WorldWideScience

Sample records for conventional diesel fuel

  1. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    Science.gov (United States)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  2. Fuel efficiency of conventional design tractors diesel engines in relation to new design

    Directory of Open Access Journals (Sweden)

    Jevtić Jeremija

    2006-01-01

    Full Text Available Total consumption of all types of energies is rather high nowadays with constant tendency of increasing. Transport section is one of the highest consumers of energy obtained from fossil fuels. It is absolutely clear that the reduction of energy consumption and the protection of environment - exhaust emission reduction, i. e. cleaner air, will be one of the main tasks of automotive industry in the first decades of the 21st century. In spite of its superiority over the petrol engine in respect of the fuel consumption, a diesel engine "suffers" from the increased exhaust emission, particles and NOx first of all and also from the noise and vibrations. The paper gives a review of fuel efficiency of conventional design tractors diesel engines in relation to new design. .

  3. Transportation fuels: Desulfurizing diesel

    Science.gov (United States)

    Lamonier, Carole

    2017-02-01

    Transportation fuels such as diesel contain organosulfur molecules that, when combusted, form sulfur oxides that are toxic and poison vehicles' catalytic convertors. Now, a method is demonstrated that can reduce the sulfur concentration of diesel fuel to very low levels at low temperatures and pressures.

  4. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Strzelec, Andrea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments

  5. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels

    Science.gov (United States)

    Two diesel trucks equipped with a particulate filter (DPF) were tested at two ambient temperatures (70oF and 20oF), fuels (ultra low sulfur diesel (ULSD) and biodiesel (B20)) and operating loads (a heavy and light weight). The test procedure included three driving cycles, a cold ...

  6. The evaluation of viscosity and density of blends of Cyn-diesel pyrolysis fuel with conventional diesel fuel in relation to compliance with fuel specifications EN 590:2009

    OpenAIRE

    Murphy, Fionnuala; McDonnell, Kevin; Butler, Eoin; Devlin, Ger

    2012-01-01

    The production of synthetic fuels from alternative sources has increased in recent years as a cleaner, more sustainable source of transport fuel is now required. In response to European renewable energy targets, Ireland has committed, through the Biofuels Obligation Scheme of 2008, to producing 4% of transport fuels from biofuels by 2010 and 10% by 2020. In order to be suitable for sale in Europe, diesel fuels and biodiesels must meet certain European fuel specifications outlined in the EN 590...

  7. Diesel fuel stability; Estabilidade de oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Marcelo V.; Pinto, Ricardo R.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Zotin, Fatima M.Z. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    The demand for the reduction of the pollutants emissions by diesel engines has led to the adoption of more advanced injection systems and concern about fuel stability. The degradation of the diesel fuel can happen during storage and distribution, according to the acid-catalysed condensation of aromatic compounds such phenalenones and indolic nitrogenated heterocyclic compounds. These precursors appear in several streams used in diesel fuel formulation. In this study the sediment formation in model and real, aromatic and paraffinic fuels, containing such precursors naturally or by addition was analysed. The fuels were submitted to accelerated (16 hours at 90 deg C) and long term (13 weeks at 43 deg C) storage stability tests. The model fuels responded positively to the storage stability tests with formation of sediments, concluding that these methods can be considered adequate to verify the occurrence of the studied degradation process. The real fuels response was even more due to their chemical complexity, composition and impurities. The formation of sediments showed to be affected by the hydrocarbon distribution of the fuels. (author)

  8. Production of Renewable Diesel Fuel

    Science.gov (United States)

    2012-06-01

    Vegetable oils have been investigated as a way to provide a renewable source for diesel fuel. A successful approach to using : vegetable oils in diesel engines has been transesterification of the oils with simple alcohols to produce mono-alkyl esters...

  9. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  10. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  11. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    Science.gov (United States)

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590

  12. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    Directory of Open Access Journals (Sweden)

    Jalava Pasi I

    2012-09-01

    Full Text Available Abstract Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM. We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590 and two biodiesels were used − rapeseed methyl ester (RME, EN14214 and hydrotreated vegetable oil (HVO either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC. A bus powered by compressed natural gas (CNG was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were

  13. Effects of MTBE blended diesel fuel on diesel combustion and emissions; MTBE kongo keiyu ga diesel nensho haiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shundo, S.; Yokota, H.; Kakegawa, T. [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    The effects of MTBE (Methyl-t-butyl ether) blended diesel fuel on diesel combustion and emissions were studied. In conventional diesel combustion, the testing mode was carried out in conformity with the Japanese 13 mode. Furthermore, this fuel was applied to a new combustion system (Homogeneous Charge Intelligent Multiple Injection). MTBE blended diesel fuel is more effective in the case of new combustion system and very low NOx, PM capability is suggested. 6 refs., 6 figs., 2 tabs.

  14. Straight Vegetable Oil as a Diesel Fuel?

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  15. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  16. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  17. Dual-Fuel Diesel Engine with High-Pressure Fuel-Gas-Injection Systems

    OpenAIRE

    Mikihiko, Miyake; Tadashi, Biwa; Diesel Engine Department, Machinery Factory, Machinery & Plant Engineering Headquarters, Mitsui Engineering & Shipbuilding CO., LTD.; Diesel Engine Department, Machinery Factory, Machinery & Plant Engineering Headquarters, Mitsui Engineering & Shipbuilding CO., LTD.

    1986-01-01

    The dual fuel diesel engine with some innovations is developed by Mitsui Engineering & Shipbuilding Co., Ltd. It features: Mixed burning of gaseous fuel and oil fuel, and exclusive oil fuel burning are feasible. High thermal efficiency and high power ratio comparable to those of the conventional diesel engine are avaiblable. Operational safety is ensured in the absence of leakage of unburnt gas fuel from combustion chamber. This paper reports these features in detail, and introduces the new d...

  18. PCR+ In Diesel Fuels and Emissions Research

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  19. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  20. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    OpenAIRE

    M. Z. H. Khan; M. Sultana; M. R. Al-Mamun; M. R. Hasan

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330?490?C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards AS...

  1. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel fuel are hereby individually designated: (1) Motor vehicle diesel fuel, grade 1-D; (2) Motor vehicle diesel...

  2. Vegetable oil as a diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    O' Callaghan, C.

    1982-05-01

    There are a wide range of vegetable oils which may be used in the diesel engine such as palm oil, soyabean oil, sunflower oil and rapeseed oil. This paper reports on preliminary work with rapeseed oil as a possible alternative to diesel. The oil was degummed by hydration. Physical and chemical properties of the oil are compared to diesel fuel. Three types of fuel were tested in a tractor: (a) pure diesel oil; (b) a 50:50 mixture of diesel oil and rapeseed oil; and (c) pure rapeseed oil. Power-speed curves were constructed for each fuel type and observations on nozzle cooking and smoke emissions made.

  3. Designing a Surrogate Fuel for Gas-to-Liquid Derived Diesel

    DEFF Research Database (Denmark)

    Choudhury, H. A.; Intikhab, S.; Kalakul, Sawitree

    2017-01-01

    in a trade-off in performance when used in a diesel engine. To boost GTL diesel physicochemical properties and thereby enable its use in conventional diesel engines, GTL diesel needs improvement. This can be achieved by mixing suitable additives to the GTL diesel and through the development of surrogate...... their physicochemical properties. These surrogates are further verified using rigorous mathematical tools as well as through advanced experimental techniques. An optimal surrogate MI-5 is identified, which closely mimics GTL diesel-conventional diesel blends in terms of its physicochemical properties. An engine study......Synthetic diesel fuel produced from natural gas via gas-to-liquid (GTL) technology is referred to as ultraclean fuel but is still challenged for full certification as diesel fuel. GTL diesel lacks certain hydrocarbons and chemical constituents, which although are benign to the environment, result...

  4. 30 CFR 75.1906 - Transport of diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transport of diesel fuel. 75.1906 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1906 Transport of diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in safety...

  5. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available The authors introduced waste plastic pyrolysis oil (WPPO as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%, and carbon residue of 0.5 (wt%, and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  6. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

    Science.gov (United States)

    Khan, M Z H; Sultana, M; Al-Mamun, M R; Hasan, M R

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  7. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    Science.gov (United States)

    Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  8. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags

    Science.gov (United States)

    Pyrolysis of HDPE waste grocery bags followed by distillation resulted in a liquid hydrocarbon mixture that consisted of saturated aliphatic paraffins (96.8%), aliphatic olefins (2.6%), and aromatics (0.6%) that corresponded to the boiling range of conventional petroleum diesel fuel (#1 diesel 182–2...

  9. 40 CFR 1065.703 - Distillate diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Distillate diesel fuel. 1065.703... Standards § 1065.703 Distillate diesel fuel. (a) Distillate diesel fuels for testing must be clean and... diesel fuel specified for use as a test fuel. See the standard-setting part to determine which grade to...

  10. 30 CFR 75.1901 - Diesel fuel requirements.

    Science.gov (United States)

    2010-07-01

    ... requirements. (a) Diesel-powered equipment shall be used underground only with a diesel fuel having a sulfur... fuel purchased for use in diesel-powered equipment underground meets these requirements. (b) Flammable...

  11. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Science.gov (United States)

    2010-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements...

  12. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    Science.gov (United States)

    2014-10-01

    with six fuels including conventional (No. 2 Diesel , JP-8, Jet-A), alternative fuels, and a surrogate with the objective of assessing the performance...density were reported with peak liquid penetration lengths reported with No. 2 Diesel (max) and Fischer-Tropsch/ surrogate (min). Variations in vapor...The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon

  13. LPG as a Fuel for Diesel Engines-Experimental Investigations

    Science.gov (United States)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  14. Diesel fuel quality effect. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Ostrouchov, N.

    1987-12-01

    This report reviews the published literature concerning fuel effect on diesel particulate emissions. The effects and the costs of reducing particulate emissions by means of changes in diesel fuel composition are represented. Two specific changes were considered: a drastic reduction in diesel fuel sulfur content, and/or a moderate reduction in the aromatic hydrocarbon content. Canadian activitiese currently underway are discussed. Very little information exists in the literature on the effects of diesel fuel composition on either gaseous or particulate emissions, primarily because of the lack of investigations of sulfur, aromatics, and 90 percent distillation point as an independent fuel variables. In addition the sensitivities of emissions to fuel composition observed in available studies were derived from steady-state, modified US EPA transient testing and standard US EPA transient testing, making comparison very difficult. An attempt was made to compare the effect of fuel sulfur content on particulate emissions, derived from four independent studies. The comparison indicates that reducing fuel sulfur content below 0.10 wt% may reduce directly emitted particulates mass below proposed 1991 standard without aftertreatment technology. The data also indicate, however, that extensive engine modification may reduce particulate emissions below 1991 standards without reducing fuel sulfur content and without using an aftertreatment technolgy. However, caution should be exercised in interpreting the data, because different test procedures and different or unknown fuel aromatics contents were used by different researchers. 13 refs., 1 fig., 2 tabs.

  15. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Science.gov (United States)

    2010-07-01

    ... requirements for motor vehicle diesel fuel, NRLM diesel fuel, heating oil, ECA marine fuel, and other... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements § 80.590 What are...

  16. Impact of new diesel fuels used in port operations on subsurface quality

    Science.gov (United States)

    2008-04-01

    Diesel is widely used as fuel for operations in the port of Los Angeles - Long : Beach as well as for transport of goods to and from the port. Conventional diesel fuel : contributes disproportional to air pollution (particulate matter, NOx, CO, and :...

  17. EXPERIMENTAL RESEARCH ON DIESEL ENGINE WORKING ON A MIXTURE OF DIESEL FUEL AND FUSEL OILS

    Directory of Open Access Journals (Sweden)

    Sviatoslav KRYSHTOPA

    2017-06-01

    Full Text Available This article considers the possibility of spirit fusel oil being used as an addition to agile fuels. Results of experimental research on diesel engines working on mixtures of diesel fuel and fusel oils are given. The fuel economy and ecological indexes of engines working on mixtures of diesel fuel and fusel oils were improved.

  18. EXPERIMENTAL RESEARCH ON DIESEL ENGINE WORKING ON A MIXTURE OF DIESEL FUEL AND FUSEL OILS

    OpenAIRE

    Sviatoslav KRYSHTOPA; Liudmyla KRYSHTOPA; Vasyl MELNYK; Bohdan DOLISHNII; Igor PRUNKO; Yaroslav DEMIANCHUK

    2017-01-01

    This article considers the possibility of spirit fusel oil being used as an addition to agile fuels. Results of experimental research on diesel engines working on mixtures of diesel fuel and fusel oils are given. The fuel economy and ecological indexes of engines working on mixtures of diesel fuel and fusel oils were improved.

  19. Transcriptome Changes in Douglas-fir (Pseudotsuga menziesii) Induced by Exposure to Diesel Emissions Generated with CeO2 Nanoparticle Fuel Additive

    Science.gov (United States)

    When cerium oxide nanoparticles are added to diesel fuel, fuel burning efficiency increases, producing emissions (DECe) with characteristics that differ from conventional diesel exhaust (DE). It has previously been shown that DECe induces more adverse pulmonary effects in rats on...

  20. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dispensing of diesel fuel. 75.1905 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing of diesel fuel. (a) Diesel-powered equipment in underground coal mines may be refueled only from safety cans...

  1. Tertiary fatty amides as diesel fuel substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Serdari, Aikaterini; Lois, Euripides; Stournas, Stamoulis [National Technical Univ. of Athens, Dept. of Chemical Engineering, Athens (Greece)

    2000-07-01

    This paper presents experimental results regarding the impact of adding different tertiary amides of fatty acids to mineral diesel fuel; an assessment of the behaviour of these compounds as possible diesel fuel extenders is also included. Measurements of cetane number, cold flow properties (cloud point, pour point and CFPP), density, kinematic viscosity, flash point and distillation temperatures are reported, while initial experiments concerning the effects on particulate emissions are also described. Most of the examined tertiary fatty amides esters have very good performance and they can be easily prepared from fatty acids (biomass). Such compounds or their blends could be used as mineral diesel fuel or even fatty acid methylesters (FAME, biodiesel) substitutes or extenders. (Author)

  2. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei

    2016-12-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel, however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.

  3. Alternative diesel fuels from vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Y.; Hanna, M.A. [Nebraska Univ., lincoln, NE (United States). Dept. of Biological Systems Engineering

    1994-12-31

    This paper reviews the use of vegetable oils and animal fats as diesel fuel. Physical and chemical properties and structure of the vegetable oils are discussed. Fuel preparation by transesterification, pyrolysis, dilution, and microemulsion and the effects of these processes on the properties of the fuel and, in turn, their effects on the engines have been reviewed. Each of the processes give improved fuel properties over those of unprocessed vegetable oil. The performance of engines using triglyceride based fuels and their emission characteristics are also presented. (author)

  4. Isoprenoid based alternative diesel fuel

    Science.gov (United States)

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  5. Oxygenates for Advanced Petroleum-Based Diesel Fuels

    Science.gov (United States)

    2001-02-01

    gravimetrically by collecting particulate matter on a set of 90 mm Pallflex filters. The alternative fuels included the California Reference fuel, a low...sulfur diesel, a Fischer-Tropsch diesel, and three blends: 20% Fischer-Tropsch/80% low- sulfur diesel, 20% biodiesel /80% low-sulfur diesel, and 15%DMM/85...Emissions of a DI Diesel Engine Fueled with Blends of Biodiesel and Low Sulfur Diesel Fuel,” SAE Paper 972998. 16. Liotta, F.J. and Montavio, D.M

  6. Fabrication of small-orifice fuel injectors for diesel engines.

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  7. Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Curran, H J; Fisher, E M; Glaude, P-A; Marinov, N M; Pitz, W J; Westbrook, C K; Flynn, P F; Durrett, R P; zur Loye, A O; Akinyemi, O C; Dryer, F L

    2000-01-11

    Emission standards for diesel engines in vehicles have been steadily reduced in recent years, and a great deal of research and development effort has been focused on reducing particulate and nitrogen oxide emissions. One promising approach to reducing emissions involves the addition of oxygen to the fuel, generally by adding an oxygenated compound to the normal diesel fuel. Miyamoto et al. [1] showed experimentally that particulate levels can be significantly reduced by adding oxygenated species to the fuel. They found the Bosch smoke number (a measure of the particulate or soot levels in diesel exhaust) falls from about 55% for conventional diesel fuel to less than 1% when the oxygen content of the fuel is above about 25% by mass, as shown in Figure 1. It has been well established that addition of oxygenates to automotive fuel, including both diesel fuel as well as gasoline, reduces NOx and CO emissions by reducing flame temperatures. This is the basis for addition of oxygenates to produce reformulated gasoline in selected portions of the country. Of course, this is also accompanied by a slight reduction in fuel economy. A new overall picture of diesel combustion has been developed by Dec [2], in which laser diagnostic studies identified stages in diesel combustion that had not previously been recognized. These stages are summarized in Figure 2. The evolution of the diesel spray is shown, starting as a liquid jet that vaporizes and entrains hot air from the combustion chamber. This relatively steady process continues as long as fuel is being injected. In particular, Dec showed that the fuel spray vaporizes and mixes with air and products of earlier combustion to provide a region in which a gas phase, premixed fuel-rich ignition and burn occurs. The products of this ignition are then observed experimentally to lead rapidly to formation of soot particles, which subsequently are consumed in a diffusion flame. Recently, Flynn et al. [3] used a chemical kinetic and

  8. Fuel system for diesel engine with multi-stage heated

    Science.gov (United States)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  9. Diesel fueled ship propulsion fuel cell demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  10. An Assessment of Alternative Diesel Fuels: Microbiological Contamination and Corrosion Under Storage Conditions

    Science.gov (United States)

    2010-08-01

    interface. Diaz-Ballote et al. (2009) reported that corrosion of aluminum (99.999% pure) exposed to biodiesel derived from canola was directly related...conventional high sulfur diesel (L100) and alternative fuels, including 100% biodiesel (B100), ultra-low sulfur diesel (ULSD) and blends of ULSD and B100 (B5...steel exhibited uniform corrosion in ULSD and L100, and passive behavior in B5. B20. and B100. 15. SUBJECT TERMS corrosion, diesel, biodiesel

  11. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel.... (b) Diesel fuel that is designated for use only in Alaska and is used only in Alaska, is exempt from...

  12. Exhaust emissions of DI diesel engine using unconventional fuels

    Science.gov (United States)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  13. Phytoremediation of subarctic soil contaminated with diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Puhakka, J.A. [Tampere University of Technology (Finland). Institute of Environmental Engineering and Biotechnology; Pichtel, J. [Ball State University, Muncie, IN (United States). Natural Resources and Environmental Management

    2002-09-01

    The effects of several plant species, native to northern latitudes, and different soil amendments, on diesel fuel removal from soil were studied. Plant treatments included Scots Pine (Pinus sylvestris), Poplar (Populus deltoides x Wettsteinii), a grass mixture (Red fescue, Festuca rubra; Smooth meadowgrass, Poa pratensis and Perennial ryegrass, Lolium perenne) and a legume mixture (White clover, Trifolium repens and Pea, Pisum sativum). Soil amendments included NPK fertiliser, a compost extract and a microbial enrichment culture. Diesel fuel disappeared more rapidly in the legume treatment than in other plant treatments. The presence of poplar and pine enhanced removal of diesel fuel, but removal under grass was similar to that with no vegetation. Soil amendments did not enhance diesel fuel removal significantly. Grass roots accumulated diesel-range compounds. This study showed that utilisation of selected plants accelerates removal of diesel fuel in soil and may serve as a viable, low-cost remedial technology for diesel-contaminated soils in subarctic regions. (author)

  14. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, M. [Automotive Division, Department of Mechanical Education, Marmara University, Ziverbey, 34722 Istanbul (Turkey)

    2008-11-15

    In the present study, hazelnut kernel oil of Turkish origin was evaluated as alternative fuel in a diesel engine. Potential hazelnut production throughout the world and the status of Turkey were examined. Hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain hazelnut kernel oil methyl ester (HOME) and a comprehensive experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running with HOME and its blends with diesel fuel. Experimental parameters included the percentage of HOME in the blend, engine load, injection timing, compression ratio, and injector. The cost analysis of HOME production comparing to the price of conventional diesel fuel was performed for last decade was performed. Results showed that HOME and its blends with diesel fuel are generally comparable to diesel fuel and small modifications such as increasing injection timing, compression ratio and injector opening pressure provide significant improvement in performance and emissions. It is also expected that the price of HOME will be lower than the price of conventional diesel fuel in the near future. (author)

  15. Utiization of alternate fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Lestz, S.S.

    1980-09-01

    Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

  16. 77 FR 72746 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-12-06

    ... and Diesel Sulfur Programs AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal of direct... Clean Air Act. The direct final rule also amended requirements under EPA's diesel sulfur program related to the sulfur content of locomotive and marine diesel fuel produced by transmix processors, and the...

  17. Alcohols/Ethers as Oxygenates in Diesel Fuel: Properties of Blended Fuels and Evaluation of Practiacl Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.; Aakko, P. [TEC Trans Energy Consulting Ltd (Finland); Niemi, S.; Paanu, T. [Turku Polytechnic (Finland); Berg, R. [Befri Konsult (Sweden)

    2005-03-15

    is also of importance. So far, no engine manufacturers have indicated they will extend warranty coverage to their equipment when operating with E-diesel. They believe there are simply too many unanswered questions as well as the potential for liability exposure due to the increased flammability range of E-diesel. The reports on field tests with oxygenated diesel fuels are rather scarce, especially reports on recent tests. There are, however, some reports available on engine tests and tests with trucks, buses and even off-road equipment. Most of the available test results identified fuel economy and cost as the only appreciable differences between E-diesel and conventional diesel fuel. Most emissions tests with heavy-duty engines confirm the effect of a substantial reduction in PM when running with E-diesel. The typical range for PM reduction is 20 -- 40 %. Most studies also report reduced NOx emissions. Earlier, there were a lot of activities with E-diesel in Sweden. For the time being, California and Brazil are leading the development of E-diesel.

  18. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker

    2014-07-01

    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  19. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Science.gov (United States)

    2010-07-01

    ...) Produces diesel fuel at a refinery by processing crude oil through refinery processing units; and (2... diesel fuel at a refinery by processing crude oil through refinery processing units; (2) Employed an... produce motor vehicle diesel fuel or NRLM diesel fuel other than by processing crude oil through refinery...

  20. Study of Effect of Diesel Fuel Energy Rate in Duel Fuel on Performance of Compression Ignition Engine

    OpenAIRE

    Maan Janan Basheer

    2012-01-01

    The aim of this work is to study the effect of diesel fuel percentage on the combustion processes in compression ignition engine using dual fuel (diesel and LPG). The brake thermal efficiency increased with the increase of diesel fuel rate at low loads, and decreased when load increased. To get sufficient operation in engine fueled with dual fuel, it required sufficient flow rate of diesel fuel, if the engine fueled with insufficient diesel fuel erratic operation with miss fire cycles presen...

  1. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    Energy Technology Data Exchange (ETDEWEB)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  3. Renewable synthetic diesel fuel from triglycerides and organic waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Hillard, J.C.; Strassburger, R.S.

    1986-03-01

    A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that this synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.

  4. The performance of diesel fuel manufactured by the Shell Middle Distillate Synthesis process

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.H.; Unsworth, J.F. (Shell Research and Technolgy Centre Thornton, Chester (United Kingdom))

    1999-01-01

    The Shell Middle Distillate Synthesis (SMDS) process converts natural gas into diesel or kerosine via synthesis gas by combining a modern, improved Fisher-Tropsch synthesis and a special hydro-conversion process. The diesel cut has very good cetane quality, low density, plus negligible sulphur and aromatics contents; such properties make it potentially valuable as a diesel fuel with lower emissions than conventional automotive gas oil (AGO). The performance of SMDS product as diesel fuel has been evaluated. Regulated emissions data from light-duty (LD) vehicles and heavy-duty (HD) engines representing both Euro I and Euro II technologies confirm considerable advantages for SMDS over current European AGO. Emission benefits are particularly high for LD vehicles with particulate matter, carbon monoxide and hydrocarbon emissions almost halved in some. Smaller, but significant, reductions in all four regulated emissions occur with HD engines. These emission benefits are similar to values predicted using fuel parameter models derived for conventional diesel fuels. Although the straight-chain paraffinic nature of SMDS offers good biodegradability, it causes in-service problems. The cold flow performance of SMDS, together with low swelling characteristics in elastomeric seals, may limit its use to that of an AGO blending component. Loss in power and volumetric fuel consumption would be perceived on switching to SMDS from conventional AGO, however unsatisfactory fuel lubricity and lack of inherent antioxidancy can be overcome by additives. (orig.)

  5. INFLUENCE OF PALM METHYL ESTER (PME AS AN ALTERNATIVE FUEL IN MULTICYLINDER DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Mohd Hafizil M. Yasin

    2012-12-01

    Full Text Available Palm oil is one of the vegetable oil, which is converted to biodiesel through a transesterification process using methanol as the catalyst. Palm oil biodiesel or palm methyl ester (PME can be used in diesel engines without any modification, and can be blended with conventional diesel to produce different proportions of PME-diesel blend fuels. The physical properties of PME were evaluated experimentally and theoretically. The effect of using neat PME as fuel on engine performance and emissions was evaluated using a commercial four-cylinder four-stroke IDI diesel engine. The experimental results on an engine operated with PME exhibited higher brake specific fuel consumption in comparison with the conventional fuel. With respect to the in-cylinder pressure and heat release rate, these increased features by over 8.11% and 9.3% with PME compared to conventional diesel. The overall results show that PME surpassed the diesel combustion quality due to its psychochemical properties and higher oxygen content.

  6. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    Science.gov (United States)

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  7. Diesel engine fuel consumption and emission analysis using steam generated non-surfactant water-in-diesel emulsion fuel

    Science.gov (United States)

    Avianto Sugeng, Dhani; Zahari, Mohamad Fathur Hafeezat Mohd; Muhsin Ithnin, Ahmad; Jazair Yahya, Wira

    2017-10-01

    Efforts in making water in diesel emulsion (W/D) with the absence of surfactant have been developed to address the issues of long-term stability and the dependence on surfactants. This paper discusses an alternative formation method of a non-surfactant W/D, e.g. by steam condensation. By injecting steam into a batch of colder diesel fuel, fine water droplets are formed and suspended in the fuel forming an emulsion. The droplets are confirmed to be in the size range of hundreds of nanometers. The emissions of NOx is reduced by a maximum of 71%, whereas the CO and UHC emissions are increased by maximum respectively 180% and a surprising 517%. Not less interesting is the lower BSFC which was measured at a maximum reduction of 18.4%. These results on emission analysis together with the brake specific fuel consumption confirm this method to resemble the combustion behaviour of a conventional emulsion fuel of lower NOx and BSFC, yet higher CO and UHC

  8. Cottonseed oil as a diesel-engine fuel. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Staph, H.E.; Staudt, J.J.

    1982-07-31

    If diesel fuel becomes unavailable for any reason, can diesel powered farm equipment function on alternate fuels from energy crops that are available on the farm. This project sought to gain some insight into this question through the use of once-refined cottonseed oil as fuel in a typical unmodified agricultural diesel engine. The engine used for test was an International Harvester Model DT-436B 6 cylinder, inline, direct injection, turbocharged engine of approximately 175 brake horsepower at 2500 rpm. The engine was run on a stationary stand using blends of reference diesel fuel (DF-2), once-refined cottonseed oil (CSO), and transesterified cottonseed oil (ESCO). The latter is cottonseed oil which has been processed to give a methyl ester instead of a glyceride. The volume percent blends of fuels used in the tests ranged from 100% DF-2, to 20/80 DF-2/CSO, 50/50 DF-2/ESCO, 50/50 CSO/ESCO, and 100% ESCO. The test procedures and results are presented in this volume. The results suggest that ESCO would probably be a satisfactory substitute for diesel fuel, but more testing is required. None of the fuels tested is a cost effective alternative to diesel fuels. ESCO presently costs four to five times as much as commercial diesel fuel.

  9. Experimental investigation on cyclic variability, engine performance and exhaust emissions in a diesel engine using alcohol-diesel fuel blends

    Directory of Open Access Journals (Sweden)

    Gurgen Samet

    2017-01-01

    Full Text Available This paper investigates the impacts of using n-butanol-diesel fuel and ethanol-diesel fuel blends on engine performance, exhaust emission, and cycle-by-cycle variation in a Diesel engine. The engine was operated at two different engine speed and full load condition with pure diesel fuel, 5% and 10% (by vol. ethanol and n-butanol fuel blends. The coefficient of variation of indicated mean effective pressure was used to evaluate the cyclic variability of n-butanol-diesel fuel and ethanol-diesel fuel blends. The results obtained in this study showed that effective efficiency and brake specific fuel consumption generally increased with the use of the n-butanol-diesel fuel or ethanol-diesel fuel blends with respect to that of the neat diesel fuel. The addition of ethanol or n-butanol to diesel fuel caused a decrement in CO and NOx emissions. Also, the results indicated that cycle-by-cycle variation has an increasing trend with the increase of alcohol-diesel blending ratio for all engine speed. An increase in cyclic variability of alcohol-diesel fuel blends at low engine speed is higher than that of high engine speed.

  10. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.

    Science.gov (United States)

    Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf

    2017-04-01

    Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.

  11. Effect of hydrogen–diesel dual-fuel usage on performance, emissions and diesel combustion in diesel engines

    Directory of Open Access Journals (Sweden)

    Yasin Karagöz

    2016-08-01

    Full Text Available Diesel engines are inevitable parts of our daily life and will be in the future. Expensive after-treatment technologies to fulfil normative legislations about the harmful tail-pipe emissions and fuel price increase in recent years created expectations from researchers for alternative fuel applications on diesel engines. This study investigates hydrogen as additive fuel in diesel engines. Hydrogen was introduced into intake manifold using gas injectors as additive fuel in gaseous form and also diesel fuel was injected into cylinder by diesel injector and used as igniter. Energy content of introduced hydrogen was set to 0%, 25% and 50% of total fuel energy, where the 0% references neat diesel operation without hydrogen injection. Test conditions were set to full load at 750, 900, 1100, 1400, 1750 and finally 2100 r/min engine speed. Variation in engine performance, emissions and combustion characteristics with hydrogen addition was investigated. Hydrogen introduction into the engine by 25% and 50% of total charge energy reveals significant decrease in smoke emissions while dramatic increase in nitrogen oxides. With increasing hydrogen content, a slight rise is observed in total unburned hydrocarbons although CO2 and CO gaseous emissions reduced considerably. Maximum in-cylinder gas pressure and rate of heat release peak values raised with hydrogen fraction.

  12. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  13. Knock characteristics of dual-fuel combustion in diesel engines ...

    Indian Academy of Sciences (India)

    This paper investigates the combustion knock characteristics of diesel engines running on natural gas using pilot injection as means of initiating combustion. The diesel engines knock under normal operating conditions but the knock referred to in this paper is an objectionable one. In the dual-fuel combustion process we ...

  14. Production of renewable diesel fuel from biologically based feedstocks.

    Science.gov (United States)

    2014-09-01

    Renewable diesel is an emerging option to achieve the goal set by the Federal Renewable Fuel Standard of displacing 20% of our nations petroleum consumption with : renewable alternatives by 2022. It involves converting readily available vegetable ...

  15. Effect of carbon coating on scuffing performance in diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  16. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...

  17. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    Science.gov (United States)

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  18. Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions

    Directory of Open Access Journals (Sweden)

    Zhaowen Wang

    2017-07-01

    Full Text Available The combination of emulsified diesel and low temperature combustion (LTC technology has great potential in reducing engine emissions. A visualization study on the spray and combustion characteristics of water emulsified diesel was conducted experimentally in a constant volume chamber under conventional and LTC conditions. The effects of ambient temperature on the evaporation, ignition and combustion characteristics of water emulsified diesel were studied under cold, evaporating and combustion conditions. Experimental results showed that the ambient temperature had little effect on the spray structures, in terms of the liquid core length, the spray shape and the spray area. However, higher ambient temperature slightly reduced the Sauter Mean Diameter (SMD of the spray droplets. The auto-ignition delay time increased significantly with the decrease of the ambient temperature. The ignition process always occurred at the entrainment region near the front periphery of the liquid core. This entrainment region was evolved from the early injected fuel droplets which were heated and mixed by the continuous entrainment until the local temperature and equivalence ratio reached the ignition condition. The maximum value of integrated natural flame luminosity (INFL reduced by 60% when the ambient temperature dropped from 1000 to 800 K, indicating a significant decrease of the soot emissions could be achieved by LTC combustion mode than the conventional diesel engines.

  19. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Non-motor vehicle diesel fuel. 69.52... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.52 Non-motor vehicle diesel... NRLM diesel fuel. (5) Exempt NRLM diesel fuel and heating oil must be segregated from motor vehicle...

  20. Effect of fuel and oxidation catalyst on diesel vehicle emissions

    Energy Technology Data Exchange (ETDEWEB)

    Rantanen, L.; Mikkonen, S.; Niemi, M. [Neste Oy, Espoo (Finland); Nylund, L.; Kociba, P.; Suhonen, S. [Finnish Inst. of Occupational Health, Helsinki (Finland)

    1995-12-31

    Diesel emissions can be reduced by developing new engines, by exhaust aftertreatment and by reformulating fuels. The main advantage of fuel reformulation is that emission reduction benefits in current fleet are immediate. Reformulated low sulphur diesel fuels also facilitate the use of oxidation catalytic converters (OCC) in vehicles, leading to further reductions in exhaust emissions. The development of OCC technology has also focused attention to the emissions of low-sulphur fuels with OCC. While regulated emissions - carbon monoxide (CO), total hydrocarbons (HC) and total particulate matter (TPM) - are reduced, attention should also be paid to unregulated emissions. Unregulated emissions may contain particle bound compounds with possible adverse short term and long term health effects in humans. One way to assess and predict possible carcinogenic effects of diesel exhausts is to study the mutagenicity of diesel exhaust. This is done most conveniently by using the Ames bacterial mutagenicity test. Previous studies have shown that significant reductions in the mutagenicity of diesel exhausts can be achieved by altering the combustion process and fuel composition. The primary aims of this study were to assess 1. the effects of reformulated low sulphur fuels on exhausts of particulate bound compounds and mutagenicity in heavy duty diesel engine and 2. the effects of OCC on these emissions. (orig.)

  1. Cottonseed oil as a diesel-engine fuel. Part 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Staph, H.E.; Staudt, J.J.

    1982-07-31

    This appendix, Volume 2 of a 2 volume report, contains the original data and the methods used to reduce the data obtained in performance tests on diesel engines fueled by diesel fuel, cottonseed oil, and mixtures of these fuels. (LCL)

  2. NAPL migration and ecotoxicity of conventional and renewable fuels in accidental spill scenarios.

    Science.gov (United States)

    Malk, Vuokko; Barreto Tejera, Eduardo; Simpanen, Suvi; Dahl, Mari; Mäkelä, Riikka; Häkkinen, Jani; Kiiski, Anna; Penttinen, Olli-Pekka

    2014-01-01

    Fuels derived from non-petroleum renewable resources have raised interest due to their potential in replacing petroleum-based fuels, but information on their fate and effects in the terrestrial and aquatic environments in accidental spill scenario is limited. In this study, migration of four fuels (conventional diesel, conventional gasoline, renewable diesel NExBTL, and ethanol-blended gasoline RE85 containing maximum 85% ethanol) as non-aqueous phase liquids (NAPL) in soil was demonstrated in a laboratory-scale experiment. Ecotoxicity data was produced for the same fuels. There was no significant difference in migration of conventional and renewable diesel, but gasoline migrated 1.5 times deeper and 7-9 times faster in sand than diesel. RE85 spread horizontally wider but not as deep (p Daphnia magna and Vibrio fischeri, also demonstrating groundwater toxicity. The WAF of conventional gasoline and RE85 showed almost similar toxicity to both the aquatic test species. EC50 values of 1:10 (by volume) WAF were 9.9 %WAF (gasoline) and 9.3 %WAF (RE85) to D. magna and 9.3 %WAF (gasoline) and 12.3 %WAF (RE85) to V. fischeri. Low solubility decreased toxicity potential of conventional diesel in aquatic environment, but direct physical effects of oil phase pose a threat to organisms in nature. Renewable diesel NExBTL did not show clear toxicity to any test species.

  3. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    Science.gov (United States)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  4. Waste Vegetable Oil as an Alternative Fuel for Diesel Vehicles

    Science.gov (United States)

    2009-03-01

    gallon. Taxation of Alternative Fuels DESC includes the federal excise tax in its costs because the federal government is not exempt from taxation of...vehicle, or any internal combustion engine fuel tank (Helber, 2007). DESC pays the federal excise Tax to the government when it refines the fuel...Quarterly Federal Excise Tax Return. Just like petro-diesel refiners, the alternative fuel refiner is responsible to pay the tax. The IRS makes no

  5. Differences in rheological profile of regular diesel and bio-diesel fuel

    Directory of Open Access Journals (Sweden)

    Jiří Čupera

    2010-01-01

    Full Text Available Biodiesel represents a promising alternative to regular fossil diesel. Fuel viscosity markedly influences injection, spraying and combustion, viscosity is thus critical factor to be evaluated and monitored. This work is focused on quantifying the differences in temperature dependent kinematic viscosity regular diesel fuel and B30 biodiesel fuel. The samples were assumed to be Newtonian fluids. Vis­co­si­ty was measured on a digital rotary viscometer in a range of 0 to 80 °C. More significant difference between minimum and maximum values was found in case of diesel fuel in comparison with biodiesel fuel. Temperature dependence of both fuels was modeled using several mathematical models – polynomial, power and Gaussian equation. The Gaussian fit offers the best match between experimental and computed data. Description of viscosity behavior of fuels is critically important, e.g. when considering or calculating running efficiency and performance of combustion engines. The models proposed in this work may be used as a tool for precise prediction of rheological behavior of diesel-type fuels.

  6. Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Haiwen Song

    2016-01-01

    Full Text Available Effects of oxygen content of fuels on combustion characteristics and emissions were investigated on both an optical single cylinder direct injection (DI diesel engine and a multi-cylinder engine. Three fuels were derived from conventional diesel fuel (Finnish City diesel summer grade by blending Rapeseed Methyl Ester (RME or Diglyme and Butyl-Diglyme of different quantities to make their oxygen content 3%, 3% and 9%, respectively. The experimental results with three tested fuels show that the fuel spray development was not affected apparently by the oxygenating. Compared with the base fuel, the ignition delay to pilot injection was shortened by 0%, 11% and 19% for three oxygenated fuels, respectively. The ignition delay to main injection was shortened by 10%, 19% and 38%, respectively. With regard to emissions, the smoke level was reduced by 24% to 90%, depending on fuel properties and engine running conditions. The penalties of increased NOx emissions and fuel consumption were up to 19% and 24%, respectively.

  7. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  8. Fuel specific consumption and emission analysis in a cycle diesel ...

    African Journals Online (AJOL)

    Acer

    2012-10-04

    Oct 4, 2012 ... Gerpen, 2001), and it is used as a replacement for fossil fuels in cycle diesel engines (Haas et al., 2001). However, the challenge about producing a biofuel from vegetable oil is the competition between the production of fuel and production of food, having the effect of increasing of food prices (Somerville, ...

  9. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  10. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  11. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  12. Biodiesel fuels from palm oil, palm oil methylester and ester-diesel ...

    African Journals Online (AJOL)

    Because of increasing cost and environmental pollution effects of fossil fuels, palm oil, its methylester and ester-diesel blends were analyzed comparatively with diesel for their fuel properties that will make them serve as alternatives to diesel in diesel engines. Equally, the samples were comparatively analyzed for their trace ...

  13. Diesel fuel to dc power: Navy & Marine Corps Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, D.P. [Analytic Power Corp., Boston, MA (United States)

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  14. [Emission characteristics of a diesel car fueled with coal based Fischer-Tropsch (F-T) diesel and fossil diesel blends].

    Science.gov (United States)

    Hu, Zhi-Yuan; Cheng, Liang; Tan, Pi-Qiang; Lou, Di-Ming

    2012-11-01

    According to the first type test cycle of China national standard GB 18352.3-2005, the CO, NO(x), HC, PM and CO2 emission characteristics of a PASSAT diesel car fueled with Shanghai local IV diesel, coal based Fischer-Tropsch (F-T) diesel, and the blends of coal based F-T diesel and Shanghai local IV diesel up to 10% and 50% by volume were analyzed respectively. And the environmental impacts such as decreased air quality, health impact, photochemical ozone, global warming, and acidification that could be caused by CO, NO(x), HC, PM and CO2 emission of the diesel car were also assessed. The results showed that under GB 18352.3-2005 No. 1 test driving cycle, which consisted of four urban driving cycles and one extra urban driving cycle, the CO, HC, PM and CO2 emissions were released mainly in the urban driving cycles whereas the NO(x) emissions occurred mainly in the extra urban driving cycle. Compared with Shanghai local IV diesel, all of the CO, NO(x), HC, PM and CO2 emissions of the diesel car decreased to different extents when fueled with coal based F-T diesel blends. Moreover, the aerosol generation potential, global warming potential and acidification potential of F-T diesel fueled diesel car were also reduced. To sum up, coal based F-T diesel would be one of the alternative fuels to diesel in China.

