WorldWideScience

Sample records for conventional dcs reduce

  1. Effects of High-Definition and Conventional tDCS on Response Inhibition.

    Science.gov (United States)

    Hogeveen, J; Grafman, J; Aboseria, M; David, A; Bikson, M; Hauner, K K

    2016-01-01

    Response inhibition is a critical executive function, enabling the adaptive control of behavior in a changing environment. The inferior frontal cortex (IFC) is considered to be critical for response inhibition, leading researchers to develop transcranial direct current stimulation (tDCS) montages attempting to target the IFC and improve inhibitory performance. However, conventional tDCS montages produce diffuse current through the brain, making it difficult to establish causality between stimulation of any one given brain region and resulting behavioral changes. Recently, high-definition tDCS (HD-tDCS) methods have been developed to target brain regions with increased focality relative to conventional tDCS. Remarkably few studies have utilized HD-tDCS to improve cognitive task performance, however, and no study has directly compared the behavioral effects of HD-tDCS to conventional tDCS. In the present study, participants received either HD-tDCS or conventional tDCS to the IFC during performance of a response inhibition task (stop-signal task, SST) or a control task (choice reaction time task, CRT). A third group of participants completed the same behavioral protocols, but received tDCS to a control site (mid-occipital cortex). Post-stimulation improvement in SST performance was analyzed as a function of tDCS group and the task performed during stimulation using both conventional and Bayesian parameter estimation analyses. Bayesian estimation of the effects of HD- and conventional tDCS to IFC relative to control site stimulation demonstrated enhanced response inhibition for both conditions. No improvements were found after control task (CRT) training in any tDCS condition. Results support the use of both HD- and conventional tDCS to the IFC for improving response inhibition, providing empirical evidence that HD-tDCS can be used to facilitate performance on an executive function task. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Motor/Prefrontal Transcranial Direct Current Stimulation (tDCS) Following Lumbar Surgery Reduces Postoperative Analgesia Use.

    Science.gov (United States)

    Glaser, John; Reeves, Scott T; Stoll, William David; Epperson, Thomas I; Hilbert, Megan; Madan, Alok; George, Mark S; Borckardt, Jeffrey J

    2016-05-01

    Randomized, controlled pilot trial. The present study is the first randomized, double-blind, sham-controlled pilot clinical trial of transcranial direct current stimulation (tDCS) for pain and patient-controlled analgesia (PCA) opioid usage among patients receiving spine surgery. Lumbar spinal surgeries are common, and while pain is often a complaint that precedes surgical intervention, the procedures themselves are associated with considerable postoperative pain lasting days to weeks. Adequate postoperative pain control is an important factor in determining recovery and new analgesic strategies are needed that can be used adjunctively to existing strategies potentially to reduce reliance on opioid analgesia. Several novel brain stimulation technologies including tDCS are beginning to demonstrate promise as treatments for a variety of pain conditions. Twenty-seven patients undergoing lumbar spine procedures at Medical University of South Carolina were randomly assigned to receive four 20-minute sessions of real or sham tDCS during their postsurgical hospital stay. Patient-administered hydromorphone usage was tracked along with numeric rating scale pain ratings. The effect of tDCS on the slope of the cumulative PCA curve was significant (P tDCS was associated with a 23% reduction in PCA usage. In the real tDCS group a 31% reduction was observed in pain-at-its-least ratings from admission to discharge (P = 0.027), but no other changes in numeric rating scale pain ratings were significant in either group. The present pilot trial is the first study to demonstrate an opioid sparing effect of tDCS after spine surgical procedures. Although this was a small pilot trial in a heterogeneous sample of spinal surgery patients, a moderate effect-size was observed for tDCS, suggesting that future work in this area is warranted. 2.

  3. The effects of anodal-tDCS on corticospinal excitability enhancement and its after-effects: conventional versus unihemispheric concurrent dual-site stimulation

    Directory of Open Access Journals (Sweden)

    Bita eVaseghi

    2015-09-01

    Full Text Available Previous researchers have approved the ability of anodal transcranial direct current stimulation (a-tDCS of the primary motor cortex (M1 to enhance corticospinal excitability (CSE. The primary aim of the current study was to investigate the effect of concurrent stimulation of M1 and a functionally connected cortical site of M1 on CSE modulation. This new technique is called unihemispheric concurrent dual-site a-tDCS (a-tDCSUHCDS. The secondary aim was to investigate the mechanisms underlying the efficacy of this new approach in healthy individuals. In a randomized crossover study, 12 healthy right-handed volunteers received a-tDCS under five conditions: a-tDCS of M1, a-tDCSUHCDS of M1– dorsolateral prefrontal cortex (DLPFC, a-tDCSUHCDS of M1– primary sensory cortex (S1, a-tDCSUHCDS of M1– primary visual cortex (V1, and sham a-tDCSUHCDS. Peak-to-peak amplitude of transcranial magnetic stimulation (TMS induced MEPs, short-interval intracortical inhibition and intracortical facilitation were assessed before and four times after each condition. A-tDCSUHCDS conditions induced larger MEPs than conventional a-tDCS. The level of M1 CSE was significantly higher following a-tDCSUHCDS of M1-DLPFC than other a-tDCSUHCDS conditions (P < 0.001, and lasted for over 24 hours. The paired-pulse TMS results after a-tDCS of M1-DLPFC showed significant facilitatory increase and inhibitory change. A-tDCSUHCDS of M1-DLPFC increases M1 CSE twofold that of conventional a-tDCS. A-tDCSUHCDS of M1-DLPFC enhances the activity of glutamergic mechanisms for at least 24 hours. Such long-lasting M1 CSE enhancement induced by a-tDCSUHCDS of M1-DLPFC could be a valuable finding in clinical scenarios such as learning, motor performance, or pain management.The present study has been registered on the Australian New Zealand Clinical Trial at http://www.anzctr.org.au/ with registry number of ACTRN12614000817640.

  4. tDCS combined with optokinetic drift reduces egocentric neglect in severely impaired post-acute patients.

    Science.gov (United States)

    Turgut, Nergiz; Miranda, Marcela; Kastrup, Andreas; Eling, Paul; Hildebrandt, Helmut

    2018-06-01

    Visuospatial neglect is a disabling syndrome resulting in impaired activities of daily living and in longer durations of inpatient rehabilitation. Effective interventions to remediate neglect are still needed. The combination of tDCS and an optokinetic task might qualify as a treatment method. A total of 32 post-acute patients with left (n = 20) or right-sided neglect were allotted to an intervention or a control group (both groups n = 16). The intervention group received eight sessions of 1.5-2.0 mA parietal transcranial direct current stimulation (tDCS) during the performance of an optokinetic task distributed over two weeks. Additionally they received standard therapy for five hours per day. The control group received only the standard therapy. Patients were examined twice before (with 3-4 days between examinations) and twice after treatment (5-6 days between examinations). Compared to the control group and controlling for spontaneous remission, the intervention group improved on spontaneous body orientation and the Clock Drawing Test. Intragroup comparisons showed broad improvements on egocentric but not on allocentric symptoms only for the intervention group. A short additional application of tDCS during an optokinetic task led to improvements of severe neglect compared to a standard neurological early rehabilitation treatment. Improvements seem to concern primarily egocentric rather than allocentric neglect.

  5. Antigen Loading (e.g., Glutamic Acid Decarboxylase 65 of Tolerogenic DCs (tolDCs Reduces Their Capacity to Prevent Diabetes in the Non-Obese Diabetes (NOD-Severe Combined Immunodeficiency Model of Adoptive Cotransfer of Diabetes As Well As in NOD Mice

    Directory of Open Access Journals (Sweden)

    David P. Funda

    2018-02-01

    Full Text Available Tolerogenic DCs (tolDCs are being researched as a promising intervention strategy also in autoimmune diseases including type 1 diabetes (T1D. T1D is a T-cell-mediated, organ-specific disease with several well-defined and rather specific autoantigens, i.e., proinsulin, insulin, glutamic acid decarboxylase 65 (GAD65, that have been used in animal as well as human intervention trials in attempts to achieve a more efficient, specific immunotherapy. In this study, we have tested tolerogenic DCs for their effectiveness to prevent adoptive transfer of diabetes by diabetogenic splenocytes into non-obese diabetes (NOD-severe combined immunodeficiency (NOD-SCID recipients. While i.p. application of tolDCs prepared from bone marrow of prediabetic NOD mice by vitamin D2 and dexamethasone significantly reduced diabetes transfer into the NOD-SCID females, this effect was completely abolished when tolDCs were loaded with the mouse recombinant GAD65, but also with a control protein—ovalbumin (OVA. The effect was not dependent on the presence of serum in the tolDC culture. Similar results were observed in NOD mice. Removal of possible bystander antigen-presenting cells within the diabetogenic splenocytes by negative magnetic sorting of T cells did not alter this surprising effect. Tolerogenic DCs loaded with an immunodominant mouse GAD65 peptide also displayed diminished diabetes-preventive effect. Tolerogenic DCs were characterized by surface maturation markers (CD40, CD80, CD86, MHC II and the lipopolysaccharide stability test. Data from alloreactive T cell proliferation and cytokine induction assays (IFN-γ did not reveal the differences observed in the diabetes incidence. Migration of tolDCs, tolDCs-GAD65 and tolDCs-OVA to spleen, mesenteric- and pancreatic lymph nodes displayed similar, mucosal pattern with highest accumulation in pancreatic lymph nodes present up to 9 days after the i.p. application. These data document that mechanisms by which tolDCs

  6. DCS Budget Tracking System

    Data.gov (United States)

    Social Security Administration — DCS Budget Tracking System database contains budget information for the Information Technology budget and the 'Other Objects' budget. This data allows for monitoring...

  7. Why Earthquake Effects are to be Reduced Conventional seismic ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Learning Earthquake Design and Construction – 24. How to Reduce Earthquake Effects on Buildings? C V R Murty. Classroom Volume 10 Issue 11 November 2005 pp 89-92 ...

  8. Transcranial direct current stimulation (tDCS) modulation of picture naming and word reading: A meta-analysis of single session tDCS applied to healthy participants.

    Science.gov (United States)

    Westwood, Samuel J; Romani, Cristina

    2017-09-01

    Recent reviews quantifying the effects of single sessions of transcranial direct current stimulation (or tDCS) in healthy volunteers find only minor effects on cognition despite the popularity of this technique. Here, we wanted to quantify the effects of tDCS on language production tasks that measure word reading and picture naming. We reviewed 14 papers measuring tDCS effects across a total of 96 conditions to a) quantify effects of conventional stimulation on language regions (i.e., left hemisphere anodal tDCS administered to temporal/frontal areas) under normal conditions or under conditions of cognitive (semantic) interference; b) identify parameters which may moderate the size of the tDCS effect within conventional stimulation protocols (e.g., online vs offline, high vs. low current densities, and short vs. long durations), as well as within types of stimulation not typically explored by previous reviews (i.e., right hemisphere anodal tDCS or left/right hemisphere cathodal tDCS). In all analyses there was no significant effect of tDCS, but we did find a small but significant effect of time and duration of stimulation with stronger effects for offline stimulation and for shorter durations (tDCS and its poor efficacy in healthy participants. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Feasibility of using high-definition transcranial direct current stimulation (HD-tDCS) to enhance treatment outcomes in persons with aphasia.

    Science.gov (United States)

    Richardson, Jessica; Datta, Abhishek; Dmochowski, Jacek; Parra, Lucas C; Fridriksson, Julius

    2015-01-01

    Transcranial direct current stimulation (tDCS) enhances treatment outcomes post-stroke. Feasibility and tolerability of high-definition (HD) tDCS (a technique that increases current focality and intensity) for consecutive weekdays as an adjuvant to behavioral treatment in a clinical population has not been demonstrated. To determine HD-tDCS feasibility outcomes: 1) ability to implement study as designed, 2) acceptability of repeated HD-tDCS administration to patients, and 3) preliminary efficacy. Eight patients with chronic post-stroke aphasia participated in a randomized crossover trial with two arms: conventional sponge-based (CS) tDCS and HD-tDCS. Computerized anomia treatment was administered for five consecutive days during each treatment arm. Individualized modeling/targeting procedures and an 8-channel HD-tDCS device were developed. CS-tDCS and HD-tDCS were comparable in terms of implementation, acceptability, and outcomes. Naming accuracy and response time improved for both stimulation conditions. Change in accuracy of trained items was numerically higher (but not statistically significant) for HD-tDCS compared to CS-tDCS for most patients. Regarding feasibility, HD-tDCS treatment studies can be implemented when designed similarly to documented CS-tDCS studies. HD-tDCS is likely to be acceptable to patients and clinicians. Preliminary efficacy data suggest that HD-tDCS effects, using only 4 electrodes, are at least comparable to CS-tDCS.

  10. Treatment of visuospatial neglect with biparietal tDCS and cognitive training: a single-case study

    Directory of Open Access Journals (Sweden)

    Anna-Katharine eBrem

    2014-09-01

    Full Text Available Symptoms of visuospatial neglect occur frequently after unilateral brain damage. Neglect hampers rehabilitation progress and is associated with reduced quality of life. However, existing treatment methods show limited efficacy. Transcranial direct current stimulation (tDCS is a neuromodulatory technique, which can be used to increase or decrease brain excitability. Its combination with conventional neglect therapy may enhance treatment efficacy.A 72-year-old male with a subacute ischaemic stroke of the right posterior cerebral artery suffering from visuospatial neglect, hemianopia, and hemiparesis was treated with biparietal tDCS and cognitive neglect therapy in a double-blind, sham-controlled single-case study. Four weeks of daily treatment sessions (5 days per week, 30 min were started 26 days post-stroke. During week 1 and 4 the patient received conventional neglect therapy, during week 2, conventional neglect therapy was combined once with sham and once with real biparietal tDCS. Week 3 consisted of daily sessions of real biparietal tDCS (1 mA, 20 min combined with neglect therapy. Outcome measures were assessed before, immediately after, as well as 1 week and 3 months after the end of treatment. They included subtests of the Test for Attentional Performance (TAP: covert attention (main outcome, alertness, visual field; the Neglect-Test (NET: line bisection, cancellation, copying; and activities of daily living (ADL. After real stimulation, covert attention allocation towards left-sided invalid stimuli was significantly improved, and line bisection and copying improved qualitatively as compared to sham stimulation. ADL were only improved at the 3-month follow-up. This single-case study demonstrates for the first time that combined application of tDCS and cognitive training may enhance training-induced improvements in measures of visuospatial neglect and is applicable in a clinical context.

  11. A Comparative Study of Reduced-Variables-Based Flash and Conventional Flash

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan; Michelsen, Michael Locht

    2013-01-01

    ) with zero binary-interaction parameters (BIPs) and later generalized to situations with nonzero-BIP matrices. Most of the studies in the last decade suggest that the reduced-variables methods are much more efficient than the conventional flash method. However, Haugen and Beckner (2011) questioned...... with the conventional minimization-based flash. A test with the use of the SPE 3 example (Kenyon and Behie 1987) showed that the best reduction in time was less than 20% for the extreme situation of 25 components and just one row/column with nonzero BIPs. A better performance can be achieved by a simpler implementation...... directly using the sparsity of the BIP matrix....

  12. Using Transcranial Direct Current Stimulation (tDCS to study and treat aphasia

    Directory of Open Access Journals (Sweden)

    Nazbanou Nozari

    2014-04-01

    - What are the challenges of using tDCS for hypothesis testing and how can I reduce the risk of misinterpreting my results? In summary, the symposium is designed to (a promote the theoretical understanding of the basic science of tDCS, and (b to tackle several pragmatic issues when designing tDCS studies, with the ultimate goal of cultivating higher standards for using a potentially invaluable technique for both clinical and research purposes. Given the growing interest in the aphasia community for using tDCS and the sophistication of the audience, we believe that the Academy’s annual meeting is the ideal venue for this symposium.

  13. Efficacy of transcranial direct current stimulation (tDCS) in reducing consumption in patients with alcohol use disorders: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Trojak, Benoit; Soudry-Faure, Agnès; Abello, Nicolas; Carpentier, Maud; Jonval, Lysiane; Allard, Coralie; Sabsevari, Foroogh; Blaise, Emilie; Ponavoy, Eddy; Bonin, Bernard; Meille, Vincent; Chauvet-Gelinier, Jean-Christophe

    2016-05-17

    effects of transcranial direct current stimulation on tobacco consumption. Several studies have reported a beneficial effect of transcranial direct current stimulation on substance use disorders by reducing craving, impulsivity, and risk-taking behavior, and suggest that transcranial direct current stimulation may be a promising treatment in addiction. However, to date, no studies have included sufficiently large samples and sufficient follow-up to confirm the hypothesis. Results from this large randomized controlled trial will give a better overview of the therapeutic potential of transcranial direct current stimulation in alcohol use disorders. Clinical Trials Gov, NCT02505126 (registration date: July 15 2015).

  14. Application of lens capsules tension reducing capsulorhexis and conventional capsulorhexis in the white cataract phacoemulsification

    Directory of Open Access Journals (Sweden)

    Rong-Feng Liu

    2017-09-01

    Full Text Available Objective: To explore the clinical effect of lens capsules tension reducing capsulorhexis and conventional capsulorhexis in the white cataract phacoemulsification. Methods: A total of 68 patients (76 eyes with white cataract who were admitted in our hospital from June, 2011 to June, 2016 were included in the study and divided into the experiment group (n=34, 36 eyes and the control group (n=34, 40 eyes according to the difference of intraoperative capsulorhexis. All the patients were performed with cataract phacoemulsification in combined with intraocular lens implantation. The patients in the experiment group were performed with lens capsules tension reducing capsulorhexis, while the patients in the control group were performed with conventional capsulorhexis. The integrity of the anterior capsule capsulorhexis, the degree of corneal endothelium edema, the intraocular lens deviation, uncorrected visual acuity, and corneal endothelial cell count in the two groups were compared. Results: A total of 34 eyes (94.44% in the experiment group and 35 eyes (87.50% in the control group successfully completed continuous annular capsulorhexis, and there was no significant difference between the 2 groups. The number of patients whose uncorrected visual acuity was greater than 0.5 increased 1 d-6 months after operation, and that in the experiment group was significantly higher than that in the control group. The difference of intraocular lens deviation rates between the 2 groups at different times after operation was not significant. The corneal endothelial cell count 1 d-6 months after operation in the 2 groups was significantly decreased when compared with before operation, but the difference between the 2 groups was not significant. The number of eyes without edema in the experiment group 1d after operation was significantly higher than that in the control group, and the number of eyes with grade Ⅱ edema was significantly less than that in the control

  15. Forest canopy damage and recovery in reduced-impact and conventional selective logging in eastern Para, Brazil.

    Science.gov (United States)

    Rodrigo Pereira Jr.; Johan Zweedea; Gregory P. Asnerb; Keller; Michael

    2002-01-01

    We investigated ground and canopy damage and recovery following conventional logging and reduced-impact logging (RIL) of moist tropical forest in the eastern Amazon of Brazil. Paired conventional and RIL blocks were selectively logged with a harvest intensity of approximately 23 m3 ha

  16. TileDCS web system

    International Nuclear Information System (INIS)

    Maidantchik, C; Ferreira, F; Grael, F

    2010-01-01

    The web system described here provides features to monitor the ATLAS Detector Control System (DCS) acquired data. The DCS is responsible for overseeing the coherent and safe operation of the ATLAS experiment hardware. In the context of the Hadronic Tile Calorimeter Detector (TileCal), it controls the power supplies of the readout electronics acquiring voltages, currents, temperatures and coolant pressure measurements. The physics data taking requires the stable operation of the power sources. The TileDCS Web System retrieves automatically data and extracts the statistics for given periods of time. The mean and standard deviation outcomes are stored as XML files and are compared to preset thresholds. Further, a graphical representation of the TileCal cylinders indicates the state of the supply system of each detector drawer. Colors are designated for each kind of state. In this way problems are easier to find and the collaboration members can focus on them. The user selects a module and the system presents detailed information. It is possible to verify the statistics and generate charts of the parameters over the time. The TileDCS Web System also presents information about the power supplies latest status. One wedge is colored green whenever the system is on. Otherwise it is colored red. Furthermore, it is possible to perform customized analysis. It provides search interfaces where the user can set the module, parameters, and the time period of interest. The system also produces the output of the retrieved data as charts, XML files, CSV and ROOT files according to the user's choice.

  17. Intensity-modulated radiotherapy significantly reduces xerostomia compared with conventional radiotherapy

    International Nuclear Information System (INIS)

    Braam, Petra M.; Terhaard, Chris H.J. M.D.; Roesink, Judith M.; Raaijmakers, Cornelis P.J.

    2006-01-01

    Purpose: Xerostomia is a severe complication after radiotherapy for oropharyngeal cancer, as the salivary glands are in close proximity with the primary tumor. Intensity-modulated radiotherapy (IMRT) offers theoretical advantages for normal tissue sparing. A Phase II study was conducted to determine the value of IMRT for salivary output preservation compared with conventional radiotherapy (CRT). Methods and Materials: A total of 56 patients with oropharyngeal cancer were prospectively evaluated. Of these, 30 patients were treated with IMRT and 26 with CRT. Stimulated parotid salivary flow was measured before, 6 weeks, and 6 months after treatment. A complication was defined as a stimulated parotid flow rate <25% of the preradiotherapy flow rate. Results: The mean dose to the parotid glands was 48.1 Gy (SD 14 Gy) for CRT and 33.7 Gy (SD 10 Gy) for IMRT (p < 0.005). The mean parotid flow ratio 6 weeks and 6 months after treatment was respectively 41% and 64% for IMRT and respectively 11% and 18% for CRT. As a result, 6 weeks after treatment, the number of parotid flow complications was significantly lower after IMRT (55%) than after CRT (87%) (p = 0.002). The number of complications 6 months after treatment was 56% for IMRT and 81% for CRT (p = 0.04). Conclusions: IMRT significantly reduces the number of parotid flow complications for patients with oropharyngeal cancer

  18. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.

    Science.gov (United States)

    Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe

    2017-09-01

    Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.

  19. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)

    Science.gov (United States)

    Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\

  20. Modulation of selective attention by polarity-specific tDCS effects.

    Science.gov (United States)

    Pecchinenda, Anna; Ferlazzo, Fabio; Lavidor, Michal

    2015-02-01

    Selective attention relies on working memory to maintain an attention set of task priorities. Consequently, selective attention is more efficient when working memory resources are not depleted. However, there is some evidence that distractors are processed even when working memory load is low. We used tDCS to assess whether boosting the activity of the Dorsolateral Prefrontal Cortex (DLPFC), involved in selective attention and working memory, would reduce interference from emotional distractors. Findings showed that anodal tDCS over the DLPFC was not sufficient to reduce interference from angry distractors. In contrast, cathodal tDCS over the DLPFC reduced interference from happy distractors. These findings show that altering the DLPFC activity is not sufficient to establish top-down control and increase selective attention efficiency. Although, when the neural signal in the DLPFC is altered by cathodal tDCS, interference from emotional distractors is reduced, leading to an improved performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Molecular and elemental effects underlying the biochemical action of transcranial direct current stimulation (tDCS) in appetite control

    Science.gov (United States)

    Surowka, Artur D.; Ziomber, Agata; Czyzycki, Mateusz; Migliori, Alessandro; Kasper, Kaja; Szczerbowska-Boruchowska, Magdalena

    2018-04-01

    Recent studies highlight that obesity may alter the electric activity in brain areas triggering appetite and craving. Transcranial direct current brain stimulation (tDCS) has recently emerged as a safe alternative for treating food addiction via modulating cortical excitability without any high-risk surgical procedure to be utilized. As for anodal-type tDCS (atDCS), we observe increased excitability and spontaneous firing of the cortical neurons, whilst for the cathodal-type tDCS (ctDCS) a significant decrease is induced. Unfortunately, for the method to be fully used in a clinical setting, its biochemical action mechanism must be precisely defined, although it is proposed that molecular remodelling processes play in concert with brain activity changes involving the ions of: Na, Cl, K and Ca. Herein, we proposed for the first time Fourier transform infrared (FTIR) and synchrotron X-ray fluorescence (SRXRF) microprobes for a combined molecular and elemental analysis in the brain areas implicated appetite control, upon experimental treatment by either atDCS or ctDCS. The study, although preliminary, shows that by stimulating the prefrontal cortex in the rats fed high-caloric nutrients, the feeding behavior can be significantly changed, resulting in significantly inhibited appetite. Both, atDCS and ctDCS produced significant molecular changes involving qualitative and structural properties of lipids, whereas atDCS was found with a somewhat more significant effect on protein secondary structure in all the brain areas investigated. Also, tDCS was reported to reduce surface masses of Na, Cl, K, and Ca in almost all brain areas investigated, although the atDCS deemed to have a stronger neuro-modulating effect. Taken together, one can report that tDCS is an effective treatment technique, and its action mechanism in the appetite control seems to involve a variety of lipid-, protein- and metal/non-metal-ion-driven biochemical changes, regardless the current polarization.

  2. Influence of Concurrent Finger Movements on Transcranial Direct Current Stimulation (tDCS)-Induced Aftereffects.

    Science.gov (United States)

    Shirota, Yuichiro; Terney, Daniella; Antal, Andrea; Paulus, Walter

    2017-01-01

    Transcranial direct current stimulation (tDCS) has been reported to have bidirectional influence on the amplitude of motor-evoked potentials (MEPs) in resting participants in a polarity-specific manner: anodal tDCS increased and cathodal tDCS decreased them. More recently, the effects of tDCS have been shown to depend on a number of additional factors. We investigated whether a small variety of movements involving target and non-target muscles could differentially modify the efficacy of tDCS. MEPs were elicited from the right first dorsal interosseous muscle, defined as the target muscle, by single pulse transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). During M1 tDCS, which lasted for 10 min applying anodal, cathodal, or sham condition, the participants were instructed to squeeze a ball with their right hand (Task 1), to move their right index finger only in the medial (Task 2), in the lateral direction (Task 3), or in medial and lateral direction alternatively (Task 4). Anodal tDCS reduced MEP amplitudes measured in Task 1 and Task 2, but to a lesser extent in the latter. In Task 3, anodal tDCS led to greater MEP amplitudes than cathodal stimulation. Alternating movements resulted in no effect of tDCS on MEP amplitude (Task 4). The results are congruent with the current notion that the aftereffects of tDCS are highly variable relying on a number of factors including the type of movements executed during stimulation.

  3. Effects of Combined exergame and conventional exercise to reduce and prevent fall risk among elderly people: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Hassan Sadeghi

    2017-10-01

    Full Text Available Background: Falling among old individuals has provoked ceaseless discussion among gerontologists and physical therapists and it is still one of the greatest issues among this population. Loss of the balance and functional mobility is the main reason of falling. There have been numerous studies conducting the effect of the conventional balance exercise and exergame independently on balance and functional mobility of elderly. Previous studies lacked dealing with the effect of combined exergame and conventional exercise on the balance and functional mobility. Combined exercises are enjoyable and may have more effective to improve balance and performance to reduce risk of fall among elderly people. This package would be preferable for older people. Objective: We hypothesize that while conventional balance exercise and exergame improve balance and functional mobility, combined both types of exercise would superior improvements in elderly performance. Conclusion: Ultimately we expect that this hypothesis will provide a useful framework for facilitating combined exergame and conventional balance intervention in older people.

  4. Comparing protection afforded by different organic alternatives to conventional fungicides for reducing scab on pecan

    Science.gov (United States)

    Pecan scab (Venturia effusa) is the major yield-limiting disease in the southeastern USA. Although conventional fungicides are available to manage the disease, there is no comparison of organic methods (organically produced nuts attract a higher price). In 2011, 2012, 2014, 2015 and 2016 trees of cv...

  5. Comparison of an Innovative Rehabilitation, Combining Reduced Conventional Rehabilitation with Balneotherapy, and a Conventional Rehabilitation after Anterior Cruciate Ligament Reconstruction in Athletes

    Directory of Open Access Journals (Sweden)

    Laetitia Peultier-Celli

    2017-11-01

    Full Text Available BackgroundInstability of the knee, related to anterior cruciate ligament injury, is treated by surgical reconstruction. During recovery, a loss of proprioceptive input can have a significant impact. Few studies have evaluated the benefits of rehabilitation of the knee in aquatic environment on functional outcomes.ObjectiveThis study aimed to compare an innovative rehabilitation protocol combining reduced conventional rehabilitation with aquatic rehabilitation, with a conventional rehabilitation, according to the National French Health Authority, in terms of kinetics, development of proprioceptive skills, and functional improvement of the knee.Methods67 patients, who were amateur or professional athletes, were randomized into two groups: 35 patients followed the conventional rehabilitation protocol (Gr1 and 32 patients followed the innovative rehabilitation protocol (Gr2. Patients were evaluated before surgery, and at 2 weeks, 1, 2, and 6 months after surgery using posturography, and evaluation of muscular strength, walking performance and proprioception. This study is multicenter, prospective, randomized, and controlled with a group of patients following conventional rehabilitation (level of evidence I.ResultsFor the same quality of postural control, Gr2 relied more on somesthesia than Gr1 at 6 months. The affected side had an impact on postural control and in particular on the preoperative lateralization, at 2 weeks and at 1 month. Lateralization depended on the affected knee, with less important lateralization in Gr2 preoperatively and at 1 month. The quadriceps muscular strength was higher in Gr2 than in Gr1 at 2 and 6 months and muscle strength of the external hamstring was greater in Gr2 than in Gr1 at 6 months. The isokinetic test showed a greater quadriceps muscular strength in Gr2. Gr2 showed a greater walking distance than Gr1 at one month. Gr2 showed an improvement in the proprioceptive capacities of the operated limb

  6. Project managing your simulator DCS upgrade

    International Nuclear Information System (INIS)

    Carr, S.

    2006-01-01

    The intention of this paper is to provide helpful information and tips for the purchaser with regard to the project management of a DCS upgrade for an existing nuclear power station operator-training simulator. This paper was written shortly after STS Powergen completed two nuclear power station simulator DCS projects in the USA. Areas covered by this paper are: - Contractual documents and arrangements; - Licence and Escrow agreements; - Liquidated damages; - Project management; - Project schedules and resources; - Monitoring progress; - Defect reporting; - DCS automation code; - Access to proprietary information; - Tips for project meetings; - Testing; - Cultural issues; - Training

  7. ATLAS DAQ/HLT rack DCS

    International Nuclear Information System (INIS)

    Ermoline, Yuri; Burckhart, Helfried; Francis, David; Wickens, Frederick J.

    2007-01-01

    The ATLAS Detector Control System (DCS) group provides a set of standard tools, used by subsystems to implement their local control systems. The ATLAS Data Acquisition and High Level Trigger (DAQ/HLT) rack DCS provides monitoring of the environmental parameters (air temperatures, humidity, etc.). The DAQ/HLT racks are located in the underground counting room (20 racks) and in the surface building (100 racks). The rack DCS is based on standard ATLAS tools and integrated into overall operation of the experiment. The implementation is based on the commercial control package and additional components, developed by CERN Joint Controls Project Framework. The prototype implementation and measurements are presented

  8. PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, P K [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008 (India); Gokhale, R [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008 (India); Subbarao, V V.V.S. [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008 (India); Vishwanath, A Kasi [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008 (India); Das, B K [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008 (India); Satyanarayana, C V.V. [National Chemical Laboratory, Pashan Road, Pune 41108 (India)

    2005-07-15

    Poly(vinyl alcohol) (PVA) stabilized gold nanoparticles have been prepared in aqueous medium using two different reducing viz.; hydrazine hydrate, a stronger reducing agent and sodium formaldehydesulfoxylate (SFS), a slightly weaker reducing agent. SFS is used for first ever time for reduction of gold metal salt. The PVA stabilized gold nanoparticles solutions are wine red to blood red coloured and are stable over a long period of time with no indication of aggregation. The solution shows strong visible light absorptions in the range of 520-540 nm, characteristics of gold nanoparticles. Powder X-ray diffraction patterns of freshly prepared films containing gold nanoparticles indicated particles size to be about 15 nm. Transmission electron microscopy (TEM) of a more than two-week-old sample revealed well-defined non-agglomerated spherical particles of about 50 nm diameter in solutions.

  9. PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent

    International Nuclear Information System (INIS)

    Khanna, P.K.; Gokhale, R.; Subbarao, V.V.V.S.; Vishwanath, A. Kasi; Das, B.K.; Satyanarayana, C.V.V.

    2005-01-01

    Poly(vinyl alcohol) (PVA) stabilized gold nanoparticles have been prepared in aqueous medium using two different reducing viz.; hydrazine hydrate, a stronger reducing agent and sodium formaldehydesulfoxylate (SFS), a slightly weaker reducing agent. SFS is used for first ever time for reduction of gold metal salt. The PVA stabilized gold nanoparticles solutions are wine red to blood red coloured and are stable over a long period of time with no indication of aggregation. The solution shows strong visible light absorptions in the range of 520-540 nm, characteristics of gold nanoparticles. Powder X-ray diffraction patterns of freshly prepared films containing gold nanoparticles indicated particles size to be about 15 nm. Transmission electron microscopy (TEM) of a more than two-week-old sample revealed well-defined non-agglomerated spherical particles of about 50 nm diameter in solutions

  10. Is Motor Learning Mediated by tDCS Intensity?

    OpenAIRE

    Cuypers, Koen; Leenus, Daphnie J. F.; van den Berg, Femke E.; Nitsche, Michael A.; Thijs, Herbert; Wenderoth, Nicole; Meesen, Raf L. J.

    2013-01-01

    Although tDCS has been shown to improve motor learning, previous studies reported rather small effects. Since physiological effects of tDCS depend on intensity, the present study evaluated this parameter in order to enhance the effect of tDCS on skill acquisition. The effect of different stimulation intensities of anodal tDCS (atDCS) was investigated in a double blind, sham controlled crossover design. In each condition, thirteen healthy subjects were instructed to perform a unimanual motor (...

  11. Severe Tryptophan Starvation Blocks Onset of Conventional Persistence and Reduces Reactivation of Chlamydia trachomatis▿

    Science.gov (United States)

    Leonhardt, Ralf M.; Lee, Seung-Joon; Kavathas, Paula B.; Cresswell, Peter

    2007-01-01

    The intracellular survival of the bacterial pathogen Chlamydia trachomatis depends on protein synthesis by the microbe soon after internalization. Pharmacologic inhibition of bacterial translation inhibits early trafficking of the parasitophorous vacuole (inclusion) to the microtubule-organizing center (MTOC) and promotes its fusion with lysosomes, which is normally blocked by Chlamydia. Depletion of cellular tryptophan pools by gamma interferon-inducible indoleamine-2,3-dioxygenase (IDO) is believed to be the major innate immune mechanism controlling C. trachomatis infection in human cells, an action to which the bacteria can respond by converting into a nonreplicating but highly reactivatable persistent state. However, whether severe IDO-mediated tryptophan starvation can be sufficient to fully arrest the chlamydial life cycle and thereby counteract the onset of persistence is unknown. Here we demonstrate that at low exogenous tryptophan concentrations a substantial fraction of C. trachomatis bacteria fail to traffic to the MTOC or to switch into the conventional persistent state in gamma interferon-induced human cells. The organisms stay scattered in the cell periphery, do not retain infectivity, and display only low transcriptional activity. Importantly, the rate at which these aberrant Chlamydia bacteria become reactivated upon replenishment of cellular tryptophan pools is substantially lower. Thus, severe tryptophan depletion in cells with high IDO activity affects chlamydial development more rigorously than previously described. PMID:17724071

  12. Reducing radiation dose to the female breast during conventional and dedicated breast computed tomography

    Science.gov (United States)

    Rupcich, Franco John

    The purpose of this study was to quantify the effectiveness of techniques intended to reduce dose to the breast during CT coronary angiography (CTCA) scans with respect to task-based image quality, and to evaluate the effectiveness of optimal energy weighting in improving contrast-to-noise ratio (CNR), and thus the potential for reducing breast dose, during energy-resolved dedicated breast CT. A database quantifying organ dose for several radiosensitive organs irradiated during CTCA, including the breast, was generated using Monte Carlo simulations. This database facilitates estimation of organ-specific dose deposited during CTCA protocols using arbitrary x-ray spectra or tube-current modulation schemes without the need to run Monte Carlo simulations. The database was used to estimate breast dose for simulated CT images acquired for a reference protocol and five protocols intended to reduce breast dose. For each protocol, the performance of two tasks (detection of signals with unknown locations) was compared over a range of breast dose levels using a task-based, signal-detectability metric: the estimator of the area under the exponential free-response relative operating characteristic curve, AFE. For large-diameter/medium-contrast signals, when maintaining equivalent AFE, the 80 kV partial, 80 kV, 120 kV partial, and 120 kV tube-current modulated protocols reduced breast dose by 85%, 81%, 18%, and 6%, respectively, while the shielded protocol increased breast dose by 68%. Results for the small-diameter/high-contrast signal followed similar trends, but with smaller magnitude of the percent changes in dose. The 80 kV protocols demonstrated the greatest reduction to breast dose, however, the subsequent increase in noise may be clinically unacceptable. Tube output for these protocols can be adjusted to achieve more desirable noise levels with lesser dose reduction. The improvement in CNR of optimally projection-based and image-based weighted images relative to photon

  13. Reducing CO2 emissions of conventional fuel cars by vehicle photovoltaic roofs

    OpenAIRE

    LODI CHIARA; SEITSONEN ANTTI; PAFFUMI ELENA; DE GENNARO MICHELE; HULD THOMAS; MALFETTANI STEFANO

    2017-01-01

    The European Union has adopted a range of policies aiming at reducing greenhouse gas emissions from road transport, including setting binding targets for tailpipe CO2 emissions for new light-duty fleets. The legislative framework for implementing such targets allows taking into account the CO2 savings from innovative technologies that cannot be adequately quantified by the standard test cycle CO2 measurement. This paper presents a methodology to define the average productivity of vehicle-moun...

  14. Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test.

    Science.gov (United States)

    Sellers, Kristin K; Mellin, Juliann M; Lustenberger, Caroline M; Boyle, Michael R; Lee, Won Hee; Peterchev, Angel V; Fröhlich, Flavio

    2015-09-01

    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants were included in the final analysis. These participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2 mA at each anode for 20 min) or active sham tDCS (2 mA for 40 s), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2 mA for 20 min). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A Comparative Study of Reduced Variables Based Flash and Conventional Flash

    DEFF Research Database (Denmark)

    Michelsen, Michael Locht; Yan, Wei; Stenby, Erling Halfdan

    with a smaller set of independent variables. Various versions of the reduced variables methods have been proposed since the mid 80’s. The methods were first proposed for cubic equations of state (EoS) with zero binary interaction parameters (BIPs) and later generalized to situations with non-zero BIP matrices......% for the extreme situation of 25 components and just one row/column with non-zero BIPs. A better performance can actually be achieved by a simpler implementation directly using the sparsity of the BIP matrix....

  16. Basic science of tDCS

    Directory of Open Access Journals (Sweden)

    Michael A. Nitsche

    2014-04-01

    Full Text Available Neuroplasticity, and functional connectivity are important physiological derivates of cognition, and behaviour. Recently introduced non-invasive brain stimulation techniques are suited to induce, and modulate respective physiological alterations. One of these techniques is transcranial direct current stimulation (tDCS. Its primary mechanism of action is a polarity-dependent subthreshold shift of resting membrane potentials, the after-effects of stimulation depend on the glutamatergic system. Beyond these regional effects, tDCS has been shown recently to alter cortical, as well as cortico-subcortical functional network connectivity. This talk will give an overview about the physiological effects of tDCS, including animal data, and will cover functional consequences of tDCS. Furthermore, new developments with regard to optimization strategies, and the complex interaction of physiological and cognitive processes, will be presented and it will be discussed how tDCS relates to other non-invasive brain stimulation techniques, like transcranial magnetic stimulation (TMS, transcranial alternating current stimulation (tACS, and paired associative stimulation (PAS.

  17. Technical Support for the development of DCS

    International Nuclear Information System (INIS)

    Oh, In Seok; Lee, Cheol Kwon; Kim, Dong Hoon; Kim, Jung Taek; Hwang, In Koo; Park, Jae Chang; Lee, Dong Young; Park, Won Man

    2008-05-01

    The objective of this project is to provide a technical support to Woori Tech Co. in its design and manufacture process of the DCS as a part of KNICS development program to promote the technology self-reliance for non-safety equipment for NPPs(Nuclear Power Plants). We support Woori Tech Co. to develop a DCS which satisfies the requirements for Shinkori 3 and 4 NPPs in the aspects of reliability, applicability and technical competitiveness. As the results of this project the following items were developed and/or implemented; · Design basis and requirements for a DCS system · Design requirements for control communication networks · Architecture of control networks · Design requirements of EWS(Engineering Workstation) · Plan of software verification and validation · Operation display design · Soft control functions · Application development tools of DCS · Analysis and V/V activities on DCS control network protocols · Software verification and validation and documentation guidelines · User manual documents

  18. Technical Support for the development of DCS

    Energy Technology Data Exchange (ETDEWEB)

    Oh, In Seok; Lee, Cheol Kwon; Kim, Dong Hoon; Kim, Jung Taek; Hwang, In Koo; Park, Jae Chang; Lee, Dong Young; Park, Won Man

    2008-05-15

    The objective of this project is to provide a technical support to Woori Tech Co. in its design and manufacture process of the DCS as a part of KNICS development program to promote the technology self-reliance for non-safety equipment for NPPs(Nuclear Power Plants). We support Woori Tech Co. to develop a DCS which satisfies the requirements for Shinkori 3 and 4 NPPs in the aspects of reliability, applicability and technical competitiveness. As the results of this project the following items were developed and/or implemented; {center_dot} Design basis and requirements for a DCS system {center_dot} Design requirements for control communication networks {center_dot} Architecture of control networks {center_dot} Design requirements of EWS(Engineering Workstation) {center_dot} Plan of software verification and validation {center_dot} Operation display design {center_dot} Soft control functions {center_dot} Application development tools of DCS {center_dot} Analysis and V/V activities on DCS control network protocols {center_dot} Software verification and validation and documentation guidelines {center_dot} User manual documents.

  19. The effects of tDCS upon sustained visual attention are dependent on cognitive load.

    Science.gov (United States)

    Roe, James M; Nesheim, Mathias; Mathiesen, Nina C; Moberget, Torgeir; Alnæs, Dag; Sneve, Markus H

    2016-01-08

    Transcranial Direct Current Stimulation (tDCS) modulates the excitability of neuronal responses and consequently can affect performance on a variety of cognitive tasks. However, the interaction between cognitive load and the effects of tDCS is currently not well-understood. We recorded the performance accuracy of participants on a bilateral multiple object tracking task while undergoing bilateral stimulation assumed to enhance (anodal) and decrease (cathodal) neuronal excitability. Stimulation was applied to the posterior parietal cortex (PPC), a region inferred to be at the centre of an attentional tracking network that shows load-dependent activation. 34 participants underwent three separate stimulation conditions across three days. Each subject received (1) left cathodal / right anodal PPC tDCS, (2) left anodal / right cathodal PPC tDCS, and (3) sham tDCS. The number of targets-to-be-tracked was also manipulated, giving a low (one target per visual field), medium (two targets per visual field) or high (three targets per visual field) tracking load condition. It was found that tracking performance at high attentional loads was significantly reduced in both stimulation conditions relative to sham, and this was apparent in both visual fields, regardless of the direction of polarity upon the brain's hemispheres. We interpret this as an interaction between cognitive load and tDCS, and suggest that tDCS may degrade attentional performance when cognitive networks become overtaxed and unable to compensate as a result. Systematically varying cognitive load may therefore be a fruitful direction to elucidate the effects of tDCS upon cognitive functions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Cryopreservation of adenovirus-transfected dendritic cells (DCs) for clinical use.

    Science.gov (United States)

    Gülen, D; Maas, S; Julius, H; Warkentin, P; Britton, H; Younos, I; Senesac, J; Pirruccello, Samuel M; Talmadge, J E

    2012-05-01

    In this study, we examined the effects of cryoprotectant, freezing and thawing, and adenovirus (Adv) transduction on the viability, transgene expression, phenotype, and function of human dendritic cells (DCs). DCs were differentiated from cultured peripheral blood (PB) monocytes following Elutra isolation using granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 6 days and then transduced using an Adv vector with an IL-12 transgene. Fresh, cryopreserved, and thawed transduced immature DCs were examined for their: 1) cellular concentration and viability; 2) antigenicity using an allogeneic mixed lymphocyte reaction (MLR); 3) phenotype (HLA-DR and CD11c) and activation (CD83); and 4) transgene expression based on IL-12 secretion. Stability studies revealed that transduced DCs could be held in cryoprotectant for as long as 75 min at 2-8°C prior to freezing with little effect on their viability and cellularity. Further, cryopreservation, storage, and thawing reduced the viability of the transduced DCs by an average of 7.7%; and had no significant impact on DC phenotype and activation. In summary, cryopreservation, storage, and thawing had no significant effect on DC viability, function, and transgene expression by Adv-transduced DCs. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Earthworms influenced by reduced tillage, conventional tillage and energy forest in Swedish agricultural field experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lagerloef, Jan (SLU, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala (Sweden)), Email: Jan.Lagerlof@ekol.slu.se; Paalsson, Olof; Arvidsson, Johan (SLU, Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala (Sweden))

    2012-03-15

    We compared earthworm density, depth distribution and species composition in three soil cultivation experiments including the treatments ploughless tillage and mouldboard ploughing. Sampling was done in September 2005 and for one experiment also in 1994. By yearly sampling 1995-2005, earthworms in an energy forest of Salix viminalis were compared with those in an adjacent arable field. Sampling method was digging of soil blocks and hand sorting and formalin sampling in one cultivation experiment. Both methods were used in the energy forest and arable land comparison. In two soil cultivation experiments, highest abundances or biomass were found in ploughless tillage. Earthworm density was higher in the upper 10 cm, especially in the ploughless tillage. Earthworm density was significantly higher in the energy forest than in the arable field. Formalin sampling revealed c. 36% of the earthworm numbers found by digging in the energy forest and gave almost no earthworms in the arable field. In all treatments with soil cultivation, species living and feeding in the rhizosphere and soil dominated. One such species, Allolobophora chlorotica, was more abundant under mouldboard ploughing than ploughless tillage. Lumbricus terrestris, browsing on the surface and producing deep vertical burrows, was more common in the ploughless tillage. Species living and feeding close to the soil surface were almost only found in the energy forest, which had not been soil cultivated since 1984. The findings support earlier studies pointing out possibilities to encourage earthworms by reduced soil cultivation. This is one of the first published studies that followed earthworm populations in an energy forest plantation during several years. Explanation of earthworm reactions to management and environmental impacts should be done with consideration of the ecology of species or species groups. Earthworm sampling by formalin must always be interpreted with caution and calibrated by digging and

  2. Maturation and upregulation of functions of murine dendritic cells (DCs) under the influence of purified aromatic-turmerone (AR).

    Science.gov (United States)

    Yonggang, Tan; Yiming, Meng; Heying, Zhang; Cheng, Sun; Qiushi, Wang; Xianghong, Yang; Wei, Zheng; Huawei, Zhou; Shan, Fengping

    2012-10-01

    The aim of this work is to evaluate the effects of purified aromatic-turmerone (ar-turmerione, AR) on murine dendritic cells (DCs). These impacts of AR on DCs from bone marrow derived DCs(BMDCs) were assessed with use of conventional scanning electron microscopy (SEM), fluorescence activated cell sorting (FACS), transmission electron microscopy (TEM), cytochemistry assay, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We found that AR induced phenotypic maturation as evidenced by increased expression of CD86, CD40, CD83, CD80 and major histocompatibility complex II (MHC II). The functional tests showed the activity of acidic phosphatase (ACP) inside the DCs were downregulated after treatment with AR (which occurs when phagocytosis of DCs were decreased). Finally, we proved that AR increased the production of IL-12 and tumor necrosis factor α (TNF-α). These data suggested that AR could promote phenotypic and functional maturation of DCs and this adjuvant-like activity may have potential therapeutic value. It is therefore concluded that AR could exert positive modulation on murine DCs.

  3. Maraba MG1 Virus Enhances Natural Killer Cell Function via Conventional Dendritic Cells to Reduce Postoperative Metastatic Disease

    Science.gov (United States)

    Zhang, Jiqing; Tai, Lee-Hwa; Ilkow, Carolina S; Alkayyal, Almohanad A; Ananth, Abhirami A; de Souza, Christiano Tanese; Wang, Jiahu; Sahi, Shalini; Ly, Lundi; Lefebvre, Charles; Falls, Theresa J; Stephenson, Kyle B; Mahmoud, Ahmad B; Makrigiannis, Andrew P; Lichty, Brian D; Bell, John C; Stojdl, David F; Auer, Rebecca C

    2014-01-01

    This study characterizes the ability of novel oncolytic rhabdoviruses (Maraba MG1) to boost natural killer (NK) cell activity. Our results demonstrate that MG1 activates NK cells via direct infection and maturation of conventional dendritic cells. Using NK depletion and conventional dendritic cells ablation studies in vivo, we established that both are required for MG1 efficacy. We further explored the efficacy of attenuated MG1 (nonreplicating MG1-UV2min and single-cycle replicating MG1-Gless) and demonstrated that these viruses activate conventional dendritic cells, although to a lesser extent than live MG1. This translates to equivalent abilities to remove tumor metastases only at the highest viral doses of attenuated MG1. In tandem, we characterized the antitumor ability of NK cells following preoperative administration of live and attenuated MG1. Our results demonstrates that a similar level of NK activation and reduction in postoperative tumor metastases was achieved with equivalent high viral doses concluding that viral replication is important, but not necessary for NK activation. Biochemical characterization of a panel of UV-inactivated MG1 (2–120 minutes) revealed that intact viral particle and target cell recognition are essential for NK cell–mediated antitumor responses. These findings provide mechanistic insight and preclinical rationale for safe perioperative virotherapy to effectively reduce metastatic disease following cancer surgery. PMID:24695102

  4. TileCal TDAQ/DCS communication

    CERN Document Server

    Solans, C; Arabidze, G; Carneiro Ferreira, B; Sotto-Maior Peralva, B

    2007-01-01

    This document describes the communication between the TDAQ and DCS systems of the Hadronic Tile Calorimeter detector of the ATLAS experiment, currently under commissioning phase at CERN. It is a further step on the TDAQ and DCS communication for TileCal operation. The aim of the implementation is to increase the robustness and understanding of the detector from the two systems involved. The basic principle observed is that the two systems operate independently in parallel. Hence, the knowledge of the status of the whole detector from each of the two systems is required for further analysis of the archived data.

  5. Tumor Localization Using Cone-Beam CT Reduces Setup Margins in Conventionally Fractionated Radiotherapy for Lung Tumors

    International Nuclear Information System (INIS)

    Yeung, Anamaria R.; Li, Jonathan G.; Shi Wenyin; Newlin, Heather E.; Chvetsov, Alexei; Liu, Chihray; Palta, Jatinder R.; Olivier, Kenneth

    2009-01-01

    Purpose: To determine whether setup margins can be reduced using cone-beam computed tomography (CBCT) to localize tumor in conventionally fractionated radiotherapy for lung tumors. Methods and Materials: A total of 22 lung cancer patients were treated with curative intent with conventionally fractionated radiotherapy using daily image guidance with CBCT. Of these, 13 lung cancer patients had sufficient CBCT scans for analysis (389 CBCT scans). The patients underwent treatment simulation in the BodyFix immobilization system using four-dimensional CT to account for respiratory motion. Daily alignment was first done according to skin tattoos, followed by CBCT. All 389 CBCT scans were retrospectively registered to the planning CT scans using automated soft-tissue and bony registration; the resulting couch shifts in three dimensions were recorded. Results: The daily alignment to skin tattoos with no image guidance resulted in systematic (Σ) and random (σ) errors of 3.2-5.6 mm and 2.0-3.5 mm, respectively. The margin required to account for the setup error introduced by aligning to skin tattoos with no image guidance was approximately 1-1.6 cm. The difference in the couch shifts obtained from the bone and soft-tissue registration resulted in systematic (Σ) and random (σ) errors of 1.5-4.1 mm and 1.8-5.3 mm, respectively. The margin required to account for the setup error introduced using bony anatomy as a surrogate for the target, instead of localizing the target itself, was 0.5-1.4 cm. Conclusion: Using daily CBCT soft-tissue registration to localize the tumor in conventionally fractionated radiotherapy reduced the required setup margin by up to approximately 1.5 cm compared with both no image guidance and image guidance using bony anatomy as a surrogate for the target.

  6. Long-term effects of conventional and reduced tillage systems on soil condition and yield of maize

    Science.gov (United States)

    Rátonyi, Tamás; Széles, Adrienn; Harsányi, Endre

    2015-04-01

    As a consequence of operations which neglect soil condition and consist of frequent soil disturbance, conventional tillage (primary tillage with autumn ploughing) results in the degradation and compaction of soil structure, as well as the reduction of organic matter. These unfavourable processes pose an increasing economic and environmental protection problem today. The unfavourable physical condition of soils on which conventional tillage was performed indicate the need for preserving methods and tools. The examinations were performed in the multifactorial long-term tillage experiment established at the Látókép experiment site of DE MÉK. The experiment site is located in the Hajdúság loess ridge (Hungary) and its soil is loess-based calcareous chernozem with deep humus layer. The physical soil type is mid-heavy adobe. The long-term experiment has a split-split plot design. The main plots are different tillage methods (autumn ploughing, spring shallow tillage) without replication. In this paper, the effect of conventional and reduced (shallow) tillage methods on soil conditions and maize yield was examined. A manual penetrometer was used to determine the physical condition and compactedness of the soil. The soil moisture content was determined with deep probe measurement (based on capacitive method). In addition to soil analyses, the yield per hectare of different plots was also observed. In reduced tillage, one compacted layer is shown in the soil resistance profile determined with a penetrometer, while there are two compacted layers in autumn ploughing. The highest resistance was measured in the case of primary tillage performed at the same depth for several years in the compacted (pan disk) layer developed under the developed layer in both treatments. The unfavourable impact of spring shallow primary tillage on physical soil conditions is shown by the fact that the compaction of the pan disk exceed the critical limit value of 3 MPa. Over the years, further

  7. Users` demands narrow PLC-DCS gap

    Energy Technology Data Exchange (ETDEWEB)

    La Fauci, J.

    1997-02-01

    Supervisory control and data acquisition (SCADA) operator interface (OI) software has propelled programmable logic controllers (PLCs) into areas where they can successfully compete with distributed control systems (DCSs) for many control applications. As a result, automation engineers are struggling to develop guidelines to help determine which is best for batch operations and other applications. There is no clear answer to this issue. There are, however, decision tools such as Kepner-Tregoe (K-T) that can be applied by engineers as a structured approach to decision analysis and system selection. Other factors such as business environment, pressure to reduce project cost, validation, and predicting new technology direction all play a critical role for engineers in choosing between a PLC- or DCS-based control system. Higher-level business issues, however, are seldom considered by engineers during control system selection. Engineers should try to better understand their company`s business objectives and mission statement and how company business direction may affect control system selection. For instance, the pharmaceutical industry can be broken up into the following five basic application groups: bulk chemicals, finishing, biotech, pilot plant, and utilities. Each has a unique set of functional and process-control requirements. Understanding needs and differences of these five basic application groups and applying the optimum control system solution will place the company in a more competitive position. A financial analysis should be one of the first steps in the control system evaluation process. This may include early agreement of contractual terms and conditions as well as a nondisclosure agreement. Other financial considerations may include requesting a financial report on the control system manufacturer or systems integrator that will be performing the work to determine its financial stability. 3 figs.

  8. Long-Term Effects of Repeated Prefrontal Cortex Transcranial Direct Current Stimulation (tDCS) on Food Craving in Normal and Overweight Young Adults.

    Science.gov (United States)

    Ljubisavljevic, M; Maxood, K; Bjekic, J; Oommen, J; Nagelkerke, N

    The dorsolateral prefrontal cortex (DLPFC) plays an important role in the regulation of food intake. Several previous studies demonstrated that a single session of transcranial direct current stimulation (tDCS) of the DLPFC reduces food craving and caloric intake. We hypothesized that repeated tDCS of the right DLPFC cortex may exert long-term changes in food craving in young, healthy adults and that these changes may differ between normal and overweight subjects. Thirty healthy individuals who reported frequent food cravings without a prior history of eating disorders were initially recruited. Subjects were randomized into an ACTIVE group who received 5 days of real tDCS (20 minutes, anode right-cathode left montage, 2 mA with current density kept at 0.06 mA/cm2, 1 min ramp-up/ramp-down), and a SHAM group, who received one day of real tDCS, on the first day (same parameters), followed by 4 days of sham tDCS. Food craving intensity was examined by Food Craving Questionnaires State and Trait and Food Craving Inventory before, during, (5-days) and one month (30-days) after tDCS. Single session of tDCS significantly reduced the intensity of current food craving (FCQ-S). Five days of active tDCS significantly reduced habitual experiences of food craving (FCQ-T), when compared to baseline pre-stimulation levels. Furthermore, both current (FCQ-S) and habitual craving (FCQ-T) were significantly reduced 30 days after active tDCS, while sham tDCS, i.e. a single tDCS session did not have significant effects. Also, active tDCS significantly decreased craving for fast food and sweets, and to a lesser degree for fat, while it did not have significant effects on craving for carbohydrates (FCI). There were no significant differences between individual FCQ-T subscales (craving dimensions) after 5 or 30 days of either sham or active tDCS. Changes in craving were not significantly associated with the initial weight, or with weight changes 30 days after the stimulation in the

  9. EEG Driven tDCS Versus Bifrontal tDCS for Tinnitus

    OpenAIRE

    De Ridder, Dirk; Vanneste, Sven

    2012-01-01

    Tinnitus is the perception of a sound in the absence of any objective physical sound source. Transcranial Direct Current Stimulation (tDCS) induces shifts in membrane resting potentials depending on the polarity of the stimulation: under the anode gamma band activity increases, whereas under the cathode the opposite occurs. Both single and multiple sessions of tDCS over the dorsolateral prefrontal cortex (DLPFC; anode over right DLPFC) yield a transient improvement in tinnitus intensity and t...

  10. Noninvasive transcranial direct current stimulation (tDCS) for the treatment of orofacial pain.

    Science.gov (United States)

    Fricova, Jitka; Englerova, Katerina; Rokyta, Richard

    2016-10-01

    tDCS is a promising method for the treatment of chronic pain. Electrode placement locations must be chosen in accordance with the density and the time course of the current in order to prevent pathological changes in the underlying tissue. In order to reduce current spatial variability, more electrodes of the same polarity are placed in a circle around the second electrode of the opposite polarity. The applied current produced the greatest changes directly beneath the electrodes: the cathode reduces the excitability of cortical neurons, while the anode has the opposite effect. Based on inclusion criteria, 10 patients with chronic orofacial pain, secondary trigeminal neuralgia after oral surgery, were enrolled and underwent both anode and cathode stimulation. Before the first session we measured pain intensity on a numeric pain rating scale and tactile and thermal stimulation were used to assess somatosensory status. tDCS was applied for five consecutive days. At the end of tDCS application, somatosensory status was assessed again. From our results we can conclude that the application of tDCS improves the perception of some types of pain. When we increase our sample size, we would expect confirmation not only on our positive results, but also some additional findings for explaining the pathophysiology of orofacial pain. These pathophysiological findings and explanations are very important for the application of tDCS in the treatment of orofacial pain and also for other types of neuropathic pain.

  11. ATLAS Muon DCS Upgrades and Optimizations

    CERN Document Server

    Bakalis, Christos; The ATLAS collaboration

    2017-01-01

    The Muon subsystem is comprised of four detector types: Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) for trigger purposes, and Cathode Strip Chambers (CSC) and Muon Drift Tubes (MDT) for muon track reconstruction. The MDTs cover a large area at the outer part of the detector. In total, there are over a 1’000 MDT chambers, which are made of about 350’000 tubes. The luminosity upgrade of the HL-LHC is expected to pose a serious challenge to the MDTs. The expected increase of particle flux will set new, higher standards regarding the operation and control of the chambers. A step towards optimizing the ATLAS Muon Detector Control System (DCS) was to develop several DCS tools, namely a High Luminosity vs Trip Limit panel with its accompanying scripts and managers. The ultimate goal of this tool is to protect the MDT chambers from the rising particle flux and its associated increase in chamber current. In addition to optimizing the ATLAS Muon DCS, several tasks to accommodate the newly installed B...

  12. Effectiveness of a new toothbrush design versus a conventional tongue scraper in improving breath odor and reducing tongue microbiota

    Directory of Open Access Journals (Sweden)

    Luciana Assirati Casemiro

    2008-08-01

    Full Text Available For centuries, specific instruments or regular toothbrushes have routinely been used to remove tongue biofilm and improve breath odor. Toothbrushes with a tongue scraper on the back of their head have recently been introduced to the market. The present study compared the effectiveness of a manual toothbrush with this new design, i.e., possessing a tongue scraper, and a commercial tongue scraper in improving breath odor and reducing the aerobic and anaerobic microbiota of tongue surface. The evaluations occurred at 4 moments, when the participants (n=30 had their halitosis quantified with a halimeter and scored according to a 4-point scoring system corresponding to different levels of intensity. Saliva was collected for counts of aerobic and anaerobic microorganisms. Data were analyzed statistically by Friedman's test (p<0.05. When differences were detected, the Wilcoxon test adjusted for Bonferroni correction was used for multiple comparisons (group to group. The results confirmed the importance of mechanical cleaning of the tongue, since this procedure provided an improvement in halitosis and reduction of aerobe and anaerobe counts. Regarding the evaluated methods, the toothbrush's tongue scraper and conventional tongue scraper had a similar performance in terms of breath improvement and reduction of tongue microbiota, and may be indicated as effective methods for tongue cleaning.

  13. The closely related CD103+ dendritic cells (DCs and lymphoid-resident CD8+ DCs differ in their inflammatory functions.

    Directory of Open Access Journals (Sweden)

    Zhijun Jiao

    Full Text Available Migratory CD103+ and lymphoid-resident CD8+ dendritic cells (DCs share many attributes, such as dependence on the same transcription factors, cross-presenting ability and expression of certain surface molecules, such that it has been proposed they belong to a common sub-lineage. The functional diversity of the two DC types is nevertheless incompletely understood. Here we reveal that upon skin infection with herpes simplex virus, migratory CD103+ DCs from draining lymph nodes were more potent at inducing Th17 cytokine production by CD4+ T cells than CD8+ DCs. This superior capacity to drive Th17 responses was also evident in CD103+ DCs from uninfected mice. Their differential potency to induce Th17 differentiation was reflected by higher production of IL-1β and IL-6 by CD103+ DCs compared with CD8+ DCs upon stimulation. The two types of DCs from isolated lymph nodes also differ in expression of certain pattern recognition receptors. Furthermore, elevated levels of GM-CSF, typical of those found in inflammation, substantially increased the pool size of CD103+ DCs in lymph nodes and skin. We argue that varied levels of GM-CSF may explain the contrasting reports regarding the positive role of GM-CSF in regulating development of CD103+ DCs. Together, we find that these two developmentally closely-related DC subsets display functional differences and that GM-CSF has differential effect on the two types of DCs.

  14. Emergence dynamics of barnyardgrass and jimsonweed from two depths when switching from conventional to reduced and no-till conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vasileiadis, V.; Froud-Williams, R.J.; Loddo, D.; Eleftherohorinos, I.G.

