determine the inner diameter of the capillary optic used in X-ray imaging technique, which aims to replace the conventional method using a visible microscope. High spatial resolution X-ray images of the mono-capillary optic were obtained by a synchrotron radiation beamline. The inner diameter of the mono-capillary optic was measured and analyzed by the pixel values of the X-ray image. Edge enhancement effect was quite useful in determining the inner diameter, and the accuracy of the diameter determination was less than 1.32 μm. Many images obtained by scanning the mono-capillary optic along the axial direction were combined, and the axial profile, consisting of diameters along the axial direction, was obtained from the combined image. The X-ray imaging method could provide an accurate measurement with slope error of±19 μrad. Applying X-ray imaging technique to determine the inner diameter of a mono-capillary optic can contribute to increasing fabrication accuracy of the mono-capillary optic through a feedback process between the fabrication and measurement of its diameter.

  10. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  11. Characterisation and application of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, M

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm{sup 2} onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained 120 refs, figs, tabs

  12. TOMOX : An X-rays tomographer for planetary exploration

    Science.gov (United States)

    Marinangeli, Lucia; Pompilio, Loredana; Chiara Tangari, Anna; Baliva, Antonio; Alvaro, Matteo; Chiara Domeneghetti, Maria; Frau, Franco; Melis, Maria Teresa; Bonanno, Giovanni; Consolata Rapisarda, Maria; Petrinca, Paolo; Menozzi, Oliva; Lasalvia, Vasco; Pirrotta, Simone

    2017-04-01

    The TOMOX instrument has recently been founded under the ASI DC-EOS-2014-309 call. The TOMOX objective is to acquire both X-ray fluorescence and diffraction measurements from a sample in order to: a) achieve its chemical and mineralogical composition; b) reconstruct a 3D tomography of the sample exposed surface; c) give hints regarding the sample age. Nevertheless, this technique has applicability in several disciplines other than planetary geology, especially archaeology. The word 'tomography' is nowadays used for many 3D imaging methods, not just for those based on radiographic projections, but also for a wider range of techniques that yield 3D images. Fluorescence tomography is based on the signal produced on an energy-sensitive detector, generally placed in the horizontal plane at some angle with respect to the incident beam caused by photons coming from fluorescence emission. So far, a number of setups have been designed in order to acquire X-rays fluorescence tomograms of several different sample types. The proposed instrument is based on the MARS-XRD heritage, an ultra miniaturised XRD and XRF instrument developed for the ESA ExoMars mission. The general idea of TOMOX is to distribute both sources and detectors along a moving hemispherical support around the target sample. As a result, both sources move integrally with the detectors while the sample is observed from a fixed position, thus preserving the geometry of observation. In that way, the whole sample surface is imagined and XRD and XRF measurements are acquired continuously along all the scans. We plan to irradiate the target sample with X-rays emitted from 55Fe and 109Cd radioactive sources. 55Fe and 109Cd radioisotopes are commonly used as X-ray sources for analysis of metals in soils and rocks. The excitation energies of 55Fe and 109Cd are 5.9 keV, and 22.1 and 87.9 keV, respectively. Therefore, the elemental analysis ranges are Al to Mn with K lines excited with 55Fe; Ca to Rh, with K lines

  13. Reabsorption of soft x-ray emission at high x-ray free-electron laser fluences.

    Science.gov (United States)

    Schreck, Simon; Beye, Martin; Sellberg, Jonas A; McQueen, Trevor; Laksmono, Hartawan; Kennedy, Brian; Eckert, Sebastian; Schlesinger, Daniel; Nordlund, Dennis; Ogasawara, Hirohito; Sierra, Raymond G; Segtnan, Vegard H; Kubicek, Katharina; Schlotter, William F; Dakovski, Georgi L; Moeller, Stefan P; Bergmann, Uwe; Techert, Simone; Pettersson, Lars G M; Wernet, Philippe; Bogan, Michael J; Harada, Yoshihisa; Nilsson, Anders; Föhlisch, Alexander

    2014-10-10

    We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.

  14. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    Science.gov (United States)

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging.