  15. Rhodium diesel-reforming catalysts for fuel cell applications

    OpenAIRE

    Karatzas, Xanthias

    2011-01-01

    Heavy-duty diesel truck engines are routinely idled at standstill to provide cab heating or air conditioning, and in addition to supply electricity to comfort units such as radio and TV. Idling is an inefficient and unfavorable process resulting in increased fuel consumption, increased emissions, shortened engine life, impaired driver rest and health, and elevated noise. Hydrogen-fueled, polymer-electrolyte fuel-cell auxiliary power unit (PEFC-APU) as a silent external power supply, working i...

  16. Dimethyl Ether in Diesel Fuel Injection Systems

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, M.; Abata, D. L.

    1998-01-01

    A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates......A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates...

  17. An evaluation of fuels and retrofit diesel particulate filters to reduce diesel particulate matter emissions in an underground mine

    CSIR Research Space (South Africa)

    Wattrus, MC

    2016-09-01

    Full Text Available level compliant) and a diesel containing 500ppm sulphur. Comprehensive engine exhaust emissions tests were carried out in a test cell on seven diesel fuels and two retrofitted diesel particulate filters. For each evaluation, the engine was operated over...

  18. Coal-fueled diesel: Technology development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, G.; Hsu, B.; Flynn, P.

    1989-03-01

    This project consisted of four tasks: (1) to determine if CWM could be ignited and burned rapidly enough for operation in a 1000-rpm diesel engine, (2) to demonstrate that a durable CWM-fueled engine could in principle be developed, (3) to assess current emissions control technology to determine the feasibility of cleaning the exhaust of a CWM-fueled diesel locomotive, and (4) to conduct an economic analysis to determine the attractiveness of powering US locomotives with CWM. 34 refs., 125 figs., 28 tabs.

  19. Investigation of the effects of renewable diesel fuels on engine performance, combustion, and emissions

    KAUST Repository

    Ogunkoya, Dolanimi

    2015-01-01

    A study was undertaken to investigate renewable fuels in a compression-ignition internal combustion engine. The focus of this study was the effect of newly developed renewable fuels on engine performance, combustion, and emissions. Eight fuels were investigated, and they include diesel, jet fuel, a traditional biodiesel (fatty acid methyl ester: FAME), and five next generation biofuels. These five fuels were derived using a two-step process: hydrolysis of the oil into fatty acids (if necessary) and then a thermo-catalytic process to remove the oxygen via a decarboxylation reaction. The fuels included a fed batch deoxygenation of canola derived fatty acids (DCFA), a fed batch deoxygenation of canola derived fatty acids with varying amounts of H2 used during the deoxygenation process (DCFAH), a continuous deoxygenation of canola derived fatty acids (CDCFA), fed batch deoxygenation of lauric acid (DLA), and a third reaction to isomerize the products of the deoxygenated canola derived fatty acid alkanes (IPCF). Diesel, jet fuel, and biodiesel (FAME) have been used as benchmarks for comparing with the newer renewable fuels. The results of the experiments show slightly lower mechanical efficiency but better brake specific fuel consumption for the new renewable fuels. Results from combustion show shorter ignition delays for most of the renewable (deoxygenated) fuels with the exception of fed batch deoxygenation of lauric acid. Combustion results also show lower peak in-cylinder pressures, reduced rate of increase in cylinder pressure, and lower heat release rates for the renewable fuels. Emission results show an increase in hydrocarbon emissions for renewable deoxygenated fuels, but a general decrease in all other emissions including NOx, greenhouse gases, and soot. Results also demonstrate that isomers of the alkanes resulting from the deoxygenation of the canola derived fatty acids could be a potential replacement to conventional fossil diesel and biodiesel based on the

  20. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Science.gov (United States)

    2010-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...

  1. Recent Progress in the Development of Diesel Surrogate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real

  2. Recent Progress in the Development of Diesel Surrogate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J

    2009-09-04

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel

  3. 77 FR 59458 - Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume

    Science.gov (United States)

    2012-09-27

    ... Part II Environmental Protection Agency 40 CFR Part 80 Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume; Final Rule #0;#0;Federal Register / Vol. 77, No. 188... 40 CFR Part 80 [EPA-HQ-OAR-2010-0133; FRL-9678-7] RIN 2060-AR55 Regulation of Fuels and Fuel...

  4. 30 CFR 75.1904 - Underground diesel fuel tanks and safety cans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel tanks and safety cans... § 75.1904 Underground diesel fuel tanks and safety cans. (a) Diesel fuel tanks used underground shall... valves located as close as practicable to the tank shell on each connection through which liquid can...

  5. Novel injector techniques for coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  6. Effect of heterogeneous catalyst during combustion of diesel fuel

    Science.gov (United States)

    Arefeen, Quamrul

    1999-11-01

    With the increase in number of vehicles using diesel engines, the contributions to environmental pollution made by diesel engines is also on the rise. Carbon monoxide, oxides of nitrogen and sulfur, hydrocarbons, and particulates are currently regulated as harmful emissions from diesel engines. Recent technologies to control harmful engine emissions have been almost exclusively directed towards gasoline engines. It is generally held that fuel quality will have to play an important role with all IC engines to meet future stringent regulations. The objective of the present study was to determine the effects of heterogeneous catalyst on combustion. Micron sized solid catalyst, suspended in a specific organic peroxide, has been found to promote better combustion by modifying kinetics and changing the thermodynamics of the reactions. The catalyst reduces emissions without dramatically changing the properties of the fuel. The characteristic parameters of a baseline fuel, and the same fuel with the additive, were analyzed. The dosage of additive used was found to be compatible with commercial diesel. Diesel vehicles were driven unloaded at normal road conditions during the experiments. Exhaust emissions were measured when the trucks were at static conditions and the engine running on idle and at 2000 rpm. The gaseous components in the exhaust, O2, CO2, CO, NO, NO2, NOx, SO2, and CxH y were monitored. Particulates were trapped on a pre-weighed glass filter. Some of the filters were sent to an independent laboratory for microscopic and elemental analysis of the collected debris. Zinc oxide/peroxide suspended in tert-butyl hydro peroxide were used as the heterogeneous fuel catalyst. This combination increased the cetane rating of a commercial diesel fuel from 45 to a level of 70 depending on treatment ratio. A treatment ratio of one ounce additive per 5 gallons of diesel increased cetane number by an average of 5 points. Road mileage with the additive increased by an average

  7. Caracterización de un motor diesel trabajando con mezclas de aceite de Jatropha y combustible diesel Characterization of a diesel engine fueled with Jatropha oil and diesel fuel blends

    Directory of Open Access Journals (Sweden)

    Michel Errasti Cabrera

    2013-09-01

    Full Text Available El presente trabajo tiene como objetivo caracterizar el desempeño de un motor diesel en cuanto a sus prestaciones y al retardo de la ignición, al operar bajo diferentes regímenes de carga, empleando mezclas de aceite de Jatropha y combustible diesel. Para esto se determinó la característica exterior de velocidad al emplear las mezclas, y se compararon estos resultados con los obtenidos durante los ensayos con combustible diesel patrón; estableciendo el grado de afectación del motor al sustituir parte del combustible diesel por aceite de Jatropha. Se observó una disminución del torque y la potencia efectiva, y un aumento del consumo específico de combustible al emplear un mayor porciento de aceite de Jatropha en las mezclas. Por otra parte, en comparación con el combustible diesel, el retardo de la ignición no mostró una variación significativa al emplear las mezclas de aceite de Jatropha y combustible diesel.  The present study aims to characterize the benefits of a diesel engine in terms of performance and ignition delay, operating under different loading regimes, using Jatropha oil and diesel fuel blends. We determined the speed exterior feature when using mixtures, and compared these results with those obtained during tests with standard diesel fuel, establishing the degree of involvement of the engine to replace some diesel fuel for Jatropha oil. There was a decrease in the torque and effective power, and increased specific fuel consumption by using a higher percentage of Jatropha oil in blends. Moreover, compared to diesel fuel, the ignition delay showed no significant variation by employing Jatropha oil and diesel fuel blends.Key words: Jatropha curcas oil, outer velocity characteristic, diesel engine, ignition delay.

  8. A simulated study on the performance of diesel engine with ethanol-diesel blend fuel

    Directory of Open Access Journals (Sweden)

    Zhang Zhi-Qiang

    2013-01-01

    Full Text Available This paper describes the simulated study on atomization, wall-film formation, combustion and emission forming process of ethanol-diesel blend fuels in a high speed light duty diesel engine. The result shows that increased ethanol volume percentage of the blend fuels could improve atomization and reduce wall-film formation. However, in the meanwhile, with the increased ethanol volume percentage, low heat values of blend fuels decrease, while both total heat releases and cylinder pressures drop. By adding codes into the FIRE software, the NOx and soot formation region mass fractions are outputted. The simulated results display a good correlation with the NOx and soot formation. Besides, the NOx, soot and CO emissions decrease with the increased ethanol volume percentage. The power output of engine penalize, while energy utilization of blend fuels improve and combustion noise reduce, owing to the increased ethanol volume percentage.

  9. Thermally decomposed ricebran oil as a diesel fuel

    Directory of Open Access Journals (Sweden)

    Megahed, O. A.

    1998-04-01

    Full Text Available Ricebran oil; a non edible oil, was thermally decomposed using different loads of calcium oxide as catalyst. The fuel properties of the cracked product were evaluated as compared to those of diesel fuel. The considered properties included the calorific value, flash point, viscosity, pour point, distillation characteristics, cetane number in addition to some other fuel properties. The results had shown that the fuel properties of the decomposed oil were quite similar to those of standard diesel fuel. The calorific value was 80-90% that of diesel fuel and the viscosity was sligthy higher. The prepared fuel was advantageous over diesel fuel as the former was completely free from sulfur, which on fuel combustion produces corrosive gases of sulfur oxides.

    Aceite de germen de arroz, un aceite no comestible, fue descompuesto térmicamente usando diferentes cantidades de óxido cálcico como catalizador. Las propiedades combustibles del producto craqueado fueron evaluadas comparándolas con las del gasóleo. Las propiedades consideradas incluyeron el poder calorífico, punto de inflamación, viscosidad, temperatura de fluidez crítica, características de destilación, número de cetano y otras propiedades de los combustibles. Los resultados han mostrado que las propiedades combustibles del aceite descompuesto fueron bastantes similares a la de los gasóleos estándar. El poder calorífico fue del 80-90% de la del gasóleo y la viscosidad ligeramente mayor. El combustible preparado fue ventajoso sobre el gasóleo ya que el primero estaba completamente libre de sulfuro, el cual produce en la combustión del carburante gases corrosivos de óxido de azufre.

  10. The diesel fuel ready for the Usa; Le diesel pret a decoller aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    Jolivet, J.P.

    2004-01-01

    Because of new favourable conditions, the diesel fuel seems to develop rapidly in the Usa: a better brand image, technological progresses, evolution of the legislation, hardening of the air quality regulations. Some difficulties still exist and are analyzed in this paper. (A.L.B.)

  11. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport

    Science.gov (United States)

    Quiros, David C.; Smith, Jeremy; Thiruvengadam, Arvind; Huai, Tao; Hu, Shaohua

    2017-11-01

    Heavy-duty on-road vehicles account for 70% of all freight transport and 20% of transportation-sector greenhouse gas (GHG) emissions in the United States. This study measured three prevalent GHG emissions - carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) - from seven heavy-duty vehicles, fueled by diesel and compressed natural gas (CNG), and compliant to the MY 2007 or 2010 U.S. EPA emission standards, while operated over six routes used for freight movement in California. Total combined (tractor, trailer, and payload) weights were 68,000 ± 1000 lbs. for the seven vehicles. Using the International Panel on Climate Change (IPCC) radiative forcing values for a 100-year time horizon, N2O emissions accounted for 2.6-8.3% of total tailpipe CO2 equivalent emissions (CO2-eq) for diesel vehicles equipped with Diesel Oxidation Catalyst, Diesel Particulate Filter, and Selective Catalytic Reduction system (DOC + DPF + SCR), and CH4 emissions accounted for 1.4-5.9% of CO2-eq emissions from the CNG-powered vehicle with a three-way catalyst (TWC). N2O emissions from diesel vehicles equipped with SCR (0.17-0.30 g/mi) were an order of magnitude higher than diesel vehicles without SCR (0.013-0.023 g/mi) during highway operation. For the vehicles selected in this test program, we measured 11-22% lower CO2-eq emissions from a hybrid compared to conventional diesel vehicles during transport over lower-speed routes of the freight transport system, but 20-27% higher CO2-eq emissions during higher-speed routes. Similarly, a CNG vehicle emitted up to 15% lower CO2-eq compared to conventional diesel vehicles over more neutral-grade highway routes, but emitted up to 12% greater CO2-eq emissions over routes with higher engine loads.

  12. Multi-response optimization of diesel engine operating parameters running with water-in-diesel emulsion fuel

    Directory of Open Access Journals (Sweden)

    Vellaiyan Suresh

    2017-01-01

    Full Text Available Water-in-diesel emulsion fuel is a promising alternative diesel fuel, which has the potential to promote better performance and emission characteristics in an existing Diesel engine without engine modification and added cost. The key factor that has to be focused with the introduction of such fuel in existing Diesel engine is desired engine-operating conditions. The present study attempts to address the previous issue with two-phases of experiments. In the first phase, stable water-in-diesel emulsion fuels (5, 10, 15, and 20 water-in-diesel are prepared and their stability period and physico-chemical properties are measured. In the second phase, experiments are conducted in a single cylinder, 4-stroke Diesel engine with pre-pared water-in-diesel emulsion fuel blends based on L16 orthogonal array suggested in Taguchi’s quality control concept to record the output responses (perormance and emission levels. Based on signal-to-noise ratio and grey relational analysis, optimal level of operating factors are determined to obtain better response and verified through confirmation experiments. A statistical analysis of variance is applied to measure the significance of individual operating parameters on overall engine performance. Results indicate that the emulsion fuel prepared by Sorbitan monolaurate surfactant at high stirrer speed endows with better emulsion stability and acceptable variation in physicochemical properties. Results of this study also reveal that the optimal parametric setting effectively improves the combustion, performance, and emission characteristics of Diesel engine.

  13. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    Science.gov (United States)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2017-10-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  14. Caracterización de un motor diesel trabajando con mezclas de aceite de Jatropha y combustible diesel ; Characterization of a diesel engine fueled with Jatropha oil and diesel fuel blends

    Directory of Open Access Journals (Sweden)

    Michel Errasti Cabrera

    2013-10-01

    Full Text Available El presente trabajo tiene como objetivo caracterizar el desempeño de un motor diesel en cuanto a sus prestaciones y al retardo de la ignición, al operar bajo diferentes regímenes de carga, empleando mezclas de aceite de Jatropha y combustible diesel. Para esto se determinó la característica exterior de velocidad al emplear las mezclas, y se compararon estos resultados con los obtenidos durante los ensayos con combustible diesel patrón; estableciendo el grado de afectación del motor al sustituir parte del combustible diesel por aceite de Jatropha. Se observó una disminución del torque y la potencia efectiva, y un aumento del consumo específico de combustible al emplear un mayor porciento de aceite de Jatropha en las mezclas. Por otra parte, en comparación con el combustible diesel, el retardo de la ignición no mostró una variación significativa al emplear las mezclas de aceite de Jatropha y combustible diesel.The present study aims to characterize the benefits of a diesel engine in terms of performance and ignition delay, operating under different loading regimes, using Jatropha oil and diesel fuel blends. We determined the speed exterior feature when using mixtures, and compared these results with those obtained during tests with standard diesel fuel, establishing the degree of involvement of the engine to replace some diesel fuel for Jatropha oil. There was a decrease in the torque and effective power, and increased specific fuel consumption by using a higher percentage of Jatropha oil in blends. Moreover, compared to diesel fuel, the ignition delay showed no significant variation by employing Jatropha oil and diesel fuel blends.

  15. A Study on the Influence of Fuel Pipe on Fuel Injection Characteristics of Each Nozzle Hole in Diesel Injector

    Directory of Open Access Journals (Sweden)

    Luo Fuqiang

    2016-01-01

    Full Text Available The inner diameter of high pressure fuel pipe has a significant effect on the fuel injection process and the performance of a diesel engine. The spray impact force of each nozzle hole of a conventional injection system of pump-line-nozzle for diesel engine (based on the spray momentum flux and the injection pressure (on a fuel injection pump test rig were measured. With varying fuel injection quantities and pump speed, the effects of the inner diameter of the high pressure fuel pipe on fuel injection process and the fuel injection characteristics of each nozzle hole were analyzed. It was noted from experimental results that the fuel injection pressure changes with variations in the inner diameter of the high pressure fuel pipe and also the injection duration gradually increases with increase in the inner diameter. At low injection pump speed, even with the same geometric fuel deliver rate, the injection duration also increases gradually. Due to throttling effect and reduction in injection pressure, the fuel injection quantities of the injection nozzle were relatively minimal when the inner diameters of the high pressure fuel pipe were respectively small and large. The optimum injection pipe inner diameter for the right quantity for fuel injection falls between the two cases (between small and large. In addition, the injection rate of each nozzle hole increases with the decrease in angle between the needle axis and each of the nozzle hole axis. The fuel injection quantity of each nozzle hole increases while their relative difference decreases with increasing pump speed.

  16. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    Science.gov (United States)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  17. Potentials and limitations of alternative fuels for diesel engine

    Directory of Open Access Journals (Sweden)

    Gligorijević Radinko

    2009-01-01

    Full Text Available The primary energy consumption in the world has increased continuously. The most important primary energy source is oil. The supply of automotive fuels today is based almost entirely on oil, and the demand for liquid transportation fuels worldwide will rise significantly in the next fifty years. Growing energy consumption and decreasing fossil resources are reasons for increasing prices of fossil fuel. Besides limited availability, contribution to greenhouse effect and pollutant emission represent another problem of fossil fuel. Both of these problems can be overcome by increased application of renewable biofuels. Therefore, great effort is made to supplement the primary energy sources by including renewable energies. There are alternative fuels 1st and 2nd generation. Some of them show high potential for reduction of engine out emission. But there are economical and technical barriers when such fuels are applied. This paper shows both advantage and disadvantage of alternative fuels, especially when used for diesel engines.

  18. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  19. Research on Fire-Resistant Diesel Fuel.

    Science.gov (United States)

    1981-12-01

    139 C-3 BSVC and Power Output ................. 141 C-4 Allison T-63 Turbine Combustor Facility ........ 142 LIST OF TABLES Table Page I...for use in diesel or gas turbine powered Army equipment. The FRF research conducted during this report period has included basic studies, exploratory...Baku, USSR IZV. Vyssh. Ucheb. Zaved., Neft Gaz , 71, 14(6) , 88-90, Coden: Ivuna. It is believed thiat these references refer to microwave devices

  20. Petroleum Diesel and Biodiesel Fuels Used in a Direct Hydrocarbon Phosphoric Acid Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yuanchen Zhu

    2015-01-01

    Full Text Available The performance of a direct hydrocarbon phosphoric acid fuel cell, PAFC, was investigated using petroleum diesel, biodiesel, and n-hexadecane as the fuels. We believe this is the first study of a fuel cell being operated with petroleum diesel as the fuel at the anode. Degradation in fuel cell performance was observed prior to reaching steady state. The degradation was attributed to a carbonaceous material forming on the surface of the anode. Regardless of the initial degradation, a steady-state operation was achieved with each of the diesel fuels. After treating the anode with water the fuel cell performance recovered. However, the fuel cell performance degraded again prior to obtaining another steady-state operation. There were several observations that were consistent with the suggestion that the carbonaceous material formed from the diesel fuels might be a reaction intermediate necessary for steady-state operation. Finally, the experiments indicated that water in the phosphoric acid electrolyte could be used as the water required for the anodic reaction. The water formed at the cathode could provide the replacement water for the electrolyte, thereby eliminating the need to provide a water feed system for the fuel cell.

  1. Effect of oxygenate additive on diesel engine fuel consumption and emissions operating with biodiesel-diesel blend at idling conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, F. Y.; Mamat, R.; Noor, M. M.; Yusri, I. M.

    2017-10-01

    Biodiesel is promising alternative fuel to run the automotive engine but idling is the main problem to run the vehicles in a big city. Vehicles running with idling condition cause higher fuel supply and higher emission level due to being having fuel residues in the exhaust. The purpose of this study is to evaluate the impact of alcohol additive on fuel consumption and emissions parameters under idling conditions when a multicylinder diesel engine operates with the diesel-biodiesel blend. The study found that using 5% butanol as an additive with B5 (5% Palm biodiesel + 95% diesel) blends fuel lowers brake specific fuel consumption and CO emissions by 38% and 20% respectively. But the addition of butanol increases NOx and CO2 emissions. Based on the result it can be said that 5% butanol can be used in a diesel engine with B5 without any engine modifications to tackle the idling problem.

  2. [Effects of fuel properties on the performance of a typical Euro IV diesel engine].

    Science.gov (United States)

    Chen, Wen-miao; Wang, Jian-xin; Shuai, Shi-jin

    2008-09-01

    With the purpose of establishing diesel fuel standard for China National 4th Emission Standard, as one part of Beijing "Auto-Oil" programme, engine performance test has been done on a typical Euro IV diesel engine using eight diesel fuels with different fuel properties. Test results show that, fuel properties has little effect on power, fuel consumption, and in-cylinder combustion process of tested Euro IV diesel engine; sulfate in PM and gaseous SO2 emissions increase linearly with diesel sulfur content increase; cetane number increase cause BSFC and PM reduce and NOx increase; T90 decrease cause NOx reduce while PM shows trend of reduce. Prediction equations of tested Euro IV diesel engine's ESC cycle NOx and PM emissions before SCR response to diesel fuel sulfur content, cetane number, T90 and aromatics have been obtained using linear regression method on the base of test results.

  3. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    Science.gov (United States)

    Patond, S. B.; Chaple, S. A.; Shrirao, P. N.; Shaikh, P. I.

    2013-06-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3·2SiO2 (mullite) (Al2O3 = 60%, SiO2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  4. Diesel Fuel from Used Frying Oil

    Directory of Open Access Journals (Sweden)

    Bronislaw Buczek

    2014-01-01

    Full Text Available New conversion technologies of used edible oils and waste animal fats into a biofuel appropriate for use in standard diesel engines have been developed, taking into consideration environmental requirements and improvement in the economics of current trans-esterification technologies. The variation in the properties of substrates made from used rape oil after treatment with mixed adsorbents (active carbon, magnesium silicate was studied in this work. The obtained results are compared with the quality requirements for the substrates used in Vogel & Noot GmbH technology for transesterification of oils and fats.

  5. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial

  6. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  7. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  8. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  9. Influence of physical and chemical characteristics of diesel fuels and exhaust emissions on biological effects of particle extracts: A multivariant statistical analysis of ten diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, M.; Rannug, U.; Li, Hang [Stockholm Univ. (Sweden)] [and others

    1996-01-01

    This study investigated the biological effects of particulates found in exhaust gases from the combustion of diesel fuel. Models are described for correlating the biological effects to the physical and chemical properties of the fuel.

  10. Autothermal reforming study of diesel for fuel cell application

    Science.gov (United States)

    Kang, Inyong; Bae, Joongmyeon

    Diesel is one of the best hydrogen storage systems, because of its very high hydrogen volumetric density (100 kg H 2 m -2) and gravimetric density (15% H 2). In this study, several catalysts were selected for diesel reforming. Three experimental catalysts (Pt on gadolinium-doped ceria, Rh and Ru on the same support) and two commercial catalysts (FCR-HC14 and FCR-HC35, Süd-Chemie, Inc.) were used to reform diesel. The effects of operating conditions, such as temperature, O 2/C16 and H 2O/C16 on autothermal reforming (ATR) were investigated. In addition, by analyzing the concentrations of products and the temperature profiles along the catalyst bed, we studied the reaction characteristics for a better understanding of the ATR reaction. The fuel delivery and heat transfer between the front exothermic part and the rear endothermic part of the catalyst bed were found to be significant. In this study, the characteristic differences between a surrogate fuel (C 16H 34) and commercial grade diesel for the ATR were also examined.

  11. Rhodium diesel-reforming catalysts for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Karatzas, Xanthias

    2011-07-01

    Heavy-duty diesel truck engines are routinely idled at standstill to provide cab heating or air conditioning, and in addition to supply electricity to comfort units such as radio and TV. Idling is an inefficient and unfavorable process resulting in increased fuel consumption, increased emissions, shortened engine life, impaired driver rest and health, and elevated noise. Hydrogen-fueled, polymer-electrolyte fuel-cell auxiliary power unit (PEFC-APU) as a silent external power supply, working independently of the main engine, is proposed as viable solution for better fuel economy and abatement of idling emissions. In a diesel PEFC-APU, the hydrogen storage problem is circumvented as hydrogen can be generated onboard from diesel by using a catalytic reformer. In order to make catalytic diesel PEFC-APU systems viable for commercialization research is still needed. Two key areas are the development of reforming catalyst and reformer design, which both are the scope of this thesis. For diesel-reforming catalysts, low loadings of Rh and RhPt alloys have proven to exhibit excellent reforming and hydrogen selectivity properties. For the development of a stable reforming catalyst, more studies have to be conducted in order to find suitable promoters and support materials to optimize and sustain the long-term performance of the Rh catalyst. The next step will be full-scale tests carried out at realistic operating conditions in order to fully comprehend the overall reforming process and to validate promising Rh catalysts. This thesis can be divided into two parts; the first part addresses the development of catalysts in the form of wash coated cordierite monoliths for autothermal reforming (ATR) of diesel. A variety of catalyst compositions were developed containing Rh or RhPt as active metals, CeO{sub 2}, La{sub 2}O{sub 3}, MgO, Y{sub 2}O{sub 3} as promoters and Al{sub 2}O{sub 3}, CeO{sub 2}-ZrO{sub 2}, SiO{sub 2} and TiO{sub 2} as support materials. The catalysts were tested

  12. Diesel fuel processor for hydrogen production for 5 kW fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Sopena, D.; Melgar, A.; Briceno, Y. [Fundacion CIDAUT. Parque Tecnologico de Boecillo, P. 209, 47151 Boecillo (Valladolid) (Spain); Navarro, R.M.; Alvarez-Galvan, M.C. [Instituto de Catalisis y Petroquimica (CSIC), C/ Marie Curie 2, Cantoblanco (Madrid) (Spain); Rosa, F. [Instituto Nacional de Tecnica Aeroespacial, Carretera San Juan del Puerto-Matalascanas, km 33, 21130 Mazagon-Moguer (Huelva) (Spain)

    2007-07-15

    The present paper describes a diesel fuel processor designed to produce hydrogen to feed a PEM fuel cell of 5 kW. The fuel processor includes three reactors in series: (1) oxidative steam reforming reactor; (2) one-step water gas shift reactor; and (3) a preferential oxidation reactor. The design of the system was accomplished by means of a one-dimensional model. A specific study of the fuel-air mixing chamber was carried out with Fluent by taking into account fuel evaporation and cool flame processes. The assembly of the installation allowed the characterisation of each component and the control of each working parameter. The first experimental results obtained in the reformer system using decaline and diesel fuels demonstrate the feasibility of the design to produce hydrogen suitable to feed a PEM fuel cell. (author)

  13. Performance and emission characteristics of dual-fuel diesel-gas engines at part loads

    Energy Technology Data Exchange (ETDEWEB)

    Pirouzpanah, V.; Pourdarbani, E. [University of Tabriz (Iran)

    1999-07-01

    Dual-Fuel Diesel-Gas (D.F.D.G) concept is the most efficient way of using gaseous fuels (LPG or CNG) in conventional diesel engines. So far their operation at full load condition is mostly investigated. However, at part load conditions, the performance and emission characteristics of D.F.D.G engines are deteriorated. This may be mainly due to overall leaner mixture strength, small amount of pilot jet and misfiring nature of heterogeneous cylinder charge. Since this mode of operation is very important in vehicle engines, it is worth considering it in more detail. In this work by throttling the inlet air at part load condition, the overall mixture strength of the cylinder charge is modified and brought towards of baseline diesel engine. The results show that by throttling the inlet air at carburettor, both emission and performance characteristics of D.F.D.G engine becoming better and approaching that of the baseline diesel engine. For example, performance parameters such as power, torque and thermal efficiency increase and concentration of pollutants such as CO and UHC decrease considerably. On the other hand NO{sub x} concentration increases. The results are in good agreement with the results of the other research workers. (author)

  14. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  15. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  16. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of

  17. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    Science.gov (United States)

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-07

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  18. Trends in automotive diesel fuel properties and hydrotreating process of fuel; Keiyu no hinshitsu goko to seizo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Y.; Tanaka, E. [JOMO Technical Research Centre Co., Ltd., Saitama (Japan)

    2000-02-20

    The following issues are discussed in view of the relationship between important diesel fuel properties and performance and exhaust emissions, (1)Definition of important diesel fuel properties. (2)Trends in commercial diesel fuel properties in Japan. (3)Properties of next-generation diesel fuel (4)Plant to produce diesel fuel. One of the most important properties is sulfur content because the content highly affects levels of sulfate in particulate matter emitted from diesel engines with an oxidation catalyst. Also sulfur degrades the performance of NOx-trap which will be used in next-generation diesel engines. The regulation limit for sulfur content was revised from 0.5xt% to 0.2wt% in 1992, and 0.2wt% to 0.05wt% in 1997. More stringent regulations for cetane number, aromatic content, 90% distillation temperature, and sulfur content are proposed for future clean diesel fuel. The most important process in the production of a diesel fuel is a hydrotreating process for reducing the sulfur content. It is necessary to improve the process to produce diesel fuel with very low sulfur content. (author)

  19. Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine

    Science.gov (United States)

    Plotnikov, S. A.; Kartashevich, A. N.; Buzikov, S. V.

    2018-01-01

    The article explores the feasibility of diesel fuel pre-heating. The research goal was to obtain and analyze the performance diagrams of a diesel engine fed with pre-heated fuel. The engine was tested in two modes: at rated RPMs and at maximum torque. To process the diagrams the authors used technique developed by the Central Diesel Research Institute (CDRI). The diesel engine’s heat emission curves were obtained. The authors concluded that fuel pre-heating shortened the initial phase of the combustion process and moderated the loads, thus making it possible to boost a diesel engine’s mean effective pressure.

  20. Thermography of flame during diesel fuel combustion with steam gasification

    Science.gov (United States)

    Anufriev, I. S.; Arsentyev, S. S.; Agafontsev, M. V.; Kopyev, E. P.; Loboda, E. L.; Shadrin, E. Yu; Sharypov, O. V.

    2017-11-01

    The paper represents a study concerning the combustion of liquid hydrocarbon fuel in a perspective burner device with the controlled forced supply of overheated steam into the combustion zone, using diesel fuel. The thermal imaging measurements are conducted for the outer flame of the burner device in the wide range of regime parameters (flow rate and temperature of steam). A thermal imaging camera (FLIR, JADE J530SB) is used in the experiments. The effective emissivity coefficient of flame is obtained versus the flow rate of steam supplied. The steam parameters are found to influence on the temperature in the outer flame of the burner device.

  1. Use of hazelnut kernel oil methyl ester and its blends as alternative fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, M.; Atmaca, M. [Marmara Univ., Istanbul (Turkey). Mechanical Department

    2008-09-30

    Interest in vegetable oil as an alternative to diesel fuel in diesel engines has increased during the last few decades because reserves of petroleum fuel and its derivatives are diminishing rapidly, and because they have harmful effects on the environment. Numerous vegetable oil esters have been tried as alternatives to diesel fuel. Many researchers have reported that with the use of vegetable oil ester as a fuel in diesel engiens there is a decrease in harmful exhaust emissions and engine performance that is the equivalent of diesel fuel. Several studies have found that biodiesel emits far less of the most regulated pollutants than standard diesel fuel. Decreasing carbon dioxide (CO{sub 2}) emissions by using biodiesel contributes to reducing the greenhouse effect. Furthermore, diminishing carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO{sub x}), and smoke density improves air quality. Essential oils that have been tested in diesel engines are soybean, sunflower, corn, safflower, cottonseed, and rapeseed, which are categorized as edible oils; however, some edible oils, such as neat hazelnut kernel oil, have not been comprehensively tested as alternative fuel in diesel engines. In this study, hazelnut (Corylus avellana L.) kernel oil was evaluated as an alternative fuel in diesel engines. Firstly, the optimum transesteri.cation reaction conditions for hazelnut kernel oil, with respect to reaction temperature, volumetric ratio of reactants, and catalyst, were investigated. Secondly, an experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running on hazelnut kernel oil methyl ester and its blends with diesel fuel. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel are generally comparable to diesel fuel, according to engine performance and emissions.

  2. High Speed Imaging of Diesel Fuel Sprays

    Science.gov (United States)

    Jackson, Ja'kira; Bittle, Joshua

    2016-11-01

    Fuel sprays primarily serve as methods for fuel distribution, fuel/air mixing, and atomization. In this research, a constant pressure flow rig vessel is being tested at various pressures and temperatures using n-heptane. The experiment requires two imaging techniques: color Schlieren and Mie-scatter. Schlieren captures density gradients in a spray which includes both liquid and vapor phases while Mie-scatter is only sensitive to the liquid phase of the fuel spray. Essentially, studies are mainly focused on extracting the liquid boundary from the Schlieren to possibly eliminate the need for acquiring the Mie-Scatter technique. Four test conditions (combination of low and high pressure and temperatures) are used in the application to attempt to find the liquid boundary independent of the Mie-scatter technique. In this pursuit the following methods were used: a color threshold, a value threshold, and the time variation in color. All methods provided some indication of the liquid region but none were able to capture the full liquid boundary as obtained by the Mie-scatter results. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  3. The Influence of Diesel Fuel Subsidies and Taxes on the Potential for Solar-Powered Hybrid Systems in Africa

    Directory of Open Access Journals (Sweden)

    Paul Bertheau

    2015-08-01

    Full Text Available Many people in African countries lack access to sufficient electricity supply due to missing infrastructure of the centralized conventional power generation system. In order to provide electricity to a wider part of the population, it is necessary to exploit the vast renewable resources in African countries. Therefore, this paper scrutinizes the economic advantages of photovoltaic-based hybrid systems over fossil fuel-based power generation. A simulation model is applied in order to calculate the cost advantage of hybrid systems compared to diesel-only systems for the entire continent on a long term basis by applying two scenarios: one based on world market diesel prices and the other one based on national diesel prices. The results indicate that average power generation costs per country can be reduced by up to 0.11 €/kWh considering world market diesel prices and by up to 0.48 €/kWh considering national diesel prices. Furthermore, the effect of diesel fuel subsidies and taxes on the renewable energy potential and the respective savings are examined. These findings may ameliorate the policy development according to fossil fuel subsidies and taxes and demonstrate the advantages of decentralized renewable hybrid systems especially in rural areas of Africa.

  4. AP fuels and the potential of renewable diesel

    Energy Technology Data Exchange (ETDEWEB)

    Berkley, Mark; Seifkar, Navid; O' Shea, Michael; Peters, Christopher

    2010-09-15

    The decrease in demand for forestry products has been detrimental to the Province of Quebec's industrial base. With increasing energy security and environmental concerns the promotion of innovative technologies is adamant. AP Fuels Inc. has undertaken the development of a biomass-to-liquids facility proposed herein as a hybrid design, combining biomass and natural gas capable of producing diesel and other liquid fuels. The facility would consume 2,200,000 tonnewet per year of biomass and produce 10,600 bbl/day of liquid fuels. Forestry-derived F-T fuels have notable advantages including: improved performance; ultra-low sulphur content; reduced emissions, particulates and fouling; and production of fewer by-products.

  5. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends.

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2008-05-15

    The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.

  6. A diesel fuel processor for fuel-cell-based auxiliary power unit applications

    Science.gov (United States)

    Samsun, Remzi Can; Krekel, Daniel; Pasel, Joachim; Prawitz, Matthias; Peters, Ralf; Stolten, Detlef

    2017-07-01

    Producing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.

  7. Compressed Biogas-Diesel Dual-Fuel Engine Optimization Study for Ultralow Emission

    Directory of Open Access Journals (Sweden)

    Hasan Koten

    2014-06-01

    Full Text Available The aim of this study is to find out the optimum operating conditions in a diesel engine fueled with compressed biogas (CBG and pilot diesel dual-fuel. One-dimensional (1D and three-dimensional (3D computational fluid dynamics (CFD code and multiobjective optimization code were employed to investigate the influence of CBG-diesel dual-fuel combustion performance and exhaust emissions on a diesel engine. In this paper, 1D engine code and multiobjective optimization code were coupled and evaluated about 15000 cases to define the proper boundary conditions. In addition, selected single diesel fuel (dodecane and dual-fuel (CBG-diesel combustion modes were modeled to compare the engine performances and exhaust emission characteristics by using CFD code under various operating conditions. In optimization study, start of pilot diesel fuel injection, CBG-diesel flow rate, and engine speed were optimized and selected cases were compared using CFD code. CBG and diesel fuels were defined as leading reactants using user defined code. The results showed that significantly lower NOx emissions were emitted under dual-fuel operation for all cases compared to single-fuel mode at all engine load conditions.

  8. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  9. [Effects of oxygenated fuels on emissions and carbon composition of fine particles from diesel engine].

    Science.gov (United States)

    Shi, Xiao-Yan; He, Ke-Bin; Zhang, Jie; Ge, Yun-Shan; Tan, Jian-Wei

    2009-06-15

    Acetal (1,1-diethoxyethane) is considered as an alternative to ethanol as bio-derived additive for diesel fuel, which is miscible in diesel fuel. Biodiesel can improve the oxygen content and flash point of the fuel blend of acetal and diesel fuel. Two oxygenated fuels were prepared: a blend of 10% acetal + 90% diesel fuel and 10% acetal + 10% biodiesel + 80% diesel fuel. The emissions of NO(x), HC and PM2.5 from oxygenated fuels were investigated on a diesel engine bench at five modes according to various loads at two steady speeds and compared with base diesel fuel. Additionally, the carbon compositions of PM2.5 were analyzed by DRI thermal/optical carbon analyzer. Oxygenated fuels have unconspicuous effect on NO(x) emission rate but HC emission rate is observed significantly increased at some modes. The emission rate of PM2.5 is decreased by using oxygenated fuels and it decreases with the increase of fuel oxygen content. The emission rates of TC (total carbon) and EC (elemental carbon) in PM2.5 are also decreased by oxygenated fuels. The emission rate of organic carbon (OC) is greatly decreased at modes of higher engine speed. The OC/EC ratios of PM2.5 from oxygenated fuels are higher than that from base diesel fuel at most modes. The carbon compositions fractions of PM2.5 from the three test fuels are similar, and OC1 and EC1 are contributed to the most fractions of OC and EC, respectively. Compared with base diesel fuel, oxygenated fuels decrease emission rate of PM2.5, and have more OC contribution to PM2.5 but have little effect on carbon composition fractions.

  10. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Gail E. [Delphi Automotive Systems, LLC., Gillingham (United Kingdom)

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  11. Analytical approximations for temperature dependent thermophysical properties of supercritical diesel fuel surrogates used in combustion modeling

    Science.gov (United States)

    Kumar, Abhinav; Saini, Vishnu; Dondapati, Raja Sekhar; Usurumarti, Preeti Rao

    2017-07-01

    Supercritical fluid technology is introduced to combat the critical challenges related with emissions, incomplete and clean diesel fuel combustion. The chemical kinetics of diesel fuel is a strong function of temperature. As surrogate fuels have a potential to represent a real diesel fuel, thermophysical properties of such fuels have been studied in this present work as a function of temperature. Further, two diesel surrogate fuels which have been identified as the components of actual diesel fuel for jet engines are studied and thermophysical properties of these two surrogates are evaluated as a function of temperature at critical pressure. In addition, the accuracy and reliability of the developed correlations is estimated using two statistical parameters such as Absolute Average of Relative Error (AARE) and Sum of Average Residues (SAR). Results show an excellent agreement between the standard data and the correlated property values.

  12. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  13. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  14. Diesel engine performance and exhaust emission analysis using diesel-organic germanium fuel blend

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available Alternative fuels such as biodiesel, bio-alcohol and other biomass sources have been extensively research to find its potential as an alternative sources to fossil fuels. This experiment compared the performance of diesel (D, biodiesel (BD and diesel-organic germanium blend (BG5 at five different speeds ranging from 1200-2400 rpm. BG5 shows significant combustion performance compared to BD. No significant changes of power observed between BG5 and BD at a low speed (1200 rpm. On the contrary, at higher speeds (1800 rpm and 2400 rpm, BG5 blend fuel shows increased engine power of 12.2 % and 9.2 %, respectively. Similarly, torque shows similar findings as engine power, whereby the improvement could be seen at higher speeds (1800 rpm and 2400 rpm when torque increased by 7.3 % and 2.3 %, respectively. In addition, the emission results indicated that for all speeds, CO2, and NO had reduced at an average of 2.1 % and 177 %, respectively. Meanwhile, CO emission had slightly increased compared to BD at low speeds by 0.04 %. However, the amount of CO released had decreased at an average of 0.03 % as the engine speed increased. Finally, measurement of O2 shows an increment at 16.4 % at all speed range.