    2016-11-01

    A cylinder experiment was conducted in northern Greece during 2005 and 2006 to assess emergence dynamics of barnyardgrass (Echinochloa crus-galli (L.) Beauv.) and jimsonweed (Datura stramonium L.) in the case of a switch from conventional to conservation tillage systems (CT). Emergence was surveyed from two burial depths (5 and 10 cm) and with simulation of reduced tillage (i.e. by soil disturbance) and no-till conditions. Barnyardgrass emergence was significantly affected by burial depth, having greater emergence from 5 cm depth (96%) although even 78% of seedlings emerged from 10 cm depth after the two years of study. Emergence of barnyardgrass was stable across years from the different depths and tillage regimes. Jimsonweed seeds showed lower germination than barnyardgrass during the study period, whereas its emergence was significantly affected by soil disturbance having 41% compared to 28% without disturbance. A burial depth x soil disturbance interaction was also determined, which showed higher emergence from 10 cm depth with soil disturbance. Jimsonweed was found to have significantly higher emergence from 10 cm depth with soil disturbance in Year 2. Seasonal emergence timing of barnyardgrass did not vary between the different burial depth and soil disturbance regimes, as it started in April and lasted until end of May in both years. Jimsonweed showed a bimodal pattern, with first emergence starting end of April until mid-May and the second ranging from mid-June to mid-August from 10 cm burial depth and from mid-July to mid-August from 5 cm depth, irrespective of soil disturbance in both cases. (Author)

  15. At-Home Transcranial Direct Current Stimulation (tDCS With Telehealth Support for Symptom Control in Chronically-Ill Patients With Multiple Symptoms

    Directory of Open Access Journals (Sweden)

    Alexa Riggs

    2018-05-01

    Full Text Available Transcranial direct current stimulation (tDCS delivered in multiple sessions can reduce symptom burden, but access of chronically ill patients to tDCS studies is constrained by the burden of office-based tDCS administration. Expanded access to this therapy can be accomplished through the development of interventions that allow at-home tDCS applications.Objective: We describe the development and initial feasibility assessment of a novel intervention for the chronically ill that combines at-home tDCS with telehealth support.Methods: In the developmental phase, the tDCS procedure was adjusted for easy application by patients or their informal caregivers at home, and a tDCS protocol with specific elements for enhanced safety and remote adherence monitoring was created. Lay language instructional materials were written and revised based on expert feedback. The materials were loaded onto a tablet allowing for secure video-conferencing. The telehealth tablet was paired with an at-home tDCS device that allowed for remote dose control via electronic codes dispensed to patients prior to each session. tDCS was delivered in two phases: once daily on 10 consecutive days, followed by an as needed regimen for 20 days. Initial feasibility of this tDCS-telehealth system was evaluated in four patients with advanced chronic illness and multiple symptoms. Change in symptom burden and patient satisfaction were assessed with the Condensed Memorial Symptom Assessment Scale (CMSAS and a tDCS user survey.Results: The telehealth-tDCS protocol includes one home visit and has seven patient-tailored elements and six elements enhancing safety monitoring. Replicable electrode placement at home without 10–20 EEG measurement is achieved via a headband that holds electrodes in a pre-determined position. There were no difficulties with patients’ training, protocol adherence, or tolerability. A total of 60 tDCS sessions were applied. No session required discontinuation, and

  16. At-Home Transcranial Direct Current Stimulation (tDCS) With Telehealth Support for Symptom Control in Chronically-Ill Patients With Multiple Symptoms.

    Science.gov (United States)

    Riggs, Alexa; Patel, Vaishali; Paneri, Bhaskar; Portenoy, Russell K; Bikson, Marom; Knotkova, Helena

    2018-01-01

    Transcranial direct current stimulation (tDCS) delivered in multiple sessions can reduce symptom burden, but access of chronically ill patients to tDCS studies is constrained by the burden of office-based tDCS administration. Expanded access to this therapy can be accomplished through the development of interventions that allow at-home tDCS applications. Objective: We describe the development and initial feasibility assessment of a novel intervention for the chronically ill that combines at-home tDCS with telehealth support. Methods: In the developmental phase, the tDCS procedure was adjusted for easy application by patients or their informal caregivers at home, and a tDCS protocol with specific elements for enhanced safety and remote adherence monitoring was created. Lay language instructional materials were written and revised based on expert feedback. The materials were loaded onto a tablet allowing for secure video-conferencing. The telehealth tablet was paired with an at-home tDCS device that allowed for remote dose control via electronic codes dispensed to patients prior to each session. tDCS was delivered in two phases: once daily on 10 consecutive days, followed by an as needed regimen for 20 days. Initial feasibility of this tDCS-telehealth system was evaluated in four patients with advanced chronic illness and multiple symptoms. Change in symptom burden and patient satisfaction were assessed with the Condensed Memorial Symptom Assessment Scale (CMSAS) and a tDCS user survey. Results: The telehealth-tDCS protocol includes one home visit and has seven patient-tailored elements and six elements enhancing safety monitoring. Replicable electrode placement at home without 10-20 EEG measurement is achieved via a headband that holds electrodes in a pre-determined position. There were no difficulties with patients' training, protocol adherence, or tolerability. A total of 60 tDCS sessions were applied. No session required discontinuation, and there were no adverse

  17. Realization of BP neural network modeling based on NOXof CFB boiler in DCS

    Science.gov (United States)

    Bai, Jianyun; Zhu, Zhujun; Wang, Qi; Ying, Jiang

    2018-02-01

    In the CFB boiler installed with SNCR denitrification system, the mass concentration of NO X is difficult to be predicted by the conventional mathematical model, and the step response mathematical model, obtained by using the step disturbance test of ammonia injection,is inaccurate. this paper presents two kinds of BP neural network model, according to the relationship between the generated mass concentration of NO X and the load, the ratio of air to coal without using the SNCR system, as well as the relationship between the tested mass concentration of NO X and the load, the ratio of air to coal and the amount of ammonia using the SNCR system. then itrealized the on-line prediction of the mass concentration of NO X and the remaining mass concentration of NO X after reductionreaction in DCS system. the practical results show that the average error per hour between generation and the prediction of the amount of NO X mass concentration is within 10 mg/Nm3,the reducing reaction of measured and predicted hourly average error is within 2 mg/Nm3, all in error range, which provides a more accurate model for solvingthe problem on NO X automatic control of SNCR system.

  18. DCS emulator development for the ACR-1000 simulator

    International Nuclear Information System (INIS)

    Nakashima, Y.; Trueman, R.; Ishii, K.

    2010-01-01

    Nuclear Power Plant (NPP) simulators are the main means for operator training and as such are a crucial part of the NPP operation life-cycle. Hitachi, Ltd., Information and Control Systems Company (henceforth 'Hitachi') is the preferred DCS and DCS emulator developer and supplier for the ACR-1000 NPP control system. Hitachi's concept for the DCS (distributed control system) portion of the ACR-1000 simulator is 'total emulation of the DCS' by software. This paper will review the current status of the technical development and the major project milestones. (author)

  19. Transcutaneous Spinal Direct Current Stimulation (tsDCS

    Directory of Open Access Journals (Sweden)

    Filippo eCogiamanian

    2012-07-01

    Full Text Available In the past ten years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (brain polarization or transcranial direct current stimulation, tDCS. Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation.Aiming at developing a new, non invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS on somatosensory potentials (SEPs evoked in healthy subjects by posterior tibial nerve (PTN stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30 without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials, tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic and segmental motor systems.Here we review currently available experimental evidence that non-invasive spinal cord stimulation influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive spinal cord stimulation in managing various pathologic conditions, including pain.

  20. The impact of cerebellar transcranial direct current stimulation (tDCS) on learning fine-motor sequences.

    Science.gov (United States)

    Shimizu, Renee E; Wu, Allan D; Samra, Jasmine K; Knowlton, Barbara J

    2017-01-05

    The cerebellum has been shown to be important for skill learning, including the learning of motor sequences. We investigated whether cerebellar transcranial direct current stimulation (tDCS) would enhance learning of fine motor sequences. Because the ability to generalize or transfer to novel task variations or circumstances is a crucial goal of real world training, we also examined the effect of tDCS on performance of novel sequences after training. In Study 1, participants received either anodal, cathodal or sham stimulation while simultaneously practising three eight-element key press sequences in a non-repeating, interleaved order. Immediately after sequence practice with concurrent tDCS, a transfer session was given in which participants practised three interleaved novel sequences. No stimulation was given during transfer. An inhibitory effect of cathodal tDCS was found during practice, such that the rate of learning was slowed in comparison to the anodal and sham groups. In Study 2, participants received anodal or sham stimulation and a 24 h delay was added between the practice and transfer sessions to reduce mental fatigue. Although this consolidation period benefitted subsequent transfer for both tDCS groups, anodal tDCS enhanced transfer performance. Together, these studies demonstrate polarity-specific effects on fine motor sequence learning and generalization.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  1. Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentata polysaccharide (ABP).

    Science.gov (United States)

    Zou, Yaxuan; Meng, Jingjuan; Chen, Wenna; Liu, Jingling; Li, Xuan; Li, Weiwei; Lu, Changlong; Shan, Fengping

    2011-08-01

    There are a large number of interactions at molecular and cellular levels between the plant polysaccharides and immune system. Plant polysaccharides present an interesting effects as immunomodulators, particularly in the induction of the cells both in innate and adaptive immune systems. Activation of DCs could improve antitumoral responses usually diminished in cancer patients, and natural adjuvants provide a possibility of inducing this activation. ABP is a purified polysaccharide isolated from Achyranthes bidentata, a traditional Chinese medicine (TCM). The aim of this study is to investigate modulation of phenotypic and functional maturation of murine DCs by ABP. Both phenotypic and functional activities were assessed with use of conventional scanning electronic microscopy (SEM) for the morphology of the DC, transmitted electron microscopy (TEM) for intracellular lysosomes inside the DC, cellular immunohistochemistry for phagocytosis by the DCs, flow cytometry (FCM) for the changes in key surface molecules, bio-assay for the activity of acidic phosphatases (ACP), and ELISA for the production of pro-inflammatory cytokine IL-12. In fact, we found that purified ABP induced phenotypic maturation revealed by increased expression of CD86, CD40, and MHC II. Functional experiments showed the down-regulation of ACP inside DCs (which occurs when phagocytosis of DCs is decreased, and antigen presentation increased with maturation). Finally, ABP increased the production of IL-12. These data reveal that ABP promotes effective activation of murine DCs. This adjuvant-like activity may have therapeutic applications in clinical settings where immune responses need boosting. It is therefore concluded that ABP can exert positive modulation to murine DCs. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults.

    Science.gov (United States)

    Zhou, Diange; Zhou, Junhong; Chen, Hu; Manor, Brad; Lin, Jianhao; Zhang, Jue

    2015-08-01

    Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex reduces the size and speed of standing postural sway in younger adults, particularly when performing a cognitive dual task. Here, we hypothesized that tDCS would alter the complex dynamics of postural sway as quantified by multiscale entropy (MSE). Twenty healthy older adults completed two study visits. Center-of-pressure (COP) fluctuations were recorded during single-task (i.e., quiet standing) and dual-task (i.e., standing while performing serial subtractions) conditions, both before and after a 20-min session of real or sham tDCS. MSE was used to estimate COP complexity within each condition. The percentage change in complexity from single- to dual-task conditions (i.e., dual-task cost) was also calculated. Before tDCS, COP complexity was lower (p = 0.04) in the dual-task condition as compared to the single-task condition. Neither real nor sham tDCS altered complexity in the single-task condition. As compared to sham tDCS, real tDCS increased complexity in the dual-task condition (p = 0.02) and induced a trend toward improved serial subtraction performance (p = 0.09). Moreover, those subjects with lower dual-task COP complexity at baseline exhibited greater percentage increases in complexity following real tDCS (R = -0.39, p = 0.05). Real tDCS also reduced the dual-task cost to complexity (p = 0.02), while sham stimulation had no effect. A single session of tDCS targeting the prefrontal cortex increased standing postural sway complexity with concurrent non-postural cognitive task. This form of noninvasive brain stimulation may be a safe strategy to acutely improve postural control by enhancing the system's capacity to adapt to stressors.

  3. Hybrid IMRT plans-concurrently treating conventional and IMRT beams for improved breast irradiation and reduced planning time

    International Nuclear Information System (INIS)

    Mayo, Charles S.; Urie, Marcia M.; Fitzgerald, Thomas J.

    2005-01-01

    Purpose: To evaluate a hybrid intensity modulated radiation therapy (IMRT) technique as a class solution for treatment of the intact breast. Methods and materials: The following five plan techniques were compared for 10 breast patients using dose-volume histogram analysis: conventional wedged-field tangents (Tangents), forward-planned field-within-a-field tangents (FIF), IMRT-only tangents (IMRT tangents), conventional open plus IMRT tangents (4-field hybrid), and conventional open plus IMRT tangents with 2 anterior oblique IMRT beams (6-field hybrid). Results: The 4-field hybrid and FIF achieved dose distributions better than Tangents and IMRT tangents. The volume of tissue outside the planning target volume receiving ≥110% of prescribed dose was largest for IMRT tangents (average 158 cc) and least for 6-field hybrid (average 1 cc); the FIF and 4-field hybrid were comparable (average 15 cc). Heart volume ≥30 Gy averaged 13 cc for all techniques, except Tangents, for which it was 32 cc. Average total lung volume ≥20 Gy was 7% for all. Contralateral breast doses were < 3% for all. Planning time for hybrid techniques was significantly less than for conventional FIF technique. Conclusions: The 4-field hybrid technique is a viable class solution. The 6-field hybrid technique creates the most conformal dose distribution at the expense of more normal tissue receiving low dose

  4. Adoptive transfer of dendritic cells expressing CD11c reduces the immunological response associated with experimental colitis in BALB/c mice.

    Science.gov (United States)

    Paiatto, Lisiery N; Silva, Fernanda G D; Yamada, Áureo T; Tamashiro, Wirla M S C; Simioni, Patricia U

    2018-01-01

    In addition to conventional therapies, several new strategies have been proposed for modulating autoimmune diseases, including the adoptive transfer of immunological cells. In this context, dendritic cells (DCs) appear to be one of the most promising treatments for autoimmune disorders. The present study aimed to evaluate the effects of adoptive transfer of DCs obtained from both naïve and ovalbumin (OVA)-tolerant mice on the severity of TNBS induced colitis and analyze the eventual protective mechanisms. To induce oral tolerance, BALB/c mice were fed 4mg/mL OVA solution for seven consecutive days. Spleen DCs were isolated from tolerant (tDC) and naïve (nDC) mice, and then adoptively transferred to syngeneic mice. Three days later, colitis was induced in DC treated mice by intrarectal instillation of 100μg2,4,6-trinitrobenzenesulfonic acid (TNBS) dissolved in 50% ethanol. Control subjects received only intrarectal instillation of either TNBS solution or a vehicle. Five days later, mice from all groups were euthanized and examined for physiological and immunological parameters. Regarding the phenotype, we observed that the frequencies of CD11+ MHC II+ and CD11+ MHCII+ CD86+ cells were significantly lower in DCs isolated from tolerant mice than in those from naive mice. However, pretreatment with both types of DCs was able to significantly reduce clinical signs of colitis such as diarrhea, rectal prolapse, bleeding, and cachexia, although only treatment with tDCs was able to prevent weight loss from instillation of TNBS. In vitro proliferation of spleen cells from mice treated with either type of DCs was significantly lower than that observed in splenic cell cultures of naïve mice. Although no significant difference was observed in the frequencies of Treg cells in the experimental groups, the frequency of Th17+CD4+cellsand the secretion of IL-17 were more reduced in the cultures of spleen cells from mice treated with either type of DCs. The levels of IL-9 and IFN

  5. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings.

    Science.gov (United States)

    Kekic, Maria; McClelland, Jessica; Campbell, Iain; Nestler, Steffen; Rubia, Katya; David, Anthony S; Schmidt, Ulrike

    2014-07-01

    Bulimia nervosa, binge-eating disorder, and some forms of obesity are characterised by compulsive overeating that is often precipitated by food craving. Transcranial direct current stimulation (tDCS) has been used to suppress food cravings, but there is insufficient evidence to support its application in clinical practice. Furthermore, the potential moderating role of impulsivity has not been considered. This study used a randomised within-subjects crossover design to examine whether a 20-minute session of sham-controlled bilateral tDCS to the dorsolateral prefrontal cortex (anode right/cathode left) would transiently modify food cravings and temporal discounting (TD; a measure of choice impulsivity) in 17 healthy women with frequent food cravings. Whether the effects of tDCS on food craving were moderated by individual differences in TD behaviour was also explored. Participants were exposed to food and a film of people eating, and food cravings and TD were assessed before and after active and sham stimulation. Craving for sweet but not savoury foods was reduced following real tDCS. Participants that exhibited more reflective choice behaviour were more susceptible to the anti-craving effects of tDCS than those that displayed more impulsive choice behaviour. No differences were seen in TD or food consumption after real versus sham tDCS. These findings support the efficacy of tDCS in temporarily lowering food cravings and identify the moderating role of TD behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Evaluation for nuclear safety-critical software reliability of DCS

    International Nuclear Information System (INIS)

    Liu Ying

    2015-01-01

    With the development of control and information technology at NPPs, software reliability is important because software failure is usually considered as one form of common cause failures in Digital I and C Systems (DCS). The reliability analysis of DCS, particularly qualitative and quantitative evaluation on the nuclear safety-critical software reliability belongs to a great challenge. To solve this problem, not only comprehensive evaluation model and stage evaluation models are built in this paper, but also prediction and sensibility analysis are given to the models. It can make besement for evaluating the reliability and safety of DCS. (author)

  7. New cooling regulation technology of secondary cooling station in DCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Yan, Jun-wei; Zhu, Dong-sheng; Liu, Fei-long; Lei, Jun-xi [The Key Lab of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510641 (China); Liang, Lie-quan [The Key Lab of E-Commerce Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320 (China)

    2008-07-01

    In this paper, a kind of new control technology of secondary cooling station (constant flow rate/variable temperature difference) in district cooling system (DCS) is proposed in view of serial consequences including low efficiency and high operating cost caused by low temperature of supply water in DCS. This technology has been applied in DCS of Guangzhou University City. The result has already indicated that such technology can increase the supply and return temperatures of buildings, return water temperature of primary side in the plate heat exchanger unit, moreover, the efficiency of both the chiller and the whole system are improved significantly. (author)

  8. Effects of transcranial direct current stimulation (tDCS) on cognition, symptoms, and smoking in schizophrenia: A randomized controlled study.

    Science.gov (United States)

    Smith, Robert C; Boules, Sylvia; Mattiuz, Sanela; Youssef, Mary; Tobe, Russell H; Sershen, Henry; Lajtha, Abel; Nolan, Karen; Amiaz, Revital; Davis, John M

    2015-10-01

    Schizophrenia is characterized by cognitive deficits which persist after acute symptoms have been treated or resolved. Transcranial direct current stimulation (tDCS) has been reported to improve cognition and reduce smoking craving in healthy subjects but has not been as carefully evaluated in a randomized controlled study for these effects in schizophrenia. We conducted a randomized double-blind, sham-controlled study of the effects of 5 sessions of tDCS (2 milliamps for 20minutes) on cognition, psychiatric symptoms, and smoking and cigarette craving in 37 outpatients with schizophrenia or schizoaffective disorder who were current smokers. Thirty subjects provided evaluable data on the MATRICS Consensus Cognitive Battery (MCCB), with the primary outcome measure, the MCCB Composite score. Active compared to sham tDCS subjects showed significant improvements after the fifth tDCS session in MCCB Composite score (p=0.008) and on the MCCB Working Memory (p=0.002) and Attention-Vigilance (p=0.027) domain scores, with large effect sizes. MCCB Composite and Working Memory domain scores remained significant at Benjamini-Hochberg corrected significance levels (α=0.05). There were no statistically significant effects on secondary outcome measures of psychiatric symptoms (PANSS scores), hallucinations, cigarette craving, or cigarettes smoked. The positive effects of tDCS on cognitive performance suggest a potential efficacious treatment for cognitive deficits in partially recovered chronic schizophrenia outpatients that should be further investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon.

    Science.gov (United States)

    Jemil, Nawel; Ben Ayed, Hanen; Hmidet, Noomen; Nasri, Moncef

    2016-11-01

    Six biosurfactant-producing bacteria were isolated from hydrocarbon contaminated soils in Sfax, Tunisia. Isolates were screened for biosurfactant production by different conventional methods including hemolytic activity, surface tension reduction, drop-collapsing and oil displacement tests. All these screening tests show that all the isolates behave differently. Among the isolated bacteria, DCS1 strain was selected for further studies based on its highest activities and it was identified as Bacillus methylotrophicus DCS1. This strain was found to be a potent producer of biosurfactant when cultivated in mineral-salts medium supplemented with diesel oil (2 %, v/v) as a sole carbon source. Physicochemical properties and stability of biosurfactants synthesized by B. methylotrophicus DCS1 were investigated. The produced biosurfactants DCS1, from Landy medium, possess high surface activity that could lower the surface tension of water to a value of 31 from 72 mN m(-1) and have a critical micelle concentration (CMC) of 100 mg L(-1). Compared with SDS and Tween 80, biosurfactants showed excellent emulsification activities against different hydrocarbon substrates and high solubilization efficiency towards diesel oil. Biosurfactants DCS1 showed good stability in a wide range of temperature, pH and salinity. These results suggested that biosurfactants produced by B. methylotrophicus DCS1 could be an alternative to chemically synthesized surfactants for use in bioremediation processes to enhance the solubility of hydrophobic compounds.

  10. The HLT, DAQ and DCS TDR

    CERN Multimedia

    Wickens, F. J

    At the end of June the Trigger-DAQ community achieved a major milestone with the submission to the LHCC of the Technical Design Report (TDR) for DAQ, HLT and DCS. The first unbound copies were handed to the LHCC referees on the scheduled date of 30th June, this was followed a few days later by a limited print run which produced the first bound copies (see Figure 1). As had previously been announced both to the LHCC and the ATLAS Collaboration it was not possible on this timescale to give a complete validation of all of the aspects of the architecture in the TDR. So it had been agreed that further work would continue over the summer to provide more complete results for the formal review by the LHCC of the TDR in September. Thus there followed an intense programme of measurements and analysis: especially to provide results for HLT both in testbeds and for the event selection software itself; to provide additional information on scaling of the dataflow aspects; to provide first results on the new prototype ROBin...

  11. Dcs Data Viewer, an Application that Accesses ATLAS DCS Historical Data

    Science.gov (United States)

    Tsarouchas, C.; Schlenker, S.; Dimitrov, G.; Jahn, G.

    2014-06-01

    The ATLAS experiment at CERN is one of the four Large Hadron Collider experiments. The Detector Control System (DCS) of ATLAS is responsible for the supervision of the detector equipment, the reading of operational parameters, the propagation of the alarms and the archiving of important operational data in a relational database (DB). DCS Data Viewer (DDV) is an application that provides access to the ATLAS DCS historical data through a web interface. Its design is structured using a client-server architecture. The pythonic server connects to the DB and fetches the data by using optimized SQL requests. It communicates with the outside world, by accepting HTTP requests and it can be used stand alone. The client is an AJAX (Asynchronous JavaScript and XML) interactive web application developed under the Google Web Toolkit (GWT) framework. Its web interface is user friendly, platform and browser independent. The selection of metadata is done via a column-tree view or with a powerful search engine. The final visualization of the data is done using java applets or java script applications as plugins. The default output is a value-over-time chart, but other types of outputs like tables, ascii or ROOT files are supported too. Excessive access or malicious use of the database is prevented by a dedicated protection mechanism, allowing the exposure of the tool to hundreds of inexperienced users. The current configuration of the client and of the outputs can be saved in an XML file. Protection against web security attacks is foreseen and authentication constrains have been taken into account, allowing the exposure of the tool to hundreds of users world wide. Due to its flexible interface and its generic and modular approach, DDV could be easily used for other experiment control systems.

  12. DCS data viewer, an application that accesses ATLAS DCS historical data

    International Nuclear Information System (INIS)

    Tsarouchas, C; Schlenker, S; Dimitrov, G; Jahn, G

    2014-01-01

    The ATLAS experiment at CERN is one of the four Large Hadron Collider experiments. The Detector Control System (DCS) of ATLAS is responsible for the supervision of the detector equipment, the reading of operational parameters, the propagation of the alarms and the archiving of important operational data in a relational database (DB). DCS Data Viewer (DDV) is an application that provides access to the ATLAS DCS historical data through a web interface. Its design is structured using a client-server architecture. The pythonic server connects to the DB and fetches the data by using optimized SQL requests. It communicates with the outside world, by accepting HTTP requests and it can be used stand alone. The client is an AJAX (Asynchronous JavaScript and XML) interactive web application developed under the Google Web Toolkit (GWT) framework. Its web interface is user friendly, platform and browser independent. The selection of metadata is done via a column-tree view or with a powerful search engine. The final visualization of the data is done using java applets or java script applications as plugins. The default output is a value-over-time chart, but other types of outputs like tables, ascii or ROOT files are supported too. Excessive access or malicious use of the database is prevented by a dedicated protection mechanism, allowing the exposure of the tool to hundreds of inexperienced users. The current configuration of the client and of the outputs can be saved in an XML file. Protection against web security attacks is foreseen and authentication constrains have been taken into account, allowing the exposure of the tool to hundreds of users world wide. Due to its flexible interface and its generic and modular approach, DDV could be easily used for other experiment control systems.

  13. Hepatic and pulmonary apoptosis after hemorrhagic shock in swine can be reduced through modifications of conventional Ringer's solution.

    Science.gov (United States)

    Ayuste, Eduardo C; Chen, Huazhen; Koustova, Elena; Rhee, Peter; Ahuja, Naresh; Chen, Zhang; Valeri, C Robert; Spaniolas, Konstantinos; Mehrani, Tina; Alam, Hasan B

    2006-01-01

    and L isomers) failed to decrease tissue TNF levels. DL-LR resuscitation also increased apoptosis (p < 0.05) in liver and lung, which was not seen after resuscitation with other solutions. In this large animal model of hemorrhagic shock, resuscitation with conventional (racemic) LR solution increased apoptotic cell death in liver and lung. This effect can be prevented by simple elimination of D-lactate from the Ringer's solution.

  14. The residual and direct effects of reduced-risk and conventional miticides on twospotted spider mites, Tetranychus urticae (Acari: Tetranychidae) and predatory mites (Acari: Phytoseiidae)

    International Nuclear Information System (INIS)

    Liburd, O.E.; White, J.C.; Rhodes, E.M.; Browdy, A.A.

    2007-01-01

    The residual effects of several reduced-risk and conventional miticides were evaluated in strawberries (Fragaria × ananassa Duchesne) on the twospotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae) and on 2 predatory mites, Neoseiulus californicus McGregor and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Experiments were conducted in the laboratory and greenhouse. The greenhouse experiments also tested the direct effects of the miticides on TSSM. The efficacy of conventional and reduced-risk miticides was evaluated on strawberry leaf discs and on whole plants for control of TSSM. Furthermore, the residual effects of these miticides were evaluated on whole strawberry plants against selective predatory mites. For TSSM, 5 treatments were evaluated: a conventional miticide; fenbutatin-oxide (Vendex[reg]) and 3 reduced-risk miticides; binfenazate (Acramite 50WP[reg]), activated garlic extract (Repel[reg]), sesame seed and castor oil (Wipeout[reg]), and a water-treated control. For predatory mites, the residual effects of only Acramite[reg] and Vendex[reg] were evaluated. Acramite[reg] was the most effective acaricide in reducing TSSM populations in both the laboratory and greenhouse experiments. Vendex[reg] and Wipeout[reg] were also effective in the laboratory, but did not cause significant reduction of TSSM in the greenhouse. Repel[reg] was the least effective of the 4 pesticides evaluated. Neither Acramite[reg] nor Vendex[reg] had a significant effect on either predatory mite species. However, there appeared to be more predatory mites on the Vendex[reg]-treated plants than on the Acramite[reg]-treated plants. There were significantly more predatory mites of both species on the cue plants, which were inoculated with TSSM versus the non-cue plants, which were not inoculated. (author) [es

  15. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum.

    Science.gov (United States)

    Varela, C; Sengler, F; Solomon, M; Curtin, C

    2016-10-15

    Production of quality wines with decreased alcohol concentration continues to be one of the major challenges facing wine producers. Therefore, there is considerable interest in the isolation or generation of wine yeasts less efficient at transforming grape sugars into ethanol. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 and Saccharomyces uvarum AWRI2846 were both able to produce reduced alcohol wine when used in sequential inoculation with Saccharomyces cerevisiae. This effect is additive when both strains are co-inoculated in grape must. Here we describe the volatile flavour profile of Chardonnay and Shiraz wines produced with these two strains. Wines fermented with M. pulcherrima showed concentrations of ethyl acetate likely to affect negatively wine aroma. Wines fermented with S. uvarum and with a combination of M. pulcherrima and S. uvarum were characterised by increased concentrations of 2-phenyl ethanol and 2-phenylethyl acetate, both associated with positive sensory attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively

    DEFF Research Database (Denmark)

    Sichien, Dorine; Scott, Charlotte L; Martens, Liesbet

    2016-01-01

    Interferon regulatory factor-8 (IRF8) has been proposed to be essential for development of monocytes, plasmacytoid dendritic cells (pDCs) and type 1 conventional dendritic cells (cDC1s) and remains highly expressed in differentiated DCs. Transcription factors that are required to maintain the ide...

  17. Conditional ablation of CD205+ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo.

    Science.gov (United States)

    Fukaya, Tomohiro; Murakami, Ryuichi; Takagi, Hideaki; Sato, Kaori; Sato, Yumiko; Otsuka, Haruna; Ohno, Michiko; Hijikata, Atsushi; Ohara, Osamu; Hikida, Masaki; Malissen, Bernard; Sato, Katsuaki

    2012-07-10

    Dendritic cells (DCs) are composed of multiple subsets that play a dual role in inducing immunity and tolerance. However, it is unclear how CD205(+) conventional DCs (cDCs) control immune responses in vivo. Here we generated knock-in mice with the selective conditional ablation of CD205(+) cDCs. CD205(+) cDCs contributed to antigen-specific priming of CD4(+) T cells under steady-state conditions, whereas they were dispensable for antigen-specific CD4(+) T-cell responses under inflammatory conditions. In contrast, CD205(+) cDCs were required for antigen-specific priming of CD8(+) T cells to generate cytotoxic T lymphocytes (CTLs) mediated through cross-presentation. Although CD205(+) cDCs were involved in the thymic generation of CD4(+) regulatory T cells (Tregs), they maintained the homeostasis of CD4(+) Tregs and CD4(+) effector T cells in peripheral and mucosal tissues. On the other hand, CD205(+) cDCs were involved in the inflammation triggered by Toll-like receptor ligand as well as bacterial and viral infections. Upon microbial infections, CD205(+) cDCs contributed to the cross-priming of CD8(+) T cells for generating antimicrobial CTLs to efficiently eliminate pathogens, whereas they suppressed antimicrobial CD4(+) T-cell responses. Thus, these findings reveal a critical role for CD205(+) cDCs in the regulation of T-cell immunity and homeostasis in vivo.

  18. Impact of low-trans fat compositions on the quality of conventional and fat-reduced puff pastry.

    Science.gov (United States)

    Silow, Christoph; Zannini, Emanuele; Arendt, Elke K

    2016-04-01

    Four vegetable fat blends (FBs) with low trans-fatty acid (TFA ≤ 0.6 %) content with various ratios of palm stearin (PS) and rapeseed oil (RO) were characterised and examined for their application in puff pastry production. The amount of PS decreased from FB1 to FB4 and simultaneously the RO content increased. A range of analytical methods were used to characterise the FBs, including solid fat content (SFC), differential scanning calorimetry (DSC), cone penetrometry and rheological measurements. The internal and external structural quality parameters of baked puff pastry were investigated using texture analyser equipped with an Extended Craft Knife (ECK), VolScan and C-Cell image system. Puff pastry containing FB1 and FB2 achieved excellent baking results for full fat and fat-reduced puff pastry; hence these FBs contained adequate shortening properties. A fat reduction by 40 % using FB2 and a reduction of saturated fatty acids (SAFA) by 49 %, compared to the control, did not lead to adverse effects in lift and specific volume. The higher amount of RO and the lower SAFA content compared to FB1 coupled with the satisfying baking results makes FB2 the fat of choice in this study. FB3 and FB4 were found to be unsuitable for puff pastry production because of their melting behaviour.

  19. Eight weeks of a combination of high intensity interval training and conventional training reduce visceral adiposity and improve physical fitness: a group-based intervention.

    Science.gov (United States)

    Giannaki, Christoforos D; Aphamis, George; Sakkis, Panikos; Hadjicharalambous, Marios

    2016-04-01

    High intensity interval training (HIIT) has been recently promoted as an effective, low volume and time-efficient training method for improving fitness and health related parameters. The aim of the current study was to examine the effect of a combination of a group-based HIIT and conventional gym training on physical fitness and body composition parameters in healthy adults. Thirty nine healthy adults volunteered to participate in this eight-week intervention study. Twenty three participants performed regular gym training 4 days a week (C group), whereas the remaining 16 participants engaged twice a week in HIIT and twice in regular gym training (HIIT-C group) as the other group. Total body fat and visceral adiposity levels were calculated using bioelectrical impedance analysis. Physical fitness parameters such as cardiorespiratory fitness, speed, lower limb explosiveness, flexibility and isometric arm strength were assessed through a battery of field tests. Both exercise programs were effective in reducing total body fat and visceral adiposity (Ptraining improved cardiorespiratory fitness levels (Ptraining (Ptraining improve various physical fitness parameters and reduce both total and visceral fat levels. This type of training was also found to be superior compared with conventional exercise training alone in terms of reducing more visceral adiposity levels. Group-based HIIT may consider as a good methods for individuals who exercise in gyms and craving to acquire significant fitness benefits in relatively short period of time.

  20. Considering the influence of stimulation parameters on the effect of conventional and high-definition transcranial direct current stimulation.

    Science.gov (United States)

    To, Wing Ting; Hart, John; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Recently, techniques to non-invasively modulate specific brain areas gained popularity in the form of transcranial direct current stimulation (tDCS) and high-definition transcranial direct current stimulation. These non-invasive techniques have already shown promising outcomes in various studies with healthy subjects as well as patient populations. Despite widespread dissemination of tDCS, there remain significant unknowns about the influence of a diverse number of tDCS parameters (e.g. polarity, size, position of electrodes & duration of stimulation) in inducing neurophysiological and behavioral effects. This article explores both techniques starting with the history of tDCS, to the differences between conventional tDCS and high-definition transcranial direct current stimulation, the underlying physiological mechanism, the (in)direct effects, the applications of tDCS with varying parameters, the efficacy, the safety issues and the opportunities for future research.

  1. Longitudinal tDCS: Consistency across Working Memory Training Studies

    Directory of Open Access Journals (Sweden)

    Marian E. Berryhill

    2017-04-01

    Full Text Available There is great interest in enhancing and maintaining cognitive function. In recent years, advances in noninvasive brain stimulation devices, such as transcranial direct current stimulation (tDCS, have targeted working memory in particular. Despite controversy surrounding outcomes of single-session studies, a growing field of working memory training studies incorporate multiple sessions of tDCS. It is useful to take stock of these findings because there is a diversity of paradigms employed and the outcomes observed between research groups. This will be important in assessing cognitive training programs paired with stimulation techniques and identifying the more useful and less effective approaches. Here, we treat the tDCS+ working memory training field as a case example, but also survey training benefits in other neuromodulatory techniques (e.g., tRNS, tACS. There are challenges associated with the broad parameter space including: individual differences, stimulation intensity, duration, montage, session number, session spacing, training task selection, timing of follow up testing, near and far transfer tasks. In summary, although the field of assisted cognitive training is young, some design choices are more favorable than others. By way of heuristic, the current evidence supports including more training/tDCS sessions (5+, applying anodal tDCS targeting prefrontal regions, including follow up testing on trained and transfer tasks after a period of no contact. What remains unclear, but important for future translational value is continuing work to pinpoint optimal values for the tDCS parameters on a per cognitive task basis. Importantly the emerging literature shows notable consistency in the application of tDCS for WM across various participant populations compared to single session experimental designs.

  2. Protein intakes are associated with reduced length of stay: a comparison between Enhanced Recovery After Surgery (ERAS) and conventional care after elective colorectal surgery.

    Science.gov (United States)

    Yeung, Sophia E; Hilkewich, Leslee; Gillis, Chelsia; Heine, John A; Fenton, Tanis R

    2017-07-01

    Background: Protein can modulate the surgical stress response and postoperative catabolism. Enhanced Recovery After Surgery (ERAS) protocols are evidence-based care bundles that reduce morbidity. Objective: In this study, we compared protein adequacy as well as energy intakes, gut function, clinical outcomes, and how well nutritional variables predict length of hospital stay (LOS) in patients receiving ERAS protocols and conventional care. Design: We conducted a prospective cohort study in adult elective colorectal resection patients after conventional ( n = 46) and ERAS ( n = 69) care. Data collected included preoperative Malnutrition Screening Tool (MST) score, 3-d food records, postoperative nausea, LOS, and complications. Multivariable regression analysis assessed whether low protein intakes and the MST score were predictive of LOS. Results: Total protein intakes were significantly higher in the ERAS group due to the inclusion of oral nutrition supplements (conventional group: 0.33 g · kg -1 · d -1 ; ERAS group: 0.54 g · kg -1 · d -1 ; P Nutrition variables were independent predictors of earlier discharge after potential confounders were controlled for. Each unit increase in preoperative MST score predicted longer LOSs of 2.5 d (95% CI: 1.5, 3.5 d; P nutrition supplements. However, total protein intake remained inadequate to meet recommendations. Consumption of ≥60% protein needs after surgery and MST scores were independent predictors of LOS. This trial was registered at clinicaltrials.gov as NCT02940665. © 2017 American Society for Nutrition.

  3. Repulsive guidance molecule a blockade exerts the immunoregulatory function in DCs stimulated with ABP and LPS.

    Science.gov (United States)

    Xu, Xuxu; Gao, Yan; Zhai, Zhiyong; Zhang, Shuo; Shan, Fengping; Feng, Juan

    2016-08-02

    Repulsive guidance molecule a (RGMa) is an axonal guidance molecule that has recently found to exert function in immune system. This study evaluated the function of RGMa in modulation of dendritic cells (DCs) function stimulated with Achyranthes bidentata polysaccharide (ABP) and lipopolysaccharide (LPS) using a RGMa-neutralizing antibody. Compared with the Control-IgG/ABP and Control-IgG/LPS groups, DCs in the Anti-RGMa/ABP and Anti-RGMa/LPS groups 1) showed small, round cells with a few cell processes and organelles, and many pinocytotic vesicles; 2) had decreased MHC II, CD86, CD80, and CD40 expression; 3) displayed the decreased IL-12p70, IL-1β and TNF-α levels and increased IL-10 secretion; 4) had a high percentage of FITC-dextran uptake; and 5) displayed a reduced ability to drive T cell proliferation and reinforced T cell polarization toward a Th2 cytokine pattern. We conclude that DCs treated with RGMa-neutralizing antibodies present with tolerogenic and immunoregulatory characteristics, which provides new insights into further understanding of the function of RGMa.

  4. The critical role of cognitive-based trait differences in transcranial direct current stimulation (tDCS) suppression of food craving and eating in frank obesity.

    Science.gov (United States)

    Ray, Mary Katherine; Sylvester, Maria D; Osborn, Lauren; Helms, Joel; Turan, Bulent; Burgess, Emilee E; Boggiano, Mary M

    2017-09-01

    Obesity remains a major public health concern and novel treatments are needed. Transcranial direct current stimulation (tDCS) is a neuromodulation technique shown to reduce food craving and consumption, especially when targeting the dorsolateral prefrontal cortex (DLPFC) with a right anode/left cathode electrode montage. Despite the implications to treat frank (non-bingeeating) obesity, no study has tested the right anode/left cathode montage in this population. Additionally, most tDCS appetite studies have not controlled for differences in traits under DLPFC control that may influence how well one responds to tDCS. Hence, N = 18 (10F/8M) adults with frank obesity completed the Dutch Eating Behavior Questionnaire-Restraint and Barratt Impulsiveness Scale, and received 20 min of 2 mA active tDCS and control tDCS session. Craving and eating was assessed at both sessions with a food photo "wanting" test and in-lab measures of total, preferred, and less-preferred kilocalories consumed of three highly palatable snack foods. While main effects of tDCS vs. control were not found, significant differences emerged when trait scores were controlled. tDCS reduced food craving in females with lower attention-type impulsiveness (p = 0.047), reduced preferred-food consumption in males with lower intent to restrict calories (p = 0.024), and reduced total food consumption in males with higher non-planning-type impulsiveness (p = 0.009) compared to control tDCS. This is the first study to find significant reductions in food craving and consumption in a sample with frank obesity using the most popular tDCS montage in appetite studies. The results also highlight the cognitive-based heterogeneity of individuals with obesity and the importance of considering these differences when evaluating the efficacy of DLPFC-targeted tDCS in future studies aimed at treating obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study.

    Science.gov (United States)

    Weber, Matthew J; Messing, Samuel B; Rao, Hengyi; Detre, John A; Thompson-Schill, Sharon L

    2014-08-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique used both experimentally and therapeutically to modulate regional brain function. However, few studies have directly measured the aftereffects of tDCS on brain activity or examined changes in task-related brain activity consequent to prefrontal tDCS. To investigate the neural effects of tDCS, we collected fMRI data from 22 human subjects, both at rest and while performing the Balloon Analog Risk Task (BART), before and after true or sham transcranial direct current stimulation. TDCS decreased resting blood perfusion in orbitofrontal cortex and the right caudate and increased task-related activity in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in response to losses but not wins or increasing risk. Network analysis showed that whole-brain connectivity of the right ACC correlated positively with the number of pumps subjects were willing to make on the BART, and that tDCS reduced connectivity between the right ACC and the rest of the brain. Whole-brain connectivity of the right DLPFC also correlated negatively with pumps on the BART, as prior literature would suggest. Our results suggest that tDCS can alter activation and connectivity in regions distal to the electrodes. Copyright © 2014 Wiley Periodicals, Inc.

  6. Transcranial direct current stimulation (tDCS in behavioral and food addiction: A systematic review of efficacy, technical and methodological issues

    Directory of Open Access Journals (Sweden)

    Anne eSauvaget

    2015-10-01

    Full Text Available Objectives.Behavioral addictions (BA are complex disorders for which pharmacological and psychotherapeutic treatments have shown their limits. Non-invasive brain stimulation, among which transcranial direct current stimulation (tDCS, has opened up new perspectives in addiction treatment. The purpose of this work is to conduct a critical and systematic review of tDCS efficacy, and of technical and methodological considerations in the field of BA.Methods.A bibliographic search has been conducted on the Medline and ScienceDirect databases until December 2014, based on the following selection criteria: clinical studies on tDCS and BA (namely eating disorders, compulsive buying, Internet addiction, pathological gambling, sexual addiction, sports addiction, video games addiction. Study selection, data analysis and reporting were conducted according to the PRISMA guidelines.Results.Out of 402 potential articles, seven studies were selected. So far focusing essentially on abnormal eating, these studies suggest that tDCS (right prefrontal anode / left prefrontal cathode reduces food craving induced by visual stimuli.ConclusionsDespite methodological and technical differences between studies, the results are promising. So far, only few studies of tDCS in BA have been conducted. New research is recommended on the use of tDCS in BA, other than eating disorders.

  7. Understanding public (misunderstanding of tDCS for enhancement

    Directory of Open Access Journals (Sweden)

    Laura Yenisa Cabrera

    2015-04-01

    Full Text Available In order to gain insight into the public’s perspective on using the minimally invasive technique transcranial direct current stimulation (tDCS as an enhancement tool, we analyzed and compared online comments in key popular press articles from two different periods (pre-commercialization and post-commercialization. The main conclusion drawn from this exploratory investigation is that public perception regarding tDCS has shifted from misunderstanding to cautionary realism. This change in attitude can be explained as moving from a focus on an emergent technology to a focus on its applications, benefits, and risks as the technology becomes more grounded within the public domain. Future governance of tDCS should include the concerns and enthusiasms of the public.Keywords: cognitive enhancement, neuroethics, public understanding, transcranial direct current stimulation, brain stimulation, public policy.

  8. Communication between Trigger/DAQ and DCS in ATLAS

    International Nuclear Information System (INIS)

    Burckhart, H.; Jones, R.; Hart, R.; Khomoutnikov, V.; Ryabov, Y.

    2001-01-01

    Within the ATLAS experiment Trigger/DAQ and DCS are both logically and physically separated. Nevertheless there is a need to communicate. The initial problem definition and analysis suggested three subsystems the Trigger/DAQ DCS Communication (DDC) project should support the ability to: 1. exchange data between Trigger/DAQ and DCS; 2. send alarm messages from DCS to Trigger/DAQ; 3. issue commands to DCS from Trigger/DAQ. Each subsystem is developed and implemented independently using a common software infrastructure. Among the various subsystems of the ATLAS Trigger/DAQ the Online is responsible for the control and configuration. It is the glue connecting the different systems such as data flow, level 1 and high-level triggers. The DDC uses the various Online components as an interface point on the Trigger/DAQ side with the PVSS II SCADA system on the DCS side and addresses issues such as partitioning, time stamps, event numbers, hierarchy, authorization and security. PVSS II is a commercial product chosen by CERN to be the SCADA system for all LHC experiments. Its API provides full access to its database, which is sufficient to implement the 3 subsystems of the DDC software. The DDC project adopted the Online Software Process, which recommends a basic software life-cycle: problem statement, analysis, design, implementation and testing. Each phase results in a corresponding document or in the case of the implementation and testing, a piece of code. Inspection and review take a major role in the Online software process. The DDC documents have been inspected to detect flaws and resulted in a improved quality. A first prototype of the DDC is ready and foreseen to be used at the test-beam during summer 2001

  9. Comprehensive evaluation method in application of nuclear DCS product design

    International Nuclear Information System (INIS)

    Wang Weixin; Zhao Zhemin; Shi Yingbin

    2014-01-01

    In order to select the best design proposal in short time, the TOPSIS comprehensive evaluation method in the nuclear power plant DCS product design was introduced. It can intuitively show the different design proposals good or not good by data and shorten the time of the design proposal optimization. The design proposal selected by this method will be more reasonable and has good comprehensive performance indexes. The TOPSIS comprehensive evaluation method achieves good result in one of the nuclear power plant DCS cabinet design proposal optimization. (authors)

  10. New Concept For Alarm Structure And Management In Dcs Systems

    Directory of Open Access Journals (Sweden)

    Mohammed Hegazy

    2015-08-01

    Full Text Available The objective of this paper is to set new standard for good design and best practice to applied when any DCS ManufacturesSuppliers configure process alarm system in any oil refining oil and gas production gas-handling facilities gasification plant or any chemical processing plant and thereby to optimizeminimize unnecessary alarms from reporting to operator workstations CAD Control Alarm Display. These views based on the experience acquired and implemented during involvement with the commissioning and startup of two DCS projects in Mina Al-Ahmadi Refinery Kuwait.

  11. A reliability evaluation method for NPP safety DCS application software

    International Nuclear Information System (INIS)

    Li Yunjian; Zhang Lei; Liu Yuan

    2014-01-01

    In the field of nuclear power plant (NPP) digital i and c application, reliability evaluation for safety DCS application software is a key obstacle to be removed. In order to quantitatively evaluate reliability of NPP safety DCS application software, this paper propose a reliability evaluating method based on software development life cycle every stage's v and v defects density characteristics, by which the operating reliability level of the software can be predicted before its delivery, and helps to improve the reliability of NPP safety important software. (authors)

  12. Focused transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex modulates specific domains of self-regulation.

    Science.gov (United States)

    Pripfl, Jürgen; Lamm, Claus

    2015-02-01

    Recent neuroscience theories suggest that different kinds of self-regulation may share a common psychobiological mechanism. However, empirical evidence for a domain general self-regulation mechanism is scarce. The aim of this study was to investigate whether focused anodal transcranial direct current stimulation (tDCS), facilitating the activity of the dorsolateral prefrontal cortex (dlPFC), acts on a domain general self-regulation mechanism and thus modulates both affective and appetitive self-regulation. Twenty smokers participated in this within-subject sham controlled study. Effects of anodal left, anodal right and sham tDCS over the dlPFC on affective picture appraisal and nicotine craving-cue appraisal were assessed. Anodal right tDCS over the dlPFC reduced negative affect in emotion appraisal, but neither modulated regulation of positive emotion appraisal nor of craving appraisal. Anodal left stimulation did not induce any significant effects. The results of our study show that domain specific self-regulation networks are at work in the prefrontal cortex. Focused tDCS modulation of this specific self-regulation network could probably be used during the first phase of nicotine abstinence, during which negative affect might easily result in relapse. These findings have implications for neuroscience models of self-regulation and are of relevance for the development of brain stimulation based treatment methods for neuropsychiatric disorders associated with self-regulation deficits. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. Analysis and simulation of 'low-cost' strategies to reduce fuel consumption and emissions in conventional gasoline light-duty vehicles

    International Nuclear Information System (INIS)

    Silva, Carla; Ross, Marc; Farias, Tiago

    2009-01-01

    This paper focuses on technology analysis and simulation to mitigate the transportation impacts on energy and environment, with the major goal of estimating the technology contribution towards the 125 g/km CO 2 target in Europe. The authors analyse cheap- and low-complexity measures, while keeping the same power/weight ratio, for several vehicle categories. The measures are: regenerative braking; fuel cut while coasting; engine stop/start; and engine downsizing and turbocharging. Simulation of these mechanisms for several road vehicles categories and driving cycles, allow us to conclude that with the last three mechanisms fuel consumption and CO 2 emissions can be reduced by 15-49%, compared to the original vehicle. HC, CO and NO x emissions can be reduced by similar percentages. Regenerative braking is valuable only if the additional weight is compensated by diminishing the body weight. The simulations confirm that the use of 'slightly' modified conventional vehicles can reduce fuel consumption and carbon dioxide emissions, without the complexity and high cost of full-hybrid powertrains

  14. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS sub-detectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. Seventy thousand (70000) parameters are used for control and monitoring purposes of TileCal, requiring an automated system. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCa...

  15. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS subdetectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. Seventy thousand (70000) parameters are used for control and monitoring purposes, requiring an automated system. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCal detector. ...

  16. The Value of CO2-Geothermal Bulk Energy Storage to Reducing CO2 Emissions Compared to Conventional Bulk Energy Storage Technologies

    Science.gov (United States)

    Ogland-Hand, J.; Bielicki, J. M.; Buscheck, T. A.

    2016-12-01

    Sedimentary basin geothermal resources and CO2 that is captured from large point sources can be used for bulk energy storage (BES) in order to accommodate higher penetration and utilization of variable renewable energy resources. Excess energy is stored by pressurizing and injecting CO2 into deep, porous, and permeable aquifers that are ubiquitous throughout the United States. When electricity demand exceeds supply, some of the pressurized and geothermally-heated CO2 can be produced and used to generate electricity. This CO2-BES approach reduces CO2 emissions directly by storing CO2 and indirectly by using some of that CO2 to time-shift over-generation and displace CO2 emissions from fossil-fueled power plants that would have otherwise provided electricity. As such, CO2-BES may create more value to regional electricity systems than conventional pumped hydro energy storage (PHES) or compressed air energy storage (CAES) approaches that may only create value by time-shifting energy and indirectly reducing CO2 emissions. We developed and implemented a method to estimate the value that BES has to reducing CO2 emissions from regional electricity systems. The method minimizes the dispatch of electricity system components to meet exogenous demand subject to various CO2 prices, so that the value of CO2 emissions reductions can be estimated. We applied this method to estimate the performance and value of CO2-BES, PHES, and CAES within real data for electricity systems in California and Texas over the course of a full year to account for seasonal fluctuations in electricity demand and variable renewable resource availability. Our results suggest that the value of CO2-BES to reducing CO2 emissions may be as much as twice that of PHES or CAES and thus CO2-BES may be a more favorable approach to energy storage in regional electricity systems, especially those where the topography is not amenable to PHES or the subsurface is not amenable to CAES.

  17. Configuration-defined control algorithms with the ASDEX Upgrade DCS

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, Wolfgang, E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Cole, Richard [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany (Germany); Gräter, Alexander [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Lüddecke, Klaus [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany (Germany); Neu, Gregor; Rapson, Christopher; Raupp, Gerhard; Zehetbauer, Thomas [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-11-15

    Highlights: • Control algorithm built from combination of pre-fabricated standard function blocks. • Seamless integration in multi-threaded computation context. • Block composition defined by configuration data, only. - Abstract: The ASDEX Upgrade Discharge Control System (DCS) is a distributed real-time control system executing complex control and monitoring tasks. Up to now, DCS control algorithms have been implemented by coding dedicated application processes with the C++ programming language. Algorithm changes required code modification, compilation and commissioning which only experienced programmers could perform. This was a significant constraint of flexibility for both control system operation and design. The new approach extends DCS with the capability of configuration-defined control algorithms. These are composed of chains of small, configurable standard function blocks providing general purpose functions like algebraic operations, filters, feedback controllers, output limiters and decision logic. In a later phase a graphical editor could help to compose and modify such configuration in a Simulink-like fashion. Building algorithms from standard functions can result in a high number of elements. In order to achieve a similar performance as with C++ coding, it is essential to avoid administrative bottlenecks by design. As a consequence, DCS executes a function block chain in the context of a single real-time thread of an application process. No concurrency issues as in a multi-threaded context need to be considered resulting in strongly simplified signal handling and zero performance overhead for inter-block communication. Instead of signal-driven synchronization, a block scheduler derives the execution sequence automatically from the block dependencies as defined in the configuration. All blocks and connecting signals are instantiated dynamically, based on definitions in a configuration file. Algorithms thus are not defined in the code but only in

  18. Transcranial direct current stimulation (tDCS) for idiopathic Parkinson's disease.

    Science.gov (United States)

    Elsner, Bernhard; Kugler, Joachim; Pohl, Marcus; Mehrholz, Jan

    2016-07-18

    tDCS) plus movement therapy on our secondary outcome, gait speed at the end of the intervention phase, revealing no evidence of an effect (MD 0.05 m/s, 95% CI -0.15 to 0.25; inverse variance method with random-effects model; very low quality evidence). We found no evidence of an effect regarding differences in dropouts and adverse effects between intervention and control groups (RD 0.00, 95% CI -0.21 to 0.21; Mantel-Haenszel method with random-effects model; very low quality evidence). There is insufficient evidence to determine the effects of tDCS for reducing off time ( when the symptoms are not controlled by the medication) and on time with dyskinesia ( time that symptoms are controlled but the person still experiences involuntary muscle movements ) , and for improving health- related quality of life, disability, and impairment in patients with IPD. Evidence of very low quality indicates no difference in dropouts and adverse events between tDCS and control groups.

  19. Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning.

    Science.gov (United States)

    Karok, Sophia; Fletcher, David; Witney, Alice G

    2017-01-08

    Task-specific effects of transcranial direct current stimulation (tDCS) on motor learning were investigated in 30 healthy participants. In a sham-controlled, mixed design, participants trained on 3 different motor tasks (Purdue Pegboard Test, Visuomotor Grip Force Tracking Task and Visuomotor Wrist Rotation Speed Control Task) over 3 consecutive days while receiving either unilateral anodal over the right primary motor cortex (M1), dual-M1 or sham stimulation. Retention sessions were administered 7 and 28 days after the end of training. In the Purdue Pegboard Test, both anodal and dual-M1 stimulation reduced average completion time approximately equally, an improvement driven by online learning effects and maintained for about 1 week. The Visuomotor Grip Force Tracking Task and the Visuomotor Wrist Rotation Speed Control Task were associated with an advantage of dual-M1 tDCS in consolidation processes both between training sessions and when testing at long-term retention; both were maintained for at least 1 month. This study demonstrates that M1-tDCS enhances and sustains motor learning with different electrode montages. Stimulation-induced effects emerged at different learning phases across the tasks, which strongly suggests that the influence of tDCS on motor learning is dynamic with respect to the functional recruitment of the distributed motor system at the time of stimulation. Divergent findings regarding M1-tDCS effects on motor learning may partially be ascribed to task-specific consequences and the effects of offline consolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Exploratory study of once-daily transcranial direct current stimulation (tDCS) as a treatment for auditory hallucinations in schizophrenia.

    Science.gov (United States)

    Fröhlich, F; Burrello, T N; Mellin, J M; Cordle, A L; Lustenberger, C M; Gilmore, J H; Jarskog, L F

    2016-03-01

    Auditory hallucinations are resistant to pharmacotherapy in about 25% of adults with schizophrenia. Treatment with noninvasive brain stimulation would provide a welcomed additional tool for the clinical management of auditory hallucinations. A recent study found a significant reduction in auditory hallucinations in people with schizophrenia after five days of twice-daily transcranial direct current stimulation (tDCS) that simultaneously targeted left dorsolateral prefrontal cortex and left temporo-parietal cortex. We hypothesized that once-daily tDCS with stimulation electrodes over left frontal and temporo-parietal areas reduces auditory hallucinations in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled study that evaluated five days of daily tDCS of the same cortical targets in 26 outpatients with schizophrenia and schizoaffective disorder with auditory hallucinations. We found a significant reduction in auditory hallucinations measured by the Auditory Hallucination Rating Scale (F2,50=12.22, PtDCS for treatment of auditory hallucinations and the pronounced response in the sham-treated group in this study contrasts with the previous finding and demonstrates the need for further optimization and evaluation of noninvasive brain stimulation strategies. In particular, higher cumulative doses and higher treatment frequencies of tDCS together with strategies to reduce placebo responses should be investigated. Additionally, consideration of more targeted stimulation to engage specific deficits in temporal organization of brain activity in patients with auditory hallucinations may be warranted. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction.

    Science.gov (United States)

    Nakamura-Palacios, Ester Miyuki; Lopes, Isabela Bittencourt Coutinho; Souza, Rodolpho Albuquerque; Klauss, Jaisa; Batista, Edson Kruger; Conti, Catarine Lima; Moscon, Janine Andrade; de Souza, Rodrigo Stênio Moll

    2016-10-01

    Here, we report some electrophysiologic and imaging effects of the transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (dlPFC) in drug addiction, notably in alcohol and crack-cocaine dependence. The low resolution electromagnetic tomography (LORETA) analysis obtained through event-related potentials (ERPs) under drug-related cues, more specifically in its P3 segment (300-500 ms) in both, alcoholics and crack-cocaine users, showed that the ventral medial prefrontal cortex (vmPFC) was the brain area with the largest change towards increasing activation under drug-related cues in those subjects that kept abstinence during and after the treatment with bilateral tDCS (2 mA, 35 cm(2), cathodal left and anodal right) over dlPFC, applied repetitively (five daily sessions). In an additional study in crack-cocaine, which showed craving decreases after repetitive bilateral tDCS, we examined data originating from diffusion tensor imaging (DTI), and we found increased DTI parameters in the left connection between vmPFC and nucleus accumbens (NAcc), such as the number of voxels, fractional anisotropy (FA) and apparent diffusion coefficient (ADC), in tDCS-treated crack-cocaine users when compared to the sham-tDCS group. This increasing of DTI parameters was significantly correlated with craving decreasing after the repetitive tDCS. The vmPFC relates to the control of drug seeking, possibly by extinguishing this behavior. In our studies, the bilateral dlPFC tDCS reduced relapses and craving to the drug use, and increased the vmPFC activation under drug cues, which may be of a great importance in the control of drug use in drug addiction.

  2. Reduced discomfort during High-Definition transcutaneous stimulation using 6% benzocaine

    Directory of Open Access Journals (Sweden)

    Berkan eGuleyupoglu

    2014-07-01

    Full Text Available AbstractBackground High-Definition transcranial Direct Current Stimulation (HD-tDCS allows for non-invasive neuromodulation using an array of compact (approximately 1 cm2 contact area High-Definition (HD electrodes, as compared to conventional tDCS (which uses two large pads that are approximately 35cm2. In a previous transcutaneous study, we developed and validated designs for HD electrodes that reduce discomfort over >20 min session with 2 mA electrode current.ObjectiveThe purpose of this study was to investigate the use of a chemical pretreatment with 6% benzocaine (topical numbing agent to further reduce subjective discomfort during transcutaneous stimulation and to allow for better sham controlled studies.MethodsPre-treatment with 6% benzocaine was compared with control (no pretreatment for 22 minutes 2 mA of stimulation, with either CCNY-4 or Lectron II electroconductive gel, for both cathodal and anodal transcutaneous (forearm stimulation (8 different combinations.Results Results show that for all conditions and polarities tested, stimulation with HD electrodes is safe and well tolerated and that pretreatment further reduced subjective discomfort. ConclusionPretreatment with a mild analgesic reduces discomfort during HD-tDCS.

  3. Parameter Optimization Analysis of Prolonged Analgesia Effect of tDCS on Neuropathic Pain Rats

    Science.gov (United States)

    Wen, Hui-Zhong; Gao, Shi-Hao; Zhao, Yan-Dong; He, Wen-Juan; Tian, Xue-Long; Ruan, Huai-Zhen

    2017-01-01

    Background: Transcranial direct current stimulation (tDCS) is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters. Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1) on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia. Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI), we measured pain thresholds before and after anodal-tDCS (A-tDCS) using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models). Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS) and contralateral-tDCS (con-tDCS) produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats. Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical applications. PMID

  4. Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task.

    Science.gov (United States)

    Gözenman, Filiz; Berryhill, Marian E

    2016-08-26

    There is growing interest in non-invasive brain stimulation techniques. A drawback is that the relationship between stimulation and cognitive outcomes for various tasks are unknown. Transcranial direct current stimulation (tDCS) provides diffuse current spread, whereas high-definition tDCS (HD-tDCS) provides more targeted current. The direction of behavioral effects after tDCS can be difficult to predict in cognitive realms such as attention and working memory (WM). Previously, we showed that in low and high WM capacity groups tDCS modulates performance in nearly equal and opposite directions on a change detection task, with improvement for the high capacity participants alone. Here, we used the retro-cue paradigm to test attentional shifting among items in WM to investigate whether WM capacity (WMC) predicted different behavioral consequences during anodal tDCS or HD-tDCS to posterior parietal cortex (PPC). In two experiments, with 24 participants each, we used different stimulus categories (colored circles, letters) and stimulation sites (right, left PPC). The results showed a significant (Experiment 1) or trending (Experiment 2) WMC x stimulation interaction. Compared to tDCS, after HD-tDCS the retro-cueing benefit was significantly greater for the low WMC group but numerically worse for the high WMC group. These data highlight the importance of considering group differences when using non-invasive neurostimulation techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. High-definition transcranial direct current stimulation (HD-tDCS) of left dorsolateral prefrontal cortex affects performance in Balloon Analogue Risk Task (BART).

    Science.gov (United States)

    Guo, Heng; Zhang, Zhuoran; Da, Shu; Sheng, Xiaotian; Zhang, Xichao

    2018-02-01

    Studies on risk preferences have long been of great concern and have examined the neural basis underlying risk-based decision making. However, studies using conventional transcranial direct current stimulation (tDCS) revealed that bilateral stimulation could change risk propensity with limited evidence of precisely focalized unilateral high-definition transcranial direct current stimulation (HD-tDCS). The aim of this experiment was to investigate the effect of HD-tDCS focalizing the left dorsal lateral prefrontal cortex (DLPFC) on risk-taking behavior during the Balloon Analogue Risk Task (BART). This study was designed as a between-subject, single-blind, sham-controlled experiment. University students were randomly assigned to three groups: the anodal group (F3 anode, AF3, F1, F5, FC3 returned), the cathodal group (F3 cathodal, AF3, F1, F5, FC3 returned) and the sham group. Subsequently, 1.5-mA 20-min HD-tDCS was applied during the BART, and the Positive Affect and Negative Affect Scale (PANAS), the Sensation Seeking Scale-5 (SSS-5), and the Behavioral Inhibition System and Behavioral Approach System scale (BIS/BAS) were measured as control variables. The cathodal group earned less total money than the sham group, and no significant difference was observed between the anodal group and the sham group. These results showed that, to some extent, focalized unilateral cathodal HD-tDCS on left DLPFC could change performance during risky tasks and diminish risky decision making. Further studies are needed to investigate the dose effect and electrode distribution of HD-tDCS during risky tasks and examine synchronous brain activity to show the neural basis.