    Science.gov (United States)

    Dong, Xue; Niu, Tianye; Jia, Xun; Zhu, Lei

    2012-10-01

    .4 mm, while non-negligible off-focal-spot radiation is observed at a distance of over 2 mm from the center. The measured detector PSF has an FWHM of 0.510 mm, with a shape close to Gaussian. From these two distributions, the author calculate the estimated I(0) values at different collimator settings. The I(0) variation mainly comes from the focal spot effect. The estimation matches well with the measurements at different collimator widths in both horizontal and vertical directions, with an average error of less than 3%. Our method improves the accuracy of conventional scatter measurements, where the scatter is measured as the difference between fan-beam and cone-beam projections. On a uniform water cylinder phantom, more accurate I(0) suppresses the unfaithful high-frequency signals at the object boundaries of the measured scatter, and the SPR estimation error is reduced from 0.158 to 0.014. The proposed I(0) estimation also reduces the reconstruction error from about 20 HU on the Catphan©600 phantom in the selected regions of interest to less than 4 HU. The I(0) variation is identified as one additional error source in x-ray imaging. By measuring the focal-spot distribution and detector PSF, the authors propose an accurate method of estimating the I(0) value for different illumination field sizes. The method obtains more accurate scatter measurements and therefore facilitates scatter correction algorithm designs. As correction methods for other CBCT artifacts become more successful, our research is significant in further improving the CBCT imaging accuracy.

  16. The hard X-ray perspective on the soft X-ray excess

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Reynolds, Christopher S.; Lohfink, Anne M.; Zoghbi, Abderahmen [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Fabian, Andrew C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Gallo, Luigi C. [Department of Astronomy and Physics, Saint Mary' s University, 923 Robie Street, Halifax, Nova Scotia B3H 3C3 (Canada); Walton, Dominic, E-mail: ranjan@astro.umd.edu [Cahill Centre for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-04-10

    The X-ray spectra of many active galactic nuclei exhibit a 'soft excess' below 1 keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionized reflection of X-rays from the inner part of the accretion disk, ionized winds/absorbers, and Comptonization. The ionized reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10 keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models but upcoming joint XMM-NuSTAR programs provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM-NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest 'observer's model' of a blackbody and neutral reflection to characterize the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.

  17. Thin Films for X-ray Optics

    Science.gov (United States)

    Conley, Raymond

    Focusing x-rays with refraction requires an entire array of lens instead of a single element, each contributing a minute amount of focusing to the system. In contrast to their visible light counterparts, diffractive optics require a certain depth along the optical axis in order to provide sufficient phase shift. Mirrors reflect only at very shallow angles. In order to increase the angle of incidence, contribution from constructive interference within many layers needs to be collected. This requires a multilayer coating. Thin films have become a central ingredient for many x-ray optics due to the ease of which material composition and thickness can be controlled. Chapter 1 starts with a short introduction and survey of the field of x-ray optics. This begins with an explanation of reflective multilayers. Focusing optics are presented next, including mirrors, zone plates, refractive lenses, and multilayer Laue lens (MLL). The strengths and weaknesses of each "species" of optic are briefly discussed, alongside fabrication issues and the ultimate performance for each. Practical considerations on the use of thin-films for x-ray optics fabrication span a wide array of topics including material systems selection and instrumentation design. Sputter deposition is utilized exclusively for the work included herein because this method of thin-film deposition allows a wide array of deposition parameters to be controlled. This chapter also includes a short description of two deposition systems I have designed. Chapter 2 covers a small sampling of some of my work on reflective multilayers, and outlines two of the deposition systems I have designed and built at the Advanced Photon Source. A three-stripe double multilayer monochromator is presented as a case study in order to detail specifications, fabrication, and performance of this prolific breed of x-ray optics. The APS Rotary Deposition System was the first deposition system in the world designed specifically for multilayer

  18. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Schlotter, W.F.; Turner, J.J.; Rowen, M.; Heimann, P.; Holmes, M.; Krupin, O.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Soufli, R.; Fernández-Perea, M.; Kelez, N.; Lee, S.; Coffee, R.; Hays, G.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Hau-Riege, S.; Juha, Libor; Chalupský, Jaromír; Hájková, Věra; Mancuso, A.P.; Singer, A.; Yefanov, O.; Vartanyants, I.A.; Cadenazzi, G.; Abbey, B.; Nugent, K.A.; Sinn, H.; Lüning, J.; Schaffert, S.; Eisebitt, S.; Lee, W.-S.; Scherz, A.; Nilsson, A.R.; Wurth, W.