  15. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins

    Energy Technology Data Exchange (ETDEWEB)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G. [Internal Combustion Engines Laboratory, Thermal Engineering Department, School of Mechanical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens (Greece)

    2006-11-15

    An extended experimental study is conducted to evaluate and compare the use of various Diesel fuel supplements at blend ratios of 10/90 and 20/80, in a standard, fully instrumented, four stroke, direct injection (DI), Ricardo/Cussons 'Hydra' Diesel engine located at the authors' laboratory. More specifically, a high variety of vegetable oils or bio-diesels of various origins are tested as supplements, i.e. cottonseed oil, soybean oil, sunflower oil and their corresponding methyl esters, as well as rapeseed oil methyl ester, palm oil methyl ester, corn oil and olive kernel oil. The series of tests are conducted using each of the above fuel blends, with the engine working at a speed of 2000rpm and at a medium and high load. In each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NO{sub x}), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. From the first measurement, specific fuel consumption and brake thermal efficiency are computed. The differences in the measured performance and exhaust emission parameters from the baseline operation of the engine, i.e. when working with neat Diesel fuel, are determined and compared. This comparison is extended between the use of the vegetable oil blends and the bio-diesel blends. Theoretical aspects of Diesel engine combustion, combined with the widely differing physical and chemical properties of these Diesel fuel supplements against the normal Diesel fuel, are used to aid the correct interpretation of the observed engine behavior. (author)

  16. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  17. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  18. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  19. IC engine with diesel to gas fuel conversion facility. [IC = Internal Combustion]. Forbraendingsmotor af stempelmotortypen

    Energy Technology Data Exchange (ETDEWEB)

    Wellev, J.E.; Voergaard, F.; Storm Andersen, H.

    1993-08-23

    The commercial six-cylinder diesel engine (e.g. Fiat type 8220.12) has a compression ratio set at 17:1 while most of its peripheral equipment and transmission is retained. The inlet and exhaust manifolds remain, but the inlet manifold is joined to a carburettor and an evaporator is connected to a conventional autogas or propane tank. Air enters via a filter and venturi. Electronic ignition supplies spark plugs. A special drive for the distributor is arranged. Highly efficient use of fuel is achieved. (au)

  20. Knock characteristics of dual-fuel combustion in diesel engines ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    has been intensified due to environmental concern and/or exhaustion of conventional fossil fuels (Karim & Ali 1975). The renewable energy sources, natural gas, bio-derived gases and liquids appear to be greener alternative sources for internal combustion (IC) engines. The fuel system of a natural gas engine is some what ...

  1. Esters of Sunflower oil as an alternative fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Zaher, F. [National Research Center, Fats and Oils Dept., Cairo (Egypt)

    2003-10-15

    An alternative fuel to solar used in diesel engines was prepared from sunflower oil. Since the oil was too viscous to be used efficiently as fuel, it was chemically modified to reduce its viscosity. Chemical modification of the oil was made by catalyzed esterification with short chain alcohols being methyl and ethyl alcohols. The modified products were then evaluated according to their fuel properties as compared to diesel fuel. The fuel properties considered were viscosity, pour point, calorific value, flash point, and cetane number in addition to some other properties. In addition, the performance of a diesel engine was tested when fueled with a 50% blend of diesel oil and the oil methyl ester, and when fueled with diesel oil. The tested parameters were the brake-specific fuel consumption and brake thermal efficiency. The results of engine testing have proved that the engine performance was best using a 50% blend of diesel oil and the oil methyl ester. The brake-specific fuel consumption using this blend was 0.24 kg/BHp compared to 0.26 kg/BHp using diesel oil. The brake thermal efficiency using that oil blend was 37.6% compared to 31% with diesel oil. (Author)

  2. PIV measurement of internal structure of diesel fuel spray

    Science.gov (United States)

    Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.

    2000-12-01

    This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.

  3. Evaluation of tribological characteristics of biodiesel based on rapeseed oil and its blends with mineral diesel fuel

    Directory of Open Access Journals (Sweden)

    С.В. Бойченко

    2007-01-01

    Full Text Available  Research results on ШХ15 steel wearing capacity when sliding motion in biodiesel fuel on the basis of rape, mineral diesel fuel and their mixture, are presented. It was established that biodiesel fuel and its mixtures with mineral diesel fuel have better antiscuff  but worse antiwear properties than pure mineral diesel fuel. This fact tells us about the possibility of optimal correlations of diesel and biodiesel fuel in mixture that can be used as motor fuel for autotransport means equipped with diesel engines.

  4. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    Science.gov (United States)

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  5. Coal-fueled diesel technology development Emissions Control

    Energy Technology Data Exchange (ETDEWEB)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  6. Coal-fueled diesel technology development emissions control

    Science.gov (United States)

    Vankleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    General Electric Environmental Services, Inc. (GEESI), Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a coal-water-slurry (CWS) fuel single cylinder research diesel engine to the design, installation, and operation of a full-size emissions control system for a full-size CWS fuel diesel engine designed for locomotive operation. Early 10 CFM slipstream testing program activity was performed to determine emissions characteristics and to evaluate emissions control concepts such a barrier filtration, granular bed filtration, and cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO2 and NO(x) in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical emissions control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the envelope filter led to a subsequent progression to a similar configuration envelope filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This envelope filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  7. Numerical and Experimental Investigation of Combustion and Knock in a Dual Fuel Gas/Diesel Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    A. Gharehghani

    2012-01-01

    Full Text Available Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as pilot. The influence of intake pressure and temperature on knock occurrence and the effects of initial swirl ratio on heat release rate, temperature-pressure and emission levels have been investigated in this study. It is shown that an increase in the initial swirl ratio lengthens the delay period for auto-ignition and extends the combustion period while it reduces NOx. There is an optimum value of the initial swirl ratio for a certain mixture intake temperature and pressure conditions that can achieve high thermal efficiency and low NOx emissions while decreases the tendency to knock. Simultaneous increase of intake pressure and initial swirl ratio could be the solution to power loss and knock in dual fuel engine.

  8. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  9. Emergency response diesel fuel spill: Mark Twain National Wildlife Refuge Annada District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the cleanup of a diesel fuel leak on Mark Twin NWR. Water and soil samples from the contaminated area were analyzed, and the water/fuel...

  10. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A; Northrop, William F; Bohac, Stanislav V; Assanis, Dennis N

    2012-11-15

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NO x ), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM 2.5 , EC, formaldehyde, and most VOCs; however, NO x brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM 2.5 , EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM 2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM 2.5 . The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for

  11. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  12. Effects of diesel fuel contamination on seed germination of four crop ...

    African Journals Online (AJOL)

    Effects of diesel fuel contamination on seed germination of four crop plants - Arachis hypogaea, Vigna unguiculata, Sorghum bicolor and Zea mays. ... The study indicates that Z. mays and A. hypogaea have more potential for use in phytoremediation of diesel fuel contaminated soils than S. bicolor and V. unguiculata.

  13. Study of Exhaust Emissions Reduction of a Diesel Fuel Operated Heater During Transient Mode of Operation

    Directory of Open Access Journals (Sweden)

    Miklánek Ľubomír

    2014-10-01

    Full Text Available Diesel fuel operated heaters (FOHs are generally used as an independent heat source for any system in which a diesel fuel and battery power is available. Based on the fact that future engines will become even more efficient and thus less waste heat will be available to heat the passenger compartment, independent heat sources will be even more necessary.

  14. Air/fuel ratio visualization in a diesel spray

    Science.gov (United States)

    Carabell, Kevin David

    1993-01-01

    To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a

  15. Effect of Exhaust Gas Recirculation on Performance of a Diesel Engine Fueled with Waste Plastic Oil / Diesel Blends

    Directory of Open Access Journals (Sweden)

    Punitharani K.

    2017-11-01

    Full Text Available NOx emission is one of the major sources for health issues, acid rain and global warming. Diesel engine vehicles are the major sources for NOx emissions. Hence there is a need to reduce the emissions from the engines by identifying suitable techniques or by means of alternate fuels. The present investigation deals with the effect of Exhaust Gas Recirculation (EGR on 4S, single cylinder, DI diesel engine using plastic oil/Diesel blends P10 (10% plastic oil & 90% diesel in volume, P20 and P30 at various EGR rates. Plastic oil blends were able to operate in diesel engines without any modifications and the results showed that P20 blend had the least NOx emission quantity.

  16. Model and experiments of diesel fuel HCCI combustion with external mixture formation

    Energy Technology Data Exchange (ETDEWEB)

    Canova, M.; Vosz, A.; Dumbauld, D.; Garcin, R.; Midlam-Mohler, S.; Guezennec, Y.; Rizzoni, G. [Ohio State Univ. (United States)

    2005-07-01

    Homogeneous Charge Compression Ignition represents a promising concept for achieving high efficiencies and low emissions at part-load operations. In particular, HCCI combustion can be successfully applied to conventional Direct Injection Diesel engines with very low extra costs and no modification to the DI system by performing the mixture formation in the intake manifold with a novel fuel atomizer. The present paper describes the experimental and modeling activity oriented to the control of HCCI combustion on a conventional CIDI 4-cylinder engine fitted with this external fueling device. Paralleling preliminary results obtained last year on single-cylinder engine in collaboration with FKFS at the University of Stuttgart, Diesel-fuel HCCI combustion was achieved and characterized over a range of engine speeds, loads, EGR dilution and boost pressure. Stable HCCI combustion with negligible NO{sub x} formation (10 ppm) was achieved with no modification of a high compression ratio engine (c{sub r}=18). The in-cylinder pressure traces were analyzed by performing a detailed heat release analysis while accounting for the wall heat transfer, which is substantially higher during the combustion phase than in a conventional CIDI engine. This analysis led to the joint identification of 2 sub-models: a heat transfer model, and a heat release model. It was found that under the wide range of conditions experimentally measured, the heat release can be approximated by the superposition of 3 Wiebe functions. The sub-models developed were then implemented in a combustion model based on a first-law thermodynamic analysis of in-cylinder processes, in order to identify the influence of the main control parameters on HCCI auto-ignition and to control the combustion process in a HCCI Diesel engine with external mixture formation. The model predictions were then compared to the results of a parallel experimental activity made on a 4-cylinder CIDI Diesel engine equipped with the fuel

  17. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    wider region of OH∗ in the downstream locations where only OH∗ emission is observed. The intensity of OH∗ is higher for Jet-A than diesel under low O2 concentration but lower under high O2 concentration. The intensity of NL is higher for Jet-A for all the conditions investigated. However, the intensities of Band A and Band B are lower for Jet-A for all these conditions. Based on the imaging of multiple-band flame emissions, the spray flame structures were further analyzed for the two fuels under both low temperature and conventional combustion modes. Conceptual flame structures were proposed to complement the previous conceptual models for spray combustion under different combustion modes.

  18. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  19. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Directory of Open Access Journals (Sweden)

    Jilin Lei

    2011-01-01

    Full Text Available In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype and ethanol-diesel blends (E10, E15, E20 and E30 under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa. The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  20. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  1. The determination of regulated and some unregulated exhaust gas components from ethanol blended diesel fuels in comparison with neat diesel and ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    Haupt, D.; Nordstroem, F.; Niva, M.; Bergenudd, L.; Hellberg, S. [Luleaa Univ. of Technology (Sweden)

    1999-02-01

    Investigations that have been carried out at Luleaa University of Technology (LTU) show how exhaust gas emissions and engine performance are affected by the composition of the fuels. The fuels that have been tested and compared are two different ethanol blended diesel fuels, `neat` diesel fuels and neat ethanol fuels. Two different, heavy-duty engines were used for the investigations; one for the neat ethanol fuels and the other for the ethanol blended diesel fuels and neat diesel fuels. The investigation also includes some tests with two oxidizing catalysts. Results from the investigation show that none of the fuels produce emissions exceeding the values of the 13-mode test (ECE R-49, 1997). Lowest HC-emission levels were found for the two `neat` ethanol fuels although the difference between the HC-emissions can be considered negligible for the studied fuels. An effective reduction in the hydrocarbon emissions was achieved by using a catalyst. The investigation also shows that the NO{sub x} emissions were much lower for the neat ethanol fuels than for the other fuels. Even if the CO emissions from the two ethanol fuels were approximately three times higher than for the other investigated fuels the use of a catalyst equalize the CO emissions from the studied fuels. The formaldehyde and acetaldehyde emissions were clearly higher for the neat ethanol fuels than for the other investigated fuels. However, by using a catalyst the formaldehyde emission from the ethanol fuels could be decreased. Unfortunately, the use of a catalyst also resulted in an increase in the emission of acetaldehyde from the ethanol fuelled engine 10 refs, 11 figs, 5 tabs, 6 appendixes

  2. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  3. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  4. Fuel Lubricity Impact on Shipboard Engine and Fuel Systems and Sensitivity of U.S. Navy Diesel Engines to Low-Sulfur Diesel Fuel

    Science.gov (United States)

    2011-06-30

    United States Marine Corps. USN United States Navy WSD Wear Scar Diameter UNCLASSIFIED x UNCLASSIFIED 1.0 OBJECTIVE The U. S. Navy, U...addressed. Furthermore there were potential benefits identified for using JP-5 grade kerosene in lieu of marine diesel fuel for all fleet diesel...13 19 17 13 991 ppm Potassium ɝ ɝ ɝ ɝ ɝ ppm Strontium ə ə ə ə ə ppm Vanadium ə ə ə ə ə ppm Titanium ə ə ə ə ə ppm Cadmium ə

  5. Fuel filter device, particularly for Diesel fuel. Kraftstoffiltriereinrichtung, insbesondere fuer Dieselkraftstoff

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, S.B.

    1981-01-22

    The purpose of the invention is to describe a fuel filter device, particularly for Diesel fuel, where dirt is deposited in the expansion chamber without causing turbulence. In order to solve the problem the device is characterized by the fact that there are radial fins, which guide the fuel in laminar flow. These fins ensure that dirt can be deposited in the expansion chamber without causing turbulence. In order to avoid stuttering of the internal combustion engine due to the formation of air pockets in the filter, suitable inlets and outlets are provided for the filter chamber.

  6. Performance and emissions characterization of diesel engine running with re-formulated palm oil methyl ester-diesel blended fuel

    Energy Technology Data Exchange (ETDEWEB)

    Husnawan, M. [Syiah Kuala Univ., Darussalam, Banda Aceh (Indonesia). Dept. of Mechanical Engineering; Malaya Univ., Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering; Masjuki, H.H.; Mahlia, T.M.I.; Saidur, R.; Kalam, M.A. [Malaya Univ., Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering

    2009-07-01

    The use of additives in diesel fuel or lubricants is a common practice to reduce engine wear, improve the cetane number and reduce exhaust emissions. Additives can be used extensively to improve the characteristics of fuel that affects engine performance and efficiency. The purpose of this study was to evaluate the effect of re-formulated palm oil methyl ester (POME) blended with additive on engine performance as well as emissions as the engine speed and load change. More specifically, the paper presented an evaluation of diesel engine emissions such as carbon monoxide, nitrogen oxide, tetrahydrocannabinol and smoke while the engine was running with re-formulated POME blended fuel. In order to get better atomization during the blending process, the fuel was re-formulated by an additional additive and blending agent. The study showed that by re-formulating the POME-diesel blended fuel, poisonous gases were reduced from diesel engine combustion. In addition, the use of blended additive by proper composition was capable of increasing the stability of the fuels as well as producing better combustion. 10 refs., 1 tab., 6 figs.

  7. Experimental Investigation Of Biogas-Biodiesel Dual Fuel Combustion In A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2015-06-01

    Full Text Available This study is an attempt at achieving diesel fuel equivalent performance from diesel engines with maximum substitution of diesel with renewable fuels. In this context the study has been designed to analyze the influence of B20 algae biodiesel as a pilot fuel in a biodiesel biogas dual fuel engine, and results are compared to those of biodiesel and diesel operation at identical engine settings. Experiments were performed at various loads from 0 to 100 % of maximum load at a constant speed of 1500 rpm. In general, B20 algae biodiesel is compatible with diesel in terms of performance and combustion characteristics. Dual fuel mode operation displays lower thermal efficiency and higher fuel consumption than for other fuel modes of the test run across the range of engine loads. Dual fuel mode displayed lower emissions of NOx and Smoke opacity while HC and CO concentrations were considerably higher as compared to other fuels. In dual fuel mode peak pressure and heat release rate were slightly higher compared to diesel and biodiesel mode of operation for all engine loads.

  8. Simultaneous Determination Of Hydrocarbon Renewable Diesel, Biodiesel And Petroleum Diesel Contents In Diesel Fuel Blends Using Near Infrared (nir) Spectroscopy And Chemometrics.

    OpenAIRE

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2015-01-01

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative dete...

  9. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  10. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Science.gov (United States)

    2010-07-01

    ... standard by fuel switching, blending, mislabeling, or any other means; and (3) The refiner under whose... the diesel fuel to violate the standard by fuel switching, blending, mislabeling, or any other means... the standard by fuel switching, blending, mislabeling, or any other means; and (4) The refiner whose...

  11. Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D. [Fuels,; Janke, Christopher J. [Fuels,; Connatser, Raynella M. [Fuels,; Lewis, Samuel A. [Fuels,; Keiser, James R. [Fuels,; Gaston, Katherine [National

    2017-12-22

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline. The plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), POM copolymer, high density polyethylene (HDPE), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene terephthalate glycol (PETG), polythiourea (PTU), four nylon grades, and four thermosetting resins. Specimens of each material were immersed in the test fuels for a period of 16 weeks to achieve full saturation. Except for PP and HDPE, the plastic materials underwent higher volume expansion in bio-oil than in the baseline diesel (which was negligible in most cases). This volume increase corresponds to the higher polarity of the bio-oil. PPS, PET, and PTFE were unaffected by bio-oil exposure, but modest swelling (between 2 and 5%) occurred for the two acetals (POM and POM copolymer), Nylon-12, PBT, PETG, and the four resin grades. More moderate swelling (8-15%) was noted for Nylon-6, Nylon-6/6, and Nylon-11, and excessive swell (>40%) occurred for PTU. The nonpolar nature of PP and HDPE matches that of diesel, leading to higher solubility (swell) in this fuel type. The relatively low volume expansion following exposure indicates that many of the existing infrastructure plastics (excluding PTU) should be suitable for use with bio-oil.

  12. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny; Johnson, Stuart; Zickmann, Stefan; Lopes, Shailesh; Gault, Roger; Slade, David

    2016-04-01

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no

  13. Diesel/CNG Mixture Autoignition Control Using Fuel Composition and Injection Gap

    Directory of Open Access Journals (Sweden)

    Firmansyah

    2017-10-01

    Full Text Available Combustion phasing is the main obstacle to the development of controlled auto-ignition based (CAI engines to achieve low emissions and low fuel consumption operation. Fuel combinations with substantial differences in reactivity, such as diesel/compressed natural gas (CNG, show desirable combustion outputs and demonstrate great possibility in controlling the combustion. This paper discusses a control method for diesel/CNG mixture combustion with a variation of fuel composition and fuel stratification levels. The experiments were carried out in a constant volume combustion chamber with both fuels directly injected into the chamber. The mixture composition was varied from 0 to 100% CNG/diesel at lambda 1 while the fuel stratification level was controlled by the injection phasing between the two fuels, with gaps between injections ranging from 0 to 20 ms. The results demonstrated the suppressing effect of CNG on the diesel combustion, especially at the early combustion stages. However, CNG significantly enhanced the combustion performance of the diesel in the later stages. Injection gaps, on the other hand, showed particular behavior depending on mixture composition. Injection gaps show less effect on combustion phasing but a significant effect on the combustion output for higher diesel percentage (≥70%, while it is contradictive for lower diesel percentage (<70%.

  14. Will Aerosol Hygroscopicity Change with Biodiesel, Renewable Diesel Fuels and Emission Control Technologies?

    Science.gov (United States)

    Vu, Diep; Short, Daniel; Karavalakis, Georgios; Durbin, Thomas D; Asa-Awuku, Akua

    2017-02-07

    The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ fuels over the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average κ values range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of "fresh" tailpipe emissions as nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.

  15. Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel

    Directory of Open Access Journals (Sweden)

    Soha S.M. Mostafa

    2017-05-01

    In this study, the feasibility of biodiesel production from microalga Spirulina platensis has been investigated. The physico–chemical characteristics of the produced biodiesel were studied according to the standards methods of analysis (ASTM and evaluated according to their fuel properties as compared to Egyptian petro-diesel. Blends of microalgae biodiesel and petro-diesel (B2, B5, B10 and B20 were prepared on a volume basis and their physico–chemical characteristics have been also studied. The obtained results showed that; with the increase of biodiesel concentration in the blends; the viscosity, density, total acid number, initial boiling point, calorific value, flash point, cetane number and diesel index increase. While the pour point, cloud point, carbon residue and sulfur, ash and water contents decrease. The observed properties of the blends were within the recommended petro-diesel standard specifications and they are in favor of better engine performance.

  16. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  17. An experimental study on the effect of using gas-to-liquid (GTL fuel on diesel engine performance and emissions

    Directory of Open Access Journals (Sweden)

    M.A. Bassiony

    2016-09-01

    Full Text Available Gas to Liquid (GTL fuel is considered one of the most propitious clean alternative fuels for the diesel engines. The aim of this study was to experimentally compare the performance and emissions of a diesel engine fueled by GTL fuel, diesel, and a blend of GTL and diesel fuels with a mixing ratio of 1:1 by volume (G50 at various engine load and speed conditions. Although using the GTL and G50 fuels decreased slightly the engine maximum power compared to the diesel fuel, both the engine brake thermal efficiency and engine brake specific fuel consumption were improved. In addition, using the GTL and G50 fuels as alternatives to the diesel resulted in a significant decrease in engine CO, NOx, and SO2 emissions.

  18. 77 FR 75868 - Regulation of Fuels and Fuel Additives: Modifications to the Transmix Provisions Under the Diesel...

    Science.gov (United States)

    2012-12-26

    ... that an entity may deliver or receive custody of past June 1, 2014. A. Extension of the Diesel Transmix... that takes custody of 500 ppm LM diesel fuel. \\25\\ In most cases, fewer entities would take custody of... chain between the transmix processor and the ultimate consumer. However, we understand that as many as 4...

  19. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

    2005-11-01

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  20. H2O removal from diesel and JP8 fuels: A comparison study between synthetic and natural dehydration agents

    Directory of Open Access Journals (Sweden)

    E. P. Favvas

    2014-08-01

    Full Text Available The comparison between Thermal Polyaspartate Anion, TPA, and natural resin in their effect on the improvement of the physicochemical properties of both conventional diesel and JP8 fuels is the main scope of this work. Specifically, both studied materials were used dehydration agents in order to increase the physicochemical properties of both treated fuels. The higher amount of the removed water was obtained when used the natural resin as adsorbent material. In this case the water concentration decreased into diesel up to 68.66 % and more than 30 % in the case of jet fuel (JP8. This water removal improves the studied physicochemical properties of both studied fuels, diesel and JP8, for example up to 633 J/g (using natural resin as dehydration agent (removable additive and 1040 J/g (using TPA as dehydration agent for the heat of combustion. Overall, the proposed method can be used in a simple fuel cleaning process using a metal mesh vessel of synthetic TPA polymer or natural resin. The higher water/humidity removal amount in conjunction with the very low price of the natural resin makes this material more promising for the up scaling of the proposed technique in the near future.

  1. The study of stability, combustion characteristics and performance of water in diesel emulsion fuel

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available A single cylinder diesel engine study of water in diesel emulsions was conducted to investigate the stability effect of emulsion fuel on three different fuel blends and the water emulsification effect on the engine performance. Emulsified fuels contained 2% of surfactant including Span 80 Tween 80 and tested 10 HLB number. The blends also varied of 5%, 10% and 15% of water in diesel ratios namely as BSW5, BSW10 and BSW15. The fuel blends performance was tested using a single cylinder, direct injection diesel engine, operating at 1860 rpm. The results on stability reveal that high shear homogenizer yields more stability on emulsion fuel than mechanical stirrer and ultrasonic water bath. The engine performance results show that the ignition delay and peak pressure increase with the increment of water percentage up to 15%. However, the results indicate the increment of water percentage is also shows a significant decrease in engine power.

  2. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  3. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  4. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review

    Energy Technology Data Exchange (ETDEWEB)

    No, Soo-Young [Chungbuk National University, Department of Biosystems Engineering, Cheongju 361-763 (Korea, Republic of)

    2011-01-15

    The use of inedible vegetable oils as an alternative fuel for diesel engine is accelerated by the energy crisis due to depletion of resources and increased environmental problems including the great need for edible oil as food and the reduction of biodiesel production cost, etc. Of a lot of inedible vegetable oils which can be exploited for substitute fuel as diesel fuel, seven vegetable oils, i.e., jatropha, karanja, mahua, linseed, rubber seed, cottonseed and neem oils were selected for discussion in this review paper. The application of jatropha oil as a liquid fuel for CI engine can be classified with neat jatropha oil, engine modifications such as preheating, and dual fuelling, and fuel modifications such as jatropha oil blends with other fuels, mostly with diesel fuel, biodiesel, biodiesel blends and degumming. Therefore, jatropha oil is a leading candidate for the commercialization of non-edible vegetable oils. There exists a big difference in the fuel properties of seven inedible vegetable oils and its biodiesels considered in this review. It is clear from this review that biodiesel generally causes an increase in NOx emission and a decrease in HC, CO and PM emissions compared to diesel. It was reported that a diesel engine without any modification would run successfully on a blend of 20% vegetable oil and 80% diesel fuel without damage to engine parts. This trend can be applied to the biodiesel blends even though particular biodiesel shows 40% blend. In addition, the blends of biodiesel and diesel can replace the diesel fuel up to 10% by volume for running common rail direct injection system without any durability problems. (author)

  5. Model of predicting proportion of diesel fuel and engine oil in diesel ...

    African Journals Online (AJOL)

    Viscosity of diesel adulterated SAE 40 engine oil at varying proportions of the mixture is presented. Regression, variation of intercept and the power parameters methods are used for developing polynomial and power law functions for predicting proportion of either diesel or engine oil in diesel adulterated SAE 40 engine oil ...

  6. USE OF WATER-FUEL MIXTURE IN DIESEL ENGINES AT FISHING VESSELS

    Directory of Open Access Journals (Sweden)

    Oleg KLYUS

    2017-04-01

    Full Text Available The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20% and water (up to 2.5%. The obtained parameters prove that adding bio-components (rapeseed oil methyl esters and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel – catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.

  7. Use of Water-Fuel Mixture in Diesel Engines at Fishing Vessels

    Science.gov (United States)

    Klyus, Oleg; Bezyukov, O.

    2017-06-01

    The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20%) and water (up to 2.5%). The obtained parameters prove that adding bio-components (rapeseed oil methyl esters) and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel - catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.

  8. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  9. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Science.gov (United States)

    2010-07-01

    ... motor vehicles, unless the diesel fuel: (1) Has a sulfur percentage, by weight, no greater than 0.05... for use in diesel motor vehicles and motor vehicle engines, and shall be subject to the prohibitions... testing methodologies specified in § 80.580(a) for sulfur, § 80.2(w) for cetane index, and § 80.2(z) for...

  10. Evaluation and Development of Chemical Kinetic Mechanism Reduction Scheme for Biodiesel and Diesel Fuel Surrogates

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Ng, Hoon Kiat; Gan, Suyin

    2013-01-01

    The aim of this study is to evaluate the existing chemical kinetic mechanism reduction techniques. From here, an appropriate reduction scheme was developed to create compact yet comprehensive surrogate models for both diesel and biodiesel fuels for diesel engine applications. The reduction techni...

  11. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon

    2014-04-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of \\'MTBE soot\\' started began at a lower temperature and had higher reaction rate than \\'diesel soot\\' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  12. Green fuel utilization for diesel engine, combustion and emission analysis fuelled with CNSO diesel blends with Diethyl ether as additive

    Science.gov (United States)

    Kumar, Ashok; Rajan, K.; Senthil Kumar, K. R.; Maiyappan, K.; Rasheed, Usama Tariq

    2017-05-01

    The experimental investigation is conducted to evaluate the effects by using Diethyl ether (DEE) as an additive. The Cashew Nut Shell Oil diesel blends (CDB) are tested in a 4-stroke single cylinder DI unmodified diesel engine, rated power is 4.4 kW at a speed of 1500 rpm. The effect of combustion analysis of test fuels on net heat release rate, cylinder pressure, engine power, BSFC, BTE, EGT were observed by the performance tests. The combustion and emission characteristics of a diesel engine with an additive of high cetane number is utilized with CDB and thus investigated. The influence of blends on CO, CO2, HC, NOx and smoke opacity is investigated by emission tests. Initially, the experiment was conducted with different blends of CDB diesel blends like 10%, 20%, & 30% by volume basis in a diesel engine. Among this blends B20 shows reasonable result and heat dissipation rate at full load conditions. The BTE of B20 is 27.52% whereas base diesel fuel is 29.73%. Addition of the DEE by 5%, 10% and 15% by volume basis with B20 which is a base fuel has resulted with improved estimates. The result shows that at full load conditions BTE of B20D10 is 28.96% which is close to the base fuel i.e. B20. The emissions like CO2 shows reducing trends while HC emission rises with increase in CNSO blends. The HC in diesel corresponds to 30ppm and in B20 it is 34ppm, but addition of DEE shows a decreasing trend as in B20D5 has 29ppm and B20D15 has 23ppm respectively. NOx also shows increasing trends with CNSO blend, after addition of DEE it shows declining trend. The NOx for diesel, B20, B30, B20D5, B20D10 and B20D15 emits 1195, 1450, 1511, 1327, 1373 and 1200ppm respectively. The smoke emission is 3.96, 3.38, 3.15 FSN of B20, B20D15 and diesel respectively.

  13. Effects of fuel properties and oxidation catalyst on diesel exhaust emissions; Keiyu seijo oyobi sanka shokubai no diesel haishutsu gas eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S.; Morihisa, H.; Tamanouchi, M.; Araki, H.; Yamada, S. [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    Effects of fuel properties (T90 and Poly-Aromatic Hydrocarbons: PAH) and oxidation catalyst on diesel exhaust emissions were studied using three DI diesel engines and two diesel passenger cars. (IDI engine) PM emissions were found to increase as T90 and PAH increased and could be decreased considerably for each fuel if an oxidation catalyst was installed. 5 refs., 9 figs., 3 tabs.

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  15. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    Science.gov (United States)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-06-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  16. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    Energy Technology Data Exchange (ETDEWEB)

    Stiller, P.; Scott, G.; Shaltens, R.

    1983-06-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60% of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7% while generating 11% of the total electrical energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  17. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    Science.gov (United States)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-01-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  18. Diesel fuel long term storage and treatment- recommended tests and practices (U)

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2009-06-05

    The Clean Air Act (1970) is the comprehensive federal law that regulates air emissions from stationary and mobile sources. Among other things, this law authorized the Environmental Protection Agency (EPA) to establish National Ambient Air Quality Standards to protect public health and public welfare and to regulate emissions of hazardous air pollutants. In recent years, EPA regulations have forced oil refineries into producing a very low sulfur diesel fuel and incentives for adding up to 5% bio-diesel. These changes to the fuel oil formulation are beneficial to air quality and to energy conservation, but adversely impact heat content, long term storage stability, engine power, and injection system reliability. Diesel engines typically have a high incidence of injector failure resulting from poor diesel fuel quality. Since standby diesel engines do not run continuously it is necessary to implement periodic surveillance's to ensure the quality of diesel fuel is acceptable for reliable operation when a loss of power occurs. The information contained in this document is a compilation of best practices to be used as a guide for maintenance of a reliable diesel fuel system.

  19. Preliminary Investigation for Engine Performance by Using Tire-Derived Pyrolysis Oil-Diesel Blended Fuels

    Science.gov (United States)

    Rofiqul, Islam M.; Haniu, Hiroyuki; Alam, Beg R.; Takai, Kazunori

    In the first phase of the present study, the pyrolysis oil derived from light automotive tire waste has been characterized including fuel properties, elemental analyses, FT-IR, 1H-NMR, GC-MS and distillation. The studies on the oil show that it can be used as liquid fuel with a gross calorific value (GCV) of 42.00 MJ/kg and empirical formula of CH1.27O0.025N0.006. In the second phase of the investigation, the performance of a diesel engine was studied blending the pyrolysis oil with diesel fuel in different ratios. The experimental results show that the bsfc of pyrolysis oil-diesel blended fuels slightly increases and hence the brake thermal efficiency decreases compared to those of neat diesel. The pyrolysis oil-diesel blends show lower carbon monoxide (CO) emission but higher oxides of nitrogen (NOx) emissions than those of neat diesel. However, NOx emissions with pyrolysis oil-diesel blended fuels reduced when EGR was applied.

  20. Replacing fossil diesel by biodiesel fuel: expected impact on health.

    Science.gov (United States)

    Hutter, Hans-Peter; Kundi, Michael; Moshammer, Hanns; Shelton, Janie; Krüger, Bernd; Schicker, Irene; Wallner, Peter

    2015-01-01

    Biofuels have become an alternative to fossil fuel, but consequences on human health from changes to emissions compositions are not well understood. By combining information on composition of vehicle exhaust, dispersion models, and relationship between exposure to air contaminants and health, the authors determined expected mortality outcomes in 2 scenarios: a blend of 10% biodiesel and 90% standard diesel (B10) and biodiesel only (B100), for a rural and an urban environment. Vehicle exhaust for both fuel compositions contained lower fine particle mass but higher NO2 levels. Ambient air concentrations in scenario B10 were almost unchanged. In scenario B100, PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) levels decreased by 4-8% and NO2 levels increased 7-11%. Reduction of PM2.5 is expected to reduce mortality rate by 5 × 10(-6) and 31 × 10(-6) per year, whereas NO2 increase adds 17 × 10(-6) and 30 × 10(-6) to mortality rate for B10 and B100, respectively. Since effects of PM2.5 and NO2 are not independent, a positive net effect is possible.

  1. Performance of a stationary diesel engine using vapourized ethanol as supplementary fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ajav, E.A. [Ibadan Univ., Agricultural Engineering Dept., Ibadan (Nigeria); Singh, Bachchan [G.B. Pant Univ. of Agriculture and Technology, Coll. of Technology, Pantnagar (India); Bhattacharya, T.K. [G.B. Pant Univ. of Agriculture and Technology, Farm Machinery and Power Engineering Dept., Pantnagar (India)

    1998-12-31

    The modification and testing of a compression ignition engine using diesel and vapourized ethanol as fuel has been carried out. Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. Modifications were made in the introduction of the ethanol and air. A carburettor was used to vaporize aqueous ethanol into the engine. The effect of preheating the intake ethanol-air mixture was also investigated. Performance was evaluated in terms of engine horsepower, brake specific fuel consumption, brake thermal efficiency, the exhaust gas temperature, lubricating oil temperature and exhaust emissions. The vapourized ethanol partially reduced diesel fuel consumption but also increased total fuel delivery. Vaporization increased power output, thermal efficiency and exhaust emission but lowered exhaust temperature and lubricating oil temperatures. (Author)

  2. POWER EXPENSES ON HPFP DRIVE OF DIESEL ENGINE WITH BATTERY-DRIVEN FUEL SYSTEM

    OpenAIRE

    А. Vrublevsky; A. Prohorenko; I. Pozhidaev; D. Meshkov; A. Timchenko

    2012-01-01

    The results of the research of impact of the process of fuel injection into the accumulator on the power of mechanical losses of the diesel engine are presented. The need to regulate the high pressure fuel pump for battery-driven fuel system is theoretically grounded.

  3. Soot and chemiluminescence in diesel combustion of bio-derived, oxygenated and reference fuels

    NARCIS (Netherlands)

    Klein-Douwel, R. J. H.; Donkerbroek, A. J.; van Vliet, A. P.; Boot, M. D.; Somers, L. M. T.; Baert, R. S. G.; Dam, N. J.; ter Meulen, J. J.

    2009-01-01

    High-speed imaging, spectroscopy and thermodynamical characterization are applied to an optically accessible, heavy-duty diesel engine in order to compare sooting and chemilunlinescence behaviour of bio-derived, oxygenated fuels and various reference fuels. The fuels concerned include the

  4. Soot and chemiluminescence in diesel combustion of bio-derived, oxygenated and reference fuels

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Donkerbroek, A.J.; Vliet, A.P. van; Boot, M.D.; Somers, L.M.T.; Baert, R.S.G.; Dam, N.J.; Meulen, J.J. ter

    2009-01-01

    High-speed imaging, spectroscopy and thermodynamical characterization are applied to an optically accessible, heavy-duty diesel engine in order to compare sooting and chemiluminescence behaviour of bio-derived, oxygenated fuels and various reference fuels. The fuels concerned include the bio-derived

  5. Development of multi-component diesel surrogate fuel models – Part I: Validation of reduced mechanisms of diesel fuel constituents in 0-D kinetic simulations

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Pang, Kar Mun; Ng, Hoon Kiat

    2016-01-01

    In the present work, development and validation of reduced chemical kinetic mechanisms for several different hydrocarbons are performed. These hydrocarbons are potential representative for practical diesel fuel constituents. n-Hexadecane (HXN), 2,2,4,4,6,8,8-heptamethylnonane (HMN), cyclohexane...... (CHX) and toluene are selected to represent straight-alkane, branched-alkane, cyclo-alkane and aromatic compounds in the diesel fuel. A five-stage chemical kinetic mechanism reduction scheme formulated in the previous work is applied to develop the reduced HMN and CHX models based on their respective...... mechanisms is achieved for ignition delay (ID) and species concentration predictions under both auto-ignition and JSR conditions, with a maximum relative error of 40%. In addition, the reduced models are further validated against the JSR experimental results for each diesel fuel constituents. The surrogate...

  6. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels.

    Science.gov (United States)

    Sidhu, S; Graham, J; Striebich, R

    2001-01-01

    Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels.

  7. Ignitability of Diesel Fuel with an Inclusion of Ultrafine Carbon Particles

    Science.gov (United States)

    Krivosheev, P. N.; Leshchevich, V. V.; Shimchenko, S. Yu.; Shushkov, S. V.; Penyazkov, O. G.

    2017-11-01

    Nanosize carbon fuel additions were synthesized by the action of an electric discharge on a diesel fuel. Depending on the discharge regime, variously shaped carbon particles, including planar graphitized ones, were formed in the fuel. Ignitability of the produced samples was assessed by the method of initiation of a foamed fuel sample by a lowcurrent electric arc. The modified fuel showed the improvement of the ignition characteristics in the presence of a nanodispersed solid phase.

  8. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-08-18

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.

  9. Low-pollutant diesel fuels, gasoline, and organic fuels - conditions of use and costs; Schadstoffarme Diesel- und Ottokraftstoffe, Biotreibstoffe - Einsatzbedingungen und Kosten

    Energy Technology Data Exchange (ETDEWEB)

    Roeling, B. [Louis Dreyfus und Cie, Mineraloel GmbH, Hannover (Germany)

    1998-12-01

    The phasing-in of city diesel fuel and improved gasoline immediately results in a notable cut in emissions from road traffic, an urgent necessity considering the constantly increasing volume of passenger and goods transport in our roads. But to enhance the acceptance of these fuels in the market and permit necessary investments, taxation must provide corresponding boundary conditions. (orig.) [Deutsch] Es wird festgestellt, dass die Einfuehrung von City-Diesel und besseren Ottokraftstoffen sofort zu spuerbarer Verringerung der Emissionen im Strassenverkehr auf unseren Strassen dringend notwendig ist. Um die Akzeptanz der Kraftstoffe im Markt zu erhoehen und die notwendigen Investitionen durchzufuehren, sind allerdings steuerliche Rahmenbedingungen erforderlich. (orig.)

  10. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  11. Study of emissions for a compression ignition engine fueled with a mix of DME and diesel

    Science.gov (United States)

    Jurchiş, Bogdan; Nicolae, Burnete; Călin, Iclodean; Nicolae Vlad, Burnete

    2017-10-01

    Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion

  12. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    Science.gov (United States)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  13. The Effect on Performance and Exhaust Emissions of Adding Cotton Oil Methyl Ester to Diesel Fuel

    OpenAIRE

    Kahraman, Ali; Ciniviz, Murat; Örs, İlker; Oğuz, Hidayet

    2016-01-01

    In the study, engine performance and exhaust emissions of diesel fuel and cotton oil methyl ester (COME) blends at proportions of 2%, %5 and 10% (v/v) have been investigated. The engine was fuelled with COME–diesel blends and pure diesel when running the engine at six different engine speed (1000,1200, 1400, 1600, 1800, 2000 rpm) and at full load. Test results are presented engine torque and specific fuel consumption (SCF) as engine performance, and Carbon monoxide (CO), Hydrocarbon (HC), smo...