  6. Regression testing in the TOTEM DCS

    International Nuclear Information System (INIS)

    Rodríguez, F Lucas; Atanassov, I; Burkimsher, P; Frost, O; Taskinen, J; Tulimaki, V

    2012-01-01

    The Detector Control System of the TOTEM experiment at the LHC is built with the industrial product WinCC OA (PVSS). The TOTEM system is generated automatically through scripts using as input the detector Product Breakdown Structure (PBS) structure and its pinout connectivity, archiving and alarm metainformation, and some other heuristics based on the naming conventions. When those initial parameters and automation code are modified to include new features, the resulting PVSS system can also introduce side-effects. On a daily basis, a custom developed regression testing tool takes the most recent code from a Subversion (SVN) repository and builds a new control system from scratch. This system is exported in plain text format using the PVSS export tool, and compared with a system previously validated by a human. A report is sent to the developers with any differences highlighted, in readiness for validation and acceptance as a new stable version. This regression approach is not dependent on any development framework or methodology. This process has been satisfactory during several months, proving to be a very valuable tool before deploying new versions in the production systems.

  7. Reduced field-of -view diffusion-weighted magnetic resonance imaging of the pancreas: Comparison with conventional single-shot echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jin; Lee, Jeong Min; Yoon, Jeong Hee; Jang, Jin Young; Kim, Sun Whe; Ryu, Ji Kon; Han, Joon Koo; Choi, Byung Ihn [Seoul National University Hospital, Seoul (Korea, Republic of); Kannengiesser, Stephan [Siemens Healthcare, Erlangen (Germany)

    2015-12-15

    To investigate the image quality (IQ) and apparent diffusion coefficient (ADC) of reduced field-of-view (FOV) diffusion-weighted imaging (DWI) of pancreas in comparison with full FOV DWI. In this retrospective study, 2 readers independently performed qualitative analysis of full FOV DWI (FOV, 38 × 38 cm; b-value, 0 and 500 s/mm{sup 2}) and reduced FOV DWI (FOV, 28 × 8.5 cm; b-value, 0 and 400 s/mm{sup 2}). Both procedures were conducted with a two-dimensional spatially selective radiofrequency excitation pulse, in 102 patients with benign or malignant pancreatic diseases (mean size, 27.5 ± 14.4 mm). The study parameters included 1) anatomic structure visualization, 2) lesion conspicuity, 3) artifacts, 4) IQ score, and 5) subjective clinical utility for confirming or excluding initially considered differential diagnosis on conventional imaging. Another reader performed quantitative ADC measurements of focal pancreatic lesions and parenchyma. Wilcoxon signed-rank test was used to compare qualitative scores and ADCs between DWI sequences. Mann Whitney U-test was used to compare ADCs between the lesions and parenchyma. On qualitative analysis, reduced FOV DWI showed better anatomic structure visualization (2.76 ± 0.79 at b = 0 s/mm{sup 2} and 2.81 ± 0.64 at b = 400 s/mm{sup 2}), lesion conspicuity (3.11 ± 0.99 at b = 0 s/mm{sup 2} and 3.15 ± 0.79 at b = 400 s/mm{sup 2}), IQ score (8.51 ± 2.05 at b = 0 s/mm{sup 2} and 8.79 ± 1.60 at b = 400 s/mm{sup 2}), and higher clinical utility (3.41 ± 0.64), as compared to full FOV DWI (anatomic structure, 2.18 ± 0.59 at b = 0 s/mm{sup 2} and 2.56 ± 0.47 at b = 500 s/mm{sup 2}; lesion conspicuity, 2.55 ± 1.07 at b = 0 s/mm{sup 2} and 2.89 ± 0.86 at b = 500 s/mm{sup 2}; IQ score, 7.13 ± 1.83 at b = 0 s/mm{sup 2} and 8.17 ± 1.31 at b = 500 s/mm{sup 2}; clinical utility, 3.14 ± 0.70) (p < 0.05). Artifacts were significantly improved on reduced FOV DWI (2.65 ± 0.68) at b = 0 s/mm{sup 2} (full FOV DWI, 2.41 ± 0.63) (p

  8. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer.

    Science.gov (United States)

    Batist, G; Ramakrishnan, G; Rao, C S; Chandrasekharan, A; Gutheil, J; Guthrie, T; Shah, P; Khojasteh, A; Nair, M K; Hoelzer, K; Tkaczuk, K; Park, Y C; Lee, L W

    2001-03-01

    To determine whether Myocet (liposome-encapsulated doxorubicin; The Liposome Company, Elan Corporation, Princeton, NJ) in combination with cyclophosphamide significantly reduces doxorubicin cardiotoxicity while providing comparable antitumor efficacy in first-line treatment of metastatic breast cancer (MBC). Two hundred ninety-seven patients with MBC and no prior chemotherapy for metastatic disease were randomized to receive either 60 mg/m(2) of Myocet (M) or conventional doxorubicin (A), in combination with 600 mg/m(2) of cyclophosphamide (C), every 3 weeks until disease progression or unacceptable toxicity. Cardiotoxicity was defined by reductions in left-ventricular ejection fraction, assessed by serial multigated radionuclide angiography scans, or congestive heart failure (CHF). Antitumor efficacy was assessed by objective tumor response rates (World Health Organization criteria), time to progression, and survival. Six percent of MC patients versus 21% (including five cases of CHF) of AC patients developed cardiotoxicity (P =.0002). Median cumulative doxorubicin dose at onset was more than 2,220 mg/m(2) for MC versus 480 mg/m(2) for AC (P =.0001, hazard ratio, 5.04). MC patients also experienced less grade 4 neutropenia. Antitumor efficacy of MC versus AC was comparable: objective response rates, 43% versus 43%; median time to progression, 5.1% versus 5.5 months; median time to treatment failure, 4.6 versus 4.4 months; and median survival, 19 versus 16 months. Myocet improves the therapeutic index of doxorubicin by significantly reducing cardiotoxicity and grade 4 neutropenia and provides comparable antitumor efficacy, when used in combination with cyclophosphamide as first-line therapy for MBC.

  9. Corticospinal excitability changes to anodal tDCS elucidated with NIRS-EEG joint-imaging

    DEFF Research Database (Denmark)

    Jindal, Utkarsh; Sood, Mehak; Chowdhury, Shubhajit Roy

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate corticospinal excitability. We used near-infrared spectroscopy (NIRS) - electroencephalography (EEG) joint-imaging during and after anodal tDCS to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along...... with changes in the log-transformed mean-power of EEG within 0.5 Hz - 11.25 Hz. In two separate studies, we investigated local post-tDCS alterations from baseline at the site of anodal tDCS using NIRS-EEG/tDCS joint-imaging as well as local post-tDCS alterations in motor evoked potentials (MEP...... that the innovative technologies for portable NIRS-EEG neuroimaging may be leveraged to objectively quantify the progress (e.g., corticospinal excitability alterations) and dose tDCS intervention as an adjuvant treatment during neurorehabilitation....

  10. Frontline diagnostic evaluation of patients suspected of angina by coronary computed tomography reduces downstream resource utilization when compared to conventional ischemia testing

    DEFF Research Database (Denmark)

    Nielsen, L. H.; Markenvard, John; Jensen, Jesper Møller

    2011-01-01

    It has been proposed that the increasing use of coronary computed tomographic angiography (CTA) may introduce additional unnecessary diagnostic procedures. However, no previous study has assessed the impact on downstream test utilization of conventional diagnostic testing relative to CTA in patie...... prospective trials are needed in order to define the most cost-effective diagnostic use of CTA relative to conventional ischemia testing....

  11. DCS-Neural-Network Program for Aircraft Control and Testing

    Science.gov (United States)

    Jorgensen, Charles C.

    2006-01-01

    A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.

  12. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  13. Food craving, food choice and consumption: The role of impulsivity and sham-controlled tDCS stimulation of the right dlPFC.

    Science.gov (United States)

    Georgii, Claudio; Goldhofer, Philipp; Meule, Adrian; Richard, Anna; Blechert, Jens

    2017-08-01

    Impulsivity has been found to be associated with overeating and obesity. Transcranial direct current stimulation (tDCS) may enhance inhibitory control while reducing food craving and intake. Thus, the aim of the present study was to investigate whether tDCS stimulation modifies food choice, craving and consumption as a function of trait impulsivity. Forty-two predominantly healthy-weight women received active tDCS stimulation to the right dorsolateral prefrontal cortex and sham stimulation in a within participant design. Trait impulsivity was measured with a short form of the Barratt Impulsiveness Scale. Participants completed a computerized food-choice task, during which their mouse movements were traced. Current food craving was measured by a modified version of the Food Cravings Questionnaire-State as well as by desire to eat ratings for food pictures. Food intake was measured in a taste test. There were no tDCS effects on any of the dependent variables. Trait impulsivity (and non-planning impulsivity in particular) was positively associated with higher calorie intake in the taste test, irrespective of tDCS stimulation. The current findings question the efficacy of single-session tDCS stimulation of the right dLPFC to reduce food craving, high caloric food choice and calorie intake in non-selected, predominantly healthy weight women. However, they do support the idea that trait impulsivity is related to overeating and, therefore, may be a risk factor for obesity. Future research needs to specify which appetitive behaviors can be modulated by brain stimulation and which populations might profit from it the most. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Projections of Ocean Acidification Under the U.N. Framework Convention of Climate Change Using a Reduced-Form Climate Carbon-Cycle Model

    Science.gov (United States)

    Hartin, C.

    2016-02-01

    Ocean chemistry is quickly changing in response to continued anthropogenic emissions of carbon to the atmosphere. Mean surface ocean pH has already decreased by 0.1 units relative to the preindustrial era. We use an open-source, simple climate and carbon cycle model ("Hector") to investigate future changes in ocean acidification (pH and calcium carbonate saturations) under the climate agreement from the United Nations Convention on Climate Change Conference (UNFCCC) of Parties in Paris 2015 (COP 21). Hector is a reduced-form, very fast-executing model that can emulate the global mean climate of the CMIP5 models, as well as the inorganic carbon cycle in the upper ocean, allowing us to investigate future changes in ocean acidification. We ran Hector under three different emissions trajectories, using a sensitivity analysis approach to quantify model uncertainty and capture a range of possible ocean acidification changes. The first trajectory is a business-as-usual scenario comparable to a Representative Concentration Pathway (RCP) 8.5, the second a scenario with the COP 21 commitments enacted, and the third an idealized scenario keeping global temperature change to 2°C, comparable to a RCP 2.6. Preliminary results suggest that under the COP 21 agreements ocean pH at 2100 will decrease by 0.2 units and surface saturations of aragonite (calcite) will decrease by 0.9 (1.4) units relative to 1850. Under the COP 21 agreement the world's oceans will be committed to a degree of ocean acidification, however, these changes may be within the range of natural variability evident in some paleo records.

  15. Dumping convention

    International Nuclear Information System (INIS)

    Roche, P.

    1992-01-01

    Sea dumping of radioactive waste has, since 1983, been precluded under a moratorium established by the London Dumping Convention. Pressure from the nuclear industry to allow ocean dumping of nuclear waste is reported in this article. (author)

  16. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields.

    Science.gov (United States)

    Garcia-Cossio, Eliana; Witkowski, Matthias; Robinson, Stephen E; Cohen, Leonardo G; Birbaumer, Niels; Soekadar, Surjo R

    2016-10-15

    Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0-4Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.

    2016-06-01

    Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives

  18. Inhibitory effect of immature dendritic cells (iDCs phagocytizing apoptotic lymphocytes on LPS-mediated activation of iDCs

    Directory of Open Access Journals (Sweden)

    Yu-xiang WEI

    2013-09-01

    Full Text Available Objective To investigate the inhibitory effect of immature dendritic cells(iDCs on LPS-mediated maturation of iDCs phagocytizing allogeneic spleen lymphocytes after being treated bypsoralen plus ultraviolet A(PUVA. Methods Bone marrow-derived DCs were obtained from bone marrow cells of C57BL/6 mice by co-cultivation with recombinant mouse IL-4 and GM-CSF. Spleenlymphocytes(SLP of BALB/c mice were isolated and transformed to PUVA-SLP by treatment with 8-methoxy PUVA irradiation.The bone marrow-derived iDCs of C57BL/6 were co-cultured with PUVA-SLP of BALB/c mice to obtain PUVA¬SLPDCs. After incubation, iDCs and PUVA-SP DCs were induced to maturation by LPS(10ng/ml,24h, and then they were analyzed by flow cytometry.At the same time,the concentrations of the immunoreactive proteins IL-12p70,IL-12p40andIL-10 in cell supernatants were determined by ELISA kits according to the manufacturer's recommendations. Results PUVA-SLP DCs and iDCs were compared in terms of LPS responsiveness.The phenotype of iDCs(CD40,CD80, andCD86 was 50.58%, 66.29%, 71.20%, respectively, showed more rapid changes from immature to mature statein response to LPS stimulation compared with PUVA-SP DCs, the phenotype of which was 21.26%,38.50% and 39.78%, respectively(P0.05.PUVA-SPDCs secreted high levels of IL-10(435.6±13.9, but lowlevels of IL-12(p7018.56±1.3,p4015.22±1.2, as compared with those of iDCs (132.6±2.8, p70192.1±5.9, p40999.8±26.9, P<0.01 after LPS stimulation. Conclusions Although PUVA-SLPDCs do not express as immature phenotype, they can be readily induced to differentiate into mature DCs in the presence of antigen or LPS. It may be suitable to use iDCs clinically in autoimmune diseases and transplantation.

  19. Transcranial Direct Current Stimulation (tDCS): A Promising Treatment for Major Depressive Disorder?

    Science.gov (United States)

    Bennabi, Djamila; Haffen, Emmanuel

    2018-01-01

    Background: Transcranial direct current stimulation (tDCS) opens new perspectives in the treatment of major depressive disorder (MDD), because of its ability to modulate cortical excitability and induce long-lasting effects. The aim of this review is to summarize the current status of knowledge regarding tDCS application in MDD. Methods: In this review, we searched for articles published in PubMed/MEDLINE from the earliest available date to February 2018 that explored clinical and cognitive effects of tDCS in MDD. Results: Despite differences in design and stimulation parameters, the examined studies indicated beneficial effects of tDCS for MDD. These preliminary results, the non-invasiveness of tDCS, and its good tolerability support the need for further research on this technique. Conclusions: tDCS constitutes a promising therapeutic alternative for patients with MDD, but its place in the therapeutic armamentarium remains to be determined. PMID:29734768

  20. Cathodal Transcranial Direct Current Stimulation (tDCS) to the Right Cerebellar Hemisphere Affects Motor Adaptation During Gait.

    Science.gov (United States)

    Fernandez, Lara; Albein-Urios, Natalia; Kirkovski, Melissa; McGinley, Jennifer L; Murphy, Anna T; Hyde, Christian; Stokes, Mark A; Rinehart, Nicole J; Enticott, Peter G

    2017-02-01

    The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.

  1. DCS: A Case Study of Identification of Knowledge and Disposition Gaps Using Principles of Continuous Risk Management

    Science.gov (United States)

    Norcross, Jason; Steinberg, Susan; Kundrot, Craig; Charles, John

    2011-01-01

    The Human Research Program (HRP) is formulated around the program architecture of Evidence-Risk-Gap-Task-Deliverable. Review of accumulated evidence forms the basis for identification of high priority risks to human health and performance in space exploration. Gaps in knowledge or disposition are identified for each risk, and a portfolio of research tasks is developed to fill them. Deliverables from the tasks inform the evidence base with the ultimate goal of defining the level of risk and reducing it to an acceptable level. A comprehensive framework for gap identification, focus, and metrics has been developed based on principles of continuous risk management and clinical care. Research towards knowledge gaps improves understanding of the likelihood, consequence or timeframe of the risk. Disposition gaps include development of standards or requirements for risk acceptance, development of countermeasures or technology to mitigate the risk, and yearly technology assessment related to watching developments related to the risk. Standard concepts from clinical care: prevention, diagnosis, treatment, monitoring, rehabilitation, and surveillance, can be used to focus gaps dealing with risk mitigation. The research plan for the new HRP Risk of Decompression Sickness (DCS) used the framework to identify one disposition gap related to establishment of a DCS standard for acceptable risk, two knowledge gaps related to DCS phenomenon and mission attributes, and three mitigation gaps focused on prediction, prevention, and new technology watch. These gaps were organized in this manner primarily based on target for closure and ease of organizing interim metrics so that gap status could be quantified. Additional considerations for the knowledge gaps were that one was highly design reference mission specific and the other gap was focused on DCS phenomenon.

  2. Frontoparietal tDCS Benefits Visual Working Memory in Older Adults With Low Working Memory Capacity.

    Science.gov (United States)

    Arciniega, Hector; Gözenman, Filiz; Jones, Kevin T; Stephens, Jaclyn A; Berryhill, Marian E

    2018-01-01

    Working memory (WM) permits maintenance of information over brief delays and is an essential executive function. Unfortunately, WM is subject to age-related decline. Some evidence supports the use of transcranial direct current stimulation (tDCS) to improve visual WM. A gap in knowledge is an understanding of the mechanism characterizing these tDCS linked effects. To address this gap, we compared the effects of two tDCS montages designed on visual working memory (VWM) performance. The bifrontal montage was designed to stimulate the heightened bilateral frontal activity observed in aging adults. The unilateral frontoparietal montage was designed to stimulate activation patterns observed in young adults. Participants completed three sessions (bilateral frontal, right frontoparietal, sham) of anodal tDCS (20 min, 2 mA). During stimulation, participants performed a visual long-term memory (LTM) control task and a visual WM task. There was no effect of tDCS on the LTM task. Participants receiving right unilateral tDCS showed a WM benefit. This pattern was most robust in older adults with low WM capacity. To address the concern that the key difference between the two tDCS montages could be tDCS over the posterior parietal cortex (PPC), we included new analyses from a previous study applying tDCS targeting the PPC paired with a recognition VWM task. No significant main effects were found. A subsequent experiment in young adults found no significant effect of either tDCS montage on either task. These data indicate that tDCS montage, age and WM capacity should be considered when designing tDCS protocols. We interpret these findings as suggestive that protocols designed to restore more youthful patterns of brain activity are superior to those that compensate for age-related changes.

  3. Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review

    Science.gov (United States)

    Lefebvre, Stephanie; Liew, Sook-Lei

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain–behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system. PMID:28232816

  4. Transcranial Direct Current Stimulation (tDCS) Enhances the Excitability of Trigemino-Facial Reflex Circuits.

    Science.gov (United States)

    Cabib, Christopher; Cipullo, Federica; Morales, Merche; Valls-Solé, Josep

    2016-01-01

    Transcranial direct current stimulation (tDCS) causes a tiny burning sensation through activation of local cutaneous trigeminal afferents. Trigeminal sensory inputs from tDCS may generate excitability changes in the trigemino-facial reflex circuits. Sixteen healthy volunteers were submitted to 20 minutes tDCS sessions with two types of electrode-montage conditions: 1. Real vs Sham 'bi-hemispheric' tDCS (cathode/anode: C4/C3), for blinded assessment of effects, and 2. 'uni-hemispheric' tDCS (cathode/anode: Fp3/C3), for assessment of laterality of the effects. Supraorbital nerve stimuli were used to obtain blink reflexes before, during (10 minutes from onset) and after (30 minutes from onset) the tDCS session. Outcome measures were R2 habituation (R2H) to repeated stimuli, the blink reflex excitability recovery (BRER) to paired stimuli and the blink reflex inhibition by a prepulse (BRIP). Real but not sham bi-hemispheric tDCS caused a significant decrease of R2H and leftward shift of BRER curve (p tDCS on BRER and BRIP were larger on ipsilateral than on contralateral blink reflexes (p tDCS enhances the excitability of trigemino-facial reflex circuits. The finding of larger ipsilateral than contralateral effects suggests that sensitization through cutaneous trigeminal afferents adds on other possible mechanisms such as activation of cortico-nuclear or cortico-reticular connections. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Efficient Maturation and Cytokine Production of Neonatal DCs Requires Combined Proinflammatory Signals

    Directory of Open Access Journals (Sweden)

    Doreen Krumbiegel

    2005-01-01

    Full Text Available Specific functional properties of dendritic cells (DCs have been suspected as being responsible for the impaired specific immune responses observed in human neonates. To analyze stimulatory requirements for the critical transition from immature, antigen-processing DCs to mature, antigen-presenting DCs, we investigated the effect of different proinflammatory mediators and antigens on phenotype and cytokine secretion of human neonatal DCs derived from hematopoietic progenitor cells (HPCs. Whereas single proinflammatory mediators were unable to induce the maturation of neonatal DCs, various combinations of IFNγ, CD40L, TNFα, LPS and antigens, induced the maturation of neonatal DCs documented by up-regulation of HLA-DR, CD83 and CD86. Combinations of proinflammatory mediators also increased cytokine secretion by neonatal DCs. Especially combined stimulation with LPS and IFNγ proved to be very efficient in inducing maturation and cytokine synthesis of neonatal DCs. In conclusion, neonatal DCs can be stimulated to express maturation as well as costimulatory surface molecules. However, induction of maturation requires combined stimulation with multiple proinflammatory signals.

  6. Study on operation I and C DCS test method of EPR project

    International Nuclear Information System (INIS)

    Meng Ying; Lv Zhihong; Huang Xinnian; Fan Haiying; Li Zhuojia; Xiao Shushu

    2014-01-01

    Through summarization and optimization of the method for operation I and C DCS test of the European pressurized reactor project, the conclusions play a guiding role on the operation I and C DCS test of the domestic advanced nuclear power plant. The study of the method focuses on the test platform, the test process and the optimization of method of operation I and C DCS test with the practical experience. The reasonable and reliable test method for operation I and C DCS test of the European pressurized reactor project is worthy of the reference and the development in the project of the domestic advanced nuclear power plant. (authors)

  7. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning.

    Science.gov (United States)

    Nikolin, Stevan; Loo, Colleen K; Bai, Siwei; Dokos, Socrates; Martin, Donel M

    2015-08-15

    Declarative verbal learning and memory are known to be lateralised to the dominant hemisphere and to be subserved by a network of structures, including those located in frontal and temporal regions. These structures support critical components of verbal memory, including working memory, encoding, and retrieval. Their relative functional importance in facilitating declarative verbal learning and memory, however, remains unclear. To investigate the different functional roles of these structures in subserving declarative verbal learning and memory performance by applying a more focal form of transcranial direct current stimulation, "High Definition tDCS" (HD-tDCS). Additionally, we sought to examine HD-tDCS effects and electrical field intensity distributions using computer modelling. HD-tDCS was administered to the left dorsolateral prefrontal cortex (LDLPFC), planum temporale (PT), and left medial temporal lobe (LMTL) to stimulate the hippocampus, during learning on a declarative verbal memory task. Sixteen healthy participants completed a single blind, intra-individual cross-over, sham-controlled study which used a Latin Square experimental design. Cognitive effects on working memory and sustained attention were additionally examined. HD-tDCS to the LDLPFC significantly improved the rate of verbal learning (p=0.03, η(2)=0.29) and speed of responding during working memory performance (p=0.02, η(2)=0.35), but not accuracy (p=0.12, η(2)=0.16). No effect of tDCS on verbal learning, retention, or retrieval was found for stimulation targeted to the LMTL or the PT. Secondary analyses revealed that LMTL stimulation resulted in increased recency (p=0.02, η(2)=0.31) and reduced mid-list learning effects (p=0.01, η(2)=0.39), suggesting an inhibitory effect on learning. HD-tDCS to the LDLPFC facilitates the rate of verbal learning and improved efficiency of working memory may underlie performance effects. This focal method of administrating tDCS has potential for probing

  8. Parameter Optimization Analysis of Prolonged Analgesia Effect of tDCS on Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Hui-Zhong Wen

    2017-06-01

    Full Text Available Background: Transcranial direct current stimulation (tDCS is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters.Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1 on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia.Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI, we measured pain thresholds before and after anodal-tDCS (A-tDCS using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models.Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS and contralateral-tDCS (con-tDCS produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats.Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical

  9. Cerebellar tDCS does not enhance performance in an implicit categorization learning task

    NARCIS (Netherlands)

    M.C. Verhage (Claire); E. Avila (Eric); M.A. Frens (Maarten); O. Donchin (Opher); J.N. van der Geest (Jos)

    2017-01-01

    textabstractBackground: Transcranial Direct Current Stimulation (tDCS) is a form of non-invasive electrical stimulation that changes neuronal excitability in a polarity and site-specific manner. In cognitive tasks related to prefrontal and cerebellar learning, cortical tDCS arguably facilitates

  10. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    Science.gov (United States)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  11. Effects of Transcranial Direct Current Stimulation (tDCS) on Behaviour and Electrophysiology of Language Production

    Science.gov (United States)

    Wirth, Miranka; Rahman, Rasha Abdel; Kuenecke, Janina; Koenig, Thomas; Horn, Helge; Sommer, Werner; Dierks, Thomas

    2011-01-01

    Excitatory anodal transcranial direct current stimulation (A-tDCS) over the left dorsal prefrontal cortex (DPFC) has been shown to improve language production. The present study examined neurophysiological underpinnings of this effect. In a single-blinded within-subject design, we traced effects of A-tDCS compared to sham stimulation over the left…

  12. Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task

    NARCIS (Netherlands)

    Gladwin, T.E.; den Uyl, T.E.; Fregni, F.F.; Wiers, R.W.

    2012-01-01

    Transcranial Direct Current Stimulation (tDCS) enhances performance on working memory tasks. However, such effects may be dependent on modulation of specific aspects of working memory. We therefore tested the hypothesis that tDCS improves selective attention in the context of a Sternberg task.

  13. Effects of different language and tDCS interventions in PPA and their neural correlates

    Directory of Open Access Journals (Sweden)

    Kyrana Tsapkini

    2015-05-01

    Results: First, we replicated our previous results obtained with fewer participants: all improved in both tDCS and sham conditions on trained items. Generalization of treatment on untrained items was significant only in tDCS condition. Therapy gains lasted longer in tDCS condition as well. Second, preliminary analyses of rs-fMRI show changes of functional connectivity between written language areas in the tDCS and sham conditions. Conclusions: tDCS represents an increasingly valuable treatment option in language rehabilitation even in neurodegeneration. Late intervention is as beneficial as early intervention but improvement seems more dramatic in early cases. Different possibilities are discussed: tDCS may indeed change the course of the disease, i.e., it may slow down the rate of decline or, language improvement due to tDCS (or delay in language deterioration due to the course of the disease may hold the spread of decline in other cognitive functions, thus, early interventions appear more beneficial. The correlation between functional connectivity and language production outcomes is expected to shed light on how tDCS works in the brains of people with a neurodegenerative disease. Implications of functional connectivity changes between language areas involved in the targeted language function will inform further interventions.

  14. 75 FR 59686 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Science.gov (United States)

    2010-09-28

    ...., Washington, DC 20230 (or via the Internet at [email protected] ). FOR FURTHER INFORMATION CONTACT: Requests for... Environmental Satellite (GOES) DCS and the Polar-Orbiting Operational Environmental Satellite (POES) DCS, also... Collection Submittal include Internet, facsimile transmission and postal mailing of paper forms. III. Data...

  15. Using Transcranial tDCS to test cognitive hypotheses

    Directory of Open Access Journals (Sweden)

    Nazbanou Nozari

    2014-04-01

    Full Text Available Transcranial Direct Current Stimulation (tDCS is used increasingly often for testing cognitive hypotheses. It is, however, often ignored that many assumptions regarding how the neural tissue reacts to stimulation have only been verified in the motor domain. Extrapolating these assumptions to the cognitive domain has a set of unique issues which, if ignored, can lead to incorrect interpretations. In this talk I will review a number of common pitfalls in using tDCS for testing a cognitive hypothesis, and discuss some solutions for better-controlled designs. I will address the following issues: 1- Making an incorrect assumption about the nature of the effect: It is often assumed that anodal stimulation has “excitatory” and cathodal stimulation has “inhibitory” effects. Results are then interpreted in light of this assumption. Obviously, if the assumption is incorrect, the interpretation of the results too will be incorrect. I will discuss how the effects of polarity can change as a function of a number of design parameters, and the dangers of making a priori assumptions about the direction of stimulation effects, especially when employing a new design. 2- Choosing an inappropriate montage: By definition, tDCS requires two electrodes, although we are often only interested in stimulating one brain region. Where the second (reference electrode is placed may not be of theoretical interest to us, but it can have serious consequences for our effects of interest. For one thing the path of the direct current changes as a function of where the reference electrode is placed. This affects the density of the current, as well as the regions that undergo stimulation. Moreover, the region directly under the reference electrode is very likely to be affected by stimulation. Therefore, sometimes the changes in behavior may be due to the unanticipated effects at the reference electrode site, as opposed to the hypothesized effects at the target electrode site

  16. Increased contextual cue utilization with tDCS over the prefrontal cortex during a recognition task

    Science.gov (United States)

    Pergolizzi, Denise; Chua, Elizabeth F.

    2016-01-01

    The precise role of the prefrontal and posterior parietal cortices in recognition performance remains controversial, with questions about whether these regions contribute to recognition via the availability of mnemonic evidence or via decision biases and retrieval orientation. Here we used an explicit memory cueing paradigm, whereby external cues probabilistically predict upcoming memoranda as old or new, in our case with 75% validity, and these cues affect recognition decision biases in the direction of the cue. The present study applied bilateral transcranial direct current stimulation (tDCS) over prefrontal or posterior parietal cortex, or sham tDCS, to test the causal role of these regions in recognition accuracy or decision biasing. Participants who received tDCS over prefrontal cortex showed increased cue utilization compared to tDCS over posterior parietal cortex and sham tDCS, suggesting that the prefrontal cortex is involved in processes that contribute to decision biases in memory. PMID:27845032

  17. Electrodes for high-definition transcutaneous DC stimulation for applications in drug-delivery and electrotherapy, including tDCS

    OpenAIRE

    Minhas, Preet; Bansal, Varun; Patel, Jinal; Ho, Johnson S.; Diaz, Julian; Datta, Abhishek; Bikson, Marom

    2010-01-01

    Transcutaneous electrical stimulation is applied in a range of biomedical applications including Transcranial Direct Current Stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (

  18. Clinical predictors of acute response to transcranial direct current stimulation (tDCS) in major depression.

    Science.gov (United States)

    D'Urso, Giordano; Dell'Osso, Bernardo; Rossi, Rodolfo; Brunoni, Andre Russowsky; Bortolomasi, Marco; Ferrucci, Roberta; Priori, Alberto; de Bartolomeis, Andrea; Altamura, Alfredo Carlo

    2017-09-01

    Transcranial direct current stimulation (tDCS) is a promising neuromodulation intervention for poor-responding or refractory depressed patients. However, little is known about predictors of response to this therapy. The present study aimed to analyze clinical predictors of response to tDCS in depressed patients. Clinical data from 3 independent tDCS trials on 171 depressed patients (including unipolar and bipolar depression), were pooled and analyzed to assess predictors of response. Depression severity and the underlying clinical dimensions were measured using the Hamilton Depression Rating Scale (HDRS) at baseline and after the tDCS treatment. Age, gender and diagnosis (bipolar/unipolar depression) were also investigated as predictors of response. Linear mixed models were fitted in order to ascertain which HDRS factors were associated with response to tDCS. Age, gender and diagnosis did not show any association with response to treatment. The reduction in HDRS scores after tDCS was strongly associated with the baseline values of "Cognitive Disturbances" and "Retardation" factors, whilst the "Anxiety/Somatization" factor showed a mild association with the response. Open-label design, the lack of control group, and minor differences in stimulation protocols. No differences in response to tDCS were found between unipolar and bipolar patients, suggesting that tDCS is effective for both conditions. "Cognitive disturbance", "Retardation", and "Anxiety/Somatization", were identified as potential clinical predictors of response to tDCS. These findings point to the pre-selection of the potential responders to tDCS, therefore optimizing the clinical use of this technique and the overall cost-effectiveness of the psychiatric intervention for depressed patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. PRN 97-3: Guidelines for Expedited Review of Conventional Pesticides under the Reduced-Risk Initiative and for Biological Pesticides

    Science.gov (United States)

    EPA encourages the development, registration and use of lower-risk pesticide products which would result in reduced risks to human health and the environment. This Pesticide Registration notice and the related web page explain the process and criteria.

  20. Cathodal transcranial direct current stimulation (tDCS) applied to the left premotor cortex (PMC) stabilizes a newly learned motor sequence.

    Science.gov (United States)

    Focke, Jan; Kemmet, Sylvia; Krause, Vanessa; Keitel, Ariane; Pollok, Bettina

    2017-01-01

    While the primary motor cortex (M1) is involved in the acquisition the premotor cortex (PMC) has been related to over-night consolidation of a newly learned motor skill. The present study aims at investigating the possible contribution of the left PMC for the stabilization of a motor sequence immediately after acquisition as determined by susceptibility to interference. Thirty six healthy volunteers received anodal, cathodal and sham transcranial direct current stimulation (tDCS) to the left PMC either immediately prior to or during training on a serial reaction time task (SRTT) with the right hand. TDCS was applied for 10min, respectively. Reaction times were measured prior to training (t1), at the end of training (t2), and after presentation of an interfering random pattern (t3). Beyond interference from learning, the random pattern served as control condition in order to estimate general effects of tDCS on reaction times. TDCS applied during SRTT training did not result in any significant effects neither on acquisition nor on susceptibility to interference. In contrast to this, tDCS prior to SRTT training yielded an unspecific facilitation of reaction times at t2 independent of tDCS polarity. At t3, reduced susceptibility to interference was found following cathodal stimulation. The results suggest the involvement of the PMC in early consolidation and reveal a piece of evidence for the hypothesis that behavioral tDCS effects vary with the activation state of the stimulated area. Copyright © 2016. Published by Elsevier B.V.

  1. Mitigating cutaneous sensation differences during tDCS: comparing sham versus low intensity control conditions.

    Science.gov (United States)

    Brunyé, Tad T; Cantelon, Julie; Holmes, Amanda; Taylor, Holly A; Mahoney, Caroline R

    2014-01-01

    Cutaneous sensations at electrode sites during the administration of direct current brain stimulation may inadvertently influence participants' subjective experience and task performance. The present study evaluated the utility of a methodological variation that substitutes sham administration with very low intensity (0.5 mA) current delivery. We used a 4 × 1 high-definition ring electrode transcranial direct current (HD-tDCS) system to target the left dorsolateral prefrontal cortex (Brodmann's Area 9). Four stimulation conditions were compared in a repeated-measures design: sham 2.0 mA and 0.5 mA intensity, versus active 2.0 mA and 0.5 mA intensity. During stimulation participants performed a cognitive interference task that activates the cingulo-frontal-parietal network, and periodically provided perceived sensation ratings. We demonstrate that a relatively low intensity control condition attenuates otherwise large differences in perceived sensation between active and sham conditions. Critically, behavioral task differences maintained between the two active conditions. A low intensity control stimulation condition may prove a viable methodological alternative to conventional sham techniques used in repeated-measures designs, though important limitations are discussed. Published by Elsevier Inc.

  2. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm.

    Science.gov (United States)

    Mondini, Valeria; Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral

  3. Impact of antipsychotic medication on transcranial direct current stimulation (tDCS) effects in schizophrenia patients.

    Science.gov (United States)

    Agarwal, Sri Mahavir; Bose, Anushree; Shivakumar, Venkataram; Narayanaswamy, Janardhanan C; Chhabra, Harleen; Kalmady, Sunil V; Varambally, Shivarama; Nitsche, Michael A; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2016-01-30

    Transcranial direct current stimulation (tDCS) has generated interest as a treatment modality for schizophrenia. Dopamine, a critical pathogenetic link in schizophrenia, is also known to influence tDCS effects. We evaluated the influence of antipsychotic drug type (as defined by dopamine D2 receptor affinity) on the impact of tDCS in schizophrenia. DSM-IV-TR-diagnosed schizophrenia patients [N=36] with persistent auditory hallucinations despite adequate antipsychotic treatment were administered add-on tDCS. Patients were divided into three groups based on the antipsychotic's affinity to D2 receptors. An auditory hallucinations score (AHS) was measured using the auditory hallucinations subscale of the Psychotic Symptom Rating Scales (PSYRATS). Add-on tDCS resulted in a significant reduction inAHS. Antipsychotic drug type had a significant effect on AHS reduction. Patients treated with high affinity antipsychotics showed significantly lesser improvement compared to patients on low affinity antipsychotics or a mixture of the two. Furthermore, a significant sex-by-group interaction occurred; type of medication had an impact on tDCS effects only in women. Improvement differences could be due to the larger availability of the dopamine receptor system in patients taking antipsychotics with low D2 affinity. Sex-specific differences suggest potential estrogen-mediated effects. This study reports a first-time observation on the clinical utility of antipsychotic drug type in predicting tDCS effects in schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of transcranial direct current stimulation (tDCS) on binge eating disorder.

    Science.gov (United States)

    Burgess, Emilee E; Sylvester, Maria D; Morse, Kathryn E; Amthor, Frank R; Mrug, Sylvie; Lokken, Kristine L; Osborn, Mary K; Soleymani, Taraneh; Boggiano, Mary M

    2016-10-01

    To investigate the effect of transcranial direct current stimulation (tDCS) on food craving, intake, binge eating desire, and binge eating frequency in individuals with binge eating disorder (BED). N = 30 adults with BED or subthreshold BED received a 20-min 2 milliampere (mA) session of tDCS targeting the dorsolateral prefrontal cortex (DLPFC; anode right/cathode left) and a sham session. Food image ratings assessed food craving, a laboratory eating test assessed food intake, and an electronic diary recorded binge variables. tDCS versus sham decreased craving for sweets, savory proteins, and an all-foods category, with strongest reductions in men (p tDCS also decreased total and preferred food intake by 11 and 17.5%, regardless of sex (p tDCS administration (p tDCS in BED. Stimulation of the right DLPFC suggests that enhanced cognitive control and/or decreased need for reward may be possible functional mechanisms. The results support investigation of repeated tDCS as a safe and noninvasive treatment adjunct for BED. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:930-936). © 2016 Wiley Periodicals, Inc.

  5. The Effects of Compensatory Auditory Stimulation and High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Tinnitus Perception - A Randomized Pilot Study.

    Science.gov (United States)

    Henin, Simon; Fein, Dovid; Smouha, Eric; Parra, Lucas C

    2016-01-01

    Tinnitus correlates with elevated hearing thresholds and reduced cochlear compression. We hypothesized that reduced peripheral input leads to elevated neuronal gain resulting in the perception of a phantom sound. The purpose of this pilot study was to test whether compensating for this peripheral deficit could reduce the tinnitus percept acutely using customized auditory stimulation. To further enhance the effects of auditory stimulation, this intervention was paired with high-definition transcranial direct current stimulation (HD-tDCS). A randomized sham-controlled, single blind study was conducted in a clinical setting on adult participants with chronic tinnitus (n = 14). Compensatory auditory stimulation (CAS) and HD-tDCS were administered either individually or in combination in order to access the effects of both interventions on tinnitus perception. CAS consisted of sound exposure typical to daily living (20-minute sound-track of a TV show), which was adapted with compressive gain to compensate for deficits in each subject's individual audiograms. Minimum masking levels and the visual analog scale were used to assess the strength of the tinnitus percept immediately before and after the treatment intervention. CAS reduced minimum masking levels, and visual analog scale trended towards improvement. Effects of HD-tDCS could not be resolved with the current sample size. The results of this pilot study suggest that providing tailored auditory stimulation with frequency-specific gain and compression may alleviate tinnitus in a clinical population. Further experimentation with longer interventions is warranted in order to optimize effect sizes.

  6. Reducing NO(x) emissions from a nitric acid plant of domestic petrochemical complex: enhanced conversion in conventional radial-flow reactor of selective catalytic reduction process.

    Science.gov (United States)

    Abbasfard, Hamed; Hashemi, Seyed Hamid; Rahimpour, Mohammad Reza; Jokar, Seyyed Mohammad; Ghader, Sattar

    2013-01-01

    The nitric acid plant of a domestic petrochemical complex is designed to annually produce 56,400 metric tons (based on 100% nitric acid). In the present work, radial-flow spherical bed reactor (RFSBR) for selective catalytic reduction of nitric oxides (NO(x)) from the stack of this plant was modelled and compared with the conventional radial-flow reactor (CRFR). Moreover, the proficiency of a radial-flow (water or nitrogen) membrane reactor was also compared with the CRFR which was found to be inefficient at identical process conditions. In the RFSBR, the space between the two concentric spheres is filled by a catalyst. A mathematical model, including conservation of mass has been developed to investigate the performance of the configurations. The model was checked against the CRFR in a nitric acid plant located at the domestic petrochemical complex. A good agreement was observed between the modelling results and the plant data. The effects of some important parameters such as pressure and temperature on NO(x) conversion were analysed. Results show 14% decrease in NO(x) emission annually in RFSBR compared with the CRFR, which is beneficial for the prevention of NO(x) emission, global warming and acid rain.

  7. EFFECT OF KINESIO TAPING IN ADJUNCT TO CONVENTIONAL THERAPY IN REDUCING PAIN AND IMPROVING FUNCTIONAL ABILITY IN INDIVIDUALS WITH PLANTAR FASCIITIS A RANDOMIZED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    S.Tulasi Ratna

    2015-08-01

    Full Text Available Background: Plantar fasciitis is one of the most common musculoskeletal disorders of foot. The pain and discomfort associated with this condition has a dramatic impact on physical mobility and function. Treatment of this condition is usually conservative; however, review of literature revealed no clinical studies demonstrating the efficacy of any targeted treatment for this condition. Methods: This was a prospective study which included 60 subjects with plantar fasciitis, who were randomly divided into two groups. Subjects in group I received ultrasound and exercise therapy while subjects in group II received kinesio tape in addition to ultrasound and exercise therapy. Patients were evaluated at the beginning of the study and at the end of three weeks using VAS (visual analogue scale for pain intensity, PFPS (plantar fasciitis pain / disability scale for functional ability and ultra sonography for any change in the caliber of plantar fascia. Results: A statistically significant difference in improvement was noted within the groups and between the groups in terms of visual analogue scale and plantar fasciitis pain /disability scale score (p0.05. Conclusion: Kinesio taping can be used as an adjunct to conventional therapy in clinical application for greater improvement in pain levels and functional ability in patients with plantar fasciitis.

  8. Hits and Misses: Leveraging tDCS to Advance Cognitive Research

    Directory of Open Access Journals (Sweden)

    Marian E Berryhill

    2014-07-01

    Full Text Available The popularity of non-invasive brain stimulation techniques in basic, commercial, and applied settings grew tremendously over the last decade. Here, we focus on one popular neurostimulation method: transcranial direct current stimulation (tDCS. Many assumptions regarding the outcomes of tDCS are based on the results of stimulating motor cortex. For instance, the primary motor cortex is predictably suppressed by cathodal tDCS or made more excitable by anodal tDCS. However, wide-ranging studies testing cognition provide more complex and sometimes paradoxical results that challenge this heuristic. Here, we first summarize successful efforts in applying tDCS to cognitive questions, with a focus on working memory. These recent findings indicate that tDCS can result in cognitive task improvement or impairment regardless of stimulation site or direction of current flow. We then report working memory and response inhibition studies that failed to replicate and/or extend previously reported effects. From these opposing outcomes, we present a series of factors to consider that are intended to facilitate future use of tDCS when applied to cognitive questions. In short, common pitfalls include testing too few participants, using insufficiently challenging tasks, using heterogeneous participant populations, and including poorly motivated participants. Furthermore, the poorly understood underlying mechanism for long-lasting tDCS effects make it likely that other important factors predict responses. In conclusion, we argue that although tDCS can be used experimentally to understand brain function its greatest potential may be in applied or translational research.

  9. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Lefaucheur, Jean-Pascal; Antal, Andrea; Ayache, Samar S; Benninger, David H; Brunelin, Jérôme; Cogiamanian, Filippo; Cotelli, Maria; De Ridder, Dirk; Ferrucci, Roberta; Langguth, Berthold; Marangolo, Paola; Mylius, Veit; Nitsche, Michael A; Padberg, Frank; Palm, Ulrich; Poulet, Emmanuel; Priori, Alberto; Rossi, Simone; Schecklmann, Martin; Vanneste, Sven; Ziemann, Ulf; Garcia-Larrea, Luis; Paulus, Walter

    2017-01-01

    A group of European experts was commissioned by the European Chapter of the International Federation of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of transcranial direct current stimulation (tDCS) from studies published up until September 2016, regarding pain, Parkinson's disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis, epilepsy, consciousness disorders, Alzheimer's disease, tinnitus, depression, schizophrenia, and craving/addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham tDCS control procedure; 25 patients or more having received active treatment was required for Class I, while a lower number of 10-24 patients was accepted for Class II studies. Current evidence does not allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommendation (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible efficacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B recommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally perform tDCS

  10. DCS cabinet power loss analysis for CPR1000 nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Liang; Zhao Yanfeng; Sun Yongbin

    2014-01-01

    The DCS overall structure of CRP1000 nuclear power plant was introduced. Based on the RPC, the signal interface character and signal processing mechanism on the key root were analyzed. By the power loss analyzing of RPC, the RPC loss power may lead reactor trip signal from anticipated transient without scram (ATWS) system. The results indicate that it is necessary to search DCS cabinet power loss analysis. Optimizing and assigning the main water flow signals can avoid trigger reactor trip signal by mistake. The DCS cabinet power loss analysis can optimize the I and C (instrumentation and control) design and increase the nuclear plant's reliability. (authors)

  11. Analysis of effect of safety classification on DCS design in nuclear power plants

    International Nuclear Information System (INIS)

    Gou Guokai; Li Guomin; Wang Qunfeng

    2011-01-01

    By analyzing the safety classification for the systems and functions of nuclear power plants based on the general design requirements for nuclear power plants, especially the requirement of availability and reliability of I and C systems, the characteristics of modem DCS technology and I and C products currently applied in nuclear power field are interpreted. According to the requirements on the safety operation of nuclear power plants and the regulations for safety audit, the effect of different safety classifications on DCS design in nuclear power plants is analyzed, by considering the actual design process of different DCS solutions in the nuclear power plants under construction. (authors)

  12. Transmission of chimeric HIV by mating in conventional mice: prevention by pre-exposure antiretroviral therapy and reduced susceptibility during estrus

    Directory of Open Access Journals (Sweden)

    Eran Hadas

    2013-09-01

    Heterosexual transmission accounts for the majority of new human immunodeficiency virus (HIV cases worldwide. The current approach to investigate HIV heterosexual transmission in animals involves application of virus stock to the vaginal surface, a method that does not reproduce the physiological conditions of vaginal intercourse that influence the rate of transmission. We have previously described efficient infection of conventional mice using EcoHIV/NL4-3 and EcoHIV/NDK, chimeric HIV molecular clones constructed to express all HIV structural and regulatory genes except envelope, which is replaced by a rodent-tropic envelope gene. Here we investigated whether EcoHIV/NDK-infected male mice transmit virus to females during coitus, and the sensitivity of this transmission to HIV pre-exposure prophylaxis and the estrus state. Our general approach was to allow mating between EcoHIV/NDK-infected male mice and uninfected females for 1–7 nights. At 1–6 weeks after mating, mice were euthanized and virus burdens were measured by quantitative PCR (qPCR amplification of HIV RNA or DNA in peritoneal macrophages, inguinal lymph node cells, spleen cells or vas deferens, or by ELISA for antibodies to HIV Gag. We found that 70–100% of female mice mated to EcoHIV/NDK-infected males acquired infection. Pericoital treatment of females with either 2′,3′-dideoxcytidine (ddC or tenofovir largely prevented their EcoHIV/NDK infection by mating (P<0.05 and P<0.003, respectively. In males, T cells were dispensable for virus transmission. The rate of EcoHIV/NDK sexual transmission to females in estrus declined sharply (P=0.003 but their infection by injection was unaffected, indicating that the local environment in the female reproductive tract influences susceptibility to HIV. We conclude that this system of EcoHIV/NDK transmission during mouse mating reproduces key features of heterosexual transmission of HIV in humans and can be used to investigate its biology and control.

  13. LHCb Silicon Tracker DAQ and DCS Online Systems

    CERN Multimedia

    Buechler, A; Rodriguez, P

    2009-01-01

    The LHCb experiment at the Large Hadron Collider (LHC) at CERN in Geneva Switzerland is specialized on precision measurements of b quark decays. The Silicon Tracker (ST) contributes a crucial part in tracking the particle trajectories and consists of two silicon micro-strip detectors, the Tracker Turicensis upstream of the LHCb magnet and the Inner Tracker downstream. The radiation and the magnetic field represent new challenges for the implementation of a Detector Control System (DCS) and the data acquisition (DAQ). The DAQ has to deal with more than 270K analog readout channels, 2K readout chips and real time DAQ at a rate of 1.1 MHz with data processing at TELL1 level. The TELL1 real time algorithms for clustering thresholds and other computations run on dedicated FPGAs that implement 13K configurable parameters per board, in total 1.17 K parameters for the ST. After data processing the total throughput amounts to about 6.4 Gbytes from an input data rate of around ~337 Gbytes per second. A finite state ma...

  14. Cyber security risk assessment for SCADA and DCS networks.

    Science.gov (United States)

    Ralston, P A S; Graham, J H; Hieb, J L

    2007-10-01

    The growing dependence of critical infrastructures and industrial automation on interconnected physical and cyber-based control systems has resulted in a growing and previously unforeseen cyber security threat to supervisory control and data acquisition (SCADA) and distributed control systems (DCSs). It is critical that engineers and managers understand these issues and know how to locate the information they need. This paper provides a broad overview of cyber security and risk assessment for SCADA and DCS, introduces the main industry organizations and government groups working in this area, and gives a comprehensive review of the literature to date. Major concepts related to the risk assessment methods are introduced with references cited for more detail. Included are risk assessment methods such as HHM, IIM, and RFRM which have been applied successfully to SCADA systems with many interdependencies and have highlighted the need for quantifiable metrics. Presented in broad terms is probability risk analysis (PRA) which includes methods such as FTA, ETA, and FEMA. The paper concludes with a general discussion of two recent methods (one based on compromise graphs and one on augmented vulnerability trees) that quantitatively determine the probability of an attack, the impact of the attack, and the reduction in risk associated with a particular countermeasure.

  15. Cooperation Not Competition: Bihemispheric tDCS and fMRI Show Role for Ipsilateral Hemisphere in Motor Learning.

    Science.gov (United States)

    Waters, Sheena; Wiestler, Tobias; Diedrichsen, Jörn

    2017-08-02

    What is the role of ipsilateral motor and premotor areas in motor learning? One view is that ipsilateral activity suppresses contralateral motor cortex and, accordingly, that inhibiting ipsilateral regions can improve motor learning. Alternatively, the ipsilateral motor cortex may play an active role in the control and/or learning of unilateral hand movements. We approached this question by applying double-blind bihemispheric transcranial direct current stimulation (tDCS) over both contralateral and ipsilateral motor cortex in a between-group design during 4 d of unimanual explicit sequence training in human participants. Independently of whether the anode was placed over contralateral or ipsilateral motor cortex, bihemispheric stimulation yielded substantial performance gains relative to unihemispheric or sham stimulation. This performance advantage appeared to be supported by plastic changes in both hemispheres. First, we found that behavioral advantages generalized strongly to the untrained hand, suggesting that tDCS strengthened effector-independent representations. Second, functional imaging during speed-matched execution of trained sequences conducted 48 h after training revealed sustained, polarity-independent increases in activity in both motor cortices relative to the sham group. These results suggest a cooperative rather than competitive interaction of the two motor cortices during skill learning and suggest that bihemispheric brain stimulation during unimanual skill learning may be beneficial because it harnesses plasticity in the ipsilateral hemisphere. SIGNIFICANCE STATEMENT Many neurorehabilitation approaches are based on the idea that is beneficial to boost excitability in the contralateral hemisphere while attenuating that of the ipsilateral cortex to reduce interhemispheric inhibition. We observed that bihemispheric transcranial direct current stimulation (tDCS) with the excitatory anode either over contralateral or ipsilateral motor cortex

  16. Transcranial Direct Current Stimulation (tDCS: A Beginner's Guide for Design and Implementation

    Directory of Open Access Journals (Sweden)

    Hayley Thair

    2017-11-01

    Full Text Available Transcranial direct current stimulation (tDCS is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields.

  17. Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation

    Science.gov (United States)

    Thair, Hayley; Holloway, Amy L.; Newport, Roger; Smith, Alastair D.

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields. PMID:29213226

  18. Translating tDCS into the field of obesity: mechanism-driven approaches

    Directory of Open Access Journals (Sweden)

    Miguel eAlonso-Alonso

    2013-08-01

    Full Text Available Transcranial direct current stimulation (tDCS is emerging as a promising technique for neuromodulation in a variety of clinical conditions. Recent neuroimaging studies suggest that modifying the activity of brain circuits involved in eating behavior could provide therapeutic benefits in obesity. One session of tDCS over the dorsolateral prefrontal cortex can induce an acute decrease in food craving, according to three small clinical trials, but the extension of these findings into the field of obesity remains unexplored. Importantly, there has been little/no interaction of our current understanding of tDCS and its mechanisms with obesity-related research. How can we start closing this gap and rationally guide the translation of tDCS into the field of obesity? In this mini-review I summarize some of the challenges and questions ahead, related to basic science and technical aspects, and suggest future directions.

  19. Deft Control Software (DCS) for Remote Robotic Operations with Underlying Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — BluHaptics proposes Deft Control Software (DCS), which utilizes machine learning to enable intuitive and efficient control of robotic arms in remote operations with...

  20. Clearing the air : with 87 recommendations now implemented for reducing sulphur emissions from conventional facilities, clean air strategists in Alberta are setting their sights on the oilsands

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2008-11-15

    Clean air strategists in Alberta are now preparing to implement recommendations for reducing sulfur emissions in oil sands facilities. The oil and gas industry in Alberta has made significant reductions in emissions over the last few decades. Sulfur emissions at acid gas flaring plants have decreased by 73 per cent, and emissions from sulfur recovery plants have decreased by 40 per cent. Complaints about emissions have also dropped as industry regulations and practices have been refined and improved. The impacts of sour gas on human and animal health have not been proven despite the fact that many Alberta residents claim that the emissions have harmed their health. An independent public safety sour gas advisory committee was formed in the province in 1999 in order to identify and communicate with major stakeholder groups in the province. Recommendations made by the committee after consultation with public stakeholders included more direct involvement with disputes over sour gas. In 2007, the Alberta Energy and Utilities Board (EUB) toughened sour gas regulations and assisted in researching the health effects of sour gas exposure. Regulations for the inspection and testing of sour gas pipelines were also implemented. It was concluded that maintaining and improving air quality in Alberta will require comprehensive strategies that involve governments, industry, and individual stakeholders. 2 figs.

  1. The Effects of Transcranial Direct Current Stimulation (tDCS on Multitasking Throughput Capacity

    Directory of Open Access Journals (Sweden)

    Justin Nelson

    2016-11-01

    Full Text Available Background: Multitasking has become an integral attribute associated with military operations within the past several decades. As the amount of information that needs to be processed during these high level multitasking environments exceeds the human operators’ capabilities, the information throughput capacity reaches an asymptotic limit. At this point, the human operator can no longer effectively process and respond to the incoming information resulting in a plateau or decline in performance. The objective of the study was to evaluate the efficacy of a non-invasive brain stimulation technique known as transcranial direct current stimulation (tDCS applied to a scalp location over the left dorsolateral prefrontal cortex (lDLPFC to improve information processing capabilities during a multitasking environment. Methods: The study consisted of 20 participants from Wright-Patterson Air Force Base (16 male and 4 female with an average age of 31.1 (SD = 4.5. Participants were randomly assigned into two groups, each consisting of eight males and two females. Group one received 2mA of anodal tDCS and group two received sham tDCS over the lDLPFC on their testing day. Results: The findings indicate that anodal tDCS significantly improves the participants’ information processing capability resulting in improved performance compared to sham tDCS. For example, the multitasking throughput capacity for the sham tDCS group plateaued near 1.0 bits/s at the higher baud input (2.0 bits/s whereas the anodal tDCS group plateaued near 1.3 bits/s. Conclusion: The findings provided new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator. Future research should be conducted to determine the longevity of the enhancement of transcranial direct current stimulation on multitasking performance, which has yet to be accomplished.

  2. The Effects of Transcranial Direct Current Stimulation (tDCS) on Multitasking Throughput Capacity.

    Science.gov (United States)

    Nelson, Justin; McKinley, Richard A; Phillips, Chandler; McIntire, Lindsey; Goodyear, Chuck; Kreiner, Aerial; Monforton, Lanie

    2016-01-01

    Background: Multitasking has become an integral attribute associated with military operations within the past several decades. As the amount of information that needs to be processed during these high level multitasking environments exceeds the human operators' capabilities, the information throughput capacity reaches an asymptotic limit. At this point, the human operator can no longer effectively process and respond to the incoming information resulting in a plateau or decline in performance. The objective of the study was to evaluate the efficacy of a non-invasive brain stimulation technique known as transcranial direct current stimulation (tDCS) applied to a scalp location over the left dorsolateral prefrontal cortex (lDLPFC) to improve information processing capabilities during a multitasking environment. Methods: The study consisted of 20 participants from Wright-Patterson Air Force Base (16 male and 4 female) with an average age of 31.1 (SD = 4.5). Participants were randomly assigned into two groups, each consisting of eight males and two females. Group one received 2 mA of anodal tDCS and group two received sham tDCS over the lDLPFC on their testing day. Results: The findings indicate that anodal tDCS significantly improves the participants' information processing capability resulting in improved performance compared to sham tDCS. For example, the multitasking throughput capacity for the sham tDCS group plateaued near 1.0 bits/s at the higher baud input (2.0 bits/s) whereas the anodal tDCS group plateaued near 1.3 bits/s. Conclusion: The findings provided new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator. Future research should be conducted to determine the longevity of the enhancement of transcranial direct current stimulation on multitasking performance, which has yet to be accomplished.

  3. Clec9a-Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Johanna Salvermoser

    2018-04-01

    Full Text Available Conventional dendritic cells (cDCs are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired.

  4. Functional connectivity substrates for tDCS response in Minimally Conscious State patients

    Directory of Open Access Journals (Sweden)

    Carlo Cavaliere

    2016-11-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half of minimally conscious state (MCS patients. Although the rising evidences about its possible role in the treatment of many neurological and psychiatric conditions, no evidences exist about brain functional connectivity substrates underlying tDCS response. We retrospectively evaluated resting state functional Magnetic Resonance Imaging (fMRI of 16 sub-acute and chronic MCS patients (6 tDCS responders who successively received a single left dorsolateral prefrontal cortex (DLPFC tDCS in a double-blind randomized cross-over trial. A seed-based approach for regions of left extrinsic control network and default-mode network was performed.TDCS responders showed an increased left intra-network connectivity for regions co-activated with left DLPFC, and significantly with left inferior frontal gyrus. Non-responders MCS patients showed an increased connectivity between left DLPFC and midline cortical structures, including anterior cingulate cortex and precuneus.Our findings suggest that a prior high connectivity with regions belonging to extrinsic control network can facilitate transitory recovery of consciousness in a subgroup of MCS patients that underwent tDCS treatment. Therefore, resting state-fMRI could be very valuable in detecting the neuronal conditions necessary for tDCS to improve behavior in MCS.

  5. Delayed plastic responses to anodal tDCS in older adults

    Directory of Open Access Journals (Sweden)

    Hakuei eFujiyama

    2014-06-01

    Full Text Available Despite the abundance of research reporting the neurophysiological and behavioral effects of transcranial direct current stimulation (tDCS in healthy young adults and clinical populations, the extent of potential neuroplastic changes induced by tDCS in healthy older adults is not well understood. The present study compared the extent and time course of anodal tDCS-induced plastic changes in primary motor cortex (M1 in young and older adults. Furthermore, as it has been suggested that neuroplasiticity and associated learning depends on the brain-derived neurotrophic factor (BDNF gene polymorphisms, we also assessed the impact of BDNF polymorphism on these effects. Corticospinal excitability was examined using transcranial magnetic stimulation before and following (0, 10, 20, 30 min anodal tDCS (30 min, 1 mA or sham in young and older adults. While the overall extent of increases in corticospinal excitability induced by anodal tDCS did not vary reliably between young and older adults, older adults exhibited a delayed response; the largest increase in corticospinal excitability occurred 30 min following stimulation for older adults, but immediately post-stimulation for the young group. BDNF genotype did not result in significant differences in the observed excitability increases for either age group. The present study suggests that tDCS-induced plastic changes are delayed as a result of healthy aging, but that the overall efficacy of the plasticity mechanism remains unaffected.

  6. LILRB4 Decrease on uDCs Exacerbate Abnormal Pregnancy Outcomes Following Toxoplasma gondii Infection

    Directory of Open Access Journals (Sweden)

    Shaowei Zhan

    2018-03-01

    Full Text Available Toxoplasma gondii (T. gondii infection in early pregnancy can result in miscarriage, dead fetus, and other abnormalities. The LILRB4 is a central inhibitory receptor in uterine dendritic cells (uDCs that plays essential immune-regulatory roles at the maternal–fetal interface. In this study, T. gondii-infected human primary uDCs and T. gondii-infected LILRB4-/- pregnant mice were utilized. The immune mechanisms underlying the role of LILRB4 on uDCs were explored in the development of abnormal pregnancy outcomes following T. gondii infection in vitro and in vivo. Our results showed that the expression levels of LILRB4 on uDCs from normal pregnant mice were obviously higher than non-pregnant mice, and peaked in mid-gestation. The LILRB4 expression on uDC subsets, especially tolerogenic subsets, from mid-gestation was obviously down-regulated after T. gondii infection and LILRB4 decrease could further regulate the expression of functional molecules (CD80, CD86, and HLA-DR or MHC II on uDCs, contributing to abnormal pregnancy outcomes. Our results will shed light on the molecular immune mechanisms of uDCs in abnormal pregnancy outcomes by T. gondii infection.

  7. Effects of tDCS on Bimanual Motor Skills: A Brief Review.

    Science.gov (United States)

    Pixa, Nils H; Pollok, Bettina

    2018-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation.

  8. A novel technique of harmonic tissue dissection reduces seroma formation after modified radical mastectomy compared to conventional electrocautery: a single-blind randomized controlled trial.

    Science.gov (United States)

    Faisal, Mohammed; Fathy, Hamada; Shaban, Hamdy; Abuelela, Sameh T; Marie, Ahmed; Khaled, Islam

    2018-01-01

    Seroma is the most frequent postoperative complication following breast cancer surgery. Our aim was to evaluate the effect of the harmonic focus scalpel versus electrocautery in reducing seroma formation post-mastectomy and axillary clearance. A prospective randomized controlled trial study was conducted at the Department of Surgery of Suez Canal University Hospital from April 26th 2014 to 30th June 2016. Seventy-two women, in whom a mastectomy and axillary clearance for breast cancer were performed, were randomly allocated to either harmonic dissection ( n  = 36) or electrocautery ( n  = 36). The mean operative time was significantly longer for harmonic dissection compared with electrocautery (2.63 ± 0.41 vs. 1.75 ± 0.26 h; p  < 0.0001). In addition, a significantly smaller amount of intraoperative blood loss (69.4 ± 25.1 vs. 255.5 ± 41.6 ml; p  = 0.002) and total drainage volume (1277.8 ± 172.5 ml vs. 3300 ± 167.5 ml; p  = 0.002) were found in the harmonic group. Moreover, there was a significant reduction in the time of drain removal (10.9 ± 1.12 vs. 15.9 ± 1.44; p  = 0.001) and the incidence of seroma formation after drain removal [8.3% vs 33.3%; p  = 0.003] in the harmonic group compared with those in the electrocautery group. Harmonic dissection technique leads to significant decreases in intraoperative blood loss, total drainage volume and postoperative seroma in terms of shorter drain duration with a minimal increase in the operative time and better quality of life. Here, we recommend the use of the harmonic dissection technique in mastectomy and axillary clearance.

  9. Aging Impairs the Ability of Conventional Dendritic Cells to Cross-Prime CD8+ T Cells upon Stimulation with a TLR7 Ligand.