    2012-01-01

    Roč. 83, č. 4 (2012), "043107-1"-"043107-11" ISSN 0034-6748 R&D Projects: GA ČR(CZ) GAP108/11/1312 Institutional research plan: CEZ:AV0Z10100523 Keywords : free-electron laser * materials science * beamline * x-ray laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.602, year: 2012

  19. X-Rays: MedlinePlus Health Topic

    Science.gov (United States)

    ... Do I Need X-Rays? (Academy of General Dentistry) Videos and Tutorials Chest X-Ray (American College ... of Radiologic Technologists) - PDF - In English and Spanish Pediatric Voiding Cystourethrogram (American College of Radiology, Radiological Society ...

  20. Exploration of Monoenergetic X-Ray Mammography with Syncrotron Radiation

    National Research Council Canada - National Science Library

    Johnston, Richard

    1998-01-01

    .... Specifically developed as part of our x-ray mammography program utilizing monochromatic x-rays from a synchrotron source, this technique has produced images of test objects and tissue whose contrast...

  1. Improved intensifying screen reduces X-ray exposure

    Science.gov (United States)

    Buchanan, R. A.

    1972-01-01

    X-ray intensifying screen may make possible radiographic procedures where detection speed and X-ray tube power have been the limiting factors. Device will reduce total population exposure to harmful radiation in the United States.

  2. A novel x-ray circularly polarized ranging method

    Science.gov (United States)

    Song, Shi-Bin; Xu, Lu-Ping; Zhang, Hua; Gao, Na; Shen, Yang-He

    2015-05-01

    Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. Projects supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014 CXJJ-DH 12), the Xi’an Science and Technology Plan, China (Grant No. CXY1350(4)), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 201413B, 201412B, and JB141303), and the Open Fund of Key Laboratory of Precision Navigation and Timing Technology, National Time Service Center, Chinese

  3. Laser driven plasmas based incoherent x-ray sources at PALS and ELI Beamlines (Conference Presentation)

    Science.gov (United States)

    Kozlová, Michaela

    2017-05-01

    We will present data on a various X-ray production schemes from laser driven plasmas at the PALS Research Center and discuss the plan for the ELI Beamlines project. One of the approaches, how to generate ultrashort pulses of incoherent X-ray radiation, is based on interaction of femtosecond laser pulses with solid or liquid targets. So-called K-alpha source depending on used targets emits in hard X-ray region from micrometric source size. The source exhibits sufficient spatial coherence to observe phase contrast. Detailed characterization of various sources including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. Other method, known as laser wakefield electron acceleration (LWFA), can produce up to GeV electron beams emitting radiation in collimated beam with a femtosecnond pulse duration. This approach was theoretically and experimentally examined at the PALS Center. The parameters of the PALS Ti:S laser interaction were studied by extensive particle-in-cell simulations with radiation post-processors in order to evaluate the capabilities of our system in this field. The extensions of those methods at the ELI Beamlines facility will enable to generate either higher X-ray energies or higher repetition rate. The architecture of such sources and their considered applications will be proposed.

  4. X-ray image calibration and its application to clinical orthopedics.

    Science.gov (United States)

    Schumann, Steffen; Thelen, Benedikt; Ballestra, Steven; Nolte, Lutz-P; Büchler, Philippe; Zheng, Guoyan

    2014-07-01

    X-ray imaging is one of the most commonly used medical imaging modality. Albeit X-ray radiographs provide important clinical information for diagnosis, planning and post-operative follow-up, the challenging interpretation due to its 2D projection characteristics and the unknown magnification factor constrain the full benefit of X-ray imaging. In order to overcome these drawbacks, we proposed here an easy-to-use X-ray calibration object and developed an optimization method to robustly find correspondences between the 3D fiducials of the calibration object and their 2D projections. In this work we present all the details of this outlined concept. Moreover, we demonstrate the potential of using such a method to precisely extract information from calibrated X-ray radiographs for two different orthopedic applications: post-operative acetabular cup implant orientation measurement and 3D vertebral body displacement measurement during preoperative traction tests. In the first application, we have achieved a clinically acceptable accuracy of below 1° for both anteversion and inclination angles, where in the second application an average displacement of 8.06±3.71 mm was measured. The results of both applications indicate the importance of using X-ray calibration in the clinical routine. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Improving Object Classification in X-ray Luggage Inspection