  14. THE EFFECT OF SKULDUGGERY IN FUEL OF DIESEL ENGINES ON THE PERFORMANCE OF I. C. ENGINE

    Directory of Open Access Journals (Sweden)

    Raed R. Jasem

    2013-05-01

    Full Text Available The current research aimed to study the effect of fraud in the diesel fuel on environmental pollution,  the study included two samples of diesel fuel., first sample is used currently in all diesel engines vehicles, and it produced in colander of oil  of Baiji, the second sample is producer manually from mixing of the Lubricating oils and kerosene with ratio(1/40, were prepared and tested in research laboratories and quality control of the North Refineries Company /BAIJI by using standard engine (CFR. comparison between two models of fuel in terms of the properties of the mixing fuel and the properties of diesel fuel standard. The results proved that the process of mixing these ,  leading to the minimization of Cetane number and flash point. While the viscosity increase in  mixing fuel, comparison with fuel producer in the refinery, and which identical to the minimum standard specifications of diesel fuel.The tests had been carried out using the engine of (TQ four stroke type (TD115 with a single-cylinder and compression ratio (21:1 a complement to the hydraulic type Dynamo meter (TD115.

  15. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  16. Simultaneous fast pyrolysis and catalytic upgrading of lignin to obtain a marine diesel fuel

    DEFF Research Database (Denmark)

    Zhou, Guofeng

    The topic of this Ph.D. project is to convert lignin, a by-product from a 2nd generation bio-ethanol plant, into a marine diesel fuel by fast pyrolysis followed with catalytic upgrading of the pyrolysis vapor. Lignin, a major component of lignocellulosic biomass, is underutilized in the 2nd...... generation bio-ethanol plants. Shipping industry on the other hand is looking for clean alternative fuels in order to meet stricter fuel quality and emission standards. To convert lignin into a renewable marine diesel fuel will both accelerate the development of modern bio-refinery and transfer the marine...

  17. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  18. Performance of an agricultural engine using mineral diesel and ethanol fuels

    Directory of Open Access Journals (Sweden)

    Marcelo Silveira de Farias

    Full Text Available ABSTRACT: The global demand for alternatives for mineral diesel oil is growing due to the need for satisfying sustainability and environmental requirements, forcing industries and research institutions to develop new alternative fuels. The objective of this study was to evaluate the performance parameters of an agricultural engine using two different fuels: mineral diesel oil and ethanol. The experiment was conducted on a dynamometric stand using two engines for agricultural use but with a modified fuel injection system, suitable for both diesel and ethanol, in the speed range 1200-2300rpm. The performance of the engines was analyzed considering the power take-off from the tractors for each fuel, as established in the standard NBR ISO 1585. The data obtained showed that at the working speed that provides 540rpm at the power take-off, the engine performance changed when powered by ethanol, with a reduction in the maximum power and increased specific fuel consumption.

  19. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIII, I--MAINTAINING THE FUEL SYSTEM (PART III), CUMMINS DIESEL ENGINES, II--RADIATOR SHUTTER SYSTEM.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND RADIATOR SHUTTER SYSTEMS. TOPICS ARE (1) MORE ABOUT THE CUMMINS FUEL SYSTEM, (2) CALIBRATING THE PT FUEL PUMP, (3) CALIBRATING THE FUEL INJECTORS, (4) UNDERSTANDING THE SHUTTER SYSTEM, (5) THE…

  1. Characteristics of particulate emissions from a diesel generator fueled with varying blends of biodiesel and fossil diesel.

    Science.gov (United States)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lee, Wen-Jhy; Kuo, Wen-Chien; Lin, Wen-Yinn

    2011-01-01

    This study investigated the particulate matter (PM), particle-bound carbons, and polycyclic aromatic hydrocarbons (PAHs) emitted from a diesel-engine generator fuelled with blends of pure fossil diesel oil (D100) and varying percentages of waste-edible-oil biodiesel (W10, 10 vol %; W20, 20 vol %; W30, 30 vol %; and W50, 50 vol %) under generator loads of 0, 1.5, and 3 kW. On average, the PM emission factors of all blends was 30.5 % (range, 13.7-52.3 %) lower than that of D100 under the tested loads. Substituting pure fossil diesel oil with varying percentages of waste-edible-oil biodiesel reduced emissions of particle-bound total carbon (TC) and elemental carbon (EC). The W20 blend had the lowest particle-bound organic carbon (OC) emissions. Notably, W10, W20, and W30 also had lower Total-PAH emissions and lower total equivalent toxicity (Total-BaP(eq)) compared to D100. Additionally, the brake-specific fuel consumption of the generator correlated positively with the ratio of waste-edible-oil biodiesel to pure fossil diesel. However, generator energy efficiency correlated negatively with the ratio of waste-edible-oil biodiesel to pure fossil diesel.

  2. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    Science.gov (United States)

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-01-01

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements. PMID:27330248

  3. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-02-18

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements.

  4. Multiple pulsed hypersonic liquid diesel fuel jetsdriven by projectile impact

    Science.gov (United States)

    Pianthong, K.; Takayama, K.; Milton, B. E.; Behnia, M.

    2005-06-01

    Further studies on high-speed liquid diesel fuel jets injected into ambient air conditions have been carried out. Projectile impact has been used as the driving mechanism. A vertical two-stage light gas gun was used as a launcher to provide the high-speed impact. This paper describes the experimental technique and visualization methods that provided a rapid series of jet images in the one shot. A high-speed video camera (106 fps) and shadowgraph optical system were used to obtain visualization. Very interesting and unique phenomena have been discovered and confirmed in this study. These are that multiple high frequency jet pulses are generated within the duration of a single shot impact. The associated multiple jet shock waves have been clearly captured. This characteristic consistently occurs with the smaller conical angle, straight cone nozzles but not with those with a very wide cone angle or curved nozzle profile. An instantaneous jet tip velocity of 2680 m/s (Mach number of 7.86) was the maximum obtained with the 40^circ nozzle. However, this jet tip velocity can only be sustained for a few microseconds as attenuation is very rapid.

  5. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  6. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    E.T. (Skip) Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  7. 40 CFR 600.206-86 - Calculation and use of fuel economy values for gasoline-fueled, diesel, and electric vehicle...

    Science.gov (United States)

    2010-07-01

    ... values for gasoline-fueled, diesel, and electric vehicle configurations. 600.206-86 Section 600.206-86... values for gasoline-fueled, diesel, and electric vehicle configurations. (a) Fuel economy values... exists for an electric vehicle configuration, all values for that vehicle configuration are harmonically...

  8. The dieselization of America: An integrated strategy for future transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, J.J. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    The Diesel Cycle engine has already established itself as the engine-of-choice for the heavy duty transport industry because of its fuel efficiency, durability, and reliability. In addition, it has also been shown to be capable of using alternative fuels, albeit at efficiencies lower than that achieved with petroleum-derived diesel fuel. Alternative fuel dedicated engines have not made significant penetration of the heavy duty truck market because truck fleet operators need a cost-competitive fuel and reliable supply and fueling infrastructure. In lieu of forcing diverse fuels from many diverse domestic feedstocks onto the end-users, the Office of Heavy Vehicle Technologies envisions that a future fuels strategy for the heavy duty transport sector is one where the diverse feedstocks are utilized to provide a single fuel specification (dispensed from the existing fueling infrastructure) that would run efficiently in a single high efficiency energy conversion device, the Diesel Cycle engine. In so doing, the US Commercial transport industry may gain a measure of security from the rapid fuel price increases by relying less on a single feedstock source to meet its increasing fuel requirements.

  9. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  10. Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    2003-01-23

    The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

  11. High ash fuels for diesel engines II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Norrmen, E.; Vestergren, R.; Svahn, P. [Wartsila Diesel International Ltd, Vaasa (Finland)

    1996-12-01

    Heavy fuel oils containing a large amount of ash, that is used in some geographically restricted areas, can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The Liekki 2 programs Use of high ash fuel in diesel power plants I and II have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuel with a very high ash content. The chemistry, sintering, melting, and corrosiveness of deposits from different part of the diesel engine and on different exhaust valve materials, as well as the chemistry in different depths of the deposit have been investigated. Theories for the mechanisms mentioned above have been developed. Additives changing the sintering/melting point and physical properties of the formed deposits have been screened. Exhaust gas particle measurements have been performed when running on high ash fuel, both without deposit modifying fuel additive and with. The results have been used to verify the ABC (Aerosol Behaviour in Combustion) model, and the particle chemistry and morphology has been examined. Several tests, also high load endurance tests have been run in diesel engines with high ash fuels. (author)

  12. Increase of fuel economical efficiency of multi-sectional diesel locomotives by perfection of the algorithms of control by diesel-generators

    Directory of Open Access Journals (Sweden)

    Evgen SHAPRAN

    2008-01-01

    Full Text Available In the article one of the ways of reducing of fuel consumption at railways is explored. It is shown, that now there is possibility of substantial (5-10% improvement of traction-economical characteristics of multi-sectional diesel locomotives due to the use of the microprocessor systems of control, which correlate diesel-locomotive characteristic and provide the asynchronous condition of operations of Diesel-generators in dependence on the conditions of traffic of train.

  13. Parametric performance of a turbojet engine combustor using jet A and A diesel fuel

    Science.gov (United States)

    Butze, H. F.; Humenik, F. M.

    1979-01-01

    The performance of a single-can JT8D combustor was evaluated with Jet A and a high-aromatic diesel fuel over a parametric range of combustor-inlet conditions. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons, and NOx, as well as liner temperatures and smoke. At all conditions the use of diesel fuel instead of Jet A resulted in increases in smoke numbers and liner temperatures; gaseous emissions, on the other hand, did not differ significantly between the two fuels.

  14. Development of production technology for bio diesel fuel and feasibility test of bio diesel engine (II)

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y.J.; Ju, U.S.; Park, Y.C. [National Kyung Sang University (Korea, Republic of)

    1996-02-01

    At the beginning of the 21 st century two urgent tasks which our global countries would face with could be the security of the alternative energy source as a preparation against the fossil energy exhaustion and the development of the clean energy source to protect the environment from pollution. The above two problems should be solved together. The bio diesel oil which is made by methylesterfication of bio oil has very low sulfur content than does the diesel oil. Therefore, there is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. So, bio oil has been attracted with attentions as an alternative and clean energy source. Advanced countries began early to develop the bio diesel oil suitable to their respective conditions. Recently their production stage have reached to the commercial level partially. The sudden increase of energy demand followed by a rapid growth of industry and the serious situation about the environmental pollution caused by the exhaust has from diesel engine vehicles occupying 42% of distribution among all vehicles have called attention of our government to consider the importance of alternative and clean energy sources for the future on the national scale. This study is consisted of three main parts; - The development of production technology for bio diesel oil. - The development of the atomization improvement method and nozzle for high viscous vegetable oils. - Feasibility test of bio diesel engine. (author) 119 refs., 52 tabs., 88 figs.

  15. Diesel fuel oil for increasing mountain pine beetle mortality in felled logs

    Science.gov (United States)

    S. A. Mata; J. M. Schmid; D. A. Leatherman

    2002-01-01

    Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....

  16. Measuring the Effect of Fuel Structures and Blend Distribution on Diesel Emissions Using Isotope Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, A S; Mueller, C J; Buchholz, B A; Dibble, R W

    2004-02-10

    Carbon atoms occupying specific positions within fuel molecules can be labeled and followed in emissions. Renewable bio-derived fuels possess a natural uniform carbon-14 ({sup 14}C) tracer several orders of magnitude above petroleum-derived fuels. These fuels can be used to specify sources of carbon in particulate matter (PM) or other emissions. Differences in emissions from variations in the distribution of a fuel component within a blend can also be measured. Using Accelerator Mass Spectrometry (AMS), we traced fuel components with biological {sup 14}C/C levels of 1 part in 10{sup 12} against a {sup 14}C-free petroleum background in PM and CO{sub 2}. Different carbon atoms in the ester structure of the diesel oxygenate dibutyl maleate displayed far different propensities to produce PM. Homogeneous cosolvent and heterogeneous emulsified ethanol-in-diesel blends produced significantly different PM despite having the same oxygen content in the fuel. Emulsified blends produced PM with significantly more volatile species. Although ethanol-derived carbon was less likely to produce PM than diesel fuel, it formed non-volatile structures when it resided in PM. The contribution of lubrication oil to PM was determined by measuring an isotopic difference between 100% bio-diesel and the PM it produced. Data produced by the experiments provides validation for combustion models.

  17. Estimating diesel fuel consumption and carbon dioxide emissions from forest road construction

    Science.gov (United States)

    Dan Loeffler; Greg Jones; Nikolaus Vonessen; Sean Healey; Woodam Chung

    2009-01-01

    Forest access road construction is a necessary component of many on-the-ground forest vegetation treatment projects. However, the fuel energy requirements and associated carbon dioxide emissions from forest road construction are unknown. We present a method for estimating diesel fuel consumed and related carbon dioxide emissions from constructing forest roads using...

  18. Usability of food industry waste oils as fuel for diesel engines.

    Science.gov (United States)

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.

  19. Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

    2000-01-19

    While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  1. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies.

    NARCIS (Netherlands)

    Mutlu, E.; Nash, D.G.; King, C.; Krantz, T.Q.; Preston, W.T.; Kooter, I.M.; Higuchi, M.; DeMarini, D.; Linak, W.P.; Ian Gilmour, M.

    2015-01-01

    Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this

  2. NOx reduction in diesel fuel flames by additions of water and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C. [Univ. of California, San Diego, La Jolla, CA (United States)

    1997-12-31

    Natural gas has the highest heating value per unit mass (50.1 MJ/kg, LHV) of any of the hydrocarbon fuels (e.g., butane, liquid diesel fuel, gasoline, etc.). Since it has the lowest carbon content per unit mass, combustion of natural gas produces much less carbon dioxide, soot particles, and oxide of nitrogen than combustion of liquid diesel fuel. In view of anticipated strengthening of regulations on pollutant emissions from diesel engines, alternative fuels, such as compressed natural gas (CNG) and liquefied natural gas (LNG) have been experimentally introduced to replace the traditional diesel fuels in heavy-duty trucks, transit buses, off-road vehicles, locomotives, and stationary engines. To help in applying natural gas in Diesel engines and increasing combustion efficiency, the emphasis of the present paper is placed on the detailed flame chemistry of methane-air combustion. The present work is the continued effort in finding better methods to reduce NO{sub x}. The goal is to identify a reliable chemical reaction mechanism for natural gas in both premixed and diffusion flames and to establish a systematic reduced mechanism which may be useful for large-scale numerical modeling of combustion behavior in natural gas engines.

  3. Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review

    KAUST Repository

    Vallinayagam, R.

    2015-11-01

    This review work focuses on biofuels with lower viscosity and cetane number and their mode of operation in a diesel engine. Though there were a number of review works describing the production, characterization and utilization of biodiesel, synthesized from vegetable oils, a comprehensive summary on other category of biofuels endowed with lower viscosity and cetane number has not come to light so far. In this backdrop, this review work would bring forth the existence of biofuels having lower viscosity and cetane number, classify them under one category and elucidate their operational feasibility in a diesel engine. Considerably, alcohol based fuels such as methanol, ethanol and butanol, and plant based light biofuels such as eucalyptus oil and pine oil have been chosen and classified as LVLC (less viscous and lower cetane) fuels in the current work. Besides describing the operation feasibility of these fuels, an extensive exploration of their physical, thermal and critical properties as well as their compositional attributes has been made. Despite their distinct properties, these fuels have found use in diesel engine by various strategies and apparently, they could be used in blends with diesel/biodiesel, dual fuel mode and as sole fuel. In this regard, herein, a detailed summary on operation of these fuels in the reported three different modes is clearly explained and their engine characteristics such as performance, combustion and emission are briefed. © 2015 Elsevier Ltd.

  4. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R. [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P.; Nylund, N.O. [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  5. Key fuel properties and engine performances of diesel-ethanol blends, using tetrahydrofuran as surfactant additive

    Science.gov (United States)

    Molea, A.; Visuian, P.; Barabás, I.; Suciu, R. C.; Burnete, N. V.

    2017-10-01

    In this paper there were presented researches related to preparation and characterization of physicochemical properties of diesel-ethanol blends stabilized with tetrahydrofuran as surfactant, in order to be used as fuels in compression ignition engines. The main spray characteristics and engine performances of these blends were evaluated by using AVL Fire software. In the first stage of the studies, commercial diesel was mixed with ethanol, in different concentrations (between 2% and 15% v/v), followed by the addition of tetrahydrofuran (THF) until the blends were miscible, i.e. the blends were stabilized. The experiments were done at room temperature (22 °C). The obtained blends were characterized in order to determine the chemical composition and physicochemical properties, i.e. density, kinematic viscosity, surface tension. UV-Vis spectroscopy was utilized in order to determine a semi-quantitative evaluation regarding the chemical composition of the prepared blends and chemical interaction between diesel, ethanol and THF. Based on the determined properties, the fuel spray characteristics, engine performances and emission characteristics were evaluated by simulation using the AVL Fire software. The obtained results regarding physicochemical properties of blends were compared with diesel. Some improvements were observed when operating with the prepared blends compared to diesel with respect to engine performances and emission characteristics. Based on physicochemical evaluation and computer simulation, it was demonstrated that diesel-ethanol-tetrahydrofuran blends can be used as alternative fuel in compression ignition engines.

  6. Association and discrimination of diesel fuels using chemometric procedures

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Lucas J. [Michigan State University, Forensic Science Program, School of Criminal Justice, East Lansing, MI (United States); McIlroy, John W.; Waddell Smith, Ruth [Michigan State University, Forensic Science Program, School of Criminal Justice, East Lansing, MI (United States); Michigan State University, Department of Chemistry, East Lansing, MI (United States); McGuffin, Victoria L. [Michigan State University, Department of Chemistry, East Lansing, MI (United States)

    2009-08-15

    Five neat diesel samples were analyzed by gas chromatography-mass spectrometry and total ion chromatograms as well as extracted ion profiles of the alkane and aromatic compound classes were generated. A retention time alignment algorithm was employed to align chromatograms prior to peak area normalization. Pearson product moment correlation coefficients and principal components analysis were then employed to investigate association and discrimination among the diesel samples. The same procedures were also used to investigate the association of a diesel residue to its neat counterpart. Current limitations in the retention time alignment algorithm and the subsequent effect on the association and discrimination of the diesel samples are discussed. An understanding of these issues is crucial to ensure the accuracy of data interpretation based on such chemometric procedures. (orig.)

  7. FUEL SUPPLY IN ACCUMULATOR DIESEL SYSTEMS WITH ELECTRONIC CONTROL AT STARTING REGIME

    Directory of Open Access Journals (Sweden)

    G. M. Kuharenok

    2009-01-01

    Full Text Available The paper contains review and analysis of fuel supply process in accumulator diesel systems with electronic control at starting regime. The necessity has been shown to  develop and use programs of mathematic simulation pertaining to fuel supply processes with the purpose to decrease number of bench tests and time period required for a fuel system adaptation. The paper cites results of practical investigations on starting engines  equipped with the mentioned-above systems.

  8. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    Science.gov (United States)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  9. PERFORMANCE AND EMISSION STUDIES ON DI-DIESEL ENGINE FUELED WITH PONGAMIA METHYL ESTER INJECTION AND METHANOL CARBURETION

    Directory of Open Access Journals (Sweden)

    HARIBABU, N.

    2010-03-01

    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  10. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  11. Effect of upgraded diesel fuels and oxidation catalysts on emission properties, especially PAH and genotoxicity

    DEFF Research Database (Denmark)

    Johansen, Keld; Gabrielsson, Pär; Stavnsbjerg, Peter

    1997-01-01

    Test samples of two different “advanced” diesel fuels were prepared from the raw diesel of North Sea Light Gas Oil. A commercial “Ultralight” diesel fuel was used as a reference. The three fuels were tested on two engines with and without an oxidation catalyst: 1) a VOLVO 10.0 1 DI was mounted...... in an engine test bench and a full ECE R49 13 mode test was performed and 2) a VW GOLF 1.6 l engine was mounted in a car and a full transient FTP-75 test was performed. Regulated emissions and unregulated emissions as SOF, sulphur, nitrate, PAH in PM plus vapour phase were measured. Genotoxic activity...

  12. Diethyl Ether as an Ignition Enhancer for Naphtha Creating a Drop in Fuel for Diesel

    KAUST Repository

    Vallinayagam, R.

    2016-12-01

    Direct use of naphtha in compression ignition (CI) engines is not advisable because its lower cetane number negatively impacts the auto ignition process. However, engine or fuel modifications can be made to operate naphtha in CI engines. Enhancing a fuel’s auto ignition characteristics presents an opportunity to use low cetane fuel, naphtha, in CI engines. In this research, Di-ethyl ether (DEE) derived from ethanol is used as an ignition enhancer for light naphtha. With this fuel modification, a “drop-in” fuel that is interchangeable with existing diesel fuel has been created. The ignition characteristics of DEE blended naphtha were studied in an ignition quality tester (IQT); the measured ignition delay time (IDT) for pure naphtha was 6.9 ms. When DEE was added to naphtha, IDT decreased and D30 (30% DEE + 70% naphtha) showed comparable IDT with US NO.2 diesel. The derived cetane number (DCN) of naphtha, D10 (10% DEE + 90% naphtha), D20% DEE + 80% naphtha) and D30 were measured to be 31, 37, 40 and 49, respectively. The addition of 30% DEE in naphtha achieved a DCN equivalent to US NO.2 diesel. Subsequent experiments in a CI engine exhibited longer ignition delay for naphtha compared to diesel. The peak in-cylinder pressure is higher for naphtha than diesel and other tested fuels. When DEE was added to naphtha, the ignition delay shortened and peak in-cylinder pressure is reduced. A 3.7% increase in peak in-cylinder pressure was observed for naphtha compared to US NO.2 diesel, while D30 showed comparable results with diesel. The pressure rise rate dropped with the addition of DEE to naphtha, thereby reducing the ringing intensity. Naphtha exhibited a peak heat release rate of 280 kJ/m3deg, while D30 showed a comparable peak heat release rate to US NO.2 diesel. The amount of energy released during the premixed combustion phase decreased with the increase of DEE in naphtha. Thus, this study demonstrates the suitability of DEE blended naphtha mixtures as a

  13. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    Science.gov (United States)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  14. Eco-toxicological studies of diesel and biodiesel fuels in aerated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lapinskiene, Asta [Klaipeda University, School of Maritime Technology, Department of Technological Processes, Bijunu St. 17, Klaipeda LT-91225 (Lithuania)]. E-mail: ekosistema@one.lt; Martinkus, Povilas [Klaipeda University, School of Maritime Technology, Department of Technological Processes, Bijunu St. 17, Klaipeda LT-91225 (Lithuania)]. E-mail: martinkus.p@one.lt; Rebzdaite, Vilija [Klaipeda University, School of Maritime Technology, Department of Technological Processes, Bijunu St. 17, Klaipeda LT-91225 (Lithuania)]. E-mail: rebzdaite300@one.lt

    2006-08-15

    The goal of this study was to compare diesel fuel to biodiesel fuel by determining the toxicity of analyzed materials and by quantitatively evaluating the microbial transformation of these materials in non-adapted aerated soil. The toxicity levels were determined by measuring the respiration of soil microorganisms as well as the activity of soil dehydrogenases. The quantitative evaluation of biotransformation of analyzed materials was based on the principle of balancing carbon in the following final products: (a) carbon dioxide; (b) humus compounds; (c) the remainder of non-biodegraded analyzed material; and (d) intermediate biodegradation products and the biomass of microorganisms. The results of these studies indicate that diesel fuel has toxic properties at concentrations above 3% (w/w), while biodiesel fuel has none up to a concentration of 12% (w/w). The diesel fuel is more resistant to biodegradation and produces more humus products. The biodiesel is easily biotransformed. - The comparison of diesel and biodiesel fuels' eco-toxicological parameters in non-adapted aerated soil is relevant when considering the effects of these substances on the environment in cases of accidental spills.

  15. Coal fueled diesel system for stationary power applications-technology development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  16. 26 CFR 48.6427-9 - Diesel fuel and kerosene; claims by registered ultimate vendors (farming and State use).

    Science.gov (United States)

    2010-04-01

    ... ultimate vendors (farming and State use). 48.6427-9 Section 48.6427-9 Internal Revenue INTERNAL REVENUE... Manufacturers Taxes § 48.6427-9 Diesel fuel and kerosene; claims by registered ultimate vendors (farming and...)(A). These claims relate to diesel fuel and kerosene sold for use on a farm for farming purposes and...

  17. 77 FR 65840 - Section 610 Reviews of Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur...

    Science.gov (United States)

    2012-10-31

    ... Highway Diesel Fuel Sulfur Control Requirements; NESHAP: Reinforced Plastic Composites Production; and... EPA's 610 Review related to Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur... questions concerning EPA's 610 Review related to NESHAP: Reinforced Plastic Composites Production, please...

  18. Conventional bio-transportation fuels : an update

    NARCIS (Netherlands)

    Uil, den H.; Bakker, R.R.C.; Deurwaarder, E.P.; Elbersen, H.W.; Weismann, M.

    2003-01-01

    Up to now renewable energy sources are primarily used in the Netherlands for electricity production. At the end of the past decade the GAVE programme started to facilitate the introduction of gaseous and liquid fuels in the post-Kyoto period (after 2010), with the potential to realize more than 80%

  19. BEHAVIOUR OF ZEOLITE 4A IN THE EXTRACTION PROCESS OF THE DIESEL LIKE FUEL OBTAINED FROM WASTE ENGINE OIL

    Directory of Open Access Journals (Sweden)

    M. KANNAN

    2015-12-01

    Full Text Available The aim of the present study is to recycle and reuse the WEO as an alternative fuel for compression ignition (CI engine. For this purpose the WEO was cracked in the catalytic fuel reformer by using the catalyst zeolite 4A. The output of the catalytic fuel reformer is in the gaseous form which is condensed using water cooled condenser. The oil obtained after condensing the reformulated gas is named as WEOZ. To know the suitability of using the WEOZ as alternate fuel for IC engines, the different properties of WEOZ were determined. The different properties include specific gravity, kinematic viscosity, flash and fire point, gross calorific value, pour point, density. The properties of WEOZ were compared to that of diesel fuel. All the fuel properties are closer to that of the neat diesel fuel. The FTIR analysis was also be conducted for diesel and WEOZ. The result of FTIR analysis was compared to that of diesel fuel. The FTIR result revealed that the major transmittance spectrums peak for diesel and WEOZ were alkanes and the presence of the hydrocarbon was clearly seen in the WEOZ. Based on this investigation, it was suggested that WEOZ has a potential to be used as alternate fuel for diesel engine. Hence an environmentally unfriendly WEO can be recycled into a useful resource and serves as an alternative source of fuel for diesel engine.

  20. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  1. Experimental Study on Relationship between NOx Emission and Fuel Consumption of a Diesel Engine

    Science.gov (United States)

    Ning, Ping; Liu, Chunjiang; Feng, Zhiqiang; Xia, Yijiang

    2018-01-01

    For YC6112 diesel engine assembled Delphl model single fuel pump electric controlled, in the premise of not changing its overall unit structure parameters of other systems, three different types of camshaft for single pumps, two kinds of fuel injectors, two types of superchargers and some phase shifting angle of different camshafts were chosen to match with the engine precisely, the experiments under thirteen kinds of working conditions for the engine with different matching were carried out, the change regulation between NOX emission and fuel consumption for the engine with different kinds of configurations was analyzed. The experiment results show the NOX emission and fuel consumption can be reduced greatly by configuring proper camshaft, fuel injectors and superchargers with YC6112 diesel engine.

  2. Micronized-coal-water slurry sprays from a diesel engine positive displacement fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Caton, J.A.; Kihm, K.D.; Seshadri, A.K.; Zicterman, G. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1991-12-31

    Experiments have been conducted to characterize the sprays from a modified positive displacement fuel injection system for a diesel engine. Diesel fuel water and three concentrations of micronized-coal-water slurry were used in these experiments. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal slurry fuel from the pump, and a single-hole fuel nozzle. The sprays were injected into a pressurized chamber equipped with windows. High speed movies and still photographs of the sprays were obtained. In addition, instaneous fuel line pressures and needle lifts were obtained. Data were acquired as a function of fluid, nozzle orifice diameter, rack setting and chamber conditions. The high speed movies were used to determine spray penetration and spray growth.

  3. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  4. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  5. Combined cluster and discriminant analysis: An efficient chemometric approach in diesel fuel characterization.

    Science.gov (United States)

    Novák, Márton; Palya, Dóra; Bodai, Zsolt; Nyiri, Zoltán; Magyar, Norbert; Kovács, József; Eke, Zsuzsanna

    2017-01-01

    Combined cluster and discriminant analysis (CCDA) as a chemometric tool in compound specific isotope analysis of diesel fuels was studied. The stable carbon isotope ratios (δ 13 C) of n-alkanes in diesel fuel can be used to characterize or differentiate diesels originating from different sources. We investigated 25 diesel fuel samples representing 20 different brands. The samples were collected from 25 different service stations in 11 European countries over a 2 year period. The n-alkane fraction of diesel fuels was separated using solid-state urea clathrate formation combined with silica gel fractionation. The stable carbon isotope ratios of C10-C24 n-alkanes were measured with gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using perdeuterated n-alkanes as internal standards. Beside the 25 samples one additional diesel fuel was prepared and measured three times to get totally homogenous samples in order to test the performance of our analytical and statistical routine. Stable isotope ratio data were evaluated with hierarchical cluster analysis (HCA), principal component analysis (PCA) and CCDA. CCDA combines two multivariate data analysis methods hierarchical cluster analysis with linear discriminant analysis (LDA). The main idea behind CCDA is to compare the goodness of preconceived (based on the sample origins) and random groupings. In CCDA all the samples were compared pairwise. The results for the parallel sample preparations showed that the analytical procedure does not have any significant effect on the δ 13 C values of n-alkanes. The three parallels proved to be totally homogenous with CCDA. HCA and PCA can be useful tools when the examining of the relationship among several samples is in question. However, these two techniques cannot be always decisive on the origin of similar samples. The initial hypothesis that all diesel fuel samples are considered chemically unique was verified by CCDA. The main advantage of CCDA is that it gives an

  6. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  7. Experimental investigation on CRDI engine using butanol-biodiesel-diesel blends as fuel

    Science.gov (United States)

    Divakar Shetty, A. S.; Dineshkumar, L.; Koundinya, Sandeep; Mane, Swetha K.

    2017-07-01

    In this research work an experimental investigation of butanol-biodisel-diesel blends on combustion, performance and emission characteristics of a direct injection (DI) diesel engine is carried out. The blends are prepared at different proportions and fuel properties such as calorific value, viscosity, flash point and fire point, cloud point, pour point of butanol (B), biodiesel (B), diesel (D), biodiesel-diesel (BD) blends and butanol-biodiesel-diesel (BBD) blends are determined. The engine test is conducted at different speed and load. From the results obtained for fuel properties we can observe that the flash, fire and pour point, viscosity and density are decreasing by increasing the percentage of butanol in BBD blends. It is also observed that the performance parameters such as brake thermal efficiency (BTE) and exhaust gas temperature increases with increase in the proportion of butanol in BBD blend. However, the brake specific fuel consumption (BFSC) decreases with increase in the proportion of butanol in BBD blend. The increase of butanol in BBD blends also influence to increase on emission characteristic such as carbon monoxide (CO), hydrocarbon (HC) and oxides of nitrogen (NOx).

  8. Taguchi Method for Investigating the Performance Parameters and Exergy of a Diesel Engine Using Four Types of Diesel Fuels

    Directory of Open Access Journals (Sweden)

    Dara K. Khidir

    2016-05-01

    Full Text Available The effects of changes in engine operating parameters, i.e., engine speed, throttle and water temperature, for four types of diesel fuel (A, B, C and D of different specific gravities, as supplied from local market and refineries, were studied and simultaneously optimized. The experiment design was based on Taguchi’s “L' 16” orthogonal table, and the engine was put to test at different engine speeds, throttling opening percentages and water temperatures, using different fuels. The data were analyzed using S/N (signal to noise ratio for each factor. The obtained results show that the optimum operating conditions for minimum BSFC (brake specific fuel consumption are achieved when the engine speed is 2500 rpm, the throttle is placed at 75% of full throttling, the water temperature is 80 oC and the engine is using fuel type D. Also, results of S/N ratio reveal that the throttle has significant influence on brake thermal and exergic efficiencies. Water temperature is the second most effective factor and then comes the influence of engine speed. The least effective factor among the studied parameters for the types of fuel considered in this experiment is the fuel type.

  9. Inventory of concepts for mixed diesel fuels containing renewable components. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, B. [Inst. for Surface Chemistry, Stockholm (Sweden); Berg, R. [Befri Konsult, Solna (Sweden); Berg, J. [Svenska Lantmaennen/Agro Oil, Stockholm (Sweden)

    2000-08-01

    The present report has involved the assembly of two sub-reports, which have been put together to form this final report. Both of the sub-reports deal with the incorporation of ethanol in diesel fuels. The potential advantages are the decreased net emissions of carbon dioxide, due to the renewable nature of ethanol (if obtained from renewable raw materials), and the decrease of NO{sub x} emissions, due to the decreased combustion temperature. The first sub-report is a compilation of scientific articles and patents/patent applications regarding the possibility to blend ethanol into diesel to form a stable solution in the form of a so called microemulsion, with the aid of surfactants and/or co-solvents. The second sub-report briefly describes the test work, both in the laboratory and in field tests, that is being done in various countries, regarding the blending of ethanol into diesel fuel.

  10. Drop-in Jet and Diesel Fuels from Renewable Oils

    Science.gov (United States)

    2011-05-11

    Hydrothermolysis (CH) Process • CH Product Chemistry • Naphtha Data • Recent Algal Oil Tests • Byproduct Potential • Pilot System • Engineering Challenges...Optional Hydrolysis Primary CH Hydrothermolysis Jet – 25-50% Cycloparaffins LPG-Olefins C5-C9 acids C1-C4 acidsGlycerin Naphtha – 25-40% Water Diesel

  11. Optimizing photo-Fenton like process for the removal of diesel fuel from the aqueous phase

    Science.gov (United States)

    2014-01-01

    Background In recent years, pollution of soil and groundwater caused by fuel leakage from old underground storage tanks, oil extraction process, refineries, fuel distribution terminals, improper disposal and also spills during transferring has been reported. Diesel fuel has created many problems for water resources. The main objectives of this research were focused on assessing the feasibility of using photo-Fenton like method using nano zero-valent iron (nZVI/UV/H2O2) in removing total petroleum hydrocarbons (TPH) and determining the optimal conditions using Taguchi method. Results The influence of different parameters including the initial concentration of TPH (0.1-1 mg/L), H2O2 concentration (5-20 mmole/L), nZVI concentration (10-100 mg/L), pH (3-9), and reaction time (15-120 min) on TPH reduction rate in diesel fuel were investigated. The variance analysis suggests that the optimal conditions for TPH reduction rate from diesel fuel in the aqueous phase are as follows: the initial TPH concentration equals to 0.7 mg/L, nZVI concentration 20 mg/L, H2O2 concentration equals to 5 mmol/L, pH 3, and the reaction time of 60 min and degree of significance for the study parameters are 7.643, 9.33, 13.318, 15.185 and 6.588%, respectively. The predicted removal rate in the optimal conditions was 95.8% and confirmed by data obtained in this study which was between 95-100%. Conclusion In conclusion, photo-Fenton like process using nZVI process may enhance the rate of diesel degradation in polluted water and could be used as a pretreatment step for the biological removal of TPH from diesel fuel in the aqueous phase. PMID:24955242

  12. Influence of high injection pressure on fuel injection perfomances and diesel engine worcking process

    Directory of Open Access Journals (Sweden)

    Shatrov Mikhail G.

    2015-01-01

    Full Text Available In MADI, investigations are carried out in the field of diesel engine working process perfection for complying with prospective ecological standards such as Euro-6 and Tier-4. The article describes the results of the first stage of experimental research of the influence of injection pressure up to 3000 bar on working processes of diesel engine and its fuel system. Justification of the design of a Common Rail injector for fuel injection under 3000 bar pressure is presented. The influence of raising injection pressure (up to 3000 bar on the fuel spray propagation dynamics is demonstrated. The combined influence of injection pressure (up to 3000 bar and air boost pressure on fuel spray propagation dynamics is shown, including on engine emission and noise.

  13. Non conventional fuel resources in rural India

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, G.; Dixit, S.; Tiwari, S.

    2006-03-15

    In India there is a shortage of energy resources. The conventional sources are incapable to mitigate this problem by providing sufficient amount of energy. The crisis is gradually becoming more acute particularly in the countryside thus hampering the economic growth. To deal with this problem some new strategies have been envisaged. Generation of energy to meet daily requirement from non-conventional sources is one of the steps in this regard. With the increasing popularity of biogas plants in rural as well as in urban areas of India, it has become essential to find various location specific organic substances that can be used as feed material in biogas plant. In this study we have concentrated on use of cow dung and water hyacinth as feed material in biogas plants. The objective of the study is to assess the suitability of using mixture of cow dung and water hyacinth as feed material in biogas plants. Attempt has been made to find out the optimum proportion of cow dung and water hyacinth. The 1:1 mixture of cow dung and water hyacinth is the optimum proportion as per the study conducted. (author)

  14. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Science.gov (United States)

    2010-07-01

    ... HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that... contained diesel fuel, these practices shall be followed: (1) Cutting or welding shall not be performed on...

  15. Performance of diesel cycle engine-generator operating on dual fuel ...

    African Journals Online (AJOL)

    Performance of diesel cycle engine-generator operating on dual fuel mode with gasification gas. Paulo Job Brenneisen, Luiz Inácio Chavez, Angélica Buzinaro Avaci, Carlos Eduardo Camargo Nogueira, Deonir Secco, Reinaldo Prandini Ricieri, Reinaldo Aparecido Bariccatti ...

  16. Biodegradation of spilled diesel fuel in agricultural soil: Effect of humates, zeolite, and bioaugmentation

    Czech Academy of Sciences Publication Activity Database

    Kuráň, P.; Trögl, J.; Nováková, J.; Pilařová, V.; Dáňová, P.; Pavlorková, J.; Kozler, J.; Novák, František; Popelka, J.

    -, č. 642427 (2014) ISSN 1537-744X Grant - others:GA MPO(CZ) FR-TI1/456 Institutional support: RVO:60077344 Keywords : biodegradation * spilled diesel fuel * agricultural soil Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 1.219, year: 2013 http://dx.doi.org/10.1155/2014/642427

  17. DETECTION OF ANDROGENIC ACTIVITY IN EMISSIONS FROM DIESEL FUEL AND BIOMASS COMBUSTION

    Science.gov (United States)

    The present study evaluated both diesel fuel exhaust and biomass (wood) burn extracts for androgen receptor¿mediated activity using MDA-kb2 cells, which contain an androgen-responsive promoter-luciferase reporter gene construct. This assay and analytical fractionization of the sa...

  18. Effect of gasoline diesel fuel mixture on the germination and the ...

    African Journals Online (AJOL)

    The effects of gasoline fuel/diesel mixture on the germination of seeds of Vigna unguiculata, the survival of the seedlings and the growth of the plant were evaluated in this study. It involved adding 10, 20, 30, 40 and 50 ml of mixture of equal proportions of the two petroleum products to 5000 g of soil and sowing seeds of the ...

  19. Response of Salix alba L. to heavy metals and diesel fuel ...

    African Journals Online (AJOL)

    Pot experiment was set in a greenhouse in order to determine the physiological response of Salix alba grown on soil co-contaminated with individual and combination of Cd, Ni, Pb-ethylenediaminetetraacetic acid (EDTA) and diesel fuel treatments. EDTA enhanced the uptake of Cd and Ni, whereas the antagonism ...

  20. Effect of gasoline diesel fuel mixture on the germination and the ...

    African Journals Online (AJOL)

    EJIRO

    Environmental Biology Laboratory, Department of Cell Biology and Genetics, University of Lagos, Akoka Lagos, Nigeria. Accepted 25 November, 2009. The effects of gasoline fuel/diesel mixture on the germination of seeds of Vigna unguiculata, the survival of the seedlings and the growth of the plant were evaluated in this ...

  1. Low-temperature pyrolysis of coal to produce diesel-fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, T.B.; Jett, O.J.; Wu, J.S.

    1982-10-01

    Low-temperature (623 to 773/sup 0/K) coal pyrolysis was investigated in a bench-scale retort. Factorially designed experiments were conducted to determine the effects of temperature, coal-particle size, and nitrogen flow rate on the yield of liquid products. Yield of condensable organic products relative to the proximate coal volatile matter increased by 3.1 and 6.4 wt % after increasing nitrogen purge flow rate from 0.465 to 1.68 L/min and retort temperature from 623 to 723/sup 0/K, respectively. The liquid product may be suitable for blending with diesel fuel. The viscosity and density of coal liquids produced at 723/sup 0/K were compared with those of diesel fuel. The coal liquids had a higher carbon-to-hydrogen ratio and a lower aliphatic-to-aromatic ratio than premium quality No. 2 diesel fuel. It was recommended that liquids from coal pyrolysis be blended with diesel fuel to determine stability of the mixture and performance of the blend in internal combustion engines.