    Directory of Open Access Journals (Sweden)

    Estefanía R Zacca

    Full Text Available The aging process is accompanied by altered immune system functioning and an increased risk of infection. Dendritic cells (DCs are antigen-presenting cells that play a key role in both adaptive and innate immunity, but how aging affects DCs and their influence on immunity has not been thoroughly established. Here we examined the function of conventional DCs (cDCs in old mice after TLR7 stimulation, focusing on their ability to cross-prime CD8+ T cells. Using polyU, a synthetic ssRNA analog, as TLR7 ligand and OVA as an antigen (Ag model, we found that cDCs from old mice have a poor ability to stimulate a CD8+ T cell-mediated cytotoxic response. cDCs from old mice exhibit alterations in Ag-processing machinery and TLR7 activation. Remarkably, CD8α+ cDCs from old mice have an impaired ability to activate naïve CD8+ T cells and, moreover, a lower capacity to mature and to process exogenous Ag. Taken together, our results suggest that immunosenescence impacts cDC function, affecting the activation of naïve CD8+ T cells and the generation of effector cytotoxic T cells.

  10. A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex.

    Directory of Open Access Journals (Sweden)

    Toni Cunillera

    Full Text Available Proactive and reactive inhibitory processes are a fundamental part of executive functions, allowing a person to stop inappropriate responses when necessary and to adjust performance in in a long term in accordance to the goals of a task. In the current study, we manipulate, in a single task, both reactive and proactive inhibition mechanisms, and we investigate the within-subjects effect of increasing, by means of anodal transcranial direct current stimulation (tDCS, the involvement of the right inferior frontal cortex (rIFC. Our results show a simultaneous enhancement of these two cognitive mechanisms when modulating the neural activity of rIFC. Thus, the application of anodal tDCS increased reaction times on Go trials, indicating a possible increase in proactive inhibition. Concurrently, the stop-signal reaction time, as a covert index of the inhibitory process, was reduced, demonstrating an improvement in reactive inhibition. In summary, the current pattern of results validates the engagement of the rIFC in these two forms of inhibitory processes, proactive and reactive inhibition and it provides evidence that both processes can operate concurrently in the brain.

  11. Diffuse correlation spectroscopy (DCS) study of blood flow changes during low level laser therapy (LLLT): a preliminary report

    Science.gov (United States)

    Soni, Sagar; Wang, Xinlong; Liu, Hanli; Tian, Fenghua

    2017-02-01

    Photobiomodulation with low-power, high-fluence light in the near-infrared range (600-1100nm), also known as low level laser therapy (LLLT), has been used for promoting healing of wounds, reducing pain, and so on. Understanding its physiological effect is essential for treatment optimization and evaluation. In this study, we used diffuse correlation spectroscopy (DCS) to investigate the changes of regional blood flow in skeletal muscle induced by a single session of LLLT. DCS is an emerging optical modality to probe microvascular blood flow in human tissues in vivo. We have developed a software-based autocorrelator system with the benefits such as flexibility in raw photon count data processing, portability and low cost. LLLT was administered at the human forearm with a 1064-nm, continuous-wave laser. The emitting power was 3.4 W in an area of 13.6 cm2, corresponding to 0.25W/cm2 irradiance. The emitting duration was 10 minutes. Eight healthy adults of any ethnic background, in an age range of 18-40 years old were included. The results indicate that LLLT causes reliable changes in regional blood flow. However, it remains unclear whether these changes are physiological or attributed to the heating effect of the stimulation laser.

  12. Anodal-tDCS over the human right occipital cortex enhances the perception and memory of both faces and objects.

    Science.gov (United States)

    Barbieri, Marica; Negrini, Marcello; Nitsche, Michael A; Rivolta, Davide

    2016-01-29

    Accurate face processing skills are pivotal for typical social cognition, and impairments in this ability characterise various clinical conditions (e.g., prosopagnosia). No study to date has investigated whether transcranial direct current stimulation (tDCS) can causally enhance face processing. In addition, the category- and the process-specificity of tDCS effects, as well as the role of the timing of neuromodulation with respect to the execution of cognitive tasks are still unknown. In this single-blind, sham-controlled study, we examined whether the administration of anodal-tDCS (a-tDCS) over the right occipital cortex of healthy volunteers (N=64) enhances performance on perceptual and memory tasks involving both face and object stimuli. Neuromodulation was delivered in two conditions: online (a-tDCS during task execution) and offline (a-tDCS before task execution). The results demonstrate that offline a-tDCS enhances the perception and memory performance of both faces and objects. There was no effect of online a-tDCS on behaviour. Furthermore, the offline effect was site-specific since a-tDCS over the sensory-motor cortex did not lead to behavioural changes. Our results add relevant information about the breadth of cognitive processes and visual stimuli that can be modulated by tDCS, and about the design of effective neuromodulation protocols, which have implications for advancing theories in cognitive neuroscience and clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance.

    Science.gov (United States)

    Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N

    2018-02-01

    Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.

  14. Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by difficulty

    Science.gov (United States)

    Chua, Elizabeth F.; Ahmed, Rifat; Garcia, Sandry

    2016-01-01

    Background The ability to monitor one’s own memory is an important feature of normal memory and is an aspect of ‘metamemory’. Lesion studies have shown dissociations between memory and metamemory, but only single dissociations have been shown using transcranial direct current stimulation (tDCS). One potential reason that only single dissociations have been shown is that tDCS effects may be moderated by task difficulty. Objective/Hypothesis We used high definition (HD) tDCS to test for dissociable roles of the dorsolateral prefrontal cortex (DLPFC) and anterior temporal lobe (ATL) in semantic long-term memory and metamemory tasks. We also tested whether general knowledge question difficulty moderated the effects of HD-tDCS. Methods Across 3 sessions, participants received active HD-tDCS over the left DLPFC or left ATL, or sham HD-tDCS during general knowledge recall and recognition tests, and a ‘feeling-of-knowing’ metamemory task. General knowledge questions were blocked by difficulty. Repeated measures ANOVAs were used to examine the effects of HD-tDCS on memory and metamemory tasks by memory question difficulty. Results HD-tDCS over the ATL led to improved recall compared to DLPFC and sham HD-tDCS, and this occurred only for medium difficulty questions. In contrast, for non-recalled questions, HD-tDCS over the DLPFC led to improved recognition accuracy and improved feeling-of-knowing accuracy compared to ATL and sham HD-tDCS, and this was not moderated by memory question difficulty. Conclusion(s) HD-tDCS can be used to dissociate the roles of the ATL and DLPFC in different memory and ‘metamemory’ tasks. The effects of HD-tDCS on task may be moderated by task difficulty, depending on the nature of the task and site of stimulation. PMID:27876306

  15. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS: challenges for brain-state dependent tDCS

    Directory of Open Access Journals (Sweden)

    Anirban eDutta

    2015-08-01

    Full Text Available Transcranial direct current stimulation (tDCS has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG. Respective neural activity (energy demand has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF that supplies glucose (energy supply via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS, which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU during tDCS. Therefore, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations for brain-state dependent tDCS.

  16. IL-23 (Interleukin-23)-Producing Conventional Dendritic Cells Control the Detrimental IL-17 (Interleukin-17) Response in Stroke.

    Science.gov (United States)

    Gelderblom, Mathias; Gallizioli, Mattia; Ludewig, Peter; Thom, Vivien; Arunachalam, Priyadharshini; Rissiek, Björn; Bernreuther, Christian; Glatzel, Markus; Korn, Thomas; Arumugam, Thiruma Valavan; Sedlacik, Jan; Gerloff, Christian; Tolosa, Eva; Planas, Anna M; Magnus, Tim

    2018-01-01

    Inflammatory mechanisms can exacerbate ischemic tissue damage and worsen clinical outcome in patients with stroke. Both αβ and γδ T cells are established mediators of tissue damage in stroke, and the role of dendritic cells (DCs) in inducing the early events of T cell activation and differentiation in stroke is not well understood. In a murine model of experimental stroke, we defined the immune phenotype of infiltrating DC subsets based on flow cytometry of surface markers, the expression of ontogenetic markers, and cytokine levels. We used conditional DC depletion, bone marrow chimeric mice, and IL-23 (interleukin-23) receptor-deficient mice to further explore the functional role of DCs. We show that the ischemic brain was rapidly infiltrated by IRF4 + /CD172a + conventional type 2 DCs and that conventional type 2 DCs were the most abundant subset in comparison with all other DC subsets. Twenty-four hours after ischemia onset, conventional type 2 DCs became the major source of IL-23, promoting neutrophil infiltration by induction of IL-17 (interleukin-17) in γδ T cells. Functionally, the depletion of CD11c + cells or the genetic disruption of the IL-23 signaling abrogated both IL-17 production in γδ T cells and neutrophil infiltration. Interruption of the IL-23/IL-17 cascade decreased infarct size and improved neurological outcome after stroke. Our results suggest a central role for interferon regulatory factor 4-positive IL-23-producing conventional DCs in the IL-17-dependent secondary tissue damage in stroke. © 2017 American Heart Association, Inc.

  17. Global climate convention

    International Nuclear Information System (INIS)

    Simonis, U.E.

    1991-01-01

    The effort of negotiate a global convention on climate change is one of mankind's great endeavours - and a challenge to economists and development planners. The inherent linkages between climate and the habitability of the earth are increasingly well recognized, and a convention could help to ensure that conserving the environment and developing the economy in the future must go hand in hand. Due to growing environmental concern the United Nations General Assembly has set into motion an international negotiating process for a framework convention on climate change. One the major tasks in these negotiations is how to share the duties in reducing climate relevant gases, particularly carbon dioxide (CO 2 ), between the industrial and the developing countries. The results and proposals could be among the most far-reaching ever for socio-economic development, indeed for global security and survival itself. While the negotiations will be about climate and protection of the atmosphere, they will be on fundamental global changes in energy policies, forestry, transport, technology, and on development pathways with low greenhouse gas emissions. Some of these aspects of a climate convention, particularly the distributional options and consequences for the North-South relations, are addressed in this chapter. (orig.)

  18. Coupling DCS and MARTe: two real-time control frameworks in collaboration

    International Nuclear Information System (INIS)

    Rapson, Christopher J.; Carvalho, Pedro; Lüddecke, Klaus; Neto, André C.; Santos, Bruno; Treutterer, Wolfgang; Winter, Axel; Zehetbauer, Thomas

    2014-01-01

    Highlights: • Similarities and differences between DCS and MARTe. • Identifies the state-of-the-art in terms of software frameworks for fusion control. • Interfaces developed for realtime and non-realtime communication between DCS and MARTe. • An algorithm replicated in DCS and MARTe produces identical results and good performance. • The start of collaboration to develop a new framework for ITER PCS. - Abstract: Fusion experiments place high demands on real-time control systems. Within the fusion community two modern framework-based software architectures have emerged as powerful tools for developing algorithms for real-time control of complex systems while maintaining the flexibility required when operating a physics experiment. The two frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded Application Real-Time executor), originally from JET. Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma Control System which will adopt major design concepts from both the existing frameworks. This paper describes a coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state machines and a common message logger. Configuration data is exchanged before the real-time phase. During the real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a well-informed basis on which to move forward and design a new ITER real-time framework

  19. Clinical Research with Transcranial Direct Current Stimulation (tDCS): Challenges and Future Directions

    Science.gov (United States)

    Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe

    2011-01-01

    Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126

  20. Coupling DCS and MARTe: two real-time control frameworks in collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Rapson, Christopher J., E-mail: chris.rapson@ipp.mpg.de [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Carvalho, Pedro [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Lüddecke, Klaus; Neto, André C. [Unlimited Computer Systems GmbH, Seeshaupterstr. 15, 82393 Iffeldorf (Germany); Santos, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Treutterer, Wolfgang [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Winter, Axel [ITER Organization, Route de Vinon-sur-Verdon, 13115 St.-Paul-Lès-Durance (France); Zehetbauer, Thomas [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany)

    2014-12-15

    Highlights: • Similarities and differences between DCS and MARTe. • Identifies the state-of-the-art in terms of software frameworks for fusion control. • Interfaces developed for realtime and non-realtime communication between DCS and MARTe. • An algorithm replicated in DCS and MARTe produces identical results and good performance. • The start of collaboration to develop a new framework for ITER PCS. - Abstract: Fusion experiments place high demands on real-time control systems. Within the fusion community two modern framework-based software architectures have emerged as powerful tools for developing algorithms for real-time control of complex systems while maintaining the flexibility required when operating a physics experiment. The two frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded Application Real-Time executor), originally from JET. Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma Control System which will adopt major design concepts from both the existing frameworks. This paper describes a coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state machines and a common message logger. Configuration data is exchanged before the real-time phase. During the real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a well-informed basis on which to move forward and design a new ITER real-time framework.

  1. Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis.

    Science.gov (United States)

    Imburgio, Michael J; Orr, Joseph M

    2018-05-01

    A meta-analysis of studies using single-session transcranial direct current stimulation (tDCS) to target the dorsolateral prefrontal cortex (DLPFC) was undertaken to examine the effect of stimulation on executive function (EF) in healthy samples. 27 studies were included in analyses, yielding 71 effect sizes. The most relevant measure for each task was determined a priori and used to calculate Hedge's g. Methodological characteristics of each study were examined individually as potential moderators of effect size. Stimulation effects on three domains of EF (inhibition of prepotent responses, mental set shifting, and information updating and monitoring) were analyzed separately. In line with previous work, the current study found no significant effect of anodal unilateral tDCS, cathodal unilateral tDCS, or bilateral tDCS on EF. Further moderator and subgroup analyses were only carried out for anodal unilateral montages due to the small number of studies using other montages. Subgroup analyses revealed a significant effect of anodal unilateral tDCS on updating tasks, but not on inhibition or set-shifting tasks. Cathode location significantly moderated the effect of anodal unilateral tDCS. Extracranial cathodes yielded a significant effect on EF while cranial cathodes yielded no effect. Anode size also significantly moderated effect of anodal unilateral tDCS, with smaller anodes being more effective than larger anodes. In summary, anodal DLPFC stimulation is more effective at improving updating ability than inhibition and set-shifting ability, but anodal stimulation can significantly improve general executive function when extracranial cathodes or small anodes are used. Future meta-analyses may examine how stimulation's effects on specific behavioral tasks, rather than broader domains, might be affected by methodological moderators. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Science.gov (United States)

    Vanderhasselt, Marie-Anne; De Raedt, Rudi; Brunoni, Andre R; Campanhã, Camila; Baeken, Chris; Remue, Jonathan; Boggio, Paulo S

    2013-01-01

    Transcranial Direct Current Stimulation (tDCS) is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP) as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation), we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right) prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  3. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Directory of Open Access Journals (Sweden)

    Marie-Anne Vanderhasselt

    Full Text Available Transcranial Direct Current Stimulation (tDCS is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation, we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  4. Transcranial direct current stimulation (tDCS) Paired with massed practice training to promote adaptive plasticity and motor recovery in chronic incomplete tetraplegia: a pilot study.

    Science.gov (United States)

    Potter-Baker, Kelsey A; Janini, Daniel P; Lin, Yin-Liang; Sankarasubramanian, Vishwanath; Cunningham, David A; Varnerin, Nicole M; Chabra, Patrick; Kilgore, Kevin L; Richmond, Mary Ann; Frost, Frederick S; Plow, Ela B

    2017-08-07

    Objective Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). Design Longitudinal, randomized, controlled, double-blinded cohort study. Setting Cleveland Clinic Foundation, Cleveland, Ohio, USA. Participants Eight male subjects with chronic incomplete motor tetraplegia. Interventions Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. Outcome Measures We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). Results We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). Conclusion Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. Trial Registration NCT01539109.

  5. Hitachi's proposed DCS solution for new build CANDU EC6 using the G-HIACS unified platform

    Energy Technology Data Exchange (ETDEWEB)

    Tan, D.; Ishii, K.; Otsuka, Y.; Uemura, K., E-mail: daisuke.tan.ye@hitachi.com [Hitachi Ltd., Infrastructure Systems Co., Ibaraki (Japan); Marko, P.E. [Hitachi Power Systems Canada Ltd., Power and Industry Div., Ontario (Canada)

    2013-07-01

    Hitachi Ltd. has developed the safe and secure functional safety DCS controller for potential new build NPP projects in the global market. Hitachi has improved the availability, maintainability, and reliability for its latest DCS systems named G-HIACS. In this latest paper on its DCS product development program, Hitachi would like to report a proposed DCS solution for new build CANDU NSP and BOP based on the G-HIACS Unified Architecture (R800FS/HSC800FS vSAFE Functional Safety Controller and R900/HSC900 General Purpose Controller) hybrid control system. (author)

  6. No significant effect of prefrontal tDCS on working memory performance in older adults

    Directory of Open Access Journals (Sweden)

    Jonna eNilsson

    2015-12-01

    Full Text Available Transcranial direct current stimulation (tDCS has been put forward as a non-pharmacological alternative for alleviating cognitive decline in old age. Although results have shown some promise, little is known about the optimal stimulation parameters for modulation in the cognitive domain. In this study, the effects of tDCS over the dorsolateral prefrontal cortex (dlPFC on working memory performance were investigated in thirty older adults. An N-back task assessed working memory before, during and after anodal tDCS at a current strength of 1mA and 2mA, in addition to sham stimulation. The study used a single-blind, cross-over design. The results revealed no significant effect of tDCS on accuracy or response times during or after stimulation, for any of the current strengths. These results suggest that a single session of tDCS over the dlPFC is unlikely to improve working memory, as assessed by an N-back task, in old age.

  7. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing.

    Science.gov (United States)

    Reinhart, Robert M G; Cosman, Josh D; Fukuda, Keisuke; Woodman, Geoffrey F

    2017-01-01

    Noninvasive brain stimulation methods are becoming increasingly common tools in the kit of the cognitive scientist. In particular, transcranial direct-current stimulation (tDCS) is showing great promise as a tool to causally manipulate the brain and understand how information is processed. The popularity of this method of brain stimulation is based on the fact that it is safe, inexpensive, its effects are long lasting, and you can increase the likelihood that neurons will fire near one electrode and decrease the likelihood that neurons will fire near another. However, this method of manipulating the brain to draw causal inferences is not without complication. Because tDCS methods continue to be refined and are not yet standardized, there are reports in the literature that show some striking inconsistencies. Primary among the complications of the technique is that the tDCS method uses two or more electrodes to pass current and all of these electrodes will have effects on the tissue underneath them. In this tutorial, we will share what we have learned about using tDCS to manipulate how the brain perceives, attends, remembers, and responds to information from our environment. Our goal is to provide a starting point for new users of tDCS and spur discussion of the standardization of methods to enhance replicability.

  8. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition

    Science.gov (United States)

    Murphy, Jillian M.; Ridley, Nicole J.; Vercammen, Ans

    2015-01-01

    The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602

  9. Anodal tDCS to V1 blocks visual perceptual learning consolidation.

    Science.gov (United States)

    Peters, Megan A K; Thompson, Benjamin; Merabet, Lotfi B; Wu, Allan D; Shams, Ladan

    2013-06-01

    This study examined the effects of visual cortex transcranial direct current stimulation (tDCS) on visual processing and learning. Participants performed a contrast detection task on two consecutive days. Each session consisted of a baseline measurement followed by measurements made during active or sham stimulation. On the first day, one group received anodal stimulation to primary visual cortex (V1), while another received cathodal stimulation. Stimulation polarity was reversed for these groups on the second day. The third (control) group of subjects received sham stimulation on both days. No improvements or decrements in contrast sensitivity relative to the same-day baseline were observed during real tDCS, nor was any within-session learning trend observed. However, task performance improved significantly from Day 1 to Day 2 for the participants who received cathodal tDCS on Day 1 and for the sham group. No such improvement was found for the participants who received anodal stimulation on Day 1, indicating that anodal tDCS blocked overnight consolidation of visual learning, perhaps through engagement of inhibitory homeostatic plasticity mechanisms or alteration of the signal-to-noise ratio within stimulated cortex. These results show that applying tDCS to the visual cortex can modify consolidation of visual learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Anodal tDCS applied during multitasking training leads to transferable performance gains.

    Science.gov (United States)

    Filmer, Hannah L; Lyons, Maxwell; Mattingley, Jason B; Dux, Paul E

    2017-10-11

    Cognitive training can lead to performance improvements that are specific to the tasks trained. Recent research has suggested that transcranial direct current stimulation (tDCS) applied during training of a simple response-selection paradigm can broaden performance benefits to an untrained task. Here we assessed the impact of combined tDCS and training on multitasking, stimulus-response mapping specificity, response-inhibition, and spatial attention performance in a cohort of healthy adults. Participants trained over four days with concurrent tDCS - anodal, cathodal, or sham - applied to the left prefrontal cortex. Immediately prior to, 1 day after, and 2 weeks after training, performance was assessed on the trained multitasking paradigm, an untrained multitasking paradigm, a go/no-go inhibition task, and a visual search task. Training combined with anodal tDCS, compared with training plus cathodal or sham stimulation, enhanced performance for the untrained multitasking paradigm and visual search tasks. By contrast, there were no training benefits for the go/no-go task. Our findings demonstrate that anodal tDCS combined with multitasking training can extend to untrained multitasking paradigms as well as spatial attention, but with no extension to the domain of response inhibition.

  11. Cerebellar tDCS does not affect performance in the N-back task.

    Science.gov (United States)

    van Wessel, Brenda W V; Claire Verhage, M; Holland, Peter; Frens, Maarten A; van der Geest, Jos N

    2016-01-01

    The N-back task is widely used in cognitive research. Furthermore, the cerebellum's role in cognitive processes is becoming more widely recognized. Studies using transcranial direct current stimulation (tDCS) have demonstrated effects of cerebellar stimulation on several cognitive tasks. Therefore, the aim of this study was to investigate the effects of cerebellar tDCS on cognitive performance by using the N-back task. The cerebellum of 12 participants was stimulated during the task. Moreover, the cognitive load was manipulated in N = 2, N = 3, and N = 4. Every participant received three tDCS conditions (anodal, cathodal, and sham) divided over three separated days. It was expected that anodal stimulation would improve performance on the task. Each participant performed 6 repetitions of every load in which correct responses, false alarms, and reaction times were recorded. We found significant differences between the three levels of load in the rate of correct responses and false alarms, indicating that subjects followed the expected pattern of performance for the N-back task. However, no significant differences between the three tDCS conditions were found. Therefore, it was concluded that in this study cognitive performance on the N-back task was not readily influenced by cerebellar tDCS, and any true effects are likely to be small. We discuss several limitations in task design and suggest future experiments to address such issues.

  12. tDCS stimulation segregates words in the brain: evidence from aphasia

    Directory of Open Access Journals (Sweden)

    Valentina eFiori

    2013-06-01

    Full Text Available A number of studies have already shown that modulating cortical activity by means of transcranial direct current stimulation (tDCS improves noun or verb naming in aphasic patients. However, it is not yet clear whether these effects are equally obtained through stimulation over the frontal or the temporal regions. In the present study, the same group of aphasic subjects participated in two randomized double-blind experiments involving two intensive language treatments for their noun and verb retrieval difficulties. During each training, each subject was treated with tDCS (20 min., 1mA over the left hemisphere in three different conditions: anodic tDCS over the temporal areas, anodic tDCS over the frontal areas and sham stimulation, while they performed a noun and an action naming tasks. Each experimental condition was run in five consecutive daily sessions over three weeks with 6 days of intersession interval. The order of administration of the two language trainings was randomly assigned to all patients. Overall, with respect to the other two conditions, results showed a significant greater improvement in noun naming after stimulation over the temporal region, while verb naming recovered significantly better after stimulation of the frontal region. These improvements persisted at one month after the end of each treatment suggesting a long-term effect on recovery of the patients’ noun and verb difficulties. These data clearly suggest that the mechanisms of recovery for naming can be segregated coupling tDCS with an intensive language training.

  13. Reduced Affective Biasing of Instrumental Action With tDCS Over the Prefrontal Cortex

    NARCIS (Netherlands)

    Ly, V.; Bergmann, T.O.; Gladwin, T.E.; Volman, I.A.C.; Usberti, N.; Cools, R.; Roelofs, K.

    2016-01-01

    BACKGROUND: Instrumental action is well known to be vulnerable to affective value. Excessive transfer of affective value to instrumental action is thought to contribute to psychiatric disorders. The brain region most commonly implicated in overriding such affective biasing of instrumental action is

  14. STAMP model and its application prospect in DCS safety analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Jie; Liu Zhaohui; Liu Hua; Yu Tonglan

    2013-01-01

    The application of DCS (Digit Control System) is a certain trend for the development of nuclear power. DCS not only improves the control capability of nuclear power system, but also increases the complexity of the system. Traditional safety analysis techniques based on event-chain model are facing challenges. In order to improve the safety performance of nuclear power DCS, the latest research achievement in the field of safety engineering should be focused, studied and applied into nuclear power safety. This paper introduces a new safety analysis model named STAMP (Systems-Theoretic Accident Modeling and Processes) based on the system theory, analyzes its advantages and disadvantages compared with the traditional ones, and explains the basic steps of STPA (STAMP-Based Hazard Analysis) technology. Finally, according to the application status of STAMP at home and abroad, it prospects the development of STAMP in China's nuclear power safety. (authors)

  15. JACoW ADAPOS: An architecture for publishing ALICE DCS conditions data

    CERN Document Server

    Lång, John; Bond, Peter; Chochula, Peter; Kurepin, Alexander; Lechman, Mateusz; Pinazza, Ombretta

    2018-01-01

    ALICE Data Point Service (ADAPOS) is a software architecture being developed for the RUN3 period of LHC, as a part of the effort to transmit conditions data from ALICE Detector Control System (DCS) to Event Processing Network (EPN), for distributed processing. The key processes of ADAPOS, Engine and Terminal, run on separate machines, facing different networks. Devices connected to DCS publish their state as DIM services. Engine gets updates to the services, and converts them into a binary stream. Terminal receives it over 0MQ, and maintains an image of the DCS state. It sends copies of the image, at regular intervals, over another 0MQ connection, to a readout process of ALICE Data Acquisition.

  16. The Integration of DCS I/O to an Existing PLC

    Science.gov (United States)

    Sadhukhan, Debashis; Mihevic, John

    2013-01-01

    At the NASA Glenn Research Center (GRC), Existing Programmable Logic Controller (PLC) I/O was replaced with Distributed Control System (DCS) I/O, while keeping the existing PLC sequence Logic. The reason for integration of the PLC logic and DCS I/O, along with the evaluation of the resulting system is the subject of this paper. The pros and cons of the old system and new upgrade are described, including operator workstation screen update times. Detail of the physical layout and the communication between the PLC, the DCS I/O and the operator workstations are illustrated. The complex characteristics of a central process control system and the plan to remove the PLC processors in future upgrades is also discussed.

  17. Consensus: "Can tDCS and TMS enhance motor learning and memory formation?"

    Science.gov (United States)

    Reis, Janine; Robertson, Edwin; Krakauer, John W; Rothwell, John; Marshall, Lisa; Gerloff, Christian; Wassermann, Eric; Pascual-Leone, Alvaro; Hummel, Friedhelm; Celnik, Pablo A; Classen, Joseph; Floel, Agnes; Ziemann, Ulf; Paulus, Walter; Siebner, Hartwig R; Born, Jan; Cohen, Leonardo G

    2008-10-01

    Noninvasive brain stimulation has developed as a promising tool for cognitive neuroscientists. Transcranial magnetic (TMS) and direct current (tDCS) stimulation allow researchers to purposefully enhance or decrease excitability in focal areas of the brain. The purpose of this paper is to review information on the use of TMS and tDCS as research tools to facilitate motor memory formation, motor performance and motor learning in healthy volunteers. Studies implemented so far have mostly focused on the ability of TMS and tDCS to elicit relatively short lasting motor improvements and the mechanisms underlying these changes have been only partially investigated. Despite limitations including the scarcity of data, work that has been already accomplished raises the exciting hypothesis that currently available noninvasive transcranial stimulation techniques could modulate motor learning and memory formation in healthy humans and potentially in patients with neurological and psychiatric disorders.

  18. The Immunomodulatory Potential of tolDCs Loaded with Heat Shock Proteins

    Directory of Open Access Journals (Sweden)

    Willem van Eden

    2017-11-01

    Full Text Available Disease suppressive T cell regulation may depend on cognate interactions of regulatory T cells with self-antigens that are abundantly expressed in the inflamed tissues. Heat shock proteins (HSPs are by their nature upregulated in stressed cells and therefore abundantly present as potential targets for such regulation. HSP immunizations have led to inhibition of experimentally induced inflammatory conditions in various models. However, re-establishment of tolerance in the presence of an ongoing inflammatory process has remained challenging. Since tolerogenic DCs (tolDCs have the combined capacity of mitigating antigen-specific inflammatory responses and of endowing T cells with regulatory potential, it seems attractive to combine the anti-inflammatory qualities of tolDCs with those of HSPs.

  19. No Effects of Bilateral tDCS over Inferior Frontal Gyrus on Response Inhibition and Aggression.

    Directory of Open Access Journals (Sweden)

    Franziska Dambacher

    Full Text Available Response inhibition is defined as the capacity to adequately withdraw pre-planned responses. It has been shown that individuals with deficits in inhibiting pre-planned responses tend to display more aggressive behaviour. The prefrontal cortex is involved in both, response inhibition and aggression. While response inhibition is mostly associated with predominantly right prefrontal activity, the neural components underlying aggression seem to be left-lateralized. These differences in hemispheric dominance are conceptualized in cortical asymmetry theories on motivational direction, which assign avoidance motivation (relevant to inhibit responses to the right and approach motivation (relevant for aggressive actions to the left prefrontal cortex. The current study aimed to directly address the inverse relationship between response inhibition and aggression by assessing them within one experiment. Sixty-nine healthy participants underwent bilateral transcranial Direct Current Stimulation (tDCS to the inferior frontal cortex. In one group we induced right-hemispheric fronto-cortical dominance by means of a combined right prefrontal anodal and left prefrontal cathodal tDCS montage. In a second group we induced left-hemispheric fronto-cortical dominance by means of a combined left prefrontal anodal and right prefrontal cathodal tDCS montage. A control group received sham stimulation. Response inhibition was assessed with a go/no-go task (GNGT and aggression with the Taylor Aggression Paradigm (TAP. We revealed that participants with poorer performance in the GNGT displayed more aggression during the TAP. No effects of bilateral prefrontal tDCS on either response inhibition or aggression were observed. This is at odds with previous brain stimulation studies applying unilateral protocols. Our results failed to provide evidence in support of the prefrontal cortical asymmetry model in the domain of response inhibition and aggression. The absence of tDCS

  20. Applying anodal tDCS during tango dancing in a patient with Parkinson's disease.

    Science.gov (United States)

    Kaski, D; Allum, J H; Bronstein, A M; Dominguez, R O

    2014-05-07

    Gait disturbance in patients with Parkinson's disease remains a therapeutic challenge, given its poor response to levodopa. Dance therapy is of recognised benefit in these patients, particularly partnered dance forms such as the tango. In parallel, non-invasive brain stimulation has begun to show promise for the rehabilitation of patients with Parkinson's disease, although effects on gait, compared to upper limbs, have been less well defined. We applied transcranial direct current stimulation (tDCS) in a 79 year old male patient with moderate Parkinson's disease during tango dancing to assess its effect on trunk motion and balance. The patient performed a total of four dances over two days, two 'tango+tDCS' and two 'tango+sham' in a randomised double-blind fashion. In a separate experimental session we also assessed the isolated effect of tDCS (and sham) on gait without tango dancing. For the dance session, trunk peak velocity during tango was significantly greater during tDCS compared to sham stimulation. In the gait experiments we observed a modest but significant reduction in the time taken to complete the 3m 'timed up and go' and 6m walk, and an increase in overall gait velocity and peak pitch trunk velocity with tDCS compared to sham. Our findings suggest that tDCS may be a useful adjunct to gait rehabilitation for patients with PD, although studies in a larger group of patients are needed to evaluate the therapeutic use of non-invasive brain stimulation during dance therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Determination of optimal electrode positions for transcranial direct current stimulation (tDCS)

    International Nuclear Information System (INIS)

    Im, Chang-Hwan; Jung, Hui-Hun; Choi, Jung-Do; Lee, Soo Yeol; Jung, Ki-Young

    2008-01-01

    The present study introduces a new approach to determining optimal electrode positions in transcranial direct current stimulation (tDCS). Electric field and 3D conduction current density were analyzed using 3D finite element method (FEM) formulated for a dc conduction problem. The electrode positions for minimal current injection were optimized by changing the Cartesian coordinate system into the spherical coordinate system and applying the (2+6) evolution strategy (ES) algorithm. Preliminary simulation studies applied to a standard three-layer head model demonstrated that the proposed approach is promising in enhancing the performance of tDCS. (note)

  2. Determination of optimal electrode positions for transcranial direct current stimulation (tDCS)

    Energy Technology Data Exchange (ETDEWEB)

    Im, Chang-Hwan; Jung, Hui-Hun; Choi, Jung-Do [Department of Biomedical Engineering, Yonsei University, Wonju, 220-710 (Korea, Republic of); Lee, Soo Yeol [Department of Biomedical Engineering, Kyung Hee University, Suwon (Korea, Republic of); Jung, Ki-Young [Korea University Medical Center, Korea University College of Medicine, Seoul (Korea, Republic of)], E-mail: ich@yonsei.ac.kr

    2008-06-07

    The present study introduces a new approach to determining optimal electrode positions in transcranial direct current stimulation (tDCS). Electric field and 3D conduction current density were analyzed using 3D finite element method (FEM) formulated for a dc conduction problem. The electrode positions for minimal current injection were optimized by changing the Cartesian coordinate system into the spherical coordinate system and applying the (2+6) evolution strategy (ES) algorithm. Preliminary simulation studies applied to a standard three-layer head model demonstrated that the proposed approach is promising in enhancing the performance of tDCS. (note)

  3. Spelling rehabilitation using transcranial direct current (tDCS in primary progressive aphasia (PPA.

    Directory of Open Access Journals (Sweden)

    Constantine Frangakis

    2014-04-01

    Full Text Available Introduction: Spelling impairments are one of the first deficits that occur early in PPA and can usually predict the variant of PPA in which the patient may progress (Sepelyak et al., 2011. PPA is a neurodegenerative disease that affects people relatively early in life (between 55-65 years and therefore it is important to find ways to alleviate the symptoms or impede the degree of degeneration. We present and discuss new data indicating that a neuromodulatory treatment, using transcranial direct current stimulation (tDCS combined with a spelling intervention, shows promise for maintaining or even improving language abilities in PPA. The aim of this research is to determine whether tDCS plus language therapy is more effective than language therapy alone in treating written language deficits in PPA. Methods: Eight PPA participants underwent anodal tDCS or sham plus spelling intervention in a randomized order using a within-subject cross-over design. They were evaluated before, after, and at 2 weeks and 2 months post-intervention. Spelling intervention varied for each participant according to the main spelling deficit: 3 patients had phoneme-to-grapheme conversion (PGC intervention, 2 had lexical intervention and 3 had advanced PGC intervention (combined with written fluency and PGC practice. Four more patients have already finished the first period of stimulations (ether sham or tDCS and all their other sessions and evaluations will be completed in the next couple months. Analyses-Results: We analyzed the existing set of full data using both within-subject analyses (McNemar tests and across-subjects analyses while taking into account carry-over effects. We evaluated therapy effects by the Generalized Estimating Equation approach (Liang & Zeger, 1986. All participants showed improvement in spelling after spelling intervention in trained items (with either sham or tDCS. There was, however, a significant improvement for untrained items only in the tDCS

  4. Two New Chroman Derivations from the Endophytic Penicillium sp. DCS523

    OpenAIRE

    Li, Jun-Tian; Fu, Xiao-Li; Tan, Chun; Zeng, Ying; Wang, Qi; Zhao, Pei-Ji

    2011-01-01

    Strain DCS523 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a Penicillium sp. according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Penicillium sp. DCS523 were purified to give two new chroman derivatives as well as six known compounds. Based on their spectral data the new compounds were identified as (Z)-6-acetyl- 3-(1,2-dihydroxypropylidene)-5-hydroxy-8-methylchroman-2-one (1) and 6-acetyl-2α,5- dihydroxy-2-(...

  5. Two New Chroman Derivations from the Endophytic Penicillium sp. DCS523

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2011-01-01

    Full Text Available Strain DCS523 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a Penicillium sp. according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Penicillium sp. DCS523 were purified to give two new chroman derivatives as well as six known compounds. Based on their spectral data the new compounds were identified as (Z-6-acetyl- 3-(1,2-dihydroxypropylidene-5-hydroxy-8-methylchroman-2-one (1 and 6-acetyl-2α,5- dihydroxy-2-(2-hydroxypropyl- 3α,8-dimethylchroman (2, respectively.

  6. Two new chroman derivations from the endophytic Penicillium sp. DCS523.

    Science.gov (United States)

    Li, Jun-Tian; Fu, Xiao-Li; Tan, Chun; Zeng, Ying; Wang, Qi; Zhao, Pei-Ji

    2011-01-18

    Strain DCS523 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a Penicillium sp. according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Penicillium sp. DCS523 were purified to give two new chroman derivatives as well as six known compounds. Based on their spectral data the new compounds were identified as (Z)-6-acetyl- 3-(1,2-dihydroxypropylidene)-5-hydroxy-8-methylchroman-2-one and 6-acetyl-2α,5- dihydroxy-2-(2-hydroxypropyl)- 3α,8-dimethylchroman, respectively.

  7. Research of quality control during development of NPP DCS 1E classified software

    International Nuclear Information System (INIS)

    Shi Weihua; Lu Zhenguo; Xie Qi

    2012-01-01

    The Nuclear safety depends on right behavior of 1E software, which is a important part of 1E DCS system. Nowadays, user focus on good function of 1E system, but pay little attention to quality control of 1E software. In fact, it's declared in IEC61513 and IEC60880 that 1E software should under strict quality control during all stages of development. This article is related to the practice of 1E DCS system quality control and explores the QC surveillance for 1E software from the user's point of view. (authors)

  8. Research and practice on NPP safety DCS application software V and V defect classification system

    International Nuclear Information System (INIS)

    Zhang Dongwei; Li Yunjian; Li Xiangjian

    2012-01-01

    One of the most significant aims of Verification and Validation (V and V) is to find software errors and risks, especially for a DCS application software designed for nuclear power plant (NPP). Through classifying and analyzing errors, a number of obtained data can be utilized to estimate current status and potential risks of software development and improve the quality of project. A method of error classification is proposed, which is applied to whole V and V life cycle, using a MW pressurized reactor project as an example. The purpose is to analyze errors discovered by V and V activities, and result in improvement of safety critical DCS application software. (authors)

  9. Impact of tDCS on Performance and Learning of Target Detection: Interaction with Stimulus Characteristics and Experimental Design

    Science.gov (United States)

    Coffman, B. A.; Trumbo, M. C.; Flores, R. A.; Garcia, C. M.; van der Merwe, A. J.; Wassermann, E. M.; Weisend, M. P.; Clark, V. P.

    2012-01-01

    We have previously found that transcranial direct current stimulation (tDCS) over right inferior frontal cortex (RIFC) enhances performance during learning of a difficult visual target detection task (Clark et al., 2012). In order to examine the cognitive mechanisms of tDCS that lead to enhanced performance, here we analyzed its differential…

  10. Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions

    Directory of Open Access Journals (Sweden)

    Jamart Jacques

    2010-03-01

    Full Text Available Abstract Background Transcranial direct current stimulation (tDCS is used in human physiological studies and for therapeutic trials in patients with abnormalities of cortical excitability. Its safety profile places tDCS in the pole-position for translating in real-world therapeutic application. However, an episode of transient respiratory depression in a subject receiving tDCS with an extracephalic electrode led to the suggestion that such an electrode montage could modulate the brainstem autonomic centres. We investigated whether tDCS applied over the midline frontal cortex in 30 healthy volunteers (sham n = 10, cathodal n = 10, anodal n = 10 with an extracephalic reference electrode would modulate brainstem activity as reflected by the monitoring and stringent analysis of vital parameters: heart rate (variability, respiratory rate, blood pressure and sympatho-vagal balance. We reasoned that this study could lead to two opposite but equally interesting outcomes: 1 If tDCS with an extracephalic electrode modulated vital parameters, it could be used as a new tool to explore the autonomic nervous system and, even, to modulate its activity for therapeutic purposes. 2 On the opposite, if applying tDCS with an extracephalic electrode had no effect, it could thus be used safely in healthy human subjects. This outcome would significantly impact the field of non-invasive brain stimulation with tDCS. Indeed, on the one hand, using an extracephalic electrode as a genuine neutral reference (as opposed to the classical "bi-cephalic" tDCS montages which deliver bi-polar stimulation of the brain would help to comfort the conclusions of several modern studies regarding the spatial location and polarity of tDCS. On the other hand, using an extracephalic reference electrode may impact differently on a given cortical target due to the change of direct current flow direction; this may enlarge the potential interventions with tDCS. Results Whereas the respiratory

  11. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis.

    Science.gov (United States)

    Gautier, Emmanuel L; Huby, Thierry; Saint-Charles, Flora; Ouzilleau, Betty; Pirault, John; Deswaerte, Virginie; Ginhoux, Florent; Miller, Elizabeth R; Witztum, Joseph L; Chapman, M John; Lesnik, Philippe

    2009-05-05

    Immunoinflammatory mechanisms are implicated in the atherogenic process. The polarization of the immune response and the nature of the immune cells involved, however, are major determinants of the net effect, which may be either proatherogenic or antiatherogenic. Dendritic cells (DCs) are central to the regulation of immunity, the polarization of the immune response, and the induction of tolerance to antigens. The potential role of DCs in atherosclerosis, however, remains to be defined. We created a mouse model in which the lifespan and immunogenicity of conventional DCs are enhanced by specific overexpression of the antiapoptotic gene hBcl-2 under the control of the CD11c promoter. When studied in either low-density lipoprotein receptor-deficient or apolipoprotein E-deficient backgrounds, DC-hBcl2 mice exhibited an expanded DC population associated with enhanced T-cell activation, a T-helper 1 and T-helper 17 cytokine expression profile, and elevated production of T-helper 1-driven IgG2c autoantibodies directed against oxidation-specific epitopes. This proatherogenic signature, however, was not associated with acceleration of atherosclerotic plaque progression, because expansion of the DC population was unexpectedly associated with an atheroprotective decrease in plasma cholesterol levels. Conversely, depletion of DCs in hyperlipidemic CD11c-diphtheria toxin receptor/apolipoprotein E-deficient transgenic mice resulted in enhanced cholesterolemia, thereby arguing for a close relationship between the DC population and plasma cholesterol levels. Considered together, the present data reveal that conventional DCs are central to the atherosclerotic process, because they are directly implicated in both cholesterol homeostasis and the immune response.

  12. Transcranial Direct Current Stimulation and Power Spectral Parameters: a tDCS/EEG co-registration study

    Directory of Open Access Journals (Sweden)

    Anna Lisa Mangia

    2014-08-01

    Full Text Available Transcranial direct current stimulation (tDCS delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta and gamma power bands were investigated. Three main findings emerged: 1 an increase in theta band activity during the first minutes of stimulation; 2 an increase in alpha and beta power during and after stimulation; 3 a widespread activation in several brain regions.

  13. Conventional CD11chigh Dendritic Cells Are Important for T Cell Priming during the Initial Phase of Plasmodium yoelii Infection, but Are Dispensable at Later Time Points.

    Science.gov (United States)

    Ueffing, Kristina; Abberger, Hanna; Westendorf, Astrid M; Matuschewski, Kai; Buer, Jan; Hansen, Wiebke

    2017-01-01

    Dendritic cells (DCs) are highly specialized antigen-presenting cells that orchestrate adaptive immune responses to pathogens. During malaria infection pro- and anti-inflammatory T cell responses have to be tightly balanced to ensure parasite clearance without induction of severe immune pathologies. However, the precise role of CD11c high DCs in this process is still discussed controversially. Here, we demonstrate that long-term depletion of conventional CD11c high DCs in Plasmodium yoelii ( P. yoelii )-infected diphtheria toxin (DT)-treated RosaiDTR/CD11c-cre mice interferes with the activation of CD8 + and CD4 + T cells as well as CD4 + Foxp3 + regulatory T cells at early time points during infection. Moreover, systemic levels of the pro-inflammatory cytokines IFN-γ and TNF-α were decreased in P. yoelii -infected mice deficient for CD11c high DCs compared to infected RosaiDTR controls. To further elucidate the importance of CD11c high DCs during the later phase of infection, we treated RosaiDTR/CD11c-cre and control mice with DT only from day 4 of P. yoelii infection onward. Strikingly, this approach had no impact on the activation and IFN-γ production of CD4 + and CD8 + effector T cells. These results indicate that CD11c high DCs play a crucial role in eliciting effector T cell responses during the initial phase, but are dispensable during ongoing infection with P. yoelii .

  14. Conventional CD11chigh Dendritic Cells Are Important for T Cell Priming during the Initial Phase of Plasmodium yoelii Infection, but Are Dispensable at Later Time Points

    Directory of Open Access Journals (Sweden)

    Kristina Ueffing

    2017-10-01

    Full Text Available Dendritic cells (DCs are highly specialized antigen-presenting cells that orchestrate adaptive immune responses to pathogens. During malaria infection pro- and anti-inflammatory T cell responses have to be tightly balanced to ensure parasite clearance without induction of severe immune pathologies. However, the precise role of CD11chigh DCs in this process is still discussed controversially. Here, we demonstrate that long-term depletion of conventional CD11chigh DCs in Plasmodium yoelii (P. yoelii-infected diphtheria toxin (DT-treated RosaiDTR/CD11c-cre mice interferes with the activation of CD8+ and CD4+ T cells as well as CD4+Foxp3+ regulatory T cells at early time points during infection. Moreover, systemic levels of the pro-inflammatory cytokines IFN-γ and TNF-α were decreased in P. yoelii-infected mice deficient for CD11chigh DCs compared to infected RosaiDTR controls. To further elucidate the importance of CD11chigh DCs during the later phase of infection, we treated RosaiDTR/CD11c-cre and control mice with DT only from day 4 of P. yoelii infection onward. Strikingly, this approach had no impact on the activation and IFN-γ production of CD4+ and CD8+ effector T cells. These results indicate that CD11chigh DCs play a crucial role in eliciting effector T cell responses during the initial phase, but are dispensable during ongoing infection with P. yoelii.

  15. Transcranial direct-current stimulation (tDCS) for bipolar depression: A systematic review and meta-analysis.

    Science.gov (United States)

    Dondé, Clément; Amad, Ali; Nieto, Isabel; Brunoni, André Russowsky; Neufeld, Nicholas H; Bellivier, Frank; Poulet, Emmanuel; Geoffroy, Pierre-Alexis

    2017-08-01

    Bipolar disorder (BD) is a severe and recurrent brain disorder that can manifest in manic or depressive episodes. Transcranial Direct Current Stimulation (tDCS) has been proposed as a novel therapeutic modality for patients experiencing bipolar depression, for which standard treatments are often inefficient. While several studies have been conducted in this patient group, there has been no systematic review or meta-analysis that specifically examines bipolar depression. We aimed to address this gap in the literature and evaluated the efficacy and tolerability of tDCS in patients fulfilling DSM-IV-TR criteria for BD I, II, or BD not otherwise specified (NOS). We systematically searched the literature from April 2002 to November 2016 to identify relevant publications for inclusion in our systematic review and meta-analysis. Effect sizes for depression rating-scale scores were expressed as the standardized mean difference (SMD) before and after tDCS. Thirteen of 382 identified studies met eligibility criteria for our systematic review. The meta-analysis included 46 patients from 7 studies with depression rating-scale scores pre- and post-tDCS. Parameters of tDCS procedures were heterogeneous. Depression scores decreased significantly with a medium effect size after acute-phase of treatment (SMD 0.71 [0.25-1.18], z=3.00, p=0.003) and at the furthest endpoint (SMD 1.27 [0.57-1.97], z=3.57, p=0.0004). Six cases of affective switching under tDCS treatment protocols were observed. Depressive symptoms respond to tDCS in patients with BD. Additional studies, and particularly randomized controlled trials, are needed to clarify the effectiveness of tDCS in bipolar depression, the frequency of tDCS-emergent hypomania/mania, and which tDCS modalities are most efficient. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities.

    Science.gov (United States)

    Chew, Taariq; Ho, Kerrie-Anne; Loo, Colleen K

    2015-01-01

    Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. Inter-individual differences in response to anodal tDCS at a range of current intensities were explored. Intra-individual reliability in response to anodal tDCS across two identical sessions was also investigated. Twenty-nine subjects participated in a crossover study. Anodal-tDCS using four different current intensities (0.2, 0.5, 1 and 2 mA), with an anode size of 16 cm2, was tested. The 0.5 mA condition was repeated to assess intra-individual variability. TMS was used to elicit 40 motor-evoked potentials (MEPs) before 10 min of tDCS, and 20 MEPs at four time-points over 30 min following tDCS. ANOVA revealed no main effect of TIME for all conditions except the first 0.5 mA condition, and no differences in response between the four current intensities. Cluster analysis identified two clusters for the 0.2 and 2 mA conditions only. Frequency distributions based on individual subject responses (excitatory, inhibitory or no response) to each condition indicate possible differential responses between individuals to different current intensities. Test-retest reliability was negligible (ICC(2,1) = -0.50). Significant inter-individual variability in response to tDCS across a range of current intensities was found. 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response. Significant intra-individual variability in response to tDCS was also found. This has implications for interpreting results of single-session tDCS experiments. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  17. Remotely-Supervised Transcranial Direct Current Stimulation (tDCS for Clinical Trials: Guidelines for Technology and Protocols

    Directory of Open Access Journals (Sweden)

    Leigh E Charvet

    2015-03-01

    Full Text Available The effect of transcranial direct current stimulation (tDCS is cumulative. Treatment protocols typically require multiple consecutive sessions spanning weeks or months. However, traveling to clinic for a tDCS session can present an obstacle to subjects and their caregivers. With modified devices and headgear, tDCS treatment can be administered remotely under clinical supervision, potentially enhancing recruitment, throughput, and convenience. Here we propose standards and protocols for clinical trials utilizing remotely-supervised tDCS with the goal of providing safe, reproducible and well-tolerated stimulation therapy outside of the clinic. The recommendations include: 1 training of staff in tDCS treatment and supervision, 2 assessment of the user’s capability to participate in tDCS remotely, 3 ongoing training procedures and materials including assessments of the user and/or caregiver, 4 simple and fail-safe electrode preparation techniques and tDCS headgear, 5 strict dose control for each session, 6 ongoing monitoring to quantify compliance (device preparation, electrode saturation/placement, stimulation protocol, with corresponding corrective steps as required, 7 monitoring for treatment-emergent adverse effects, 8 guidelines for discontinuation of a session and/or study participation including emergency failsafe procedures tailored to the treatment population’s level of need. These guidelines are intended to provide a minimal level of methodological rigor for clinical trials seeking to apply tDCS outside a specialized treatment center. We outline indication-specific applications (Attention Deficit Hyperactivity Disorder, Depression, Multiple Sclerosis, Palliative Care following these recommendations that support a standardized framework for evaluating the tolerability and reproducibility of remote-supervised tDCS that, once established, will allow for translation of tDCS clinical trials to a greater size and range of patient populations.

  18. Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients

    Science.gov (United States)

    Lefebvre, S.; Laloux, P.; Peeters, A.; Desfontaines, P.; Jamart, J.; Vandermeeren, Y.

    2013-01-01

    Background: Since motor learning is a key component for stroke recovery, enhancing motor skill learning is a crucial challenge for neurorehabilitation. Transcranial direct current stimulation (tDCS) is a promising approach for improving motor learning. The aim of this trial was to test the hypothesis that dual-tDCS applied bilaterally over the primary motor cortices (M1) improves online motor skill learning with the paretic hand and its long-term retention. Methods: Eighteen chronic stroke patients participated in a randomized, cross-over, placebo-controlled, double bind trial. During separate sessions, dual-tDCS or sham dual-tDCS was applied over 30 min while stroke patients learned a complex visuomotor skill with the paretic hand: using a computer mouse to move a pointer along a complex circuit as quickly and accurately as possible. A learning index involving the evolution of the speed/accuracy trade-off was calculated. Performance of the motor skill was measured at baseline, after intervention and 1 week later. Results: After sham dual-tDCS, eight patients showed performance worsening. In contrast, dual-tDCS enhanced the amount and speed of online motor skill learning compared to sham (p dual-tDCS (n = 10) than after sham (n = 3). More importantly, 1 week later, online enhancement under dual-tDCS had translated into superior long-term retention (+44%) compared to sham (+4%). The improvement generalized to a new untrained circuit and to digital dexterity. Conclusion: A single-session of dual-tDCS, applied while stroke patients trained with the paretic hand significantly enhanced online motor skill learning both quantitatively and qualitatively, leading to successful long-term retention and generalization. The combination of motor skill learning and dual-tDCS is promising for improving post-stroke neurorehabilitation. PMID:23316151

  19. Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder.

    Science.gov (United States)

    Oliveira, Janaina F; Zanão, Tamires A; Valiengo, Leandro; Lotufo, Paulo A; Benseñor, Isabela M; Fregni, Felipe; Brunoni, André R

    2013-03-14

    Based on previous studies showing that transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that employs weak, direct currents to induce cortical-excitability changes, might be useful for working memory (WM) enhancement in healthy subjects and also in treating depressive symptoms, our aim was to evaluate whether tDCS could acutely enhance WM in depressed patients. Twenty-eight age- and gender-matched, antidepressant-free depressed subjects received a single-session of active/sham tDCS in a randomized, double-blind, parallel design. The anode was positioned over the left and the cathode over the right dorsolateral prefrontal cortex. The n-back task was used for assessing WM and it was performed immediately before and 15min after tDCS onset. We found that active vs. sham tDCS led to an increase in the rate of correct responses. We also used signal detection theory analyses to show that active tDCS increased both discriminability, i.e., the ability to discriminate signal (correct responses) from noise (false alarms), and response criterion, indicating a lower threshold to yield responses. All effect sizes were large. In other words, one session of tDCS acutely enhanced WM in depressed subjects, suggesting that tDCS can improve "cold" (non affective-loaded) working memory processes in MDD. Based on these findings, we discuss the effects of tDCS on WM enhancement in depression. We also suggest that the n-back task could be used as a biomarker in future tDCS studies investigating prefrontal activity in healthy and depressed samples. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Using cyber vulnerability testing techniques to expose undocumented security vulnerabilities in DCS and SCADA equipment

    International Nuclear Information System (INIS)

    Pollet, J.

    2006-01-01

    This session starts by providing an overview of typical DCS (Distributed Control Systems) and SCADA (Supervisory Control and Data Acquisition) architectures, and exposes cyber security vulnerabilities that vendors never admit, but are found through a comprehensive cyber testing process. A complete assessment process involves testing all of the layers and components of a SCADA or DCS environment, from the perimeter firewall all the way down to the end devices controlling the process, including what to look for when conducting a vulnerability assessment of real-time control systems. The following systems are discussed: 1. Perimeter (isolation from corporate IT or other non-critical networks) 2. Remote Access (third Party access into SCADA or DCS networks) 3. Network Architecture (switch, router, firewalls, access controls, network design) 4. Network Traffic Analysis (what is running on the network) 5. Host Operating Systems Hardening 6. Applications (how they communicate with other applications and end devices) 7. End Device Testing (PLCs, RTUs, DCS Controllers, Smart Transmitters) a. System Discovery b. Functional Discovery c. Attack Methodology i. DoS Tests (at what point does the device fail) ii. Malformed Packet Tests (packets that can cause equipment failure) iii. Session Hijacking (do anything that the operator can do) iv. Packet Injection (code and inject your own SCADA commands) v. Protocol Exploitation (Protocol Reverse Engineering / Fuzzing) This paper will provide information compiled from over five years of conducting cyber security testing on control systems hardware, software, and systems. (authors)

  1. Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS).

    Science.gov (United States)

    Frase, Lukas; Piosczyk, Hannah; Zittel, Sulamith; Jahn, Friederike; Selhausen, Peter; Krone, Lukas; Feige, Bernd; Mainberger, Florian; Maier, Jonathan G; Kuhn, Marion; Klöppel, Stefan; Normann, Claus; Sterr, Annette; Spiegelhalder, Kai; Riemann, Dieter; Nitsche, Michael A; Nissen, Christoph

    2016-09-01

    Arousal and sleep are fundamental physiological processes, and their modulation is of high clinical significance. This study tested the hypothesis that total sleep time (TST) in humans can be modulated by the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS) targeting a 'top-down' cortico-thalamic pathway of sleep-wake regulation. Nineteen healthy participants underwent a within-subject, repeated-measures protocol across five nights in the sleep laboratory with polysomnographic monitoring (adaptation, baseline, three experimental nights). tDCS was delivered via bi-frontal target electrodes and bi-parietal return electrodes before sleep (anodal 'activation', cathodal 'deactivation', and sham stimulation). Bi-frontal anodal stimulation significantly decreased TST, compared with cathodal and sham stimulation. This effect was location specific. Bi-frontal cathodal stimulation did not significantly increase TST, potentially due to ceiling effects in good sleepers. Exploratory resting-state EEG analyses before and after the tDCS protocols were consistent with the notion of increased cortical arousal after anodal stimulation and decreased cortical arousal after cathodal stimulation. The study provides proof-of-concept that TST can be decreased by non-invasive bi-frontal anodal tDCS in healthy humans. Further elucidating the 'top-down' pathway of sleep-wake regulation is expected to increase knowledge on the fundamentals of sleep-wake regulation and to contribute to the development of novel treatments for clinical conditions of disturbed arousal and sleep.

  2. Anodal tDCS of dorsolateral prefontal cortex during an Implicit Association Test

    NARCIS (Netherlands)

    Gladwin, T.E.; den Uyl, T.E.; Wiers, R.W.

    2012-01-01

    Anodal stimulation of dorsolateral prefrontal cortex by transcranial Direct Current Stimulation (tDCS) has been shown to enhance performance on working memory tasks. However, it is not yet known precisely which aspects of working memory - a broad theoretical concept including short-term memory and

  3. Impact of transcranial direct current stimulation (tDCS) on neuronal functions

    NARCIS (Netherlands)

    Das, S. (Suman); P.J. Holland (Peter); M.A. Frens (Maarten); O. Donchin (Opher)

    2016-01-01

    textabstractTranscranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes

  4. Cerebellar tDCS does not improve performance in probabilistic classification learning

    NARCIS (Netherlands)

    N. Seyed Majidi; M.C. Verhage (Claire); O. Donchin (Opher); P.J. Holland (Peter); M.A. Frens (Maarten); J.N. van der Geest (Jos)

    2016-01-01

    textabstractIn this study, the role of the cerebellum in a cognitive learning task using transcranial direct current stimulation (tDCS) was investigated. Using a weather prediction task, subjects had to learn the probabilistic associations between a stimulus (a combination of cards) and an outcome

  5. Semantic Feature Training in Combination with Transcranial Direct Current Stimulation (tDCS for Progressive Anomia

    Directory of Open Access Journals (Sweden)

    Jinyi Hung

    2017-05-01

    Full Text Available We examined the effectiveness of a 2-week regimen of a semantic feature training in combination with transcranial direct current stimulation (tDCS for progressive naming impairment associated with primary progressive aphasia (N = 4 or early onset Alzheimer’s Disease (N = 1. Patients received a 2-week regimen (10 sessions of anodal tDCS delivered over the left temporoparietal cortex while completing a language therapy that consisted of repeated naming and semantic feature generation. Therapy targets consisted of familiar people, household items, clothes, foods, places, hygiene implements, and activities. Untrained items from each semantic category provided item level controls. We analyzed naming accuracies at multiple timepoints (i.e., pre-, post-, 6-month follow-up via a mixed effects logistic regression and individual differences in treatment responsiveness using a series of non-parametric McNemar tests. Patients showed advantages for naming trained over untrained items. These gains were evident immediately post tDCS. Trained items also showed a shallower rate of decline over 6-months relative to untrained items that showed continued progressive decline. Patients tolerated stimulation well, and sustained improvements in naming accuracy suggest that the current intervention approach is viable. Future implementation of a sham control condition will be crucial toward ascertaining whether neurostimulation and behavioral treatment act synergistically or alternatively whether treatment gains are exclusively attributable to either tDCS or the behavioral intervention.

  6. Failure of the straight-line DCS boundary when extrapolated to the hypobaric realm.

    Science.gov (United States)

    Conkin, J; Van Liew, H D

    1992-11-01

    The lowest pressure (P2) to which a diver can ascend without developing decompression sickness (DCS) after becoming equilibrated at some higher pressure (P1) is described by a straight line with a negative y-intercept. We tested whether extrapolation of such a line also predicts safe decompression to altitude. We substituted tissue nitrogen pressure (P1N2) calculated for a compartment with a 360-min half-time for P1 values; this allows data from hypobaric exposures to be plotted on a P2 vs. P1N2 graph, even if the subject breathes oxygen before ascent. In literature sources, we found 40 reports of human exposures in hypobaric chambers that fell in the region of a P2 vs. P1N2 plot where the extrapolation from hyperbaric data predicted that the decompression should be free of DCS. Of 4,576 exposures, 785 persons suffered decompression sickness (17%), indicating that extrapolation of the diver line to altitude is not valid. Over the pressure range spanned by human hypobaric exposures and hyperbaric air exposures, the best separation between no DCS and DCS on a P2 vs. P1N2 plot seems to be a curve which approximates a straight line in the hyperbaric region but bends toward the origin in the hypobaric region.

  7. DCS-SVM: a novel semi-automated method for human brain MR image segmentation.

    Science.gov (United States)

    Ahmadvand, Ali; Daliri, Mohammad Reza; Hajiali, Mohammadtaghi

    2017-11-27

    In this paper, a novel method is proposed which appropriately segments magnetic resonance (MR) brain images into three main tissues. This paper proposes an extension of our previous work in which we suggested a combination of multiple classifiers (CMC)-based methods named dynamic classifier selection-dynamic local training local Tanimoto index (DCS-DLTLTI) for MR brain image segmentation into three main cerebral tissues. This idea is used here and a novel method is developed that tries to use more complex and accurate classifiers like support vector machine (SVM) in the ensemble. This work is challenging because the CMC-based methods are time consuming, especially on huge datasets like three-dimensional (3D) brain MR images. Moreover, SVM is a powerful method that is used for modeling datasets with complex feature space, but it also has huge computational cost for big datasets, especially those with strong interclass variability problems and with more than two classes such as 3D brain images; therefore, we cannot use SVM in DCS-DLTLTI. Therefore, we propose a novel approach named "DCS-SVM" to use SVM in DCS-DLTLTI to improve the accuracy of segmentation results. The proposed method is applied on well-known datasets of the Internet Brain Segmentation Repository (IBSR) and promising results are obtained.

  8. The role of primary auditory and visual cortices in temporal processing: A tDCS approach.

    Science.gov (United States)

    Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F

    2016-10-15

    Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Using cyber vulnerability testing techniques to expose undocumented security vulnerabilities in DCS and SCADA equipment

    Energy Technology Data Exchange (ETDEWEB)

    Pollet, J. [PlantData Technologies, Inc., 1201 Louisiana Street, Houston, TX 77002 (United States)

    2006-07-01

    This session starts by providing an overview of typical DCS (Distributed Control Systems) and SCADA (Supervisory Control and Data Acquisition) architectures, and exposes cyber security vulnerabilities that vendors never admit, but are found through a comprehensive cyber testing process. A complete assessment process involves testing all of the layers and components of a SCADA or DCS environment, from the perimeter firewall all the way down to the end devices controlling the process, including what to look for when conducting a vulnerability assessment of real-time control systems. The following systems are discussed: 1. Perimeter (isolation from corporate IT or other non-critical networks) 2. Remote Access (third Party access into SCADA or DCS networks) 3. Network Architecture (switch, router, firewalls, access controls, network design) 4. Network Traffic Analysis (what is running on the network) 5. Host Operating Systems Hardening 6. Applications (how they communicate with other applications and end devices) 7. End Device Testing (PLCs, RTUs, DCS Controllers, Smart Transmitters) a. System Discovery b. Functional Discovery c. Attack Methodology i. DoS Tests (at what point does the device fail) ii. Malformed Packet Tests (packets that can cause equipment failure) iii. Session Hijacking (do anything that the operator can do) iv. Packet Injection (code and inject your own SCADA commands) v. Protocol Exploitation (Protocol Reverse Engineering / Fuzzing) This paper will provide information compiled from over five years of conducting cyber security testing on control systems hardware, software, and systems. (authors)

  10. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS

    Directory of Open Access Journals (Sweden)

    Natalie Dittert

    2018-04-01

    Full Text Available Although posttraumatic stress disorder (PTSD; DSM-V 309.82 and anxiety disorders (DSM-V 300.xx are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS and a 95-dB female scream as unconditioned stimulus (UCS. We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC, which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84. The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS– discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS– in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be

  11. tDCS for Memory Enhancement: Analysis of the Speculative Aspects of Ethical Issues.