    OpenAIRE

    SHI, XINHUA

    2000-01-01

    X-ray detection methods have increasingly been used as an effective means for the automatic detection of explosives. While a number of devices are now commercially available, most of these technologies are not yet mature. The purpose of this research has been to investigate methods for using x-ray dual-energy transmission and scatter imaging technologies more effectively. Followed by an introduction and brief overview of x-ray detection technologies, a model for a prototype x-ray scanning ...

  6. Laser Holder Aids Centering of X-Ray Head

    Science.gov (United States)

    Bulthuis, D. V.; Kettering, D. D.

    1986-01-01

    Laser holder used when alining X-ray head makes procedure safer and more reliable. Laser holder assembly attached to X-ray head to enable head to be alined optically before X-ray exposure. When laser in operating position laser beam shines on spot later illuminated with X-rays. New holder grips laser securely, maintains alinement, does not interfere with head placement, and requires only one 110-V power cord.

  7. Ultrashort X-ray pulse generation using subpicosecond electron linac

    CERN Document Server

    Harano, H; Yoshii, K; Ueda, T; Okita, S; Uesaka, M

    2000-01-01

    As a promising tool for ultrafast material analyses, we propose to utilize the X-ray pulse which may be generated in a quite simple manner using subpicosecond electron linacs. The properties of the X-ray were numerically studied with the EGS4 code. Verification of the X-ray generation was also conducted at the Nuclear Engineering Research Laboratory (NERL) linac and clear diffraction patterns of characteristic X-ray were obtained for typical single crystals.

  8. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    Energy Technology Data Exchange (ETDEWEB)

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Kersell, Heath; Chang, Hao [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ohio University, Athens, OH 45701 (United States); Rosenmann, Daniel; Miller, Dean; Freeland, John W. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hla, Saw-Wai [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ohio University, Athens, OH 45701 (United States); Rose, Volker, E-mail: vrose@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2016-01-28

    A tunneling smart tip of a synchrotron X-ray scanning tunneling microscope provides simultaneously localized topographic, elemental and magnetic information. Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L{sub 2,3}-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  9. Evaluation of conventional x-ray diagnostic equipment and radiological protection systems of hospitals and clinics installed in Recife city, Brazil; Avaliacao dos equipamentos de raios-X diagnostico convencionais e dos sistemas de protecao radiologica de clinicas e hospitais da cidade de Recife

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Robson Silva

    1999-05-15

    presented on iluminancy level out of the gap between 50 and 100 lux. The results of this survey showed that a high percentage of the equipment surveyed demonstrated inadequate operating conditions, reinforcing the need to implement quality control protocols in conventional x-ray units located in Recife. (author)

  10. Dual-energy x-ray image decomposition by independent component analysis

    Science.gov (United States)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  11. High-resolution x-ray characterization of mosaic crystals for hard x-ray astronomy

    Science.gov (United States)

    Ferrari, Claudio; Buffagni, Elisa; Marchini, Laura; Zappettini, Andrea

    2012-04-01

    GaAs, Cu, CdTe, and CdZnTe crystals have been studied as optical elements for lenses for hard x-ray astronomy. High-resolution x-ray diffraction at 8 keV in Bragg geometry and at synchrotron at energies up to 500 keV in Laue geometry has been used. A good agreement was found between the mosaicity evaluated in Bragg geometry at 8 keV with x-ray penetration of the order of few tens of micrometers and that derived at synchrotron in transmission Laue geometry at higher x-ray energies. Mosaicity values in a range between a few to 150 arcsec were found in all the samples but, due to the presence of crystal grains in the cm range, CdTe and CdZnTe crystals were found not suitable. Cu crystals exhibit a mosaicity of the order of several arcmin; they indeed were found to be severely affected by cutting damage which could only be removed with a very deep etching. The full width at half maximum of the diffraction peaks decreased at higher x-ray energies showing that the peak broadening is affected by crystallite size. GaAs crystals grown by Czochralski method showed a mosaic spread up to 30 arcsec and good diffraction efficiency up to energies of 500 keV. The use of thermal treatments as a possible method to increase the mosaic spread was also evaluated.