  2. FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS

    Energy Technology Data Exchange (ETDEWEB)

    Susan S. Sorini; John F. Schabron; Joseph F. Rovani, Jr.

    2002-09-30

    Western Research Institute (WRI) has developed a new commercial product ready for technology transfer, the Diesel Dog{reg_sign} Portable Soil Test Kit, for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated as ASTM Method D 5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In June 2001, the Diesel Dog technology won an American Chemical Society Regional Industrial Innovations Award. To gain field experience with the new technology, Diesel Dog kits have been used for a variety of site evaluation and cleanup activities. Information gained from these activities has led to improvements in hardware configurations and additional insight into correlating Diesel Dog results with results from laboratory methods. The Wyoming Department of Environmental Quality (DEQ) used Diesel Dog Soil Test Kits to guide cleanups at a variety of sites throughout the state. ENSR, of Acton, Massachusetts, used a Diesel Dog Portable Soil Test Kit to evaluate sites in the Virgin Islands and Georgia. ChemTrack and the U.S. Army Corps of Engineers successfully used a test kit to guide excavation at an abandoned FAA fuel-contaminated site near Fairbanks, Alaska. Barenco, Inc. is using a Diesel Dog Portable Soil Test Kit for site evaluations in Canada. A small spill of diesel fuel was cleaned up in Laramie, Wyoming using a Diesel

  3. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  4. 77 FR 61281 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... at least 80 percent mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal... fuel must contain at least 80 percent mono-alkyl esters of long chain fatty acids derived from... the fuel oil producer and the final end user for the legal transfer of title or custody of a specific...

  5. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... contains at least 80 percent mono-alkyl esters of long chain fatty acids derived from vegetable oils or..., the fuel must contain at least 80 percent mono-alkyl esters of long chain fatty acids derived from... and the final end user for the legal transfer of title or custody of a specific volume of fuel oil...

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIV, I--MAINTAINING THE FUEL SYSTEM PART III--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING THE VOLTAGE REGULATOR/ALTERNATOR.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND BATTERY CHARGING SYSTEM. TOPICS ARE (1) INJECTION TIMING CONTROLS, (2) GOVERNOR, (3) FUEL SYSTEM MAINTENANCE TIPS, (4) THE CHARGING SYSTEM, (5) REGULATING THE GENERATOR/ALTERNATOR, AND (6) CHARGING SYSTEM SERVICE…

  7. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    Energy Technology Data Exchange (ETDEWEB)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  8. Transformation of a car diesel engine with direct injection and common rail into a dual fuel engine; Trasformazione di un motore automobilistico diesel ad iniezione diretta dotato di common rail in un motore dual fuel

    Energy Technology Data Exchange (ETDEWEB)

    De Risi, A.; Laforgia, D. [Lecce Univ. (Italy). Dipt. di Scienza dei Materiali

    1999-08-01

    The reduced polluting emissions make natural gas a quite interesting alternative fuel for automotive applications. Therefore a car diesel engine has been transformed into a dual fuel engine with pilot injection via the common rail injection system used to ignite the methane-air charge. Standard injection pumps show a certain instability at low flow rates and high engine speed. On the opposite the new common rail system allows to ignite the fuel in all conditions with an amount of gas oil less than 8% of the entire energy required by the engine was enough to ignite the fuel. Furthermore, a power increase has been obtained, with an overall efficiency equal to or even higher than a conventional engine. The article deals with a series of test carried out on 1929 cm{sup 3} direct injection turbo-charged engine and presents the preliminary results. [Italian] La riduzione delle emissioni inquinanti rende il metano un combustibile alternativo piuttosto interessante per applicazioni automobilistiche. Per quasta ragione e' stata realizzata la trasformazione di un motore automobilitico diesel ad iniezione diretta in un motore dual fuel con iniezione pilota prodotta da un sistema common rail. L'adozione del sistema common rail consente l'accensione in ogni condizione con una quantita' di combustibile inferiore all'8% dell'intera energia richiesta alla potenza nominale del motore risolvendo i problemi di instabilita' che una pompa normale presenta a basse portate e ad alta velocita'. In alcuni casi e' stato sufficiente il 3% dell'energia totale richiesta dal motore per accendere la carica. Inoltre si e' ottenuto un aumento della potenza con un'efficienza globale analoga a qualla del motore tradizionale o addirittura migliore. Si riportano i risultati di una campagna di prove condotta su un motore sovralimentato ad iniezione diretta (1929 cm{sup 3}).

  9. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Stephen [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding of how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.

  10. Microbial Deterioration of Marine Diesel Fuel from Oil Shale.

    Science.gov (United States)

    1981-04-09

    eesar mnd Identify by block rumlber) Microbial deterioration DFM Cladosporium resinae Oil shale Synthetic fuel *QNjd&Sp. ACoal Fungi Seawater Petroleum...well in the synthetic fuel as in fuel derived from petroleum. Growth of certain strains of the fungus, Cladosporium resinae , was initially... resina ., and a yeast (Candida sp.) but no inhibition was noted with another shale oil fuel from which the nitrogen constituents ware almost completely

  11. Bioelement status with oral administration of fish oil methyl ester and diesel fuel in male rats.

    Science.gov (United States)

    Aksoy, Laçine; Tütüncü, Hakan; Alper, Yasemin; Büyükben, Ahmet

    2012-10-01

    This paper is a study on the effects on the amounts of trace elements in case of possible repeat accidental or environmental exposure with fish oil biodiesel. For this purpose, 35 male Wistar albino rats were used in the study. Rats were divided into five groups. The first group was determined as the control group. The rats in this group were gavaged orally with 250 mg/kg sunflower oil. The rats in the second and third groups were administered by oral gavage of 250 mg/kg (D1) and 500 mg/kg (D2) diesel fuel mixed with equal amounts of sunflower oil, respectively. The rats in the fourth group were administered by oral gavage of 250 mg/kg fish oil biodiesel (F1) and the rats in the fifth group were administered by oral gavage of 500 mg/kg fish oil biodiesel (F2), both mixed with equal amounts of sunflower oil. At the end of the study, bioelement concentrations in the serum and the kidney, lung, and liver tissues were measured using inductively coupled plasma-optical emission spectroscopy. It was observed that serum Ca, Mg, and Sr concentrations were significantly (pbioelements concentrations were lower in diesel and biodiesel groups than in control group. Due to consumption for biochemical reaction of these elements, bioelements concentration could be low in diesel and biodiesel groups. Some trace elements concentrations in the kidney and liver were very high in the diesel groups. High concentration of these elements in the diesel groups might cause toxic effects. Fish oil biodiesel could be chosen as an alternative fuel instead of diesel fuel.

  12. [Influence of diesel fuel on the number of selected soil microorganisms group].

    Science.gov (United States)

    Hawrot-Paw, Małgorzata

    2012-01-01

    Among a range of xenobiotics, that are introduced into the environment, especially dangerous are petroleum substances. Microorganisms participating in their decomposition, may be a good effectiveness indicator of biodegradation process. The aim of this study was to determine the influence of soil contamination with diesel oil for changes in number of basic taxonomic groups of microorganisms, including bacteria, actinomycetes and fungi. The study was carried out in two soils, loamy sand and sandy clay, which, apart from granulometric composition also differed in organic matter content. Two levels of diesel contamination was used: 5% and 15% w/w of soil d.m. The soil samples, not contaminated with diesel oil, was left as a experience control objects. The number of microorganisms were evaluated by automated method with measuring impedance in media, using the analyzer BacTrac 4100. In the studied soils the largest group of microorganisms were bacteria, significantly less was fungi and actinomycetes. Based on the results of research it was found a significant effect on the quantitative composition of microflora was both contamination dose and type of soil. Diesel fuel at a concentration of 5% stimulated the number of bacteria and fungi in sandy soil. In general, increase in concentration of pollutants adversely affect the microorganisms, especially in loamy soils. Soil contamination with diesel oil resulted in a reduction in the degree of microbial growth rate (55% in loamy sand and 39% in sandy clay), and thus have an impact on their fertility. The reduction of SR index was correlated with increasing dose of pollutants. Diesel oil affect the biological balance of soil and stimulates or reduces the number of different groups of microorganisms, depending on the amount of fuel. The presence of fuel decrease index of soil fertility, proportion to increase in the level of contamination.

  13. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.

    Science.gov (United States)

    Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz

    2011-12-15

    The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.

  14. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail: axel.munack@vti.bund.de; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)

    2008-07-01

    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  15. Life cycle inventory energy consumption and emissions for biodiesel versus petroleum diesel fueled construction vehicles.

    Science.gov (United States)

    Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J

    2009-08-15

    Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.

  16. Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Sandra L.; Macmillan, Amanda C.; Drozd, Greg T.; Goldstein, Allen H.; Chu, Rosalie K.; Pasa Tolic, Ljiljana; Shaw, Jared B.; Tolic, Nikola; Lin, Peng; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2017-01-03

    Secondary organic aerosol (SOA), formed in a process of photooxidization of diesel fuel, biodiesel fuel, and 20% biodiesel fuel/80% diesel fuel mixture, are prepared under high-NOx conditions in the presence and absence of sulfur dioxide (SO2), ammonia (NH3), and relative humidity (RH). The composition of condensed-phase organic compounds in SOA is measured using several analytical techniques including aerosol mass spectrometry (AMS), high-resolution nanospray desorption electrospray ionization mass spectrometry (nano-DESI/HRMS), and ultra high resolution and mass accuracy 21T Fourier transform ion cyclotron resonance mass spectrometry (21T FT-ICR MS). Results demonstrate that sulfuric acid and condensed organosulfur species formed in photooxidation experiments with SO2 are present in the SOA particles. Fewer organosulfur species are formed in the high humidity experiments, performed at RH 90%, in comparison with experiments done under dry conditions. There is a strong overlap of organosulfur species observed in this study with previous field and chamber studies of SOA. Many mass spectrometry peaks of organosulfates (R–OS(O)2OH) in field studies previously designated as biogenic or of unknown origin might have originated from anthropogenic sources, such as photooxidation of hydrocarbons present in diesel and biodiesel fuel.

  17. Emulsification of waste cooking oils and fatty acid distillates as diesel engine fuels: An attractive alternative

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2016-06-01

    Full Text Available The scope of this paper is to analyze the possibility and feasibility of the use of emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained from the refining oil industry, food industry and service sector, mainly. They are rarely used as feedstock to produce biofuels and other things, in spite of constitute a potential source of environmental contamination. From the review of the state of arts, significant decreases in exhaust emissions of nitrogen oxides, cylinder pressure as well as increases of the ignition delay, brake specific fuel consumption, hydrocarbon, smoke opacity, carbon monoxide, particulate matters to emulsified waste cooking oils and fatty acid distillates compared with diesel fuel are reported. In some experiments the emulsified waste cooking oils achieved better performance than neat fatty acid distillates, neat waste cooking oils and their derivatives methyl esters.

  18. Preliminary investigation of polynuclear aromatic hydrocarbon emissions from a diesel engine operating on vegetable oil-based alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.; Howard, A.G.

    1983-09-01

    Polynuclear aromatic hydrocarbon (PAH) exhaust emissions from a diesel engine operating on unmodified (sunflower, rapeseed, soyabean) and modified (ethyl-ester sunflower) vegetable oil were compared with emissions resulting from the combustion of diesel gas oil. Three engine load/speed conditions were assessed for each fuel and emission levels for 20 PAH compounds are presented for each test. PAH emission profiles arising from the combustion of unmodified oils were similar, with the total PAH exhaust concentrations generally being lower than the levels obtained using diesel fuel. Increasing engine load was found to increase greatly the production of carcinogenic PAH species in the exhaust from combusted unmodified vegetable oils. The formation of alkyl-substituted PAH, common in diesel exhaust emissions, was very limited using these fuels. Results obtained from operation of the engine on the ethyl-ester of sunflower oil indicated PAH emissions in between those obtained using diesel oil and the unmodified vegetable oils. 18 references.

  19. A preliminary investigation of polynuclear aromatic hydrocarbon emissions from a diesel engine operating on vegetable oil-based alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.; Howard, A.G.

    1983-09-01

    Polynuclear aromatic hydrocarbon (PAH) exhaust emissions from a diesel engine operating on unmodified (sunflower, rapeseed, soyabean) and modified (ethyl-ester sunflower) vegetable oil were compared with emissions resulting from the combustion of diesel gas oil. Three engine load/speed conditions were assessed for each fuel and emission levels for 20 PAH compounds are presented for each test. PAH emission profiles arising from the combustion of unmodified oils were similar, with the total PAH exhaust concentrations generally being lower than the levels obtained using diesel fuel. Increasing engine load was found to increase greatly the production of carcinogenic PAH species in the exhaust from combusted unmodified vegetable oils. The formation of alkyl-substituted PAH, common in diesel exhaust emissions, was very limited using these fuels. Results obtained from operation of the engine on the ethyl-ester of sunflower oil indicated PAH emissions in between those obtained using diesel oil and the unmodified vegetable oils

  20. A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2014-08-01

    A new multi-dimensional quasi-discrete model is suggested and tested for the analysis of heating and evaporation of Diesel fuel droplets. As in the original quasi-discrete model suggested earlier, the components of Diesel fuel with close thermodynamic and transport properties are grouped together to form quasi-components. In contrast to the original quasi-discrete model, the new model takes into account the contribution of not only alkanes, but also various other groups of hydrocarbons in Diesel fuels; quasi-components are formed within individual groups. Also, in contrast to the original quasi-discrete model, the contributions of individual components are not approximated by the distribution function of carbon numbers. The formation of quasi-components is based on taking into account the contributions of individual components without any approximations. Groups contributing small molar fractions to the composition of Diesel fuel (less than about 1.5%) are replaced with characteristic components. The actual Diesel fuel is simplified to form six groups: alkanes, cycloalkanes, bicycloalkanes, alkylbenzenes, indanes & tetralines, and naphthalenes, and 3 components C19H34 (tricycloalkane), C13H 12 (diaromatic), and C14H10 (phenanthrene). It is shown that the approximation of Diesel fuel by 15 quasi-components and components, leads to errors in estimated temperatures and evaporation times in typical Diesel engine conditions not exceeding about 3.7% and 2.5% respectively, which is acceptable for most engineering applications. © 2014 Published by Elsevier Ltd. All rights reserved.

  1. Analysis of power tiller noise using diesel-biodiesel fuel blends

    Directory of Open Access Journals (Sweden)

    N Keramat Siavash

    2015-09-01

    Full Text Available Introduction: There are several sources of noise in an industrial and agriculture environment. Machines with rotating or reciprocating engines are sound-producing sources. Also, the audio signal can be analyzed to discover how well a machine operates. Diesel engines complex noise SPL and sound frequency content both strongly depend on fuel combustion, which produces the so-called combustion noise. Actually, the unpleasant sound signature of diesel engines is due to the harsh and irregular self-ignition of the fuel. Therefore, being able to extract combustion noise from the overall noise would be of prime interest. This would allow engineers to relate the sound quality back to the combustion parameters. The residual noise produced by various sources, is referred to as mechanical noise. Since diesel engine noise radiation is associated with the operators’ and pedestrians’ discomfort, more and more attention to being paid to it. The main sources of noise generation in a diesel engine are exhaust system, mechanical processes such as valve train and combustion that prevail over the other two. In the present work, experimental tests were conducted on a single cylinder diesel engine in order to investigate the combustion noise radiation during stationary state for various diesel and biodiesel fuel blends. Materials and Methods: The engine used in the current study is an ASHTAD DF120-RA70 that is a single cylinder 4 stroke water cooled diesel engine and its nominal power is 7.5 hp at 2200 rpm. The experiment has been done at three positions (Left ear of operator, 1.5 and 7.5 meter away from exhaust based on ISO-5131 and SAE-J1174 standards. For engine speed measurement the detector Lurton 2364 was utilized with a measurement accuracy of 0.001 rpm. To obtain the highest accuracy, contact mode of detector was used. The engine noise was measured by HT157 sound level meter and was digitalized and saved with Sound View software. HT157 uses alow impedance

  2. Determination of 2 ethylhexyl nitrate in diesel fuel; Bestimmung von 2-Ethylhexylnitrat in Dieselkraftstoff

    Energy Technology Data Exchange (ETDEWEB)

    Fleischhacker, K.; Scheuer, F. [Hoehere Bundeslehr- und Versuchsanstalt fuer Chemische Industrie, Wien (Austria); Lenk, G. [OMV AG, Wien (Austria)

    2000-03-01

    The requirements for diesel fuel for light duty engines become more and more important regarding the increase of the fleet of diesel vehicles in Europe. One of these requirements is the cetane number and its influence on cold start properties, exhaust emissions and combustion noise. To increase the cetane number several types of chemicals such as alkyl nitrates, ether nitrates or nitroso compounds have been identified. The most used cetane improver is 2-ethyl hexyl nitrate, which is added in a range of 100-500 ppm. Because of the low concentration of 2-ethyl hexyl nitrate in diesel fuel its detection is very difficult. This work deals with alternative methods to the ASTM D 4046-91 'Standard Test Method for Alkyl Nitrate in Diesel Fuels by Spectrophotometry'. For this new techniques with Fourier-Transform-Infrared (FT-IR)-Spectroscopy and with Gaschromatography with Electron-Capture-Detector (GC-ECD) have been developed. Details of the techniques are described and the results of the measurements with different diesel fuels are discussed. Both FT-IR and GC-ECD show a better precision than the ASTM method. (orig.) [German] Die Anforderungen an Dieselkraftstoff fuer kleinvolumige, schnellaufende PKW-Dieselmotoren werden immer hoeher. Spezielles Augenmerk wird dabei auf die Verbesserung der Cetanzahl durch 2-Ethylhexylnitrat gelegt. Bis heute ist jedoch keine Moeglichkeit gefunden worden, 2-Ethylhexylnitrat in befriedigender Form zu bestimmen. Entweder ist die Empfindlichkeit zu gering oder der apparative Aufwand zu gross. Im Rahmen der vorliegenden Arbeit wurde daher versucht, eine Alternative zur 'Bestimmung von Alkylnitraten in Dieselkraftstoffen durch Spektrophotometrie' nach ASTM D 4046-91 zu erarbeiten. Dazu wurden die Methoden der Fourier-Transform-Infrarot (FT-IR)-Spektroskopie und der Gaschromatographie mit Elektroneneinfangdetektor (GC-ECD) angewendet. Es sind die Methoden im Detail beschrieben und die erhaltenen Messergebnisse

  3. Thermal/oxidation storage stability of bio-diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    This paper presented the results of a study conducted to determine the effectiveness of antioxidant additives in biodiesel fuel blends in preventing the formation of corrosive acids and deposits that increase wear in engine fuel pumps and fuel injectors. The 12-week storage stability of 54 biodiesel fuels made with canola methyl ester (CME), soybean methyl ester (SME) and tallow methyl ester (TME) was investigated with and without commercially prepared antioxidants. The experimental study investigated the formation of insoluble oxidation products produced in the biodiesel fuels during long-term storage. The Rancimat oxidation stability test was used to assess oxidation stability before and after long-term storage, as well as to assess total insolubles. Filter blocking tendency tests were also conducted. The study demonstrated that the use of antioxidants improved the long-term storage stability of the B5 and B20 CME, SME, and TME biodiesel fuel blends. 18 refs., 4 tabs., 12 figs., 17 appendices.

  4. Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Hazar, Hanbey [Department of Automotive, Faculty of Technical Education, Firat University, Elazig 23119 (Turkey); Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey)

    2010-03-15

    Many studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil-50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil-80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO's viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil. (author)

  5. Generator gas as a fuel to power a diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2014-01-01

    Full Text Available The results of gasification process of dried sewage sludge and use of generator gas as a fuel for dual fuel turbocharged compression ignition engine are presented. The results of gasifying showed that during gasification of sewage sludge is possible to obtain generator gas of a calorific value in the range of 2.15  2.59 MJ/m3. It turned out that the generator gas can be effectively used as a fuel to the compression ignition engine. Because of gas composition, it was possible to run engine with partload conditions. In dual fuel operation the high value of indicated efficiency was achieved equal to 35%, so better than the efficiency of 30% attainable when being fed with 100% liquid fuel. The dual fuel engine version developed within the project can be recommended to be used in practice in a dried sewage sludge gasification plant as a dual fuel engine driving the electric generator loaded with the active electric power limited to 40 kW (which accounts for approx. 50% of its rated power, because it is at this power that the optimal conditions of operation of an engine dual fuel powered by liquid fuel and generator gas are achieved. An additional advantage is the utilization of waste generated in the wastewater treatment plant.

  6. Vectron DE. The fuel-saving diesel-electric locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Foesel, Ulrich [Siemens AG, Erlangen (Germany). IC RL LOC PPM; Schurr, Juergen [Siemens AG, Erlangen (Germany). IC RL LOC EN AL3; Baltes, Joerg [Siemens AG, Munich (Germany). IC RL LOC EN AL3

    2012-11-15

    Vectron DE is the successor to the successful Eurorunner series. Taking advantage of every possible synergy with the electric Vectron variants, the locomotive concept is based on a consistent further development. Targeted improvements have also been made, with particular value being placed on low fuel consumption in times of further rising fuel prices. (orig.)

  7. Hybrid fuel cell/diesel generation total energy system, part 2

    Science.gov (United States)

    Blazek, C. F.

    1982-01-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  8. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system

    KAUST Repository

    Chen, PinChia

    2013-01-01

    Fuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure.

  9. Nanoparticulate matter formed in bioderived fuel combustion in diesel engines; Dieselmoottorin nanohiukkaspaeaestoet biopohjaisia oeljyjae poltettaessa - BioPM

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, S. [Turku Polytechnic, Turku (Finland); Coda Zabetta, E. [Aabo Akademi, Turku (Finland); Karlsson, P.O. [Sydvaest Polytechnic, Turku (Finland)

    2004-07-01

    -PM (as compared to DFO), whose structure and composition is not yet known. Immediate investigations are necessary to establish the structure and composition of the nano-PM produced while operating engines with biodiesel or its blends. This study will focus on the emission of small PM (< 1 {mu}m) from diesel engines operated with DFO, biodiesel, and blends of the two. Tree main objectives will be pursued: reveal the amount, structure, and composition of PM from different fuels; find possible correlations between the fuels and their PM and interpret the phenomenology behind the different PM. The objectives will be pursued by means of conventional analyses and measurements on fuels and test-rig engines. Most importantly, more sophisticated analysis will be performed on the PM by means of an electric low pressure impactor (ELPI) and by means of a scanning electron microscope (SEM). (orig.)

  10. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  11. Diesel engine performance and emissions with fuels derived from waste tyres.

    Science.gov (United States)

    Verma, Puneet; Zare, Ali; Jafari, Mohammad; Bodisco, Timothy A; Rainey, Thomas; Ristovski, Zoran D; Brown, Richard J

    2018-02-06

    The disposal of waste rubber and scrap tyres is a significant issue globally; disposal into stockpiles and landfill poses a serious threat to the environment, in addition to creating ecological problems. Fuel production from tyre waste could form part of the solution to this global issue. Therefore, this paper studies the potential of fuels derived from waste tyres as alternatives to diesel. Production methods and the influence of reactor operating parameters (such as reactor temperature and catalyst type) on oil yield are outlined. These have a major effect on the performance and emission characteristics of diesel engines when using tyre derived fuels. In general, tyre derived fuels increase the brake specific fuel consumption and decrease the brake thermal efficiency. The majority of studies indicate that NOx emissions increase with waste tyre derived fuels; however, a few studies have reported the opposite trend. A similar increasing trend has been observed for CO and CO 2 emissions. Although most studies reported an increase in HC emission owing to lower cetane number and higher density, some studies have reported reduced HC emissions. It has been found that the higher aromatic content in such fuels can lead to increased particulate matter emissions.

  12. Evaluation of the impacts of biodiesel and second generation biofuels on NO(x) emissions for CARB diesel fuels.

    Science.gov (United States)

    Hajbabaei, Maryam; Johnson, Kent C; Okamoto, Robert A; Mitchell, Alexander; Pullman, Marcie; Durbin, Thomas D

    2012-08-21

    The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.

  13. Performance and specific emissions contours throughout the operating range of hydrogen-fueled compression ignition engine with diesel and RME pilot fuels

    Directory of Open Access Journals (Sweden)

    Shahid Imran

    2015-09-01

    Full Text Available This paper presents the performance and emissions contours of a hydrogen dual fueled compression ignition (CI engine with two pilot fuels (diesel and rapeseed methyl ester, and compares the performance and emissions iso-contours of diesel and rapeseed methyl ester (RME single fueling with diesel and RME piloted hydrogen dual fueling throughout the engines operating speed and power range. The collected data have been used to produce iso-contours of thermal efficiency, volumetric efficiency, specific oxides of nitrogen (NOX, specific hydrocarbons (HC and specific carbon dioxide (CO2 on a power-speed plane. The performance and emission maps are experimentally investigated, compared, and critically discussed. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen combustion, dual fueling produced lower thermal efficiency everywhere across the map. For diesel and RME single fueling the maximum specific NOX emissions are centered at the mid speed, mid power region. Hydrogen dual fueling produced higher specific NOX with both pilot fuels as compared to their respective single fueling operations. The range, location and trends of specific NOX varied significantly when compared to single fueling cases. The volumetric efficiency is discussed in detail with the implications of manifold injection of hydrogen analyzed with the conclusions drawn.

  14. Biodegradation of diesel fuel by a microbial consortium in the presence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues

    DEFF Research Database (Denmark)

    Chrzanowski, L; Stasiewicz, M; Owsianiak, Mikolaj

    2009-01-01

    by a bacterial consortium was investigated. Whereas test performed for the consortium cultivated on disodium succinate showed that toxicity of the investigated ionic liquids decreased with increase in side-chain length, only higher homologues (C-8-C-18) caused a decrease in diesel fuel biodegradation...... hypothesize that in the presence of diesel fuel low-water-soluble ionic liquids may become more toxic to hydrocarbon-degrading microorganisms. In this study the influence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues (side-chain length from C-3 to C-18) on biodegradation of diesel fuel....... As a result of exposure to toxic compounds also modification in cell surface hydrophobicity was observed (MATH). Disulphine blue active substances method was employed to determine partitioning index of ionic liquids between water and diesel fuel phase, which varied from 1.1 to 51% for C-3 and C-18 homologues...

  15. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    Directory of Open Access Journals (Sweden)

    Syahidah Akmal Muhammad

    2015-02-01

    Full Text Available Compound-specific isotope analysis (CSIA offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  16. Isolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils

    Directory of Open Access Journals (Sweden)

    Alejandro Gran-Scheuch

    2017-08-01

    Full Text Available Antarctica is an attractive target for human exploration and scientific investigation, however the negative effects of human activity on this continent are long lasting and can have serious consequences on the native ecosystem. Various areas of Antarctica have been contaminated with diesel fuel, which contains harmful compounds such as heavy metals and polycyclic aromatic hydrocarbons (PAH. Bioremediation of PAHs by the activity of microorganisms is an ecological, economical, and safe decontamination approach. Since the introduction of foreign organisms into the Antarctica is prohibited, it is key to discover native bacteria that can be used for diesel bioremediation. By following the degradation of the PAH phenanthrene, we isolated 53 PAH metabolizing bacteria from diesel contaminated Antarctic soil samples, with three of these isolates exhibiting a high phenanthrene degrading capacity. In particular, the Sphingobium xenophagum D43FB isolate showed the highest phenanthrene degradation ability, generating up to 95% degradation of initial phenanthrene. D43FB can also degrade phenanthrene in the presence of its usual co-pollutant, the heavy metal cadmium, and showed the ability to grow using diesel-fuel as a sole carbon source. Microtiter plate assays and SEM analysis revealed that S. xenophagum D43FB exhibits the ability to form biofilms and can directly adhere to phenanthrene crystals. Genome sequencing analysis also revealed the presence of several genes involved in PAH degradation and heavy metal resistance in the D43FB genome. Altogether, these results demonstrate that S. xenophagum D43FB shows promising potential for its application in the bioremediation of diesel fuel contaminated-Antarctic ecosystems.

  17. The Mutagenic Potential Caused by the Emissions from Combustion of Crude Glycerin and Diesel Fuel

    Directory of Open Access Journals (Sweden)

    Daniel Terruggi Mazak

    2015-04-01

    Full Text Available This study evaluated the use of crude glycerin as an alternative of energy generation to replace the traditional fuels. The Tradescantia stamen hair mutation assay (Trad-SH was applied to study the mutagenic effects caused by the emissions generated in the direct combustion of diesel oil and glycerin in a flame tube furnace. Tradescantia inflorescences were exposed to gaseous emissions from the combustion tests in a fumigation chamber for 30-40 min. The analysis of variance and the Tukey test were applied to compare the differences between six test groups (intoxicated with emissions from glycerin and diesel oil combustion and a control group. Only one glycerin group showed statistical differences (0.05, possibly due to the complexity of the burning process and impurities, besides the acrolein present in its emissions. The high heating value (HHV of crude glycerin (25.5 MJ/kg was lower than diesel oil (45.19 MJ/kg, but it was comparable to other fuels. Although the use of glycerin as a biofuel could be an important aspect to be considered, the results showed that the glycerin had a substantial mutagenic potential similar to that of diesel oil.

  18. Assessing carbon and hydrogen isotopic fractionation of diesel fuel n-alkanes during progressive evaporation.

    Science.gov (United States)

    Muhammad, Syahidah A; Hayman, Alan R; Van Hale, Robert; Frew, Russell D

    2015-01-01

    Compound-specific isotope analysis offers potential for fingerprinting of diesel fuels, however, possible confounding effects of isotopic fractionation due to evaporation need to be assessed. This study measured the fractionation of the stable carbon and hydrogen isotopes in n-alkane compounds in neat diesel fuel during evaporation. Isotope ratios were measured using a continuous flow gas chromatograph/isotope ratio mass spectrometer. Diesel samples were progressively evaporated at 24 ± 2°C for 21 days. Increasing depletion of deuterium in nC12-nC17 alkanes in the remaining liquid with increasing carbon chain length was observed. Negligible carbon isotope fractionation was observed. Preferential vaporization was measured for the shorter chain n-alkanes and the trend decreased with increasing chain length. The decrease in δ(2) H values indicates the preferential vaporization of the isotopically heavier species consistent with available quantitative data for hydrocarbons. These results are most important in the application of stable isotope technology to forensic analysis of diesel. © 2014 American Academy of Forensic Sciences.

  19. Experiments on Induction Times of Diesel-Fuels and its Surrogates

    Science.gov (United States)

    Eigenbrod, Christian; Reimert, Manfredo; Marks, Guenther; Rickmers, Peter; Klinkov, Konstantin; Moriue, Osamu

    Aiming for as low polluting combustion control as possible in Diesel-engines or gas-turbines, pre-vaporized and pre-mixed combustion at low mean temperature levels marks the goal. Low-est emissions of nitric-oxides are achievable at combustion temperatures associated to mixture ratios close to the lean flammability limit. In order to prevent local mixture ratios to be below the flammability limit (resulting in flame extinction or generation of unburned hydrocarbons and carbon-monoxide) or to be richer than required (resulting in more nitric-oxide than possi-ble), well-stirred conditioning is required. The time needed for spray generation, vaporization and turbulent mixing is limited through the induction time to self-ignition in a hot high-pressure ambiance. Therefore, detailed knowledge about the autoignition of fuels is a pre-requisit. Experiments were performed at the Bremen drop tower to investigate the self-ignition behavior of single droplets of fossil-Diesel oil, rapeseed-oil, Gas-to-Liquid (GTL) synthetic Diesel-oil and the fossil Diesel surrogates n-heptane, n-tetradecane, 50 n-tetradecane/ 50 1-methylnaphthalene as well as on the GTL-surrogates n-tetradecane / bicyclohexyl and n-tetradecane / 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). The rules for selection of the above fuels and the experimental results are presented and dis-cussed.

  20. Diesel-like fuel obtained by pyrolysis of vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Daniela G.; Soares, Valerio C.D.; Ribeiro, Eric B.; Cardoso, Erika C.V.; Rassi, Flavia C.; Mundim, Kleber C.; Rubim, Joel C.; Suarez, Paulo A.Z. [Instituto de Quimica, Universidade de Brasilia, CP 4478, 70919-970 Brasilia-DF (Brazil); Carvalho, Daniel A. [CEPAT-ANP, Brasilia-DF (Brazil)

    2004-06-01

    The pyrolysis reactions of soybean, palm tree, and castor oils were studied. The pyrolytic products were analyzed by CG-FID, CG-MS, and FTIR, showing the formation of olefins, paraffins, carboxylic acids, and aldehydes. The adequate choice of distillation temperature (DT) ranges made it possible to isolate fuels with physical-chemical properties comparable to those specified for petroleum based fuels. The catalytic upgrading of the soybean pyrolytic fuel over HZSM-5 zeolite at 400C was also studied and has shown a partial deoxygenation of the pyrolytic products.

  1. Engine performance and exhaust emission analysis of a single cylinder diesel engine fuelled with water-diesel emulsion fuel blended with manganese metal additives

    Science.gov (United States)

    Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd

    2017-10-01

    Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.

  2. Adsorption and preconcentration of divalent metal ions in fossil fuels and biofuels: gasoline, diesel, biodiesel, diesel-like and ethanol by using chitosan microspheres and thermodynamic approach.

    Science.gov (United States)

    Prado, Alexandre G S; Pescara, Igor C; Evangelista, Sheila M; Holanda, Matheus S; Andrade, Romulo D; Suarez, Paulo A Z; Zara, Luiz F

    2011-05-15

    Biodiesel and diesel-like have been obtained from soybean oil by transesterification and thermal cracking process, respectively. These biofuels were characterized as according to ANP standards by using specific ASTM methods. Ethanol, gasoline, and diesel were purchased from a gas station. Deacetylation degree of chitosan was determined by three distinct methods (conductimetry, FTIR and NMR), and the average degree was 78.95%. The chitosan microspheres were prepared from chitosan by split-coating and these spheres were crosslinked using glutaraldehyde. The surface area of microspheres was determined by BET method, and the surface area of crosslinked microspheres was 9.2m(2)g(-1). The adsorption isotherms of cooper, nickel and zinc on microspheres of chitosan were determined in petroleum derivatives (gasoline and diesel oil), as well as in biofuels (alcohol, biodiesel and diesel-like). The adsorption order in all fuels was: Cu>Ni>Zn. The elution tests presented the following preconcentration degrees: >4.5 to ethanol, >4.4 to gasoline, >4.0 to diesel, >3.8 to biodiesel and >3.6 to diesel-like. The application of chitosan microspheres in the metal ions preconcentration showed the potential of this biopolymer to enrich fuel sample in order to be analyzed by flame atomic absorption spectrometry. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Internal Nozzle Flow Simulations of Gasoline-Like Fuels under Diesel Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Torelli, R.; Som, S.; Pei, Y.; Zhang, Yu; Traver, Michael

    2017-05-15

    Spray formation in internal combustion engines with direct injection is strictly correlated with internal nozzle flow characteristics, which are in turn influenced by fuel physical properties and injector needle motion. This paper pre-sents a series of 3D simulations that model the in-nozzle flow in a 5-hole mini-sac diesel injector. Two gasoline-like naphtha fuels, namely full-range and light naphtha, were tested under operating conditions typical of diesel applica-tions and were compared with n-dodecane, selected from a palette used as diesel surrogates. Validated methodolo-gies from our previous work were employed to account for realistic needle motion. The multi-phase nature of the problem was described by the mixture model assumption with the Volume of Fluid method. Cavitation effects were included by means of the Homogeneous Relaxation Model and turbulence closure was achieved with the Standard k-ε model in an Unsteady Reynolds-Averaged Navier-Stokes formulation. The results revealed that injector perfor-mance and propensity to cavitation are influenced by the fuel properties. Analyses of several physical quantities were carried out to highlight the fuel-to-fuel differences in terms of mass flow rate, discharge coefficients, and fuel vapor volume fraction inside the orifices. A series of parametric investigations was also performed to assess the fuel response to varied fuel injection temperature, injection pressure, and cross-sectional orifice area. For all cases, the strict correlation between cavitation magnitude and saturation pressure was confirmed. Owing to their higher volatil-ity, the two gasoline-like fuels were characterized by higher cavitation across all the simulated conditions. Occur-rence of cavitation was mostly found at the needle seat and at the orifice inlets during the injection event’s transient, when very small gaps exist between the needle and its seat. This behavior tended to disappear at maximum needle lift, where cavitation was

  4. A study of the stabilities, microstructures and fuel characteristics of tri-fuel (diesel-biodiesel-ethanol) using various fuel preparation methods

    Science.gov (United States)

    Lee, K. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.

    2017-10-01

    In this study, the work was carried out to investigate the effects of ethanol proportions on the stabilities and physicochemical characteristics of tri-fuel (Diesel-Biodiesel-Ethanol). For the first time, tri-fuel emulsions and blended were compared side by side. The experiment was done with composition having 5%, 10%, 15%, 20% and 25 % of ethanol with fixed 10% of biodiesel from palm oil origin on a volume basis into diesel. The results indicated that the phase stabilities of the emulsified fuels were higher compared to the blended fuels. In addition, tri-fuel composition with higher proportion of ethanol were found unstable with high tendency to form layer separation. It was found that tri-fuel emulsion with 5% ethanol content (D85B10E5) was of the best in stability with little separation. Furthermore, tri-fuel with lowest ethanol proportion indicated convincing physicochemical characteristics compared to others. Physicochemical characteristics of tri-fuel blending yield almost similar results to tri-fuel emulsion but degrading as more proportion ethanol content added. Emulsion category had cloudy look but on temporarily basis. Under the microscope, tri-fuel emulsion and blending droplet were similar for its active moving about micro-bubble but distinct in term of detection of collision, average disperse micro-bubble size, the spread and organization of the microstructure.

  5. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: diesel and gasoline.

    Science.gov (United States)

    Claxton, Larry D

    2015-01-01

    Within this review the genotoxicity of diesel and gasoline fuels and emissions is placed in an historical context. New technologies have changed the composition of transportation methods considerably, reducing emissions of many of the components of health concern. The similarity of modern diesel and gasoline fuels and emissions to other carbonaceous fuels and emissions is striking. Recently an International Agency for Research on Cancer (IARC) Working Group concluded that there was sufficient evidence in humans for the carcinogenicity of diesel exhaust (Group 1). In addition, the Working Group found that diesel exhaust has "a positive association (limited evidence) with an increased risk of bladder cancer." Like most other carbonaceous fuel emissions, diesel and gasoline exhausts contain toxic levels of respirable particles (PM gasoline emissions has declined in certain regions over time because of changes in engine design, the development of better aftertreatment devices (e.g., catalysts), increased fuel economy, changes in the fuels and additives used, and greater regulation. Additional research and better exposure assessments are needed so that decision makers and the public can decide to what extent diesel and gasoline engines should be replaced. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Influence of high salinities on the degradation of diesel fuel by bacterial consortia

    Energy Technology Data Exchange (ETDEWEB)

    Riis, V.; Kleinsteuber, S.; Babel, W. [UFZ Centre for Environmental Research Leipzig-Halle, Dept. of Environmental Microbiology, Leipzig, (Germany)

    2003-11-01

    Salinization and oil contamination of the surrounding soil are common hazards of exploiting and processing hydrocarbons, requiring remediation of the mineral-oil-contaminated soil. This study reports results of the degradation of diesel fuels by indigenous microbial communities from Argentinian saline soils, the emphasis being on assessing the possibilities of remediating oil-contaminated soils on high salinity. Results showed that the majority of diesel fuel hydrocarbons can be degraded by bacterial communities of saline soils at salt concentrations of up to 17.5 per cent in the aqueous phase. Although none of the microbial communities were effective in the presence of 25 per cent salt, living cell counts showed that components of the microbial population survived even after long-term exposure. Surviving communities were identified as members of the genera Cellulomonas, Bacillus, Dietzia, and Halomonas. 20 refs., 4 tabs., 4 figs.

  7. In situ bioremediation of an underground diesel fuel spill: A case history

    Science.gov (United States)

    Frankenberger, W. T.; Emerson, K. D.; Turner, D. W.

    1989-05-01

    In the winter months of 1983, approximately 1000 gallons of diesel fuel had flowed along an asphalt parking lot of a commercial establishment towards a surface drain near an open creek. Investigations led to the discovery of an underground storage tank leaking diesel fuel. Exploratory borings showed that contamination was near the surface horizon and the capillary zone of the water table. Hydrocarbon quantities ranged up to 1500 mg/kg of soil. The plume continued to move in an eastward direction toward the surface water of the creek. A laboratory study indicated relatively high numbers of hydrocarbon-oxidizing organisms relative to glucose-utilizing microorganisms in the unsaturated vadose zone. Bioreclamation was initiated in April 1984 by injecting nutrients (nitrogen and phosphorus) and hydrogen peroxide and terminated in October 1984 upon no detection (hydrocarbons. A verification boring within the vicinity of the contaminated plume confirmed that residual contamination had attained background levels. The monitoring program was terminated in January 1987.