    Science.gov (United States)

    Voarino, Nathalie; Dubljević, Veljko; Racine, Eric

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a promising technology to enhance cognitive and physical performance. One of the major areas of interest is the enhancement of memory function in healthy individuals. The early arrival of tDCS on the market for lifestyle uses and cognitive enhancement purposes lead to the voicing of some important ethical concerns, especially because, to date, there are no official guidelines or evaluation procedures to tackle these issues. The aim of this article is to review ethical issues related to uses of tDCS for memory enhancement found in the ethics and neuroscience literature and to evaluate how realistic and scientifically well-founded these concerns are? In order to evaluate how plausible or speculative each issue is, we applied the methodological framework described by Racine et al. (2014) for "informed and reflective" speculation in bioethics. This framework could be succinctly presented as requiring: (1) the explicit acknowledgment of factual assumptions and identification of the value attributed to them; (2) the validation of these assumptions with interdisciplinary literature; and (3) the adoption of a broad perspective to support more comprehensive reflection on normative issues. We identified four major considerations associated with the development of tDCS for memory enhancement: safety, autonomy, justice and authenticity. In order to assess the seriousness and likelihood of harm related to each of these concerns, we analyzed the assumptions underlying the ethical issues, and the level of evidence for each of them. We identified seven distinct assumptions: prevalence, social acceptance, efficacy, ideological stance (bioconservative vs. libertarian), potential for misuse, long term side effects, and the delivery of complete and clear information. We conclude that ethical discussion about memory enhancement via tDCS sometimes involves undue speculation, and closer attention to scientific and social facts would bring

  12. Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Ramaraju, Sriharsha; Roula, Mohammed A.; McCarthy, Peter W.

    2018-02-01

    Objective. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers a low-intensity, direct current to cortical areas with the purpose of modulating underlying brain activity. Recent studies have reported inconsistencies in tDCS outcomes. The underlying assumption of many tDCS studies has been that replication of electrode montage equates to replicating stimulation conditions. It is possible however that anatomical difference between subjects, as well as inherent inaccuracies in montage placement, could affect current flow to targeted areas. The hypothesis that stimulation of a defined brain region will be stable under small displacements was tested. Approach. Initially, we compared the total simulated current flowing through ten specific brain areas for four commonly used tDCS montages: F3-Fp2, C3-Fp2, Fp1-F4, and P3-P4 using the software tool COMETS. The effect of a slight (~1 cm in each of four directions) anode displacement on the simulated regional current density for each of the four tDCS montages was then determined. Current flow was calculated and compared through ten segmented brain areas to determine the effect of montage type and displacement. The regional currents, as well as the localised current densities, were compared with the original electrode location, for each of these new positions. Main results. Recommendations for montages that maximise stimulation current for the ten brain regions are considered. We noted that the extent to which stimulation is affected by electrode displacement varies depending on both area and montage type. The F3-Fp2 montage was found to be the least stable with up to 38% change in average current density in the left frontal lobe while the Fp1-F4 montage was found to the most stable exhibiting only 1% change when electrodes were displaced. Significance. These results indicate that even relatively small changes in stimulation electrode placement appear to result in surprisingly large

  13. Investigation of tDCS volume conduction effects in a highly realistic head model

    Science.gov (United States)

    Wagner, S.; Rampersad, S. M.; Aydin, Ü.; Vorwerk, J.; Oostendorp, T. F.; Neuling, T.; Herrmann, C. S.; Stegeman, D. F.; Wolters, C. H.

    2014-02-01

    Objective. We investigate volume conduction effects in transcranial direct current stimulation (tDCS) and present a guideline for efficient and yet accurate volume conductor modeling in tDCS using our newly-developed finite element (FE) approach. Approach. We developed a new, accurate and fast isoparametric FE approach for high-resolution geometry-adapted hexahedral meshes and tissue anisotropy. To attain a deeper insight into tDCS, we performed computer simulations, starting with a homogenized three-compartment head model and extending this step by step to a six-compartment anisotropic model. Main results. We are able to demonstrate important tDCS effects. First, we find channeling effects of the skin, the skull spongiosa and the cerebrospinal fluid compartments. Second, current vectors tend to be oriented towards the closest higher conducting region. Third, anisotropic WM conductivity causes current flow in directions more parallel to the WM fiber tracts. Fourth, the highest cortical current magnitudes are not only found close to the stimulation sites. Fifth, the median brain current density decreases with increasing distance from the electrodes. Significance. Our results allow us to formulate a guideline for volume conductor modeling in tDCS. We recommend to accurately model the major tissues between the stimulating electrodes and the target areas, while for efficient yet accurate modeling, an exact representation of other tissues is less important. Because for the low-frequency regime in electrophysiology the quasi-static approach is justified, our results should also be valid for at least low-frequency (e.g., below 100 Hz) transcranial alternating current stimulation.

  14. Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification.

    Science.gov (United States)

    Al-Kaysi, Alaa M; Al-Ani, Ahmed; Loo, Colleen K; Powell, Tamara Y; Martin, Donel M; Breakspear, Michael; Boonstra, Tjeerd W

    2017-01-15

    Transcranial direct current stimulation (tDCS) is a promising treatment for major depressive disorder (MDD). Standard tDCS treatment involves numerous sessions running over a few weeks. However, not all participants respond to this type of treatment. This study aims to investigate the feasibility of identifying MDD patients that respond to tDCS treatment based on resting-state electroencephalography (EEG) recorded prior to treatment commencing. We used machine learning to predict improvement in mood and cognition during tDCS treatment from baseline EEG power spectra. Ten participants with a current diagnosis of MDD were included. Power spectral density was assessed in five frequency bands: delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), beta (13-30Hz) and gamma (30-100Hz). Improvements in mood and cognition were assessed using the Montgomery-Åsberg Depression Rating Scale and Symbol Digit Modalities Test, respectively. We trained the classifiers using three algorithms (support vector machine, extreme learning machine and linear discriminant analysis) and a leave-one-out cross-validation approach. Mood labels were accurately predicted in 8 out of 10 participants using EEG channels FC4-AF8 (accuracy=76%, p=0.034). Cognition labels were accurately predicted in 10 out of 10 participants using channels pair CPz-CP2 (accuracy=92%, p=0.004). Due to the limited number of participants (n=10), the presented results mainly aim to serve as a proof of concept. These finding demonstrate the feasibility of using machine learning to identify patients that will respond to tDCS treatment. These promising results warrant a larger study to determine the clinical utility of this approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks.

    Science.gov (United States)

    Hupfeld, K E; Ketcham, C J; Schneider, H D

    2017-03-01

    The supplementary motor area (SMA) is believed to be highly involved in the planning and execution of both simple and complex motor tasks. This study aimed to examine the role of the SMA in planning the movements required to complete reaction time, balance, and pegboard tasks using anodal transcranial direct current stimulation (tDCS), which passes a weak electrical current between two electrodes, in order to modulate neuronal activity. Twenty healthy adults were counterbalanced to receive either tDCS (experimental condition) or no tDCS (control condition) for 3 days. During administration of tDCS, participants performed a balance task significantly faster than controls. After tDCS, subjects significantly improved their simple and choice reaction time. These results demonstrate that the SMA is highly involved in planning and executing fine and gross motor skill tasks and that tDCS is an effective modality for increasing SMA-related performance on these tasks. The findings may be generalizable and therefore indicate implications for future interventions using tDCS as a therapeutic tool.

  16. Changes in corticomotor excitability and intracortical inhibition of the primary motor cortex forearm area induced by anodal tDCS.

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    Full Text Available OBJECTIVE: Previous studies have investigated how tDCS over the primary motor cortex modulates excitability in the intrinsic hand muscles. Here, we tested if tDCS changes corticomotor excitability and/or cortical inhibition when measured in the extensor carpi radialis (ECR and if these aftereffects can be successfully assessed during controlled muscle contraction. METHODS: We implemented a double blind cross-over design in which participants (n = 16 completed two sessions where the aftereffects of 20 min of 1 mA (0.04 mA/cm2 anodal vs sham tDCS were tested in a resting muscle, and two more sessions where the aftereffects of anodal vs sham tDCS were tested in an active muscle. RESULTS: Anodal tDCS increased corticomotor excitability in ECR when aftereffects were measured with a low-level controlled muscle contraction. Furthermore, anodal tDCS decreased short interval intracortical inhibition but only when measured at rest and after non-responders (n = 2 were removed. We found no changes in the cortical silent period. CONCLUSION: These findings suggest that targeting more proximal muscles in the upper limb with anodal tDCS is achievable and corticomotor excitability can be assessed in the presence of a low-level controlled contraction of the target muscle.

  17. Modulation of Brain Activity with Noninvasive Transcranial Direct Current Stimulation (tDCS): Clinical Applications and Safety Concerns

    Science.gov (United States)

    Zhao, Haichao; Qiao, Lei; Fan, Dongqiong; Zhang, Shuyue; Turel, Ofir; Li, Yonghui; Li, Jun; Xue, Gui; Chen, Antao; He, Qinghua

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a widely-used tool to induce neuroplasticity and modulate cortical function by applying weak direct current over the scalp. In this review, we first introduce the underlying mechanism of action, the brief history from discovery to clinical scientific research, electrode positioning and montages, and parameter setup of tDCS. Then, we review tDCS application in clinical samples including people with drug addiction, major depression disorder, Alzheimer's disease, as well as in children. This review covers the typical characteristics and the underlying neural mechanisms of tDCS treatment in such studies. This is followed by a discussion of safety, especially when the current intensity is increased or the stimulation duration is prolonged. Given such concerns, we provide detailed suggestions regarding safety procedures for tDCS operation. Lastly, future research directions are discussed. They include foci on the development of multi-tech combination with tDCS such as with TMS and fMRI; long-term behavioral and morphological changes; possible applications in other research domains, and more animal research to deepen the understanding of the biological and physiological mechanisms of tDCS stimulation. PMID:28539894

  18. Neonatal plasmacytoid dendritic cells (pDCs display subset variation but can elicit potent anti-viral innate responses.

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhang

    Full Text Available Neonates are highly susceptible to infectious diseases and defective antiviral pDC immune responses have been proposed to contribute to this phenomenon. Isolated cord blood pDCs innately responded to a variety of TLR7 and TLR9 dependent viruses, including influenza A virus (IAV, human immunodeficiency virus (HIV or herpes-simplex virus (HSV by efficiently producing IFN-α, TNF-α as well as chemokines. Interestingly, following activation by CpGA, but not viruses, cord pDCs tend to survive less efficiently. We found that a hallmark of pDCs in neonates is an extended CD2+pDCs compartment compared to adult pDCs without affecting the antiviral IFN-α response. Within CD2+pDCs, we identified a subpopulation expressing CD5 and responsible for IL-12p40 production, however this population is significantly decreased in cord blood compared to adult blood. Therefore, neonatal pDCs clearly display variation in phenotype and subset composition, but without major consequences for their antiviral responses.

  19. Building up analgesia in humans via the endogenous μ-opioid system by combining placebo and active tDCS: a preliminary report.

    Directory of Open Access Journals (Sweden)

    Marcos F DosSantos

    Full Text Available Transcranial Direct Current Stimulation (tDCS is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. However, the molecular mechanisms underlying tDCS-mediated pain control, and most important its placebo component, are not completely established. In this pilot study, we investigated in vivo the involvement of the endogenous μ-opioid system in the global tDCS-analgesia experience. Nine healthy volunteers went through positron emission tomography (PET scans with [11C]carfentanil, a selective μ-opioid receptor (MOR radiotracer, to measure the central MOR activity during tDCS in vivo (non-displaceable binding potential, BPND--one of the main analgesic mechanisms in the brain. Placebo and real anodal primary motor cortex (M1/2mA tDCS were delivered sequentially for 20 minutes each during the PET scan. The initial placebo tDCS phase induced a decrease in MOR BPND in the periaqueductal gray matter (PAG, precuneus, and thalamus, indicating activation of endogenous μ-opioid neurotransmission, even before the active tDCS. The subsequent real tDCS also induced MOR activation in the PAG and precuneus, which were positively correlated to the changes observed with placebo tDCS. Nonetheless, real tDCS had an additional MOR activation in the left prefrontal cortex. Although significant changes in the MOR BPND occurred with both placebo and real tDCS, significant analgesic effects, measured by improvements in the heat and cold pain thresholds, were only observed after real tDCS, not the placebo tDCS. This study gives preliminary evidence that the analgesic effects reported with M1-tDCS, can be in part related to the recruitment of the same endogenous MOR mechanisms induced by placebo, and that such effects can be purposely optimized by real tDCS.

  20. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Transcranial direct current stimulation (tDCS) neuromodulatory effects on mechanical hyperalgesia and cortical BDNF levels in ovariectomized rats.

    Science.gov (United States)

    da Silva Moreira, Sônia Fátima; Medeiros, Liciane Fernandes; de Souza, Andressa; de Oliveira, Carla; Scarabelot, Vanessa Leal; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2016-01-15

    Epidemiological studies show that painful disorders are more prevalent in women than in men, and the transcranial direct current stimulation (tDCS) technique has been tested in chronic pain states. We explored the effect of tDCS on pain behavior and brain-derived neurotrophic factor (BDNF) levels in ovariectomized rats. Forty-five female Wistar adult rats were distributed into five groups: control (CT), ovariectomy + tDCS (OT), ovariectomy + sham tDCS (OS), sham ovariectomy + tDCS (ST), and sham ovariectomy+shamtDCS (SS). The rats were subjected to cathodal tDCS. The vaginal cytology and the estradiol levels confirmed the hormonal status. In addition, nociceptive behavior was evaluated using the tail-flick, von Frey, and hot-plate tests, as well as the BDNF levels in the serum, hypothalamus, hippocampus, spinal cord, and cerebral cortex. One-way analysis of variance (ANOVA) or two-way ANOVA was used for statistical analysis, followed by the Bonferroni, and P-value b 0.05 was considered significant. The ovariectomized animals presented a hypersensitivity response in the hot-plate (P b 0.01) and von Frey (P b 0.05) tests, as well as increased serum BDNF (P b 0.05) and decreased hypothalamic BDNF (P b 0.01) levels. The OT, OS, ST, and SS groups showed decreased hippocampal BDNF levels as compared with the control group (P b 0.001). The interaction between tDCS and ovariectomy on the cortical BDNF levels (P b 0.01) was observed. The ovariectomy induced nociceptive hypersensitivity and altered serum and hypothalamic BDNF levels. The cathodal tDCS partially reversed nociceptive hypersensitivity.

  2. Influence of Anodal Transcranial Direct Current Stimulation (tDCS) over the Right Angular Gyrus on Brain Activity during Rest

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013

  3. Multi-session transcranial direct current stimulation (tDCS elicits inflammatory and regenerative processes in the rat brain.

    Directory of Open Access Journals (Sweden)

    Maria Adele Rueger

    Full Text Available Transcranial direct current stimulation (tDCS is increasingly being used in human studies as an adjuvant tool to promote recovery of function after stroke. However, its neurobiological effects are still largely unknown. Electric fields are known to influence the migration of various cell types in vitro, but effects in vivo remain to be shown. Hypothesizing that tDCS might elicit the recruitment of cells to the cortex, we here studied the effects of tDCS in the rat brain in vivo. Adult Wistar rats (n = 16 were randomized to either anodal or cathodal stimulation for either 5 or 10 consecutive days (500 µA, 15 min. Bromodeoxyuridine (BrdU was given systemically to label dividing cells throughout the experiment. Immunohistochemical analyses ex vivo included stainings for activated microglia and endogenous neural stem cells (NSC. Multi-session tDCS with the chosen parameters did not cause a cortical lesion. An innate immune response with early upregulation of Iba1-positive activated microglia occurred after both cathodal and anodal tDCS. The involvement of adaptive immunity as assessed by ICAM1-immunoreactivity was less pronounced. Most interestingly, only cathodal tDCS increased the number of endogenous NSC in the stimulated cortex. After 10 days of cathodal stimulation, proliferating NSC increased by ∼60%, with a significant effect of both polarity and number of tDCS sessions on the recruitment of NSC. We demonstrate a pro-inflammatory effect of both cathodal and anodal tDCS, and a polarity-specific migratory effect on endogenous NSC in vivo. Our data suggest that tDCS in human stroke patients might also elicit NSC activation and modulate neuroinflammation.

  4. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential.

    Science.gov (United States)

    Carrion, Julio; Scisci, Elizabeth; Miles, Brodie; Sabino, Gregory J; Zeituni, Amir E; Gu, Ying; Bear, Adam; Genco, Caroline A; Brown, David L; Cutler, Christopher W

    2012-09-15

    The low-grade oral infection chronic periodontitis (CP) has been implicated in coronary artery disease risk, but the mechanisms are unclear. In this study, a pathophysiological role for blood dendritic cells (DCs) in systemic dissemination of oral mucosal pathogens to atherosclerotic plaques was investigated in humans. The frequency and microbiome of CD19(-)BDCA-1(+)DC-SIGN(+) blood myeloid DCs (mDCs) were analyzed in CP subjects with or without existing acute coronary syndrome and in healthy controls. FACS analysis revealed a significant increase in blood mDCs in the following order: healthy controls < CP < acute coronary syndrome/CP. Analysis of the blood mDC microbiome by 16S rDNA sequencing showed Porphyromonas gingivalis and other species, including (cultivable) Burkholderia cepacia. The mDC carriage rate with P. gingivalis correlated with oral carriage rate and with serologic exposure to P. gingivalis in CP subjects. Intervention (local debridement) to elicit a bacteremia increased the mDC carriage rate and frequency in vivo. In vitro studies established that P. gingivalis enhanced by 28% the differentiation of monocytes into immature mDCs; moreover, mDCs secreted high levels of matrix metalloproteinase-9 and upregulated C1q, heat shock protein 60, heat shock protein 70, CCR2, and CXCL16 transcripts in response to P. gingivalis in a fimbriae-dependent manner. Moreover, the survival of the anaerobe P. gingivalis under aerobic conditions was enhanced when within mDCs. Immunofluorescence analysis of oral mucosa and atherosclerotic plaques demonstrate infiltration with mDCs, colocalized with P. gingivalis. Our results suggest a role for blood mDCs in harboring and disseminating pathogens from oral mucosa to atherosclerosis plaques, which may provide key signals for mDC differentiation and atherogenic conversion.

  5. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest.

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.

  6. Chemical Weapons Convention

    National Research Council Canada - National Science Library

    1997-01-01

    On April 29, 1997, the Convention on the Prohibition of the Development, Production, Stockpiling, and Use of Chemical Weapons and on Their Destruction, known as the Chemical Weapons Convention (CWC...

  7. Alpha-defensins 1-3 release by dendritic cells is reduced by estrogen

    Directory of Open Access Journals (Sweden)

    Sperling Rhoda

    2011-08-01

    Full Text Available Abstract Background During pregnancy the immune system of the mother must protect any activation that may negatively affect the fetus. Changes in susceptibility to infection as well as resolution of some autoimmune disorders represent empirical evidence for pregnancy related alterations in immunity. Sex hormones reach extremely high levels during pregnancy and have been shown to have direct effects on many immune functions including the antiviral response of dendritic cells. Among the immunologically active proteins secreted by monocyte derived DCs (MDDC are the alpha-defensins 1-3. This family of cationic antimicrobial peptides has a broad spectrum of microbicidal activity and has also been shown to link innate to adaptive immunity by attracting T cells and immature DCs, which are essential for initiating and polarizing the immune response. Methods We compare culture-generated monocyte derived DCs (MDDCs with directly isolated myeloid dendritic cells (mDCs and plasmacytoid dendritic cells (pDCs and measure their alpha-defensins 1-3 secretion by ELISA both, in basal situations and after hormone (E2 or PG treatments. Moreover, using a cohort of pregnant women we isolated mDCs from blood and also measure the levels of these anti-microbial peptides along pregnancy. Results We show that mDCs and pDCs constitutively produce alpha-defensins 1-3 and at much higher levels than MDDCs. Alpha-defensins 1-3 production from mDCs and MDDCs but not pDCs is inhibited by E2. PG does not affect alpha-defensins 1-3 in any of the populations. Moreover, alpha-defensins 1-3 production by mDCs was reduced in the later stages of pregnancy in 40% of the patients. Conclusions Here, we demonstrate that mDCs and pDCs secrete alpha-defensins 1-3 and present a novel effect of E2 on the secretion of alpha-defensins 1-3 by dendritic cells.

  8. The climate change convention and developing countries. From conflict to consensus?

    International Nuclear Information System (INIS)

    Gupta, J.

    1997-01-01

    The climate change problem can only be effectively dealt with if global anthropogenic greenhouse gas (GHG) emissions can be reduced substantially. Since the emission of such gases is closely related to the economic growth of countries, a critical problem to be addressed by the United Nations Framework Convention on Climate Change (FCCC) is: how will the premissible emission levels be shared between industrialised (ICs) and developing countries (DCs)? The thesis of this book is that the long-term effectiveness of the FCCC runs the risk of a horizontal negotiation deadlock between countries and the risk of vertical standstill within countries if there is little domestic support for the implementation of measures being announced in international negotiations. This book explores the nature of the domestic consensus in specific developing countries and the common, converging, diverging and conflicting interests underlying the international consensus. It presents a coherent account of the major North-South conflicts on this issue and explains these conflicts in terms of forthright and compelling arguments

  9. Transcranial direct current stimulation (tDCS) reveals a dissociation between SNARC and MARC effects: Implication for the polarity correspondence account.

    Science.gov (United States)

    Di Rosa, Elisa; Bardi, Lara; Umiltà, Carlo; Masina, Fabio; Forgione, Margherita; Mapelli, Daniela

    2017-08-01

    The concept of stimulus response compatibility (SRC) refers to the existence of a privileged association between a specific stimulus feature and a specific response feature. Two examples of SRC are the Spatial Numerical Association of Response Codes (SNARC) and the Markedness Association of Response Codes (MARC) effects. According to the polarity correspondence principle, these two SRC effects occur because of a match between the most salient dimensions of stimulus and response. Specifically, the SNARC effect would be caused by a match between right-sided responses and large numbers, while a match between right-sided responses and even numbers would give rise to the MARC effect. The aim of the present study was to test the validity of the polarity correspondence principle in explaining these two SRC effects. To this end, we applied transcranial direct current stimulation (tDCS) over left and right posterior parietal cortex (PPC), which is thought to be the neural basis of salience processing, during a parity judgement task. Results showed that cathodal tDCS over the PPC significantly reduced the MARC effect but did not affect the SNARC effect, suggesting a dissociation between the two effects. That is, the MARC would rely on a salience processing mechanism, whereas the SNARC would not. Despite this interpretation is in need of further experimental confirmations (i.e., testing different tasks or using different tDCS montages), our results suggest that the polarity correspondence principle can be a plausible explanation only for the MARC effect but not for the SNARC effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Hague Judgments Convention

    DEFF Research Database (Denmark)

    Nielsen, Peter Arnt

    2011-01-01

    The Hague Judgments Convention of 2005 is the first global convention on international jurisdiction and recognition and enforcement of judgments in civil and commercial matters. The author explains the political and legal background of the Convention, its content and certain crucial issues during...

  11. Facilitation of Function and Manipulation Knowledge of Tools Using Transcranial Direct Current Stimulation (tDCS

    Directory of Open Access Journals (Sweden)

    Ryo Ishibashi

    2018-01-01

    Full Text Available Using a variety of tools is a common and essential component of modern human life. Patients with brain damage or neurological disorders frequently have cognitive deficits in their recognition and manipulation of tools. In this study, we focused on improving tool-related cognition using transcranial direct current stimulation (tDCS. Converging evidence from neuropsychology, neuroimaging and non- invasive brain stimulation has identified the anterior temporal lobe (ATL and inferior parietal lobule (IPL as brain regions supporting action semantics. We observed enhanced performance in tool cognition with anodal tDCS over ATL and IPL in two cognitive tasks that require rapid access to semantic knowledge about the function or manipulation of common tools. ATL stimulation improved access to both function and manipulation knowledge of tools. The effect of IPL stimulation showed a trend toward better manipulation judgments. Our findings support previous studies of tool semantics and provide a novel approach for manipulation of underlying circuits.

  12. Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.

    Science.gov (United States)

    Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies

    2016-01-01

    During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.

  13. Evaluation of DCS III Transmission Alternatives. Phase 1A report. Appendix B. Regulatory Barriers.

    Science.gov (United States)

    1980-05-26

    Resolution DK). B.1.1.5 Importance of the RR in the DCS III Study. The ITU Radio Regulation offers a means to appraise viability of the alternatives to be...interference 466-1 483 Measurement of performance by means of signal 482 Measurement of noise in actual traffic 481 Table B.l-6. Communication Satellite...Economic and technical aspects of the choice of transmission systems GAS 5 Economic conditions and tel ecommunication development GAS 6 Economic and

  14. Effects of Transcranial Direct Current Stimulation (tDCS) on Human Memory.

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Laura E.; Trumbo, Michael Christopher Stefan

    2014-10-01

    Training a person in a new knowledge base or skill set is extremely time consuming and costly, particularly in highly specialized domains such as the military and the intelligence community. Recent research in cognitive neuroscience has suggested that a technique called transcranial direct current stimulation (tDCS) has the potential to revolutionize training by enabling learners to acquire new skills faster, more efficiently, and more robustly (Bullard et al., 2011). In this project, we tested the effects of tDCS on two types of memory performance that are critical for learning new skills: associative memory and working memory. Associative memory is memory for the relationship between two items or events. It forms the foundation of all episodic memories, so enhancing associative memory could provide substantial benefits to the speed and robustness of learning new information. We tested the effects of tDCS on associative memory, using a real-world associative memory task: remembering the links between faces and names. Working memory refers to the amount of information that can be held in mind and processed at one time, and it forms the basis for all higher-level cognitive processing. We investigated the degree of transfer between various working memory tasks (the N-back task as a measure of verbal working memory, the rotation-span task as a measure of visuospatial working memory, and Raven's progressive matrices as a measure of fluid intelligence) in order to determine if tDCS-induced facilitation of performance is task-specific or general.

  15. Towards unravelling reading-related modulations of tDCS-induced neuroplasticity in the human visual cortex

    Directory of Open Access Journals (Sweden)

    Andrea eAntal

    2014-06-01

    Full Text Available Stimulation using weak electrical direct currents has shown to be capable of inducing polarity dependent diminutions or elevations in motor and visual cortical excitability. The aim of the present study was to test if reading during transcranial direct current stimulation (tDCS is able to modify stimulation-induced plasticity in the visual cortex. Phosphene thresholds (PT in 12 healthy subjects were recorded before and after 10 minutes of anodal, cathodal and sham tDCS in combination with reading. Reading alone decreased PTs significantly, compared to the sham tDCS condition without reading. Interestingly, after both anodal and cathodal stimulation there was a tendency toward smaller PTs. Our results support the observation that tDCS-induced plasticity is highly dependent on the cognitive state of the subject during stimulation, not only in the case of motor cortex but also in the case of visual cortex stimulation.

  16. Effects of Transcranial Direct Current Stimulation (tDCS) on Pain Distress Tolerance: A Preliminary Study.

    Science.gov (United States)

    Mariano, Timothy Y; van't Wout, Mascha; Jacobson, Benjamin L; Garnaat, Sarah L; Kirschner, Jason L; Rasmussen, Steven A; Greenberg, Benjamin D

    2015-08-01

    Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal ("inhibitory") stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli vs anodal stimulation. Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal vs anodal stimulation (P = 0.055) for participants self-completing the task. Pressure algometer (P = 0.81) and breath holding tolerance (P = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all P tDCS (P = 0.072). Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. Wiley Periodicals, Inc.

  17. Differential influences of unilateral tDCS over the intraparietal cortex on numerical cognition

    Directory of Open Access Journals (Sweden)

    Christina eArtemenko

    2015-03-01

    Full Text Available Recent neuro-imaging research identified the bilateral intraparietal sulcus (IPS to be a key area associated with number processing. However, causal structure-function relationships are hard to evaluate from neuro-imaging techniques such as fMRI. Nevertheless, brain stimulation methods like transcranial direct current stimulation (tDCS allow for investigating the functional relevance of the IPS for number processing. Following up on a study using bilateral bi-cephalic tDCS over the IPS, the current study aimed at evaluating the differential lateralized functional contributions of the left and right IPS to number processing using unilateral bi-cephalic tDCS over either the left or right IPS. Results indicated a right lateralization for the processing of the place-value structure of the Arabic number system. Importantly, the processing of number magnitude information was not affected by unilateral IPS corroborating the assumption that number magnitude is processed in the bilateral IPS. Taken together, these data suggest that even though number magnitude is represented bilaterally, the left and right IPS seem to contribute differentially to numerical cognition with respect to the processing of specific other aspects of numerical information.

  18. Testing the involvement of the prefrontal cortex in lucid dreaming: a tDCS study.

    Science.gov (United States)

    Stumbrys, Tadas; Erlacher, Daniel; Schredl, Michael

    2013-12-01

    Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to increase dream lucidity. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Incidence of DCS and oxygen toxicity in chamber attendants: a 28-year experience.

    Science.gov (United States)

    Witucki, Pete; Duchnick, Jay; Neuman, Tom; Grover, Ian

    2013-01-01

    Decompression sickness (DCS) and central nervous system oxygen toxicity are inherent risks for "inside" attendants (IAs) of hyperbaric chambers. At the Hyperbaric Medicine Center at the University of California San Diego (UCSD), protocols have been developed for decompressing IAs. Protocol 1: For a total bottom time (TBT) of less than 80 minutes at 2.4 atmospheres absolute (atm abs) or shallower, the U.S. Navy (1955) no-decompression tables were utilized. Protocol 2: For a TBT between 80 and 119 minutes IAs breathed oxygen for 15 minutes prior to initiation of ascent. Protocol 3: For a TBT between 120-139 minutes IAs breathed oxygen for 30 minutes prior to ascent. These protocols have been utilized for approximately 28 years and have produced zero cases of DCS and central nervous system oxygen toxicity. These results, based upon more than 24,000 exposures, have an upper limit of risk of DCS and oxygen toxicity of 0.02806 (95% CI) using UCSD IA decompression Protocol 1, 0.00021 for Protocol 2, and 0.00549 for Protocol 3. We conclude that the utilization of this methodology may be useful at other sea-level multiplace chambers.

  20. Extracellular ATP reduces HIV-1 transfer from immature dendritic cells to CD4+ T lymphocytes

    Directory of Open Access Journals (Sweden)

    Barat Corinne

    2008-03-01

    Full Text Available Abstract Background Dendritic cells (DCs are considered as key mediators of the early events in human immunodeficiency virus type 1 (HIV-1 infection at mucosal sites. Previous studies have shown that surface-bound virions and/or internalized viruses found in endocytic vacuoles of DCs are efficiently transferred to CD4+ T cells. Extracellular adenosine triphosphate (ATP either secreted or released from necrotic cells induces a distorted maturation of DCs, transiently increases their endocytic capacity and affects their migratory capacity. Knowing that high extracellular ATP concentrations are present in situations of tissue injury and inflammation, we investigated the effect of ATP on HIV-1 transmission from DCs to CD4+ T lymphocytes. Results In this study, we show that extracellular ATP reduces HIV-1 transfer from immature monocyte-derived DCs (iDCs to autologous CD4+ T cells. This observed decrease in viral replication was related to a lower proportion of infected CD4+ T cells following transfer, and was seen with both X4- and R5-tropic isolates of HIV-1. Extracellular ATP had no effect on direct CD4+ T cell infection as well as on productive HIV-1 infection of iDCs. These observations indicate that extracellular ATP affects HIV-1 infection of CD4+ T cells in trans with no effect on de novo virus production by iDCs. Additional experiments suggest that extracellular ATP might modulate the trafficking pathway of internalized virions within iDCs leading to an increased lysosomal degradation, which could be partly responsible for the decreased HIV-1 transmission. Conclusion These results suggest that extracellular ATP can act as a factor controlling HIV-1 propagation.

  1. Toxoplasma gondii infection shifts dendritic cells into an amoeboid rapid migration mode encompassing podosome dissolution, secretion of TIMP-1, and reduced proteolysis of extracellular matrix.

    Science.gov (United States)

    Ólafsson, Einar B; Varas-Godoy, Manuel; Barragan, Antonio

    2018-03-01

    Dendritic cells (DCs) infected by Toxoplasma gondii rapidly acquire a hypermigratory phenotype that promotes systemic parasite dissemination by a "Trojan horse" mechanism in mice. Recent paradigms of leukocyte migration have identified the amoeboid migration mode of DCs as particularly suited for rapid locomotion in extracellular matrix and tissues. Here, we have developed a microscopy-based high-throughput approach to assess motility and matrix degradation by Toxoplasma-challenged murine and human DCs. DCs challenged with T. gondii exhibited dependency on metalloproteinase activity for hypermotility and transmigration but, strikingly, also dramatically reduced pericellular proteolysis. Toxoplasma-challenged DCs up-regulated expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) and their supernatants impaired matrix degradation by naïve DCs and by-stander DCs dose dependently. Gene silencing of TIMP-1 by short hairpin RNA restored matrix degradation activity in Toxoplasma-infected DCs. Additionally, dissolution of podosome structures in parasitised DCs coincided with abrogated matrix degradation. Toxoplasma lysates inhibited pericellular proteolysis in a MyD88-dependent fashion whereas abrogated proteolysis persevered in Toxoplasma-infected MyD88-deficient DCs. This indicated that both TLR/MyD88-dependent and TLR/MyD88-independent signalling pathways mediated podosome dissolution and the abrogated matrix degradation. We report that increased TIMP-1 secretion and cytoskeletal rearrangements encompassing podosome dissolution are features of Toxoplasma-induced hypermigration of DCs with an impact on matrix degradation. Jointly, the data highlight how an obligate intracellular parasite orchestrates key regulatory cellular processes consistent with non-proteolytic amoeboid migration of the vehicle cells that facilitate its dissemination. © 2017 John Wiley & Sons Ltd.

  2. Toward unraveling reading-related modulations of tDCS-induced neuroplasticity in the human visual cortex.

    OpenAIRE

    Antal, Andrea; Ambrus, Géza Gergely; Chaieb, Leila

    2014-01-01

    Stimulation using weak electrical direct currents has shown to be capable of inducing polarity-dependent diminutions or elevations in motor and visual cortical excitability. The aim of the present study was to test if reading during transcranial direct current stimulation (tDCS) is able to modify stimulation-induced plasticity in the visual cortex. Phosphene thresholds (PTs) in 12 healthy subjects were recorded before and after 10 min of anodal, cathodal, and sham tDCS in combination with rea...

  3. Impact of DCS-facilitated cue exposure therapy on brain activation to cocaine cues in cocaine dependence.

    Science.gov (United States)

    Prisciandaro, James J; Myrick, Hugh; Henderson, Scott; McRae-Clark, Aimee L; Santa Ana, Elizabeth J; Saladin, Michael E; Brady, Kathleen T

    2013-09-01

    The development of addiction is marked by a pathological associative learning process that imbues incentive salience to stimuli associated with drug use. Recent efforts to treat addiction have targeted this learning process using cue exposure therapy augmented with d-cycloserine (DCS), a glutamatergic agent hypothesized to enhance extinction learning. To better understand the impact of DCS-facilitated extinction on neural reactivity to drug cues, the present study reports fMRI findings from a randomized, double-blind, placebo-controlled trial of DCS-facilitated cue exposure for cocaine dependence. Twenty-five participants completed two MRI sessions (before and after intervention), with a cocaine-cue reactivity fMRI task. The intervention consisted of 50mg of DCS or placebo, combined with two sessions of cocaine cue exposure and skills training. Participants demonstrated cocaine cue activation in a variety of brain regions at baseline. From the pre- to post-study scan, participants experienced decreased activation to cues in a number of regions (e.g., accumbens, caudate, frontal poles). Unexpectedly, placebo participants experienced decreases in activation to cues in the left angular and middle temporal gyri and the lateral occipital cortex, while DCS participants did not. Three trials of DCS-facilitated cue exposure therapy for cocaine dependence have found that DCS either increases or does not significantly impact response to cocaine cues. The present study adds to this literature by demonstrating that DCS may prevent extinction to cocaine cues in temporal and occipital brain regions. Although consistent with past research, results from the present study should be considered preliminary until replicated in larger samples. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity.

    Directory of Open Access Journals (Sweden)

    Orjon Rroji

    Full Text Available Previous research suggests that anodal transcranial direct current stimulation (tDCS over the primary motor cortex (M1 modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements. Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP-like processes. Using a double-blind within-subject cross-over design, subjects (n=14 participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001 and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001. This effect was large (Cohen's d=1.01 and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

  5. Novel versus conventional antipsychotic drugs.

    Science.gov (United States)

    Love, R C

    1996-01-01

    Novel antipsychotic agents differ from conventional ones in several key characteristics, including effectiveness, adverse reactions, and receptor-binding profile. Most of the newer agents have an affinity for the serotonin 5HT2 receptor that is at least 10 times greater than that for the dopamine D2 receptor. This increased affinity for the serotonin receptor may be responsible for another distinguishing characteristic of novel antipsychotic agents--decreased frequency of extrapyramidal side effects. These side effects, which include pseudoparkinsonism, acute dystonias, and akathisia, frequently are the reason for noncompliance with conventional drug therapy. The newer drugs are often effective in patients resistant to treatment with conventional agents. They also appear to reduce the negative symptoms of schizophrenia in many patients.

  6. Combined motor point associative stimulation (MPAS) and transcranial direct current stimulation (tDCS) improves plateaued manual dexterity performance.

    Science.gov (United States)

    Hoseini, Najmeh; Munoz-Rubke, Felipe; Wan, Hsuan-Yu; Block, Hannah J

    2016-10-28

    Motor point associative stimulation (MPAS) in hand muscles is known to modify motor cortex excitability and improve learning rate, but not plateau of performance, in manual dexterity tasks. Central stimulation of motor cortex, such as transcranial direct current stimulation (tDCS), can have similar effects if accompanied by motor practice, which can be difficult and tiring for patients. Here we asked whether adding tDCS to MPAS could improve manual dexterity in healthy individuals who are already performing at their plateau, with no motor practice during stimulation. We hypothesized that MPAS could provide enough coordinated muscle activity to make motor practice unnecessary, and that this combination of stimulation techniques could yield improvements even in subjects at or near their peak. If so, this approach could have a substantial effect on patients with impaired dexterity, who are far from their peak. MPAS was applied for 30min to two right hand muscles important for manual dexterity. tDCS was simultaneously applied over left sensorimotor cortex. The motor cortex input/output (I/O) curve was assessed with transcranial magnetic stimulation (TMS), and manual dexterity was assessed with the Purdue Pegboard Test. Compared to sham or cathodal tDCS combined with MPAS, anodal tDCS combined with MPAS significantly increased the plateau of manual dexterity. This result suggests that MPAS has the potential to substitute for motor practice in mediating a beneficial effect of tDCS on manual dexterity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. [Transcranial direct current stimulation (tDCS) for depression: Results of nearly a decade of clinical research].

    Science.gov (United States)

    Palm, U; Ayache, S S; Padberg, F; Lefaucheur, J-P

    2016-02-01

    Since 2006 transcranial direct current stimulation (tDCS) has been investigated in the treatment of depression. In this review, we discuss the implications and clinical perspectives that tDCS may have as a therapeutic tool in depression from the results reported in this domain. A comprehensive literature review has found nearly thirty articles - all in English - on this topic, corresponding to clinical studies, placebo-controlled or not, case reports and reviews. Several meta-analyses showed that the antidepressant effects of active tDCS are significant against placebo, but variable, mainly due to the heterogeneity of the patients included in the studies, for example regarding the resistance to antidepressant treatment. Specific recommendations for the use of tDCS in treating depression may not yet be available, but some elements of good practice can be highlighted. Of particular note is that anodal tDCS of the left prefrontal cortex at 2mA for 20 minutes per day has a potential therapeutic value without risk of significant side effects: tDCS offers safe conditions for clinical use in the treatment of depression. Copyright © 2015 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  8. The Role of Telehealth to Assist In-Home tDCS: Opportunities, Promising Results and Acceptability

    Directory of Open Access Journals (Sweden)

    Brenton Hordacre

    2018-06-01

    Full Text Available Transcranial direct current stimulation (tDCS has shown great promise as a neuromodulatory intervention capable of improving behavioral outcomes in a range of neurological and psychiatric populations. Evidence indicates that the neuromodulatory effect of stimulation may be cumulative, with greater improvements in behavior observed following multiple treatment sessions. However, the requirement to attend clinical or research departments for multiple treatment sessions may present a barrier for many people, particularly those with greater disability or living remotely. The portability of tDCS suggests that in-home stimulation may become an avenue for further investigation. However, safe and effective use of tDCS by a participant within their home requires a form of monitoring. This review discusses how telehealth may provide real-time visual monitoring to ensure correct tDCS set-up and adherence to stimulation protocols, manage technical issues and monitor adverse events. The combination of telehealth to supplement in-home tDCS use has potential to transform the way tDCS is delivered.

  9. Keep calm and carry on: improved frustration tolerance and processing speed by transcranial direct current stimulation (tDCS.

    Directory of Open Access Journals (Sweden)

    Christian Plewnia

    Full Text Available Cognitive control (CC of attention is a major prerequisite for effective information processing. Emotional distractors can bias and impair goal-directed deployment of attentional resources. Frustration-induced negative affect and cognition can act as internal distractors with negative impact on task performance. Consolidation of CC may thus support task-oriented behavior under challenging conditions. Recently, transcranial direct current stimulation (tDCS has been put forward as an effective tool to modulate CC. Particularly, anodal, activity enhancing tDCS to the left dorsolateral prefrontal cortex (dlPFC can increase insufficient CC in depression as indicated by a reduction of attentional biases induced by emotionally salient stimuli. With this study, we provide first evidence that, compared to sham stimulation, tDCS to the left dlPFC enhances processing speed measured by an adaptive version of the Paced Auditory Serial Addition Task (PASAT that is typically thwarted by frustration. Notably, despite an even larger amount of error-related negative feedback, the task-induced upset was suppressed in the group receiving anodal tDCS. Moreover, inhibition of task-related negative affect was correlated with performance gains, suggesting a close link between enhanced processing speed and consolidation of CC by tDCS. Together, these data provide first evidence that activity enhancing anodal tDCS to the left dlPFC can support focused cognitive processing particularly when challenged by frustration-induced negative affect.

  10. Keep calm and carry on: improved frustration tolerance and processing speed by transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Plewnia, Christian; Schroeder, Philipp A; Kunze, Roland; Faehling, Florian; Wolkenstein, Larissa

    2015-01-01

    Cognitive control (CC) of attention is a major prerequisite for effective information processing. Emotional distractors can bias and impair goal-directed deployment of attentional resources. Frustration-induced negative affect and cognition can act as internal distractors with negative impact on task performance. Consolidation of CC may thus support task-oriented behavior under challenging conditions. Recently, transcranial direct current stimulation (tDCS) has been put forward as an effective tool to modulate CC. Particularly, anodal, activity enhancing tDCS to the left dorsolateral prefrontal cortex (dlPFC) can increase insufficient CC in depression as indicated by a reduction of attentional biases induced by emotionally salient stimuli. With this study, we provide first evidence that, compared to sham stimulation, tDCS to the left dlPFC enhances processing speed measured by an adaptive version of the Paced Auditory Serial Addition Task (PASAT) that is typically thwarted by frustration. Notably, despite an even larger amount of error-related negative feedback, the task-induced upset was suppressed in the group receiving anodal tDCS. Moreover, inhibition of task-related negative affect was correlated with performance gains, suggesting a close link between enhanced processing speed and consolidation of CC by tDCS. Together, these data provide first evidence that activity enhancing anodal tDCS to the left dlPFC can support focused cognitive processing particularly when challenged by frustration-induced negative affect.

  11. Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS

    Directory of Open Access Journals (Sweden)

    Tobias U. Hauser

    2013-06-01

    Full Text Available The ability to accurately process numerical magnitudes and solve mental arithmetic is of highest importance for schooling and professional career. Although impairments in these domains in disorders such as developmental dyscalculia (DD are highly detrimental, remediation is still sparse. In recent years, transcranial brain stimulation methods such as transcranial Direct Current Stimulation (tDCS have been suggested as a treatment for various neurologic and neuropsychiatric disorders. The posterior parietal cortex (PPC is known to be crucially involved in numerical magnitude processing and mental arithmetic. In this study, we evaluated whether tDCS has a beneficial effect on numerical magnitude processing and mental arithmetic. Due to the unclear lateralization, we stimulated the left, right as well as both hemispheres simultaneously in two experiments. We found that left anodal tDCS significantly enhanced performance in a number comparison and a subtraction task, while bilateral and right anodal tDCS did not induce any improvements compared to sham. Our findings demonstrate that the left PPC is causally involved in numerical magnitude processing and mental arithmetic. Furthermore, we show that these cognitive functions can be enhanced by means of tDCS. These findings encourage to further investigate the beneficial effect of tDCS in the domain of mathematics in healthy and impaired humans.

  12. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway.

    Directory of Open Access Journals (Sweden)

    Peihong Dai

    2014-04-01

    Full Text Available Modified vaccinia virus Ankara (MVA is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs, which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs, but not in plasmacytoid dendritic cells (pDCs. Transcription factors IRF3 (IFN regulatory factor 3 and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1, are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase. MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1 and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.

  13. Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex.

    Directory of Open Access Journals (Sweden)

    Daniel P Spiegel

    Full Text Available Transcranial direct current stimulation (tDCS is a safe, non-invasive technique for transiently modulating the balance of excitation and inhibition within the human brain. It has been reported that anodal tDCS can reduce both GABA mediated inhibition and GABA concentration within the human motor cortex. As GABA mediated inhibition is thought to be a key modulator of plasticity within the adult brain, these findings have broad implications for the future use of tDCS. It is important, therefore, to establish whether tDCS can exert similar effects within non-motor brain areas. The aim of this study was to assess whether anodal tDCS could reduce inhibitory interactions within the human visual cortex. Psychophysical measures of surround suppression were used as an index of inhibition within V1. Overlay suppression, which is thought to originate within the lateral geniculate nucleus (LGN, was also measured as a control. Anodal stimulation of the occipital poles significantly reduced psychophysical surround suppression, but had no effect on overlay suppression. This effect was specific to anodal stimulation as cathodal stimulation had no effect on either measure. These psychophysical results provide the first evidence for tDCS-induced reductions of intracortical inhibition within the human visual cortex.

  14. Role of a novel dual flavin reductase (NR1) and an associated histidine triad protein (DCS-1) in menadione-induced cytotoxicity

    International Nuclear Information System (INIS)

    Kwasnicka-Crawford, Dorota A.; Vincent, Steven R.

    2005-01-01

    Microsomal cytochrome P450 reductase catalyzes the one-electron transfer from NADPH via FAD and FMN to various electron acceptors, such as cytochrome P450s or to some anti-cancer quinone drugs. This results in generation of free radicals and toxic oxygen metabolites, which can contribute to the cytotoxicity of these compounds. Recently, a cytosolic NADPH-dependent flavin reductase, NR1, has been described which is highly homologous to the microsomal cytochrome P450 reductase. In this study, we show that over-expression of NR1 in human embryonic kidney cells enhances the cytotoxic action of the model quinone, menadione. Furthermore, we show that a novel human histidine triad protein DCS-1, which is expressed together with NR1 in many tissues, can significantly reduce menadione-induced cytotoxicity in these cells. We also show that DCS-1 binds NF1 and directly modulates its activity. These results suggest that NR1 may play a role in carcinogenicity and cell death associated with one-electron reductions

  15. d-Cycloserine reduces context specificity of sexual extinction learning.

    Science.gov (United States)

    Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Trimbos, Baptist; Both, Stephanie

    2015-11-01

    d-Cycloserine (DCS) enhances extinction processes in animals. Although classical conditioning is hypothesized to play a pivotal role in the aetiology of appetitive motivation problems, no research has been conducted on the effect of DCS on the reduction of context specificity of extinction in human appetitive learning, while facilitation hereof is relevant in the context of treatment of problematic reward-seeking behaviors. Female participants were presented with two conditioned stimuli (CSs) that either predicted (CS+) or did not predict (CS-) a potential sexual reward (unconditioned stimulus (US); genital vibrostimulation). Conditioning took place in context A and extinction in context B. Subjects received DCS (125mg) or placebo directly after the experiment on day 1 in a randomized, double-blind, between-subject fashion (Placebo n=31; DCS n=31). Subsequent testing for CS-evoked conditioned responses (CRs) in both the conditioning (A) and the extinction context (B) took place 24h later on day 2. Drug effects on consolidation were then assessed by comparing the recall of sexual extinction memories between the DCS and the placebo groups. Post learning administration of DCS facilitates sexual extinction memory consolidation and affects extinction's fundamental context specificity, evidenced by reduced conditioned genital and subjective sexual responses, relative to placebo, for presentations of the reward predicting cue 24h later outside the extinction context. DCS makes appetitive extinction memories context-independent and prevents the return of conditioned response. NMDA receptor glycine site agonists may be potential pharmacotherapies for the prevention of relapse of appetitive motivation disorders with a learned component. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Transcranial direct current stimulation (tDCS) facilitates overall visual search response times but does not interact with visual search task factors.

    Science.gov (United States)

    Sung, Kyongje; Gordon, Barry

    2018-01-01

    Whether transcranial direct current stimulation (tDCS) affects mental functions, and how any such effects arise from its neural effects, continue to be debated. We investigated whether tDCS applied over the visual cortex (Oz) with a vertex (Cz) reference might affect response times (RTs) in a visual search task. We also examined whether any significant tDCS effects would interact with task factors (target presence, discrimination difficulty, and stimulus brightness) that are known to selectively influence one or the other of the two information processing stages posited by current models of visual search. Based on additive factor logic, we expected that the pattern of interactions involving a significant tDCS effect could help us colocalize the tDCS effect to one (or both) of the processing stages. In Experiment 1 (n = 12), anodal tDCS improved RTs significantly; cathodal tDCS produced a nonsignificant trend toward improvement. However, there were no interactions between the anodal tDCS effect and target presence or discrimination difficulty. In Experiment 2 (n = 18), we manipulated stimulus brightness along with target presence and discrimination difficulty. Anodal and cathodal tDCS both produced significant improvements in RTs. Again, the tDCS effects did not interact with any of the task factors. In Experiment 3 (n = 16), electrodes were placed at Cz and on the upper arm, to test for a possible effect of incidental stimulation of the motor regions under Cz. No effect of tDCS on RTs was found. These findings strengthen the case for tDCS having real effects on cerebral information processing. However, these effects did not clearly arise from either of the two processing stages of the visual search process. We suggest that this is because tDCS has a DIFFUSE, pervasive action across the task-relevant neuroanatomical region(s), not a discrete effect in terms of information processing stages.

  17. Transcranial direct current stimulation (tDCS) to improve naming ability in post-stroke aphasia: A critical review.

    Science.gov (United States)

    ALHarbi, Mohammed F; Armijo-Olivo, Susan; Kim, Esther S

    2017-08-14

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation tool that can be used to influence cortical brain activity to induce measurable behavioral changes. Although there is growing evidence that tDCS combined with behavioural language therapy could boost language recovery in patients with post-stroke aphasia, there is great variability in patient characteristics, treatment protocols, and outcome measures in these studies that poses challenges for analyzing the evidence. The purpose of this study is to critically analyze the methodological rigor of the evidence regarding the use of tDCS for post-stroke anomia. This critical review was conducted by searching four databases (MEDLINE, EMBase, PsycINFO, and CINAHL). Nineteen studies fully met the inclusion criteria. Three critical appraisal tools and Robey and Schultz's (1998) five- phase model for conducting clinical outcome research were adopted to evaluate and analyze the current level of evidence. Methodological issues of the studies were also identified. The current level of evidence for using tDCS for anomia is at the pre-efficacy level with emerging evidence at the efficacy level. Lack of proper evaluation of carry-over effects in cross-over studies, lack of or unclear randomization, allocation concealment, and incomplete data handling were the main methodological issues that could threaten the validity of the tDCS for anomia studies. Several methodological issues have been identified in pre-efficacy studies that pose challenges in determining whether tDCS is a beneficial adjunct to behavioral aphasia therapy. Future studies need to improve the quality of the methods used to investigate the effect of tDCS for anomia. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Neural signature of tDCS, tPCS and their combination: Comparing the effects on neural plasticity

    Science.gov (United States)

    Thibaut, Aurore; Russo, Cristina; Morales-Quezada, Leon; Hurtado-Puerto, Aura; Deitos, Alícia; Freedman, Steven; Carvalho, Sandra; Fregni, Felipe

    2017-01-01

    Transcranial pulsed current stimulation (tPCS) and transcranial direct current stimulation (tDCS) are two noninvasive neuromodulatory brain stimulation techniques whose effects on human brain and behavior have been studied individually. In the present study we aimed to quantify the effects of tDCS and tPCS, individually and in combination, on cortical activity, sensitivity and pain-related assessments in healthy individuals in order to understand their neurophysiological mechanisms and potential applications in clinical populations. A total of 48 healthy individuals participated in this randomized double blind sham controlled study. Participants were randomized to receive a single stimulation session of either: active or sham tPCS and active or sham tDCS. Quantitative electroencephalography (qEEG), sensitivity and pain assessments were used before and after each stimulation session. We observed that tPCS had a higher effect on power, as compared to tDCS, in several bandwidths on various cortical regions: the theta band in the parietal region (p = 0.021), the alpha band in the temporal (p = 0.009), parietal (p = 0.0063), and occipital (p tDCS significantly decreased power in the low beta bandwidth of the frontal (p = 0.0006), central (p = 0.0001), and occipital (p = 0.0003) regions, when compared to sham stimulation. Additionally, tDCS significantly increased power in high beta over the temporal (p = 0.0015) and parietal (p = 0.0007) regions, as compared to sham. We found no effect on sensitivity or pain-related assessments. We concluded that tPCS and tDCS have different neurophysiological mechanisms, elicit distinct signatures, and that the combination of the two leads to no effect or a decrease on qEEG power. Further studies are required to examine the effects of these techniques on clinical populations in which EEG signatures have been found altered. PMID:27765610

  19. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1994-01-01

    The Convention on Nuclear Safety was adopted on 17 June 1994 by Diplomatic Conference convened by the International Atomic Energy Agency at its Headquarters from 14 to 17 June 1994. The Convention will enter into force on the ninetieth day after the date of deposit with the Depository (the Agency's Director General) of the twenty-second instrument of ratification, acceptance or approval, including the instruments of seventeen States, having each at leas one nuclear installation which has achieved criticality in a reactor core. The text of the Convention as adopted is reproduced in the Annex hereto for the information of all Member States

  20. Effects of transcranial direct current stimulation (tDCS) on pain distress tolerance: a preliminary study

    Science.gov (United States)

    Mariano, Timothy Y.; Wout, Mascha van’t; Jacobson, Benjamin L.; Garnaat, Sarah L.; Kirschner, Jason L.; Rasmussen, Steven A.; Greenberg, Benjamin D.

    2015-01-01

    Objective Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal (“inhibitory”) stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli versus anodal stimulation. Methods Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Results Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal versus anodal stimulation (p = 0.055) for participants self-completing the task. Pressure algometer (p = 0.81) and breath holding tolerance (p = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all p Pain intensity ratings increased acutely after cold pressor and pressure algometer tasks (both p pain ratings tended to rise less after cathodal versus anodal tDCS (p = 0.072). Conclusions Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. PMID:26115372

  1. The climate change convention and human health.

    Science.gov (United States)

    Rowbotham, E J

    1995-01-01

    The United Nations Framework Convention on Climate Change, signed at Rio in June 1992, is intended to minimize climate change and its impact. Much of its text is ambiguous and it is not specifically directed to health considerations. It is, however, recognized that adverse effects of climate change on health are a concern of humankind, and health is an integral part of the Convention. The Convention includes commitments by the developed countries to reduce emissions of greenhouse gases and to increase public awareness of these commitments. The significance of the Convention in these respects is discussed critically and future developments considered.

  2. Low Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance

    Directory of Open Access Journals (Sweden)

    Irma N. Angulo-Sherman

    2017-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a brain stimulation technique that can enhance motor activity by stimulating the motor path. Thus, tDCS has the potential of improving the performance of brain-computer interfaces during motor neurorehabilitation. tDCS effects depend on several aspects, including the current density, which usually varies between 0.02 and 0.08 mA/cm2, and the location of the stimulation electrodes. Hence, testing tDCS montages at several current levels would allow the selection of current parameters for improving stimulation outcomes and the comparison of montages. In a previous study, we found that cortico-cerebellar tDCS shows potential of enhancing right-hand motor imagery. In this paper, we aim to evaluate the effects of the focal stimulation of the motor cortex over motor imagery. In particular, the effect of supplying tDCS with a 4 × 1 ring montage, which consists in placing an anode on the motor cortex and four cathodes around it, over motor imagery was assessed with different current densities. Electroencephalographic (EEG classification into rest or right-hand/feet motor imagery was evaluated on five healthy subjects for two stimulation schemes: applying tDCS for 10 min on the (1 right-hand or (2 feet motor cortex before EEG recording. Accuracy differences related to the tDCS intensity, as well as μ and β band power changes, were tested for each subject and tDCS modality. In addition, a simulation of the electric field induced by the montage was used to describe its effect on the brain. Results show no improvement trends on classification for the evaluated currents, which is in accordance with the observation of variable EEG band power results despite the focused stimulation. The lack of effects is probably related to the underestimation of the current intensity required to apply a particular current density for small electrodes and the relatively short inter-electrode distance. Hence, higher current

  3. Minamata Convention on Mercury

    Science.gov (United States)

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  4. Regulatory Considerations for the Clinical and Research Use of Transcranial Direct Current Stimulation (tDCS): review and recommendations from an expert panel

    Science.gov (United States)

    Fregni, F; Nitsche, MA; Loo, C.K.; Brunoni, AR; Marangolo, P; Leite, J; Carvalho, S; Bolognini, N; Caumo, W; Paik, NJ; Simis, M; Ueda, K; Ekhitari, H; Luu, P; Tucker, DM; Tyler, WJ; Brunelin, J; Datta, A; Juan, CH; Venkatasubramanian, G; Boggio, PS; Bikson, M

    2014-01-01

    The field of transcranial electrical stimulation (tES) has experienced significant growth in the past 15 years. One of the tES techniques leading this increased interest is transcranial direct current stimulation (tDCS). Significant research efforts have been devoted to determining the clinical potential of tDCS in humans. Despite the promising results obtained with tDCS in basic and clinical neuroscience, further progress has been impeded by a lack of clarity on international regulatory pathways. We therefore convened a group of research and clinician experts on tDCS to review the research and clinical use of tDCS. In this report, we review the regulatory status of tDCS, and we summarize the results according to research, off-label and compassionate use of tDCS in the following countries: Australia, Brazil, France, Germany, India, Iran, Italy, Portugal, South Korea, Taiwan and United States. Research use, off label treatment and compassionate use of tDCS are employed in most of the countries reviewed in this study. It is critical that a global or local effort is organized to pursue definite evidence to either approve and regulate or restrict the use of tDCS in clinical practice on the basis of adequate randomized controlled treatment trials. PMID:25983531

  5. The effectiveness of ground level post-flight 100 percent oxygen breathing as therapy for pain-only altitude Decompression Sickness (DCS)

    Science.gov (United States)

    Demboski, John T.; Pilmanis, Andrew A.

    1994-01-01

    In both the aviation and space environments, decompression sickness (DCS) is an operational limitation. Hyperbaric recompression is the most efficacious treatment for altitude DCS. However, the inherent recompression of descent to ground level while breathing oxygen is in itself therapy for altitude DCS. If pain-only DCS occurs during a hypobaric exposure, and the symptoms resolver during descent, ground level post-flight breathing of 100% O2 for 2 hours (GLO2) is considered sufficient treatment by USAF Regulation 161-21. The effectiveness of the GLO2 treatment protocol is defined.

  6. A Protocol for the Use of Remotely-Supervised Transcranial Direct Current Stimulation (tDCS) in Multiple Sclerosis (MS).

    Science.gov (United States)

    Kasschau, Margaret; Sherman, Kathleen; Haider, Lamia; Frontario, Ariana; Shaw, Michael; Datta, Abhishek; Bikson, Marom; Charvet, Leigh

    2015-12-26

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that uses low amplitude direct currents to alter cortical excitability. With well-established safety and tolerability, tDCS has been found to have the potential to ameliorate symptoms such as depression and pain in a range of conditions as well as to enhance outcomes of cognitive and physical training. However, effects are cumulative, requiring treatments that can span weeks or months and frequent, repeated visits to the clinic. The cost in terms of time and travel is often prohibitive for many participants, and ultimately limits real-world access. Following guidelines for remote tDCS application, we propose a protocol that would allow remote (in-home) participation that uses specially-designed devices for supervised use with materials modified for patient use, and real-time monitoring through a telemedicine video conferencing platform. We have developed structured training procedures and clear, detailed instructional materials to allow for self- or proxy-administration while supervised remotely in real-time. The protocol is designed to have a series of checkpoints, addressing attendance and tolerability of the session, to be met in order to continue to the next step. The feasibility of this protocol was then piloted for clinical use in an open label study of remotely-supervised tDCS in multiple sclerosis (MS). This protocol can be widely used for clinical study of tDCS.

  7. No Effects of Stimulating the Left Ventrolateral Prefrontal Cortex with tDCS on Verbal Working Memory Updating

    Directory of Open Access Journals (Sweden)

    Karolina M. Lukasik

    2018-01-01

    Full Text Available The effects of transcranial direct current stimulation (tDCS on dorsolateral prefrontal cortex functions, such as working memory (WM, have been examined in a number of studies. However, much less is known about the behavioral effects of tDCS over other important WM-related brain regions, such as the ventrolateral prefrontal cortex (VLPFC. In a counterbalanced within-subjects design with 33 young healthy participants, we examined whether online and offline single-session tDCS over VLPFC affects WM updating performance as measured by a digit 3-back task. We compared three conditions: anodal, cathodal and sham. We observed no significant tDCS effects on participants' accuracy or reaction times during or after the stimulation. Neither did we find any differences between anodal and cathodal stimulation. Largely similar results were obtained when comparing subgroups of high- and low-performing participants. Possible reasons for the lack of effects, including individual differences in responsiveness to tDCS, features of montage, task and sample characteristics, and the role of VLPFC in WM, are discussed.

  8. Decompression sickness among diving fishermen in Mexico: observational retrospective analysis of DCS in three sea cucumber fishing seasons.

    Science.gov (United States)

    Huchim-Lara, Oswaldo; Chin, Walter; Salas, Silvia; Rivera-Canul, Normando; Cordero-Romero, Salvador; Tec, Juan; Joo, Ellie; Mendez-Dominguez, Nina

    2017-01-01

    The probabilities of decompression sickness (DCS) among diving fishermen are higher than in any other group of divers. Diving behavior of artisanal fishermen has been directed mainly to target high-value species. The aim of this study was to learn about the occurrence of DCS derived from sea cucumber harvesting in the Yucatán Peninsula, Mexico. We conducted a retrospective chart review of diving fishermen treated at a multiplace hyperbaric chamber in Tizimín, Mexico. In total, 233 recompression therapies were rendered to 166 diving fishermen from 2014 to 2016. The average age was 36.7 ± 9.2 years (range: 20-59 years); 84.3% had experienced at least one DCS event previously. There was a correlation between age and DCS incidents (F: 8.3; R2: 0.07) and differences in the fishing depth between seasons (H: 9.99; p⟨0.05). Musculoskeletal pain was the most frequently reported symptom. Three divers, respectively, suffered permanent hearing loss, spinal cord injury and fatal outcome. Diving fishermen experience DCS at an alarmingly high rate, probably due to the type of species targeted, given the requirements in each case. Understanding divers' behaviors and their incentives while in pursuit of high-value species such as sea cucumber could help to find ways to mitigate health risks and help enforce regulation. Copyright© Undersea and Hyperbaric Medical Society.