  12. Characterization of Metalloproteins and Biomaterials by X-ray Absorption Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl

    This thesis presents thework on combining complementary X-rays techniques for studying the structures of proteins and other biomaterials, and consists of three different projects: (i) Characterization of protein powders with X-ray powder diffraction (XRPD). (ii) The combination of X-ray crystallo......This thesis presents thework on combining complementary X-rays techniques for studying the structures of proteins and other biomaterials, and consists of three different projects: (i) Characterization of protein powders with X-ray powder diffraction (XRPD). (ii) The combination of X......, nickel and copper, and their XRD crystal structures were solved to 1.90 Å, 1.50 Å and 1.45 Å resolution, respectively. As the affinity to iron is low, iron insulin crystals were grown in presence of small amounts of zinc. The two metal sites in the XRD structure thus contained respectively one Fe2......+ and one Zn2+ ion, with respectively tetrahedral and octahedral coordination geometry. The metal sites in nickel and copper insulin were studied by XAS. Coordination distances were refined from EXAFS showing a very regular octahedral coordination of Ni2+, which was further verified by calculated XANES...

  13. ``Soft X-ray transient'' outbursts which are not soft

    NARCIS (Netherlands)

    Brocksopp, C.; Bandyopadhyay, R.M.; Fender, R.P.

    2004-01-01

    We have accumulated multiwavelength (X-ray, optical, radio) lightcurves for the eight black hole X-ray binaries which have been observed to enter a supposed `soft X-ray transient' outburst, but remained in the low/hard state throughout the outburst. Comparison of the lightcurve morphologies,

  14. Orbital Evolution Measurement of the Accreting Millisecond X-ray ...

    Indian Academy of Sciences (India)

    powered millisecond X-ray pulsar SAX J1808.4–3658 using. X-ray data obtained during four outbursts of this source. Extensive obser- vations were made with the proportional counter array of the Rossi X-ray. Timing Explorer (RXTE) during the four ...

  15. Digital enhancement of X-rays for NDT

    Science.gov (United States)

    Butterfield, R. L.

    1980-01-01

    Report is "cookbook" for digital processing of industrial X-rays. Computer techniques, previously used primarily in laboratory and developmental research, have been outlined and codified into step by step procedures for enhancing X-ray images. Those involved in nondestructive testing should find report valuable asset, particularly is visual inspection is method currently used to process X-ray images.

  16. 14th International Conference on X-Ray Lasers

    CERN Document Server

    Menoni, Carmen; Marconi, Mario

    2016-01-01

    These proceedings comprise invited and contributed papers presented at the 14th International Conference on X-Ray Lasers (ICXRL 2014). This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress toward practical devices and their applications in numerous fields are reported. Areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation, and other x-ray generation schemes are covered.  The scope of ICXRL 2014 included, but was not limited to: Laser-pumped X-ray lasers Discharge excitation and other X-ray laser pumping methods Injection/seeding of X-ray amplifiers New lasing transitions and novel X-ray laser schemes High Harmonic sources-Free-electron laser generation in the XUV and X-ray range Novel schemes for coherent XUV and X-ray ge...

  17. X-Rays from Saturn and its Rings

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  18. On the ultimate x-ray detector for angiography

    NARCIS (Netherlands)

    Slump, Cornelis H.; Flynn, M.J.; Kauffman, J.A.

    2005-01-01

    The purpose of our research is to describe the ultimate X-ray detector for angiography. Angiography is a well established X-ray imaging technique for the examination of blood vessels. Contrast agent is injected followed by X-ray exposures and possible obstructions in the blood vessels can be

  19. Synchrotron radiation X-ray microfluorescence techniques and ...

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  20. Resonant inelastic x-ray scattering studies of elementary excitations

    NARCIS (Netherlands)

    Ament, Lucas Johannes Peter (Luuk)

    2010-01-01

    Resonant Inelastic X-ray Scattering (RIXS) is an X-ray in, X-ray out technique that enables one to study the dispersion of excitations in solids. In this thesis, we investigated how various elementary excitations of transition metal oxides show up in RIXS spectra.