  8. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    Energy Technology Data Exchange (ETDEWEB)

    Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  9. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.

    Science.gov (United States)

    Liu, Qiang; Xu, Guoqiang; Wang, Xicheng; Liu, Xiaoran; Mu, Xindong

    2016-12-20

    In light of the increasing concern about the energy and environmental problems caused by the combustion of petroleum-based fuels (e.g., jet and diesel fuels), the development of new procedures for their sustainable production from renewable biomass-derived platform compounds has attracted tremendous attention recently. Long-chain ketones/alcohols are promising fuel components owing to the fuel properties that closely resemble those of traditional fuels. The focus of this report is the production of long-chain ketones/alcohols by direct upgrading of biomass-derived short-chain alcohol mixtures (e.g., isopropanol-butanol-ethanol mixtures) in pure water. An efficient Pd catalyst system was developed for these highly selective transformations. Long-chain ketones/alcohols (C8 -C19 ), which can be used as precursors for renewable jet/diesel fuel, were obtained in good-to-high selectivity (>90 %) by using the developed Pd catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N.

    1977-01-01

    As part of the ERDA-funded Gas Turbine Highway Vehicle Systems project, tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 3 x 10/sup 5/ Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5% purity propane was used. The combustion efficiency for 99.8% purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppM of bound nitrogen and consequently produced the highest NO/sub x/ emissions of the three fuels. As much as 85% of the bound nitrogen was converted to NO/sub x/. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8% purity propane. With that fuel, a minimum temperature of 1480 K was required.

  11. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with Euro V diesel fuel and fumigation methanol

    Science.gov (United States)

    Zhang, Z. H.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2010-03-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with part of the engine load taken up by fumigation methanol injected into the air intake of each cylinder to investigate the regulated and unregulated gaseous emissions and particulate emission of the engine under five engine loads at an engine speed of 1920 rev min -1. The fumigation methanol was injected to top up 10%, 20% and 30% of the engine load under different engine operating conditions. The experimental results show that at low engine loads, the brake thermal efficiency (BTE) decreases with increase in fumigation methanol; but at high engine loads, the BTE is not significantly affected by fumigation methanol. The fumigation methanol results in significant increase in hydrocarbon (HC), carbon monoxide (CO) and nitrogen dioxide (NO 2) emissions, but decrease in nitrogen oxides (NO x). For the unregulated gaseous emissions, unburned methanol, formaldehyde and BTX (benzene, toluene and xylene) emissions increase but ethyne, ethene and 1,3-butadiene emissions decrease. Particulate mass and number concentrations also decrease with increase in fumigation methanol. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics, when the exhaust gas temperature is sufficiently high.

  12. The Explicit and Implicit Qualities of Alternative Fuels: Issues to Consider for Their Use in Marine Diesel Engines

    Science.gov (United States)

    2008-09-30

    petroleum diesel) for a diesel-like biofuel derived from pyrolysis (Adebanjo et al. 2005), making the validity of the cetane index from such fuels...engine performance. F-T fuel has a 2.7% higher gravimetric energy density (Wu et al. 2007) and engine thermal efficiency (Abu-Jrai et al. 2006). Based...6), the volumetric energy density of F-T is 14% lower than diesel, even though the gravimetric energy density of F-T is 2.7% higher (Wu et al. 2007

  13. Implementation and testing of the use of vegetable oils as fuel diesel generators in the Amazon isolated communities; Implantacao e testes de utilizacao de oleo vegetal como combustivel para diesel geradores em comunidades isoladas da Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Silva, Orlando Cristiano da; Gonzalez Velaquez, Silvia Maria Stortini; Monteiro, Maria Beatriz C.A.; Silotto, Carlos Eduardo Grassi [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)

    2004-07-01

    The project PROVEGAM 'Implantation and test of a unit demonstration of energetic utilization of vegetable oil', tested in operational conditions of field, the functioning of a conventional diesel engine, adapted to operate with palm oil 'in natura' in the community of Vila Soledade, city of Moju, Para State. The Vila Soledade is an isolated community that has, approximately, 700 inhabitants and it's located at one hundred kilometers from the city hall by car and more 30 minutes by boat. The electric energy of this community was previously generated, by a conventional diesel engine, obsolete and very expensive to the community, because the fuel price and the transport of the diesel oil from the city to the community. The PROVEGAM project, installed an electric generation group, MWM TD229, manufactured in Brazil, adapted with a conversion kit to operate with 'in natura' palm oil, working 6 hours per day. Because of the viscosity of the palm oil and its combustion point, it was necessary to heat the vegetable oil before its injection into the engine. The operation begins and finishes with diesel oil, in order to heat the palm oil and to clean possible residues deposited in the interior of the engine. The use of the palm oil justifies itself for being produced in the region, which means that it doesn't have to be imported. Currently, the generating group is working in the community during 5 hours per day with palm oil, and 1 hour per day with diesel oil and it already has more than 1600 hours of testing. The results of this project, so far, have confirmed the conceived premises, and this electric model of generating energy is already recommended to be implemented in other communities in the Amazon region. (author)

  14. [Online soft sensing method for freezing point of diesel fuel based on NIR spectrometry].

    Science.gov (United States)

    Wu, De-Hui

    2008-07-01

    To solve the problems of real-time online measurement for the freezing point of diesel fuel products, a soft sensing method by near-infrared (NIR) spectrometry was proposed. Firstly, the information of diesel fuel samples in the spectral region of 750-1 550 nm was extracted by spectrum analyzer, and the polynomial convolution algorithm was also applied in spectrogram smoothness, baseline correction and standardization. Principal component analysis (PCA) was then used to extract the features of NIR spectrum data sets, which not only reduced the number of input dimension, but increased their sensitivity to output. Finally the soft sensing model for freezing point was built using SVR algorithm. One hundred fifty diesel fuel samples were used as experimental materials, 100 of which were used as training (calibrating) samples and the others as testing samples. Four hundred and one dimensional original NIR absorption spectrum data sets, through PCA, were reduced to 6 dimensions. To investigate the measuring effect, the freezing points of the testing samples were estimated by four different soft sensing models, BP, SVR, PCA-BP and PCA+SVR. Experimental results show that (1) the soft sensing models using PCA to extract features are generally better than those used directly in spectrum wavelength domain; (2) SVR based model outperforms its main competitors-BP model in the limited training data, the error of which is only half of the latter; (3) The MSE between the estimated values by the presented method and the standard chemical values of freezing point by condensing method are less than 4.2. The research suggests that the proposed method can be used in fast measurement of the freezing point of diesel fuel products by NIRS.

  15. Alcohol fueled farm tractors compete favorably, with diesel in Brazil tests

    Energy Technology Data Exchange (ETDEWEB)

    Finch, E.O.; Brandini, A.

    1984-08-01

    Heavy duty alcohol powered engines are suitable to tractors. In Brazil diesel and alcohol tractors of the same configuration, weight, and engine size running side by side, indicated superior field performance of the alcohol tractor and a time saving of about 5-10% for the same work schedule. Lifetime and maintenance factors, chemical energy to mechanical work conversion efficiencies, thermal efficiency, fuel consumption, starting procedure and other considerations are discussed.

  16. Experimental investigation of optimal timing of the Diesel engine injection pump using biodiesel fuel

    OpenAIRE

    Kegl, Breda

    2012-01-01

    This paper discusses the influence of biodiesel on output characteristics of adiesel engine and optimal timing setup for its injection pump. The influence of biodiesel is studied by running experiments on an NA diesel bus engine MAN D2 2566 with a direct-injection M system. The fuel used is biodiesel produced from rapeseed. Special attention is focused on the determination of the optimal injection-pump timing with respect to engine harmful emissions, enginefuel consumption, and other engine p...

  17. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel

    Science.gov (United States)

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A.

    2012-01-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel “hydrotreated vegetable oil” (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  18. Combustion Characteristics for Turbulent Prevaporized Premixed Flame Using Commercial Light Diesel and Kerosene Fuels

    Directory of Open Access Journals (Sweden)

    Mohamed S. Shehata

    2014-01-01

    Full Text Available Experimental study has been carried out for investigating fuel type, fuel blends, equivalence ratio, Reynolds number, inlet mixture temperature, and holes diameter of perforated plate affecting combustion process for turbulent prevaporized premixed air flames for different operating conditions. CO2, CO, H2, N2, C3H8, C2H6, C2H4, flame temperature, and gas flow velocity are measured along flame axis for different operating conditions. Gas chromatographic (GC and CO/CO2 infrared gas analyzer are used for measuring different species. Temperature is measured using thermocouple technique. Gas flow velocity is measured using pitot tube technique. The effect of kerosene percentage on concentration, flame temperature, and gas flow velocity is not linearly dependent. Correlations for adiabatic flame temperature for diesel and kerosene-air flames are obtained as function of mixture strength, fuel type, and inlet mixture temperature. Effect of equivalence ratio on combustion process for light diesel-air flame is greater than for kerosene-air flame. Flame temperature increases with increased Reynolds number for different operating conditions. Effect of Reynolds number on combustion process for light diesel flame is greater than for kerosene flame and also for rich flame is greater than for lean flame. The present work contributes to design and development of lean prevaporized premixed (LPP gas turbine combustors.

  19. Predicting the effects of nanoscale cerium additives in diesel fuel on regional-scale air quality.

    Science.gov (United States)

    Erdakos, Garnet B; Bhave, Prakash V; Pouliot, George A; Simon, Heather; Mathur, Rohit

    2014-11-04

    Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissions and alter the emissions of carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbon (HC) species, including several hazardous air pollutants (HAPs). To predict their net effect on regional air quality, we review the emissions literature and develop a multipollutant inventory for a hypothetical scenario in which nCe additives are used in all on-road and nonroad diesel vehicles. We apply the Community Multiscale Air Quality (CMAQ) model to a domain covering the eastern U.S. for a summer and a winter period. Model calculations suggest modest decreases of average PM2.5 concentrations and relatively larger decreases in particulate elemental carbon. The nCe additives also have an effect on 8 h maximum ozone in summer. Variable effects on HAPs are predicted. The total U.S. emissions of fine-particulate cerium are estimated to increase 25-fold and result in elevated levels of airborne cerium (up to 22 ng/m3), which might adversely impact human health and the environment.

  20. Dimethyl Ether as a Fuel for Diesel Engines

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.

    1999-01-01

    to LPG, and must be produced from other carbonaceous materials, such and natural gas, coal and bio-mass. The most attractive economic option is currently production from remote natural gas. Due to its different phsuycial characteristics, special considerations must be taken in the design and modification...... of engine fuels systems in regard to lubricity and suitable sealing materials....

  1. Method for reduction of the NOXemissions in marine auxiliary diesel engine using the fuel mixtures containing biodiesel using HCCI combustion.

    Science.gov (United States)

    Puškár, Michal; Kopas, Melichar; Puškár, Dušan; Lumnitzer, Ján; Faltinová, Eva

    2017-08-25

    The marine auxiliary diesel engines installed in the large transoceanic ships are used in order to generate the electricity but at the same time these engines are able to produce a significant amount of the harmful exhaust gas emissions. Therefore the International Maritime Organisation (IMO) concluded an agreement, which has to control generating of gaseous emissions in maritime transport. From this reason started to be used some of the alternative fuels in this branch. There was performed a study, which investigated emissions of the auxiliary marine diesel engine during application of the experimental fuels. The different testing fuels were created using the ratios 0%, 50%, 80% and 100% between the biodiesel and the ULSDF (Ultra Low Sulphur Diesel Fuel). The experimental measurements were performed at the different engine loading levels and various engine speeds in order to investigate an influence of the mixed fuels on the engine operational characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    SENDILVELAN S.

    2017-11-01

    Full Text Available Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize the blends for reducing emission and improving performance. Results show improved performance with B10 blends compared to neat fuel for all conditions of the engine. Other blends recorded marginal decrease in brake thermal efficiency. The maximum efficiency for B30, B50 blends at peak load are 26.3%, 25.2% respectively against 29.1% for sole fuel. NOx emissions were found to be high or the blends. Peak pressure and rate of pressure rise are increased with increase in dioxane ratio due to improved combustion rate. Heat release pattern shows higher premixed combustion rate with the blends. Higher ignition delay and lower combustion duration are found with all blends than neat diesel fuel.

  3. The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel buses

    Energy Technology Data Exchange (ETDEWEB)

    M.C.H. Lim; G.A. Ayoko; L. Morawska; Z.D. Ristovski; E.R. Jayaratne [Queensland University of Technology, Brisbane, Qld. (Australia). International Laboratory for Air Quality and Health, School of Physical and Chemical Sciences

    2007-08-15

    The effects of fuel characteristics and engine operating conditions on elemental composition of emissions from twelve heavy duty diesel buses have been investigated. Two types of diesel fuels - low sulfur diesel (LSD) and ultra low sulfur diesel (ULSD) fuels with 500 ppm and 50 ppm sulfur contents respectively and 3 driving modes corresponding to 25%, 50% and 100% power were used. Elements present in the tailpipe emissions were quantified by inductively coupled plasma mass spectrometry (ICPMS) and those found in measurable quantities included Mg, Ca, Cr, Fe, Cu, Zn, Ti, Ni, Pb, Be, P, Se, Ti and Ge. Multivariate analyses using multi-criteria decision making methods (MCDM), principal component analysis (PCA) and partial least squares (PLS) facilitated the extraction of information about the structure of the data. MCDM showed that the emissions of the elements were strongly influenced by the engine driving conditions while the PCA loadings plots showed that the emission factors of the elements were correlated with those of other pollutants such as particle number, total suspended particles, CO, CO{sub 2} and NOx. Partial least square analysis revealed that the emission factors of the elements were strongly dependent on the fuel parameters such as the fuel sulfur content, fuel density, distillation point and cetane index. Strong correlations were also observed between these pollutants and the engine power or exhaust temperature. The study provides insights into the possible role of fuel sulfur content in the emission of inorganic elements from heavy duty diesel vehicles. 39 refs., 1 fig., 4 tabs.

  4. USING OF NON-CONVENTIONAL FUELS IN HYBRID VEHICLE DRIVES

    Directory of Open Access Journals (Sweden)

    Dalibor Barta

    2016-12-01

    Full Text Available Electric or hybrid vehicles are becoming increasingly common on roads. While electric vehicles are still more or less intended for city traffic, hybrid vehicles allow normal use due to wider driving range. The use of internal combustion engines in hybrid drives is still an inspiration to find the way to reduce the produc-tion of emissions. Numbers of alternative energy resources were studied as a substitution of conventional fuels for hybrid vehicles drives worldwide. The paper deals with the possibility of using alternative fuels as CNG, LPG and LNG in combination with hybrid drive of a midibus with the capacity of 20 passengers. Various aspects and techniques of hybrid vehicles from energy management system, propulsion system and using of various alternative fuels are explored in this paper. Other related fields of hybrid vehicles such as changes of vehicle weight or influence of electric energy sources on the total vehicle emission production are also included.

  5. Composition and properties of jet and diesel fuels derived from coal and shale

    Science.gov (United States)

    Solash, J.; Hazlett, R. N.

    1981-02-01

    Important properties controlling the availability and efficient use of fuels for Navy aircraft and ships are a) low temperature properties, b) stability, c) combustion behavior, and d) safety. In general, these critical properties are controlled by composition. Therefore, a variety of instrumental analyses-capillary gas chromatography, liquid chromatography, carbon-13 and proton nmr, and electron impact and field ionization mass spectrometry-have been applied to jet and diesel fuels made from coal and shale. The low temperature properties are controlled by n-alkanes and the combustion behavior is degraded by aromatics as well as partially saturated polynuclear arometics. Fuel stability is degraded by sulfur and nitrogen compounds, both of which are prevalent in middle distillate fields derived from a alternative fossil fuel sources.

  6. ELECTRONIC CONTROL FOR FUEL SUPPLY OF DIESEL ENGINE ON THE BASIS OF PROGRAMMABLE PID-REGULATOR

    Directory of Open Access Journals (Sweden)

    A. G. Bakhanovich

    2017-01-01

    Full Text Available The article presents a schematic diagram of the Euro-3 diesel engine electronic control and describes hard- and software platform of the high pressure fuel pump pneumatic actuator control that allows to realize the concept of electronic fuel supply control of diesel engine KamAZ-740. The strategic dependence beetwen the angular position of fuel pump governor lever and the angular position of electronic accelerator pedal were put on the basis of electronic control concept. Implementation of this dependence was carried out by applying a modulated PWM signal with determined duty cycle by the controller to the coil proportional solenoid valve, which is responsible for the amount of air pressure in the working chamber of the power air cylinder, connected by articulated-type to the governor lever of the high pressure fuel pump. In this case, the feedback control by position of governor lever of the high pressure fuel pump was introduced in the control circuit, but engine crankshaft speed control was carried out using a software continuous PID governor. Developed strategy gives possibility to track the deflection  of control parameter from a predetermined value by real-time and almost instantly, to make a control action on actuators to eliminate this deflection, while providing a minimum time of transition. Governor’s setting (proportional, integral and differential component performed empirically using the classical Ziegler – Nichols method, based on the analysis of the safety factor of automatic control system. The results of calculating the coefficients of proportional integral-differential regulator and oscillograms HIL experiment on testing the proposed diesel engine throttle control strategies using visualization CoDeSys V2.3 are given in activity.

  7. Evaluation Tests of Select Fuel Additives for Potential Use in U.S. Army Corps of Engineers Diesel Engines

    Science.gov (United States)

    2016-07-01

    emissions, increase agency use of renewable energy , and reduce the use of fossil fuels. For USACE floating plant, one of the main strategies of the USACE...evaluate their potential for reducing diesel fuel consumption (and reducing reliance on fossil fuels and cost : • An ethanol injection system...ER D C/ CH L TR -1 6- 10 Dredging Operations and Environmental Research Program Evaluation Tests of Select Fuel Additives for Potential

  8. CONVERSION OF DIESEL ENGINE INTO SPARK IGNITION ENGINE TO WORK WITH CNG AND LPG FUELS FOR MEETING NEW EMISSION NORMS

    OpenAIRE

    Syed Kaleemuddin; Gaddale Amba Prasad Rao

    2010-01-01

    Fluctuating fuel prices and associated pollution problems of largely exploited petroleum liquid fuel has stimulated the research on abundantly available gaseous fuels to keep the mobility industry intact. In the present work an air cooled diesel engine was modified suitably into a spark ignition engine incorporating electronic ignition and variable speed dependant spark timing to accommodate both LPG and CNG as fuels. Engine was optimized for stoichiometric operation on engine dynamometer. Ma...

  9. Cold temperature and biodiesel fuel effects on speciated emissions of volatile organic compounds from diesel trucks.

    Science.gov (United States)

    George, Ingrid J; Hays, Michael D; Snow, Richard; Faircloth, James; George, Barbara J; Long, Thomas; Baldauf, Richard W

    2014-12-16

    Speciated volatile organic compounds (VOCs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (-7 and 22 °C) operating on two fuels (ultra low sulfur diesel and 20% soy biodiesel blend) over three driving cycles: cold start, warm start and heavy-duty urban dynamometer driving cycle. VOCs were measured separately for each drive cycle. Carbonyls such as formaldehyde and acetaldehyde dominated VOC emissions, making up ∼ 72% of the sum of the speciated VOC emissions (∑VOCs) overall. Biodiesel use led to minor reductions in aromatics and variable changes in carbonyls. Cold temperature and cold start conditions caused dramatic enhancements in VOC emissions, mostly carbonyls, compared to the warmer temperature and other drive cycles, respectively. Different 2007+ aftertreatment technologies involving catalyst regeneration led to significant modifications of VOC emissions that were compound-specific and highly dependent on test conditions. A comparison of this work with emission rates from different diesel engines under various test conditions showed that these newer technologies resulted in lower emission rates of aromatic compounds. However, emissions of other toxic partial combustion products such as carbonyls were not reduced in the modern diesel vehicles tested.

  10. 210-HP Diesel Engine Endurance and Performance Testing with Fire Resistant Diesel Fuel

    Science.gov (United States)

    1987-10-01

    containing 10.4 percent volume water. The specific fuel comsumption increased to 23.91 percent when the engine ran at the end of the 400-hour test with...Motor The motor which drives the pumps is manufactured by Reliance Electric Company. The motor’s performance specifications are as follows: 1.5 hp...BARREL BARRELS ON-OFF MANUAL SHUT-OFF VALVES 11 /OF2WAE 1 1/2 HP PUMP PUMP SURFACTANT PUMP ELECTRIC MOTOR 220/240 VAC 1 P M MICROMETER DIALS PRESSURE

  11. Using mixtures of diesel and sunflower oil as fuel for heating purposes in Castilla y Leon

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.F.S.J.; Sastre, J.A.L.; Romero-Avila, C.; Romero-Avila, E.L.; Iglesias, C.I. [Universidad de Valladolid (Spain). ETS de Ingenieros Industriales

    2005-04-01

    Using blends of vegetable oils with petroleum derivatives for heating purposes has several advantages over other energy applications for vegetable oils. These advantages are presented in this paper, using the results obtained from the installation of conventional heat generation using diesel and sunflower oil mixtures and the possibilities this holds for Castilla y Leon. Castilla y Leon is the biggest region of Spain; its main activity is the agriculture, with a continental climate. (author)

  12. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    Science.gov (United States)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  13. Catalytic ring opening of cyclic hydrocarbons in diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Calemma, V.; Ferrari, M. [Eni S.p.A., San Donato Milanese (Italy). R and M Div.; Rabl, S.; Haas, A.; Santi, D.; Weitkamp, J. [Stuttgart Univ. (Germany). Inst. of Chemical Technology

    2013-11-01

    An approach for high-aromatic streams upgrading, allowing to meet future diesel quality standards, is saturation of the aromatic structures followed by the selective breaking of endocyclic C-C bonds of naphthenic structures so formed to produce alkanes with the same number of carbon atoms as the starting molecule ('selective ring opening, SRO'). Although theoretically, SRO is a promising route for upgrading low-value feeds to high-quality products, in practice, it continues to be a challenge owing to its complex chemistry. Product characteristics, do not only depend on the composition of the feed, but also on the operating conditions and the nature of the catalyst. Very recently, novel catalysts ('HIgh-PErformance Ring Opening Catalysts, HIPEROCs') were developed which allow a very selective ring opening of the model compound decalin to paraffins without degradation of the carbon number. The hydroconversion of dearomatized Light Cycle Oil (DeAr-LCO) over the abovementioned catalysts resulted in a remarkable change of the chemical structure of the feed with a strong decrease of naphthenic structures with two or more condensed rings and a concomitant increase of alkyl-substituted cyclohexanes and open-chain alkanes. The changes occurring in the chemical structures of feedstock during hydroconversion resulted in a remarkable increase of the Cetane Index of the products up to 11 units. In the present contribution, we examine the main factors affecting activity and selectivity of SRO catalysts in the light of the recent literature dealing with the subject and we report on the recent advances in hydroconversion of refinery cuts such as DeAr- LCO over HIPEROCs. (orig.)

  14. An Innovative Injection and Mixing System for Diesel Fuel Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Spencer Pack

    2007-12-31

    This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the

  15. Performance and Emissions of a Small Compression Ignition Engine Run on Dual-fuel Mode (Diesel-Raw biogas)

    Science.gov (United States)

    Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.

    2017-03-01

    In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.

  16. Study on Combustion Performance of Diesel Engine Fueled by Synthesized Waste Cooking Oil Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Duraid F. Maki

    2018-02-01

    Full Text Available The waste cooking oil or used cooking oil is the best source of biodiesel synthesizing because it enters into the so-called W2E field whereas not only get rid of the used cooking oils but produce energy from waste fuel. In this study, biodiesel was synthesized from the used cooking oil and specifications are tested. From 1 liter of used cooking oil, 940 ml is gained. The remaining of liter is glycerin and water. Blend of 20% of biodiesel with 80% of net diesel by volume is formed. Blends of 100% diesel and 100% biodiesel are prepared too. The diesel engine combustion performance is studied. Brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, mean effective pressure, and engine outlet temperature. Cylinder pressure variation with crank angle is analyzed. At last not least, the concentrations of hydro carbon and nitrogen pollutants are measured. The results showed significant enhancement in engine power and pollutant gases emitted. There is positive compatible with other critical researches.

  17. Design and development of a diesel and JP-8 logistic fuel processor

    Science.gov (United States)

    Roychoudhury, Subir; Lyubovsky, Maxim; Walsh, D.; Chu, Deryn; Kallio, Erik

    The paper describes the design and performance of a breadboard prototype for a 5 kW fuel-processor for powering a solid oxide fuel cell (SOFC) stack. The system was based on a small, modular catalytic Microlith auto-thermal (ATR) reactor with the versatility of operating on diesel, Jet-A or JP-8 fuels. The reforming reactor utilized Microlith substrates and catalyst technology (patented and trademarked). These reactors have demonstrated the capability of efficiently reforming liquid and gaseous hydrocarbon fuels at exceptionally high power densities. The performance characteristics of the auto-thermal reactor (ATR) have been presented along with durability data. The fuel processor integrates fuel preparation, steam generation, sulfur removal, pumps, blowers and controls. The system design was developed via ASPEN ® Engineering Suite process simulation software and was analyzed with reference to system balance requirements. Since the fuel processor has not been integrated with a fuel cell, aspects of thermal integration with the stack have not been specifically addressed.

  18. The Relationship between Fuel Lubricity and Diesel Injection System Wear

    Science.gov (United States)

    1992-01-01

    by low-lubricity fuels. ,mw ~ ~ m m ml mlm II lmm ||4 IV. APPROACH A. Summary of Technical Approach Endurance tests were performed using a motorized...8 Hydraulic Head & Rotor Hydraulic Head 0 0 0 0 0 0 0 0 Discharge Fittings 0 0 0 0 0 0 0 0 Distributor Rotor I I 1 I 1 0 1 0 Delivery Valve 2 2 2 2 2...metering, distributor type. Power is transmitted to the pump by a removable drive shaft, connected to the pump rotor through a drive tang. A weak

  19. Real-world activity, fuel use, and emissions of diesel side-loader refuse trucks

    Science.gov (United States)

    Sandhu, Gurdas S.; Frey, H. Christopher; Bartelt-Hunt, Shannon; Jones, Elizabeth

    2016-03-01

    Diesel refuse trucks have the worst fuel economy of onroad highway vehicles. The real-world effectiveness of recently introduced emission controls during low speed and low engine load driving has not been verified for these vehicles. A portable emission measurement system (PEMS) was used to measure rates of fuel use and emissions on six side-loader refuse trucks. The objectives were to: (1) characterize activity, fuel use, and emissions; (2) evaluate variability between cycles and trucks; and (3) compare results with the MOVES emission factor model. Quality assured data cover 210,000 s and 550 miles of operation during which the trucks collected 4200 cans and 50 tons of waste material. The average fuel economy was 2.6 mpg. Trash collection contributed 70%-80% of total fuel use and emissions. The daily activity Operating Mode (OpMode) distribution and cycle average fuel use and emissions is different from previously used cycles such as Central Business District (CBD), New York Garbage Truck (NYGT), and William H. Martin (WHM). NOx emission rates for trucks with selective catalytic reduction were over 90% lower than those for trucks without. Similarly, trucks with diesel particulate filters had over 90% lower particulate matter (PM) emissions than trucks without. Compared to unloaded trucks, loaded truck averaged 18% lower fuel economy while NOx and PM emissions were higher by 65% and 16%, respectively. MOVES predicted values are highly correlated to empirical data; however, MOVES estimates are 37% lower for NOx and 300% higher for PM emission rates. The data presented here can be used to develop more representative cycles and improve emission factors for side-loader refuse trucks, which in turn can improve the accuracy of refuse truck emission inventories.

  20. Zero-sulfur diesel fuel from non-petroleum resources : the key to reducing U.S. oil imports.

    Science.gov (United States)

    2012-09-01

    Zero-sulfur diesel fuel of the highest quality, the fuel used in this project, can be made by Fischer-Tropsch (FT) synthesis from many non-petroleum resources, including natural gas, which is increasingly abundant in the United States. Zero-sulfur FT...

  1. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  2. Chemiluminescence analysis of the effect of butanol-diesel fuel blends on the spray-combustion process in an experimental common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia S.

    2015-01-01

    Full Text Available Combustion process was studied from the injection until the late combustion phase in an high swirl optically accessible combustion bowl connected to a single cylinder 2-stroke high pressure common rail compression ignition engine. Commercial diesel and blends of diesel and n-butanol (20%: BU20 and 40%: BU40 were used for the experiments. A pilot plus main injection strategy was investigated fixing the injection pressure and fuel mass injected per stroke. Two main injection timings and different pilot-main dwell times were explored achieving for any strategy a mixing controlled combustion. Advancing the main injection start, an increase in net engine working cycle (>40% together with a strong smoke number decrease (>80% and NOx concentration increase (@50% were measured for all pilot injection timings. Compared to diesel fuel, butanol induced a decrease in soot emission and an increase in net engine working area when butanol ratio increased in the blend. A noticeable increase in NOx was detected at the exhaust for BU40 with a slight effect of the dwell-time. Spectroscopic investigations confirmed the delayed auto-ignition (~60 ms of the pilot injection for BU40 compared to diesel. The spectral features for the different fuels were comparable at the start of combustion process, but they evolved in different ways. Broadband signal caused by soot emission, was lower for BU40 than diesel. Different balance of the bands at 309 and 282 nm, due to different OH transitions, were detected between the two fuels. The ratio of these intensities was used to follow flame temperature evolution.

  3. Diesel exhaust particles. Effects of after-treatment, fuel and lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Vaaraslahti, K.

    2006-07-01

    This thesis concentrates on studying diesel particles which are under a great attention due to their health effects. This has pushed the policymakers worldwide to limit the particle emissions of diesel vehicles. Engine manufacturers are developing their products to achieve the emission limits. Exhaust gas after-treatment systems are becoming general. In addition to fuel more attention is going to be paid to lubricant and its effects on emissions. This has also given the focus to present work, which studies the effects of after-treatment systems, fuels and lubricants on diesel particle emissions. The study utilizes regulated particle emissions measurements as a relevant reference. Although, the main focus is studying the particles further for size and number. This is done using two size distribution measurement devices, SMPS and ELPI. Only steady state driving conditions are used as they serve stable conditions for studying the particle formation using different after-treatment systems in combination with different fuels and lubricants. Oxidation catalysts and particle filters were used as after-treatment. The study of fuel effect was limited to study the effect of fuel sulfur level on the particle emission. The lubricants used contained both market general formulations and development formulations. The results showed that at high load conditions only soot particles with some absorbed/condensed volatile material were formed. Neither the fuels nor the lubricants tested had any significant effect on the soot particles. An oxidation catalyst was found to effectively reduce the soluble organic fraction but had only minor or no effect on the soot part. A catalyzed filter was found to effectively reduce the soot. At low load conditions in addition to soot particles, nanoparticles were formed. The used lubricant was found to significantly effect the nanoparticle formation although no correlation between the sulfur level and nanoparticles was found in this case. These

  4. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel.

    Science.gov (United States)

    Geng, Peng; Tan, Qinming; Zhang, Chunhui; Wei, Lijiang; He, Xianzhong; Cao, Erming; Jiang, Kai

    2016-12-01

    In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO2 emission decreases. Meanwhile, the ratio of NO2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel. Copyright © 2016. Published by Elsevier B.V.

  5. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  6. Current Trends in Water-in-Diesel Emulsion as a Fuel

    Science.gov (United States)

    Yahaya Khan, Mohammed; Abdul Karim, Z. A.; Aziz, A. Rashid A.; Tan, Isa M.

    2014-01-01

    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NOx and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus. PMID:24563631

  7. USAGE OF METHYL ESTER PRODUCED FROM WASTE GRAPE AND MN ADDITIVE AS ALTERNATIVE DIESEL FUEL

    Directory of Open Access Journals (Sweden)

    Hanbey Hazar

    2017-06-01

    Full Text Available In this study, methyl ester was produced from waste grape pulp sources. The produced methyl ester was mixed with diesel in different proportions, and was tested for engine performance and emission. It was found that with increasing biodiesel content, the specific fuel consumption and exhaust temperature have increased partially, while the CO, HC and smoke emissions decreased significantly. Additionally, in the scope of this study, dodecanol, propylene glycol and Mn based additives were added to fuel B50 to improve the emission and engine performance values. With the presence of additives, an increase in the exhaust temperature was observed, while a decrease in the specific fuel consumption, CO, HC, and smoke emissions were detected.

  8. Assessing the emission factors of low-pour-fuel-oil and diesel in steam boilers

    Directory of Open Access Journals (Sweden)

    Ohijeagbon, I.O.

    2012-12-01

    Full Text Available The purpose of this study is to examine the emissions effects resulting from the use of low pour fuel oil (LPFO and diesel fuels in industrial steam boilers operation. The method of ultimate analysis of the products of combustion and emissions of pollutant analysis were used to estimate the annual rate of emissions of boilers. The results shows that the levels of uncontrolled boiler emissions on the environment can lead to increased greenhouse effects, global warming, and pollution and toxilogical impacts on human health. Only carbon monoxide emission was found to vary with the levels of oxygen generation in the products of combustion, while other substances were generally in relation to constituents and rates of consumption of fuel.

  9. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    Science.gov (United States)

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Numerical studies of spray combustion processes of palm oil biodiesel and diesel fuels using reduced chemical kinetic mechanisms

    KAUST Repository

    Kuti, Olawole

    2014-04-01

    Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H 16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate. The Favre-Averaged Navier Stokes based simulation using the renormalization group (RNG) k-ε turbulent model was implemented in the numerical calculations of the spray formation processes while the SAGE chemical kinetic solver is used for the detailed kinetic modeling. The SAGE chemical kinetic solver is directly coupled with the gas phase calculations by renormalization group (RNG) k-ε turbulent model using a well-stirred reactor model. Validations of the spray liquid length, ignition delay and flame lift-off length data were performed against previous experimental results. The simulated liquid length, ignition delay and flame lift-off length were validated at an ambient density of 15kg/m3, and injection pressure conditions of 100, 200 and 300 MPa were utilized. The predicted liquid length, ignition delay and flame lift-off length agree with the trends obtained in the experimental data at all injection conditions. Copyright © 2014 SAE International.

  11. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures

    OpenAIRE

    Tosun, Erdi; Aydin, Kadir; Bilgili, Mehmet

    2016-01-01

    This study deals with usage of linear regression (LR) and artificial neural network (ANN) modeling to predict engine performance; torque and exhaust emissions; and carbon monoxide, oxides of nitrogen (CO, NOx) of a naturally aspirated diesel engine fueled with standard diesel, peanut biodiesel (PME) and biodiesel-alcohol (EME, MME, PME) mixtures. Experimental work was conducted to obtain data to train and test the models. Backpropagation algorithm was used as a learning algorithm of ANN in th...

  12. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity.

    Science.gov (United States)

    Martin, Nathan; Lombard, Melissa; Jensen, Kirk R; Kelley, Patrick; Pratt, Tara; Traviss, Nora

    2017-05-15

    Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (pdiesel in nonroad engines may be more harmful to human health, but the links between exposure, composition and toxicity are not straightforward. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  14. Investigation of diesel-ethanol blended fuel properties with palm methyl ester as co-solvent and blends enhancer

    Directory of Open Access Journals (Sweden)

    Mat Taib Norhidayah

    2017-01-01

    Full Text Available Diesel engine is known as the most efficient engine with high efficiency and power but always reported as high fuel emission. Malaysia National Automotive Policy (NAP was targeting to improve competitive regional focusing on green technology development in reducing the emission of the engine. Therefore, ethanol was introduced to reduce the emission of the engine and while increasing its performance, Palm methyl ester was introduced as blend enhancer to improve engine performance and improve diesel-ethanol blends stability. This paper aimed to study the characteristics of the blends and to prove the ability of palm-methyl-ester as co-solvent in ethanol-diesel blends. Stability and thermophysical test were carried out for different fuel compositions. The stability of diesel-ethanol blended was proved to be improved with the addition of PME at the longer period and the stability of the blends changed depending on temperature and ethanol content. Density and viscosity of diesel-ethanol-PME blends also give higher result than diesel-ethanol blends and it's proved that PME is able to increase density and viscosity of blends. Besides, heating value of the blends also increases with the increasing PME in diesel-ethanol blends.

  15. Development and evaluation of a microreactor for the reforming of diesel fuel in the kW range

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, M.; Kolb, G.; Schelhaas, K.P.; Schuerer, J.; Tiemann, D.; Ziogas, A. [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, 55129 Mainz (Germany); Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, 55129 Mainz (Germany); Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Den Dolech 2, Postbus 513, 5600 MB, Eindhoven (Netherlands)

    2009-08-15

    The development and evaluation of a reactor based on microchannel technology for the reforming of diesel fuel is reported. The reactor itself was based on an integrated reformer/burner heat exchange reactor concept. 38 h of diesel reforming was performed at temperatures above 750 C and at various S/C ratios, down to a minimum of 3.17, up to an electrical power equivalent of 5 kW. Over 98% total diesel conversion was observed at all times over the testing period. Variation of experimental parameters such as O/C and S/C ratios are critical for optimum operation of the reformer. (author)

  16. Lethal and behavioral impacts of diesel and fuel oil on the Antarctic amphipod Paramoera walkeri.

    Science.gov (United States)

    Brown, Kathryn E; King, Catherine K; Harrison, Peter L

    2017-09-01

    Toxicity testing with Antarctic species is required for risk assessment of fuel spills in Antarctic coastal waters. The lethal and sublethal (movement behavior) sensitivities of adults and juveniles of the Antarctic amphipod Paramoera walkeri to the water accommodated fractions (WAFs) of 3 fuels were estimated in extended-duration tests at -1 °C to 21 d. Response of P. walkeri for lethal hydrocarbon concentrations was slow, with 50% lethal concentrations (LC50s) first able to be estimated at 7 d for adults exposed to Special Antarctic Blend diesel (SAB), which had the highest hydrocarbon concentrations of the 3 fuel WAFs. Juveniles showed greater response to marine gas oil (MGO) and intermediate residual fuel oil (IFO 180) at longer exposure durations and were most sensitive at 21 d to IFO 180 (LC50 = 12 μg/L). Adults were initially more sensitive than juveniles; at 21 d, however, juveniles were more than twice as sensitive as adults to SAB (LC50 = 153 μg/L and 377 μg/L, respectively). Significant effects on movement behavior were evident at earlier time points and lower concentrations than was mortality in all 3 fuel WAFs, and juveniles were highly sensitive to sublethal effects of MGO. These first estimates of Antarctic amphipod sensitivity to diesel and fuel oils in seawater contribute to the development of ecologically relevant risk assessments for management of hydrocarbon contamination in the region. Environ Toxicol Chem 2017;36:2444-2455. © 2017 SETAC. © 2017 SETAC.

  17. Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends.

    Science.gov (United States)

    Cheung, C S; Zhu, Ruijun; Huang, Zuohua

    2011-01-01

    The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  19. Comparative Studies on Performance Characteristics of CI Engine Fuelled with Neem Methyl Ester and Mahua Methyl Ester and Its Respective Blends with Diesel Fuel.

    Science.gov (United States)

    Ragit, S S; Mohapatra, S K; Kundu, K

    2014-01-01

    In the present investigation, neem and mahua methyl ester were prepared by transesterification using potassium hydroxide as a catalyst and tested in 4-stroke single cylinder water cooled diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. A series of tests were conducted which worked at different brake mean effective pressures, OkPa, 1kPa, 2kPa, 3kPa, 4kPa, 5kPa, 6kPa and 6.5kPa. The performance and exhaust emission characteristics of the diesel engine were analyzed and compared with diesel fuel. Results showed that BTE of NME was comparable with diesel and it was noted that the BTE of N0100 is 63.11% higher than that of diesel at part load whereas it reduces 11.2% with diesel fuel at full load. In case of full load, NME showed decreasing trend with diesel fuel. BTE of diesel was 15.37% and 36.89% at part load and full load respectively. The observation indicated that BTE for MME 100 was slightly higher than diesel at part loads. The specific fuel consumption (SFC) was more for almost all blends at all loads, compared to diesel. At part load, the EGT of MME and its blends were showing similar trend to diesel fuel and at full load, the exhaust gas temperature of MME and blends were higher than diesel. Based on this study, NME could be a substitute for diesel fuel in diesel engine.