  9. The Effects of Transcranial Direct Current Stimulation (tDCS on Psychomotor and Visual Perception Functions Related to Driving Skills

    Directory of Open Access Journals (Sweden)

    Alexander Brunnauer

    2018-01-01

    Full Text Available Objective: It could be demonstrated that anodal transcranial direct current stimulation (tDCS of the left dorsolateral prefrontal cortex (DLPFC enhances accuracy in working memory tasks and reaction time in healthy adults and thus may also have an influence on complex everyday tasks like driving a car. However, no studies have applied tDCS to psychomotor skills related to a standard driving test so far.Methods: 10 female and 5 male healthy adults without any medication and history of psychiatric or neurological illness were randomly assigned to two groups receiving active and sham stimulation in a double blind, cross-over study design. Standardized computerized psychomotor tests according to the German guidelines for road and traffic safety were administered at baseline. Then they performed the same tests during an anodal or sham tDCS of the left DLPFC in two separated sessions.Results: No significant improvements in skills related to driving performance like visual perception, stress tolerance, concentration, and vigilance could be shown after left anodal prefrontal tDCS. Side effects were low and did not differ between active and sham stimulation.Conclusions: The findings of our study indicate that left prefrontal tDCS may not alter driving skills affording more automated action patterns but as shown in previous studies may have an influence on driving behavior requiring executive control processes. This however has to be proved in future studies and within greater samples.

  10. Neuromodulation directed at the prefrontal cortex of subjects with obesity reduces snack food intake and hunger in a randomized trial.

    Science.gov (United States)

    Heinitz, Sascha; Reinhardt, Martin; Piaggi, Paolo; Weise, Christopher M; Diaz, Enrique; Stinson, Emma J; Venti, Colleen; Votruba, Susanne B; Wassermann, Eric M; Alonso-Alonso, Miguel; Krakoff, Jonathan; Gluck, Marci E

    2017-12-01

    Background: Obesity is associated with reduced activation in the left dorsolateral prefrontal cortex (DLPFC), a region of the brain that plays a key role in the support of self-regulatory aspects of eating behavior and inhibitory control. Transcranial direct current stimulation (tDCS) is a noninvasive technique used to modulate brain activity. Objectives: We tested whether repeated anodal tDCS targeted at the left DLPFC (compared with sham tDCS) has an immediate effect on eating behavior during ad libitum food intake, resulting in weight change, and whether it might influence longer-term food intake-related appetite ratings in individuals with obesity. Design: In a randomized parallel-design study combining inpatient and outpatient assessments over 31 d, 23 individuals with obesity [12 men; mean ± SD body mass index (BMI; in kg/m 2 ): 39.3 ± 8.42] received 15 sessions of anodal (i.e., enhancing cortical activity) or sham tDCS aimed at the left DLPFC. Ad libitum food intake was assessed through the use of a vending machine paradigm and snack food taste tests (SFTTs). Appetite was evaluated with a visual analog scale (VAS). Body weight was measured. We examined the effect of short-term (i.e., 3 sessions) and long-term (i.e., 15 sessions) tDCS on these variables. Results: Relative to sham tDCS, short-term anodal tDCS did not influence ad libitum intake of food from the vending machines. Accordingly, no effect on short-term or 4-wk weight change was observed. In the anodal tDCS group, compared with the sham group, VAS ratings for hunger and the urge to eat declined significantly more ( P = 0.01 and P = 0.05, respectively), and total energy intake during an SFTT was relatively lower in satiated individuals ( P = 0.01), after long-term tDCS. Conclusions: Short-term anodal tDCS of the left DLPFC did not have an immediate effect on ad libitum food intake or thereby weight change, relative to sham tDCS. Hunger and snack food intake were reduced only after a longer period

  11. Quasisymmetry equations for conventional stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    1994-11-01

    General quasisymmetry condition, which demands the independence of B 2 on one of the angular Boozer coordinates, is reduced to two equations containing only geometrical characteristics and helical field of a stellarator. The analysis is performed for conventional stellarators with a planar circular axis using standard stellarator expansion. As a basis, the invariant quasisymmetry condition is used. The quasisymmetry equations for stellarators are obtained from this condition also in an invariant form. Simplified analogs of these equations are given for the case when averaged magnetic surfaces are circular shifted torii. It is shown that quasisymmetry condition can be satisfied, in principle, in a conventional stellarator by a proper choice of two satellite harmonics of the helical field in addition to the main harmonic. Besides, there appears a restriction on the shift of magnetic surfaces. Thus, in general, the problem is closely related with that of self-consistent description of a configuration. (author)

  12. Climate change convention

    International Nuclear Information System (INIS)

    Russell, D.

    1992-01-01

    Principles that guide Canada's Green Plan with respect to global warming are outlined. These include respect for nature, meeting environmental goals in an economically beneficial manner, efficient use of resources, shared responsibilities, federal leadership, and informed decision making. The policy side of the international Framework Convention on Climate Change is then discussed and related to the Green Plan. The Convention has been signed by 154 nations and has the long-term objective of stabilizing anthropogenic greenhouse gas concentrations in the atmosphere at levels that prevent dangerous interference with the climate system. Some of the Convention's commitments toward achieving that objective are only applicable to the developed countries. Five general areas of commitment are emissions reductions, assistance to developing countries, reporting requirements, scientific and socioeconomic research, and education. The most controversial area is that of limiting emissions. The Convention has strong measures for public accountability and is open to future revisions. Canada's Green Plan represents one country's response to the Convention commitments, including a national goal to stabilize greenhouse gas emissions at the 1990 level by the year 2000

  13. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS).

    Science.gov (United States)

    Santos-Pontelli, Taiza E G; Rimoli, Brunna P; Favoretto, Diandra B; Mazin, Suleimy C; Truong, Dennis Q; Leite, Joao P; Pontes-Neto, Octavio M; Babyar, Suzanne R; Reding, Michael; Bikson, Marom; Edwards, Dylan J

    2016-01-01

    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients.

  14. A systematic review of the clinical efficacy of transcranial direct current stimulation (tDCS) in psychiatric disorders.

    Science.gov (United States)

    Kekic, Maria; Boysen, Elena; Campbell, Iain C; Schmidt, Ulrike

    2016-03-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique, which can be used to selectively disrupt patterns of neural activity that are associated with symptoms of mental illness. tDCS has been implemented in numerous therapeutic trials across a range of patient populations, with a rapidly increasing number of studies being published each year. This systematic review aimed to evaluate the efficacy of tDCS in the treatment of psychiatric disorders. Four electronic databases were searched from inception until December 2015 by two independent reviewers, and 66 eligible studies were identified. Depression was the most extensively researched condition, followed by schizophrenia and substance use disorders. Data on obsessive compulsive disorder, generalised anxiety disorder, and anorexia nervosa were also obtained. The quality of included studies was appraised using a standardised assessment framework, which yielded a median score corresponding to "weak" on the three-point scale. This improved to "moderate" when case reports/series were excluded from the analysis. Overall, data suggested that tDCS interventions comprising multiple sessions can ameliorate symptoms of several major psychiatric disorders, both acutely and in the long-term. Nevertheless, the tDCS field is still in its infancy, and several methodological and ethical issues must be addressed before clinical efficacy can truly be determined. Studies probing the mechanisms of action of tDCS and those facilitating the definition of optimised stimulation protocols are warranted. Furthermore, evidence from large-scale, multi-centre randomised controlled trials is required if the transition of this therapy from the laboratory to the clinic is to be considered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Finite element model predicts current density distribution for clinical applications of tDCS and tACS

    Directory of Open Access Journals (Sweden)

    Toralf eNeuling

    2012-09-01

    Full Text Available Transcranial direct current stimulation (tDCS has been applied in numerous scientific studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA, tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial specificity. Focality is limited by the electrode size (35 cm2 are commonly used and the bipolar arrangement. However, a current flow through the head directly from anode to cathode is an outdated view. Finite element (FE models have recently been used to predict the exact current flow during tDCS. These simulations have demonstrated that the current flow depends on tissue shape and conductivity. Toface the challenge to predict the location, magnitude and direction of the current flow induced by tDCS and transcranial alternating current stimulation (tACS, we used a refined realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode configuration with regard to theirusability. We were able to demonstrate that the lateral configurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current flow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only offer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also offer a better interpretation of observed effects.

  16. DCS (Digital Control System) application of three generations; Aplicacao de um SDCD (Sistemas Digitais de Controle Distribuido) de tres geracoes

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Celso Roberto Molinaro [PETROBRAS S.A., Sao Jose dos Campos, SP (Brazil). Refinaria Henrique Lage (REVAP)

    2004-07-01

    Digital Control System are three generations of hardware and software platforms in process automation , but DCS is using the same functions and presents the reliability and availability . The challenge in automation has to maintain the old and the newest system operating and integrated perhaps the different times of platforms to guarantee the actual investments and in the future. A new generation of DCS using field equipment to control or the actual architecture with a lot of new information are coming with the technologies. (author)

  17. The effect of transcranial direct current stimulation (tDCS) on locomotion and balance in patients with chronic stroke: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Geiger, M; Supiot, A; Zory, R; Aegerter, P; Pradon, D; Roche, N

    2017-10-23

    Following stroke, patients are often left with hemiparesis that reduces balance and gait capacity. A recent, non-invasive technique, transcranial direct current stimulation, can be used to modify cortical excitability when used in an anodal configuration. It also increases the excitability of spinal neuronal circuits involved in movement in healthy subjects. Many studies in patients with stroke have shown that this technique can improve motor, sensory and cognitive function. For example, anodal tDCS has been shown to improve motor performance of the lower limbs in patients with stroke, such as voluntary quadriceps strength, toe-pinch force and reaction time. Nevertheless, studies of motor function have been limited to simple tasks. Surprisingly, the effects of tDCS on the locomotion and balance of patients with chronic stroke have never been evaluated. In this study, we hypothesise that anodal tDCS will improve balance and gait parameters in patients with chronic stroke-related hemiparesis through its effects at cortical and spinal level. This is a prospective, randomised, placebo-controlled, double-blinded, single-centre, cross-over study over 36 months. Forty patients with chronic stroke will be included. Each patient will participate in three visits: an inclusion visit, and two visits during which they will all undergo either one 30-min session of transcranial direct current stimulation or one 30-min session of placebo stimulation in a randomised order. Evaluations will be carried out before, during and twice after stimulation. The primary outcome is the variability of the displacement of the centre of mass during gait and a static-balance task. Secondary outcomes include clinical and functional measures before and after stimulation. A three-dimensional gait analysis, and evaluation of static balance on a force platform will be also conducted before, during and after stimulation. These results should constitute a useful database to determine the aspects of

  18. Tritium and OSPAR convention

    International Nuclear Information System (INIS)

    2009-01-01

    The missions and the organisation of the OSPAR convention on protection of the NE Atlantic marine environment are given. The OSPAR strategy for the radioactive substances is stated. The results of work programme of the radioactive Substances committee are described and the consensus reached by contracting parties on the appropriate arrangements for this radionuclide is presented. (authors)

  19. Revised C++ coding conventions

    CERN Document Server

    Callot, O

    2001-01-01

    This document replaces the note LHCb 98-049 by Pavel Binko. After a few years of practice, some simplification and clarification of the rules was needed. As many more people have now some experience in writing C++ code, their opinion was also taken into account to get a commonly agreed set of conventions

  20. Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex-correlation or causality in stimulation-mediated effects?

    Science.gov (United States)

    Wörsching, Jana; Padberg, Frank; Ertl-Wagner, Birgit; Kumpf, Ulrike; Kirsch, Beatrice; Keeser, Daniel

    2016-10-01

    Transcranial current stimulation approaches include neurophysiologically distinct non-invasive brain stimulation techniques widely applied in basic, translational and clinical research: transcranial direct current stimulation (tDCS), oscillating transcranial direct current stimulation (otDCS), transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS). Prefrontal tDCS seems to be an especially promising tool for clinical practice. In order to effectively modulate relevant neural circuits, systematic research on prefrontal tDCS is needed that uses neuroimaging and neurophysiology measures to specifically target and adjust this method to physiological requirements. This review therefore analyses the various neuroimaging methods used in combination with prefrontal tDCS in healthy and psychiatric populations. First, we provide a systematic overview on applications, computational models and studies combining neuroimaging or neurophysiological measures with tDCS. Second, we categorise these studies in terms of their experimental designs and show that many studies do not vary the experimental conditions to the extent required to demonstrate specific relations between tDCS and its behavioural or neurophysiological effects. Finally, to support best-practice tDCS research we provide a methodological framework for orientation among experimental designs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed

    DEFF Research Database (Denmark)

    Rosso, Charlotte; Valabregue, R.; Arbizy, C.

    2014-01-01

    Background: Cathodal transcranial direct current stimulation (tDCS) of the right frontal cortex improves language abilities in post-stroke aphasic patients. Yet little is known about the effects of right frontal cathodal tDCS on normal language function. Objective/hypothesis: To explore the catho...

  2. IFNγ signaling endows DCs with the capacity to control type I inflammation during parasitic infection through promoting T-bet+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Hyang-Mi Lee

    2015-02-01

    Full Text Available IFNγ signaling drives dendritic cells (DCs to promote type I T cell (Th1 immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.

  3. High Definition Transcranial Direct Current Stimulation Induces Both Acute and Persistent Changes in Broadband Cortical Synchronization: a Simultaneous tDCS-EEG Study

    Science.gov (United States)

    Roy, Abhrajeet; Baxter, Bryan

    2014-01-01

    The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high definition transcranial direct current stimulation (tDCS) using high resolution electroencephalography (EEG). Previous studies have pointed to the after effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event related synchronization (ERS) were observed during and after the application of high definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of 8 subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event related desynchronization (ERD) and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high resolution EEG during high definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration. PMID:24956615

  4. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials.

    Science.gov (United States)

    Elsner, Bernhard; Kwakkel, Gert; Kugler, Joachim; Mehrholz, Jan

    2017-09-13

    Transcranial Direct Current Stimulation (tDCS) is an emerging approach for improving capacity in activities of daily living (ADL) and upper limb function after stroke. However, it remains unclear what type of tDCS stimulation is most effective. Our aim was to give an overview of the evidence network regarding the efficacy and safety of tDCS and to estimate the effectiveness of the different stimulation types. We performed a systematic review of randomised trials using network meta-analysis (NMA), searching the following databases until 5 July 2016: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED, Web of Science, and four other databases. We included studies with adult people with stroke. We compared any kind of active tDCS (anodal, cathodal, or dual, that is applying anodal and cathodal tDCS concurrently) regarding improvement of our primary outcome of ADL capacity, versus control, after stroke. CRD42016042055. We included 26 studies with 754 participants. Our NMA showed evidence of an effect of cathodal tDCS in improving our primary outcome, that of ADL capacity (standardized mean difference, SMD = 0.42; 95% CI 0.14 to 0.70). tDCS did not improve our secondary outcome, that of arm function, measured by the Fugl-Meyer upper extremity assessment (FM-UE). There was no difference in safety between tDCS and its control interventions, measured by the number of dropouts and adverse events. Comparing different forms of tDCS shows that cathodal tDCS is the most promising treatment option to improve ADL capacity in people with stroke.

  5. Long-term effects of serial anodal tDCS on motion perception in subjects with occipital stroke measured in the unaffected visual hemifield

    Directory of Open Access Journals (Sweden)

    Manuel C Olma

    2013-06-01

    Full Text Available Transcranial direct current stimulation (tDCS is a novel neuromodulatory tool that has seen early transition to clinical trials, although the high variability of these findings necessitates further studies in clincally-relevant populations. The majority of evidence into effects of repeated tDCS is based on research in the human motor system, but it is unclear whether the long-term effects of serial tDCS are motor-specific or transferable to other brain areas. This study aimed to examine whether serial anodal tDCS over the visual cortex can exogenously induce long-term neuroplastic changes in the visual cortex. However, when the visual cortex is affected by a cortical lesion, up-regulated endogenous neuroplastic adaptation processes may alter the susceptibility to tDCS. To this end, motion perception was investigated in the unaffected hemifield of subjects with unilateral visual cortex lesions. Twelve subjects with occipital ischaemic lesions participated in a within-subject, sham-controlled, double-blind study. MRI-registered sham or anodal tDCS (1.5 mA, 20 minutes was applied on five consecutive days over the visual cortex. Motion perception was tested before and after stimulation sessions and at 14- and 28-day follow-up. After a 16-day interval an identical study block with the other stimulation condition (anodal or sham tDCS followed. Serial anodal tDCS over the visual cortex resulted in an improvement in motion perception, a function attributed to MT/V5. This effect was still measurable at 14- and 28-day follow-up measurements. Thus, this may represent evidence for long-term tDCS-induced plasticity and has implications for the design of studies examining the time course of tDCS effects in both the visual and motor systems.

  6. Frontal transcranial direct current stimulation (tDCS) abolishes list-method directed forgetting.

    Science.gov (United States)

    Silas, Jonathan; Brandt, Karen R

    2016-03-11

    It is a point of controversy as to whether directed forgetting effects are a result of active inhibition or a change of context initiated by the instruction to forget. In this study we test the causal role of active inhibition in directed forgetting. By applying cathodal transcranial direct current stimulation (tDCS) over the right prefrontal cortex we suppressed cortical activity commonly associated with inhibitory control. Participants who underwent real brain stimulation before completing the directed forgetting paradigm showed no directed forgetting effects. Conversely, those who underwent sham brain stimulation demonstrated classical directed forgetting effects. We argue that these findings suggest that inhibition is the primary mechanism that results in directed forgetting costs and benefits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A technical guide to tDCS, and related non-invasive brain stimulation tools

    Science.gov (United States)

    Woods, AJ; Antal, A; Bikson, M; Boggio, PS; Brunoni, AR; Celnik, P; Cohen, LG; Fregni, F; Herrmann, CS; Kappenman, ES; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, PC; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, MA

    2015-01-01

    Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. PMID:26652115

  8. The LHCb RICH Upgrade: Development of the DCS and DAQ system.

    CERN Multimedia

    Cavallero, Giovanni

    2018-01-01

    The LHCb experiment is preparing for an upgrade during the second LHC long shutdown in 2019-2020. In order to fully exploit the LHC flavour physics potential with a five-fold increase in the instantaneous luminosity, a trigger-less readout will be implemented. The RICH detectors will require new photon detectors and a brand new front-end electronics. The status of the integration of the RICH photon detector modules with the MiniDAQ, the prototype of the upgraded LHCb readout architecture, has been reported. The development of the prototype of the RICH Upgrade Experiment Control System, integrating the DCS and DAQ partitions in a single FSM, has been described. The status of the development of the RICH Upgrade Inventory, Bookkeeping and Connectivity database has been reported as well.

  9. Research on engineering simulator for function validating of DCS in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Liu Pengfei; Lin Meng; Hou Dong; Yang Yanhua; Chen Zhi

    2009-01-01

    An engineering simulator for the function validating of Distributed Control System in Nuclear Power Plant (NPP) was developed in this paper.In the engineering simulator, the thermal-hydraulics was modeled by Relap5, the main control system of the NPP was modeled by Matlab/Simulink, the database was built by MySQL, and the control panel was developed by the Visual Studio. NET.Data acquisition system was used to realize the real-time communication between the simulator and the real Distributed Control System in the NPP. The validating results show that the simulator can meet the requirements of validating the hardware and logic control system of DCS in NPP. (authors)

  10. On the importance of electrode parameters for shaping electric field patterns generated by tDCS

    DEFF Research Database (Denmark)

    B. Saturnino, Guilherme; Antunes, André; Thielscher, Axel

    2015-01-01

    Transcranial direct current stimulation (tDCS) uses electrode pads placed on the head to deliver weak direct current to the brain and modulate neuronal excitability. The effects depend on the intensity and spatial distribution of the electric field. This in turn depends on the geometry and electric...... electrode modeling influences the calculated electric field in the brain. We take into account electrode shape, size, connector position and conductivities of different electrode materials (including saline solutions and electrode gels). These factors are systematically characterized to demonstrate...... their impact on the field distribution in the brain. The goals are to assess the effect of simplified electrode models; and to develop practical rules-of-thumb to achieve a stronger stimulation of the targeted brain regions underneath the electrode pads. We show that for standard rectangular electrode pads...

  11. Conventions and Institutional Logics

    DEFF Research Database (Denmark)

    Westenholz, Ann

    Two theoretical approaches – Conventions and Institutional Logics – are brought together and the similarities and differences between the two are explored. It is not the intention to combine the approaches, but I would like to open both ‘boxes’ and make them available to each other with the purpose...... of creating a space for dialog. Both approaches were developed in the mid-1980s as a reaction to rational-choice economic theory and collectivistic sociological theory. These two theories were oversimplifying social life as being founded either in actor-micro level analyses or in structure-macro level...... analyses. The theoretical quest of both Conventions and Institutional Logics has been to understand the increasing indeterminacy, uncertainty and ambiguity in people’s lives where a sense of reality, of value, of moral, of feelings is not fixed. Both approaches have created new theoretical insights...

  12. Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: Evidence from transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk

    2017-02-01

    Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Can tDCS enhance item-specific effects and generalization after linguistically motivated aphasia therapy for verbs?

    NARCIS (Netherlands)

    de Aguiar, Vania; Bastiaanse, Roelien; Capasso, Rita; Gandolfi, Marialuisa; Smania, Nicola; Rossi, Giorgio; Miceli, Gabriele

    2015-01-01

    Background: Aphasia therapy focusing on abstract properties of language promotes both item-specific effects and generalization to untreated materials. Neuromodulation with transcranial Direct Current Stimulation (tDCS) has been shown to enhance item-specific improvement, but its potential to enhance

  14. Left prefrontal neuronavigated electrode localization in tDCS : 10–20 EEG system versus MRI-guided neuronavigation

    NARCIS (Netherlands)

    De Witte, Sara; Klooster, Debby; Dedoncker, Josefien; Duprat, Romain; Remue, Jonathan; Baeken, Chris

    2018-01-01

    Transcranial direct current stimulation (tDCS) involves positioning two electrodes at specifically targeted locations on the human scalp. In neuropsychiatric research, the anode is often placed over the left dorsolateral prefrontal cortex (DLPFC), while the cathode is positioned over a contralateral

  15. tDCS and Robotics on Upper Limb Stroke Rehabilitation: Effect Modification by Stroke Duration and Type of Stroke.

    Science.gov (United States)

    Straudi, Sofia; Fregni, Felipe; Martinuzzi, Carlotta; Pavarelli, Claudia; Salvioli, Stefano; Basaglia, Nino

    2016-01-01

    Objective. The aim of this exploratory pilot study is to test the effects of bilateral tDCS combined with upper extremity robot-assisted therapy (RAT) on stroke survivors. Methods. We enrolled 23 subjects who were allocated to 2 groups: RAT + real tDCS and RAT + sham-tDCS. Each patient underwent 10 sessions (5 sessions/week) over two weeks. Outcome measures were collected before and after treatment: (i) Fugl-Meyer Assessment-Upper Extremity (FMA-UE), (ii) Box and Block Test (BBT), and (iii) Motor Activity Log (MAL). Results. Both groups reported a significant improvement in FMA-UE score after treatment (p robotics on motor function. Patients with chronic and subcortical stroke benefited more from the treatments than patients with acute and cortical stroke, who presented very small changes. Conclusion. The additional use of bilateral tDCS to RAT seems to have a significant beneficial effect depending on the duration and type of stroke. These results should be verified by additional confirmatory studies.

  16. Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study.

    Science.gov (United States)

    Yavari, Fatemeh; Mahdavi, Shirin; Towhidkhah, Farzad; Ahmadi-Pajouh, Mohammad-Ali; Ekhtiari, Hamed; Darainy, Mohammad

    2016-04-01

    Despite several pieces of evidence, which suggest that the human brain employs internal models for motor control and learning, the location of these models in the brain is not yet clear. In this study, we used transcranial direct current stimulation (tDCS) to manipulate right cerebellar function, while subjects adapt to a visuomotor task. We investigated the effect of this manipulation on the internal forward and inverse models by measuring two kinds of behavior: generalization of training in one direction to neighboring directions (as a proxy for inverse models) and localization of the hand position after movement without visual feedback (as a proxy for forward model). The experimental results showed no effect of cerebellar tDCS on generalization, but significant effect on localization. These observations support the idea that the cerebellum is a possible brain region for internal forward, but not inverse model formation. We also used a realistic human head model to calculate current density distribution in the brain. The result of this model confirmed the passage of current through the cerebellum. Moreover, to further explain some observed experimental results, we modeled the visuomotor adaptation process with the help of a biologically inspired method known as population coding. The effect of tDCS was also incorporated in the model. The results of this modeling study closely match our experimental data and provide further evidence in line with the idea that tDCS manipulates FM's function in the cerebellum.

  17. Manado Convention Centre (Megastructures)

    OpenAIRE

    Anggianto, Rio M; Rate, Johannes Van

    2013-01-01

    Proyek Manado Convention Center ini pada dasarnya merupakan wadah atau sarana komunikasi antara dua pihak dengan penerapkan berbagai metode komunikasi langsung tatap muka baik itu dari perorangan terhadap kelompok, kelompok terhadap kelompok atau kelompok terhadap masyarakat. Dan pada era kini hal ini menjadi suatu kebutuhan yang dianganggap penting. Kota Manado seringkali menjadi tuan rumah suatu konverensi dengan jumlah peserta yang tergolong besar karena cakupannya sampai manca negara....

  18. The conventional quark picture

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1976-01-01

    For baryons, mesons and deep inelastic phenomena the ideas and the problems of the conventional quark picture are pointed out. All observed baryons fit in three SU(3)-multiplets which cluster into larger SU(6)-multiplets. No mesons are known which have quantum numbers inconsistent with belonging to a SU(3) nonet or octet. The deep inelastic phenomena are described in terms of six structure functions of the proton. (BJ) [de

  19. tDCS Over DLPFC Leads to Less Utilitarian Response in Moral-Personal Judgment

    Directory of Open Access Journals (Sweden)

    Haoli Zheng

    2018-03-01

    Full Text Available The profound nature of moral judgment has been discussed and debated for centuries. When facing the trade-off between pursuing moral rights and seeking better consequences, most people make different moral choices between two kinds of dilemmas. Such differences were explained by the dual-process theory involving an automatic emotional response and a controlled application of utilitarian decision-rules. In neurocognitive studies, the bilateral dorsolateral prefrontal cortex (DLPFC has been demonstrated to play an important role in cognitive “rational” control processes in moral dilemmas. However, the profile of results across studies is not entirely consistent. Although one transcranial magnetic stimulation (TMS study revealed that disrupting the right DLPFC led to less utilitarian responses, other TMS studies indicated that inhibition of the right DLPFC led to more utilitarian choices. Moreover, the right temporoparietal junction (TPJ is essential for its function of integrating belief and intention in moral judgment, which is related to the emotional process according to the dual-process theory. Relatively few studies have reported the causal relationship between TPJ and participants' moral responses, especially in moral dilemmas. In the present study, we aimed to demonstrate a direct link between the neural and behavioral results by application of transcranial direct current stimulation (tDCS in the bilateral DLPFC or TPJ of our participants. We observed that activating the right DLPFC as well as inhibiting the left DLPFC led to less utilitarian judgments, especially in moral-personal conditions, indicating that the right DLPFC plays an essential role, not only through its function of moral reasoning but also through its information integrating process in moral judgments. It was also revealed that altering the excitability of the bilateral TPJ using tDCS negligibly altered the moral response in non-moral, moral-impersonal and moral

  20. Consideration of Individual Brain Geometry and Anisotropy on the Effect of tDCS

    Directory of Open Access Journals (Sweden)

    Mohsen Mosayebi Samani

    2017-12-01

    Full Text Available Introduction: The response variability between subjects, which is one of the fundamental challenges facing transcranial direct current stimulation (tDCS, can be investigated by understanding how the current is distributed through the brain. This understanding can be obtained by means of computational methods utilizing finite element (FE models. Materials and Methods: In this study, the effect of realistic geometry and white matter anisotropy on the head electrical current density intensity (CDI distribution was measured using a magnetic resonance imaging (MRI-derived FE model at the whole brain, below electrodes, and cellular levels. Results: The results revealed that on average, the real geometry changes the CDI in gray matter and the WM by 29% and 55%, respectively. In addition, WM anisotropy led to an 8% and 36% change of CDI across GM and WM, respectively. The results indicated that for this electrode configuration, the maximum CDI occurs not below the electrode, but somewhere between the electrodes, and its locus varies greatly between individuals.  In addition, by investigating the effect of current density components on cellular excitability, significant individual differences in the level of excitability were detected. Conclusion: Accordingly, consideration of the real geometry in computational modeling is vital. In addition, WM anisotropy does not significantly influence the CDI on the gray matter surface, however, it alters the CDI inside the brain; therefore, it can be taken into account, especially, when stimulation of brain’s internal regions is proposed. Finally, to predict the outcome result of tDCS, the examination of its effect at the cellular level is of great importance.

  1. tDCS Over DLPFC Leads to Less Utilitarian Response in Moral-Personal Judgment.

    Science.gov (United States)

    Zheng, Haoli; Lu, Xinbo; Huang, Daqiang

    2018-01-01

    The profound nature of moral judgment has been discussed and debated for centuries. When facing the trade-off between pursuing moral rights and seeking better consequences, most people make different moral choices between two kinds of dilemmas. Such differences were explained by the dual-process theory involving an automatic emotional response and a controlled application of utilitarian decision-rules. In neurocognitive studies, the bilateral dorsolateral prefrontal cortex (DLPFC) has been demonstrated to play an important role in cognitive "rational" control processes in moral dilemmas. However, the profile of results across studies is not entirely consistent. Although one transcranial magnetic stimulation (TMS) study revealed that disrupting the right DLPFC led to less utilitarian responses, other TMS studies indicated that inhibition of the right DLPFC led to more utilitarian choices. Moreover, the right temporoparietal junction (TPJ) is essential for its function of integrating belief and intention in moral judgment, which is related to the emotional process according to the dual-process theory. Relatively few studies have reported the causal relationship between TPJ and participants' moral responses, especially in moral dilemmas. In the present study, we aimed to demonstrate a direct link between the neural and behavioral results by application of transcranial direct current stimulation (tDCS) in the bilateral DLPFC or TPJ of our participants. We observed that activating the right DLPFC as well as inhibiting the left DLPFC led to less utilitarian judgments, especially in moral-personal conditions, indicating that the right DLPFC plays an essential role, not only through its function of moral reasoning but also through its information integrating process in moral judgments. It was also revealed that altering the excitability of the bilateral TPJ using tDCS negligibly altered the moral response in non-moral, moral-impersonal and moral-personal dilemmas

  2. Self-Administered Domiciliary tDCS Treatment for Tinnitus: A Double-Blind Sham-Controlled Study.

    Directory of Open Access Journals (Sweden)

    Petteri Hyvärinen

    Full Text Available Transcranial direct current stimulation (tDCS has shown potential for providing tinnitus relief, although positive effects have usually been observed only during a short time period after treatment. In recent studies the focus has turned from one-session experiments towards multi-session treatment studies investigating long-term outcomes with double-blinded and sham-controlled study designs. Traditionally, tDCS has been administered in a clinical setting by a healthcare professional but in studies involving multiple treatment sessions, often a trade-off has to be made between sample size and the amount of labor needed to run the trial. Also, as the number of required visits to the clinic increases, the dropout rate is likely to rise proportionally.The aim of the current study was to find out if tDCS treatment for tinnitus could be patient-administered in a domiciliary setting and whether the results would be comparable to those from in-hospital treatment studies. Forty-three patients with chronic (> 6 months tinnitus were involved in the study, and data on 35 out of these patients were included in final analysis. Patients received 20 minutes of left temporal area anodal (LTA or bifrontal tDCS stimulation (2 mA or sham stimulation (0.3 mA for ten consecutive days. An overall reduction in the main outcome measure, Tinnitus Handicap Inventory (THI, was found (mean change -5.0 points, p < 0.05, but there was no significant difference between active and sham treatment outcomes. Patients found the tDCS treatment easy to administer and they all tolerated it well. In conclusion, self-administered domiciliary tDCS treatment for tinnitus was found safe and feasible and gave outcome results similar to recent randomized controlled long-term treatment trials. The results suggest better overall treatment response-as measured by THI-with domiciliary treatment than with in-hospital treatment, but this advantage is not related to the tDCS variant. The study

  3. Transcranial direct current stimulation (tDCS) and its influence on analgesics effectiveness in patients suffering from migraine headache.

    Science.gov (United States)

    Przeklasa-Muszyńska, Anna; Kocot-Kępska, Magdalena; Dobrogowski, Jan; Wiatr, Maciej; Mika, Joanna

    2017-08-01

    Headache is one of the most common conditions troubling nearly 45% of the world's population. Migraine headache itself, being more common among women, affects 7-18% of people. As much as 20-30% of the population report accompanying aura and neurological symptoms. In many cases, migraine headache can be effectively treated with suitably selected pharmacotherapies which include drugs used in symptomatic treatment. Frequent occurrence of the condition is treated with prophylaxis, which often fails. Neuromodulating methods are part of the multidirectional treatment and they may be valuable complement to pharmacotherapy. Our study evaluates the impact of the transcranial direct current stimulation (tDCS) on the consumption of drugs and on pain conditions (frequency, duration, intensity). We recruited 50 patients with migraine headache (30 with aura, 20 without aura) refractory to pharmacological therapy. In 30 patients (18 with aura, 12 without aura) previous unsatisfactory treatment was supplemented with tDCS performed tenfold. 20 patients (12 with aura, 8 without aura) from a control group were treated with pharmacological methods The observation continued for 30 days after the stimulation. After tDCS, a reduction in the consumption of analgesics and triptans was reported. Additionally, we monitored pain intensity decrease during pain episodes, duration of episodes and the number of pain days. The subjective assessment of pain reduction in migraine patients encompassed 36-40% after tDCS much more effective in comparison to group with only pharmacotherapy (10-12.5%). The study suggests that tDCS may be safe and useful clinical tool in migraine prophylaxis and treatment. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Site-dependent effects of tDCS uncover dissociations in the communication network underlying the processing of visual search.

    Science.gov (United States)

    Ball, Keira; Lane, Alison R; Smith, Daniel T; Ellison, Amanda

    2013-11-01

    The right posterior parietal cortex (rPPC) and the right frontal eye field (rFEF) form part of a network of brain areas involved in orienting spatial attention. Previous studies using transcranial magnetic stimulation (TMS) have demonstrated that both areas are critically involved in the processing of conjunction visual search tasks, since stimulation of these sites disrupts performance. This study investigated the effects of long term neuronal modulation to rPPC and rFEF using transcranial direct current stimulation (tDCS) with the aim of uncovering sharing of these resources in the processing of conjunction visual search tasks. Participants completed four blocks of conjunction search trials over the course of 45 min. Following the first block they received 15 min of either cathodal or anodal stimulation to rPPC or rFEF, or sham stimulation. A significant interaction between block and stimulation condition was found, indicating that tDCS caused different effects according to the site (rPPC or rFEF) and type of stimulation (cathodal, anodal, or sham). Practice resulted in a significant reduction in reaction time across the four blocks in all conditions except when cathodal tDCS was applied to rPPC. The effects of cathodal tDCS over rPPC are subtler than those seen with TMS, and no effect of tDCS was evident at rFEF. This suggests that rFEF has a more transient role than rPPC in the processing of conjunction visual search and is robust to longer-term methods of neuro-disruption. Our results may be explained within the framework of functional connectivity between these, and other, areas. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. DCS upgrades for nuclear power plants: Saving money and reducing risk through virtual-stimulation control system checkout

    International Nuclear Information System (INIS)

    McKim, G.; Yeager, M.; Weirich, C.

    2006-01-01

    Nuclear power plant control systems of 1970's vintage have reached the end of their life: reliability is poor and spare parts are hard to come by. At First Energy Perry station, two costly feedwater system trips caused by an ailing analog control system led to the decision to replace it with a modern Foxboro I/A-series Distributed Control System. The simulator was also upgraded using the Virtual-Stim simulation of I/A, called FSIM. Virtual-Stim simulation allows the configuration and graphics from the plant to be downloaded onto the simulator as-is, using the same tools and operator interface as the plant, without imprecise translations, conversions, or other emulation. Advances in simulation technology and market forces have led to an open architecture design, allowing FSIM to be 'bridged' to Perry's existing Opensim simulator process model. This appears to be an industry-wide trend as more control system vendors offer Virtual Stimulation solutions for connection to third-party simulation products. Taking a cue from First Energy's Sammis Station FSIM simulator projects, the Perry simulator was used for dedicated control verification and tuning. Preventing forced outages caused by control configuration errors can result in enormous savings, and the simulator is now required to precede any plant modifications rather than just a training tool that lags the plant. This testing revealed several surprising results for a relatively straightforward control strategy, showing that simulator-based testing will be even more crucial in the future as the remain-der of the balance of plant is migrated to digital control. (author)

  6. Strategic interaction and conventions

    Directory of Open Access Journals (Sweden)

    Espinosa, María Paz

    2012-03-01

    Full Text Available The scope of the paper is to review the literature that employs coordination games to study social norms and conventions from the viewpoint of game theory and cognitive psychology. We claim that those two alternative approaches are in fact complementary, as they provide different insights to explain how people converge to a unique system of self-fulfilling expectations in presence of multiple, equally viable, conventions. While game theory explains the emergence of conventions relying on efficiency and risk considerations, the psychological view is more concerned with frame and labeling effects. The interaction between these alternative (and, sometimes, competing effects leads to the result that coordination failures may well occur and, even when coordination takes place, there is no guarantee that the convention eventually established will be the most efficient.

    El objetivo de este artículo es presentar la literatura que emplea los juegos de coordinación para el estudio de normas y convenciones sociales, que se han analizado tanto desde el punto de vista de la teoría de juegos como de la psicología cognitiva. Argumentamos en este trabajo que estos dos enfoques alternativos son en realidad complementarios, dado que ambos contribuyen al entendimiento de los procesos mediante los cuales las personas llegan a coordinarse en un único sistema de expectativas autorrealizadas, en presencia de múltiples convenciones todas ellas igualmente viables. Mientras que la teoría de juegos explica la aparición de convenciones basándose en argumentos de eficiencia y comportamientos frente al riesgo, el enfoque de la psicología cognitiva utiliza en mayor medida consideraciones referidas al entorno y naturaleza de las decisiones. La interacción entre estos efectos diferentes (y en ocasiones, rivales desemboca con frecuencia en fallos de coordinación y, aun cuando la coordinación se produce, no hay garantía de que la convención en vigor sea la m

  7. Digitization of conventional radiographs

    International Nuclear Information System (INIS)

    Wenz, W.; Buitrago-Tellez, C.; Blum, U.; Hauenstein, K.H.; Gufler, H.; Meyer, E.; Ruediger, K.

    1992-01-01

    The diagnostic value of a digitization system for analogue films based on a charge-coupled-device (CCD) scanner with adjustable resolution of 2.5 or 5 lp/mm was assessed. Some 110 skeletal radiographs, 50 contrast studies, including 25 of patients with Crohn's disease, and 70 abdominal plain films before and after successful lithotripsy for renal stones were digitized. Receiver operating characteristic (ROC) studies showed improved detection of cortical and trabecular defects with contrast-optimized digitized films. Edge enhancement algorithms yielded no additional information. Inflammatory lesions of Crohn's disease were detected equally well by conventional films and digitized images. A statistically significant improvement (p [de

  8. Conventional RF system design

    International Nuclear Information System (INIS)

    Puglisi, M.

    1994-01-01

    The design of a conventional RF system is always complex and must fit the needs of the particular machine for which it is planned. It follows that many different design criteria should be considered and analyzed, thus exceeding the narrow limits of a lecture. For this reason only the fundamental components of an RF system, including the generators, are considered in this short seminar. The most common formulas are simply presented in the text, while their derivations are shown in the appendices to facilitate, if desired, a more advanced level of understanding. (orig.)

  9. Conventional magnets. Pt. 1

    International Nuclear Information System (INIS)

    Marks, N.

    1994-01-01

    The design and construction of conventional, steel-cored, direct-current magnets are discussed. Laplace's equation and the associated cylindrical harmonic solutions in two dimensions are established. The equations are used to define the ideal pole shapes and required excitation for dipole, quadrupole and sextupole magnets. Standard magnet geometries are then considered and criteria determining the coil design are presented. The use of codes for predicting flux density distributions and the iterative techniques used for pole face design are then discussed. This includes a description of the use of two-dimensional codes to generate suitable magnet end geometries. Finally, standard constructional techniques for cores and coils are described. (orig.)

  10. The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions.

    Science.gov (United States)

    Ho, Kerrie-Anne; Taylor, Janet L; Chew, Taariq; Gálvez, Verònica; Alonzo, Angelo; Bai, Siwei; Dokos, Socrates; Loo, Colleen K

    2016-01-01

    Current density is considered an important factor in determining the outcomes of tDCS, and is determined by the current intensity and electrode size. Previous studies examining the effect of these parameters on motor cortical excitability with small sample sizes reported mixed results. This study examined the effect of current intensity (1 mA, 2 mA) and electrode size (16 cm(2), 35 cm(2)) on motor cortical excitability over single and repeated tDCS sessions. Data from seven studies in 89 healthy participants were pooled for analysis. Single-session data were analyzed using mixed effects models and repeated-session data were analyzed using mixed design analyses of variance. Computational modeling was used to examine the electric field generated. The magnitude of increases in excitability after anodal tDCS was modest. For single-session tDCS, the 35 cm(2) electrodes produced greater increases in cortical excitability compared to the 16 cm(2) electrodes. There were no differences in the magnitude of cortical excitation produced by 1 mA and 2 mA tDCS. The repeated-sessions data also showed that there were greater increases in excitability with the 35 cm(2) electrodes. Further, repeated sessions of tDCS with the 35 cm(2) electrodes resulted in a cumulative increase in cortical excitability. Computational modeling predicted higher electric field at the motor hotspot for the 35 cm(2) electrodes. 2 mA tDCS does not necessarily produce larger effects than 1 mA tDCS in healthy participants. Careful consideration should be given to the exact positioning, size and orientation of tDCS electrodes relative to cortical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia.

    Science.gov (United States)

    Galletta, Elizabeth E; Cancelli, Andrea; Cottone, Carlo; Simonelli, Ilaria; Tecchio, Franca; Bikson, Marom; Marangolo, Paola

    2015-01-01

    Although pilot trials of transcranial direct current stimulation (tDCS) in aphasia are encouraging, protocol optimization is needed. Notably, it has not yet been clarified which of the varied electrode montages investigated is the most effective in enhancing language recovery. To consider and contrast the predicted brain current flow patterns (electric field distribution) produced by varied 1×1 tDCS (1 anode, 1 cathode, 5 × 7 cm pad electrodes) montages used in aphasia clinical trials. A finite element model of the head of a single left frontal stroke patient was developed in order to study the pattern of the cortical EF magnitude and inward/outward radial EF under five different electrode montages: Anodal-tDCS (A-tDCS) over the left Wernicke's area (Montage A) and over the left Broca's area (Montage B); Cathodal tDCS (C-tDCS) over the right homologue of Wernicke's area (Montage C), and of Broca's area (Montage D), where for all montages A-D the "return" electrode was placed over the supraorbital contralateral forehead; bilateral stimulation with A-tDCS over the left Broca's and CtDCS over the right Broca's homologue (Montage E). In all cases, the "return" electrode over the contralesional supraorbital forehead was not inert and influenced the current path through the entire brain. Montage B, although similar to montage D in focusing the current in the perilesional area, exerted the greatest effect over the left perilesional cortex, which was even stronger in montage E. The position and influence of both electrodes must be considered in the design and interpretation of tDCS clinical trials for aphasia. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Test-retest reliability of prefrontal transcranial Direct Current Stimulation (tDCS) effects on functional MRI connectivity in healthy subjects.

    Science.gov (United States)

    Wörsching, Jana; Padberg, Frank; Helbich, Konstantin; Hasan, Alkomiet; Koch, Lena; Goerigk, Stephan; Stoecklein, Sophia; Ertl-Wagner, Birgit; Keeser, Daniel

    2017-07-15

    Transcranial Direct Current Stimulation (tDCS) of the prefrontal cortex (PFC) can be used for probing functional brain connectivity and meets general interest as novel therapeutic intervention in psychiatric and neurological disorders. Along with a more extensive use, it is important to understand the interplay between neural systems and stimulation protocols requiring basic methodological work. Here, we examined the test-retest (TRT) characteristics of tDCS-induced modulations in resting-state functional-connectivity MRI (RS fcMRI). Twenty healthy subjects received 20minutes of either active or sham tDCS of the dorsolateral PFC (2mA, anode over F3 and cathode over F4, international 10-20 system), preceded and ensued by a RS fcMRI (10minutes each). All subject underwent three tDCS sessions with one-week intervals in between. Effects of tDCS on RS fcMRI were determined at an individual as well as at a group level using both ROI-based and independent-component analyses (ICA). To evaluate the TRT reliability of individual active-tDCS and sham effects on RS fcMRI, voxel-wise intra-class correlation coefficients (ICC) of post-tDCS maps between testing sessions were calculated. For both approaches, results revealed low reliability of RS fcMRI after active tDCS (ICC (2,1) = -0.09 - 0.16). Reliability of RS fcMRI (baselines only) was low to moderate for ROI-derived (ICC (2,1) = 0.13 - 0.50) and low for ICA-derived connectivity (ICC (2,1) = 0.19 - 0.34). Thus, for ROI-based analyses, the distribution of voxel-wise ICC was shifted to lower TRT reliability after active, but not after sham tDCS, for which the distribution was similar to baseline. The intra-individual variation observed here resembles variability of tDCS effects in motor regions and may be one reason why in this study robust tDCS effects at a group level were missing. The data can be used for appropriately designing large scale studies investigating methodological issues such as sources of variability and

  13. Evaluation of the effectiveness of transcranial direct current stimulation (tDCS) and psychosensory stimulation through DOCS scale in a minimally conscious subject.

    Science.gov (United States)

    Dimitri, Danilo; De Filippis, Daniela; Galetto, Valentina; Zettin, Marina

    2017-04-01

    The aim of our study was to assess the effectiveness of transcranial direct current stimulation (tDCS) on alertness improvement in a patient in a minimally conscious state (MCS) by means of disorders of consciousness scale combined with psycho-sensory stimulation. The effects of tDCS on muscle hypertonia through the Ashworth scale were also examined. tDCS was performed through a two-channel intra-cephalic stimulator. After stimulation, the patient followed a psychosensory stimulation training. Results pointed out an increase in DOCunit score, as well as an increase in alertness maintenance and an improvement in muscle hypertonia, although a MCS state persisted.

  14. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation

    International Nuclear Information System (INIS)

    Panagopoulos, D. J; Chavdoula, E. D.; Nezis, I. P.; Margaritis, L. H.

    2007-01-01

    In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay '' a well known technique widely used for detecting fragmented DNA in various types of cells'' was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29''43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within ''safety levels'' alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17''20, 2000, pp. 169''175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545''578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of

  15. Electric and Conventional Vehicle Driving Patterns

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Torp, Kristian

    2014-01-01

    The electric vehicle (EV) is an interesting vehicle type that can reduce the dependence on fossil fuels, e.g., by using electricity from wind turbines. A significant disadvantage of EVs is a very limited range, typically less than 200 km. This paper compares EVs to conventional vehicles (CVs...

  16. Anodal Direct Current Stimulation of the Cerebellum Reduces Cerebellar Brain Inhibition but Does Not Influence Afferent Input from the Hand or Face in Healthy Adults.

    Science.gov (United States)

    Doeltgen, Sebastian H; Young, Jessica; Bradnam, Lynley V

    2016-08-01

    The cerebellum controls descending motor commands by outputs to primary motor cortex (M1) and the brainstem in response to sensory feedback. The cerebellum may also modulate afferent input en route to M1 and the brainstem. The objective of this study is to determine if anodal transcranial direct current stimulation (tDCS) to the cerebellum influences cerebellar brain inhibition (CBI), short afferent inhibition (SAI) and trigeminal reflexes (TRs) in healthy adults. Data from two studies evaluating effects of cerebellar anodal and sham tDCS are presented. The first study used a twin coil transcranial magnetic stimulation (TMS) protocol to investigate CBI and combined TMS and cutaneous stimulation of the digit to assess SAI. The second study evaluated effects on trigemino-cervical and trigemino-masseter reflexes using peripheral nerve stimulation of the face. Fourteen right-handed healthy adults participated in experiment 1. CBI was observed at baseline and was reduced by anodal cerebellar DCS only (P < 0.01). There was SAI at interstimulus intervals of 25 and 30 ms at baseline (both P < 0.0001), but cerebellar tDCS had no effect. Thirteen right-handed healthy adults participated in experiment 2. Inhibitory reflexes were evoked in the ipsilateral masseter and sternocleidomastoid muscles. There was no effect of cerebellar DCS on either reflex. Anodal DCS reduced CBI but did not change SAI or TRs in healthy adults. These results require confirmation in individuals with neurological impairment.

  17. Stimulating the Right Temporoparietal Junction with tDCS Decreases Deception in Moral Hypocrisy and Unfairness

    Directory of Open Access Journals (Sweden)

    Honghong Tang

    2017-11-01

    Full Text Available Self-centered and other-regarding concerns play important roles in decisions of deception. To investigate how these two motivations affect deception in fairness related moral hypocrisy, we modulated the brain activity in the right temporoparietal junction (rTPJ, the key region for decision making involved in self-centered and other-regarding concerns. After receiving brain stimulation with transcranial direct current stimulation (tDCS, participants finished a modified dictator game. In the game, they played as proposers to make allocations between themselves and recipients and had a chance to deceive by misreporting their totals for allocations. Results show that deception in moral hypocrisy was decreased after anodal stimulation than sham and cathodal stimulation, only when participants know that their reported totals (appearing fair would be revealed to recipients rather than being unrevealed. Anodal stimulation also increased offers to recipients than cathodal stimulation regardless of the revelation of reported totals. These findings suggest that enhancing the activity of rTPJ decreased deception caused by impression management rather than self-deception in moral hypocrisy and unfairness through facilitating other-regarding concerns and weakening non-material self-centered motivations. They provide causal evidence for the role of rTPJ in both other-regarding concerns and non-material self-centered motivations, shedding light on the way to decrease moral hypocrisy.

  18. The Evaluation and Application Plan Report for the Development of Nuclear Power Plant DCS Using CASE Tools

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.Y.; Moon, H.J.; Yoon, M.H.; Lee, Y.K. [Korea Electric Power Research Institute, Taejon (Korea)

    2000-06-01

    This report contains the evaluation and application plan report for the development of nuclear power plant DCS using CASE tools. In this report, the necessity of using CASE tools is considered and a available CASE environment is suggested. And, also according to the IEEE Std 1209 Recommended Practice for Evaluation and Selection of CASE Tools, their functional and economical evaluation about available commercial CASE tools is performed and described. (author). 6 figs., 3 tabs.

  19. Probing neural mechanisms underlying auditory stream segregation in humans by transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Deike, Susann; Deliano, Matthias; Brechmann, André

    2016-10-01

    One hypothesis concerning the neural underpinnings of auditory streaming states that frequency tuning of tonotopically organized neurons in primary auditory fields in combination with physiological forward suppression is necessary for the separation of representations of high-frequency A and low-frequency B tones. The extent of spatial overlap between the tonotopic activations of A and B tones is thought to underlie the perceptual organization of streaming sequences into one coherent or two separate streams. The present study attempts to interfere with these mechanisms by transcranial direct current stimulation (tDCS) and to probe behavioral outcomes reflecting the perception of ABAB streaming sequences. We hypothesized that tDCS by modulating cortical excitability causes a change in the separateness of the representations of A and B tones, which leads to a change in the proportions of one-stream and two-stream percepts. To test this, 22 subjects were presented with ambiguous ABAB sequences of three different frequency separations (∆F) and had to decide on their current percept after receiving sham, anodal, or cathodal tDCS over the left auditory cortex. We could confirm our hypothesis at the most ambiguous ∆F condition of 6 semitones. For anodal compared with sham and cathodal stimulation, we found a significant decrease in the proportion of two-stream perception and an increase in the proportion of one-stream perception. The results demonstrate the feasibility of using tDCS to probe mechanisms underlying auditory streaming through the use of various behavioral measures. Moreover, this approach allows one to probe the functions of auditory regions and their interactions with other processing stages. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Neurocognitive Effects of Transcranial Direct Current Stimulation in Arithmetic Learning and Performance: A Simultaneous tDCS-fMRI Study.

    Science.gov (United States)

    Hauser, Tobias U; Rütsche, Bruno; Wurmitzer, Karoline; Brem, Silvia; Ruff, Christian C; Grabner, Roland H

    A small but increasing number of studies suggest that non-invasive brain stimulation by means of transcranial direct current stimulation (tDCS) can modulate arithmetic processes that are essential for higher-order mathematical skills and that are impaired in dyscalculic individuals. However, little is known about the neural mechanisms underlying such stimulation effects, and whether they are specific to cognitive processes involved in different arithmetic tasks. We addressed these questions by applying tDCS during simultaneous functional magnetic resonance imaging (fMRI) while participants were solving two types of complex subtraction problems: repeated problems, relying on arithmetic fact learning and problem-solving by fact retrieval, and novel problems, requiring calculation procedures. Twenty participants receiving left parietal anodal plus right frontal cathodal stimulation were compared with 20 participants in a sham condition. We found a strong cognitive and neural dissociation between repeated and novel problems. Repeated problems were solved more accurately and elicited increased activity in the bilateral angular gyri and medial plus lateral prefrontal cortices. Solving novel problems, in contrast, was accompanied by stronger activation in the bilateral intraparietal sulci and the dorsomedial prefrontal cortex. Most importantly, tDCS decreased the activation of the right inferior frontal cortex while solving novel (compared to repeated) problems, suggesting that the cathodal stimulation rendered this region unable to respond to the task-specific cognitive demand. The present study revealed that tDCS during arithmetic problem-solving can modulate the neural activity in proximity to the electrodes specifically when the current demands lead to an engagement of this area. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Good alarm design plays a vital role in successful DCS implementation: Hard learned lessons from petrochemical applications

    International Nuclear Information System (INIS)

    Wilson, C.; Rothenberg, D.

    2006-01-01

    Nuclear operators are eager to update their automation infrastructure, but are apprehensive due to the consequences of failure. The process industries have learned that alarm design is critical to a successful Distributed Control System (DCS) implementation. This paper shares valuable insight into how alarms play a key role in successful management of upsets, help focus operator attention, and supply critical information during periods of high stress. (authors)

  2. Boosting Memory by tDCS to Frontal or Parietal Brain Regions? A Study of the Enactment Effect Shows No Effects for Immediate and Delayed Recognition

    Directory of Open Access Journals (Sweden)

    Beat Meier

    2018-06-01

    Full Text Available Boosting memory with transcranial direct current stimulation (tDCS seems to be an elegant way to optimize learning. Here we tested whether tDCS to the left dorsolateral prefrontal cortex or to the left posterior parietal cortex would boost recognition memory in general and/or particularly for action phrases enacted at study. During study, 48 young adults either read or enacted simple action phrases. Memory for the action phrases was assessed after a retention interval of 45 min and again after 7-days to investigate the long-term consequences of brain stimulation. The results showed a robust enactment effect in both test sessions. Moreover, the decrease in performance was more pronounced for reading than for enacting the phrases at study. However, tDCS did not reveal any effect on subsequent recognition memory performance. We conclude that memory benefits of tDCS are not easily replicated. In contrast, enactment at study reliably boosts subsequent memory.

  3. ESD and the Rio Conventions

    Science.gov (United States)

    Sarabhai, Kartikeya V.; Ravindranath, Shailaja; Schwarz, Rixa; Vyas, Purvi

    2012-01-01

    Chapter 36 of Agenda 21, a key document of the 1992 Earth Summit, emphasised reorienting education towards sustainable development. While two of the Rio conventions, the Convention on Biological Diversity (CBD) and the United Nations Framework Convention on Climate Change (UNFCCC), developed communication, education and public awareness (CEPA)…

  4. The Effectiveness of Transcranial Direct Current Stimulation (tDCS on Working Memory in Patients with Major Depression

    Directory of Open Access Journals (Sweden)

    Mahboube Ebadi

    2017-08-01

    Full Text Available Abstract Background: The aim of this study was to evaluate the effectiveness of of transcranial direct current stimulation (tDCS on working memory in patients with major depression. Materials and Methods: The research method was quasi-experimental with pretest and post-test and follow-up with control group. The research population comprised female outpatient referrals to private psychiatric centers and psychological counseling centers in Tehran in the first half of 2016, They had received a diagnosis of depression by a psychiatrist at least once. Of these, 30 females were selected as a sample group with convenience sampling method and based on the criteria of inclusion and exclusion and were divided randomly into two groups , experimental (n = 15 and control (n = 15 group. The experimental group received transcranial direct current stimulation (tDCS in 10 sessions, While this intervention was not provided to the control group. The data were collected by N-BACK. Analysis of variance with repeated measurments was used to test the research hypothesis. Results: The results showed that transcranial direct current stimulation (tDCS had a significant effect on increasing working memory and the impact will continue to follow up. Conclusion: Therefore, this approach can be used to improve working memory in people with major depression.

  5. Anodal tDCS Over the Left DLPFC Did Not Affect the Encoding and Retrieval of Verbal Declarative Information

    Directory of Open Access Journals (Sweden)

    Gabriel A. de Lara

    2017-08-01

    Full Text Available Several studies imply that anodal transcranial direct current stimulation (tDCS over the left dorsolateral prefrontal cortex (DLPFC can modulate the formation of verbal episodic memories. The aim of this study was to test if tDCS through a multi-electrode Laplacian montage over the left DLPFC could differentially modulate declarative memory performance depending on the application phase. Two groups of healthy participants (n = 2 × 15 received 1 mA anodal or sham stimulation for 20 min during the encoding or during the recall phase on a delayed cued-recall, using a randomized, double-blinded, repeated-measures experimental design. Memory performance was assessed at two time points: 10 min and 24 h after learning. We found no significant difference between anodal and sham stimulation with regard to the memory scores between conditions (stimulation during encoding or recall or between time points, suggesting that anodal tDCS over the left DLPFC with these stimulation parameters had no effect on the encoding and the consolidation of associative verbal content.

  6. Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS.

    Science.gov (United States)

    Mayseless, N; Shamay-Tsoory, S G

    2015-04-16

    Creativity is the production of novel ideas that have value. Previous research indicated that while regions in the right hemisphere are implicated in the production of new ideas, damage to the left inferior frontal gyrus (IFG) is associated with increased creativity, indicating that the left IFG damage may have a "releasing" effect on creativity. To examine this, in the present study we used transcranial direct current stimulation (tDCS) to modulate activity of the right and the left IFG. In the first experiment we show that whereas anodal tDCS over the right IFG coupled with cathodal tDCS over the left IFG increases creativity as measured by a verbal divergent thinking task, the reverse stimulation does not affect creative production. To further confirm that only altering the balance between the two hemispheres is crucial in modulating creativity, in the second experiment we show that stimulation targeting separately the left IFG (cathodal stimulation) or the right IFG (anodal stimulation) did not result in changes in creativity as measured by verbal divergent thinking. These findings support the balance hypothesis, according to which verbal creativity requires a balance of activation between the right and the left frontal lobes, and more specifically, between the right and the left IFG. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Controlling the Anchoring Effect through Transcranial Direct Current Stimulation (tDCS to the Right Dorsolateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Jianbiao Li

    2017-06-01

    Full Text Available Selective accessibility mechanisms indicate that anchoring effects are results of selective retrieval of working memory. Neuroimaging studies have revealed that the right dorsolateral prefrontal cortex (DLPFC is closely related to memory retrieval and performance. However, no research has investigated the effect of changing the cortical excitability in right DLPFC on anchoring effects. Transcranial direct current stimulation (tDCS can modulate the excitability of the human cerebral cortex, while anodal and cathodal tDCS are postulated to increase or decrease cortical activity, respectively. In this study, we used tDCS to investigate whether effects of increased or decreased right DLPFC excitability influence anchoring effects in willingness to pay (WTP experiments. Ninety participants were first randomly assigned to receive either anodal, cathodal, or sham stimulation of 15 min, then they performed a valuation task regarding WTP. The results showed that anchoring effects were negatively related to activities of right DLPFC: the anodal stimulation diminished anchoring effects while the cathodal stimulation increased anchoring effects. These outcomes provide one of the first instances of neural evidence for the role of the right DLPFC in anchoring effects and support psychological explanations of the selective accessibility mechanisms and cognitive sets.

  8. Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: Long-lasting effect.

    Science.gov (United States)

    Filho, Paulo Ricardo Marques; Vercelino, Rafael; Cioato, Stefania Giotti; Medeiros, Liciane Fernandes; de Oliveira, Carla; Scarabelot, Vanessa Leal; Souza, Andressa; Rozisky, Joanna Ripoll; Quevedo, Alexandre da Silva; Adachi, Lauren Naomi Spezia; Sanches, Paulo Roberto S; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2016-01-04

    Neuropathic pain (NP) is a chronic pain modality that usually results of damage in the somatosensory system. NP often shows insufficient response to classic analgesics and remains a challenge to medical treatment. The transcranial direct current stimulation (tDCS) is a non-invasive technique, which induces neuroplastic changes in central nervous system of animals and humans. The brain derived neurotrophic factor plays an important role in synaptic plasticity process. Behavior changes such as decreased locomotor and exploratory activities and anxiety disorders are common comorbidities associated with NP. Evaluate the effect of tDCS treatment on locomotor and exploratory activities, and anxiety-like behavior, and peripheral and central BDNF levels in rats submitted to neuropathic pain model. Rats were randomly divided: Ss, SsS, SsT, NP, NpS, and NpT. The neuropathic pain model was induced by partial sciatic nerve compression at 14 days after surgery; the tDCS treatment was initiated. The animals of treated groups were subjected to a 20 minute session of tDCS, for eight days. The Open Field and Elevated Pluz Maze tests were applied 24 h (phase I) and 7 days (phase II) after the end of tDCS treatment. The serum, spinal cord, brainstem and cerebral cortex BDNF levels were determined 48 h (phase I) and 8 days (phase II) after tDCS treatment by ELISA. The chronic constriction injury (CCI) induces decrease in locomotor and exploratory activities, increases in the behavior-like anxiety, and increases in the brainstem BDNF levels, the last, in phase II (one-way ANOVA/SNK, PtDCS treatment already reverted all these effects induced by CCI (one-way ANOVA/SNK, PtDCS treatment decreased serum and cerebral cortex BDNF levels and it increased these levels in the spinal cord in phase II (one-way ANOVA/SNK, PtDCS reverts behavioral alterations associated to neuropathic pain, indicating possible analgesic and anxiolytic tDCS effects. tDCS treatment induces changes in the BDNF levels

  9. In vivo approaches reveal a key role for DCs in CD4+ T cell activation and parasite clearance during the acute phase of experimental blood-stage malaria.

    Directory of Open Access Journals (Sweden)

    Henrique Borges da Silva

    2015-02-01

    Full Text Available Dendritic cells (DCs are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip, with Plasmodium chabaudi AS (Pc parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.

  10. In vivo approaches reveal a key role for DCs in CD4+ T cell activation and parasite clearance during the acute phase of experimental blood-stage malaria.

    Science.gov (United States)

    Borges da Silva, Henrique; Fonseca, Raíssa; Cassado, Alexandra Dos Anjos; Machado de Salles, Érika; de Menezes, Maria Nogueira; Langhorne, Jean; Perez, Katia Regina; Cuccovia, Iolanda Midea; Ryffel, Bernhard; Barreto, Vasco M; Marinho, Cláudio Romero Farias; Boscardin, Silvia Beatriz; Álvarez, José Maria; D'Império-Lima, Maria Regina; Tadokoro, Carlos Eduardo

    2015-02-01

    Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.