  20. Soils polluted by gasoline or diesel fuels. Benzin- og dieselolieforurenede grunde; Toksikologisk vurdering

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, P.B. (Levnedsmiddelstyrelsen, Instituttet for Toksikologi (Denmark))

    1993-01-01

    The aim of this project is to elaborate some health-based quality criteria for soils polluted by gasoline or diesel fuel/light fuel oil. The quality criteria have to be established so rigidly that soils can be reused for health-sensitive applications, like gardens or playgrounds. These criteria are to be used as an assurance that no odor/taste occurs in groundwater from soil involved, neither is any pollution visible or possible to smell while working with this soil. Assumptions from an EPA project 'Risk assessment of polluted sites' have been used as the basis for further risk assessment and establishment of quality criteria for soils,air and drinking water. Composition of petrochemical products can vary substantially, depending on production process, for instance gasoline was found to contain more than 300 chemical components. A combined set of quantitative quality criteria for soil polluted by gasoline and diesel fuel is suggested for benzene, PAH, aromatic hydrocarbons etc. There have been limited possibilities of taking into account chemical and compositional changes due to aging of petrochemicals in soils, with resulting changes in toxicological properties. Few ecotoxicological data were considered, nevertheless they might have a serious effect on quality criteria for cyclic aliphatic hydrocarbons, alkanes and naphtalenes in soils. (EG) (91 refs.)

  1. Soot and liquid-phase fuel distributions in a newly designed optically accessible DI diesel engine

    Science.gov (United States)

    Dec, J. E.; Espey, C.

    1993-10-01

    Two-dimensional (2-D) laser-sheet imaging has been used to examine the soot and liquid-phase fuel distributions in a newly designed, optically accessible, direct-injection diesel engine of the heavy-duty size class. The design of this engine preserves the intake port geometry and basic dimensions of a Cummins N-series production engine. It also includes several unique features to provide considerable optical access. Liquid-phase fuel and soot distribution studies were conducted at a medium speed (1,200 rpm) using a Cummins closed-nozzle fuel injector. The scattering was used to obtain planar images of the liquid-phase fuel distribution. These images show that the leading edge of the liquid-phase portion of the fuel jet reaches a maximum length of 24 mm, which is about half the combustion bowl radius for this engine. Beyond this point virtually all the fuel has vaporized. Soot distribution measurements were made at a high load condition using three imaging diagnostics: natural flame luminosity, 2-D laser-induced incandescence, and 2-D elastic scattering. This investigation showed that the soot distribution in the combusting fuel jet develops through three stages. First, just after the onset of luminous combustion, soot particles are small and nearly uniformly distributed throughout the luminous region of the fuel jet. Second, after about 2 crank angle degrees a pattern develops of a higher soot concentration of larger sized particles in the head vortex region of the jet and a lower soot concentration of smaller sized particles upstream toward the injector. Third, after fuel injection ends, both the soot concentration and soot particle size increase rapidly in the upstream portion of the fuel jet.

  2. Toxicological effects of emission particles from fossil- and biodiesel-fueled diesel engine with and without DOC/POC catalytic converter.

    Science.gov (United States)

    Jalava, Pasi I; Tapanainen, Maija; Kuuspalo, Kari; Markkanen, Ari; Hakulinen, Pasi; Happo, Mikko S; Pennanen, Arto S; Ihalainen, Mika; Yli-Pirilä, Pasi; Makkonen, Ulla; Teinilä, Kimmo; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2010-12-01

    There is increasing demand for renewable energy and the use of biodiesel in traffic is a major option when implying this increment. We investigated the toxicological activities of particulate emissions from a nonroad diesel engine, operated with conventional diesel fuel (EN590), and two biodiesels: rapeseed methyl ester (RME) and hydrotreated fresh vegetable oil (HVO). The engine was operated with all fuels either with or without catalyst (DOC/POC). The particulate matter (PM(1)) samples were collected from the dilution tunnel with a high-volume cascade impactor (HVCI). These samples were characterized for ions, elements, and polycyclic aromatic hydrocarbon (PAH) compounds. Mouse RAW264.7 macrophages were exposed to the PM samples for 24 h. Inflammatory mediators, (TNF-α and MIP-2), cytotoxicity, genotoxicity, and oxidative stress (reactive oxygen species [ROS]) were measured. All the samples displayed mostly dose-dependent toxicological activity. EN590 and HVO emission particles had larger inflammatory responses than RME-derived particles. The catalyst somewhat increased the responses per the same mass unit. There were no substantial differences in the cytotoxic responses between the fuels or catalyst use. Genotoxic responses by all the particulate samples were at same level, except weaker for the RME sample with catalyst. Unlike other samples, EN590-derived particles did not significantly increase ROS production. Catalyst increased the oxidative potential of the EN590 and HVO-derived particles, but decreased that with RME. Overall, the use of biodiesel fuels and catalyst decreased the particulate mass emissions compared with the EN590 fuel. Similar studies with different types of diesel engines are needed to assess the potential benefits from biofuel use in engines with modern technologies.

  3. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  4. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    Science.gov (United States)

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  5. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, 23119 Elazig (Turkey); Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, 72060 Batman (Turkey)

    2009-10-15

    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NO{sub x}), sulphur dioxide (SO{sub 2}) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NO{sub x} emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification. (author)

  6. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  7. An Experimental Study of Emission and Combustion Characteristics of Marine Diesel Engine with Fuel Injector Malfunctions

    Directory of Open Access Journals (Sweden)

    Kowalski Jerzy

    2016-01-01

    Full Text Available The presented paper shows the results of the laboratory study on the relation between chosen malfunctions of a fuel injector and composition of exhaust gas from the marine engine. The object of research is a marine 3-cylinder, four-stroke, direct injection diesel engine with an intercooler system. The engine was loaded with a generator and supercharged. The generator was electrically connected to the water resistance. The engine operated with a load between 50 kW and 250 kW at a constant speed. The engine load and speed, parameters of the turbocharger, systems of cooling, fuelling, lubricating and air exchange, were measured. Fuel injection and combustion pressures in all cylinders of the engine were also recorded. Exhaust gas composition was recorded by using a electrochemical gas analyzer. Air pressure, temperature and humidity were also recorded. Emission characteristics of the engine were calculated according to ISO 8178 standard regulations. During the study the engine operated at the technical condition recognized as „working properly” and with simulated fuel injector malfunctions. Simulation of malfunctions consisted in the increasing and decreasing of fuel injector static opening pressure, decalibration of fuel injector holes and clogging 2 neighboring of 9 fuel injector holes on one of 3 engine cylinders.

  8. Fuel Economy and Exhaust Emissions Characteristics of a Diesel Vehicle : Results of the Prototype Volkswagen 1.5 Liter Turbocharged Rabbit Tests

    Science.gov (United States)

    1981-01-01

    Tests were performed on a prototyple Vokswagen (VW) Turbocharged (TC) Rabbit diesel vehicle on a chassis dynamometer. The vheicle was tested for fuel economy and emissions on the urban Federal test Procedure (FTP), Highway Fuel Economy Test (HFET), C...

  9. Combined Effects of JP-8 Fuel and Ceramic Thermal Barrier Coatings on the Performance and Emissions of a DI Diesel Engine

    National Research Council Canada - National Science Library

    Klett, David

    1999-01-01

    An experimental study was conducted on the combined effects of using JP-8 Fuel in conjunction with thin thermal barrier coatings on the specific fuel consumption and emissions of UHC, NO, and smoke of a DI diesel engine...

  10. KAJIAN TEKNIS DAN EKONOMIS PENGGUNAAN DUAL FUEL SYSTEM (LPG-SOLAR PADA MESIN DIESEL KAPAL NELAYAN TRADISIONAL

    Directory of Open Access Journals (Sweden)

    Imam Pujo Mulyatno

    2013-06-01

    Full Text Available Pengembangan bahan bakar alternatif dalam rangka mengurangi ketergantungan terhadap bahan bakar minyak (BBM, telah menjadi agenda penting  pemerintah. Penggunaan LPG (Liquefied Petrolium Gas pada mesin diesel kapal nelayan tradisional didasarkan pada keberhasilan penggunaan LPG pada kendaraan-kendaraan darat. Penggunaan LPG pada mesin diesel dilakukan secara dual fuel. Penelitian dual fuel system pada mesin diesel kapal nelayan tradisional bertujuan untuk mengetahui pengaruh penggunaan bahan bakar dual fuel terhadap kinerja mesin dan sistem penggeraknya, meliputi konsumsi bahan bakar, daya, kecepatan kapal, serta efisiensi pada sistem penggerak kapal. Penelitian dilakukan dengan menggunakan DongFeng ZS-1100 dengan tiga putaran mesin yang berbeda yaitu 1000rpm, 1250 rpm dan 1500 rpm. Berdasarkan hasil penelitian ini, penggunaan LPG secara dual fuel mampu menggantikan konsumsi solar hingga 71% dari konsumsi solar seluruhnya selama satu jam. Komposisi LPG yang dihasilkan mencapai lebih dari 60%  dari total pemakaian bahan bakar saat dual fuel. Kecepatan dan jarak tempuh saat menggunakan solar seluruhnya mencapai 5% lebih tinggi dibandingkan dual fuel. Daya dan torsi saat menggunakan dual fuel mencapai 9,8 % lebih tinggi dibandingkan solar seluruhnya. Penggunaan dual fuel mampu mengurangi biaya operasional penangkapan ikan hingga 24,6%, namun dengan waktu tempuh 1,3% lebih lama dari solar seluruhnya. Efisiensi propulsi solar seluruhnya 6% lebih besar dibandingkan efisiensi propulsi dual fuel.

  11. Numerical investigation on the effect of injection pressure on the internal flow characteristics for diethyl ether, dimethyl ether and diesel fuel injectors using CFD

    Directory of Open Access Journals (Sweden)

    Vijayakumar Thulasi

    2011-01-01

    Full Text Available The spray characteristics of the diesel fuel are greatly affected by the cavitation formed inside the injector due to the high pressure differential across the nozzle. Many researchers across the globe are exploring the potential of using diethyl ether and dimethyl ether as an alternate for diesel fuel to meet the strict emission norms. Due to the variation in the fuel properties the internal flow characteristics in injectors for ether fuels are expected to be different from that of the diesel fuel. In this paper computational technique is used to study and compare the internal flow characteristics of diethyl ether, dimethyl ether and diesel fuel. The two phase flow model considering the fuel as a mixture of liquid and vapor is adopted for the simulation study. The injection pressure is varied from 100 to 400 bar and the flow characteristics of all three fuels are simulated and compared. Results indicate that all three fuels have distinct cavitating patterns owing to different property values. The dimethyl ether is found to be more cavitating than diesel and diethyl ether fuels as expected. The mass of fuel injected are found to be decreasing for the ether fuels when compared with diesel fuel at all injection pressures.

  12. A COMPREHENSIVE STUDY OF DI DIESEL ENGINE PERFORMANCE WITHVEGETABLE OIL: AN ALTERNATIVE BIO-FUEL SOURCE OF ENERGY

    Directory of Open Access Journals (Sweden)

    A. K. Azad

    2012-06-01

    Full Text Available This study offers comprehensive details on the use of bio-fuel as a viable and alternative source of energy. The bio-fuel was prepared from vegetable oil, i.e., mustard oil and tested in a diesel engine in both pure form and as a diesel blend. The mustard oil blend proportions were 20%, 30%, 40% and 50% and named as bio-diesel blends B20, B30, B40 and B50. A fuel-testing laboratory determined the properties of the pure mustard oil fuel and its blends, i.e., density, viscosity, dynamic viscosity, carbon residue, flash point, fire point and calorific value. An assessment of engine performance, i.e., brake horsepower (bhp, brake specific fuel consumption (bsfc, brake thermal efficiency (bte and brake mean effective pressure (bmep etc., was carried out for pure diesel, pure mustard and the blends, both in laboratory conditions and under British Standard (BS conditions. Finally, an analysis and comparison was made of the effects of the various fuels on the different engine properties.

  13. Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number

    Science.gov (United States)

    Waller, Francis Joseph; Quinn, Robert

    2004-07-06

    The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.

  14. The effect of CO{sub 2} dissolved in a diesel fuel on the jet flame characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Jin; Huang Zhen; Qiao Xinqi; Hou Yuchun [Shanghai Jiao Tong University, Shanghai (China). Research Institute of Internal Combustion Engine

    2008-03-15

    This paper is concerned with an experimental study of the jet diffusion flame characteristics of fuel containing CO{sub 2}. Using diesel fuel containing dissolved CO{sub 2} gas, experiments were performed under atmospheric conditions with a diesel hole-type nozzle of 0.19 mm orifice diameter at constant injection pressure. In this study, four different CO{sub 2} mass fraction in diesel fuel such as 3.13%, 7.18%, 12.33% and 17.82% were used to study the effect of CO{sub 2} concentration on the jet flame characteristics. Jet flame characteristics were measured by direct photography, meanwhile the image colorimetry is used to assess the qualitative features of jet flame temperature. Experimental results show that the CO{sub 2} gas dilution effect and the atomization effect have a great influence on the flame structure and average temperature. When the injection pressure of diesel fuel increased from 4 MPa to 6 MPa, the low temperature flame length increased from 18.4 cm to 21.7 cm and the full temperature flame length decreased from 147.6 cm to 134.7 cm. With the increase of CO{sub 2} gas dissolved in the diesel fuel, the jet flame full length decreased for the jet atomization being improved greatly meanwhile the low temperature flame length increased for the CO{sub 2} gas dilution effect; with the increase of CO{sub 2} gas dissolved in the diesel fuel, the average temperature of flame increases firstly and then falls. Experimental results validate that higher injection pressure will improve jet atomization and then increased the flame average temperature. 27 refs., 13 figs.

  15. EVALUATION OF POLLUTANT EMISSIONS FROM TWO-STROKE MARINE DIESEL ENGINE FUELED WITH BIODIESEL PRODUCED FROM VARIOUS WASTE OILS AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    Danilo Nikolić

    2016-12-01

    Full Text Available Shipping represents a significant source of diesel emissions, which affects global climate, air quality and human health. As a solution to this problem, biodiesel could be used as marine fuel, which could help in reducing the negative impact of shipping on environment and achieve lower carbon intensity in the sector. In Southern Europe, some oily wastes, such as wastes from olive oil production and used frying oils could be utilized for production of the second-generation biodiesel. The present research investigates the influence of the second-generation biodiesel on the characteristics of gaseous emissions of NOx, SO2, and CO from marine diesel engines. The marine diesel engine that was used, installed aboard a ship, was a reversible low-speed two-stroke engine, without any after-treatment devices installed or engine control technology for reducing pollutant emission. Tests were carried out on three regimes of engine speeds, 150 rpm, 180 rpm and 210 rpm under heavy propeller condition, while the ship was berthed in the harbor. The engine was fueled by diesel fuel and blends containing 7% and 20% v/v of three types of second-generation biodiesel made of olive husk oil, waste frying sunflower oil, and waste frying palm oil. A base-catalyzed transesterification was implemented for biodiesel production. According to the results, there are trends of NOx, SO2, and CO emission reduction when using blended fuels. Biodiesel made of olive husk oil showed better gaseous emission performances than biodiesel made from waste frying oils.

  16. Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels.

    Science.gov (United States)

    Wu, Di; Zhang, Fei; Lou, Wenhao; Li, Dan; Chen, Jianmin

    2017-12-15

    Fuel consumption is one of the major contributors to air pollution worldwide. Plenty of studies have demonstrated that the diesel and petrol exhaust fine particulate matters (FPMs) are associated with increases of various diseases. However, the influences of different fuel types and their chemical components on toxicity have been less investigated. In this study, four kinds of fuels that widely used in China were burned in a laboratory simulation, and the FPMs were collected and analyzed. Transmission electron microscopy showed that black carbon was mainly soot with a dendritic morphology. For light diesel oil, marine heavy diesel oil, 93 octane petrol and 97 octane petrol diesel oil, the emission factors of FPMs were 3.05±0.29, 3.21±0.54, 2.36±0.33, and 2.28±0.25g/kg fuel, respectively. And the emission factors for the "16 US EPA" PAHs of FPM were 0.45±0.20, 0.80±0.22, 1.00±0.20, and 1.05±0.19mg/g FPMs, respectively. Fe is the most abundant metal in these FPMs, and the emission factors of FPMs were 2.58±1.70, 4.45±0.11, 8.18±0.58, and 9.24±0.17mg/g FPMs, respectively. We ranked the cytotoxicity of the FPMs emission from fuels combustion: marine heavy diesel oil>97 octane petrol>93 octane petrol>light diesel oil, and the genotoxicity of FPMs emission from fuels combustion: marine heavy diesel oil>light diesel oil>93 octane petrol>97 octane petrol. Significant correlations were found between PAH concentrations and reactive oxygen species (ROS) generation. Our results demonstrated that fuels exhaust FPMs have strong association with ROS activity, cytotoxicity and genotoxicity. These results indicated that fuels exhaust FPMs pose a potentially serious health, and emphasized the importance of assessing the health risks posed by the particulate pollutants in vehicle exhausts. Copyright © 2017. Published by Elsevier B.V.

  17. Validation of a Grid Independent Spray Model and Fuel Chemistry Mechanism for Low Temperature Diesel Combustion

    Directory of Open Access Journals (Sweden)

    Takeshi Yoshikawa

    2009-09-01

    Full Text Available Spray and combustion submodels used in a Computational Fluid Dynamics (CFD code, KIVACHEMKIN, were validated for Low Temperature Combustion (LTC in a diesel engine by comparing measured and model predicted fuel spray penetrations, and in-cylinder distributions of OH and soot. The conditions considered were long ignition delay, early and late fuel injection cases. It was found that use of a grid independent spray model, called the GASJET model, with an improved n-heptane chemistry mechanism can well predict the heat release rate, not only of the main combustion stage, but also of the cool flame stage. Additionally, the GASJET model appropriately predicts the distributions of OH and soot in the cylinder even when the resolution of the computational mesh is decreased by half, which significantly reduces the required computational time.

  18. MD 1544 - the new diesel engine oil - a tribological contribution to fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Bolten, P.

    1984-11-01

    The type of engine oil is a major factor in the economic efficiency of diesel engine operation. A detailed description of experiments aimed at a scientific study of this influence in various engine types for a newly-developed multigrade oil (all-season oil, viscosity category SAE-15 W/40), and a comparison with a single-grade oil, is given in this report. First, the main properties of the multigrade oil with regard to its technical application are listed, (viscosity-temperature rating), followed by a diagrammatic presentation of the experiment results obtained from the test stand and a commentary on them. The experiments were: Friction loss and fuel measurements, determining the oil consumption, and engine operating experiments under practical running conditions. The results showed the advantage of using the multigrade oil for reducing fuel consumption, lowering the loss mean pressure, increasing the output potential and decreasing oil consumption.

  19. Characterization of soluble macromolecular oxidatively reactive species (SMORS) from middle distillate diesel fuels: Their origin and role in instability

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D.R.; Wechter, M.A. [Naval Research Lab., Washington, DC (United States)

    1994-12-31

    In diesel fuels which are oxidatively unstable and at least 6 months old, it has been shown that a solid phase can be isolated from the filtered fuels by methanol extraction followed by precipitation with hexane. The weight of this material is directly proportional to the amount of sludge which forms by both accelerated storage stability tests and by continued field aging of the fuels. We have suggested that the presence of this extraction induced precipitate (EIP) or fuel Soluble, Macromolecular, Oxidatively Reactive Species (SMORS) in these fuels thus accounts for the production of thermally induced precipitate (TIP) or insoluble sediment during oxidative aging of diesel fuels. In this paper the acronym EIP will be used in place of SMORS in most cases. This paper describes and summarizes the characterization studies performed to date on the EIP from representative fuels which are all greater than 6 months past production. The origin and apparent role of SMORS in sediment formation in diesel fuels is discussed.

  20. Different Injection Strategies to Enhance the Performance of Diesel Engine Powered with Biodiesel Fuels

    Directory of Open Access Journals (Sweden)

    S. V. Khandal

    2017-07-01

    Full Text Available The compression ignition (CI engines are most efficient and robust but they rely on depleting fossil fuel. Hence there is a speedy need to use alternative fuels that replaces diesel and at the same time engine should yield better performance. Accordingly, honge oil methyl ester (BHO and cotton seed oil methyl ester (BCO were selected as an alternative fuel to power CI engine in the study. In the first part, this paper aims to evaluate best fuel injection timing (IT and injector opening pressure (IOP for the biodiesel fuels (BDF. The combustion chamber (CC used for the study is toriodal re-entrant (TRCC. The experimental tests showed that BHO and BCO yielded overall better performance at IT of 19° before top dead centre (bTDC and IOP of 240 bar. In the second part, the effect of number of holes on the performance of BDF powered CI engine was studied keeping optimized IT and IOP. The six-hole injector with 0.2 mm injector orifice diameter yielded better performance compared to other injectors of different holes and size tested.

  1. EVALUATION OF VIBRATION LOAD ON COMMON RAIL FUEL SYSTEM COMPONENTS FOR DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. M. Kuharonak

    2014-01-01

    Full Text Available The objective of the paper is to develop a program, a methodology and execute vibration load tests of Common Rail fuel system components for a diesel engine. The paper contains an analysis of parameters that characterize vibration activity of research object and determine its applicability as a part of the specific mechanical system. A tests program has been developed that includes measurements of general peak values of vibration acceleration in the fuel system components, transformation of the obtained data while taking into account the fact that peak vibration acceleration values depend on crank-shaft rotation frequency and spectrum of vibration frequency, comparison of these dependences with the threshold limit values obtained in the process of component tests with the help of vibration shaker. The investigations have been carried out in one of the most stressed elements of the Common Rail fuel system that is a RDS 4.2-pressure sensor in a fuel accumulator manufactured by Robert Bosch GmbH and mounted on the MMZ D245.7E4-engines.According to the test methodology measurements have been performed on an engine test bench at all fullload engine curves. Vibration measurements have resulted in time history of the peak vibration acceleration values in three directions from every accelerometer and crank-shaft rotation frequency.It has been proposed to increase a diameter of mounting spacers of the fuel accumulator and install a damping clamp on high pressure tubes from a high pressure fuel pump to the fuel accumulator that permits to reduce a maximum peak vibration acceleration value on the pressure sensor in the fuel accumulator by 400 m/s2 and ensure its application in the given engine.

  2. Co-combustion of biodiesel with oxygenated fuels in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2017-01-01

    Full Text Available The paper presents results of experimental investigation of cocombustion process of biodiesel (B100 blended with oxygenated fuels with 20% in volume. As the alternative fuels ware used hydrated ethanol, methanol, 1-butanol and 2-propanol. It was investigated the influence of used blends on operating parameters of the test engine and exhaust emission (NOx, CO, THC, CO2. It is observed that used blends are characterized by different impact on engine output power and its efficiency. Using biodiesel/alcohol blend it is possible to improve engine efficiency with small drop in indicated mean effective pressure (IMEP. Due to combustion characteristic of biodiesel/alcohol obtained a slightly larger specific NOx emission. It was also observed some differences in combustion phases due to various values of latent heat of evaporation of used alcohols and various oxygen contents. Test results confirmed that the combustion process occurring in the diesel engine powered by blend takes place in a shorter time than in the typical diesel engine.

  3. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel.

    Science.gov (United States)

    Imdadul, H K; Zulkifli, N W M; Masjuki, H H; Kalam, M A; Kamruzzaman, M; Rashed, M M; Rashedul, H K; Alwi, Azham

    2017-01-01

    Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.

  4. CONVERSION OF DIESEL ENGINE INTO SPARK IGNITION ENGINE TO WORK WITH CNG AND LPG FUELS FOR MEETING NEW EMISSION NORMS

    Directory of Open Access Journals (Sweden)

    Syed Kaleemuddin

    2010-01-01

    Full Text Available Fluctuating fuel prices and associated pollution problems of largely exploited petroleum liquid fuel has stimulated the research on abundantly available gaseous fuels to keep the mobility industry intact. In the present work an air cooled diesel engine was modified suitably into a spark ignition engine incorporating electronic ignition and variable speed dependant spark timing to accommodate both LPG and CNG as fuels. Engine was optimized for stoichiometric operation on engine dynamometer. Materials of a few intricate engine components were replaced to suit LPG and CNG application. Ignition timing was mapped to work with gaseous fuels for different speeds. Compensation was done for recovering volumetric efficiency when operated with CNG by introducing more volume of air through resonator. Ignition timing was observed to be the pertinent parameter in achieving good performance with gaseous fuels under consideration. Performance and emission tests were carried out on engine dynamometer and chassis dynamometer. Under wide open throttle and at rated speed condition, it was observed that the peak pressure with LPG was lying between diesel fuel and CNG fuel operation due to slow burning nature of gaseous fuels. As compression ratio was maintained same for LPG and CNG fuel operation, low CO emissions were observed with LPG where as HC + NOx emissions were lower with CNG fuel operation. Chassis dynamometer based emission tests yielded lower CO2 levels with CNG operation.

  5. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype fiat 131TC 2.4 liter automobile

    Science.gov (United States)

    Quayle, S. S.

    1982-01-01

    The results obtained from fuel economy and emission tests conducted on a prototype Fiat 131 turbocharged diesel vehicle are presented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a United States number 2 diesel and a European diesel fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that turbocharging accompanied by complementary modifications results in small but substantial improvements in regulated emissions, fuel economy, and performance. Notably, particulate levels were reduced by 30 percent.

  6. Unregulated emissions from diesel engine with particulate filter using Fe-based fuel borne catalyst.

    Science.gov (United States)

    Zhao, Hong; Ge, Yunshan; Zhang, Tiezhu; Zhang, Jipeng; Tan, Jianwei; Zhang, Hongxin

    2014-10-01

    The alteration and formation of toxic compounds and potential changes in the toxicity of emissions when using after-treatment technologies have gained wide attention. Volatile organic compound (VOC), carbonyl compound and particle-phase polycyclic aromatic hydrocarbon (PAH) emissions were tested at European Steady State Cycle (ESC) to study unregulated emissions from a diesel engine with a fuel-borne catalyst and diesel particulate filter (FBC-DPF). An Fe-based fuel-borne catalyst was used for this study. According to the results, brake specific emissions of total VOCs without and with DPF were 4.7 and 4.9mg/kWh, respectively, showing a 4.3% increase. Benzene and n-undecane emissions increased and toluene emission decreased, while other individual VOC emissions basically had no change. When retrofitted with the FBC-DPF, total carbonyl compound emission decreased 15.7%, from 25.8 to 21.8mg/kWh. The two highest carbonyls, formaldehyde and acetaldehyde, were reduced from 20.0 and 3.7 to 16.5 and 3.3mg/kWh respectively. The specific reactivity (SR) with DPF was reduced from 6.68 to 6.64mg/kWh. Total particle-phase PAH emissions decreased 66.4% with DPF compared to that without DPF. However, the Benzo[a]pyrene equivalent (BaPeq) with DPF had increased from 0.016 to 0.030mg/kWh. Fluoranthene and Pyrene had the greatest decrease, 91.1% and 88.4% respectively. The increase of two- and three-ring PAHs with DPF indicates that the fuel-borne catalyst caused some gas-phase PAHs to adsorb on particles. The results of this study expand the knowledge of the effects of using a particulate filter and a Fe-based fuel-borne catalyst on diesel engine unregulated emissions. Copyright © 2014. Published by Elsevier B.V.

  7. Investigacion experimental de la prestaciones de un motor monocilíndrico usando combustible diesel emulsionado; Experimental investigation of the single cylinder engine performance using emulsified diesel fuel

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed- Melo Espinosa y otros

    2013-01-01

    Full Text Available En esta investigación se realiza un análisis de las prestaciones y emisiones de un motor Petter mono-cilíndrico de inyección directa al usar como combustible una emulsión de 5% de agua, 2% de surfactante y combustible diesel. Los resultados obtenidos con la emulsión muestran un ligero incremento en el torque y la potencia efectiva, así como en el consumo específico de combustible y el retardo de la ignición. Respecto a las emisiones de gases contaminantes, los hidrocarburos noquemados (HC y el monóxido de carbono (CO para la emulsió aumentaron en comparación con los resultados obtenidos para el combustible diesel. En ambos casos, los aumentos son unaconsecuencia de la disminución de las temperaturas en el interior de la cámara de combustión, los aumentos en el retardo de la ignición y al enfriamiento de la llama.In this investigation an analysis based on the performances and emission of a Petter single cylinderdirect injection diesel engine when using an emulsion of 5% of water, 2% of surfactant and diesel fuel as fuel is carried out. The result obtained with the emulsion tested shown slight increase ineffective torque and power output, but also increases in brake specific fuel consumption and ignition delay. Concerning the exhausts, increases in hydrocarbons (HC and carbon monoxide(CO emissions for emulsion were obtained. In both cases the increases are due to the effect of lower temperatures inside the combustion chamber, longer ignition delays and quenching of theflame.

  8. Use of high ash fuel in diesel power plants II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Vestergren, R.; Normen, E.; Hellen, G. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)] [and others

    1997-10-01

    Heavy fuel oils containing a large amount of ash are used in some geographically restricted areas. The ash components can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The LIEKKI 2 programs Use of high ash fuel in diesel power plants, Part I and II, have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuels with a very high ash content. The chemistry during combustion has been studied. The chemical and physical properties of the particles in the exhaust gas, of the deposits, and of exhaust valves have been investigated. Exhaust gas particle measurements have been performed when running on high ash fuel, both with and without deposit modifying fuel additive. Theories for the mechanisms mentioned above have been developed. On the practical side two long time field tests are going on, one with an ash/deposit modifying fuel additive (vanadium chemistry alteration), one with fuel water washing (sodium removal). Seven different reports have been written. (orig.)

  9. Agro-industrial residues as low-price feedstock for diesel-like fuel production by thermal cracking.

    Science.gov (United States)

    Santos, Andre L F; Martins, Danilo U; Iha, Osvaldo K; Ribeiro, Rafael A M; Quirino, Rafael L; Suarez, Paulo A Z

    2010-08-01

    Pyrolysis of industrial fatty wastes (soybean soapstock, beef tallow, and poultry industry waste) was carried out in the absence of catalysts. In all cases, organic mixtures of hydrocarbons and oxygenated compounds were obtained. These mixtures were distilled and diesel-like fractions were isolated and characterized by GC-FID, GC-MS and FT-IR, showing the formation of olefins, paraffins, and some oxygenated compounds such as carboxylic acids and esters. The main physical-chemical properties of those isolated diesel-like fuels (density, viscosity, distillation curve, carbon residue, copper corrosion test, cetane index, cold finger plugging point, acid index and heating value) were determined using ASTM standard methods and matched the Brazilian specification for diesel fuel. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Effect of diesel injection parameters on instantaneous fuel delivery using a solenoidoperated injector with different fuels

    Directory of Open Access Journals (Sweden)

    Octavio Armas

    2012-01-01

    Full Text Available Este trabajo describe la instalación experimental para obtener los per® les temporales de variación de presión y de la tasa de inyección de combustible por ciclo termodinámico. Los parámetros estudiados han sido los siguientes: la contrapresión en el caudalímetro, la presión de inyección y la duración del proceso. En el trabajo se usó un medidor de tasa de inyección del tipo IAV EVI- 2. El trabajo se realizó utilizando un sistema de inyección del tipo common rail con un inyector de bobina electromagnética. Como resultado, se presentan los per® les temporales de la intensidad de corriente a través del inyector (pulso eléctrico, la variación de presión en el medidor de caudal (Ap y la tasa de inyección. El estudio se ha realizado con cuatro combustibles diferentes:un combustible diesel sin biodiesel, un combustible diesel con 5.83% de biodiesel, un biodiesel de grasas animales y un diesel sintético derivado de proceso Fischer Tropsch de baja temperatura. La instalación experimental ylos procedimientos establecidos han demostrado ser adecuados para estudios de los actuales sistemas de inyección. Las diferencias registradas en términos de tasa de inyección han sido fundamentalmente debidas a las diferencias en densidad de los combustibles estudiados.

  11. Effect of the use of natural gas–diesel fuel mixture on performance, emissions, and combustion characteristics of a compression ignition engine

    Directory of Open Access Journals (Sweden)

    Yasin Karagöz

    2016-04-01

    Full Text Available A compression ignition engine with a mechanical fuel system was converted into common rail fuel system by means of a self-developed electronic control unit. The engine was modified to be operated with mixtures of diesel and natural gas fuels in dual-fuel mode. Then, diesel fuel was injected into the cylinder while natural gas was injected into intake manifold with both injectors controlled with the electronic control unit. Energy content of the sprayed gas fuel was varied in the amounts of 0% (only diesel fuel, 15%, 40%, and 75% of total fuel’s energy content. All tests were carried out at constant engine speed of 1500 r/min at full load. In addition to the experiments, the engine was modeled with a one-dimensional commercial software. The experimental and numerical results were compared and found to be in reasonable agreement with each other. Both NOx and soot emissions were dropped with 15% and 40%, respectively, energy content rates in gas–fuel mixture compared to only diesel fuel. However, an increase was observed in carbon monoxide emissions with 15% natural gas fuel addition compared to only diesel fuel. Although smoke emission was reduced with natural gas fuel addition, there was a dramatic increase in NOx emissions with 75% natural gas fuel addition.

  12. Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines

    Directory of Open Access Journals (Sweden)

    Saddam H. Al-lwayzy

    2013-02-01

    Full Text Available Biodiesel has attracted a great deal attention recently as an alternative fuel due to increasing fuel prices and the imperative to reduce emissions. Among a wide range of biodiesel resources, microalgae are a promising alternative fuel source because of the high biomass, lipid productivity and environmentally friendliness. Microalgae is also a non-edible food, therefore, there will be no impact on the human food supply chain. In this work, petroleum diesel (PD and biodiesel from the microalgae Chlorella protothecoides (MCP-B20 blend have been used to examine the performance and the emission of a 25.8 kW agriculture tractor engine. Two engine speeds at maximum power take off (PTO power and torque have been selected for analysis using analysis of variance (ANOVA. The results showed that there is no significant difference between the engine performance when microalgae biodiesel blend (MCP-B20 and PD were used. However, a significant reduction in CO, CO2 and NO emissions was found when MCP-B20 was used. These outcomes give strong indication that microalgae can be successfully used in tractors as alternative fuel.

  13. Selection of a diesel fuel surrogate for the prediction of auto-ignition under HCCI engine conditions

    Energy Technology Data Exchange (ETDEWEB)

    J.J. Hernandez; J. Sanz-Argent; J. Benajes; S. Molina [Universidad de Castilla-La Mancha, Ciudad Real (Spain). E.T.S.I. Industriales

    2008-05-15

    Homogeneous charged compression ignition (HCCI) is a promising combustion concept able to provide very low NOx and PM diesel engine emissions while keeping good fuel economy. Since HCCI combustion is a kinetically controlled process, the availability of a kinetic reaction mechanism to simulate the oxidation (low and high temperature regimes) of a diesel fuel is necessary for the optimisation, control and design of HCCI engines. Motivated by the lack of information regarding reliable diesel fuel ignition values under real HCCI diesel engine conditions, a diesel fuel surrogate has been proposed in this work by merging n-heptane and toluene kinetic mechanisms. The surrogate composition has been selected by comparing modelled ignition delay angles with experimental ones obtained from a single cylinder DI diesel engine tests. Modelled ignition angle results are in agreement with the experimental ones, both results following the same trends when changing the engine operating conditions (engine load and speed, start of injection and EGR rate). The effect of EGR, which is one of the most promising techniques to control HCCI combustion, depends on the engine load. High EGR rates decrease the n-heptane/toluene mixture reactivity when increasing the engine load but the opposite effect has been observed for lower EGR rates. A chemical kinetic analysis has shown that the influence of toluene on the ignition time is significant only at low initial temperature. More delayed combustion processes have been found when toluene is added, the dehydrogenation of toluene by OH (termination reaction) being the main kinetic path involved during toluene oxidation. 47 refs., 12 figs., 3 tabs.

  14. Investigation into the effect of different fuels on ignition delay of M-type diesel combustion process

    Directory of Open Access Journals (Sweden)

    Bibić Dževad

    2008-01-01

    Full Text Available An ignition delay is a very complex process which depends on a great number of parameters. In practice, definition of the ignition delay is based on the use of correlation expressions. However, the correlation expressions have very often limited application field. This paper presents a new correlation which has been developed during the research project on the direct injection M-type diesel engine using both the diesel and biodiesel fuel, as well as different values of a static injection timing. A dynamic start of injection, as well as the ignition delay, is defined in two ways. The first approach is based on measurement of a needle lift, while the second is based on measurement of a fuel pressure before the injector. The latter approach requires calculation of pressure signals delay through the fuel injection system and the variation of a static advance injection angle changing. The start of a combustion and the end of the ignition delay is defined on the basis of measurements of an in-cylinder pressure and its point of separation from a skip-fire pressure trace. The developed correlation gives better prediction of the ignition delay definition for the M-type direct injection diesel engine in the case of diesel and biodiesel fuel use when compared with the classic expression by the other authors available in the literature.

  15. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadian, B.; Rahimi, H.; Nikbakht, A.M.; Najafi, G. [Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran); Yusaf, T.F. [University of Southern Queensland, Toowoomba 4350 QLD (Australia)

    2009-04-15

    This study deals with artificial neural network (ANN) modeling of a diesel engine using waste cooking biodiesel fuel to predict the brake power, torque, specific fuel consumption and exhaust emissions of the engine. To acquire data for training and testing the proposed ANN, a two cylinders, four-stroke diesel engine was fuelled with waste vegetable cooking biodiesel and diesel fuel blends and operated at different engine speeds. The properties of biodiesel produced from waste vegetable oil was measured based on ASTM standards. The experimental results revealed that blends of waste vegetable oil methyl ester with diesel fuel provide better engine performance and improved emission characteristics. Using some of the experimental data for training, an ANN model was developed based on standard Back-Propagation algorithm for the engine. Multi layer perception network (MLP) was used for non-linear mapping between the input and output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) 0.9487, 0.999, 0.929 and 0.999 for the engine torque, SFC, CO and HC emissions, respectively. The prediction MSE (Mean Square Error) error was between the desired outputs as measured values and the simulated values were obtained as 0.0004 by the model. (author)

  16. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. 101-26.602-3 Section 101-26.602-3 Public... REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND PROGRAM 26.6-Procurement Sources Other Than GSA...

  17. 40 CFR 80.603 - What are the pre-compliance reporting requirements for NRLM diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the pre-compliance reporting requirements for NRLM diesel fuel? 80.603 Section 80.603 Protection of Environment ENVIRONMENTAL PROTECTION... sources, and must be provided for the periods of June 1, 2010 through December 31, 2010, calendar years...

  18. 40 CFR 80.594 - What are the pre-compliance reporting requirements for motor vehicle diesel fuel?

    Science.gov (United States)

    2010-07-01

    .../420r02016.pdf): Strategic planning, Planning and front-end engineering, Detailed engineering and permitting... June 1, 2005, all refiners and importers planning to produce or import motor vehicle diesel fuel... likely be available in its marketing area after June 1, 2006 and through 2010; (ii) If after 2003 the...

  19. Guidance Document for Alternative Diesel Fuels Proposed as Drop-In Fuels to Displace Diesel Fuels as Specified By ASTM Specification D975

    Science.gov (United States)

    2014-07-01

    water, microbial growth, storage tank linings, ambient temperature, and other contaminants such as rust and dirt. Fuel stability is an important...categorized in ASTM D1418 and some will be more resistant than others to various fuel components (like acids in unstable biodiesel). Table 2. Proposed

  20. Effect of cetane improver addition into diesel fuel: Methanol mixtures on performance and emissions at different injection pressures

    Directory of Open Access Journals (Sweden)

    Candan Feyyaz

    2017-01-01

    Full Text Available In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.

  1. Level Recession Of Emissions Release By Motor-And-Tractor Diesel Engines Through The Application Of Water-Fuel Emulsions

    Science.gov (United States)

    Ivanov, A.; Chikishev, E.

    2017-01-01

    The paper is dedicated to a problem of environmental pollution by emissions of hazardous substances with the exhaust gases of internal combustion engines. It is found that application of water-fuel emulsions yields the best results in diesels where production of a qualitative carburetion is the main problem for the organization of working process. During pilot studies the composition of a water-fuel emulsion with the patent held is developed. The developed composition of a water-fuel emulsion provides its stability within 14-18 months depending on mass content of components in it while stability of emulsions’ analogues makes 8-12 months. The mode of operation of pilot unit is described. Methodology and results of pilot study of operation of diesel engine on a water-fuel emulsion are presented. Cutting time of droplet combustion of a water-fuel emulsion improves combustion efficiency and reduces carbon deposition (varnish) on working surfaces. Partial dismantling of the engine after its operating time during 60 engine hours has shown that there is a removal of a carbon deposition in cylinder-piston group which can be observed visually. It is found that for steady operation of the diesel and ensuring decrease in level of emission of hazardous substances the water-fuel emulsion with water concentration of 18-20% is optimal.

  2. Designer-diesel from natural gas. Linde technology for clean fuel; Designer-Diesel aus Erdgas. Linde-Technologie fuer sauberen Kraftstoff

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, T.