  11. Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions.

    Science.gov (United States)

    Horvath, Jared Cooney; Vogrin, Simon J; Carter, Olivia; Cook, Mark J; Forte, Jason D

    2016-09-01

    Transcranial direct current stimulation (tDCS) uses a weak electric current to modulate neuronal activity. A neurophysiologic outcome measure to demonstrate reliable tDCS modulation at the group level is transcranial magnetic stimulation engendered motor evoked potentials (MEPs). Here, we conduct a study testing the reliability of individual MEP response patterns following a common tDCS protocol. Fourteen participants (7m/7f) each underwent nine randomized sessions of 1 mA, 10 min tDCS (3 anode; 3 cathode; 3 sham) delivered using an M1/orbito-frontal electrode montage (sessions separated by an average of ~5.5 days). Fifteen MEPs were obtained prior to, immediately following and in 5 min intervals for 30 min following tDCS. TMS was delivered at 130 % resting motor threshold using neuronavigation to ensure consistent coil localization. A number of non-experimental variables were collected during each session. At the individual level, considerable variability was seen among different testing sessions. No participant demonstrated an excitatory response ≥20 % to all three anodal sessions, and no participant demonstrated an inhibitory response ≥20 % to all three cathodal sessions. Intra-class correlation revealed poor anodal and cathodal test-retest reliability [anode: ICC(2,1) = 0.062; cathode: ICC(2,1) = 0.055] and moderate sham test-retest reliability [ICC(2,1) = 0.433]. Results also revealed no significant effect of tDCS at the group level. Using this common protocol, we found the effects of tDCS on MEP amplitudes to be highly variable at the individual level. In addition, no significant effects of tDCS on MEP amplitude were found at the group level. Future studies should consider utilizing a more strict experimental protocol to potentially account for intra-individual response variations.

  12. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: Evidence from biparietal tDCS influence on lateralized attention bias.

    Science.gov (United States)

    Benwell, Christopher S Y; Learmonth, Gemma; Miniussi, Carlo; Harvey, Monika; Thut, Gregor

    2015-08-01

    Transcranial direct current stimulation (tDCS) is a well-established technique for non-invasive brain stimulation (NIBS). However, the technique suffers from a high variability in outcome, some of which is likely explained by the state of the brain at tDCS-delivery but for which explanatory, mechanistic models are lacking. Here, we tested the effects of bi-parietal tDCS on perceptual line bisection as a function of tDCS current strength (1 mA vs 2 mA) and individual baseline discrimination sensitivity (a measure associated with intrinsic uncertainty/signal-to-noise balance). Our main findings were threefold. We replicated a previous finding (Giglia et al., 2011) of a rightward shift in subjective midpoint after Left anode/Right cathode tDCS over parietal cortex (sham-controlled). We found this effect to be weak over our entire sample (n = 38), but to be substantial in a subset of participants when they were split according to tDCS-intensity and baseline performance. This was due to a complex, nonlinear interaction between these two factors. Our data lend further support to the notion of state-dependency in NIBS which suggests outcome to depend on the endogenous balance between task-informative 'signal' and task-uninformative 'noise' at baseline. The results highlight the strong influence of individual differences and variations in experimental parameters on tDCS outcome, and the importance of fostering knowledge on the factors influencing tDCS outcome across cognitive domains. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. No evidential value in samples of transcranial direct current stimulation (tDCS) studies of cognition and working memory in healthy populations.

    Science.gov (United States)

    Medina, Jared; Cason, Samuel

    2017-09-01

    A substantial number of studies have been published over the last decade, claiming that transcranial direct current stimulation (tDCS) can influence performance on cognitive tasks. However, there is some skepticism regarding the efficacy of tDCS, and evidence from meta-analyses are mixed. One major weakness of these meta-analyses is that they only examine outcomes in published studies. Given biases towards publishing positive results in the scientific literature, there may be a substantial "file-drawer" of unpublished negative results in the tDCS literature. Furthermore, multiple researcher degrees of freedom can also inflate published p-values. Recently, Simonsohn, Nelson and Simmons (2014) created a novel meta-analytic tool that examines the distribution of significant p-values in a literature, and compares it to expected distributions with different effect sizes. Using this tool, one can assess whether the selected studies have evidential value. Therefore, we examined a random selection of studies that used tDCS to alter performance on cognitive tasks, and tDCS studies on working memory in a recently published meta-analysis (Mancuso et al., 2016). Using a p-curve analysis, we found no evidence that the tDCS studies had evidential value (33% power or greater), with the estimate of statistical power of these studies being approximately 14% for the cognitive studies, and 5% (what would be expected from randomly generated data) for the working memory studies. It is likely that previous tDCS studies are substantially underpowered, and we provide suggestions for future research to increase the evidential value of future tDCS studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of transcranial direct current stimulation (tDCS) over the prefrontal cortex combined with cognitive training for treating schizophrenia: a sham-controlled randomized clinical trial

    OpenAIRE

    Shiozawa, Pedro; Gomes, July Silveira; Ducos, Daniella Valverde; Akiba, Henrique Teruo; Dias, Álvaro Machado; Trevizol, Alisson Paulino; Uchida, Ricardo R.; Orlov, Natasza; Cordeiro, Quirino

    2016-01-01

    Abstract Introduction: We report a transcranial direct current stimulation (tDCS) protocol over the dorsolateral prefrontal cortex (DLPFC) combined with cognitive training in schizophrenia. Method: We assessed psychotic symptoms in nine patients using the Positive and Negative Syndrome Scale (PANSS). All evaluations were scored at baseline, at the end of the intervention protocol, and during a 4-week follow-up. The tDCS protocol consisted of 10 consecutive sessions over 5-day periods. We pl...

  15. Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review.

    Science.gov (United States)

    Horvath, Jared Cooney; Forte, Jason D; Carter, Olivia

    2015-01-01

    Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. tDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI

    Science.gov (United States)

    Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.

    2016-10-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.

  17. Transcranial direct current stimulation (tDCS) in the treatment of depression: Systematic review and meta-analysis of efficacy and tolerability.

    Science.gov (United States)

    Meron, Daniel; Hedger, Nicholas; Garner, Matthew; Baldwin, David S

    2015-10-01

    Transcranial direct current stimulation (tDCS) is a potential alternative treatment option for major depressive episodes (MDE). We address the efficacy and safety of tDCS in MDE. The outcome measures were Hedges' g for continuous depression ratings, and categorical response and remission rates. A random effects model indicated that tDCS was superior to sham tDCS (k=11, N=393, g=0.30, 95% CI=[0.04, 0.57], p=0.027). Adjunctive antidepressant medication and cognitive control training negatively impacted on the treatment effect. The pooled log odds ratios (LOR) for response and remission were positive, but statistically non-significant (response: k=9, LOR=0.36, 95% CI[-0.16, 0.88], p=0.176, remission: k=9, LOR=0.25, 95% CI [-0.42, 0.91], p=0.468). We estimated that for a study to detect the pooled continuous effect (g=0.30) at 80% power (alpha=0.05), a total N of at least 346 would be required (with the total N required to detect the upper and lower bound being 49 and 12,693, respectively). tDCS may be efficacious for treatment of MDE. The data do not support the use of tDCS in treatment-resistant depression, or as an add-on augmentation treatment. Larger studies over longer treatment periods are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Thinking Cap Plus Thinking Zap: tDCS of Frontopolar Cortex Improves Creative Analogical Reasoning and Facilitates Conscious Augmentation of State Creativity in Verb Generation.

    Science.gov (United States)

    Green, Adam E; Spiegel, Katherine A; Giangrande, Evan J; Weinberger, Adam B; Gallagher, Natalie M; Turkeltaub, Peter E

    2017-04-01

    Recent neuroimaging evidence indicates neural mechanisms that support transient improvements in creative performance (augmented state creativity) in response to cognitive interventions (creativity cueing). Separately, neural interventions via tDCS show encouraging potential for modulating neuronal function during creative performance. If cognitive and neural interventions are separately effective, can they be combined? Does state creativity augmentation represent "real" creativity, or do interventions simply yield divergence by diminishing meaningfulness/appropriateness? Can augmenting state creativity bolster creative reasoning that supports innovation, particularly analogical reasoning? To address these questions, we combined tDCS with creativity cueing. Testing a regionally specific hypothesis from neuroimaging, high-definition tDCS-targeted frontopolar cortex activity recently shown to predict state creativity augmentation. In a novel analogy finding task, participants under tDCS formulated substantially more creative analogical connections in a large matrix search space (creativity indexed via latent semantic analysis). Critically, increased analogical creativity was not due to diminished accuracy in discerning valid analogies, indicating "real" creativity rather than inappropriate divergence. A simpler relational creativity paradigm (modified verb generation) revealed a tDCS-by-cue interaction; tDCS further enhanced creativity cue-related increases in semantic distance. Findings point to the potential of noninvasive neuromodulation to enhance creative relational cognition, including augmentation of the deliberate effort to formulate connections between distant concepts. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Wearable functional Near Infrared Spectroscopy (fNIRS and transcranial Direct Current Stimulation (tDCS: Expanding Vistas for Neurocognitive Augmentation

    Directory of Open Access Journals (Sweden)

    Ryan eMcKendrick

    2015-03-01

    Full Text Available Contemporary studies with transcranial direct current stimulation (tDCS provide a growing base of evidence for enhancing cognition through the non-invasive delivery of weak electric currents to the brain. The main effect of tDCS is to modulate cortical excitability depending on the polarity of the applied current. However, the underlying mechanism of neuromodulation is not well understood. A new generation of functional near infrared spectroscopy (fNIRS systems is described that are miniaturized, portable, and include wearable sensors. These developments provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions. The effects of tDCS on complex task performance and the use of fNIRS for monitoring cognitive workload during task performance are described. Also explained is how fNIRS + tDCS can be used simultaneously for assessing spatial working memory. Mobile optical brain imaging is a promising neuroimaging tool that has the potential to complement tDCS for realistic applications in natural settings.

  20. Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke.

    Science.gov (United States)

    Elsner, Bernhard; Kugler, Joachim; Pohl, Marcus; Mehrholz, Jan

    2013-11-15

    Stroke is one of the leading causes of disability worldwide. Functional impairment resulting in poor performance in activities of daily living (ADLs) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance and function after stroke, but a possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability and hence to improve ADL performance and function. To assess the effects of tDCS on generic activities of daily living (ADLs) and motor function in people with stroke. We searched the Cochrane Stroke Group Trials Register (March 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, May 2013), MEDLINE (1948 to May 2013), EMBASE (1980 to May 2013), CINAHL (1982 to May 2013), AMED (1985 to May 2013), Science Citation Index (1899 to May 2013) and four additional databases. In an effort to identify further published, unpublished and ongoing trials, we searched trials registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers. We included only randomised controlled trials (RCTs) and randomised controlled cross-over trials (from which we analysed only the first period as a parallel-group design) that compared tDCS versus control in adults with stroke for improving ADL performance and function. Two review authors independently assessed trial quality (JM and MP) and extracted data (BE and JM). If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. We included 15 studies involving a total of 455 participants. Analysis of six studies involving 326 participants regarding our primary outcome, ADL, showed no evidence of an effect in favour of tDCS at the end of the intervention phase (mean difference (MD) 5.31 Barthel

  1. A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters.

    Science.gov (United States)

    Dedoncker, Josefien; Brunoni, Andre R; Baeken, Chris; Vanderhasselt, Marie-Anne

    2016-01-01

    Research into the effects of transcranial direct current stimulation of the dorsolateral prefrontal cortex on cognitive functioning is increasing rapidly. However, methodological heterogeneity in prefrontal tDCS research is also increasing, particularly in technical stimulation parameters that might influence tDCS effects. To systematically examine the influence of technical stimulation parameters on DLPFC-tDCS effects. We performed a systematic review and meta-analysis of tDCS studies targeting the DLPFC published from the first data available to February 2016. Only single-session, sham-controlled, within-subject studies reporting the effects of tDCS on cognition in healthy controls and neuropsychiatric patients were included. Evaluation of 61 studies showed that after single-session a-tDCS, but not c-tDCS, participants responded faster and more accurately on cognitive tasks. Sub-analyses specified that following a-tDCS, healthy subjects responded faster, while neuropsychiatric patients responded more accurately. Importantly, different stimulation parameters affected a-tDCS effects, but not c-tDCS effects, on accuracy in healthy samples vs. increased current density and density charge resulted in improved accuracy in healthy samples, most prominently in females; for neuropsychiatric patients, task performance during a-tDCS resulted in stronger increases in accuracy rates compared to task performance following a-tDCS. Healthy participants respond faster, but not more accurate on cognitive tasks after a-tDCS. However, increasing the current density and/or charge might be able to enhance response accuracy, particularly in females. In contrast, online task performance leads to greater increases in response accuracy than offline task performance in neuropsychiatric patients. Possible implications and practical recommendations are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs.

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-09-15

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.

  3. CD8+NKT-like cells regulate the immune response by killing antigen-bearing DCs

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-01-01

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8+NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8+NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8+NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8+NKT-like cell development is normal in CD1d−/− mice, which suggests that CD8+NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8+NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8+NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8+NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens. PMID:26369936

  4. DCS - A high flux beamline for time resolved dynamic compression science – Design highlights

    Energy Technology Data Exchange (ETDEWEB)

    Capatina, D., E-mail: capatina@aps.anl.gov; D’Amico, K., E-mail: kdamico@aps.anl.gov; Nudell, J., E-mail: jnudell@aps.anl.gov; Collins, J., E-mail: collins@aps.anl.gov; Schmidt, O., E-mail: oschmidt@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States)

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures. Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm{sup 2}. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm{sup 2}. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.

  5. Dose in conventional radiography

    International Nuclear Information System (INIS)

    Acuna D, E.; Padilla R, Z. P.; Escareno J, E.; Vega C, H. R.

    2011-10-01

    It has been pointed out that medical exposures are the most significant sources of exposure to ionizing radiation for the general population. Inside the medical exposures the most important is the X-ray use for diagnosis, which is by far the largest contribution to the average dose received by the population. From all studies performed in radiology the chest radiography is the most abundant. In an X-ray machine, voltage and current are combined to obtain a good image and a reduce dose, however due to the workload in a radiology service individual dose is not monitored. In order to evaluate the dose due to chest radiography in this work a plate phantom was built according to the ISO recommendations using methylmethacrylate walls and water. The phantom was used in the Imaging department of the Zacatecas General Hospital as a radiology patient asking for a chest study; using thermoluminescent dosimeters, TLD 100 the kerma at the surface entrance was determined. (Author)

  6. Application of the Aarhus Convention

    Directory of Open Access Journals (Sweden)

    Tubić Bojan

    2011-01-01

    Full Text Available Convention on access to information, public participation in decision-making and access to justice in environmental matters (Aarhus Convention has been adopted in 1998 and entered into force three years later. It envisages three elements for strengthening democratic procedures in decision-making: access to information, public participation and access to justice. At the first meeting of the Member States the Aarhus Convention Compliance Committee was founded. The European Union is a party of the Convention and it has implemented the provisions in its legal order. After entering into force of the Convention, several Directives that regulate these issues in the EU have been enacted. Republic of Serbia has ratified the Convention in 2009 and it is currently in the process of its implementation by involving private subjects in decision-making on environmental issues.

  7. Understanding the conventional arms trade

    Science.gov (United States)

    Stohl, Rachel

    2017-11-01

    The global conventional arms trade is worth tens of billions of dollars every year and is engaged in by every country in the world. Yet, it is often difficult to control the legal trade in conventional arms and there is a thriving illicit market, willing to arm unscrupulous regimes and nefarious non-state actors. This chapter examines the international conventional arms trade, the range of tools that have been used to control it, and challenges to these international regimes.

  8. Comparison of Conventional and Semi-Conventional Management ...

    African Journals Online (AJOL)

    Comparison of Conventional and Semi-Conventional Management Systems on the Performance and Carcass Yield of Broiler Chickens. ... TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... Journal Home > Vol 20, No 1 (2018) >. Log in or ...

  9. The effect of the interval-between-sessions on prefrontal transcranial direct current stimulation (tDCS) on cognitive outcomes: a systematic review and meta-analysis.

    Science.gov (United States)

    Dedoncker, Josefien; Brunoni, Andre R; Baeken, Chris; Vanderhasselt, Marie-Anne

    2016-10-01

    Recently, there has been wide interest in the effects of transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) on cognitive functioning. However, many methodological questions remain unanswered. One of them is whether the time interval between active and sham-controlled stimulation sessions, i.e. the interval between sessions (IBS), influences DLPFC tDCS effects on cognitive functioning. Therefore, a systematic review and meta-analysis was performed of experimental studies published in PubMed, Science Direct, and other databases from the first data available to February 2016. Single session sham-controlled within-subject studies reporting the effects of tDCS of the DLPFC on cognitive functioning in healthy controls and neuropsychiatric patients were included. Cognitive tasks were categorized in tasks assessing memory, attention, and executive functioning. Evaluation of 188 trials showed that anodal vs. sham tDCS significantly decreased response times and increased accuracy, and specifically for the executive functioning tasks, in a sample of healthy participants and neuropsychiatric patients (although a slightly different pattern of improvement was found in analyses for both samples separately). The effects of cathodal vs. sham tDCS (45 trials), on the other hand, were not significant. IBS ranged from less than 1 h to up to 1 week (i.e. cathodal tDCS) or 2 weeks (i.e. anodal tDCS). This IBS length had no influence on the estimated effect size when performing a meta-regression of IBS on reaction time and accuracy outcomes in all three cognitive categories, both for anodal and cathodal stimulation. Practical recommendations and limitations of the study are further discussed.

  10. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses-An Application in Ischemic Stroke.

    Science.gov (United States)

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about -15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization.

  11. Culture supernatants of oral cancer cells induce impaired IFN-α production of pDCs partly through the down-regulation of TLR-9 expression.

    Science.gov (United States)

    Han, Nannan; Zhang, Zun; Jv, Houyu; Hu, Jingzhou; Ruan, Min; Zhang, Chenping

    2018-06-05

    The aim of the present study was to investigate whether tumor-derived supernatants down-regulate the immune function of plasmacytoid dendritic cells (pDCs) in oral cancer and the potential molecular mechanisms of this effect. Immunohistochemistry (IHC) and flow cytometry were used to detect tumor-infiltrating and peripheral blood pDCs. MTS and flow cytometry were employed to evaluate the immune response of CD4 + T cells. Real-time PCR and ELISA assays were used to identify TLR-7 and TLR-9 expression, IFN-α production and tumor-secreted soluble cytokines. The proportion of pDCs (0.121%±0.043%) was significantly higher in Oral squamous cell carcinoma (OSCC) samples than in normal tissue (0.023%±0.016%) (P = 0.021). TLR9 mRNA was significantly lower in tumor-infiltrating pDCs and positively correlated to low IFN-α production (r = 0.956; Poral cancer cells negatively regulated TLR9 mRNA expression and the subsequent IFN-α production of pDCs, which inhibited the immune response of CD4 + T cells. The neutralizing antibodies blocking assay showed that the specific inhibitory effect of pDC functionality was associated with the soluble fraction of the oral cancer environment, which is mainly mediated by IL-10 and TGF-β cooperation. Tumor-derived supernatants may impair the function of tumor-infiltrating pDCs, which subsequently decreases the immune response of CD4 + T cells in human oral cancer through TGF-β- and IL-10- dependent mechanisms. Careful manipulation of these impaired pDCs may help develop an important alternative immunotherapy for the treatment of oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Towards a Theory of Convention

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg

    2006-01-01

    Some thirty years ago Lewis published his Convention: A philosophical Study (Lewis 1969). Besides exciting the logical community by providing the seminal analysis work on common knowledge, it also laid the foundations for the formal approach to the study of social conventions by means of game the...

  13. Subcutaneous dissociative conscious sedation (sDCS an alternative method for airway regional blocks: a new approach

    Directory of Open Access Journals (Sweden)

    Javid Mihan J

    2011-10-01

    Full Text Available Abstract Background Predicted difficult airway is a definite indication for awake intubation and spontaneous ventilation. Airway regional blocks which are commonly used to facilitate awake intubation are sometimes impossible or forbidden. On the other hand deep sedation could be life threatening in the case of compromised airway. The aim of this study is evaluating "Subcutaneous Dissociative Conscious Sedation" (sDCS as an alternative method to airway regional blocks for awake intubation. Methods In this prospective, non-randomized study, 30 patients with predicted difficult airway (laryngeal tumors, who were scheduled for direct laryngoscopic biopsy (DLB, underwent "Subcutaneous Dissociative Conscious Sedation" (sDCS exerted by intravenous fentanyl 3-4ug/kg and subcutaneous ketamine 0.6-0.7 mg/kg. The tongue and pharynx were anesthetized with lidocaine spray (4%. 10 minutes after a subcutaneous injection of ketamine direct laryngoscopy was performed. Extra doses of fentanyl 50-100 ug were administered if the patient wasn't cooperative enough for laryngoscopy. Patients were evaluated for hemodynamic stability (heart rate and blood pressure, oxygen saturation (Spo2, patient cooperation (obedient to open the mouth for laryngoscopy and the number of tries for laryngoscopy, patient comfort (remaining moveless, hallucination, nystagmus and salivation (need for aspiration before laryngoscopy. Results Direct laryngoscopy was performed successfully in all patients. One patient needed extra fentanyl and then laryngoscopy was performed successfully on the second try. All patients were cooperative enough during laryngoscopy. Hemodynamic changes more than 20% occurred in just one patient. Oxygen desaturation (spo2 Conclusions Subcutaneous Dissociative Conscious Sedation (sDCS as a new approach to airway is an acceptable and safe method for awake intubation and it can be suggested as a noninvasive substitute of low complication rate for regional airway

  14. Modulating Emotional Experience Using Electrical Stimulation of the Medial-Prefrontal Cortex: A Preliminary tDCS-fMRI Study.

    Science.gov (United States)

    Abend, Rany; Sar-El, Roy; Gonen, Tal; Jalon, Itamar; Vaisvaser, Sharon; Bar-Haim, Yair; Hendler, Talma

    2018-05-09

    Implicit regulation of emotions involves medial-prefrontal cortex (mPFC) regions exerting regulatory control over limbic structures. Diminished regulation relates to aberrant mPFC functionality and psychopathology. Establishing means of modulating mPFC functionality could benefit research on emotion and its dysregulation. Here, we tested the capacity of transcranial direct current stimulation (tDCS) targeting mPFC to modulate subjective emotional states by facilitating implicit emotion regulation. Stimulation was applied concurrently with functional magnetic resonance imaging to validate its neurobehavioral effect. Sixteen participants were each scanned twice, counterbalancing active and sham tDCS application, while undergoing negative mood induction (clips featuring negative vs. neutral contents). Effects of stimulation on emotional experience were assessed using subjective and neural measures. Subjectively, active stimulation led to significant reduction in reported intensity of experienced emotions to negatively valenced (p = 0.005) clips but not to neutral clips (p > 0.99). Active stimulation further mitigated a rise in stress levels from pre- to post-induction (sham: p = 0.004; active: p = 0.15). Neurally, stimulation increased activation in mPFC regions associated with implicit emotion regulation (ventromedial-prefrontal cortex; subgenual anterior-cingulate cortex, sgACC), and in ventral striatum, a core limbic structure (all ps  0.64, ps < 0.018), suggesting individual differences in stimulation responsivity. Results of this study indicate the potential capacity of tDCS to facilitate brain activation in mPFC regions underlying implicit regulation of emotion and accordingly modulate subjective emotional experiences. © 2018 International Neuromodulation Society.

  15. Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation.

    Science.gov (United States)

    Leow, Li-Ann; Marinovic, Welber; Riek, Stephan; Carroll, Timothy J

    2017-01-01

    Neurophysiological and neuroimaging work suggests that the cerebellum is critically involved in sensorimotor adaptation. Changes in cerebellar function alter behaviour when compensating for sensorimotor perturbations, as shown by non-invasive stimulation of the cerebellum and studies involving patients with cerebellar degeneration. It is known, however, that behavioural responses to sensorimotor perturbations reflect both explicit processes (such as volitional aiming to one side of a target to counteract a rotation of visual feedback) and implicit, error-driven updating of sensorimotor maps. The contribution of the cerebellum to these explicit and implicit processes remains unclear. Here, we examined the role of the cerebellum in sensorimotor adaptation to a 30° rotation of visual feedback of hand position during target-reaching, when the capacity to use explicit processes was manipulated by controlling movement preparation times. Explicit re-aiming was suppressed in one condition by requiring subjects to initiate their movements within 300ms of target presentation, and permitted in another condition by requiring subjects to wait approximately 1050ms after target presentation before movement initiation. Similar to previous work, applying anodal transcranial direct current stimulation (tDCS; 1.5mA) to the right cerebellum during adaptation resulted in faster compensation for errors imposed by the rotation. After exposure to the rotation, we evaluated implicit remapping in no-feedback trials after providing participants with explicit knowledge that the rotation had been removed. Crucially, movements were more adapted in these no-feedback trials following cerebellar anodal tDCS than after sham stimulation in both long and short preparation groups. Thus, cerebellar anodal tDCS increased implicit remapping during sensorimotor adaptation, irrespective of preparation time constraints. The results are consistent with the possibility that the cerebellum contributes to the

  16. Resource Allocation in a Frequency Hopping PCS1900/GSM/DCS1800 Type of Network

    DEFF Research Database (Denmark)

    Nielsen, Thomas Toftegaard; Wigard, Jeroen; Michaelsen, Per-Henrik

    1999-01-01

    Resource allocation in a frequency hopping network is even more problematic than in a traditional network. The combined effect from all serving frequencies has to be considered directly in the allocation process. An algorithm doing this for a PCS1900/GSM/DCS1800 type of network is presented. The ....... A graphical visualisation tool has been developed as well. This tool uses a network quality measure tightly linked to the FER rather than the traditional C/I or BER. Using these statistics an increase in network quality is shown...

  17. Calculation of temperature rise for cable conductor of DCS cabinet power based on theory of numerical thermal transfer

    International Nuclear Information System (INIS)

    Tian Yong; Zhang Longqiang; Yang Zhen; Yu Bin

    2014-01-01

    In order to ensure a long-term reliable operation of the DCS cabinet's 220 V AC power cable, it was needed to confirm whether the conductor temperature rise of power cable meet the requirement of the cable specification. Based on the actual data in site and the theory of numerical heat transfer, conservative model was established, and the conductor temperature was calculated. The calculation results show that the cable arrangement on the cable tray will not lead to the conductor temperature rise of power cable over than the required temperature in technical specification. (authors)

  18. Transcranial Direct Current Stimulation (tDCS) Targeting Left Dorsolateral Prefrontal Cortex Modulates Task-Induced Acute Pain in Healthy Volunteers.

    Science.gov (United States)

    Mariano, Timothy Y; Van't Wout, Mascha; Garnaat, Sarah L; Rasmussen, Steven A; Greenberg, Benjamin D

    2016-04-01

    Current chronic pain treatments target nociception rather than affective "suffering" and its associated functional and psychiatric comorbidities. The left dorsolateral prefrontal cortex (DLPFC) has been implicated in affective, cognitive, and attentional aspects of pain and is a primary target of neuromodulation for affective disorders. Transcranial direct current stimulation (tDCS) can non-invasively modulate cortical activity. The present study tests whether anodal tDCS targeting the left DLPFC will increase tolerability of acute painful stimuli vs cathodal tDCS. Forty tDCS-naive healthy volunteers received anodal and cathodal stimulation targeting the left DLPFC in two randomized and counterbalanced sessions. During stimulation, each participant performed cold pressor (CP) and breath holding (BH) tasks. We measured pain intensity with the Defense and Veterans Pain Rating Scale (DVPRS) before and after each task. Mixed ANOVA revealed no main effect of stimulation polarity for mean CP threshold, tolerance, or endurance, or mean BH time (allP > 0.27). However, DVPRS rise associated with CP was significantly smaller with anodal vs cathodal tDCS (P = 0.024). We further observed a significant tDCS polarity × stimulation order interaction (P = 0.042) on CP threshold, suggesting task sensitization. Although our results do not suggest that polarity of tDCS targeting the left DLPFC differentially modulates the tolerability of CP- and BH-related pain distress in healthy volunteers, there was a significant effect on DVPRS pain ratings. This contrasts with our previous findings that tDCS targeting the left dorsal anterior cingulate cortex showed a trend toward higher mean CP tolerance with cathodal vs anodal stimulation. The present results may suggest tDCS-related effects on nociception or DLPFC-mediated attention, or preferential modulation of the affective valence of pain as captured by the DVPRS. Sham-controlled clinical studies are needed. © 2015

  19. Preliminary Evidence of "Other-Race Effect"-Like Behavior Induced by Cathodal-tDCS over the Right Occipital Cortex, in the Absence of Overall Effects on Face/Object Processing.

    Science.gov (United States)

    Costantino, Andrea I; Titoni, Matilde; Bossi, Francesco; Premoli, Isabella; Nitsche, Michael A; Rivolta, Davide

    2017-01-01

    Neuromodulation techniques such as tDCS have provided important insight into the neurophysiological mechanisms that mediate cognition. Albeit anodal tDCS (a-tDCS) often enhances cognitive skills, the role of cathodal tDCS (c-tDCS) in visual cognition is largely unexplored and inconclusive. Here, in a single-blind, sham-controlled study, we investigated the offline effects of 1.5 mA c-tDCS over the right occipital cortex of 86 participants on four tasks assessing perception and memory of both faces and objects. Results demonstrated that c-tDCS does not overall affect performance on the four tasks. However, post-hoc exploratory analysis on participants' race (Caucasian vs. non-Caucasians), showed a "face-specific" performance decrease (≈10%) in non-Caucasian participants only . This preliminary evidence suggests that c-tDCS can induce "other-race effect (ORE)-like" behavior in non-Caucasian participants that did not show any ORE before stimulation (and in case of sham stimulation). Our results add relevant information about the breadth of cognitive processes and visual stimuli that can be modulated by c-tDCS, about the design of effective neuromodulation protocols, and have important implications for the potential neurophysiological bases of ORE.

  20. Repeated mapping of cortical language sites by preoperative navigated transcranial magnetic stimulation compared to repeated intraoperative DCS mapping in awake craniotomy

    Science.gov (United States)

    2014-01-01

    Background Repetitive navigated transcranial magnetic stimulation (rTMS) was recently described for mapping of human language areas. However, its capability of detecting language plasticity in brain tumor patients was not proven up to now. Thus, this study was designed to evaluate such data in order to compare rTMS language mapping to language mapping during repeated awake surgery during follow-up in patients suffering from language-eloquent gliomas. Methods Three right-handed patients with left-sided gliomas (2 opercular glioblastomas, 1 astrocytoma WHO grade III of the angular gyrus) underwent preoperative language mapping by rTMS as well as intraoperative language mapping provided via direct cortical stimulation (DCS) for initial as well as for repeated Resection 7, 10, and 15 months later. Results Overall, preoperative rTMS was able to elicit clear language errors in all mappings. A good correlation between initial rTMS and DCS results was observed. As a consequence of brain plasticity, initial DCS and rTMS findings only corresponded with the results obtained during the second examination in one out of three patients thus suggesting changes of language organization in two of our three patients. Conclusions This report points out the usefulness but also the limitations of preoperative rTMS language mapping to detect plastic changes in language function or for long-term follow-up prior to DCS even in recurrent gliomas. However, DCS still has to be regarded as gold standard. PMID:24479694

  1. Reducing costs by reducing size

    International Nuclear Information System (INIS)

    Hayns, M.R.; Shepherd, J.

    1991-01-01

    The present paper discusses briefly the many factors, including capital cost, which have to be taken into account in determining whether a series of power stations based on a small nuclear plant can be competitive with a series based on traditional large unit sizes giving the guaranteed level of supply. The 320 MWe UK/US Safe Integral Reactor is described as a good example of how the factors discussed can be beneficially incorporated into a design using proven technology. Finally it goes on to illustrate how the overall costs of a generating system can indeed by reduced by use of the 320 MWe Safe Integral Reactor rather than conventional units of around 1200 MWe. (author). 9 figs

  2. Revision of the Paris Convention and the Brussels Supplementary Convention

    International Nuclear Information System (INIS)

    Busekist, Otto von.

    1977-01-01

    The Paris Convention and the Brussels Supplementary Convention have in substance remained unchanged since their adoption in 1960 and 1963, respectively. During that period, nuclear industry and technology have developed considerably while the financial and monetary bases of the Conventions have been shattered. The amounts of liability and compensation have been eroded by inflation, and the gold-based unit of account in which these amounts are expressed has lost its original meaning after the abolition of the official gold price. The question of revising the Conventions, in particular of raising those amounts and of replacing the unit of account, is therefore being studied by the Group of Governmental Experts on Third party Liability in the Field of Nuclear Energy of the OECD Nuclear Energy Agency. (auth.) [fr

  3. The nuclear liability conventions revised

    International Nuclear Information System (INIS)

    Reyners, P.

    2004-01-01

    The signature on 12 February 2004 of the Protocols amending respectively the 1960 Paris Convention and the 1963 Brussels Supplementary Convention was the second step of the process of modernisation of the international nuclear liability regime after the adoption in September 1997 of a Protocol revising the 1963 Vienna Convention and of a new Convention on Supplementary Compensation for Nuclear Damage. The common objective of the new instruments is to provide more funds to compensate a larger number of potential victims in respect of a broader range of damage. Another goal of the revision exercise was to maintain the compatibility between the Paris and Vienna based systems, a commitment enshrined in the 1988 Joint Protocol, as well as to ascertain that Paris/Brussels countries could also become a Party to the Convention on Supplementary Compensation. However, while generally consistent vis a vis the Joint Protocol, the provisions of the Paris and Vienna Conventions, as revised, differ on some significant aspects. Another remaining issue is whether the improved international nuclear liability regime will succeed in attracting in the future a larger number of countries, particularly outside Europe, and will so become truly universal. Therefore, the need for international co-operation to address these issues, to facilitate the adoption of new implementing legislation and to ensure that this special regime keeps abreast of economic and technological developments, is in no way diminished after the revision of the Conventions.(author)

  4. The evolution of development conventions

    Directory of Open Access Journals (Sweden)

    Fabio Stefano Erber

    2012-04-01

    Full Text Available This paper presents a conceptual view on development and its translation into development policies. It argues that society's perception of development is structured by conventions, which provide a view of the past, present and future and, at the same time, allows a certain hierarchy of problems and solutions to such problems. The prevalence of a specific convention depends on the international conditions faced by this society and on the distribution of economic and political power within that society. Therefore, in complex societies there is always a struggle for hegemony between competing development conventions.

  5. Non conventional energy sources and energy conservation

    International Nuclear Information System (INIS)

    Bueno M, F.

    1995-01-01

    Geographically speaking, Mexico is in an enviable position. Sun, water, biomass and geothermal fields main non conventional energy sources with commercial applications, are presents and in some cases plentiful in national territory. Moreover the coastal tidal power which is in research stage in several countries. Non conventional energy sources are an alternative which allow us to reduce the consumption of hydrocarbons or any other type of primary energetic, are not by oneself choices for the energy conservation, but energy replacements. At the beginning of this year, CONAE created the Direction of Non conventional Energy Sources, which main objective is to promote and impulse programs inclined towards the application of systems based in renewable energy sources. The research centers represent a technological and consultative support for the CONAE. They have an infrastructure developed along several years of continuous work. The non conventional energy sources will be a reality at the same time that their cost be equal or lower than the cost for the traditional generating systems. CONAE (National Commission for Energy Conservation). (Author)

  6. Anodal tDCS to Right Dorsolateral Prefrontal Cortex Facilitates Performance for Novice Jazz Improvisers but Hinders Experts

    Science.gov (United States)

    Rosen, David S.; Erickson, Brian; Kim, Youngmoo E.; Mirman, Daniel; Hamilton, Roy H.; Kounios, John

    2016-01-01

    Research on creative cognition reveals a fundamental disagreement about the nature of creative thought, specifically, whether it is primarily based on automatic, associative (Type-1) or executive, controlled (Type-2) processes. We hypothesized that Type-1 and Type-2 processes make differential contributions to creative production that depend on domain expertise. We tested this hypothesis with jazz pianists whose expertise was indexed by the number of public performances given. Previous fMRI studies of musical improvisation have reported that domain expertise is characterized by deactivation of the right-dorsolateral prefrontal cortex (r-DLPFC), a brain area associated with Type-2 executive processing. We used anodal, cathodal, and sham transcranial direct current stimulation (tDCS) applied over r-DLPFC with the reference electrode on the contralateral mastoid (1.5 mA for 15 min, except for sham) to modulate the quality of the pianists' performances while they improvised over chords with drum and bass accompaniment. Jazz experts rated each improvisation for creativity, esthetic appeal, and technical proficiency. There was no main effect of anodal or cathodal stimulation on ratings compared to sham; however, a significant interaction between anodal tDCS and expertise emerged such that stimulation benefitted musicians with less experience but hindered those with more experience. We interpret these results as evidence for a dual-process model of creativity in which novices and experts differentially engage Type-1 and Type-2 processes during creative production. PMID:27899889

  7. tDCS Stimulation of the dlPFC Selectively Moderates the Detrimental Impact of Emotion on Analytical Reasoning.

    Science.gov (United States)

    Trémolière, Bastien; Maheux-Caron, Véronique; Lepage, Jean-François; Blanchette, Isabelle

    2018-01-01

    There is evidence of a detrimental effect of emotion on reasoning. Recent studies suggest that this relationship is mediated by working memory, a function closely associated with the dorsolateral prefrontal cortex (dlPFC). Relying on transcranial direct current stimulation (tDCS), the present research explores the possibility that anodal stimulation of the dlPFC has the potential to prevent the effect of emotion on analytical reasoning. Thirty-four participants took part in a lab experiment and were tested twice: one session using offline anodal stimulation (with a 2 mA current stimulation applied to the left dlPFC for 20 min), one session using a control (sham) stimulation. In each session, participants solved syllogistic reasoning problems featuring neutral and emotionally negative contents. Results showed that anodal stimulation diminished the deleterious effect of emotion on syllogistic reasoning, but only for a subclass of problems: problems where the conclusion was logically valid. We discuss our results in the light of the reasoning literature as well as the apparent variability of tDCS effects.

  8. Anodal tDCS to Right Dorsolateral Prefrontal Cortex Facilitates Performance for Novice Jazz Improvisers but Hinders Experts.

    Science.gov (United States)

    Rosen, David S; Erickson, Brian; Kim, Youngmoo E; Mirman, Daniel; Hamilton, Roy H; Kounios, John

    2016-01-01

    Research on creative cognition reveals a fundamental disagreement about the nature of creative thought, specifically, whether it is primarily based on automatic, associative (Type-1) or executive, controlled (Type-2) processes. We hypothesized that Type-1 and Type-2 processes make differential contributions to creative production that depend on domain expertise. We tested this hypothesis with jazz pianists whose expertise was indexed by the number of public performances given. Previous fMRI studies of musical improvisation have reported that domain expertise is characterized by deactivation of the right-dorsolateral prefrontal cortex (r-DLPFC), a brain area associated with Type-2 executive processing. We used anodal, cathodal, and sham transcranial direct current stimulation (tDCS) applied over r-DLPFC with the reference electrode on the contralateral mastoid (1.5 mA for 15 min, except for sham) to modulate the quality of the pianists' performances while they improvised over chords with drum and bass accompaniment. Jazz experts rated each improvisation for creativity, esthetic appeal, and technical proficiency. There was no main effect of anodal or cathodal stimulation on ratings compared to sham; however, a significant interaction between anodal tDCS and expertise emerged such that stimulation benefitted musicians with less experience but hindered those with more experience. We interpret these results as evidence for a dual-process model of creativity in which novices and experts differentially engage Type-1 and Type-2 processes during creative production.

  9. Anodal tDCS to right dorsolateral prefrontal cortex facilitates performance for novice jazz improvisers but hinders experts

    Directory of Open Access Journals (Sweden)

    David S Rosen

    2016-11-01

    Full Text Available Research on creative cognition reveals a fundamental disagreement about the nature of creative thought, specifically, whether it is primarily based on automatic, associative (Type-1 or executive, controlled (Type-2 processes. We hypothesized that Type-1 and Type-2 processes make differential contributions to creative production that depend on domain expertise. We tested this hypothesis with jazz pianists whose expertise was indexed by the number of public performances given. Previous fMRI studies of musical improvisation have reported that domain expertise is characterized by deactivation of the right-dorsolateral prefrontal cortex (r-DLPFC, a brain area associated with Type-2 executive processing. We used anodal, cathodal, and sham transcranial direct-current stimulation (tDCS applied over r-DLPFC with the reference electrode on the contralateral mastoid (1.5mA for 15 min., except for sham to modulate the quality of the pianists’ performances while they improvised over chords with drum and bass accompaniment. Jazz experts rated each improvisation for creativity, aesthetic appeal, and technical proficiency. There was no main effect of anodal or cathodal stimulation on ratings compared to sham; however, a significant interaction between anodal tDCS and expertise emerged such that stimulation benefitted musicians with less experience but hindered those with more experience. We interpret these results as evidence for a dual-process model of creativity in which novices and experts differentially engage Type-1 and Type-2 processes during creative production.

  10. Association between Upper Extremity Musculoskeletal Disorders and Psychosocial Factors at Work: A Review on the Job DCS Model's Perspective.

    Science.gov (United States)

    Park, Jung-Keun; Jang, Seung-Hee

    2010-09-01

    Over years it has been increasingly concerned with how upper extremity musculoskeletal disorders (UEMSDs) are attributed to psychosocial job stressors. A review study was conducted to examine associations between UEMSDs and psychosocial work factors, and to recommend what to consider for the associations. For studies in which the job demand-control-support (DCS) model or its variables were specifically employed, published papers were selected and reviewed. A number of studies have reported relationships between UEMSDs symptoms and psychosocial exposure variables. For example, the findings are: higher numbness in the upper extremity was significantly attributed to by less decision latitude at work; work demands were significantly associated with neck and shoulder symptoms while control over time was associated with neck symptoms; and the combination of high psychosocial demands and low decision latitude was a significant predictor for shoulder and neck pain in a female working population. Sources of bias, such as interaction or study design, were discussed. UEMSDs were shown to be associated with psychosocial work factors in various studies where the job DCS model was addressed. Nonetheless, this review suggests that further studies should be conducted to much more clarify the association between UEMSDs and psychosocial factors.

  11. Evolutionary Games and Social Conventions

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg

    2007-01-01

    -defined metaphors of individual learning and social imitation processes, from which a revised theory of convention may be erected (see Sugden 2004, Binmore 1993 and Young 1998). This paper makes a general argument in support of the evolutionary turn in the theory of convention by a progressive exposition of its...... in Aumann (1976) and which, together with the assumptions of perfect rationality, came to be defining of classical game theory. However, classical game theory is currently undergoing severe crisis as a tool for exploring social phenomena; a crisis emerging from the problem of equilibrium selection around......Some thirty years ago Lewis published his Convention: A Philosophical Study (Lewis, 2002). This laid the foundation for a game-theoretic approach to social conventions, but became more famously known for its seminal analysis of common knowledge; the concept receiving its canonical analysis...

  12. The rehabilitative effects on written language of a combined language and parietal dual-tDCS treatment in a stroke case.

    Science.gov (United States)

    De Tommaso, Barbara; Piedimonte, Alessandro; Caglio, Marcella M; D'Agata, Federico; Campagnoli, Marcello; Orsi, Laura; Raimondo, Simona; Vighetti, Sergio; Mortara, Paolo; Massazza, Giuseppe; Pinessi, Lorenzo

    2017-09-01

    In this paper we report the effect of a combined transcranial direct current stimulation (tDCS) and speech language therapy on linguistic deficits following left brain damage in a stroke case. We show that simultaneous electrical excitatory stimulation to the left and inhibitory stimulation to the right parietal regions (dual-tDCS) affected writing and reading rehabilitation, enhancing speech therapy outcomes. The results of a comparison with healthy controls showed that application of dual-tDCS could improve, in particular, sub-lexical transcoding and, specifically, the reading of non-words with increasing length and complexity. Positive repercussions on patient's quality of functional communication were also ascertained. Significant changes were also found in other language and cognitive tasks not directly treated (comprehension and constructive apraxia).

  13. Paris convention - Decisions, recommendations, interpretations

    International Nuclear Information System (INIS)

    1990-01-01

    This booklet is published in a single edition in English and French. It contains decisions, recommendations and interpretations concerning the 1960 Paris Convention on Third Party Liability in the Field of Nuclear Energy adopted by the OECD Steering Committee and the OECD Council. All the instruments are set out according to the Article of the Convention to which they relate and explanatory notes are added where necessary [fr

  14. Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS).

    Science.gov (United States)

    Horvath, Jared Cooney; Forte, Jason D; Carter, Olivia

    2015-01-01

    Over the last 15-years, transcranial direct current stimulation (tDCS), a relatively novel form of neuromodulation, has seen a surge of popularity in both clinical and academic settings. Despite numerous claims suggesting that a single session of tDCS can modulate cognition in healthy adult populations (especially working memory and language production), the paradigms utilized and results reported in the literature are extremely variable. To address this, we conduct the largest quantitative review of the cognitive data to date. Single-session tDCS data in healthy adults (18-50) from every cognitive outcome measure reported by at least two different research groups in the literature was collected. Outcome measures were divided into 4 broad categories: executive function, language, memory, and miscellaneous. To account for the paradigmatic variability in the literature, we undertook a three-tier analysis system; each with less-stringent inclusion criteria than the prior. Standard mean difference values with 95% CIs were generated for included studies and pooled for each analysis. Of the 59 analyses conducted, tDCS was found to not have a significant effect on any - regardless of inclusion laxity. This includes no effect on any working memory outcome or language production task. Our quantitative review does not support the idea that tDCS generates a reliable effect on cognition in healthy adults. Reasons for and limitations of this finding are discussed. This work raises important questions regarding the efficacy of tDCS, state-dependency effects, and future directions for this tool in cognitive research. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC).

    Science.gov (United States)

    Boggio, Paulo S; Zaghi, Soroush; Villani, Ana Beatriz; Fecteau, Shirley; Pascual-Leone, Alvaro; Fregni, Felipe

    2010-12-01

    Cognitive deficits that are reported in heavy marijuana users (attention, memory, affect perception, decision-making) appear to be completely reversible after a prolonged abstinence period of about 28 days. However, it remains unclear whether the reversibility of these cognitive deficits indicates that (1) chronic marijuana use is not associated with long-lasting changes in cortical networks or (2) that such changes occur but the brain adapts to and compensates for the drug-induced changes. Therefore, we examined whether chronic marijuana smokers would demonstrate a differential pattern of response in comparison to healthy volunteers on a decision-making paradigm (Risk Task) while undergoing sham or active transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Twenty-five chronic marijuana users who were abstinent for at least 24h were randomly assigned to receive left anodal/right cathodal tDCS of DLPFC (n=8), right anodal/left cathodal tDCS of DLPFC (n=9), or sham stimulation (n=8); results on Risk Task during sham/active tDCS were compared to healthy volunteers from a previously published dataset. Chronic marijuana users demonstrated more conservative (i.e. less risky) decision-making during sham stimulation. While right anodal stimulation of the DLPFC enhanced conservative decision-making in healthy volunteers, both right anodal and left anodal DLPFC stimulation increased the propensity for risk-taking in marijuana users. These findings reveal alterations in the decision-making neural networks among chronic marijuana users. Finally, we also assessed the effects of tDCS on marijuana craving and observed that right anodal/left cathodal tDCS of DLPFC is significantly associated with a diminished craving for marijuana. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. No significant effect of transcranial direct current stimulation (tDCS) found on simple motor reaction time comparing 15 different simulation protocols.

    Science.gov (United States)

    Horvath, Jared Cooney; Carter, Olivia; Forte, Jason D

    2016-10-01

    Research exploring the behavioral impact of transcranial direct current stimulation (tDCS) over M1 has produced homogenous results. The most common explanations to address this homogeneity concerns the differential impact of varied tDCS parameters (such as stimulation intensity or electrode montage). To explore this, we systematically examined the effects of 15 different tDCS protocols on a well-elucidated neurobehavioral system: simple visual motor reaction time (smRT). For the initial phase of this study, 150 healthy participants were randomly assigned to one of 5 experimental groups (2mA anodal, 2mA cathodal, 1mA anodal, 1mA cathodal, or sham) across 3 different conditions (orbitofrontal, bilateral, or extracephalic reference electrode location). The active electrode was always placed over M1 and tDCS lasted for 20min. Starting ~5min prior to stimulation and running continuously for ~30min, participants were repeatedly presented with a visual cue centered on a computer monitor and asked to press a response button as quickly as possible at stimulus onset (stimuli number: 100 pre-, 400 during-, and 100-post stimulation - interstimulus interval: 1-3s). Ex-gaussian distribution curves, miss, and error rates were determined for each normalized batch of 100 RTs and compared using a two-way ANOVA. As the largest group differences were seen with 2mA anodal (compared to sham) stimulation using an orbitofrontal montage, an additional 60 healthy participants were recruited to further test for significance in this condition. No significant impact of tDCS was seen on any parameter of smRT distribution, error rate, or miss rate, regardless of polarity, stimulation intensity, electrode montage, or stimulation-to-task relationship. Our results suggest that tDCS over M1 might not have a predictable or reliable effect on short duration smRT. Our results raise interesting questions regarding the mechanisms by which tDCS might modulate more complex motor behaviors. Additional

  17. Modulating transcallosal and intra-hemispheric brain connectivity with tDCS: Implications for interventions in Aphasia.

    Science.gov (United States)

    Zheng, Xin; Dai, Weiying; Alsop, David C; Schlaug, Gottfried

    2016-07-25

    Transcranial direct current stimulation (tDCS) can enhance or diminish cortical excitability levels depending on the polarity of the stimulation. One application of non-invasive brain-stimulation has been to modulate a possible inter-hemispheric disinhibition after a stroke. This disinhibition model has been developed mainly for the upper extremity motor system, but it is not known whether the language/speech-motor system shows a similar inter-hemispheric interaction. We aimed to examine physiological evidence of inter- and intra-hemispheric connectivity changes induced by tDCS of the right inferior frontal gyrus (IFG) using arterial-spin labeling (ASL) MRI. Using an MR-compatible DC-Stimulator, we applied anodal stimulation to the right IFG region of nine healthy adults while undergoing non-invasive cerebral blood flow imaging with arterial-spin labeling (ASL) before, during, and after the stimulation. All ASL images were then normalized and timecourses were extracted in regions of interest (ROIs), which were the left and right IFG regions, and the right supramarginal gyrus (SMG) in the inferior parietal lobule. Two additional ROIs (the right occipital lobe and the left fronto-orbital region) were taken as control regions. Using regional correlation coefficients as a surrogate marker of connectivity, we could show that inter-hemispheric connectivity (right IFG with left IFG) decreased significantly (p < 0.05; r-scores from 0.67 to 0.53) between baseline and post-stimulation, while the intra-hemispheric connectivity (right IFG with right SMG) increased significantly (p < 0.05;r-scores from 0.74 to 0.81). A 2 × 2 ANOVA found a significant main effect of HEMISPHERE (F(8) = 6.83, p < 0.01) and a significant HEMISPHERE-by-TIME interaction (F(8) = 4.24, p < 0.05) in connectivity changes. The correlation scores did not change significantly in the control region pairs (right IFG with right occipital and right IFG with left fronto-orbital) over

  18. The prospect of conventional disarmament

    International Nuclear Information System (INIS)

    Adeniji, O.

    1989-01-01

    The prospect of conventional disarmament in Europe holds out great consequences not only for the continent but also for the entire world. The arms race both in its nuclear and conventional aspects has been the single most important element of the destabilizing factors in international relations since 1945. Though initially borne out of the ideological division of Europe and the consequent quest for strategic military superiority, it soon developed a technological momentum of its own, becoming more the cause than the effect of the distrust in the relationship of the two alliances. The issue of conventional weapons was raised for negotiations side by side with that of nuclear weapons when the United Nations took up the question of disarmament in 1946. Due, however, to the unforeseen and most dangerous advance in nuclear weaponry, the fear engendered shifted all attention at the multilateral level to nuclear weapons. Except in Europe where the Mutual and Balanced Force Reduction Talks in Central Europe were initiated, conventional weapons disarmament did not attract multilateral attention again until the First Special Session of the United nations General Assembly Devoted to Disarmament in 1978. The Final Document of the Special Session did accord highest priority to negotiations on nuclear weapons. However, it also affirmed that side by side with negotiations on nuclear weapons, the limitation and gradual reduction of armed forces and conventional weapons should be resolutely pursued within the framework of general and complete disarmament. States with the largest military arsenals, it was stated, had a special responsibility in pursuing conventional armaments reduction. Underscoring the central role of Europe further, the Final Document postulated that the achievement of a more stable situation at a lower level of military potential would contribute toward strengthening of security in Europe and constitute a significant step toward international peace and security

  19. High-frequency TRNS reduces BOLD activity during visuomotor learning.

    Directory of Open Access Journals (Sweden)

    Catarina Saiote

    Full Text Available Transcranial direct current stimulation (tDCS and transcranial random noise stimulation (tRNS consist in the application of electrical current of small intensity through the scalp, able to modulate perceptual and motor learning, probably by changing brain excitability. We investigated the effects of these transcranial electrical stimulation techniques in the early and later stages of visuomotor learning, as well as associated brain activity changes using functional magnetic resonance imaging (fMRI. We applied anodal and cathodal tDCS, low-frequency and high-frequency tRNS (lf-tRNS, 0.1-100 Hz; hf-tRNS 101-640 Hz, respectively and sham stimulation over the primary motor cortex (M1 during the first 10 minutes of a visuomotor learning paradigm and measured performance changes for 20 minutes after stimulation ceased. Functional imaging scans were acquired throughout the whole experiment. Cathodal tDCS and hf-tRNS showed a tendency to improve and lf-tRNS to hinder early learning during stimulation, an effect that remained for 20 minutes after cessation of stimulation in the late learning phase. Motor learning-related activity decreased in several regions as reported previously, however, there was no significant modulation of brain activity by tDCS. In opposition to this, hf-tRNS was associated with reduced motor task-related-activity bilaterally in the frontal cortex and precuneous, probably due to interaction with ongoing neuronal oscillations. This result highlights the potential of lf-tRNS and hf-tRNS to differentially modulate visuomotor learning and advances our knowledge on neuroplasticity induction approaches combined with functional imaging methods.

  20. Conventional imaging in paediatric uroradiology

    International Nuclear Information System (INIS)

    Riccabona, M.; Lindbichler, F.; Sinzig, M.

    2002-01-01

    Objective: To briefly describe basic conventional imaging in paediatric uroradiology. Method: The state of the art performance of standard imaging techniques (intravenous urography (IVU), voiding cystourethrography (VCU), and ultrasound (US)) is described, with emphasis on technical aspects, indications, and patient preparation such as adequate hydration. Only basic applications as used in routine clinical work are included. Result and conclusion: Conventional imaging methods are irreplaceable. They cover the majority of daily clinical routine queries, with consecutive indication of more sophisticated modalities in those patients who need additional imaging for establishing the final diagnosis or outlining therapeutic options

  1. Conventional imaging in paediatric uroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Riccabona, M. E-mail: michael.riccabona@kfunigraz.ac.at; Lindbichler, F.; Sinzig, M

    2002-08-01

    Objective: To briefly describe basic conventional imaging in paediatric uroradiology. Method: The state of the art performance of standard imaging techniques (intravenous urography (IVU), voiding cystourethrography (VCU), and ultrasound (US)) is described, with emphasis on technical aspects, indications, and patient preparation such as adequate hydration. Only basic applications as used in routine clinical work are included. Result and conclusion: Conventional imaging methods are irreplaceable. They cover the majority of daily clinical routine queries, with consecutive indication of more sophisticated modalities in those patients who need additional imaging for establishing the final diagnosis or outlining therapeutic options.

  2. The European Convention on bioethics.

    Science.gov (United States)

    Byk, C

    1993-03-01

    Benefiting from a widely recognised experience of the field of bioethics, the Council of Europe which represents all the democratic countries of Europe, has embarked on the ambitious task of drafting a European Convention on bioethics. The purpose of this text is to set out fundamental values, such as respect for human dignity, free informed consent and non-commercialisation of the human body. In addition to this task, protocols will provide specific standards for the different fields concerned with the application of biomedical sciences. The convention and the first two protocols (human experiments and organ transplants) are due to be ready for signature by mid 1994.

  3. Conventional and unconventional political participation

    International Nuclear Information System (INIS)

    Opp, K.D.

    1985-01-01

    A non-recursive model is proposed and empirically tested with data of opponents of nuclear power. In explaining conventional and unconventional participation the theory of collective action is applied and modified in two respects: the perceived influence on the elimination of collective evils are taken into account; the selective incentives considered are non-material ones. These modifications proved to be valid: the collective good variables and non-material incentives were important determinants for the two forms of participation. Another result was that there is a reciprocal causal relationship between conventional and unconventional participation. (orig./PW) [de

  4. National Convention on Family Life Education.

    Science.gov (United States)

    1973-12-01

    This secretarial report gives brief comments on some discussion of topics at the National Convention on Family Life Education. Discussion included: 1) legalized prostitution as a means to reduce venereal disease; 2) family life education promotion by government and civic groups; 3) more authority for the Population Council; 4) more liberal abortion legislation than previously; 5) statutory notification of veneral disease by medical practitioners; 6) compensatory measures for working women with young children, and 7) the need for modernization of legislation pertaining to child health, adoption, paternity, the Persons Act, infant life preservation, drugs, age of consent, and the age of minority.

  5. Conventional myelography - evaluation of risk and benefit

    International Nuclear Information System (INIS)

    Hentschel, F.

    1989-01-01

    While the benefit and methodic risk of conventional myelography (KMG) are known, a radiation risk of 0.04 to 0.9 annual radiation-induced cancers can be estimated for all inhabitants of the GDR, dependent on the investigated region and the technique used. An optimized technique can reduce the radiation burden to 50 or 25%. With comparable values of benefit and radiation risk spinal CT and KMG are not contradictory but complementary investigations. Alternative methods (MRT, US) must not be discussed from the standpoint of radiation burden, but according to their availability and their methodic limitations. (author)

  6. The Behavioral Effects of tDCS on Visual Search Performance Are Not Influenced by the Location of the Reference Electrode

    Directory of Open Access Journals (Sweden)

    Amanda Ellison

    2017-09-01

    Full Text Available We investigated the role of reference electrode placement (ipsilateral v contralateral frontal pole on conjunction visual search task performance when the transcranial direct current stimulation (tDCS cathode is placed over right posterior parietal cortex (rPPC and over right frontal eye fields (rFEF, both of which have been shown to be causally involved in the processing of this task using TMS. This resulted in four experimental manipulations in which sham tDCS was applied in week one followed by active tDCS the following week. Another group received sham stimulation in both sessions to investigate practice effects over 1 week in this task. Results show that there is no difference between effects seen when the anode is placed ipsi or contralaterally. Cathodal stimulation of rPPC increased search times straight after stimulation similarly for ipsi and contralateral references. This finding does not extend to rFEF stimulation. However, for both sites and both montages, practice effects as seen in the sham/sham condition were negated. This can be taken as evidence that for this task, reference placement on either frontal pole is not important, but also that care needs to be taken when contextualizing tDCS “effects” that may not be immediately apparent particularly in between-participant designs.

  7. Effects of anodal transcranial direct current stimulation (tDCS) on behavioral and spatial memory during the early stage of traumatic brain injury in the rats.

    Science.gov (United States)

    Yoon, Kyung Jae; Lee, Yong-Taek; Chae, Seoung Wan; Park, Chae Ri; Kim, Dae Yul

    2016-03-15

    Transcranial direct current stimulation (tDCS) is a noninvasive technique to modulate the neural membrane potential. Its effects in the early stage of traumatic brain injury (TBI) have rarely been investigated. This study assessed the effects of anodal tDCS on behavioral and spatial memory in a rat model of traumatic brain injury. Thirty six rats underwent lateral fluid percussion and were then randomly assigned to one of three groups: control (n=12), five-day tDCS over peri-lesional cortex at one (1W, n=12), or two (2W, n=12) weeks post-injury. The Barnes maze (BM) and Rotarod (RR) tests were evaluated in a blind manner on day 1, week 3 and week 5 post-injury. After three weeks, both the 1W and 2W groups showed significant improvements in the BM ratio (PtDCS ameliorated behavioral and spatial memory function in the early phase after TBI when it is delivered two weeks post-injury. Earlier stimulation (one week post-injury) improves spatial memory only. However, the beneficial effects did not persist after cessation of the anodal stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Modulating the Activity of the DLPFC and OFC Has Distinct Effects on Risk and Ambiguity Decision-Making: A tDCS Study.

    Science.gov (United States)

    Yang, Xiaolan; Gao, Mei; Shi, Jinchuan; Ye, Hang; Chen, Shu

    2017-01-01

    Human beings are constantly exposed to two types of uncertainty situations, risk and ambiguity. Neuroscientific studies suggest that the dorsolateral prefrontal cortex (DLPFC) and the orbital frontal cortex (OFC) play significant roles in human decision making under uncertainty. We applied the transcranial direct current stimulation (tDCS) device to modulate the activity of participants' DLPFC and OFC separately, comparing the causal relationships between people's behaviors and the activity of the corresponding brain cortex when confronted with situations of risk and ambiguity. Our experiment employed a pre-post design and a risk/ambiguity decision-making task, from which we could calculate the preferences via an estimation model. We found evidences that modulating the activity of the DLPFC using right anodal/left cathodal tDCS significantly enhanced the participants' preferences for risk, whereas modulating the activity of the OFC with right anodal/left cathodal tDCS significantly decreased the participants' preferences for ambiguity. The reverse effects were also observed in the reversed tDCS treatments on the two areas. Our results suggest that decision-making processes under risk and ambiguity are complicated and may be encoded in two distinct circuits in our brains as the DLPFC primarily impacts decisions under risk whereas the OFC affects ambiguity.

  9. Modulating the Activity of the DLPFC and OFC Has Distinct Effects on Risk and Ambiguity Decision-Making: A tDCS Study

    Directory of Open Access Journals (Sweden)

    Xiaolan Yang

    2017-08-01

    Full Text Available Human beings are constantly exposed to two types of uncertainty situations, risk and ambiguity. Neuroscientific studies suggest that the dorsolateral prefrontal cortex (DLPFC and the orbital frontal cortex (OFC play significant roles in human decision making under uncertainty. We applied the transcranial direct current stimulation (tDCS device to modulate the activity of participants’ DLPFC and OFC separately, comparing the causal relationships between people’s behaviors and the activity of the corresponding brain cortex when confronted with situations of risk and ambiguity. Our experiment employed a pre–post design and a risk/ambiguity decision-making task, from which we could calculate the preferences via an estimation model. We found evidences that modulating the activity of the DLPFC using right anodal/left cathodal tDCS significantly enhanced the participants’ preferences for risk, whereas modulating the activity of the OFC with right anodal/left cathodal tDCS significantly decreased the participants’ preferences for ambiguity. The reverse effects were also observed in the reversed tDCS treatments on the two areas. Our results suggest that decision-making processes under risk and ambiguity are complicated and may be encoded in two distinct circuits in our brains as the DLPFC primarily impacts decisions under risk whereas the OFC affects ambiguity.

  10. Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial.

    Science.gov (United States)

    Leśniak, Marcin; Polanowska, Katarzyna; Seniów, Joanna; Członkowska, Anna

    2014-01-01

    To determine whether cumulative anodal transcranial direct current stimulation (A-tDCS) of the left dorsolateral prefrontal cortex (DLPFC) could enhance rehabilitation of memory and attention in patients with traumatic brain injury (TBI). Inpatient and outpatient neurorehabilitation unit. Twenty-three adult patients, 4- to 92- months post severe TBI. Participants were randomly allocated to 2 groups. The experimental group received A-tDCS (10 minutes; 1 mA; in the DLPFC), followed by rehabilitative cognitive training, daily for 15 days. Controls received A-tDCS for 25 seconds (sham condition) with the same rehabilitation. Battery of memory and attention tests, which included visual and auditory modalities. Participants were tested twice before beginning rehabilitation (to control for spontaneous recovery), after rehabilitation completion, and 4 months later. Tests scores in both groups were similar at 3 weeks before and immediately before treatment. After treatment, the experimental group exhibited larger effect sizes in 6 of 8 cognitive outcome measures, but they were not significantly different from controls. At follow-up, differences remained insignificant. In contrast to previous studies, our study did not provide sufficient evidence to support the efficacy of repeated A-tDCS for enhancing rehabilitation of memory and attention in patients after severe TBI.

  11. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup

    2003-01-01

    The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current regula...

  12. The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex

    Science.gov (United States)

    Colombo, Barbara; Bartesaghi, Noemi; Simonelli, Luisa; Antonietti, Alessandro

    2015-01-01

    The role of prefrontal cortex (PFC) in influencing creative thinking has been investigated by many researchers who, while succeeding in proving an effective involvement of PFC, reported suggestive but sometimes conflicting results. In order to better understand the relationships between creative thinking and brain activation in a more specific area of the PFC, we explored the role of dorsolateral PFC (DLPFC). We devised an experimental protocol using transcranial direct-current stimulation (tDCS). The study was based on a 3 (kind of stimulation: anodal vs. cathodal vs. sham) × 2 (priming: divergent vs. convergent) design. Forty-five healthy adults were randomly assigned to one stimulation condition. Participants’ creativity skills were assessed using the Product Improvement subtest from the Torrance Tests of Creative Thinking (TTCT). After 20 min of tDCS stimulation, participants were presented with visual images of common objects. Half of the participants were instructed to visualize themselves using the object in an unusual way (divergent priming), whereas the other half were asked to visualize themselves while using the object in a common way (convergent priming). Priming was aimed at inducing participants to adopt different attitudes toward the creative task. Afterwards, participants were asked to describe all of the possible uses of the objects that were presented. Participants’ physiological activation was recorded using a biofeedback equipment. Results showed a significant effect of anodal stimulation that enhanced creative performance, but only after divergent priming. Participants showed lower skin temperature values after cathodal stimulation, a finding which is coherent with studies reporting that, when a task is not creative or creative thinking is not prompted, people show lower levels of arousal. Differences in individual levels of creativity as assessed by the Product Improvement test were not influential. The involvement of DLPFC in creativity

  13. The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex.

    Science.gov (United States)

    Colombo, Barbara; Bartesaghi, Noemi; Simonelli, Luisa; Antonietti, Alessandro

    2015-01-01

    The role of prefrontal cortex (PFC) in influencing creative thinking has been investigated by many researchers who, while succeeding in proving an effective involvement of PFC, reported suggestive but sometimes conflicting results. In order to better understand the relationships between creative thinking and brain activation in a more specific area of the PFC, we explored the role of dorsolateral PFC (DLPFC). We devised an experimental protocol using transcranial direct-current stimulation (tDCS). The study was based on a 3 (kind of stimulation: anodal vs. cathodal vs. sham) × 2 (priming: divergent vs. convergent) design. Forty-five healthy adults were randomly assigned to one stimulation condition. Participants' creativity skills were assessed using the Product Improvement subtest from the Torrance Tests of Creative Thinking (TTCT). After 20 min of tDCS stimulation, participants were presented with visual images of common objects. Half of the participants were instructed to visualize themselves using the object in an unusual way (divergent priming), whereas the other half were asked to visualize themselves while using the object in a common way (convergent priming). Priming was aimed at inducing participants to adopt different attitudes toward the creative task. Afterwards, participants were asked to describe all of the possible uses of the objects that were presented. Participants' physiological activation was recorded using a biofeedback equipment. Results showed a significant effect of anodal stimulation that enhanced creative performance, but only after divergent priming. Participants showed lower skin temperature values after cathodal stimulation, a finding which is coherent with studies reporting that, when a task is not creative or creative thinking is not prompted, people show lower levels of arousal. Differences in individual levels of creativity as assessed by the Product Improvement test were not influential. The involvement of DLPFC in creativity has

  14. Conventional and Non-Conventional Yeasts in Beer Production

    Directory of Open Access Journals (Sweden)

    Angela Capece

    2018-06-01

    Full Text Available The quality of beer relies on the activity of fermenting yeasts, not only for their good fermentation yield-efficiency, but also for their influence on beer aroma, since most of the aromatic compounds are intermediate metabolites and by-products of yeast metabolism. Beer production is a traditional process, in which Saccharomyces is the sole microbial component, and any deviation is considered a flaw. However, nowadays the brewing sector is faced with an increasing demand for innovative products, and it is diffusing the use of uncharacterized autochthonous starter cultures, spontaneous fermentation, or non-Saccharomyces starters, which leads to the production of distinctive and unusual products. Attempts to obtain products with more complex sensory characteristics have led one to prospect for non-conventional yeasts, i.e., non-Saccharomyces yeasts. These generally are characterized by low fermentation yields and are more sensitive to ethanol stress, but they provide a distinctive aroma and flavor. Furthermore, non-conventional yeasts can be used for the production of low-alcohol/non-alcoholic and light beers. This review aims to present the main findings about the role of traditional and non-conventional yeasts in brewing, demonstrating the wide choice of available yeasts, which represents a new biotechnological approach with which to target the characteristics of beer and to produce different or even totally new beer styles.

  15. Spared Primary Motor Cortex and the Presence of MEP in Cerebral Palsy Dictate the Responsiveness to tDCS During Gait Training

    Directory of Open Access Journals (Sweden)

    Luanda Collange Grecco

    2016-07-01

    Full Text Available The current priority of investigations involving transcranial direct current stimulation (tDCS and neurorehabilitation is to identify biomarkers associated with the positive results of the interventions such that respondent and non-respondent patients can be identified in the early phases of treatment. The aims were to determine whether; 1 present motor evoked potential (MEP and, 2 injuries involving the primary motor cortex, are associated with tDCS-enhancement in functional outcome following gait training in children with cerebral palsy (CP. We reviewed the data from our parallel, randomized, sham-controlled, double-blind studies. Fifty-six children with spastic CP received gait training (either treadmill training or virtual reality training and tDCS (active or sham. Univariate and multivariate logistic regression analyses were employed to identify clinical, neurophysiologic and neuroanatomic predictors associated with the responsiveness to treatment with tDCS. MEP presence during the initial evaluation and the subcortical injury were associated with positive effects in the functional results. The logistic regression revealed that present MEP was a significant predictor for the six-minute walk test (p=0.003 and gait speed (p=0.028, whereas the subcortical injury was a significant predictor of gait kinematics (p=0.013 and gross motor function (p = 0.021. In this preliminary study involving children with CP, two important prediction factors of good responses to anodal tDCS combined with gait training were identified. Apparently, MEP (integrity of the corticospinal tract and subcortical location of the brain injury exerted different influences on aspects related to gait, such as velocity and kinematics.

  16. Recurrent themes in the history of the home use of electrical stimulation: Transcranial direct current stimulation (tDCS) and the medical battery (1870-1920).

    Science.gov (United States)

    Wexler, Anna

    In recent years, neuroscientists and ethicists have warned of the dangers of the unsupervised home use of transcranial direct current stimulation (tDCS), in which individuals stimulate their own brains with low levels of electricity for self-improvement purposes. Although the home use of tDCS is often referred to as a novel phenomenon, in reality the late nineteenth and early twentieth century saw a proliferation of electrical stimulation devices for home use. In particular, the use of an object known as the medical battery bears a number of striking similarities to the modern-day use of tDCS. This article reviews a number of features thought to be unique to the present day home use of brain stimulation, with a particular focus on analogies between tDCS and the medical battery. Archival research was conducted at the Bakken Museum and at the American Medical Association's Historical Health Fraud Archives. Many of the features characterizing the contemporary home use tDCS-a do-it-yourself (DIY) movement, anti-medical establishment themes, conflicts between lay and professional usage-are a repetition of themes that occurred a century ago with regard to the medical battery. A number of features, however, seem to be unique to the present, such as the dominant discourse about risk and safety, the division between cranial and non-cranial stimulation, and utilization for cognitive enhancement purposes. Viewed in the long durée, the contemporary use of electrical stimulation at home is not a novel phenomenon, but rather the latest wave in a series of ongoing attempts by lay individuals to utilize electricity for therapeutic purposes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Combined brain Fe, Cu, Zn and neurometabolite analysis - a new methodology for unraveling the efficacy of transcranial direct current stimulation (tDCS) in appetite control.

    Science.gov (United States)

    Ziomber, Agata; Surowka, Artur Dawid; Antkiewicz-Michaluk, Lucyna; Romanska, Irena; Wrobel, Pawel; Szczerbowska-Boruchowska, Magdalena

    2018-03-01

    Obesity is a chronic, multifactorial origin disease that has recently become one of the most frequent lifestyle disorders. Unfortunately, current obesity treatments seem to be ineffective. At present, transcranial direct current brain stimulation (tDCS) represents a promising novel treatment methodology that seems to be efficient, well-tolerated and safe for a patient. Unfortunately, the biochemical action of tDCS remains unknown, which prevents its widespread use in the clinical arena, although neurobiochemical changes in brain signaling and metal metabolism are frequently reported. Therefore, our research aimed at exploring the biochemical response to tDCS in situ, in the brain areas triggering feeding behavior in obese animals. The objective was to propose a novel neurochemical (serotoninergic and dopaminergic signaling) and trace metal analysis of Fe, Cu and Zn. In doing so, we used energy-dispersive X-ray fluorescence (EDXRF) and high-performance liquid chromatography (HPLC). Anodal-type stimulation (atDCS) of the right frontal cortex was utilized to down-regulate food intake and body weight gain in obese rats. EDXRF was coupled with the external standard method in order to quantify the chemical elements within appetite-triggering brain areas. Major dopamine metabolites were assessed in the brains, based on the HPLC assay utilizing the external standard assay. Our study confirms that elemental analysis by EDXRF and brain metabolite assay by HPLC can be considered as a useful tool for the in situ investigation of the interplay between neurochemical and Fe/Cu/Zn metabolism in the brain upon atDCS. With this methodology, an increase in both Cu and Zn in the satiety center of the stimulated group could be reported. In turn, the most significant neurochemical changes involved dopaminergic and serotoninergic signaling in the brain reward system.

  18. Reducing The Nuclear Danger

    Science.gov (United States)

    1995-10-01

    off convention • Eliminate the civil use of HEU (includes RERTR ) • Reduce stockpiles of civil HEU and plutonium • Promote alternatives to the...these countries. ANL supports the Department’s Reduced Enrichment for Research and Test Reactor ( RERTR ) Program by providing the technical means to...scientists and engineers at 60 institutes in Russia, Ukraine, Kazakhstan and Belarus. The United States and Russia have agreed to pursue a joint RERTR

  19. Brazil and the UN framework convention on climate change

    International Nuclear Information System (INIS)

    Marques De Souza, J.A.

    1996-01-01

    Due to a high share (96%) of hydropower generation in its electricity production, Brazil emits relatively small amounts of CO 2 . It is argued that, because developed countries are responsible for some 65% of the global emissions of GHGs, they should start to reduce their greenhouse gas emission, which follows also directly from the Framework Convention on Climate Change. After ratification of the Convention Brazil has taken all steps to implement the Convention and to assess its greenhouse gas emissions. Various advisory and co-ordinating bodies have been installed by decree in mid 1994. (author). 1 fig., 1 tab

  20. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  1. Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression: study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC).

    Science.gov (United States)

    Padberg, Frank; Kumpf, Ulrike; Mansmann, Ulrich; Palm, Ulrich; Plewnia, Christian; Langguth, Berthold; Zwanzger, Peter; Fallgatter, Andreas; Nolden, Jana; Burger, Max; Keeser, Daniel; Rupprecht, Rainer; Falkai, Peter; Hasan, Alkomiet; Egert, Silvia; Bajbouj, Malek

    2017-12-01

    Transcranial direct current stimulation (tDCS) has been proposed as novel treatment for major depressive disorder (MDD) based on clinical pilot studies as well as randomized controlled monocentric trials. The DepressionDC trial is a triple-blind (blinding of rater, operator and patient), randomized, placebo controlled multicenter trial investigating the efficacy and safety of prefrontal tDCS used as additive treatment in MDD patients who have not responded to selective serotonin reuptake inhibitors (SSRI). At 5 study sites, 152 patients with MDD receive a 6-weeks treatment with active tDCS (anode F3 and cathode F4, 2 mA intensity, 30 min/day) or sham tDCS add-on to a stable antidepressant medication with an SSRI. Follow-up visits are at 3 and 6 months after the last tDCS session. The primary outcome measure is the change of the Montgomery-Asberg Depression Rating Scale (MADRS) scores at week 6 post-randomisation compared to baseline. Secondary endpoints also cover other psychopathological domains, and a comprehensive safety assessment includes measures of cognition. Patients undergo optional investigations comprising genetic testing and functional magnetic resonance imaging (fMRI) of structural and functional connectivity. The study uses also an advanced tDCS technology including standard electrode positioning and recording of technical parameters (current, impedance, voltage) in every tDCS session. Aside reporting the study protocol here, we present a novel approach for monitoring technical parameters of tDCS which will allow quality control of stimulation and further analysis of the interaction between technical parameters and clinical outcome. The DepressionDC trial will hopefully answer the important clinical question whether prefrontal tDCS is a safe and effective antidepressant intervention in patients who have not sufficiently responded to SSRIs. ClinicalTrials.gov Identifier NCT0253016.

  2. Limitation and reduction of conventional arms

    International Nuclear Information System (INIS)

    Chervov, N.

    1989-01-01

    We are living at a time when war between East and West---not only nuclear but also conventional war--- is totally senseless. It cannot solve any problem---political, economic, or other. From the military point of view, war between East and West is madness. Calculations show that after 20 days of conventional warfare Europe could become another Hiroshima. Therefore we must work out forms of long-term cooperation. Before it is too late, we must radically reduce our military potentials and rethink our military doctrines. The reduction by 500,000 men is for the USSR no simple solution. But that step may become a model for further actions by East and West. The West's proposal that armed forces should be reduced to the level of 95 percent of NATO's armed forces is not a solution. Both sides---the Warsaw Treaty Organization and NATO---must be deprived of the capacity to launch a sudden attack; they must be deprived of their attack potential. The USSR initiative shows the true way toward that goal. What is happening in connection with our decision is not always correctly interpreted in the West, and so I should like to draw attention to some distinctive features of the Soviet armed forces reductions and, first of all, their scale (equivalent to the Bundeswehr of the Federal Republic of Germany). With respect to Europe, Soviet troops are to be reduced in the German Democratic Republic, Czechoslovakia, Hungary, Poland, and the European part of the Soviet Union---a total of 240,000 men, 10,000 tanks, 9,500 artillery systems, and 800 combat aircraft

  3. Dilution Confusion: Conventions for Defining a Dilution

    Science.gov (United States)

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  4. Apocryphal Angels in Nun Convents

    Directory of Open Access Journals (Sweden)

    Mario Ávila Vivar

    2018-01-01

    Full Text Available The preponderance of studies about viceregal angelic series, and the widespread belief that the representation of apocryphal angels is a specific peculiarity of viceregal angelology, have created such a close relation between it and the apocryphal angels, that they are even considered as synonymous. However, both the texts and the presence of this angels in the spanish convents of the XVII century, evidence that the apocryphal angels appeared and they were represented in Spain long before that in its american viceregal. Therefore, it is here where their origins and their meaning should be sought.

  5. Diverticular Disease: Reconsidering Conventional Wisdom

    Science.gov (United States)

    Peery, Anne F.; Sandler, Robert S.

    2013-01-01

    Colonic diverticula are common in developed countries and complications of colonic diverticulosis are responsible for a significant burden of disease. Several recent publications have called into question long held beliefs about diverticular disease. Contrary to conventional wisdom, studies have not shown that a high fiber diet protects against asymptomatic diverticulosis. The risk of developing diverticulitis among individuals with diverticulosis is lower than the 10–25% commonly quoted, and may be as low as 1% over 11 years. Nuts and seeds do not increase the risk of diverticulitis or diverticular bleeding. It is unclear whether diverticulosis, absent diverticulitis or overt colitis, is responsible for chronic gastrointestinal symptoms or worse quality of life. The role of antibiotics in acute diverticulitis has been challenged by a large randomized trial that showed no benefit in selected patients. The decision to perform elective surgery should be made on a case-by-case basis and not routinely after a second episode of diverticulitis, when there has been a complication, or in young people. A colonoscopy should be performed to exclude colon cancer after an attack of acute diverticulitis but may not alter outcomes among individuals who have had a colonoscopy prior to the attack. Given these surprising findings, it is time to reconsider conventional wisdom about diverticular disease. PMID:23669306

  6. Implementing the chemical weapons convention

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, B.; Tanzman, E. A.

    1999-12-07

    In 1993, as the CWC ratification process was beginning, concerns arose that the complexity of integrating the CWC with national law could cause each nation to implement the Convention without regard to what other nations were doing, thereby causing inconsistencies among States as to how the CWC would be carried out. As a result, the author's colleagues and the author prepared the Manual for National Implementation of the Chemical Weapons Convention and presented it to each national delegation at the December 1993 meeting of the Preparatory Commission in The Hague. During its preparation, the Committee of CWC Legal Experts, a group of distinguished international jurists, law professors, legally-trained diplomats, government officials, and Parliamentarians from every region of the world, including Central Europe, reviewed the Manual. In February 1998, they finished the second edition of the Manual in order to update it in light of developments since the CWC entered into force on 29 April 1997. The Manual tries to increase understanding of the Convention by identifying its obligations and suggesting methods of meeting them. Education about CWC obligations and available alternatives to comply with these requirements can facilitate national response that are consistent among States Parties. Thus, the Manual offers options that can strengthen international realization of the Convention's goals if States Parties act compatibly in implementing them. Equally important, it is intended to build confidence that the legal issues raised by the Convention are finite and addressable. They are now nearing competition of an internet version of this document so that interested persons can access it electronically and can view the full text of all of the national implementing legislation it cites. The internet address, or URL, for the internet version of the Manual is http: //www.cwc.ard.gov. This paper draws from the Manual. It comparatively addresses approximately thirty

  7. Implementing the chemical weapons convention

    International Nuclear Information System (INIS)

    Kellman, B.; Tanzman, E. A.

    1999-01-01

    In 1993, as the CWC ratification process was beginning, concerns arose that the complexity of integrating the CWC with national law could cause each nation to implement the Convention without regard to what other nations were doing, thereby causing inconsistencies among States as to how the CWC would be carried out. As a result, the author's colleagues and the author prepared the Manual for National Implementation of the Chemical Weapons Convention and presented it to each national delegation at the December 1993 meeting of the Preparatory Commission in The Hague. During its preparation, the Committee of CWC Legal Experts, a group of distinguished international jurists, law professors, legally-trained diplomats, government officials, and Parliamentarians from every region of the world, including Central Europe, reviewed the Manual. In February 1998, they finished the second edition of the Manual in order to update it in light of developments since the CWC entered into force on 29 April 1997. The Manual tries to increase understanding of the Convention by identifying its obligations and suggesting methods of meeting them. Education about CWC obligations and available alternatives to comply with these requirements can facilitate national response that are consistent among States Parties. Thus, the Manual offers options that can strengthen international realization of the Convention's goals if States Parties act compatibly in implementing them. Equally important, it is intended to build confidence that the legal issues raised by the Convention are finite and addressable. They are now nearing competition of an internet version of this document so that interested persons can access it electronically and can view the full text of all of the national implementing legislation it cites. The internet address, or URL, for the internet version of the Manual is http: //www.cwc.ard.gov. This paper draws from the Manual. It comparatively addresses approximately thirty

  8. Implementation of the Aarhus convention - A survey

    Directory of Open Access Journals (Sweden)

    Marina Malis Sazdovska

    2016-11-01

    Full Text Available Legislation on global and regional level in the field of environmental protection is characterized by the adoption of international conventions and agreements that attempt to regulate this matter legally. As an extremely important area, which exceeds the boundaries of nation-state and as a global environmental problem, the issues of environmental protection are a major concern to international organizations. It is directly linked to reducing the jurisdiction of the States and transfer of competences to international organizations and institutions in order to solve the problems in a global experience. In order to overcome the problems regarding the implementation of international documents, the creation of certain policies by international organizations and institutions is required to promote the idea of environmental protection as a basic mo$ o of the global world. Taking into account the recommendations of Brundtland Commission, humanity has a moral obligation to preserve natural resources for future generations. Main objective of this article is the presentation of research on the implementation of the Aarhus Convention and the proposal of measures for the creation of ideas and policies on improving access to information in the field. The research is done with the students from the faculty of Security which accessed the information in environmental matters.

  9. Future directions conventional oil supply, Western Canada

    International Nuclear Information System (INIS)

    Campbell, G.R.; Hayward, J.

    1997-01-01

    The history of the Canadian oil industry was briefly sketched and the future outlook for crude oil and natural gas liquids in western Canada was forecast. The historical review encompassed some of the significant events in history of the Canadian oil industry, including the Leduc discovery in 1947, the Swan Hills discovery in 1957, the start of commercial production from the Athabasca oil sands in 1967, the discovery of the Hibernia oilfield offshore Newfoundland in 1979, and the onset of the use of horizontal production wells in western Canada in 1987. The resource base, supply costs, and the technology that is being developed to reduce costs and to improve recovery, were reviewed. Future oil prices were predicted, taking into account the costs associated with technological developments. It was suggested that the character of the industry is undergoing a change from an industry dominated by conventional supply to a mixed industry with increasing volume of heavy oil, primary bitumen, synthetic oil and frontier supply replacing 'conventional' light crude oil. Projections into the future are subject to uncertainty both on the supply as well as on the demand side. The potential impact of technology can significantly affect demand, and technological developments can yield additional supplies which exceed current expectations. 10 figs

  10. Technological advancements revitalize conventional oil sector

    International Nuclear Information System (INIS)

    Thomson, L.

    2000-01-01

    Maturing reserves in the Western Canada Sedimentary Basin is resulting in a gradual shift of focus from huge new discoveries and wildcat gushers to developing new technologies for exploration and enhanced recovery techniques of production, keeping costs down and reducing environmental impacts, as a means of keeping conventional oil plays a viable force in the oil and gas industry. The value in refocusing efforts towards technology development is given added weight by a recent announcement by the Petroleum Communication Foundation, which stated that in addition to the oil sands and offshore oil and gas developments, one of the country's largest undeveloped oil resource is the 70 per cent of discovered crude oil in western Canadian pools that cannot be recovered by current conventional production techniques. Therefore, development of new technologies to exploit these currently unrecoverable resources is a matter of high priority. To remain competitive, the new techniques must also lower the cost of recovering oil from these sources, given that the cost of oil production in Canada is already higher than that in most other competing countries

  11. Tailings dams from the perspective of conventional dam engineering

    International Nuclear Information System (INIS)

    Szymanski, M.B.

    1999-01-01

    A guideline intended for conventional dams such as hydroelectric, water supply, flood control, or irrigation is used sometimes for evaluating the safety of a tailings dam. Differences between tailings dams and conventional dams are often substantial and, as such, should not be overlooked when applying the techniques or safety requirements of conventional dam engineering to tailings dams. Having a dam safety evaluation program developed specifically for tailings dams is essential, if only to reduce the chance of potential errors or omissions that might occur when relying on conventional dam engineering practice. This is not to deny the merits of using the Canadian Dam Safety Association Guidelines (CDSA) and similar conventional dam guidelines for evaluating the safety of tailings dams. Rather it is intended as a warning, and as a rationale underlying basic requirement of tailings dam emgineering: specific experience in tailings dams is essential when applying conventional dam engineering practice. A discussion is included that focuses on the more remarkable tailings dam safety practics. It is not addressed to a technical publications intended for such dams, or significantly different so that the use of conventional dam engineering practice would not be appropriate. The CDSA Guidelines were recently revised to include tailings dams. But incorporating tailings dams into the 1999 revision of the CDSA Guidelines is a first step only - further revision is necessary with respect to tailings dams. 11 refs., 2 tabs

  12. Reversing the conventional leather processing sequence for cleaner leather production.

    Science.gov (United States)

    Saravanabhavan, Subramani; Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari

    2006-02-01

    Conventional leather processing generally involves a combination of single and multistep processes that employs as well as expels various biological, inorganic, and organic materials. It involves nearly 14-15 steps and discharges a huge amount of pollutants. This is primarily due to the fact that conventional leather processing employs a "do-undo" process logic. In this study, the conventional leather processing steps have been reversed to overcome the problems associated with the conventional method. The charges of the skin matrix and of the chemicals and pH profiles of the process have been judiciously used for reversing the process steps. This reversed process eventually avoids several acidification and basification/neutralization steps used in conventional leather processing. The developed process has been validated through various analyses such as chromium content, shrinkage temperature, softness measurements, scanning electron microscopy, and physical testing of the leathers. Further, the performance of the leathers is shown to be on par with conventionally processed leathers through bulk property evaluation. The process enjoys a significant reduction in COD and TS by 53 and 79%, respectively. Water consumption and discharge is reduced by 65 and 64%, respectively. Also, the process benefits from significant reduction in chemicals, time, power, and cost compared to the conventional process.

  13. Investigation of the relationships between DCS cloud properties, lifecycle, and precipitation with meteorological regimes and aerosol sources at the ARM SGP Site

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiquan [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Univ. of Arizona, Tucson, AZ (United States). Dept. of Hydrology and Atmospheric Sciences

    2016-10-26

    In this proposed research, we will investigate how different meteorological regimes and aerosol sources affect DCS properties, diurnal and life cycles, and precipitation using multiple observational platforms (surface, satellite, and aircraft) and NARR reanalysis at the ARM SGP site. The Feng et al. (2011, 2012) DCS results will serve as a starting point for this proposed research, and help us to address some fundamental issues of DCSs, such as convective initiation, rain rate, areal extent (including stratiform and convective regions), and longevity. Convective properties will be stratified by meteorological regime (synoptic/mesoscale patterns) identified by reanalysis. Aerosol information obtained from the ARM SGP site will also be stratified by meteorological regimes to understand their effects on convection. Finally, the aircraft in-situ measurements and various radar observations and retrievals during the MC3E campaign will provide a “cloud-truth” dataset and are an invaluable data source for verifying the findings and investigating the proposed hypotheses in Objective 1.

  14. D-cycloserine Reduces the Context-Specificity of Pavlovian Extinction of Cocaine Cues Through Actions in the Nucleus Accumbens

    OpenAIRE

    Torregrossa, Mary M.; Sanchez, Hayde; Taylor, Jane R.

    2010-01-01

    Extinction therapy has been proposed as a method to reduce the motivational impact of drug-associated cues to prevent relapse. Cue extinction therapy, however, takes place in a novel context (e.g., treatment facility), and is unlikely to be effective due to the context specificity of extinction. We tested the hypothesis that d-cycloserine (DCS), which enhances extinction in other procedures, would enhance extinction of cocaine-associated cues in a novel context to reduce cue-induced reinstate...

  15. Muzzle shunt augmentation of conventional railguns

    International Nuclear Information System (INIS)

    Parker, J.V.

    1991-01-01

    This paper reports on augmentation which is a technique for reducing the armature current and hence the armature power dissipation in a plasma armature railgun. In spite of the advantages, no large augmented railguns have been built, primarily due to the mechanical and electrical complexity introduced by the extra conductors required. it is possible to achieve some of the benefits of augmentation in a conventional railgun by diverting a fraction φ of the input current through a shunt path at the muzzle of the railgun. In particular, the relation between force and armature current is the same as that obtained in an n-turn, series-connected augmented railgun with n = 1/(1 - φ). The price of this simplification is a reduction in electrical efficiency and some additional complexity in the external electrical system

  16. Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors

    Directory of Open Access Journals (Sweden)

    Chuan Jin

    2014-01-01

    Full Text Available Adoptive T-cell therapy of cancer is a treatment strategy where T cells are isolated, activated, in some cases engineered, and expanded ex vivo before being reinfused to the patient. The most commonly used T-cell expansion methods are either anti-CD3/CD28 antibody beads or the “rapid expansion protocol” (REP, which utilizes OKT-3, interleukin (IL-2, and irradiated allogeneic feeder cells. However, REP-expanded or bead-expanded T cells are sensitive to the harsh tumor microenvironment and often short-lived after reinfusion. Here, we demonstrate that when irradiated and preactivated allosensitized allogeneic lymphocytes (ASALs are used as helper cells to license OKT3-armed allogeneic mature dendritic cells (DCs, together they expand target T cells of high quality. The ASAL/DC combination yields an enriched Th1-polarizing cytokine environment (interferon (IFN-γ, IL-12, IL-2 and optimal costimulatory signals for T-cell stimulation. When genetically engineered antitumor T cells were expanded by this coculture system, they showed better survival and cytotoxic efficacy under oxidative stress and immunosuppressive environment, as well as superior proliferative response during tumor cell killing compared to the REP protocol. Our result suggests a robust ex vivo method to expand T cells with improved quality for adoptive cancer immunotherapy.

  17. Beta band transcranial alternating (tACS and direct current stimulation (tDCS applied after initial learning facilitate retrieval of a motor sequence

    Directory of Open Access Journals (Sweden)

    Vanessa eKrause

    2016-01-01

    Full Text Available The primary motor cortex (M1 contributes to the acquisition and early consolidation of a motor sequence. Although the relevance of M1 excitability for motor learning has been supported, the significance of M1 oscillations remains an open issue. This study aims at investigating to what extent retrieval of a newly learned motor sequence can be differentially affected by motor-cortical transcranial alternating (tACS and direct current stimulation (tDCS. Alpha (10 Hz, beta (20 Hz or sham tACS was applied in 36 right-handers. Anodal or cathodal tDCS was applied in 30 right-handers. Participants learned an eight-digit serial reaction time task (SRTT; sequential vs. random with the right hand. Stimulation was applied to the left M1 after SRTT acquisition at rest for ten minutes. Reaction times were analyzed at baseline, end of acquisition, retrieval immediately after stimulation and reacquisition after eight further sequence repetitions.Reaction times during retrieval were significantly faster following 20 Hz tACS as compared to 10 Hz and sham tACS indicating a facilitation of early consolidation. TDCS yielded faster reaction times, too, independent of polarity. No significant differences between 20 Hz tACS and tDCS effects on retrieval were found suggesting that 20 Hz effects might be associated with altered motor-cortical excitability. Based on the behavioural modulation yielded by tACS and tDCS one might speculate that altered motor-cortical beta oscillations support early motor consolidation possibly associated with neuroplastic reorganization.

  18. Safety and feasibility of transcranial direct current stimulation (tDCS) combined with sensorimotor retraining in chronic low back pain: a protocol for a pilot randomised controlled trial.

    Science.gov (United States)

    Ouellette, Adam Louis; Liston, Matthew B; Chang, Wei-Ju; Walton, David M; Wand, Benedict Martin; Schabrun, Siobhan M

    2017-08-21

    Chronic low back pain (LBP) is a common and costly health problem yet current treatments demonstrate at best, small effects. The concurrent application of treatments with synergistic clinical and mechanistic effects may improve outcomes in chronic LBP. This pilot trial aims to (1) determine the feasibility, safety and perceived patient response to a combined transcranial direct current stimulation (tDCS) and sensorimotor retraining intervention in chronic LBP and (2) provide data to support a sample size calculation for a fully powered trial should trends of effectiveness be present. A pilot randomised, assessor and participant-blind, sham-controlled trial will be conducted. Eighty participants with chronic LBP will be randomly allocated to receive either (1) active tDCS + sensorimotor retraining or (2) sham tDCS + sensorimotor retraining. tDCS (active or sham) will be applied to the primary motor cortex for 20 min immediately prior to 60 min of supervised sensorimotor retraining twice per week for 10 weeks. Participants in both groups will complete home exercises three times per week. Feasibility, safety, pain, disability and pain system function will be assessed immediately before and after the 10-week intervention. Analysis of feasibility and safety will be performed using descriptive statistics. Statistical analyses will be conducted based on intention-to-treat and per protocol and will be used to determine trends for effectiveness. Ethical approval has been gained from the institutional human research ethics committee (H10184). Written informed consent will be provided by all participants. Results from this pilot study will be submitted for publication in peer-reviewed journals. ACTRN12616000624482. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Neuromarkers of anxiety and depression in a patient after neuro-ophthalmic surgery of the meningioma – effect of individually-tailored tDCS and neurofeedback

    Directory of Open Access Journals (Sweden)

    Andrzej Mirski

    2015-12-01

    Full Text Available The aim of the study was to evaluate the effectiveness of individually tailored anodal tDCs/ neurofeedback protocol for the reduction of post-operative depression after a neuroophtalmological operation of the meningioma. The neuromarkers in Quantitative EEG (QEEG and Event-related potentials (ERPs were utilized in the construction of protocol and evaluation. [b]Case description[/b]. A 45-year-old female after successful neuro-ophthalmic surgery of the meningioma, complained of severe pain and anxiety, difficulties with sleeping, attention and memory problems, as well as inability to continue working in her given profession. Neuropsychological testing showed lack of cognitive disturbances and post-operative depression. Two working hypotheses were tested to find neuromarkers of depression and anxiety. In line with the ‘depression hypothesis’ a frontal alpha asymmetry pattern was found in the patient, and in line with the ‘anxiety’ hypothesis an increased left temporal P1 wave in response to visual stimuli was found in ERPs. A specific alpha asymmetry neurofeedback protocol combined with an anodal tDCS was suggested. Twenty sessions of individually-tailored anodal tDCs/ neurofeedback protocol were performed. The QEEG frontal asymmetry pattern and the excessive temporal P1 wave were normalized after the intervention. [b]Conclusions. [/b]The patient recovered from post-operative depression and returned to work after 20 sessions of the combined neurofeedback/tDCS protocol. Specific patterns of QEEG and ERPs serve as neuromarkers for constructing the protocol and for monitoring the results of intervention.

  20. Using Biophysical Models to Understand the Effect of tDCS on Neurorehabilitation: Searching for Optimal Covariates to Enhance Poststroke Recovery

    OpenAIRE

    Malerba, Paola; Straudi, Sofia; Fregni, Felipe; Bazhenov, Maxim; Basaglia, Nino

    2017-01-01

    Stroke is a leading cause of worldwide disability, and up to 75% of survivors suffer from some degree of arm paresis. Recently, rehabilitation of stroke patients has focused on recovering motor skills by taking advantage of use-dependent neuroplasticity, where high-repetition of goal-oriented movement is at times combined with non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS). Merging the two approaches is thought to provide outlasting clinical gains, by e...

  1. Using Biophysical Models to Understand the Effect of tDCS on Neurorehabilitation: Searching for Optimal Covariates to Enhance Poststroke Recovery.

    Science.gov (United States)

    Malerba, Paola; Straudi, Sofia; Fregni, Felipe; Bazhenov, Maxim; Basaglia, Nino

    2017-01-01

    Stroke is a leading cause of worldwide disability, and up to 75% of survivors suffer from some degree of arm paresis. Recently, rehabilitation of stroke patients has focused on recovering motor skills by taking advantage of use-dependent neuroplasticity, where high-repetition of goal-oriented movement is at times combined with non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS). Merging the two approaches is thought to provide outlasting clinical gains, by enhancing synaptic plasticity and motor relearning in the motor cortex primary area. However, this general approach has shown mixed results across the stroke population. In particular, stroke location has been found to correlate with the likelihood of success, which suggests that different patients might require different protocols. Understanding how motor rehabilitation and stimulation interact with ongoing neural dynamics is crucial to optimize rehabilitation strategies, but it requires theoretical and computational models to consider the multiple levels at which this complex phenomenon operate. In this work, we argue that biophysical models of cortical dynamics are uniquely suited to address this problem. Specifically, biophysical models can predict treatment efficacy by introducing explicit variables and dynamics for damaged connections, changes in neural excitability, neurotransmitters, neuromodulators, plasticity mechanisms, and repetitive movement, which together can represent brain state, effect of incoming stimulus, and movement-induced activity. In this work, we hypothesize that effects of tDCS depend on ongoing neural activity and that tDCS effects on plasticity may be also related to enhancing inhibitory processes. We propose a model design for each step of this complex system, and highlight strengths and limitations of the different modeling choices within our approach. Our theoretical framework proposes a change in paradigm, where biophysical models can contribute

  2. Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories.

    Directory of Open Access Journals (Sweden)

    Paulo S Boggio

    Full Text Available A recent study found that false memories were reduced by 36% when low frequency repetitive transcranial magnetic stimulation (rTMS was applied to the left anterior temporal lobe after the encoding (study phase. Here we were interested in the consequences on a false memory task of brain stimulation throughout the encoding and retrieval task phases. We used transcranial direct current stimulation (tDCS because it has been shown to be a useful tool to enhance cognition. Specifically, we examined whether tDCS can induce changes in a task assessing false memories. Based on our preliminary results, three conditions of stimulation were chosen: anodal left/cathodal right anterior temporal lobe (ATL stimulation ("bilateral stimulation"; anodal left ATL stimulation (with a large contralateral cathodal electrode--referred as "unilateral stimulation" and sham stimulation. Our results showed that false memories were reduced significantly after the two active conditions (unilateral and bilateral stimulation as compared with sham stimulation. There were no significant changes in veridical memories. Our findings show that false memories are reduced by 73% when anodal tDCS is applied to the anterior temporal lobes throughout the encoding and retrieval stages, suggesting a possible strategy for improving certain aspects of learning.

  3. Conventional power sources for colliders

    International Nuclear Information System (INIS)

    Allen, M.A.

    1987-07-01

    At SLAC we are developing high peak-power klystrons to explore the limits of use of conventional power sources in future linear colliders. In an experimental tube we have achieved 150 MW at 1 μsec pulse width at 2856 MHz. In production tubes for SLAC Linear Collider (SLC) we routinely achieve 67 MW at 3.5 μsec pulse width and 180 pps. Over 200 of the klystrons are in routine operation in SLC. An experimental klystron at 8.568 GHz is presently under construction with a design objective of 30 MW at 1 μsec. A program is starting on the relativistic klystron whose performance will be analyzed in the exploration of the limits of klystrons at very short pulse widths

  4. Comparative Analysis of the Use of Foreign Military Sales (FMS) and Direct Commercial Sales (DCS) in the Procurement of US Defense Articles by the Philippine Government for the Use of the Armed Forces of the Philippines

    National Research Council Canada - National Science Library

    Vera, Remegio

    2004-01-01

    .... Issues and considerations that influence selection decision are also discussed. DCS may offer the lowest fixed price, timely/earlier delivery, easier countertrade arrangements, and penalty for non-compliance to the provisions...

  5. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 108 2

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1 SIN 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  6. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  7. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  8. Laparoscopic splenectomy using conventional instruments

    Directory of Open Access Journals (Sweden)

    Dalvi A

    2005-01-01

    Full Text Available INTRODUCTION : Laparoscopic splenectomy (LS is an accepted procedure for elective splenectomy. Advancement in technology has extended the possibility of LS in massive splenomegaly [Choy et al., J Laparoendosc Adv Surg Tech A 14(4, 197-200 (2004], trauma [Ren et al., Surg Endosc 15(3, 324 (2001; Mostafa et al., Surg Laparosc Endosc Percutan Tech 12(4, 283-286 (2002], and cirrhosis with portal hypertension [Hashizume et al., Hepatogastroenterology 49(45, 847-852 (2002]. In a developing country, these advanced gadgets may not be always available. We performed LS using conventional and reusable instruments in a public teaching the hospital without the use of the advanced technology. The technique of LS and the outcome in these patients is reported. MATERIALS AND METHODS : Patients undergoing LS for various hematological disorders from 1998 to 2004 were included. Electrocoagulation, clips, and intracorporeal knotting were the techniques used for tackling short-gastric vessels and splenic pedicle. Specimen was delivered through a Pfannensteil incision. RESULTS : A total of 26 patients underwent LS. Twenty-two (85% of patients had spleen size more than 500 g (average weight being 942.55 g. Mean operative time was 214 min (45-390 min. The conversion rate was 11.5% ( n = 3. Average duration of stay was 5.65 days (3-30 days. Accessory spleen was detected and successfully removed in two patients. One patient developed subphrenic abscess. There was no mortality. There was no recurrence of hematological disease. CONCLUSION : Laparoscopic splenectomy using conventional equipment and instruments is safe and effective. Advanced technology has a definite advantage but is not a deterrent to the practice of LS.

  9. Effect of transcranial direct current stimulation (tDCS over the prefrontal cortex combined with cognitive training for treating schizophrenia: a sham-controlled randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Pedro Shiozawa

    Full Text Available Abstract Introduction: We report a transcranial direct current stimulation (tDCS protocol over the dorsolateral prefrontal cortex (DLPFC combined with cognitive training in schizophrenia. Method: We assessed psychotic symptoms in nine patients using the Positive and Negative Syndrome Scale (PANSS. All evaluations were scored at baseline, at the end of the intervention protocol, and during a 4-week follow-up. The tDCS protocol consisted of 10 consecutive sessions over 5-day periods. We placed the cathode over the right and the anode over the left DLPFC. For sham stimulation, we turned the device off after 60 seconds. Cognitive training consisted of the administration of N-back and sequence learning tasks. Results: We performed an analysis of covariance (ANCOVA to adjust for the dependent variable PANSS, considering the interaction with baseline severity scores (p = 0.619. Mixed analysis of variance (ANOVA showed no statistical significance between the groups regarding final PANSS scores. Conclusion: The results failed to demonstrate that the concomitant use of tDCS and cognitive training is effective to improve clinical outcomes in patients with schizophrenia. The present findings should be analyzed with care, considering the small sample size. Larger controlled trials on electric/cognitive stimulation should be produced in order to enhance therapeutic strategies in schizophrenia.

  10. Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of its dysfunction.

    Science.gov (United States)

    Sparing, Roland; Mottaghy, Felix M

    2008-04-01

    Noninvasive stimulation of the brain by means of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) has driven important discoveries in the field of human memory functions. Stand-alone or in combination with other brain mapping techniques noninvasive brain stimulation can assess issues such as location and timing of brain activity, connectivity and plasticity of neural circuits and functional relevance of a circumscribed brain area to a given cognitive task. In this emerging field, major advances in technology have been made in a relatively short period. New stimulation protocols and, especially, the progress in the application of tDCS have made it possible to obtain longer and much clearer inhibitory or facilitatory effects even after the stimulation has ceased. In this introductory review, we outline the basic principles, discuss technical limitations and describe how noninvasive brain stimulation can be used to study human memory functions in vivo. Though improvement of cognitive functions through noninvasive brain stimulation is promising, it still remains an exciting challenge to extend the use of TMS and tDCS from research tools in neuroscience to the treatment of neurological and psychiatric patients.

  11. The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: a double-blind randomized controlled trial.

    Science.gov (United States)

    Rocha, Sérgio; Silva, Evelyn; Foerster, Águida; Wiesiolek, Carine; Chagas, Anna Paula; Machado, Giselle; Baltar, Adriana; Monte-Silva, Katia

    2016-01-01

    This pilot double-blind sham-controlled randomized trial aimed to determine if the addition of anodal tDCS on the affected hemisphere or cathodal tDCS on unaffected hemisphere to modified constraint-induced movement therapy (mCIMT) would be superior to constraints therapy alone in improving upper limb function in chronic stroke patients. Twenty-one patients with chronic stroke were randomly assigned to receive 12 sessions of either (i) anodal, (ii) cathodal or (iii) sham tDCS combined with mCIMT. Fugl-Meyer assessment (FMA), motor activity log scale (MAL), and handgrip strength were analyzed before, immediately, and 1 month (follow-up) after the treatment. Minimal clinically important difference (mCID) was defined as an increase of ≥5.25 in the upper limb FMA. An increase in the FMA scores between the baseline and post-intervention and follow-up for active tDCS group was observed, whereas no difference was observed in the sham group. At post-intervention and follow-up, when compared with the sham group, only the anodal tDCS group achieved an improvement in the FMA scores. ANOVA showed that all groups demonstrated similar improvement over time for MAL and handgrip strength. In the active tDCS groups, 7/7 (anodal tDCS) 5/7 (cathodal tDCS) of patients experienced mCID against 3/7 in the sham group. The results support the merit of association of mCIMT with brain stimulation to augment clinical gains in rehabilitation after stroke. However, the anodal tDCS seems to have greater impact than the cathodal tDCS in increasing the mCIMT effects on motor function of chronic stroke patients. The association of mCIMT with brain stimulation improves clinical gains in rehabilitation after stroke. The improvement in motor recovery (assessed by Fugl-Meyer scale) was only observed after anodal tDCS. The modulation of damaged hemisphere demonstrated greater improvements than the modulation of unaffected hemispheres.

  12. Comparing the force ripple during asynchronous and conventional stimulation.

    Science.gov (United States)

    Downey, Ryan J; Tate, Mark; Kawai, Hiroyuki; Dixon, Warren E

    2014-10-01

    Asynchronous stimulation has been shown to reduce fatigue during electrical stimulation; however, it may also exhibit a force ripple. We quantified the ripple during asynchronous and conventional single-channel transcutaneous stimulation across a range of stimulation frequencies. The ripple was measured during 5 asynchronous stimulation protocols, 2 conventional stimulation protocols, and 3 volitional contractions in 12 healthy individuals. Conventional 40 Hz and asynchronous 16 Hz stimulation were found to induce contractions that were as smooth as volitional contractions. Asynchronous 8, 10, and 12 Hz stimulation induced contractions with significant ripple. Lower stimulation frequencies can reduce fatigue; however, they may also lead to increased ripple. Future efforts should study the relationship between force ripple and the smoothness of the evoked movements in addition to the relationship between stimulation frequency and NMES-induced fatigue to elucidate an optimal stimulation frequency for asynchronous stimulation. © 2014 Wiley Periodicals, Inc.

  13. Paris Convention on third party liability in the field of nuclear energy and Brussels Convention Supplementary to the Paris Convention

    International Nuclear Information System (INIS)

    1989-01-01

    This new bilingual (English and French) edition of the 1960 Paris Convention and 1963 Brussels Supplementary Convention incorporates the provisions of the Protocols which amended each of them on two occasions, in 1964 and 1982. The Expose des motifs to the Paris Convention, as revised in 1982 is also included in this pubication. (NEA) [fr

  14. The effectiveness of conventional water treatment in removing ...

    African Journals Online (AJOL)

    Algal blooms are a global problem due to various negative effects that can compromise water quality, such as the production of metabolites that are responsible for odour, colour, taste and toxins. In drinking water supplies algae can reduce the aesthetics of potable water when not readily removed by conventional water ...

  15. Conventional and advanced liquid biofuels

    Directory of Open Access Journals (Sweden)

    Đurišić-Mladenović Nataša L.

    2016-01-01

    Full Text Available Energy security and independence, increase and fluctuation of the oil price, fossil fuel resources depletion and global climate change are some of the greatest challanges facing societies today and in incoming decades. Sustainable economic and industrial growth of every country and the world in general requires safe and renewable resources of energy. It has been expected that re-arrangement of economies towards biofuels would mitigate at least partially problems arised from fossil fuel consumption and create more sustainable development. Of the renewable energy sources, bioenergy draws major and particular development endeavors, primarily due to the extensive availability of biomass, already-existence of biomass production technologies and infrastructure, and biomass being the sole feedstock for liquid fuels. The evolution of biofuels is classified into four generations (from 1st to 4th in accordance to the feedstock origin; if the technologies of feedstock processing are taken into account, than there are two classes of biofuels - conventional and advanced. The conventional biofuels, also known as the 1st generation biofuels, are those produced currently in large quantities using well known, commercially-practiced technologies. The major feedstocks for these biofuels are cereals or oleaginous plants, used also in the food or feed production. Thus, viability of the 1st generation biofuels is questionable due to the conflict with food supply and high feedstocks’ cost. This limitation favoured the search for non-edible biomass for the production of the advanced biofuels. In a general and comparative way, this paper discusses about various definitions of biomass, classification of biofuels, and brief overview of the biomass conversion routes to liquid biofuels depending on the main constituents of the biomass. Liquid biofuels covered by this paper are those compatible with existing infrastructure for gasoline and diesel and ready to be used in

  16. PsychotherapyPlus: augmentation of cognitive behavioral therapy (CBT) with prefrontal transcranial direct current stimulation (tDCS) in major depressive disorder-study design and methodology of a multicenter double-blind randomized placebo-controlled trial.

    Science.gov (United States)

    Bajbouj, Malek; Aust, Sabine; Spies, Jan; Herrera-Melendez, Ana-Lucia; Mayer, Sarah V; Peters, Maike; Plewnia, Christian; Fallgatter, Andreas J; Frase, Lukas; Normann, Claus; Behler, Nora; Wulf, Linda; Brakemeier, Eva-Lotta; Padberg, Frank

    2017-12-06

    Major Depressive Disorder (MDD) is one of the most prevalent psychiatric disorders worldwide. About 20-30% of patients do not respond to the standard psychopharmacological and/or psychotherapeutic interventions. Mounting evidence from neuroimaging studies in MDD patients reveal altered activation patterns in lateral prefrontal brain areas. Successful cognitive behavioral therapy (CBT) is associated with a recovery of these neural alterations. Moreover, it has been demonstrated that transcranial direct current stimulation (tDCS) is capable of influencing prefrontal cortex activity and cognitive functions such as working memory and emotion regulation. Thus, a clinical trial investigating the effects of an antidepressant intervention combining CBT with tDCS seems promising. The present study investigates the antidepressant efficacy of a combined CBT-tDCS intervention as compared to CBT with sham-tDCS or CBT alone. A total of 192 patients (age range 20-65 years) with MDD (Hamilton Depression Rating Scale Score ≥ 15, 21-item version) will be recruited at four study sites across Germany (Berlin, Munich, Tuebingen, and Freiburg) and randomly assigned to one of the following three treatment arms: (1) CBT + active tDCS; (2) CBT + sham-tDCS; and (3) CBT alone. All participants will attend a 6-week psychotherapeutic intervention comprising 12 sessions of CBT each lasting 100 min in a closed group setting. tDCS will be applied simultaneously with CBT. Active tDCS includes stimulation with an intensity of 2 mA for 30 min with the anode placed over F3 and the cathode over F4 according to the EEG 10-20 system, if assigned. The primary outcome measure is the change in Montgomery-Åsberg Depression Rating Scale scores from baseline to 6, 18, and 30 weeks after the first session. Participants also undergo pre- and post-treatment neuropsychological testing and functional magnetic resonance imaging (fMRI) to assess changes in prefrontal functioning and connectivity

  17. Aryl Hydrocarbon Receptor Activation Reduces Dendritic Cell Function during Influenza Virus Infection

    Science.gov (United States)

    Jin, Guang-Bi; Moore, Amanda J.; Head, Jennifer L.; Neumiller, Joshua J.; Lawrence, B. Paige

    2010-01-01

    It has long been known that activation of the aryl hydrocarbon receptor (AhR) by ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses T cell–dependent immune responses; however, the underlying cellular targets and mechanism remain unclear. We have previously shown that AhR activation by TCDD reduces the proliferation and differentiation of influenza virus–specific CD8+ T cells through an indirect mechanism; suggesting that accessory cells are critical AhR targets during infection. Respiratory dendritic cells (DCs) capture antigen, migrate to lymph nodes, and play a key role in activating naive CD8+ T cells during respiratory virus infection. Herein, we report an examination of how AhR activation alters DCs in the lung and affects their trafficking to and function in the mediastinal lymph nodes (MLN) during infection with influenza virus. We show that AhR activation impairs lung DC migration and reduces the ability of DCs isolated from the MLN to activate naive CD8+ T cells. Using novel AhR mutant mice, in which the AhR protein lacks its DNA-binding domain, we show that the suppressive effects of TCDD require that the activated AhR complex binds to DNA. These new findings suggest that AhR activation by chemicals from our environment impacts DC function to stimulate naive CD8+ T cells and that immunoregulatory genes within DCs are critical targets of AhR. Moreover, our results reinforce the idea that environmental signals and AhR ligands may contribute to differential susceptibilities and responses to respiratory infection. PMID:20498003

  18. Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): A randomized and sham-controlled exploratory study.

    Science.gov (United States)

    Ouellet, Julien; McGirr, Alexander; Van den Eynde, Frederique; Jollant, Fabrice; Lepage, Martin; Berlim, Marcelo T

    2015-10-01

    Decision-making and impulse control (both cognitive and motor) are complex interrelated processes which rely on a distributed neural network that includes multiple cortical and subcortical regions. Among them, the orbitofrontal cortex (OFC) seems to be particularly relevant as demonstrated by several neuropsychological and neuroimaging investigations. In the present study we assessed whether transcranial direct current stimulation (tDCS) applied bilaterally over the OFC is able to modulate decision-making and cognitive impulse control. More specifically, 45 healthy subjects were randomized to receive a single 30-min session of active or sham anodal tDCS (1.5 mA) applied over either the left or the right OFC (coupled with contralateral cathodal tDCS). They were also assessed pre- and post-tDCS with a battery of computerized tasks. Our results show that participants who received active anodal tDCS (irrespective of laterality), vs. those who received sham tDCS, displayed more advantageous decision-making (i.e., increased Iowa Gambling Task "net scores" [p = 0.04]), as well as improved cognitive impulse control (i.e., decreased "interference" in the Stroop Word-Colour Task [p = 0.007]). However, we did not observe tDCS-related effects on mood (assessed by visual analogue scales), attentional levels (assessed by the Continuous Performance Task) or motor impulse control (assessed by the Stop-Signal Task). Our study potentially serves as a key translational step towards the development of novel non-invasive neuromodulation-based therapeutic interventions directly targeting vulnerability factors for psychiatric conditions such as suicidal behaviour and addiction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. 15 CFR 742.18 - Chemical Weapons Convention (CWC or Convention).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Chemical Weapons Convention (CWC or... REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.18 Chemical Weapons Convention (CWC or Convention). States... Use of Chemical Weapons and on Their Destruction, also known as the Chemical Weapons Convention (CWC...

  20. A proposed structure for an international convention on climate change

    International Nuclear Information System (INIS)

    Nitze, W.A.

    1991-01-01

    In this chapter, the author recommends a framework convention that will stimulate policy changes without expensive emission reductions in the short term. A central task for a climate convention will be to provide the international community with a permanent mechanism for coordinating its efforts to deal with climate change. The convention should go beyond organizational structure to establish a process for updating the parties' understanding of the science and potential impacts of climate change and for building consensus on policy responses. Each party must then be required to prepare and distribute its own national plan for reducing greenhouse gas emissions and for adapting to future change while achieving its development objectives. A set of targets and timetables for the reduction of greenhouse gas reductions is presented

  1. The framework convention on climate change a convention for sustainable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Hassing, P.; Mendis, M.S.; Menezes, L.M.; Gowen, M.M.

    1996-12-31

    In 1992, over 165 countries signed the United Nation`s Framework Convention on Climate Change (FCCC). These countries have implicitly agreed to alter their `anthropogenic activities` that increase the emissions of greenhouse gases (GHGs) into the atmosphere and deplete the natural sinks for these same greenhouse gases. The energy sector is the major source of the primary anthropogenic GHGs, notably carbon dioxide and methane. The Organization for Economic Co-operation and Development (OECD) countries presently account for the major share of GHG emissions from the energy sector. However, the developing countries are also rapidly increasing their contribution to global GHG emissions as a result of their growing consumption of fossil-based energy. Implementation of this global climate change convention, if seriously undertaken by the signatory countries, will necessitate changes in the energy mix and production processes in both the OECD and developing countries. International actions also will be needed to put the world on a sustainable energy path. By adoption of the FCCC, representatives of the world`s populations have indicated their desire to move toward such a path. The Conference of Parties to the Convention has just concluded its second meeting, at which the Parties endorsed a U.S. proposal that legally binding and enforceable emissions targets be adopted. It is clearly evident that the FCCC, as presently operating, cannot achieve the objective of stabilizing GHG concentrations in the atmosphere unless it adopts a major protocol to significantly reduce anthropogenic GHG emissions. As demonstrated here, a good starting point in determining the steps the Parties to the FCCC should take in designing a protocol is to remember that the primary source of anthropogenic GHG emissions is the consumption of fossil fuels and the future growth of GHG emissions will derive primarily from the ever-increasing demand for and consumption of these fuels.

  2. Human rights and conventionality control in Mexico

    Directory of Open Access Journals (Sweden)

    Azul América Aguiar-Aguilar

    2014-12-01

    Full Text Available The protection of human rights in Mexico has, de jure, suffered an important change in the last years, given a new judicial interpretation delivered by the National Supreme Court of Justice that allows the use of conventionality control, which means, that it allows federal and state judges to verify the conformity of domestic laws with those established in the Inter-American Convention of Human Rights. To what extent domestic actors are protecting human rights using this new legal tool called conventionality control? In this article I explore whom and how is conventionality control being used in Mexico. Using N-Vivo Software I reviewed concluded decisions delivered by intermediate level courts (Collegiate Circuit Courts in three Mexican states. The evidence points that conventionality control is a very useful tool especially to defenders, who appear in sentences claiming compliance with the commitments Mexico has acquired when this country ratified the Convention.

  3. Measurement of CD8+ and CD4+ T Cell Frequencies Specific for EBV LMP1 and LMP2a Using mRNA-Transfected DCs.

    Directory of Open Access Journals (Sweden)

    Dae-Hee Sohn

    Full Text Available An EBV-specific cellular immune response is associated with the control of EBV-associated malignancies and lymphoproliferative diseases, some of which have been successfully treated by adoptive T cell therapy. Therefore, many methods have been used to measure EBV-specific cellular immune responses. Previous studies have mainly used autologous EBV-transformed B-lymphoblastoid cell lines (B-LCLs, recombinant viral vectors transfected or peptide pulsed dendritic cells (DCs as stimulators of CD8(+ and CD4(+ T lymphocytes. In the present study, we used an interferon-γ (IFN-γ enzyme-linked immunospot (ELISPOT assay by using isolated CD8(+ and CD4(+ T cells stimulated with mRNA-transfected DCs. The frequency of latent membrane protein 1 (LMP1-specific IFN-γ producing CD4(+ T cells was significantly higher than that of LMP2a. The frequency of IFN-γ producing CD4(+ T cells was significantly correlated with that of CD8(+ T cells in LMP1-specific immune responses (r = 0.7187, Pc < 0.0001. To determine whether there were changes in LMP1- or LMP2a-specific immune responses, subsequent peripheral blood mononuclear cells (PBMCs samples were analyzed. Significant changes were observed in 5 of the 10 donors examined, and CD4(+ T cell responses showed more significant changes than CD8(+ T cell responses. CD8(+ and CD4(+ T cells from EBV-seropositive donors secreted only the Th1 cytokines IFN-γ, TNF-α, and IL-2, while Th2 (IL-4 and Th17 (IL-17a cytokines were not detected. CD4(+ T cells secreted significantly higher cytokine levels than did CD8(+ T cells. Analysis of EBV-specific T cell responses using autologous DCs transfected with mRNA might provide a comprehensive tool for monitoring EBV infection and new insights into the pathogenesis of EBV-associated diseases.

  4. What is difficult for you can be easy for me. Effects of increasing individual task demand on prefrontal lateralization: A tDCS study.

    Science.gov (United States)

    Vergallito, Alessandra; Romero Lauro, Leonor J; Bonandrini, Rolando; Zapparoli, Laura; Danelli, Laura; Berlingeri, Manuela

    2018-01-31

    Neuroimaging studies suggest that the increment of the cognitive load associated with a specific task may induce the recruitment of a more bilateral brain network. In most studies, however, task demand has been manipulated in a static and pre-specified way, regardless of individual cognitive resources. Here we implemented a new paradigm based on a pre-experimental assessment to set up subject-specific levels of task demand and applied tDCS (transcranial direct current stimulation) to assess each hemisphere involvement in task performance. 24 young participants performed a digit span backward (DSB, complex cognitive function) and a paced finger tapping task (pFT, basic motor function) at 3 levels of subject-specific task demand ("low" 5/5 correct answers, "medium" 3/5, "high" 1/5). Anodal tDCS (20min, 1.5mA) was delivered through a target electrode (5 × 5cm) positioned to stimulate both the inferior frontal gyrus and the primary motor area over left and right hemisphere and in sham condition in three different days. A 3 (left, right, sham) × 3 (low, medium, high) mixed-model with random intercept for subjects was run with R software. As expected, in both tasks accuracy decreased with the increment of subject-specific task demand. Moreover, a significant interaction between type of stimulation and subject-specific task demand was found for the reaction times recorded during the DSB and for the accuracy in the pFT: in the most demanding conditions, right anodal tDCS significantly interfered with behavioural performance. Our results suggest that hemispheric lateralization is modulated by the subject-specific level of task demand and this modulation is not task-specific. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Augmenting cognitive training in older adults (The ACT Study): Design and Methods of a Phase III tDCS and cognitive training trial.

    Science.gov (United States)

    Woods, Adam J; Cohen, Ronald; Marsiske, Michael; Alexander, Gene E; Czaja, Sara J; Wu, Samuel

    2018-02-01

    Adults over age 65 represent the fastest growing population in the US. Decline in cognitive abilities is a hallmark of advanced age and is associated with loss of independence and dementia risk. There is a pressing need to develop effective interventions for slowing or reversing the cognitive aging process. While certain forms of cognitive training have shown promise in this area, effects only sometimes transfer to neuropsychological tests within or outside the trained domain. This paper describes a NIA-funded Phase III adaptive multisite randomized clinical trial, examining whether transcranial direct current stimulation (tDCS) of frontal cortices enhances neurocognitive outcomes achieved from cognitive training in older adults experiencing age-related cognitive decline: the Augmenting Cognitive Training in Older Adults study (ACT). ACT will enroll 360 participants aged 65 to 89 with age-related cognitive decline, but not dementia. Participants will undergo cognitive training intervention or education training-control combined with tDCS or sham tDCS control. Cognitive training employs a suite of eight adaptive training tasks focused on attention/speed of processing and working memory from Posit Science BrainHQ. Training control involves exposure to educational nature/history videos and related content questions of the same interval/duration as the cognitive training. Participants are assessed at baseline, after training (12weeks), and 12-month follow-up on our primary outcome measure, NIH Toolbox Fluid Cognition Composite Score, as well as a comprehensive neurocognitive, functional, clinical and multimodal neuroimaging battery. The findings from this study have the potential to significantly enhance efforts to ameliorate cognitive aging and slow dementia. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Gravitational collapse of conventional polytropic cylinder

    Science.gov (United States)

    Lou, Yu-Qing; Hu, Xu-Yao

    2017-07-01

    In reference to general polytropic and conventional polytropic hydrodynamic cylinders of infinite length with axial uniformity and axisymmetry under self-gravity, the dynamic evolution of central collapsing mass string in free-fall dynamic accretion phase is re-examined in details. We compare the central mass accretion rate and the envelope mass infall rate at small radii. Among others, we correct mistakes and typos of Kawachi & Hanawa (KH hereafter) and in particular prove that their key asymptotic free-fall solution involving polytropic index γ in the two power exponents is erroneous by analytical analyses and numerical tests. The correct free-fall asymptotic solutions at sufficiently small \\hat{r} (the dimensionless independent self-similar variable) scale as {˜ } -|ln \\hat{r}|^{1/2} in contrast to KH's ˜ -|ln \\hat{r}|^{(2-γ )/2} for the reduced bulk radial flow velocity and as {˜ } \\hat{r}^{-1}|ln \\hat{r}|^{-1/2} in contrast to KH's {˜ } \\hat{r}^{-1} |ln \\hat{r}|^{-(2-γ )/2} for the reduced mass density. We offer consistent scenarios for numerical simulation code testing and theoretical study on dynamic filamentary structure formation and evolution as well as pertinent stability properties. Due to unavoidable Jeans instabilities along the cylinder, such collapsing massive filaments or strings can further break up into clumps and segments of various lengths as well as clumps embedded within segments and evolve into chains of gravitationally collapsed objects (such as gaseous planets, brown dwarfs, protostars, white dwarfs, neutron stars, black holes in a wide mass range, globular clusters, dwarf spheroidals, galaxies, galaxy clusters and even larger mass reservoirs etc.) in various astrophysical and cosmological contexts as articulated by Lou & Hu recently. As an example, we present a model scheme for comparing with observations of molecular filaments for forming protostars, brown dwarfs and gaseous planets and so forth.