    2006-06-15

    Gas-to-liquid (GTL) technology has lain slumbering for decades. Converting natural gas to liquid fuel simply cost too much. As the price of crude oil rises, however, this technological Sleeping Beauty is coming awake. Experts forecast a boom in the next few years, because synthetic diesel is clean and virtually sulfer-free. After years of GTL involvement, Linde now means to put its know-how to work on new projects. [German] Jahrzehntelang fuehrte die Gas-to-Liquid-Technologie (GTL) ihr Dasein eher im Verborgenen. Zu teuer war die Wandlung von Erdgas in fluessigen Kraftstoff. Mit dem steigenden Oelpreis aber erwacht diese Technik nun aus ihrem Dornroeschenschlaf. Experten erwarten fuer die kommenden Jahre einen Boom, denn synthetisches Diesel ist sauber und nahezu schwefelfrei. Linde engagiert sich bereits seit Jahren im Bereich GTL und will sein Know-how jetzt in neuen Projekten einsetzen.

  3. Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Shiquan Feng

    2017-01-01

    Full Text Available Based on the theory of direct relation graph (DRG and the sensitivity analysis, a reduced mechanism for the diesel-syngas dual fuel was constructed. Three small thresholds were applied in the process of the detailed mechanism simplification by DRG, and a skeletal mechanism with 185 elements and the 832 elementary reactions was obtained. According to the framework of the skeletal mechanism, the time-consuming approach of sensitivity analysis was employed for further simplification, and the skeletal mechanism was further reduced to the size of 158 elements and 705 reactions. The Chemkin software with the detailed mechanism was utilized to calculate the effect of syngas addition on the combustion characteristics of diesel combustion. The findings showed that the addition of syngas could reduce the ignition delay time and increase the laminar flame speed. Based on the reduced mechanism and engine parameters, a 3D model of the engine was constructed with the Forte code. The 3D model was adopted to study the effect of syngas addition on the performance and exhaust emissions of the engine and the relevant data of the experiment was used in the calibration of the 3D model.

  4. Characterization of Soluble Macromolecular Oxidatively Reactive Species (SMORS) from middle distillate diesel fuels: Their origin and role in instability

    Energy Technology Data Exchange (ETDEWEB)

    Wechter, M.A. [Univ. of Massachusetts, Dartmouth, MA (United States); Hardy, D.R. [Naval Research Lab., Washington, DC (United States)

    1995-04-01

    Compositional characterization of a solid phase material isolated by extraction from filtered liquid phase diesel fuels is reported. This solid phase material (SMORS) is shown to be the product of reactive fuel constituents and intermediate to the formation of fuel insoluble sludge. The composition of this material changes during blending processes and tends to become more oxygen rich and thus more polar. Elemental analysis, average molecular weight and pyrolysis mass spectral data are presented for SMORS from a number of representative blended fuels and their blending stocks. SMORS has been shown to be made up of oxidized trimers, tetramers and possibly higher n-mers of nitrogen containing precursors originally present in the fuel. It is not possible to determine the SMORS precursors in field aged fuel (such as those in this study) since these precursors are essentially depleted from the fuel by the time very small amounts of SMORS have been formed.

  5. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  6. The Influence of Fuel Sulfur on the Operation of Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Faurskov

    The present work focusses on SO3/H2SO4 formation and sulfuric acid (H2SO4) condensation in a large low speed 2-stroke marine diesel engine. SO3 formation is treated theoretically from a formulated multizone engine model described in this work that includes a detailed and validated sulfur reaction...... and experimental results are used for a rough validation of the theoretical model. Gaseous sulfuric acid does not form in the hot cylinder/bulk gasses but more exactly from a fast reaction between SO3 and H2O at the cooled cylinder liner surface and modeled information about SO3 formation is applied in order...... point temperatures that generally range between 190 °C – 225 °C depending on the operational conditions and fuel sulfur content. Independent of operational conditions the most aggressive acid condenses within the first 50 crank angles after top dead center due to the high cylinder pressure....

  7. Conceptual design of coal-fueled diesel system for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    A preliminary conceptual design of a coal-fueled diesel system was prepared as part of a previous systems study. Since then, our team has accumulated extensive results from testing coal-water slurry on the 13-inch bore JS engine (400 rpm) in 1987 and 1988. These results provided new insights into preferred design concepts for engine components. One objective, therefore, was to revise the preliminary design to incorporate these preferred design concepts. In addition there were certain areas where additional, more detailed analysis was required as a result of the previous conceptual design. Another objective, therefore was to perform additional detailed design efforts, such as: (1) market applications and engine sizes, (2) coal-water slurry cleaning and grinding processes, (3) emission controls and hot gas contaminant controls, (4) component durability, (5) cost and performance assessments. (VC)

  8. Fuzzy Pattern Classification Based Detection of Faulty Electronic Fuel Control (EFC Valves Used in Diesel Engines

    Directory of Open Access Journals (Sweden)

    Umut Tugsal

    2014-05-01

    Full Text Available In this paper, we develop mathematical models of a rotary Electronic Fuel Control (EFC valve used in a Diesel engine based on dynamic performance test data and system identification methodology in order to detect the faulty EFC valves. The model takes into account the dynamics of the electrical and mechanical portions of the EFC valves. A recursive least squares (RLS type system identification methodology has been utilized to determine the transfer functions of the different types of EFC valves that were investigated in this study. Both in frequency domain and time domain methods have been utilized for this purpose. Based on the characteristic patterns exhibited by the EFC valves, a fuzzy logic based pattern classification method was utilized to evaluate the residuals and identify faulty EFC valves from good ones. The developed methodology has been shown to provide robust diagnostics for a wide range of EFC valves.

  9. A study on mechanism of wear on body seat in nozzle of diesel fuel injector

    Energy Technology Data Exchange (ETDEWEB)

    Jeonggee, Son; Yamashita, Toru; Sato, Susumu; Kosaka, Hidenori; Masuko, Masabumi [Tokyo Institute of Technology (Japan)

    2013-06-01

    Wear of nozzle's body seat of diesel fuel injector, which is caused by the collision of needle on the body seat in a nozzle, affects fuel spray behaviors and injection characteristics. Recently, to reduce the wear of body seat, DLC nozzles are widely used. The DLC on the needle which is called diamond-like carbon has a certain effect in reducing wear of body seat. However, disallowable wear is reported at limited engine operating conditions. Moreover, the wear mechanism of body seat with DLC coated needle has not been made clear yet. In this study, the influence of temperature of the body seat and fuel property on the wear of DLC nozzle was investigated with a newly developed wear testing device which was constructed based on common-rail injection system. Worn surfaces of body seat were observed by FE-SEM, laser scanning microscope and EPMA. The obtained results from the measurements show that DLC nozzle has much less wear amount than non-DLC nozzle on the body seat and the corrosive wear effect is suppressed with DLC nozzle. (orig.)

  10. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Coyne, P.; Smith, G. [New Mexico State Univ., Las Cruces, NM (United States)

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  11. Comparison of Vibrations and Emissions of Conventional Jet Fuel with Stressed 100% SPK and Fully Formulated Synthetic Jet Fuel

    Directory of Open Access Journals (Sweden)

    Bhupendra Khandelwal

    2014-08-01

    Full Text Available The rapid growth of the aviation sector around the globe has witnessed an overwhelming impact on fossil fuel resources. With the implementation of stricter environmental laws over emissions by conventional jet fuels, growing demand for research on alternative fuels has become imperative. One-hundred percent Synthetic Paraffinic Kerosene (SPK and Fully Formulated Synthetic Jet Fuel have surfaced as viable alternatives for gas turbine engines due to their similar properties as that of Jet Fuel. This paper presents results from an experimental study performed on a small gas turbine engine, comparing emissions performance and vibrations for conventional Jet A-1 Fuel, thermally stressed 100% SPK and Fully Formulated Synthetic Jet Fuel. Different vibration frequencies, power spectra were observed for different fuels. Gaseous emissions observed were nearly the same, whereas, significant changes in particulates emissions were observed.

  12. Influence of top land deposits, fuel sulphur and lubricating oil viscosity on oil consumption and bore polishing in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Raddatz, J.; McGeehan, J.A.

    1984-06-01

    The subject of this paper is the description of factors which cause high oil consumption and cylinder bore polishing. The investigation focused on top land deposits, the influence of fuel sulphur and the oil viscosity in a series of direct injection diesel engines of U.S. and European origin. In these diesel engine tests it was demonstrated that particularly excessive top land deposits cause high oil consumption and cylinder bore polishing. But cylinder bore polishing can also be caused by chemical corrosion when high sulphur fuels and oils of low alcalinity are used at the same time. In addition to the top land deposits and fuel sulphur factors, multigrade oils showed significant oil control advantages. The correlation between deposits and oil sulfated ash as well as between oil dispersant type and bore polishing is demonstrated and analyses of polished cylinder liners and piston deposits are presented.

  13. Comparative Environmental Performance of Two-Diesel-Fuel Oxygenates: Dibutyl Maleate (DBM) and Triproplyene Glycol Monomethyl Ether (TGME)

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.W.; Marchetti, A.A.

    2001-10-01

    Many studies have shown that the addition of oxygen bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject of extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.

  14. A comprehensive study on the emission characteristics of E-diesel dual-fuel engine

    Directory of Open Access Journals (Sweden)

    A. Avinash

    2016-03-01

    Full Text Available Each year, the ultimate goal of emission legislation is to force technology to the point where a practically viable zero emission vehicle becomes a reality. Albeit the direction to reach this target is a formidable challenge, homogeneous charge compression ignition (HCCI is a new combustion concept to produce ultra low nitrogen oxides (NOx and smoke emissions. By the way, an endeavor has been made in this work to achieve a simultaneous reduction in both NOx and smoke levels in a direct injection compression ignition engine converted to operate on premixed charge compression ignition mode. Indeed, these promises were made possible in this work by preparing premixed fuel–air mixture outside the engine cylinder. For this purpose, ethanol was injected in the intake port at various premixed ratios (5%, 10%, 15%, 20%, 25% and 30% and conventional diesel was injected as usual. It was extrapolated from the experimental results that e-diesel operation can significantly reduce NOx and smoke levels. In addition, NOx and smoke levels reduced in this experimental study with increase in premixed fraction. Nevertheless, unburned hydrocarbons (UBHC and carbon monoxide (CO emissions exhibited reverse trend with increase in premixed fraction and the maximum value of HC and CO emission levels was noted with 30% premixed fraction.

  15. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Wilreker, V.F.; Stiller, P.H.; Scott, G.W.; Kruse, V.J.; Smith, R.F.

    1984-02-01

    This report summarizes the primary results of a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The subject utility is that owned and operated by the Block Island Power Company (BIPCO). The MOD-OA installation here was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program. The BIPCO installation was characterized by the highest wind energy penetration levels of four sites and, as such, was adjudged the best candidate for conducting the data acquisition and analysis effort that is the subject of this study. The three-phases of the study analysis address: (1) fuel displacement, (2) dynamic interaction, and (3) three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted during 1982 from February into April on Block Island, Rhode Island.

  16. Influence of polymethyl acrylate additive on the formation of particulate matter and NOX emission of a biodiesel-diesel-fueled engine.

    Science.gov (United States)

    Monirul, Islam Mohammad; Masjuki, Haji Hassan; Kalam, Mohammad Abdul; Zulkifli, Nurin Wahidah Mohd; Shancita, Islam

    2017-08-01

    The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NOX) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NOX emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.

  17. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  18. Characteristics of Waste Plastics Pyrolytic Oil and Its Applications as Alternative Fuel on Four Cylinder Diesel Engines

    Directory of Open Access Journals (Sweden)

    Nosal Nugroho Pratama

    2014-02-01

    Full Text Available Waste plastics recycling using pyrolysis method is not only able to decrease a number of environment pollutant but also able to produce economical and high quality hydrocarbon products. Two experiments were conducted to completely study Waste Plastic Pyrolytic Oil (WPPO characteristics and its applications.  First experiment investigated oil characteristics derived from pyrolysis process in two stages batch reactors: pyrolysis and catalytic reforming reactor, at maximum temperature 500oC and 450oC respectively. Waste Polyethylene (PE, Polypropylene (PP, Polystyrene (PS, Polyethylene Terepthalate (PET and others were used as raw material. Nitrogen flow rate at 0.8 l/minutes was used to increase oil weight percentage. Indonesian natural zeolite was used as catalyst. Then, second experiment was carried out on Diesel Engine Test Bed (DETB used blending of WPPO and Biodiesel fuel with a volume ratio of 1:9. This experiment was specifically conducted to study how much potency of blending of WPPO and biodiesel in diesel engine. The result of first experiment showed that the highest weight percentage of WPPO derived from mixture of PE waste (50%wt, PP waste (40%wt and PS waste (10%wt is 45.13%wt. The more weight percentage of PE in feedstock effected on the less weight percentage of WPPO, the more percentage of C12-C20 content in WPPO and the higher calorific value of WPPO. Characteristics of WPPO such as, Specific Gravity, Flash point, Pour Point, Kinematic Viscosity, Calorific value and percentage of C12-C20 showed interesting result that WPPO could be developed as alternative fuel on diesel fuel blending due to the proximity of their characteristics. Performance of diesel engine using blending of WPPO and biodiesel on second experiment gave good result so the WPPO will have great potency to be valuable alternative liquid fuel in future, especially on stationary diesel engine and transportation engine application.

  19. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.

    Science.gov (United States)

    Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar

    2017-10-18

    The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.

  20. Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as injected fuels

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Hubli 580031, Karnataka (India); Hosmath, R.S. [Department of Mechanical Engineering, K.L.E Society' s College of Engineering and Technology, Belgaum, Karnataka (India)

    2008-09-15

    In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111-33.; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983.; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466-87.; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997.; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529-38, 248.; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006.; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314-23. ]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993.; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in

  1. An investigation into the transient behavior of a microreactor system for reforming of Diesel fuel in the kw range

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, G.; Schelhaas, K.P.; Schuerer, J.; Tiemann, D.; Ziogas, A. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (Netherlands); O' Connell, M.

    2009-11-15

    A diesel reformer based on microreaction technology was developed for application in an auxiliary power unit (APU) system. The transient characteristics of this reactor for reforming of diesel fuel are reported. Diesel steam reforming was performed at various S/C ratios with load changes ranging from 30 % LL to 80 % LL, i.e., a 1.5 kW to a 4 kW electrical equivalent. The reactor itself was based on an integrated reformer/burner heat exchange reactor concept. The reforming was performed at temperatures above 750 C and at various S/C ratios, down to a minimum of 3.17. Variation of experimental parameters, such as O/C and S/C ratios, are critical for optimum and efficient operation of the reformer. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. ARTIFICIAL NEURAL NETWORK OPTIMIZATION MODELING ON ENGINE PERFORMANCE OF DIESEL ENGINE USING BIODIESEL FUEL

    National Research Council Canada - National Science Library

    M R Shukri; M M Rahman; D Ramasamy; K Kadirgama

    2015-01-01

      This paper presents a study of engine performance using a mixture of palm oil methyl ester blends with diesel oil as biodiesel in a diesel engine, and optimizes the engine performance using artificial neural network (ANN) modeling...

  3. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    Science.gov (United States)

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  4. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  5. Performance of diesel cycle engine-generator operating on dual fuel ...

    African Journals Online (AJOL)

    Unioeste;Paulo Job Brenneisen

    2013-03-06

    Mar 6, 2013 ... mode, diesel and gasification gas, as an option for decreases, the dependence on diesel by the isolated communities was ... gasification to decrease the diesel consumption to produce electricity in the isolated communities. .... determined with the use of a plastic beaker of 250 ml and a Gehaka. BK2000 ...

  6. Performance evaluation of alternative fuel/engine concepts 1990- 1995. Final report including addendum of diesel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Ikonen, M.; Kytoe, M.; Lappi, M.; Westerholm, M.; Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use

    1996-12-31

    Annex V within the IEA Agreement on Alternative Motor Fuels is the first subtask to generate new experimental data. The objective of the task is to generate information on the emission potential of alternative fuels in severe operating conditions and to evaluate new emission measurement methods. The work was carried out in three phases, Engine Tests, Vehicle Tests and Addendum of Diesel Vehicles. The work was carried out at VTT (Technical Research Centre of Finland) as a cost shared operation. Participants were Belgium (Parts Two and Three), Canada (Parts One and Two), Finland, Italy (Part One), Japan, the Netherlands Sweden and USA. The United Kingdom also joined at the end of the Annex. The work included 143 different vehicle/fuel/temperature combinations. FTP type emission tests were run on 14 vehicles powered with different gasoline compositions, methanol (M50 and M85), ethanol (E85), LPG, CNG and diesel. Both regulated and unregulated emission components were measured using the most up-to-date emissions measurement technology. The results indicated, that today`s advanced gasoline vehicles must be considered rather clean. Diesel is comparable with gasoline in the case of CO and HC. M85 gives low emissions in warm conditions, but unburned methanol must be controlled. Natural gas and LPG are inherently clean fuels which, using up-to-date engine technology, give low emissions in all conditions. (orig.) (29 refs.)

  7. Proposed Rule for Control of Air Pollution From New Motor Vehicles: Proposed Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements

    Science.gov (United States)

    Rule summary, CFR citations and additional resources concerning proposed new emission standards that will begin to take effect in 2007 and corresponding diesel fuel requirements that take effect in 2006.

  8. Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine.

    Science.gov (United States)

    Jathar, Shantanu H; Friedman, Beth; Galang, Abril A; Link, Michael F; Brophy, Patrick; Volckens, John; Eluri, Sailaja; Farmer, Delphine K

    2017-02-07

    Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA from a diesel engine using an oxidation flow reactor (OFR). In less than a day of simulated atmospheric aging, SOA production exceeded POA emissions by an order of magnitude or more. Efficient combustion at higher engine loads coupled to the removal of SOA precursors and particle emissions by aftertreatment systems reduced POA emission factors by an order of magnitude and SOA production factors by factors of 2-10. The only exception was that the retrofitted aftertreatment did not reduce SOA production at idle loads where exhaust temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Use of biodiesel resulted in nearly identical POA and SOA compared to diesel. The effective SOA yield of diesel exhaust was similar to that of unburned diesel fuel. While OFRs can help study the multiday evolution, at low particle concentrations OFRs may not allow for complete gas/particle partitioning and bias the potential of precursors to form SOA.

  9. Experimental investigation of hydraulic effects of two-stage fuel injection on fuel-injection systems and diesel combustion in a high-speed optical common-rail diesel engine

    OpenAIRE

    Herfatmanesh, MR; Zhao, H

    2014-01-01

    In order to meet the ever more stringent emission standards, significant efforts have been devoted to the research and development of internal combustion engines. The requirements for more efficient and responsive diesel engines have led to the introduction and implementation of multiple injection strategies. However, the effects of such injection modes on the hydraulic systems, such as the high-pressure pipes and fuel injectors, must be thoroughly examined and compensated for since the combu...

  10. Investigacion experimental de la prestaciones de un motor monocilíndrico usando combustible diesel emulsionado; Experimental investigation of the single cylinder engine performance using emulsified diesel fuel

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2015-04-01

    Full Text Available En esta investigación se realiza un análisis de las prestaciones y emisiones de un motor Petter mono-cilíndrico de inyección directa al usar como combustible una emulsión de 5% de agua, 2%de surfactante y combustible diesel. Los resultados obtenidos con la emulsión muestran un ligero incremento en el torque y la potencia efectiva, así como en el consumo específico de combustible y el retardo de la ignición. Respecto a las emisiones de gases contaminantes, los hidrocarburos noquemados (HC y el monóxido de carbono (CO para la emulsión aumentaron en comparación con los resultados obtenidos para el combustible diesel. En ambos casos, los aumentos son unaconsecuencia de la disminución de las temperaturas en el interior de la cámara de combustión, los aumentos en el retardo de la ignición y al enfriamiento de la llama. In this investigation an analysis based on the performances and emission of a Petter single cylinder direct injection diesel engine when using an emulsion of 5% of water, 2% of surfactant and dieselfuel as fuel is carried out. The result obtained with the emulsion tested shown slight increase in effective torque and power output, but also increases in brake specific fuel consumption and ignition delay. Concerning the exhausts, increases in hydrocarbons (HC and carbon monoxide(CO emissions for emulsion were obtained. In both cases the increases are due to the effect of lower temperatures inside the combustion chamber, longer ignition delays and quenching of the flame.

  11. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  12. A study on synthesis of energy fuel from waste plastic and assessment of its potential as an alternative fuel for diesel engines.

    Science.gov (United States)

    Kaimal, Viswanath K; Vijayabalan, P

    2016-05-01

    The demand for plastic is ever increasing and has produced a huge amount of plastic waste. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste plastic. This paper assesses the potential of using Waste Plastic Oil (WPO), synthesized using pyrolysis of waste plastic, as an alternative for diesel fuel. In this research work, the performance and emission characteristics of a single cylinder diesel engine fuelled with WPO and its blends with diesel are studied. In addition to neat plastic oil, three blends (PO25, PO50 and PO75) were prepared on a volumetric basis and the engine was able to run on neat plastic oil. Brake thermal efficiency of blends was lower compared to diesel, but PO25 showed similar performance to that of diesel. The emissions were reduced considerably while using blends when compared to neat plastic oil. The smoke and NOX were reduced by 22% and 17.8% respectively for PO25 than that of plastic oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    Science.gov (United States)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-09-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  14. Oxidative stress, genotoxicity, and vascular cell adhesion molecule expression in cells exposed to particulate matter from combustion of conventional diesel and methyl ester biodiesel blends

    DEFF Research Database (Denmark)

    Hemmingsen, Jette Gjerke; Møller, Peter; Nøjgaard, Jakob Klenø

    2011-01-01

    Our aim was to compare hazards of particles from combustion of biodiesel blends and conventional diesel (D(100)) in old and improved engines. We determined DNA damage in A549 cells, mRNA levels of CCL2 and IL8 in THP-1 cells, and expression of ICAM-1 and VCAM-1 in human umbilical cord endothelial...

  15. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures

    Directory of Open Access Journals (Sweden)

    Erdi Tosun

    2016-12-01

    Full Text Available This study deals with usage of linear regression (LR and artificial neural network (ANN modeling to predict engine performance; torque and exhaust emissions; and carbon monoxide, oxides of nitrogen (CO, NOx of a naturally aspirated diesel engine fueled with standard diesel, peanut biodiesel (PME and biodiesel-alcohol (EME, MME, PME mixtures. Experimental work was conducted to obtain data to train and test the models. Backpropagation algorithm was used as a learning algorithm of ANN in the multilayered feedforward networks. Engine speed (rpm and fuel properties, cetane number (CN, lower heating value (LHV and density (ρ were used as input parameters in order to predict performance and emission parameters. It was shown that while linear regression modeling approach was deficient to predict desired parameters, more accurate results were obtained with the usage of ANN.

  16. The Development of a Pin-on-Twin Scuffing Test to Evaluate Materials for Heavy Duty Diesel Fuel Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Truhan, John J. [Caterpillar Inc.; Ott, Ronald D [ORNL

    2007-01-01

    In order to meet stricter emissions requirements, advanced heavy-duty diesel fuel injection systems will be required to operate at higher pressures and temperatures and in fuels that have poorer lubricity. Scuffing, as a mode of failure, severely limits injector life, and new materials and processes are required to resist scuffing in these more stringent operating conditions. Consequently, there is a need to test the ability of candidate fuel system materials to resist scuffing in fuel-lubricated environments. This paper describes a pin-on-twin reciprocating wear test in which a cylindrical specimen slides, under load, across two fixed, parallel cylindrical specimens that are perpendicular to the axis of the upper sliding specimen. Cylinders of annealed AISI 52100 were tested dry and lubricated by Jet A fuel and on-highway no. 2 diesel fuel. The friction force was found to give a reliable real-time determination of the onset of scuffing as verified by the morphology of the wear scar. The scar width and surface roughness profiles either did not reliably detect the onset or were difficult to carry out with this geometry.

  17. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission.

    Science.gov (United States)

    Keskin, Ali; Gürü, Metin; Altiparmak, Duran

    2008-09-01

    The purpose of this study is to investigate influences of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Tall oil resinic acids were reacted with MgO and MoO(2) stoichiometrically for the production of metal-based fuel additives (combustion catalysts). The metal-based additives were added into tall oil biodiesel (B60) at the rate of 4 micromol/l, 8 micromol/l and 12 micromol/l for preparing test fuels. In general, both of the metal-based additives improved flash point, pour point and viscosity of the biodiesel fuel, depending on the rate of additives. A single cylinder DI diesel engine was used in the tests. Engine performance values did not change significantly with biodiesel fuels, but exhaust emission profile was improved. CO emissions and smoke opacity decreased by 56.42% and by 30.43%, respectively. In general, low NO(x) and CO(2) emissions were measured with the biodiesel fuels.

  18. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    Science.gov (United States)

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.

  19. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms

    Directory of Open Access Journals (Sweden)

    Varese Giovanna C

    2010-02-01

    Full Text Available Abstract Background The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure via enrichment (i.e., serial growth transfers on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. Results In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms on Diesel (G1 and HiQ Diesel (G2, respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30°C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20°C for several months. Conclusions ENZ-G1 and ENZ-G2 are very similar highly enriched consortia

  20. In-use activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks.

    Science.gov (United States)

    Sandhu, Gurdas S; Frey, H Christopher; Bartelt-Hunt, Shannon; Jones, Elizabeth

    2015-03-01

    The objectives of this study were to quantify real-world activity, fuel use, and emissions for heavy duty diesel roll-off refuse trucks; evaluate the contribution of duty cycles and emissions controls to variability in cycle average fuel use and emission rates; quantify the effect of vehicle weight on fuel use and emission rates; and compare empirical cycle average emission rates with the U.S. Environmental Protection Agency's MOVES emission factor model predictions. Measurements were made at 1 Hz on six trucks of model years 2005 to 2012, using onboard systems. The trucks traveled 870 miles, had an average speed of 16 mph, and collected 165 tons of trash. The average fuel economy was 4.4 mpg, which is approximately twice previously reported values for residential trash collection trucks. On average, 50% of time is spent idling and about 58% of emissions occur in urban areas. Newer trucks with selective catalytic reduction and diesel particulate filter had NOx and PM cycle average emission rates that were 80% lower and 95% lower, respectively, compared to older trucks without. On average, the combined can and trash weight was about 55% of chassis weight. The marginal effect of vehicle weight on fuel use and emissions is highest at low loads and decreases as load increases. Among 36 cycle average rates (6 trucks×6 cycles), MOVES-predicted values and estimates based on real-world data have similar relative trends. MOVES-predicted CO2 emissions are similar to those of the real world, while NOx and PM emissions are, on average, 43% lower and 300% higher, respectively. The real-world data presented here can be used to estimate benefits of replacing old trucks with new trucks. Further, the data can be used to improve emission inventories and model predictions. In-use measurements of the real-world activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks can be used to improve the accuracy of predictive models, such as MOVES, and emissions

  1. Microbial activities in hydrocarbon-laden wastewaters: Impact on diesel fuel stability and the biocorrosion of carbon steel.

    Science.gov (United States)

    Liang, Renxing; Duncan, Kathleen E; Le Borgne, Sylvie; Davidova, Irene; Yakimov, Michail M; Suflita, Joseph M

    2017-08-20

    Anaerobic hydrocarbon biodegradation not only diminishes fuel quality, but also exacerbates the biocorrosion of the metallic infrastructure. While successional events in marine microbial ecosystems impacted by petroleum are well documented, far less is known about the response of communities chronically exposed to hydrocarbons. Shipboard oily wastewater was used to assess the biotransformation of different diesel fuels and their propensity to impact carbon steel corrosion. When amended with sulfate and an F76 military diesel fuel, the sulfate removal rate in the assay mixtures was elevated (26.8μM/d) relative to incubations receiving a hydroprocessed biofuel (16.1μM/d) or a fuel-unamended control (17.8μM/d). Microbial community analysis revealed the predominance of Anaerolineae and Deltaproteobacteria in F76-amended incubations, in contrast to the Beta- and Gammaproteobacteria in the original wastewater. The dominant Smithella-like sequences suggested the potential for syntrophic hydrocarbon metabolism. The general corrosion rate was relatively low (0.83 - 1.29±0.12mpy) and independent of the particular fuel, but pitting corrosion was more pronounced in F76-amended incubations. Desulfovibrionaceae constituted 50-77% of the sessile organisms on carbon steel coupons. Thus, chronically exposed microflora in oily wastewater were differentially acclimated to the syntrophic metabolism of traditional hydrocarbons but tended to resist isoalkane-laden biofuels. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Water-in-diesel fuel nanoemulsions: Preparation, stability and physical properties

    Directory of Open Access Journals (Sweden)

    M.R. Noor El-Din

    2013-12-01

    Full Text Available In this work, water-in-diesel fuel nanoemulsions were prepared with mixed nonionic surfactants. Several mixtures of sorbitan monooleate and polyoxyethylene (20 sorbitan monooleate, with different Hydrophilic–Lipophilic Balance (HLB values (9.6, 9.8, 10, 10.2 and 10.4 were prepared to achieve the optimal HLB value. Three mixed surfactant concentrations were prepared at 6%, 8% and 10% to identify the optimum concentration. Five emulsions with different water contents: 5%, 6%, 7%, 8% and 9% (wt./wt. were prepared using high energy method at the optimum conditions (HLB = 10 and mixed surfactant concentration = 10%. The effect of HLB value, mixed surfactant concentration and water content on the droplet size has been studied. The interfacial tension and thermodynamic properties of the individual and the blended emulsifiers were investigated. Droplet size of the prepared nanoemulsions was determined by dynamic light scattering and the nanoemulsion stability was assessed by measuring the variation of the droplet size as a function of time. From the obtained results, it was found that the mean droplet sizes were formed between 49.55 and 104.4 nm depending on HLB value, surfactant concentration and water content of the blended emulsifiers. The physical properties, kinematic viscosity and density, of the prepared nanoemulsions and the effect of different temperatures on these properties were measured.

  3. Artificial neural network modeling of jatropha oil fueled diesel engine for emission predictions

    Directory of Open Access Journals (Sweden)

    Ganapathy Thirunavukkarasu

    2009-01-01

    Full Text Available This paper deals with artificial neural network modeling of diesel engine fueled with jatropha oil to predict the unburned hydrocarbons, smoke, and NOx emissions. The experimental data from the literature have been used as the data base for the proposed neural network model development. For training the networks, the injection timing, injector opening pressure, plunger diameter, and engine load are used as the input layer. The outputs are hydrocarbons, smoke, and NOx emissions. The feed forward back propagation learning algorithms with two hidden layers are used in the networks. For each output a different network is developed with required topology. The artificial neural network models for hydrocarbons, smoke, and NOx emissions gave R2 values of 0.9976, 0.9976, and 0.9984 and mean percent errors of smaller than 2.7603, 4.9524, and 3.1136, respectively, for training data sets, while the R2 values of 0.9904, 0.9904, and 0.9942, and mean percent errors of smaller than 6.5557, 6.1072, and 4.4682, respectively, for testing data sets. The best linear fit of regression to the artificial neural network models of hydrocarbons, smoke, and NOx emissions gave the correlation coefficient values of 0.98, 0.995, and 0.997, respectively.

  4. Physiological responses of the eustigmatophycean Nannochloropsis salina to aqueous diesel fuel pollution

    Directory of Open Access Journals (Sweden)

    Rania Farag Mohammad

    2005-03-01

    Full Text Available The marine eustigmatophycean microalga Nannochloropsis(Monallantus salina Hibberd was cultivated in a batchculture in the presence of various concentrations (0, 25, 50, 75 and 100%of an aqueous extract of diesel fuel oil in order to assess the influenceof the pollutant on the growth and certain physiological responses of themicroalga. The growth data revealed a significant negative effect of thevarious pollutant concentrations on the algal cell number(p ≤ 0.05. However, at the mid-logarithmic growth phase (day 8,the algal cells were analysed for chlorophyll a, β-glucan,amino acid pool, C/N ratio and elemental composition. According to ourresults, N. salina was significantly affected by the pollution withregard to the different physiological parameters examined, and thissignificance may be negative, positive or variable. The effect of thepollutant on cellular β-glucan and the total amount of amino acidswas negative; however, the composition of the cellular amino acid poolremained unaffected. A positive effect of the pollutant on cellular chl aand the C/N ratio was observed. In addition, the pollutant showed variableeffects on the composition of different elements, as shown byenergy-dispersive X-ray microanalysis. Also, an existencecorrelation between different elements was statistically reported.

  5. Adsorption of Thiophenic Compounds from Model Diesel Fuel Using Copper and Nickel Impregnated Activated Carbons

    Directory of Open Access Journals (Sweden)

    Ramin Karimzadeh

    2012-10-01

    Full Text Available Adsorption of sulfur compoundsby porous materials is an effective way to produce cleaner diesel fuel.In this study, adsorption of refractory thiophenic sulfur compounds, i.e., benzothiophene (BT, dibenzothiophene (DBT, and 4,6-dimethyldibenzothiophene (4,6-DMDBT in single-solute systems from n-hexane solutions onto metal-impregnated activated carbons was investigated. A hydrogen-treated activated carbon fiber was selectively loaded with Ni, NiO, Cu, Cu2O, and CuO species to systematically assess the impact of each metal species on the adsorption of thiophenic compounds (TC. Metal-loaded adsorbents had the same total metal contents and similar microporosities, but contained different types of copper or nickel species. All metal-loaded adsorbents showed enhanced adsorption of tested TC. Cu2O- or NiO-loaded adsorbents exhibited the highest uptakes, due to more specific interactions between Cu+ or Ni2+ species and TC molecules. The theoretical monolyer coverage of TC on the exposed Cu+ sites was estimated and compared with that calculated from the experimental data. Results suggested catalytic conversion of TC molecules to other compounds on the Cu+ sites, followed by adsorption of reaction products onto the carbon surface or multilayer accumulation of TC molecules on the Cu+sites. TC adsorption uptake of the majority of adsorbents followed the order of: 4,6-DMDBT > DBT > BT due to higher intensity of specific and non-specific interactions of larger TC molecules with adsorbents.

  6. FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-05-31

    Western Research Institute (WRI) is commercializing Diesel Dog Portable Soil Test Kits for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated ASTM Method D-5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In FY 99, twenty-five preproduction kits were successfully constructed in cooperation with CF Electronics, Inc., of Laramie, Wyoming. The kit components work well and the kits are fully operational. In the calendar year 2000, kits were provided to the following entities who agreed to participate as FY 99 and FY 00 JSR (Jointly Sponsored Research) cosponsors and use the kits as opportunities arose for field site work: Wyoming Department of Environmental Quality (DEQ) (3 units), F.E. Warren Air Force Base, Gradient Corporation, The Johnson Company (2 units), IT Corporation (2 units), TRC Environmental Corporation, Stone Environmental, ENSR, Action Environmental, Laco Associates, Barenco, Brown and Caldwell, Dames and Moore Lebron LLP, Phillips Petroleum, GeoSyntek, and the State of New Mexico. By early 2001, ten kits had been returned to WRI following the six-month evaluation period. On return, the components of all ten kits were fully functional. The kits were upgraded with circuit modifications, new polyethylene foam inserts, and updated instruction manuals.

  7. Using pre-heated sunflower oil as fuel in a diesel cycle engine

    Energy Technology Data Exchange (ETDEWEB)

    Delalibera, H.C.; Neto, P.H.W.; Martini, J. [State Univ. of Ponta Grossa (Brazil)

    2010-07-01

    This paper reported on a study in which 100 per cent sunflower oil was used in a tractor to compare its performance with petroleum diesel. Work trials were carried out for 50 hours on a single cylinder direct injection micro-tractor. In the first trial (E-1), the temperature of the vegetable oil was the same as the air temperature of the engine, while in the second trial (E-2), the oil was heated to a temperature of about 90 degrees C. Only petrodiesel was used in the third (E-3) trial. The head gasket burned in the first test after 50 hours of operation. An increase in compression was noted during trials E-1 and E-2. The carbonized mass in the nozzle of the E-2 trial was 81.5 per cent lower than in the E-1 trial. The carbonized mass in the intake system of the E-2 trial was 51.7 per cent lower than in the E-1 trial. The exhaust system of the E-2 trial was 33.4 per cent lower than that of the E-1 trial. For the combustion chamber, the carbonization of the E-1 trial was nearly the same as in the E-2 trial. The hourly fuel consumption of the E-1 trial was 2.3 per cent higher than petrodiesel, while E-2 trial was 0.7 per cent higher than petrodiesel. In the first 2 tests, the lubricating oil was contaminated by vegetable oil fuel. In general, results from the first trial were better than results from the second trial.

  8. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    Science.gov (United States)

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  9. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

    Science.gov (United States)

    Bugarski, Aleksandar D; Hummer, Jon A; Stachulak, Jozef S; Miller, Arthur; Patts, Larry D; Cauda, Emanuele G

    2016-03-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated

  10. International Standards to Reduce Emissions from Marine Diesel Engines and Their Fuels

    Science.gov (United States)

    Overview of EPA coordination with International Maritime Organization including a list of all international regulations and materials related to emissions from marine compression-ignition (diesel) engines.

  11. Combustion of soybean oil and diesel mixtures for heating purposes

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Adriana Correa; Sanz, Jose Francisco [European University Miguel de Cervantes, Valladolid (Spain)], E-mail: acorrea@uemc.es; Hernandez, Salvador; Navas, Luis Manuel; Rodriguez, Elena; Ruiz, Gonzalo [University of Valladolid (Spain). Dept. of Agricultural and Forest Engineering; San Jose, Julio [University of Valladolid (Spain). Dept. of Energetic Engineering; Gomez, Jaime [University of Valladolid (Spain). Dept. of Communications and Signal Theory and Telematics Engineering

    2008-07-01

    Using blends of vegetable oils with petroleum derivates for heating purposes has several advantages over other energy application for vegetable oils. This paper presents the results of an investigation by use of soybean oil and diesel mixture as fuel for producing heat in conventional diesel installation. The paper is set out as follows: properties characterization of soybean oil as fuel and of diesel oil, as well as the mixture of both; selection of the mixture according to their physical chemical properties and how they adapt to conventional combustion installation; experimentation with the selected mixture, allowing the main combustion parameters to be measured; processing the collected data, values of combustion, efficiency and reduction of emissions. Conclusions show that the use of soybean oil and diesel mixture for producing heat energy in conventional equipment is feasible and beneficial for reduction emissions. (author)

  12. Effect of fuel composition on poly aromatic hydrocarbons in particulate matter from DI diesel engine; Particulate chu no PAH ni oyobosu nenryo sosei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S.; Tatani, T.; Yoshida, H.; Takizawa, H.; Miyoshi, K.; Ikebe, H. [COSMO Research Institute, Tokyo (Japan)

    1997-10-01

    The effect of fuel composition on poly aromatic hydrocarbons (PAH) in particulate matter from DI diesel engine was investigated by using deeply desulfurized fuel and model fuel which properties are not interrelated. It was found that the deeply desulfurized fuel have effect on reducing PAH emissions. Furthermore, it was suggested that poly aromatics in the fuel affect PAH emissions and the influence of tri-aromatics in the fuel was promoted by the coexistence of mono-aromatics or naphthene. PAH formation scheme from each fuel component was proposed by chemical thermodynamic data. 4 refs., 8 figs., 3 tabs.

  13. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  14. Microwave Nitridation of Sintered Reaction Bonded Silicon Parts for Natural Gas Fueled Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Edler, J.; Kiggans, J.O.; Suman, A.W.; Tiegs, T.N.

    1999-01-01

    This cooperative project was a joint development program between Eaton Corporation and Lockheed Martin Energy Research (LMER). Cooperative work was of benefit to both parties. ORNL was able to assess up-scale of the microwave nitridation process using a more intricate-shaped part designed for application in advanced diesel engines. Eaton Corporation mined access to microwave facilities and expertise for the nitridation of SRBSN materials. The broad objective of the CRADA established with Eaton Corporation and ORNL was to develop cost-effective silicon nitride ceramics compared to the current materials available. The following conclusions can be made from the work performed under the CRADA: (1) Demonstrated that the binder burnout step can be incorporated into the SRBSN processing in the microwave furnace. (2) Scale-up of the microwave nitridation process using Eaton Corporation parts showed that the nitridation weight gains were essentially identical to those obtained by conventional heating. (3) Combined nitridation and sintering processes using silicon nitride beads as packing powders results in degradation of the mechanical properties. (4) Gelcasting of silicon nitride materials using Eaton Si mixtures was demonstrated.

  15. Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2017-07-01

    Full Text Available The aim of this work was to study the combustion, performance, and emission characteristics of a 5.5 kW four-stroke single-cylinder water-cooled direct-injection diesel engine operated with blends of biodiesel-like fuel (BLF15, BLF20 & BLF25 obtained from a 50:50 mixture of transesterified waste transformer oil (TWTO and waste canola oil methyl esters (WCOME with petroleum diesel. The mixture of the waste oils was named as biodiesel-like fuel (BLF.The engine fuelled with BLF blends was evaluated in terms of combustion, performance, and emission characteristics. FTIR analysis was carried out to know the functional groups in the BLF fuel. The experimental results revealed the shorter ignition delay and marginally higher brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and exhaust gas temperature (EGT values for BLF blends as compared to diesel. The hydrocarbon (HC and carbon monoxide (CO emissions were decreased by 10.92–31.17% and 3.80–6.32%, respectively, as compared to those of di